Visual threats reduce blood-feeding and trigger escape responses in Aedes aegypti mosquitoes
World Health Organization. World Health Statistics 2018. (WHO, 2018).Wynne, N. E., Lorenzo, M. G. & Vinauger, C. Mechanism and plasticity of vectors’ host-seeking behavior. Curr. Opin. Insect Sci. 40, 1–5 (2020).Article
Google Scholar
Carlile, P. A., Peters, R. A. & Evans, C. S. Detection of a looming stimulus by the Jacky dragon: Selective sensitivity to characteristics of an aerial predator. Anim. Behav. 72, 553–562 (2006).Article
Google Scholar
Ingle, D. J. Visually elicited evasive behavior in frogs. Bioscience 40, 284–291 (1990).Article
Google Scholar
Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).Article
CAS
Google Scholar
Temizer, I., Donovan, J. C., Baier, H. & Semmelhack, J. L. A visual pathway for looming-evoked escape in larval zebrafish. Curr. Biol. 25, 1823–1834 (2015).Article
CAS
Google Scholar
Scarano, F., Tomsic, D. & Sztarker, J. Direction selective neurons responsive to horizontal motion in a crab reflect an adaptation to prevailing movements in flat environments. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.0372-20.2020 (2020).Article
Google Scholar
Scarano, F. & Tomsic, D. Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli. J. Physiol. Paris 108, 141–147 (2014).Article
Google Scholar
Santer, R. D., Rind, F. C., Stafford, R. & Simmons, P. J. Role of an identified looming-sensitive neuron in triggering a flying locust’s escape. J. Neurophysiol. 95, 3391–3400 (2006).Article
Google Scholar
Simmons, P. J., Rind, F. C. & Santer, R. D. Escapes with and without preparation: The neuroethology of visual startle in locusts. J. Insect Physiol. 56, 876–883 (2010).Article
CAS
Google Scholar
Dupuy, F., Casas, J., Body, M. & Lazzari, C. R. Danger detection and escape behaviour in wood crickets. J. Insect Physiol. 57, 865–871 (2011).Article
CAS
Google Scholar
Muijres, F. T., Elzinga, M. J., Melis, J. M. & Dickinson, M. H. Flies evade looming targets by executing rapid visually directed banked turns. Science 344, 172–177 (2014).Article
ADS
CAS
Google Scholar
Ache, J. M. et al. Neural basis for looming size and velocity encoding in the Drosophila giant fiber escape pathway. Curr. Biol. 29, 1073-1081.e4 (2019).Article
CAS
Google Scholar
Domenici, P., Booth, D., Blagburn, J. M. & Bacon, J. P. Cockroaches keep predators guessing by using preferred escape trajectories. Curr. Biol. 18, 1792–1796 (2008).Article
CAS
Google Scholar
Smolka, J., Zeil, J. & Hemmi, J. M. Natural visual cues eliciting predator avoidance in fiddler crabs. Proc. Biol. Sci. 278, 3584–3592 (2011).
Google Scholar
Card, G. & Dickinson, M. Performance trade-offs in the flight initiation of Drosophila. J. Exp. Biol. 211, 341–353 (2008).Article
Google Scholar
Sun, Y. A. & Wyman, R. J. Neurons of the Drosophila giant fiber system: I. Dorsal longitudinal motor neurons. J. Comp. Neurol. 387, 157–166 (1997).Article
CAS
Google Scholar
von Reyn, C. R. et al. Feature integration drives probabilistic behavior in the Drosophila escape response. Neuron 94, 1190-1204.e6 (2017).Article
Google Scholar
Fotowat, H., Fayyazuddin, A., Bellen, H. J. & Gabbiani, F. A novel neuronal pathway for visually guided escape in Drosophila melanogaster. J. Neurophysiol. 102, 875–885 (2009).Article
Google Scholar
Card, G. & Dickinson, M. H. Visually mediated motor planning in the escape response of Drosophila. Curr. Biol. 18, 1300–1307 (2008).Article
CAS
Google Scholar
Matherne, M. E., Cockerill, K., Zhou, Y., Bellamkonda, M. & Hu, D. L. Mammals repel mosquitoes with their tails. J. Exp. Biol. 221, 178905 (2018).Article
Google Scholar
Cribellier, A. et al. Diurnal and nocturnal mosquitoes escape looming threats using distinct flight strategies. Curr. Biol. 32, 1232-1246.e5 (2022).Article
CAS
Google Scholar
Cribellier, A., Spitzen, J., Straw, A. D., van Leeuwen, J. L. & Muijres, F. T. Escape flight performances of night-active malaria mosquitoes: the role of visual and airflow cues of an approaching object. in Integrative and Comparative Biology. Vol. 61. E170–E171 (Oxford University Press Inc Journals Dept, 2021).Reid, J. A. Anopheline Mosquitoes of Malaya and Borneo. Studies from the Institute for Medical Research, Malaysia. (1968).Clements, A. N. The Biology of Mosquitoes. Volume 2: Sensory Reception and Behaviour (CABI Publishing, 1999).
Google Scholar
Tuno, N., Tsuda, Y., Takagi, M. & Swonkerd, W. Pre- and postprandial mosquito resting behavior around cattle hosts. J. Am. Mosq. Control Assoc. 19, 211–219 (2003).
Google Scholar
Day, J. F. & Edman, J. D. Mosquito engorgement on normally defensive hosts depends on host activity Patterns. J. Med. Entomol. 21, 732–740 (1984).Article
CAS
Google Scholar
Edman, J. D., Webber, L. A. & Kale, H. W. Effect of mosquito density on the interrelationship of host behavior and mosquito feeding success. Am. J. Trop. Med. Hyg. 21, 487–491 (1972).Article
CAS
Google Scholar
Christophers, S. R. Aedes aegypti: The Yellow Fever Mosquito. (1960).Ponlawat, A. & Harrington, L. C. Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J. Med. Entomol. 42, 844–849 (2005).Article
Google Scholar
Walilko, T. J., Viano, D. C. & Bir, C. A. Biomechanics of the head for Olympic boxer punches to the face. Br. J. Sports Med. 39, 710–719 (2005).Article
CAS
Google Scholar
Reiser, M. B. & Dickinson, M. H. A modular display system for insect behavioral neuroscience. J. Neurosci. Methods 167, 127–139 (2008).Article
Google Scholar
Cribellier, A. Biomechanics of Flying Mosquitoes During Capture and Escape. Doctoral Dissertation. (Wageningen University, 2021).Hu, X., Leming, M. T., Whaley, M. A. & O’Tousa, J. E. Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes. J. Exp. Biol. 217, 1003–1008 (2014).
Google Scholar
Tammero, L. F., Frye, M. A. & Dickinson, M. H. Spatial organization of visuomotor reflexes in Drosophila. J. Exp. Biol. 207, 113–122 (2004).Article
Google Scholar
Tammero, L. F. & Dickinson, M. H. Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. J. Exp. Biol. 205, 2785–2798 (2002).Article
Google Scholar
Muijres, F. T. et al. Escaping blood-fed malaria mosquitoes minimize tactile detection without compromising on take-off speed. J. Exp. Biol. 220, 3751–3762 (2017).Article
CAS
Google Scholar
van Veen, W. G., van Leeuwen, J. L. & Muijres, F. T. Malaria mosquitoes use leg push-off forces to control body pitch during take-off. J. Exp. Zool. A Ecol. Integr. Physiol. 333, 38–49 (2020).Article
Google Scholar
Caro, T. et al. Benefits of zebra stripes: Behaviour of tabanid flies around zebras and horses. PLoS ONE 14, e0210831 (2019).Article
CAS
Google Scholar
Edman, J. D., Webber, L. A. & Schmid, A. A. Effect of host defenses on the feeding pattern of Culex nigripalpus when offered a choice of blood sources. J. Parasitol. 60, 874–883 (1974).Article
CAS
Google Scholar
Walker, E. D. & Edman, J. D. The influence of host defensive behavior on mosquito (Diptera: Culicidae) biting persistence1. J. Med. Entomol. 22, 370–372 (1985).Article
CAS
Google Scholar
Warnes, M. L. & Finlayson, L. H. Effect of host behaviour on host preference in Stomoxys calcitrans. Med. Vet. Entomol. 1, 53–57 (1987).Article
CAS
Google Scholar
Vinauger, C. et al. Modulation of host learning in Aedes aegypti mosquitoes. Curr. Biol. 28, 333-344.e8 (2018).Article
CAS
Google Scholar
Wolff, G. H. & Riffell, J. A. Olfaction, experience and neural mechanisms underlying mosquito host preference. J. Exp. Biol. 221, 157131 (2018).Article
Google Scholar
Alonso San Alberto, D. et al. The olfactory gating of visual preferences to human skin and visible spectra in mosquitoes. Nat. Commun. 13, 1–14 (2022).Article
Google Scholar
van Breugel, F., Riffell, J., Fairhall, A. & Dickinson, M. H. Mosquitoes use vision to associate odor plumes with thermal targets. Curr. Biol. 25, 2123–2129 (2015).Article
Google Scholar
Vinauger, C. et al. Visual-olfactory integration in the human disease vector mosquito, Aedes aegypti. Curr. Biol. 29, 2509-2516.e5 (2019).Article
CAS
Google Scholar
Grant, A. J. & O’Connell, R. J. Age-related changes in female mosquito carbon dioxide detection. J. Med. Entomol. 44, 617–623 (2007).Article
CAS
Google Scholar
Tallon, A. K., Hill, S. R. & Ignell, R. Sex and age modulate antennal chemosensory-related genes linked to the onset of host seeking in the yellow-fever mosquito, Aedes aegypti. Sci. Rep. 9, 43 (2019).Article
ADS
Google Scholar
Eilerts, D. F., VanderGiessen, M., Bose, E. A., Broxton, K. & Vinauger, C. Odor-specific daily rhythms in the olfactory sensitivity and behavior of Aedes aegypti mosquitoes. Insects 9, 147 (2018).Article
Google Scholar
Taylor, B. & Jones, M. D. The circadian rhythm of flight activity in the mosquito Aedes aegypti (L). The phase-setting effects of light-on and light-off. J. Exp. Biol. 51, 59–70 (1969).Article
CAS
Google Scholar
Peirce, J. et al. PsychoPy2: Experiments in behavior made easy. Behav. Res. Methods 51, 195–203 (2019).Article
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. arXiv [stat.CO] (2014).Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).Article
MathSciNet
MATH
Google Scholar
Lund, U., & Agostinelli, C. Package “Circular”. Repository CRAN (2017).Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article
Google Scholar
Walker, J. A. Estimating velocities and accelerations of animal locomotion: A simulation experiment comparing numerical differentiation algorithms. J. Exp. Biol. 201, 981–995 (1998).Article
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).Book
MATH
Google Scholar More