More stories

  • in

    Ant milk: The mysterious fluid that helps them thrive

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Thermal physiology integrated species distribution model predicts profound habitat fragmentation for estuarine fish with ocean warming

    Reygondeau, G. & Beaugrand, G. Future climate-driven shifts in distribution of Calanus finmarchicus. Glob. Change Biol. 17, 756–766 (2011).Article 
    ADS 

    Google Scholar 
    Grieve, B. D., Hare, J. A. & Saba, V. S. Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. Northeast Continental Shelf. Sci. Rep. 7, 6264 (2017).Article 
    ADS 

    Google Scholar 
    Bosso, L. et al. The rise and fall of an alien: Why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invasions 24, 3169–3187 (2022).Article 

    Google Scholar 
    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).Article 

    Google Scholar 
    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).Article 

    Google Scholar 
    Kaschner, K., Watson, R., Trites, A. W. & Pauly, D. Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Mar. Ecol. Prog. Ser. 316, 285–310 (2006).Article 
    ADS 

    Google Scholar 
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).Article 

    Google Scholar 
    Buckley, L. B. Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am. Nat. 171, E1–E19 (2008).Article 

    Google Scholar 
    Kolbe, J. J., Kearney, M. & Shine, R. Modeling the consequences of thermal trait variation for the cane toad invasion of Australia. Ecol. Appl. 20, 2273–2285 (2010).Article 

    Google Scholar 
    Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 3, 509–535 (2011).Article 

    Google Scholar 
    Somero, G. N., Lockwood, B. L. & Tomanek, L. Biochemical Adaptation: Response to Environmental Challenges, From Life’s Origins to the Anthropocene (Sinauer Associates, 2017).
    Google Scholar 
    Kuo, E. S. & Sanford, E. Geographic variation in the upper thermal limits of an intertidal snail: Implications for climate envelope models. Mar. Ecol. Prog. Ser. 388, 137–146 (2009).Article 
    ADS 

    Google Scholar 
    Smeraldo, S. et al. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodivers. Conserv. 27, 2425–2441 (2018).Article 

    Google Scholar 
    Gamliel, I. et al. Incorporating physiology into species distribution models moderates the projected impact of warming on selected Mediterranean marine species. Ecography 43, 1090–1106 (2020).Article 

    Google Scholar 
    Kearney, M. R., Wintle, B. A. & Porter, W. P. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv. Lett. 3, 203–213 (2010).Article 

    Google Scholar 
    Buckley, L. B., Waaser, S. A., MacLean, H. J. & Fox, R. Does including physiology improve species distribution model predictions of responses to recent climate change?. Ecology 92, 2214–2221 (2011).Article 

    Google Scholar 
    Fry, F. E. J. Effects of the environment on animal activity. Pub. Ontario Fish. Lab. No. 68. Toronto Studies Biol. Ser. 55, 1–52 (1947).
    Google Scholar 
    Brett, J. R. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). Am Zoologist 11, 99–113 (1971).Article 

    Google Scholar 
    Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).Article 
    ADS 

    Google Scholar 
    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).Article 

    Google Scholar 
    Eliason, E. J. et al. Differences in thermal tolerance among sockeye salmon populations. Science 332, 109–112 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Change 2, 30–32 (2012).Article 
    ADS 

    Google Scholar 
    Pörtner, H. Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).Article 
    ADS 

    Google Scholar 
    Pörtner, H.-O. Oxygen-and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).Article 

    Google Scholar 
    Clark, T. D., Sandblom, E. & Jutfelt, F. Response to Farrell and to Pörtner and Giomi. J. Exp. Biol. 216, 4495–4497 (2013).Article 

    Google Scholar 
    Farrell, A. P. Aerobic scope and its optimum temperature: Clarifying their usefulness and limitations: Correspondence on J. Exp. Biol. 216, 2771–2782. J. Exp. Biol. 216, 4493–4494 (2013).Article 

    Google Scholar 
    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Clarke, A. Is there a universal temperature dependence of metabolism?. Funct. Ecol. 18, 252–256 (2004).Article 

    Google Scholar 
    Clarke, A. & Fraser, K. P. P. Why does metabolism scale with temperature?. Funct. Ecol. 18, 243–251 (2004).Article 

    Google Scholar 
    Fangue, N. A., Hofmeister, M. & Schulte, P. M. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J. Exp. Biol. 209, 2859–2872 (2006).Article 
    CAS 

    Google Scholar 
    Dhillon, R. S. & Schulte, P. M. Intraspecific variation in the thermal plasticity of mitochondria in killifish. J. Exp. Biol. 214, 3639–3648 (2011).Article 
    CAS 

    Google Scholar 
    Fangue, N. A., Podrabsky, J. E., Crawshaw, L. I. & Schulte, P. M. Countergradient variation in temperature preference in populations of killifish Fundulus heteroclitus. Physiol. Biochem. Zool. 82, 776–786 (2009).Article 

    Google Scholar 
    Healy, T. M. & Schulte, P. M. Thermal acclimation is not necessary to maintain a wide thermal breadth of aerobic scope in the common killifish (Fundulus heteroclitus). Physiol. Biochem. Zool. 85, 107–119 (2012).Article 
    CAS 

    Google Scholar 
    Chust, G. et al. Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach. ICES J. Mar. Sci. 71, 241–253 (2014).Article 

    Google Scholar 
    Norin, T., Malte, H. & Clark, T. D. Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures. J. Exp. Biol. 217, 244–251 (2014).
    Google Scholar 
    Payne, N. L. et al. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Funct. Ecol. 30, 903–912 (2016).Article 

    Google Scholar 
    Raffel, T. R. et al. Disease and thermal acclimation in a more variable and unpredictable climate. Nat. Clim. Change 3, 146–151 (2013).Article 
    ADS 

    Google Scholar 
    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecol. Lett. 19, 1372–1385 (2016).Article 

    Google Scholar 
    Dahlke, F. T. et al. Northern cod species face spawning habitat losses if global warming exceeds 1.5°C. Sci. Adv. 4, 8821 (2018).Article 
    ADS 

    Google Scholar 
    Pörtner, H.-O. & Giomi, F. Nothing in experimental biology makes sense except in the light of ecology and evolution: Correspondence on J. Exp. Biol. 2771-2782. J. Exp. Biol. 216, 4494–4495 (2013).Article 

    Google Scholar 
    Pörtner, H.-O. How and how not to investigate the oxygen and capacity limitation of thermal tolerance (OCLTT) and aerobic scope: Remarks on the article by Gräns et al. J. Exp. Biol. 217, 4432–4433 (2014).Article 

    Google Scholar 
    Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).Article 
    CAS 

    Google Scholar 
    Killen, S. S., Atkinson, D. & Glazier, D. S. The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecol. Lett. 13, 184–193 (2010).Article 

    Google Scholar 
    Norin, T. & Gamperl, A. K. Metabolic scaling of individuals vs. populations: Evidence for variation in scaling exponents at different hierarchical levels. Funct. Ecol. 32, 379–388 (2018).Article 

    Google Scholar 
    Jayasundara, N., Kozal, J. S., Arnold, M. C., Chan, S. S. L. & Giulio, R. T. D. High-throughput tissue bioenergetics analysis reveals identical metabolic allometric scaling for teleost hearts and whole organisms. PLoS ONE 10, e0137710 (2015).Article 

    Google Scholar 
    Kinnison, M. T., Unwin, M. J. & Quinn, T. P. Migratory costs and contemporary evolution of reproductive allocation in male chinook salmon. J. Evol. Biol. 16, 1257–1269 (2003).Article 
    CAS 

    Google Scholar 
    Clarke, A. & Johnston, N. M. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 68, 893–905 (1999).Article 

    Google Scholar 
    Duvernell, D. D., Lindmeier, J. B., Faust, K. E. & Whitehead, A. Relative influences of historical and contemporary forces shaping the distribution of genetic variation in the Atlantic killifish, Fundulus heteroclitus. Mol. Ecol. 17, 1344–1360 (2008).Article 

    Google Scholar 
    Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A. & Ramirez-Villegas, J. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 7, 1–14 (2020).Article 

    Google Scholar 
    Franke, R. Scattered data interpolation: Tests of some methods. Math. Comput. 38, 181–200 (1982).MathSciNet 
    MATH 

    Google Scholar 
    Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, 15. https://doi.org/10.1029/2012GL051106 (2012).Article 

    Google Scholar 
    Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species (Worldwide Web Electronic Publication, 2019).
    Google Scholar 
    Jayasundara, N. Ecological significance of mitochondrial toxicants. Toxicology 391, 64–74 (2017).Article 
    CAS 

    Google Scholar 
    Beers, J. M. & Jayasundara, N. Antarctic notothenioid fish: what are the future consequences of ‘losses’ and ‘gains’ acquired during long-term evolution at cold and stable temperatures?. J. Exp. Biol. 218, 1834–1845 (2015).Article 

    Google Scholar 
    Lear, K. O. et al. Thermal performance responses in free-ranging elasmobranchs depend on habitat use and body size. Oecologia 191, 829–842 (2019).Article 
    ADS 

    Google Scholar 
    Good, S. et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens. 12, 720 (2020).Article 
    ADS 

    Google Scholar 
    Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2014).
    Google Scholar 
    Ready, J. et al. Predicting the distributions of marine organisms at the global scale. Ecol. Model. 221, 467–478 (2010).Article 

    Google Scholar 
    Pawlowicz, R. M_Map: A Mapping Package for MATLAB, Version 1.4 m. Computer Software, UBC EOAS. https://www.eoas.ubc.ca/rich/map.html (2020).Schulzweida, U., Kornblueh, L. & Quast, R. CDO User’s Guide. Climate Data Operators, Version 1, (2006).Nychka, D., Furrer, R., Paige, J. & Sain, S. Fields: Tools for Spatial Data. R Package Version 11.6. (2017).Chen, Z., Farrell, A. P., Matala, A. & Narum, S. R. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments. Mol. Ecol. 27, 659–674 (2018).Article 

    Google Scholar 
    da Silva, C. R. B., Riginos, C. & Wilson, R. S. An intertidal fish shows thermal acclimation despite living in a rapidly fluctuating environment. J. Comp. Physiol. B. 189, 385–398 (2019).Article 

    Google Scholar 
    Slesinger, E. et al. The effect of ocean warming on black sea bass (Centropristis striata) aerobic scope and hypoxia tolerance. PLoS ONE 14, e0218390 (2019).Article 
    CAS 

    Google Scholar 
    Moffett, E. R., Fryxell, D. C., Palkovacs, E. P., Kinnison, M. T. & Simon, K. S. Local adaptation reduces the metabolic cost of environmental warming. Ecology 99, 2318–2326 (2018).Article 

    Google Scholar 
    Turker, H. The effect of water temperature on standard and routine metabolic rate in two different sizes of Nile tilapia. Kafkas Universitesi Veteriner Fakultesi Dergisi 17, 575–580 (2011).
    Google Scholar 
    Hvas, M., Folkedal, O., Imsland, A. & Oppedal, F. The effect of thermal acclimation on aerobic scope and critical swimming speed in Atlantic salmon, Salmo salar. J. Exp. Biol. 220, 2757–2764 (2017).
    Google Scholar 
    Ohlberger, J., Mehner, T., Staaks, G. & Hölker, F. Intraspecific temperature dependence of the scaling of metabolic rate with body mass in fishes and its ecological implications. Oikos 121, 245–251 (2012).Article 

    Google Scholar 
    Kunz, K. L. et al. New encounters in Arctic waters: A comparison of metabolism and performance of polar cod (Boreogadus saida) and Atlantic cod (Gadus morhua) under ocean acidification and warming. Polar Biol. 39, 1137–1153 (2016).Article 

    Google Scholar 
    Norin, T., Bailey, J. A. & Gamperl, A. K. Thermal biology and swimming performance of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). PeerJ 7, e7784 (2019).Article 

    Google Scholar 
    Nowell, L. B. et al. Swimming energetics and thermal ecology of adult bonefish (Albula vulpes): A combined laboratory and field study in Eleuthera, The Bahamas. Environ. Biol. Fishes 98, 2133–2146 (2015).Article 

    Google Scholar 
    Pang, X., Yuan, X.-Z., Cao, Z.-D., Zhang, Y.-G. & Fu, S.-J. The effect of temperature on repeat swimming performance in juvenile qingbo (Spinibarbus sinensis). Fish Physiol. Biochem. 41, 19–29 (2015).Article 
    CAS 

    Google Scholar 
    Schwieterman, G. D. et al. Metabolic Rates and Hypoxia Tolerences of clearnose skate (Rostaraja eglanteria), summer flounder (Paralichthys dentatus), and thorny skate (Amblyraja radiata). Biology 8, 56 (2019).Article 
    CAS 

    Google Scholar 
    Xie, H. et al. Effects of acute temperature change and temperature acclimation on the respiratory metabolism of the snakehead. Turk. J. Fish. Aquat. Sci. 17, 535–542 (2017).Article 

    Google Scholar  More

  • in

    Grazing pressure on drylands

    Maestre and colleagues collected data using a standardized field survey at 98 sites across 25 countries and 6 continents, fitted linear mixed models to data from all sites and grazing pressure levels, and then applied a multimodel inference procedure to select the set of best-fitting models. The authors found interactions between grazing and biodiversity in almost half of the best-fitting models, where increasing grazing pressure had positive effects on ecosystem services in colder sites with high plant species richness. However, increases in grazing pressure at warmer sites with high rainfall seasonality and low plant species richness interacted with soil properties to either increase or reduce the delivery of multiple ecosystem services. The authors’ findings highlight how increasing herbivore richness could enhance ecosystem service delivery across contrasting environmental and biodiversity conditions, enhancing soil carbon storage and reducing the negative impacts of increased grazing pressure. More

  • in

    Impacts of soil nutrition on floral traits, pollinator attraction, and fitness in cucumbers (Cucumis sativus L.)

    Fichtner, K. & Schulze, E. D. The effect of nitrogen nutrition on growth and biomass partitioning of annual plants originating from habitats of different nitrogen availability. Oecologia 92, 236–241 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodger, J. G. et al. Widespread vulnerability of flowering plant seed production to pollinator declines. Sci. Adv. 7, eabd3524. https://doi.org/10.1126/sciadv.abd3524 (2021).Article 
    ADS 

    Google Scholar 
    de Groot, C. C., Marcelis, L. F. M., van den Boogaard, R., Kaiser, W. M. & Lambers, H. Interaction of nitrogen and phosphorus nutrition in determining growth. Plant Soil 248, 257–268 (2003).Article 

    Google Scholar 
    Wang, Z. & Li, S. Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables. J. Plant Nutr. 27, 539–556 (2004).Article 
    CAS 

    Google Scholar 
    Razaq, M., Zhang, P. & Shen, H. L. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS One 12, e0171321. https://doi.org/10.1371/journal.pone.0171321 (2017).Article 
    CAS 

    Google Scholar 
    Poulton, J. L., Bryla, D., Koide, R. T. & Stephenson, A. G. Mycorrhizal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomato. New Phytol. 154, 255–264 (2002).Article 
    CAS 

    Google Scholar 
    Burkle, L. A. & Irwin, R. E. The effects of nutrient addition on floral characters and pollination in two subalpine plants, Ipomopsis aggregata and Linum lewisii. Plant Ecol. 203, 83–98 (2009).Article 

    Google Scholar 
    Burkle, L. A. & Irwin, R. E. Beyond biomass: measuring the effects of community-level nitrogen enrichment on floral traits, pollinator visitation and plant reproduction. J. Ecol. 98, 705–717 (2010).Article 

    Google Scholar 
    Hoover, S. E. R. et al. Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism. Ecol. Lett. 15, 227–234 (2012).Article 

    Google Scholar 
    Lau, T. C. & Stephenson, A. G. Effects of soil nitrogen on pollen production, pollen grain size, and pollen performance in Cucurbita pepo (Cucurbitaceae). Am. J. Bot. 80, 763–768 (1993).Article 
    CAS 

    Google Scholar 
    Lau, T. C. & Stephenson, A. Effects of soil phosphorus on pollen production, pollen size, pollen phosphorus content, and the ability to sire seeds in Cucurbita pepo (Cucurbitaceae). Sex. Plant Reprod. 7, 215–220 (1994).Article 

    Google Scholar 
    Atasay, A., Akgül, H., Uçgun, K. & Şan, B. Nitrogen fertilization affected the pollen production and quality in apple cultivars ‘Jerseymac’ and ‘Golden Delicious’. Acta Agric. Scand. Sect. B. Soil Plant Sci. 63, 460–465 (2013).
    Google Scholar 
    Shuel, R. W. Some aspects of the relation between nectar secretion and nitrogen, phosphorus, and potassium nutrition. Can. J. Plant Sci. 37, 220–236 (1957).Article 
    CAS 

    Google Scholar 
    Robacker, D. C., Flottum, P. K., Sammataro, D. & Erickson, E. H. Effects of climatic and edaphic factors on soybean flowers and on the subsequent attractiveness of the plants to honey bees. Field Crops Res. 6, 267–278 (1983).Article 

    Google Scholar 
    Dror, I., Yaron, B. & Berkowitz, B. The human impact on all soil-forming factors during the anthropocene. ACS Environ. Au 2, 11–19 (2022).Article 
    CAS 

    Google Scholar 
    David, T. I., Storkey, J. & Stevens, C. J. Understanding how changing soil nitrogen affects plant–pollinator interactions. Arthropod. Plant Interact. 13, 671–684 (2019).Article 

    Google Scholar 
    Russo, L., Buckley, Y. M., Hamilton, H., Kavanagh, M. & Stout, J. C. Low concentrations of fertilizer and herbicide alter plant growth and interactions with flower-visiting insects. Agric. Ecosyst. Environ. 304, 107141. https://doi.org/10.1016/j.agee.2020.107141 (2020).Article 
    CAS 

    Google Scholar 
    Akter, A. & Klečka, J. Water stress and nitrogen supply affect floral traits and pollination of the white mustard, Sinapis alba (Brassicaceae). PeerJ 10, e13009. https://doi.org/10.7717/peerj.13009 (2022).Article 
    CAS 

    Google Scholar 
    Wu, Y. et al. Soil water and nutrient availability interactively modify pollinator-mediated directional and correlational selection on floral display. New Phytol. https://doi.org/10.1111/nph.18537 (2022).Article 

    Google Scholar 
    Nicolson, S. W. Sweet solutions: nectar chemistry and quality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 2163. https://doi.org/10.1098/rstb.2021.0163 (2022).Article 
    CAS 

    Google Scholar 
    Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 10, 133–141 (2015).Article 

    Google Scholar 
    Cnaani, J., Thomson, J. D. & Papaj, D. R. Flower choice and learning in foraging bumblebees: effects of variation in nectar volume and concentration. Ethology 112, 278–285 (2006).Article 

    Google Scholar 
    Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F. & Grozinger, C. M. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl. Acad. Sci. U. S. A. 113, E4035–E4042. https://doi.org/10.1073/pnas.1606101113 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Vaudo, A. D. et al. Pollen protein: lipid macronutrient ratios may guide broad patterns of bee species floral preferences. Insects 11, 132. https://doi.org/10.3390/insects11020132 (2020).Article 

    Google Scholar 
    Cardoza, Y. J., Harris, G. K. & Grozinger, C. M. Effects of soil quality enhancement on pollinator-plant interactions. Psyche 2012, 581458. https://doi.org/10.1155/2012/581458 (2012).Article 

    Google Scholar 
    Ceulemans, T., Hulsmans, E., Vanden Ende, W. & Honnay, O. Nutrient enrichment is associated with altered nectar and pollen chemical composition in Succisa pratensis Moench and increased larval mortality of its pollinator Bombus terrestris L.. PLoS One 12, e0175160. https://doi.org/10.1371/journal.pone.0175160 (2017).Article 
    CAS 

    Google Scholar 
    Russo, L., Vaudo, A. D., Fisher, C. J., Grozinger, C. M. & Shea, K. Bee community preference for an invasive thistle associated with higher pollen protein content. Oecologia 190, 901–912 (2019).Article 
    ADS 

    Google Scholar 
    Russo, L., Keller, J., Vaudo, A. D., Grozinger, C. M. & Shea, K. Warming increases pollen lipid concentration in an invasive thistle, with minor effects on the associated floral-visitor community. Insects 11, 20. https://doi.org/10.3390/insects11010020 (2019).Article 

    Google Scholar 
    Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2002).Article 
    CAS 

    Google Scholar 
    Carisey, N. & Bauce, E. Does nutrition-related stress carry over to spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae) progeny?. Bull. Entomol. Res. 92, 101–108 (2002).Article 
    CAS 

    Google Scholar 
    Zhang, G. & Han, X. N: P stoichiometry in Ficus racemosa and its mutualistic pollinator. J. Plant Ecol. 3, 123–130 (2010).Article 

    Google Scholar 
    Visanuvimol, L. & Bertram, S. M. How dietary phosphorus availability during development influences condition and life history traits of the cricket Acheta domesticas. J. Insect Sci. 11, 63. https://doi.org/10.1673/031.011.6301 (2011).Article 

    Google Scholar 
    Dovrat, G., Meron, E., Shachak, M., Golodets, C. & Osem, Y. Plant size is related to biomass partitioning and stress resistance in water-limited annual plant communities. J. Arid Environ. 165, 1–9 (2019).Article 
    ADS 

    Google Scholar 
    Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).Article 
    CAS 

    Google Scholar 
    Tao, L. & Hunter, M. D. Does anthropogenic nitrogen deposition induce phosphorus limitation in herbivorous insects?. Glob. Chang. Biol. 18, 1843–1853 (2012).Article 
    ADS 

    Google Scholar 
    Tognetti, P. M. et al. Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proc. Natl. Acad. Sci. 118(28), e2023718118. https://doi.org/10.1073/pnas.2023718118 (2021).Article 
    CAS 

    Google Scholar 
    Leghari, S. J. et al. Role of nitrogen for plant growth and development: a review. Adv. Environ. Biol. 10, 209–218 (2016).
    Google Scholar 
    Carvalheiro, L. G. et al. Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography 43, 209–221 (2020).Article 

    Google Scholar 
    Lefcheck, J. S. Piecewisesem: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Roulston, T. H., Cane, J. H. & Buchmann, S. L. What governs protein content of pollen: Pollinator preferences, pollen–pistil interactions, or phylogeny?. Ecol. Monogr. 70, 617–643 (2000).
    Google Scholar 
    Pacini, E. & Hesse, M. Pollenkitt—its composition, forms and functions. Flora 200, 399–415 (2005).Article 

    Google Scholar 
    Vaudo, A. D. et al. Bumble bees regulate their intake of essential protein and lipid pollen macronutrients. J. Exp. Biol. 219, 3962–3970 (2016).CAS 

    Google Scholar 
    Vaudo, A. D., Farrell, L. M., Patch, H. M., Grozinger, C. M. & Tooker, J. F. Consistent pollen nutritional intake drives bumble bee (Bombus impatiens) colony growth and reproduction across different habitats. Ecol. Evol. 8, 5765–5776 (2018).Article 

    Google Scholar 
    Treanore, E. D., Vaudo, A. D., Grozinger, C. M. & Fleischer, S. J. Examining the nutritional value and effects of different floral resources in pumpkin agroecosystems on Bombus impatiens worker physiology. Apidologie 50, 542–552 (2019).Article 

    Google Scholar 
    Baker, H. G. & Baker, I. The predictive value of nectar chemistry to the recognition of pollinator types. Israel J. Bot. 39, 157–166 (1990).CAS 

    Google Scholar 
    Thomson, J. D. Pollen transport and deposition by bumble bees in Erythronium: influences of floral nectar and bee grooming. J. Ecol. 74, 329–341 (1986).Article 

    Google Scholar 
    Gonzalez, M. V., Coque, M. & Herrero, M. Influence of pollination systems on fruit set and fruit quality in kiwifruit (Actinidia deliciosa). Ann. Appl. Biol. 132, 349–355 (1998).Article 

    Google Scholar 
    Morandin, L. A., Laverty, T. M. & Kevan, P. G. Effect of bumble bee (Hymenoptera: Apidae) pollination intensity on the quality of greenhouse tomatoes. J. Econ. Entomol. 94, 172–179 (2001).Article 
    CAS 

    Google Scholar 
    Karron, J. D., Mitchell, R. J. & Bell, J. M. Multiple pollinator visits to Mimulus ringens (Phrymaceae) flowers increase mate number and seed set within fruits. Am. J. Bot. 93, 1306–1312 (2006).Article 

    Google Scholar 
    Kiatoko, N., Raina, S. K., Muli, E. & Mueke, J. Enhancement of fruit quality in Capsicum annum through pollination by Hypotrigona gribodoi in Kakamega Western Kenya. Entomol. Sci. 17, 106–110 (2014).Article 

    Google Scholar 
    Abrol, D. P., Gorka, A. K., Ansari, M. J., Al-Ghamdi, A. & Al-Kahtani, S. Impact of insect pollinators on yield and fruit quality of strawberry. Saudi J. Biol. Sci. 26, 524–530 (2019).Article 

    Google Scholar 
    Osman, M. A., Raju, P. S. & Peacock, J. M. The effect of soil temperature, moisture and nitrogen on Striga asiatica (L.) Kuntze seed germination, viability and emergence on sorghum (Sorghum bicolor L. Moench) roots under field conditions. Plant Soil 131, 265–273 (1991).Article 
    CAS 

    Google Scholar 
    Rose, T. J. & Raymond, C. A. Seed phosphorus effects on rice seedling vigour in soils differing in phosphorus status. Agronomy 10(12), 1919. https://doi.org/10.3390/agronomy10121919 (2020).Article 
    CAS 

    Google Scholar 
    Cavatorta, J. et al. ‘Marketmore 97’: a monoecious slicing cucumber inbred with multiple disease and insect resistances. HortScience 42, 707–709 (2007).Article 

    Google Scholar 
    Friedman, J. The evolution of annual and perennial plant life histories: ecological correlates and genetic mechanisms. Annu. Rev. Ecol. Evol. Syst. 51, 461–481 (2020).Article 

    Google Scholar 
    Alzate-Marin, A. L. et al. Warming and elevated CO2 induces changes in the reproductive dynamics of a tropical plant species. Sci. Total Environ. 768, 144899. https://doi.org/10.1016/j.scitotenv.2020.144899 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Mu, J. et al. Domesticated honey bees evolutionarily reduce flower nectar volume in a Tibetan lotus. Ecology 95, 3161–3172 (2014).Article 

    Google Scholar 
    Cruden, R. W. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31, 32–46 (1977).
    Google Scholar 
    Costa, C. M. & Yang, S. Counting pollen grains using readily available, free image processing and analysis software. Ann. Bot. 104, 1005–1010 (2009).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
    CAS 

    Google Scholar 
    Vaudo, A. D., Patch, H. M., Mortensen, D. A., Grozinger, C. M. & Tooker, J. F. Bumble bees exhibit daily behavioral patterns in pollen foraging. Arthropod. Plant. Interact. 8, 273–283 (2014).
    Google Scholar  More

  • in

    Seasonal variation in daily activity patterns of snow leopards and their prey

    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article 

    Google Scholar 
    Ordiz, A., Stoen, O. G., Delibes, M. & Swenson, J. E. Predators or prey? Spatio-temporal discrimination of human-derived risk by brown bears. Oecologia 166, 59–67 (2011).Article 
    ADS 

    Google Scholar 
    Glass, T. W., Breed, G. A., Robards, M. D., Williams, C. T. & Kielland, K. Trade-off between predation risk and behavioural thermoregulation drives resting behaviour in a cold-adapted mesocarnivore. Anim. Behav. 175, 163–174 (2021).Article 

    Google Scholar 
    Daan, S. & Aschoff, J. Circadian rhytms of locomotor activity in captive birds and mammals: Their variation with seasons and latitude. Oecologia 18, 269–316 (1975).Article 
    ADS 

    Google Scholar 
    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).Article 

    Google Scholar 
    Garcia, R. A., Cabeza, M., Rahbek, C. & Araujo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).Article 

    Google Scholar 
    Curio, E. The Ethology of Predation (Springer-Verlag, 1976).Book 

    Google Scholar 
    Linkie, M. & Ridout, M. S. Assessing tiger-prey interactions in Sumatran rainforests. J. Zool. 284, 224–229 (2011).Article 

    Google Scholar 
    Heurich, M. et al. Activity patterns of Eurasian lynx are modulated by light regime and individual traits over a wide latitudinal range. PLoS ONE 9, e114143 (2014).Article 
    ADS 

    Google Scholar 
    Harmsen, B. J., Foster, R. J., Silver, S. C., Ostro, L. E. T. & Doncaster, C. P. Jaguar and puma activity patterns in relation to their main prey. Mamm. Biol. 76, 320–324 (2011).Article 

    Google Scholar 
    Foster, V. C. et al. Jaguar and puma activity patterns and predator-prey interactions in four Brazilian biomes. Biotropica 45, 373–379 (2013).Article 

    Google Scholar 
    Theuerkauf, J. et al. Daily patterns and duration of wolf activity in the Bialowieza forest, Poland. J. Mammal. 84, 243–253 (2003).Article 

    Google Scholar 
    Hebblewhite, M., Merrill, E. H. & McDonald, T. L. Spatial decomposition of predation risk usign resource selection functions: An example in a wolf-elk predator-prey system. Oikos 111, 101–111 (2005).Article 

    Google Scholar 
    Balme, G., Hunter, L. & Slotow, R. Feeding habitat selection by hunting leopards Panthera pardus in a woodland Savanna: Prey catchability versus abundance. Anim. Behav. 74, 589–598 (2007).Article 

    Google Scholar 
    Smith, J. A. et al. Where and when to hunt? Decomposing predation success of an ambush carnivore. Ecology 101, e03172 (2020).Article 

    Google Scholar 
    Hopcraft, J. G. C., Sinclair, A. R. E. & Packer, C. Planning for success: Serengeti lions seek prey accessibility rather than abundance. J. Anim. Ecol. 74, 559–566 (2005).Article 

    Google Scholar 
    Theuerkauf, J. What drives wolves: Fear or hunger? Humans, diet, climate and wolf activity patterns. Ethology 115, 649–657 (2009).Article 

    Google Scholar 
    Funston, P. J., Mills, M. G. & Biggs, H. C. Factors affecting the hunting success of male and female lions in the Kruger National Park. J. Zool. 253, 419–431 (2001).Article 

    Google Scholar 
    Schaller, G. The Serengeti lion (The University of Chicago Press, IL, 1972).
    Google Scholar 
    Bailey, T. N. The African Leopard, Ecology and Behaviour of a Solitary Felid (The Blackburn Press, 1993).Book 

    Google Scholar 
    Jenny, D. & Zuberbühler, K. Hunting behaviour in West African forest leopards. Afr. J. Ecol. 43, 197–200 (2005).Article 

    Google Scholar 
    Packer, C., Swanson, A., Ikanda, D. & Kushnir, H. Fear of darkness, the full moon and the nocturnal ecology of African lions. PLoS ONE 6, e22285 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Palmer, M. S., Fieberg, J., Swanson, A., Kosmala, M. & Packer, C. A “dynamic” landscape of fear: Prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol. Letters 20, 1364–1373 (2017).Article 
    CAS 

    Google Scholar 
    Steinmetz, R., Seuaturien, N. & Chutipong, W. Tigers, leopards, and dholes in a half-empty forest: Assessing species interactions in a guild of threatened carnivores. Biol. Cons. 163, 68–78 (2013).Article 

    Google Scholar 
    Carter, N., Jasny, M., Gurung, B. & Liu, J. Impacts of people and tigers on leopard spatiotemporal activity patterns in a global biodiversity hotspot. Global Ecol. Conserv. 3, 149–162 (2015).Article 

    Google Scholar 
    George, S. L. & Crooks, K. R. Recreation and large mammal activity in an urban nature reserve. Biol. Cons. 133, 107–117 (2006).Article 

    Google Scholar 
    Beltrán, J. F. & Delibes, M. Environmental determinants of circadian activity of free-ranging Iberian lynxes. J. Mammal. 75, 382–393 (1994).Article 

    Google Scholar 
    McNab, B. K. The standard energetics of mammalian carnivores: Felidae and Hyaenidae. Sikes Can. J. Zool. 78, 2227–2239 (2000).Article 

    Google Scholar 
    Mishra, C. et al. Increasing risks for emerging infectious diseases within a rapidly changing High Asia. Ambio 51, 494–507 (2022).Article 

    Google Scholar 
    Mishra, C., Redpath, S. M. & Suryawanshi, K. R. Livestock predation by snow leopards: Conflicts and the search for solutions. In Snow Leopards (eds McCarthy, T. M. & Mallon, D.) 59–67 (Academic Press, 2016).Chapter 

    Google Scholar 
    Farrington, J. D., and J. Li. 2016. Climate change impacts on snow leopard range. In: McCarthy, T.M., Mallon, D., editors. Snow Leopards. Academic Press.Jackson, R. Home Range, Movements and Habitat use of Snow Leopard in Nepal (Dissertation niversity of London, London, 1996).
    Google Scholar 
    McCarthy, T. M., Fuller, T. K. & Munkhtsog, B. Movements and activities of snow leopards in Southwestern Mongolia. Biol. Cons. 124, 527–537 (2005).Article 

    Google Scholar 
    Salvatori, M. et al. Co-occurrence of snow leopard, wolf and Siberian ibex under livestock encroachment into protected areas across the Mongolian Altai. Biol. Cons. 261, 109294 (2021).Article 

    Google Scholar 
    Rode, J. et al. Population monitoring of snow leopards using camera trapping in Naryn state nature reserve, Kyrgyzstan, between 2016 and 2019. Global Ecol. Conserv. 31, e01850 (2021).Article 

    Google Scholar 
    Sharma, R. K. et al. Spatial variation in population-density of snow leopards in a multiple use landscape in Spiti Valley Trans-Himalay. PLoS ONE 16, e0250900 (2021).Article 
    CAS 

    Google Scholar 
    Kachel, S. M., Karimov, K. & Wirsing, A. J. Predator niche overlap and partitioning and potential interactions in the mountains of Central Asia. J. Mammal. 103, 1019–1029 (2022).Article 

    Google Scholar 
    Johansson, Ö., Simms, A. & McCarthy, T. M. From VHF to satellite GPS collars: Advancements in snow leopard telemetry. In Snow leopards (eds McCarthy, T. M. & Mallon, D.) p355-365 (Academic Press, 2016).Chapter 

    Google Scholar 
    Johansson, Ö. et al. Snow leopard predation in a livestock dominated landscape in Mongolia. Biol. Cons. 184, 251–258 (2015).Article 

    Google Scholar 
    Havmøller, R. W., Jacobsen, N. S., Scharff, N., Rovero, F. & Zimmermann, F. Assessing the activity pattern overlap among leopards (Panthera pardus), potential prey and competitors in a complex landscape in Tanzania. J. Zool. 311, 175–182 (2020).Article 

    Google Scholar 
    Kitchener, A. C., Van Valkenburgh, B. & Yamaguchi, N. Felid form and function. In Biology and Conservation of Wild Felids (eds MacDonald, D. W. & Loveridge, A. J.) 83–106 (Oxford University Press, 2010).
    Google Scholar 
    Fuglesteg, B. N., Haga, Ø. E., Folkow, L. P., Fuglei, E. & Blix, A. S. Seasonal variations in basal metabolic rate, lower critical temperature and responses to temporary starvation in the arctic fox (Alopex lagopus) from Svalbard. Polar Biol. 29, 308–319 (2005).Article 

    Google Scholar 
    Doris, P. A. & Baker, M. A. Effect of dehydration on thermoregulation in cats exposed to high ambient temperatures. J. Appl. Physiol. 51, 46–54 (1981).Article 
    CAS 

    Google Scholar 
    Forrest, J. L. et al. Conservation and climate change: Assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. Biol. Cons. 150, 129–135 (2012).Article 

    Google Scholar 
    Sharma, R. K., Bhatnagar, Y. V. & Mishra, C. Does livestock benefit or harm snow leopards?. Biol. Cons. 190, 8–13 (2015).Article 

    Google Scholar 
    Samelius, G. et al. Keeping predators out: Testing fences to reduce livestock depredation at night-time corrals. Oryx 55, 466–472 (2021).Article 

    Google Scholar 
    Hebblewhite, M. & Merrill, E. Modelling wildlife-human relationships for social species with mixed-effects resource selection models. J. Appl. Ecol. 45, 834–844 (2007).Article 

    Google Scholar 
    Johansson, Ö., Malmsten, J., Mishra, C., Lkhagvajav, P. & McCarthy, T. Reversible immobilization of free-ranging snow leopards (Panthera uncia) with a combination of medetomidine and tiletamine-zolazepam. J. Wildl. Dis. 49, 338–346 (2013).Article 

    Google Scholar 
    Johansson, Ö., Kachel, S. & Weckworth, B. Guidelines for telemetry studies on snow leopards. Animals 12, 1663 (2022).Article 

    Google Scholar 
    Bjørneraas, K., Van Moorter, B., Rolandsen, C. M. & Herfindal, I. Screening global positioning system location data for errors using animal movement characteristics. J. Wildl. Manag. 74, 1361–1366 (2010).Article 

    Google Scholar 
    Pålsson O. 2022. Maternal behaviour of the snow leopard (Panthera uncial). MSc thesis. Uppsala University, Uppsala; Sweden https://www.diva-portal.org/smash/get/diva2:1668965/FULLTEXT01.pdf.du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 20. PLoS Biol. 18, e3000411 (2020).Article 

    Google Scholar 
    Nygren, E. 2015. Activity patterns of snow leopards (Panthera uncia) at their kill sites. MSc thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden. https://stud.epsilon.slu.se/8109/1/nygren_e_150625.pdf.Johansson, Ö. et al. Land sharing is essential for snow leopard conservation. Biol. Cons. 203, 1–7 (2016).Article 

    Google Scholar 
    Johansson, Ö. et al. The timing of breeding and independence for snow leopard females and their cubs. Mamm. Biol. 101, 173–180 (2021).Article 

    Google Scholar 
    Nouvellet, P., Rasmussen, G. S. A., Macdonald, D. W., Courchamp, F. & Braae, A. Noisy clocks and silent sunrises: Measurement methods of daily activity pattern. J. Zool. 286, 179–184 (2012).Article 

    Google Scholar 
    Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337 (2009).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    R Development core team. 2019. R: A language and environment for statistical computing. R foundation for statistical computing Vienna, Austria. www.R-project.org/.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. Roy. Stat. Soc. B 73, 3–36 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Mild shading promotes sesquiterpenoid synthesis and accumulation in Atractylodes lancea by regulating photosynthesis and phytohormones

    Mild shading facilitates sesquiterpenoid accumulation and growth in Atractylodes lancea rhizomeTo determine a concrete shading value for the production of high-quality and high-yielding AR, we examined the major compounds, including the sesquiterpenoids hinesol (Hin), β-eudesmol (Edu), and atractylone (Atl), and the polyacetylene atractylodin (Atd), as well as the biomass of AR at different growth stages (Fig. 1A–C) under various light intensities. The sum of these four volatile oils as the total volatile oil content was subsequently analyzed. The results revealed that the accumulation of volatile oils was significantly different (p  More

  • in

    Obscured fishing activity

    Welch and colleagues analysed 3.7 billion AIS messages recorded between 2017 and 2019 in the global Fishing Watch AIS dataset, identifying more than 55,000 suspected intentional disabling events in waters more than 50 nautical miles from shore, amounting to 6% ( >4.9 million hours) of obscured vessel activity. Hotspots of disabling activity were located near several regions of IUU concern and transshipment hotspots, including in the exclusive economic zones of Argentina and West African nations and in the Northwest Pacific. Using individual boosted regression tree models for the four dominant gear types (squid jiggers, trawlers, tuna purse seines and drifting longlines) and a full model that included all suspected disabling events (that is, the four gear types listed above and additional gears such as gillnet and troll), Welch and colleagues found that loitering by transshipment vessels (a proxy for potential transshipment events) was the most important driver in the full model and squid jigger model and more than half of the disabling events by squid jiggers were close enough to undertake transshipment to refrigerated cargo vessels. More

  • in

    Pronounced differences in heart rate and metabolism distinguish daily torpor and short-term hibernation in two bat species

    Lyman, C. P., Willis, J. S., Malan, A. & Wang, L. C. H. Hibernation and Torpor in Mammals and Birds (Academic Press, 1982).
    Google Scholar 
    Boyles, J. G. et al. A global heterothermic continuum in mammals. Glob. Ecol. Biogeogr. 22, 1029–1039. https://doi.org/10.1111/geb.12077 (2013).Article 

    Google Scholar 
    Geiser, F. Ecological Physiology of Daily Torpor and Hibernation (Springer, 2021). https://doi.org/10.1007/978-3-030-75525-6.Book 

    Google Scholar 
    Buck, C. L. & Barnes, B. M. Effects of ambient temperature on metabolic rate, respiratory quotient and torpor in an arctic hibernator. Am. J. Physiol. Reg. Integr. Comp. Physiol 279, R255–R262. https://doi.org/10.1152/ajpregu.2000.279.1.R255 (2000).Article 
    CAS 

    Google Scholar 
    Ortmann, S. & Heldmaier, G. Regulation of body temperature and energy requirements of hibernating Alpine marmots (Marmota marmota). Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R698–R704. https://doi.org/10.1152/ajpregu.2000.278.3.R698 (2000).Article 
    CAS 

    Google Scholar 
    Swoap, S. J. & Gutilla, M. J. Cardiovascular changes during daily torpor in the laboratory mouse. Am. J. Physiol. Regul. Integr. Comp. Physiol 297, R769–R774. https://doi.org/10.1152/ajpregu.00131.2009 (2009).Article 
    CAS 

    Google Scholar 
    Kirsch, R., Ouarour, A. & Pévet, P. Daily torpor in the Djungarian hamster (Phodopus sungorus): photoperiodic regulation, characteristics and circadian organization. J. Comp. Physiol. A 168, 121–128. https://doi.org/10.1007/BF00217110 (1991).Article 
    CAS 

    Google Scholar 
    Nowack, J., Stawski, C. & Geiser, F. More functions of torpor and their roles in a changing world. J. Comp. Physiol. (B) 187, 889–897. https://doi.org/10.1007/s00360-017-1100-y (2017).Article 

    Google Scholar 
    Nowack, J., Levesque, D. L., Reher, S. & Dausmann, K. H. Variable climates lead to varying phenotypes: “Weird” mammalian torpor and lessons from non-holarctic species. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00060 (2020).Article 

    Google Scholar 
    Hoelzl, F. et al. How to spend the summer? Free-living dormice (Glis glis) can hibernate for 11 months in non-reproductive years. J. Comp. Physiol. B 185, 931–939. https://doi.org/10.1007/s00360-015-0929-1 (2015).Article 

    Google Scholar 
    Geiser, F. Seasonal expression of avian and mammalian daily torpor and hibernation: not a simple summer-winter affair. F. Phys. 11, 436. https://doi.org/10.3389/fphys.2020.00436 (2020).Article 

    Google Scholar 
    Jonasson, K. A. & Willis, C. K. R. Hibernation energetics of free-ranging little brown bats. J. Exp. Biol. 215, 2141–2149. https://doi.org/10.1242/jeb.066514 (2012).Article 

    Google Scholar 
    Dietz, M., Kalko, E. K. V. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii). J. Comp. Physiol. B. 176(3), 223–231. https://doi.org/10.1007/s00360-005-0043-x (2006).Article 

    Google Scholar 
    Kobbe, S., Ganzhorn, J. U. & Dausmann, K. H. Extreme individual flexibility of heterothermy in free-ranging Malagasy mouse lemurs (Microcebus griseorufus). J. Comp. Physiol. B 181, 165–173. https://doi.org/10.1007/s00360-010-0507-5 (2011).Article 

    Google Scholar 
    Ruf, T. & Geiser, F. Daily torpor and hibernation in birds and mammals. Biol. Rev. 90, 891–926. https://doi.org/10.1111/brv.12137 (2015).Article 

    Google Scholar 
    Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Storey, K. B. & Storey, J. M. Metabolic rate depression: the biochemistry of mammalian hibernation. Adv. Clin. Chem. 52, 77–108 (2010).Article 
    CAS 

    Google Scholar 
    Stawski, C., Willis, C. K. R. & Geiser, F. The importance of temporal heterothermy in bats. J. Zool. 292, 86–100. https://doi.org/10.1111/jzo.12105 (2014).Article 

    Google Scholar 
    Bondarenco, A., Körtner, G. & Geiser, F. Some like it cold: summer torpor by freetail bats in the Australian arid zone. J. Comp. Physiol. (B) 183, 1113–1122. https://doi.org/10.1007/s00360-013-0779-7 (2013).Article 

    Google Scholar 
    O’Mara, M. T. et al. Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats. R. Soc. Open Sci. 4, 171359. https://doi.org/10.1098/rsos.171359 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Reher, S., Ehlers, J., Rabarison, H. & Dausmann, K. H. Short and hyperthermic torpor responses in the Malagasy bat Macronycteris commersoni reveal a broader hypometabolic scope in heterotherms. J. Comp. Physiol. B https://doi.org/10.1007/s00360-018-1171-4 (2018).Article 

    Google Scholar 
    Geiser, F. et al. Hibernation and daily torpor in Australian and New Zealand bats: Does the climate zone matter?. Aust. J. Zool https://doi.org/10.1071/ZO20025 (2020).Article 

    Google Scholar 
    Stawski, C., Turbill, C. & Geiser, F. Hibernation by a free-ranging subtropical bat (Nyctophilus bifax). J. Comp. Physiol. (B) 179, 284–292. https://doi.org/10.1007/s00360-008-0328-y (2009).Article 

    Google Scholar 
    Levin, E. et al. Subtropical mouse-tailed bats use geothermally heated caves for winter hibernation. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142781. https://doi.org/10.1098/rspb.2014.2781 (2015).Article 

    Google Scholar 
    Bartholomew, G. A., Dawson, W. R. & Lasiewski, R. C. Thermoregulation and heterothermy in some of the smaller flying foxes (Megachiroptera) of New Guinea. Z. Vergl. Physiol. 70, 196–209 (1970).Article 

    Google Scholar 
    Bartels, W., Law, B. S. & Geiser, F. Daily torpor and energetics in a tropical mammal, the northern blossom-bat Macroglossus minimus (Megachiroptera). J. Comp. Physiol. (B) 168, 233–239. https://doi.org/10.1007/s003600050141 (1998).Article 
    CAS 

    Google Scholar 
    Geiser, F., Coburn, D. K., Körtner, G. & Law, B. S. Thermoregulation, energy metabolism, and torpor in blossom-bats, Syconycteris australis (Megachiroptera). J. Zool. 239, 538–590. https://doi.org/10.1111/j.1469-7998.1996.tb05944.x (1996).Article 

    Google Scholar 
    Geiser, F. & Coburn, D. K. Field metabolic rates and water uptake in the blossom-bat Syconycteris australis (Megachiroptera). J. Comp. Physiol. (B) 169, 133–138. https://doi.org/10.1007/s003600050203 (1999).Article 
    CAS 

    Google Scholar 
    Turbill, C. Roosting and thermoregulatory behaviour of male Gould’s long-eared bats, Nyctophilus gouldi: energetic benefits of thermally unstable tree roosts. Aust. J. Zool. 54, 57–60. https://doi.org/10.1071/ZO05068 (2006).Article 

    Google Scholar 
    Currie, S. E. No effect of season on the electrocardiogram of long-eared bats (Nyctophilus gouldi) during torpor. J. Comp. Physiol. B 188, 695–705. https://doi.org/10.1007/s00360-018-1158-1 (2018).Article 

    Google Scholar 
    Stawski, C. & Geiser, F. Do season and distribution affect thermal energetics of a hibernating bat endemic to the tropics and subtropics?. Am. J. Physiol. Regul. Integr. Comp. Physiol 301, R542–R547. https://doi.org/10.1152/ajpregu.00792.2010 (2011).Article 
    CAS 

    Google Scholar 
    Currie, S. E., Stawski, C. & Geiser, F. Cold-hearted bats: uncoupling of heart rate and metabolism during torpor at subzero temperatures. J. Exp. Biol. https://doi.org/10.1242/jeb.170894 (2018).Article 

    Google Scholar 
    Churchill, S. Australian Bats 2nd edn. (Allen and Unwin, 2008).
    Google Scholar 
    Geiser, F., Law, B. S. & Körtner, G. Daily torpor in relation to photoperiod in a subtropical blossom-bat, Syconycteris australis (Megachiroptera). J. Therm. Biol. 30, 574–579. https://doi.org/10.1016/j.jtherbio.2005.08.002 (2005).Article 

    Google Scholar 
    Coburn, D. K. & Geiser, F. Seasonal changes in energetics and torpor patterns in the subtropical blossom-bat Syconycteris australis (Megachiroptera). Oecologia 113, 467–473 (1998).Article 
    ADS 

    Google Scholar 
    Dietz, M. & Kalko, E. K. V. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii). J. Comp. Physiol. (B) 176, 223–231. https://doi.org/10.1007/s00360-005-0043-x (2006).Article 

    Google Scholar 
    Andrews, M. T. Advances in molecular biology of hibernation in mammals. BioEssays 29, 431–440. https://doi.org/10.1002/bies.20560 (2007).Article 
    CAS 

    Google Scholar 
    Twente, J. W. & Twente, J. Autonomic regulation of hibernation by Citellus and Eptesicus. In Strategies in Cold: Natural Torpidity and Thermogenesis (eds Wang, L. C. H. & Hudson, J. W.) 327–373 (Academic Press, 1978).Chapter 

    Google Scholar 
    Davis, W. H. & Reite, O. B. Responses of bats from temperate regions to changes in ambient temperature. Biol. Bull. 132, 320–328 (1967).Article 
    CAS 

    Google Scholar 
    Alston, J. M., Dillon, M. E., Keinath, D. A., Abernethy, I. M. & Goheen, J. R. Daily torpor reduces the energetic consequences of microhabitat selection for a widespread bat. Ecology 103, e3677. https://doi.org/10.1002/ecy.3677 (2022).Article 

    Google Scholar 
    Humphries, M. M., Thomas, D. W. & Speakman, J. R. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418, 313–316. https://doi.org/10.1038/nature00828 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Heller, H. C. Hibernation: neural aspects. Annu. Rev. Physiol. 41, 305–321. https://doi.org/10.1038/nature00828 (1979).Article 
    CAS 

    Google Scholar 
    McKechnie, A. E. & Wolf, B. O. The energetics of the rewarming phase of avian torpor. In Life in the Cold: Evolution, Mechanisms, Adaptation and Application (eds Barnes, B. M. & Carey, H. V.) 265–267 (University of Alaska, 2004).

    Google Scholar 
    Geiser, F. & Baudinette, R. V. The relationship between body mass and rate of rewarming from hibernation and daily torpor in mammals. J. Exp. Biol. 151, 349–359. https://doi.org/10.1242/jeb.151.1.349 (1990).Article 
    CAS 

    Google Scholar 
    Voigt, C. C., Kelm, D. H. & visser, G. H.,. Field metabolic rates of phytophagous bats: do pollination strategies of plants make life of nectar-feeders spin faster?. J. Comp. Physiol. (B) 176, 213–222. https://doi.org/10.1007/s00360-005-0042-y (2006).Article 

    Google Scholar 
    Bullen, R. D., McKenzie, N. L., Bullen, K. E. & Williams, M. R. Bat heart mass: correlation with foraging niche and roost preference. Aust. J. Zool. 57, 399–408. https://doi.org/10.1071/ZO09053 (2009).Article 

    Google Scholar 
    Law, B. S. Climatic limitation of the southern distribution of the common blossom bat Syconycteris australis in New South Wales. Aust. J. Ecol. 19, 366–374. https://doi.org/10.1111/j.1442-9993.1994.tb00502.x (1994).Article 

    Google Scholar 
    Bonaccorso, F. J. & McNab, B. K. Plasticity of energetics in blossom bats (Pteropodidae): impact on distribution. J. Mammal. 78, 1073–1088. https://doi.org/10.2307/1383050 (1997).Article 

    Google Scholar 
    Geiser, F. & Brigham, R. M. Torpor, thermal biology and energetics in Australian long-eared bats (Nyctophilus). J. Comp. Physiol. (B) 170, 153–162. https://doi.org/10.1007/s003600050270 (2000).Article 
    CAS 

    Google Scholar 
    Withers, P. C. Metabolic, respiratory and haematological adjustments of the little pocket mouse to circadian torpor cycles. Respir. Physiol. 31, 295–307. https://doi.org/10.1016/0034-5687(77)90073-1 (1977).Article 
    CAS 

    Google Scholar 
    Bartholomew, G. A. & Tucker, V. A. Control of changes in body temperature, metabolism and circulation by the Agamid lizard, Amphibolurus barbatus. Physiol. Zool. 36, 199–218 (1963).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).Article 

    Google Scholar 
    Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3- an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259. https://doi.org/10.1111/j.2041-210X.2011.00153.x (2012).Article 

    Google Scholar 
    Halsey, L. G. et al. Flexibility, variability and constraint in energy management patterns across vertebrate taxa revealed by long-term heart rate measurements. Funct. Ecol. 33, 260–272. https://doi.org/10.1111/1365-2435.13264 (2019).Article 

    Google Scholar  More