More stories

  • in

    Varied response of carbon dioxide emissions to warming in oxic, anoxic and transitional soil layers in a drained peatland

    Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).
    Google Scholar 
    Joosten, H., Tapio-BiströmM, L. & Susanna, T. Peatlands: guidance for climate change mitigation through conservation, rehabilitation and sustainable use. Food and Agriculture Organization of the United Nations and Wetlands International. FAO (2012).IUCN. Issues brief: peatlands and climate change. www.icun.org (2017).Joosten, H. Peatlands, Climate Change Mitigation and Biodiversity Conservation. An Issue Brief on the Importance of Peatlands for Carbon and Biodiversity Conservation and the Role of Drained Peatlands as Greenhouse Gas Emission Hotspots (Nordic Council of Ministers, 2015).Moore, T. R. & Knowles, R. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can. J. Soil Sci. 69, 33–38 (1989).CAS 

    Google Scholar 
    Tfaily, M. M. et al. Organic matter transformation in the peat column at Marcell Experimental Forest: humification and vertical stratification. J. Geophys. Res. Biogeosci. 119, 661–675 (2014).CAS 

    Google Scholar 
    Clymo, R. S. & Bryant, C. L. Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog. Geochim. Cosmochim. Acta 72, 2048–2066 (2008).CAS 

    Google Scholar 
    Clymo, R. S. The limits to peat bog growth. Philos. Trans. R. Soc. B 303, 605–654 (1984).
    Google Scholar 
    Qin, S. et al. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Sci. Adv. 5, eaau1218. 1211–1219 (2019).
    Google Scholar 
    Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460, 616–619 (2009).CAS 

    Google Scholar 
    Luo, Z. K., Wang, G. C. & Wang, E. L. Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate. Nat. Commun. 10, 3688 (2019).
    Google Scholar 
    Wilson, R. M. et al. Stability of peatland carbon to rising temperatures. Nat. Commun. 7, 13723 (2016).CAS 

    Google Scholar 
    Sihi, D., Inglett, P. W. & Inglett, K. S. Carbon quality and nutrient status drive the temperature sensitivity of organic matter decomposition in subtropical peat soils. Biogeochemistry 131, 103–119 (2016).CAS 

    Google Scholar 
    Wang, Q., Liu, S. & Tian, P. Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Glob. Chang. Biol. 24, 2841–2849 (2018).
    Google Scholar 
    Cheng, L. et al. Warming enhances old organic carbon decomposition through altering functional microbial communities. ISME J. 11, 1825–1835 (2017).
    Google Scholar 
    Luan, J., Wu, J., Liu, S., Roulet, N. & Wang, M. Soil nitrogen determines greenhouse gas emissions from northern peatlands under concurrent warming and vegetation shifting. Commun. Biol. 2, 132 (2019).
    Google Scholar 
    Meyer, N. et al. Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil. Soil Biol. Biochem. 119, 152–161 (2018).CAS 

    Google Scholar 
    Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).CAS 

    Google Scholar 
    Moni, C. et al. Temperature response of soil organic matter mineralisation in arctic soil profiles. Soil Biol. Biochem. 88, 236–246 (2015).CAS 

    Google Scholar 
    Xu, X., Sherry, R. A., Niu, S., Zhou, J. & Luo, Y. Long-term experimental warming decreased labile soil organic carbon in a tallgrass prairie. Plant Soil 361, 307–315 (2012).CAS 

    Google Scholar 
    Broder, T., Blodau, C., Biester, H. & Knorr, K. H. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9, 1479–1491 (2012).CAS 

    Google Scholar 
    Adamczyk, M., Perez-Mon, C., Gunz, S. & Frey, B. Strong shifts in microbial community structure are associated with increased litter input rather than temperature in High Arctic soils. Soil Biol. Biochem. 151, 108054 (2020).CAS 

    Google Scholar 
    Hug, L. A. et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1, 22 (2013).
    Google Scholar 
    Yun, J. L., Ju, Y. W., Deng, Y. C. & Zhang, H. X. Bacterial community structure in two permafrost wetlands on the Tibetan Plateau and Sanjiang Plain, China. Microb. Ecol. 68, 360–369 (2014).
    Google Scholar 
    Zhong, Q. et al. Water table drawdown shapes the depth-dependent variations in prokaryotic diversity and structure in Zoige peatlands. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix049 (2017).Article 

    Google Scholar 
    Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).CAS 

    Google Scholar 
    Thiessen, S., Gleixner, G., Wutzler, T. & Reichstein, M. Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass – An incubation study. Soil Biol. Biochem. 57, 739–748 (2013).CAS 

    Google Scholar 
    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Chang. 8, 885–899 (2018).CAS 

    Google Scholar 
    Dungait, J. A. J., Hopkins, D. W., Gregory, A. S. & Whitmore, A. P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Chang. Biol. 18, 1781–1796 (2012).
    Google Scholar 
    Conant, R. T. et al. Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Global Chang. Biol. 17, 3392–3404 (2011).
    Google Scholar 
    Hietz, P. et al. Long-term change in the nitrogen cycle of tropical forests. Science 4, 334 (2011).
    Google Scholar 
    Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Agren, G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196, 79–91 (2012).CAS 

    Google Scholar 
    Sistla, S. A., Asao, S. & Schimel, J. P. Detecting microbial N-limitation in tussock tundra soil: Implications for Arctic soil organic carbon cycling. Soil Biol. Biochem. 55, 78–84 (2012).CAS 

    Google Scholar 
    Chen, L. et al. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nat. Commun. 9, 3951 (2018).
    Google Scholar 
    Soong, J. L. et al. Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux. Sci. Adv. 7, eabd1343 (2021).Chen, L. et al. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nat. Commun. 7, 13046 (2016).CAS 

    Google Scholar 
    Girkin, N. T. et al. Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat. Biogeochemistry 147, 87–97 (2019).
    Google Scholar 
    Swails, E. et al. Will CO2 emissions from drained tropical peatlands decline over time? Links between soil organic matter quality, nutrients, and C mineralization rates. Ecosystems 21, 868–885 (2017).
    Google Scholar 
    Ismawi, S., Gandaseca, S. & Ahmed, O. Effects of deforestation on soil major macro-nutrient and other selected chemical properties of secondary tropical peat swamp forest. Int. J. Phys. Sci. 7, 2225–2228 (2012).CAS 

    Google Scholar 
    Kimura, S., Melling, L. & Goh, K. Influence of soil aggregate size on greenhouse gas emission and uptake rate from tropical peat soil in forest and different oil palm development years. Geoderma 185, 1–5 (2012).
    Google Scholar 
    Takakai, F. et al. Effects of agricultural land-use change and forest fire on N2O emission from tropical peatlands, Central Kalimantan, Indonesia. Soil Sci. Plant Nutr. 52, 662–674 (2006).CAS 

    Google Scholar 
    Knoblauch, C., Beer, C., Sosnin, A., Wagner, D. & Pfeiffer, E. M. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob. Chang. Biol. 19, 1160–1172 (2013).
    Google Scholar 
    Treat, C. C. et al. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Glob. Chang. Biol. 20, 2674–2686 (2014).CAS 

    Google Scholar 
    Hobbie, S. E., Schimel, J. P., Trumbore, S. E. & Randerson, J. Controls over carbon storage and tureover in high-latitude soils. Glob. Chang. Biol. 6, 196–210 (2000).
    Google Scholar 
    Keller, J. K., Bauers, A. K., Bridgham, S. D., Kellogg, L. E. & Iversen, C. M. Nutrient control of microbial carbon cycling along an ombrotrophic-minerotrophic peatland gradient. J. Geophys. Res. https://doi.org/10.1029/2005jg000152 (2006).Chen, H. et al. A historical overview about basic issues and studies of mires (in Chinese). Sci. Sin. 51, 15–26 (2020).
    Google Scholar 
    Ridl, J. et al. Plants rather than mineral fertilization shape microbial community structure and functional potential in legacy contaminated soil. Front. Microbiol. 7, 1–10 (2016).
    Google Scholar 
    Kane, E. S. et al. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen. Soil Biol. Biochem. 58, 50–60 (2013).CAS 

    Google Scholar 
    Carrell, A. A. et al. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Glob. Chang. Biol. 25, 2993–3004 (2019).
    Google Scholar 
    Lamit, L. J. et al. Patterns and drivers of fungal community depth stratification in Sphagnum peat. FEMS Microbiol. Ecol. 93, fix082 (2017).
    Google Scholar 
    Harrison, R. B., Footen, P. W. & Strahm, B. D. Deep soil horizons: contribution and importance to soil carbon pools and in assessing whole-ecosystem response to management and global change. Forest Sci. 57, 67–76 (2011).
    Google Scholar 
    Krüger, J. P., Leifeld, J., Glatzel, S., Szidat, S. & Alewell, C. Biogeochemical indicators of peatland degradation – a case study of a temperate bog in northern Germany. Biogeosciences 12, 2861–2871 (2015).
    Google Scholar 
    Franzén, L. G. Increased decomposition of subsurface peat in Swedish raised bogs: are temperate peatlands still net sinks of carbon? Mires Peat 1, 3 (2006).
    Google Scholar 
    Eilers, K. G., Lauber, C. L., Knight, R. & Fierer, N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 42, 896–903 (2010).CAS 

    Google Scholar 
    de Graaff, M. A., Jastrow, J. D., Gillette, S., Johns, A. & Wullschleger, S. D. Differential priming of soil carbon driven by soil depth and root impacts on carbon availability. Soil Biol. Biochem. 69, 147–156 (2014).
    Google Scholar 
    Peay, K. G., Kennedy, P. G. & Brun, T. D. Fungal community ecology: a hybrid beast with a molecular master. BioScience 58, 799–810 (2008).
    Google Scholar 
    Gillabel, J., Cebrian, B., Six, J. & Merckx, R. Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Glob. Chang. Biol. 16, 2789–2798 (2010).
    Google Scholar 
    Pries, C. E. H., Castanha, C., Porras, R. C. & Torn, M. S. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).
    Google Scholar 
    Hicks Pries, C. E., Schuur, E. A. G. & Crummer, K. G. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ13C and ∆14C. Global Chang. Biol. 19, 649–661 (2013).
    Google Scholar 
    Tian, J. et al. Aerobic environments in combination with substrate additions to soil significantly reshape depth-dependent microbial distribution patterns in Zoige peatlands, China. Appl.Soil Ecol. 170, 104252 (2022).
    Google Scholar 
    Feng, W. et al. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming. Glob. Chang. Biol. 00, 1–12 (2017).
    Google Scholar 
    Feng, W. et al. Methodological uncertainty in estimating carbon turnover times of soil fractions. Soil Biol. Biochem. 100, 118–124 (2016).CAS 

    Google Scholar 
    Liang, J. et al. Methods for estimating temperature sensitivity of soil organic matter based on incubation data: A comparative evaluation. Soil Biol. Biochem. 80, 127–135 (2015).CAS 

    Google Scholar 
    Cai, A., Feng, W., Zhang, W. & Xu, M. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China. J. Environ. Manag. 172, 2–9 (2016).CAS 

    Google Scholar 
    Liu, L. et al. Response of anaerobic mineralization of different depths peat carbon to warming on Zoige plateau. Geoderma 337, 1218–1226 (2019).CAS 

    Google Scholar 
    Waldrop, M. et al. Molecular investigations into a globally important carbon pool: permafrost protected carbon in Alaskan soils. Glob. Chang. Biol. 16, 2543–2554 (2014).
    Google Scholar 
    Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S. & Richter, A. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front. Microbiol. 5, 22 (2014).
    Google Scholar 
    Blagodatskaya, E. & Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol. Fertil. Soils 45, 115–131 (2008).
    Google Scholar 
    Chen, H. et al. The carbon stock of alpine peatlands on the Qinghai–Tibetan Plateau during the Holocene and their future fate. Quat. Sci. Rev. 95, 151–158 (2014).
    Google Scholar 
    Sun, G. A study on the mineral formation law, classifictation and reserves of the peat in the Rouergai Plateau. J. Nat. Res. 7, 334–345 (1992).
    Google Scholar 
    Liu, L. et al. Responses of peat carbon at different depths to simulated warming and oxidizing. Sci. Total Environ. 548-549, 429–440 (2016).CAS 

    Google Scholar 
    Liu, L. et al. Water table drawdown reshapes soil physicochemical characteristics in Zoige peatlands. Catena 170, 119–128 (2018).CAS 

    Google Scholar 
    Liu, L. et al. Carbon stock stability in drained peatland after simulated plant carbon addition: Strong dependence on deeper soil. Sci. Total Environ. 848, 157539 (2022).CAS 

    Google Scholar 
    Yang, Z. et al. Soil properties and species composition under different grazing intensity in an alpine meadow on the eastern Tibetan Plateau, China. Environ. Monit. Assess 188, 678 (2016).
    Google Scholar 
    Simpson, M. J. & Simpson, A. J. The chemical ecology of soil organic matter molecular constituents. J. Chem. Ecol. 38, 768–784 (2012).CAS 

    Google Scholar 
    Lalonde, K., Mucci, A., Ouellet, A. & Gelinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 483, 198–200 (2012).CAS 

    Google Scholar 
    Deforest, J. L., zak, D. R., Pregitzer, K. S. & Burtonf, A. J. Atomspheric nitrate deposition and enhanced dissolved organic carbon leaching: test of a potential mechanism. Soil Sci. Soc. Am. J. 69, 1233–1237 (2005).CAS 

    Google Scholar 
    Schadel, C. et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob. Chang. Biol. 20, 641–652 (2014).
    Google Scholar 
    Bell, M. & Lawrence, D. Soil carbon sequestration – myths and mysteries. Department of Primary Industries and Fisheries, Queensland Government (2009).Schadel, C., Luo, Y., David Evans, R., Fei, S. & Schaeffer, S. M. Separating soil CO2 efflux into C-pool-specific decay rates via inverse analysis of soil incubation data. Oecologia 171, 721–732 (2013).
    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).CAS 

    Google Scholar 
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).CAS 

    Google Scholar 
    White, T. J. in PCR-Protocols: A Guide to Methods and Applications (Academic Press, 1990).Bell, C. et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J. Vis. Exp. 81, e50961 (2013).
    Google Scholar 
    DeForest, J. L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biol. Biochem. 41, 1180–1186 (2009).CAS 

    Google Scholar 
    Amundson, R. The carbon budget in soils. Annu. Rev. Earth Planet. Sci. 29, 535–562 (2001).CAS 

    Google Scholar 
    Trumbore, S. E. Potential responses of soil organic carbon to global environmental change. Proc. Natl Acad. Sci. USA 94, 8284–8291 (1997).CAS 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org (2017).Oksanen, J. et al. vegan: community ecology package. R Packag version 24-1 (2016).Asshauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).CAS 

    Google Scholar  More

  • in

    Larvicidal and repellent potential of Ageratum houstonianum against Culex pipiens

    El-Naggar, H. A. & Hasaballah, A. I. Acute larvicidal toxicity and repellency effect of Octopus cyanea crude extracts against the filariasis vector, Culex pipiens. J. Egypt. Soc. Parasitol. 48(3), 721–728 (2018).Article 

    Google Scholar 
    Koenraadt, C. J. M., Möhlmann, T. W. R., Verhulst, N. O., Spitzen, J. & Vogels, C. B. F. Effect of overwintering on survival and vector competence of the West Nile virus vector Culex pipiens. Parasit. Vectors 12, 147. https://doi.org/10.1186/s13071-019-3400-4 (2019).Article 

    Google Scholar 
    Vloet, R. P. M. et al. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes. PLoS Negl. Trop. Dis. 11, e0006145. https://doi.org/10.1371/journal.pntd.0006145 (2017).Article 
    CAS 

    Google Scholar 
    Dyab, A. K., Galal, L. A., Mahmoud, A. E. & Mokhtar, Y. Finding Walachia in filarial larvae and culicidae mosquitoes in upper Egypt governorate. Korean J. Parasitol. 54, 265–272 (2016).Article 
    CAS 

    Google Scholar 
    Clements, A. N. & Harbach, R. E. Controversies over the scientific name of the principal mosquito vector of yellow fever virus—Expediency versus validity. J. Vector Ecol. 43, 1–14. https://doi.org/10.1111/jvec.12277 (2018).Article 

    Google Scholar 
    Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé, Cameroon. PLoS Negl. Trop. Dis. 13(4), 7229. https://doi.org/10.1371/journal.pntd.0007229 (2019).Article 

    Google Scholar 
    Shah, R. M. et al. Toxicity of 25 synthetic insecticides to the field population of Culex quinquefasciatus Say. Parasitol. Res. 115(11), 4345–4351 (2016).Article 

    Google Scholar 
    Senthil-Nathan, S. A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Front. Physiol. 10, 1591. https://doi.org/10.3389/fphys.2019.01591 (2020).Article 

    Google Scholar 
    Pavela, R. et al. Traditional herbal remedies and dietary spices from Cameroon as novel sources of larvicides against filariasis mosquitoes? Parasitol. Res. 115(12), 4617–4626 (2016).Article 

    Google Scholar 
    Samuel, T. et al. In vitro antimicrobial activity of Ageratum houstonianum Mill. (Asteraceae). Food Sci. 35, 2897–2900 (2011).
    Google Scholar 
    Boussaada, O. et al. Insecticidal activity of some Asteraceae plant extracts against Tribolium confusum. Bull. Insectol. 61(2), 8435 (2008).
    Google Scholar 
    Samuel, T., Ravindran, J., Eapen, A. & William, J. Repellent activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2(6), 478–480 (2012).Article 

    Google Scholar 
    Samuel, T., Ravindran, K. J., Eapen, A. & William, S. J. Effect of Ageratum houstonianum Mill. (Asteraceae) leaf extracts on the oviposition activity of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 111, 2295–2299 (2012).Article 

    Google Scholar 
    Tennyson, S. et al. In vitro antioxidant activity of Ageratum houstonianum Mill. (Asteraceae). Asian Pac. J. Trop. Dis. 2, S712–S714 (2012).Article 

    Google Scholar 
    Sharma, P. D. & Sharma, O. P. Natural products chemistry, and biological properties of the Ageratum plant. Toxicol. Environ. Chem. 50, 213–232 (1995).Article 
    CAS 

    Google Scholar 
    Bodner, C. C. & Gereau, R. E. A contribution of Bontoc ethnobotany. Econ. Bot. 42(3), 307–369 (1988).Article 

    Google Scholar 
    Wiedenfeld, H. & Andrade-Cetto, A. Pyrrolizidine alkaloids from Ageratum houstononiaum Mill.. Phytochemistry 57(8), 1269–1271 (2001).Article 
    CAS 

    Google Scholar 
    Siebertz, R., Proksch, P., Wray, V. & Witte, L. A benzofuran from Ageratum houstononiaum Mill.. Phytochemistry 27(12), 3996–3997 (1988).Article 
    CAS 

    Google Scholar 
    Quijano, L., Calderon, J. S., Garibay, E., Escobar, E. & Rios, T. Further polysubstituted flavones from Ageratum houstononiaum Mill.. Phytochemistry 26(7), 2075–2978 (1987).Article 
    CAS 

    Google Scholar 
    Kundu, A. & Vadassery, J. Chlorogenic acid-mediated chemical defence of plants against insect herbivores. Plant Biol. (Stuttg.) 21(2), 185–189. https://doi.org/10.1111/plb.12947 (2019).Article 
    CAS 

    Google Scholar 
    War, A. R. et al. Effect of plant secondary metabolites on legume pod borer Helicoverpa armigera. J. Pest Sci. 86, 399–408 (2013).Article 

    Google Scholar 
    Cipollini, D., Stevenson, R., Enright, S., Eyles, A. & Bonello, P. Phenolic metabolites in leaves of the invasive shrub, Lonicera maackii, and their potential phytotoxic and anti-herbivore effects. J. Chem. Ecol. 34, 144–152. https://doi.org/10.1007/s10886-008-9426-2 (2008).Article 
    CAS 

    Google Scholar 
    Regnault-Roger, C. et al. Polyphenolic compounds of Mediterranean Lamiaceae and investigation of orientational effects on Acanthoscelides obtectus (Say). J. Stored Prod. Res. 40, 395–408 (2004).Article 
    CAS 

    Google Scholar 
    Khan, S. et al. Bioactivity-guided isolation of rosmarinic acid as the principle bioactive compound from the butanol extract of Isodon rugosus against the pea aphid, Acyrthosiphon pisum. PLoS ONE 14(6), e0215048. https://doi.org/10.1371/journal.pone.0215048 (2019).Article 
    CAS 

    Google Scholar 
    War, A., Sharma, S. P. & Sharma, H. C. Differential induction of flavonoids in groundnut in response to Helicoverpa armigera and Aphis craccivora infestation. Int. J. Insect Sci. 8, 55–64. https://doi.org/10.4137/IJIS.S39619 (2016).Article 

    Google Scholar 
    Al Jabr, A. M., Hussain, A., Rizwan-ul-Haq, M. & Al-Ayedh, H. Toxicity of plant secondary metabolites modulating detoxification genes expression for natural red palm weevil pesticide development. Molecules 22, 169. https://doi.org/10.3390/molecules22010169 (2017).Article 
    CAS 

    Google Scholar 
    Moreira, M. D. et al. Plant compounds insecticide activity against coleoptera pests of stored products. Pesqui. Agropecu. Bras. 42(7), 909–915 (2007).Article 

    Google Scholar 
    Ahuchaogu, A. A. et al. GC-MS analysis of bioactive compounds from whole plant chloroform extract of Ageratum conyzoides. Int. J. Med. Plants Nat. Prod. 4(2), 13–24. https://doi.org/10.20431/2454-7999.0402003 (2018).Article 

    Google Scholar 
    Zhao, P.-L., Li, J. & Yang, G.-F. Synthesis, and insecticidal activity of chromanone and chromone analogues of diacylhydrazines. Bioorg. Med. Chem. 15, 1888–1895 (2007).Article 
    CAS 

    Google Scholar 
    Hussein, M. A. et al. Synthesis, molecular docking and insecticidal activity evaluation of chromones of date palm pits extract against Culex pipiens (Diptera: Culicidae). Int. J. Mosq. Res. 5(4), 22–32 (2018).
    Google Scholar 
    Li, F. et al. Synthesis and pharmacological evaluation of novel chromone derivatives as balanced multifunctional agents against Alzheimer’s disease. Bioorg. Med. Chem. 25(14), 3815–3826. https://doi.org/10.1016/j.bmc.2017.05.027 (2017).Article 
    CAS 

    Google Scholar 
    Feldlaufer, M. F. & Eberle, M. W. Insecticidal effect of precocene II on the human body louse, Pediculus humanus. Trans. R. Soc. Trop. Med. Hyg. 74(3), 398–399. https://doi.org/10.1016/0035-9203(80)90110-8 (1980).Article 
    CAS 

    Google Scholar 
    Lu, X. N., Liu, X. C., Liu, Q. Z. & Liu, Z. L. Isolation of insecticidal constituents from the essential oil of Ageratum houstonianum Mill. against Liposcelis bostrychophila Badonnel. J. Chem. 2014, 6. https://doi.org/10.1155/2014/645687 (2014).Article 
    CAS 

    Google Scholar 
    Pratt, G. & Bowers, W. Precocene II inhibits juvenile hormone biosynthesis by cockroach Corpora allata in vitro. Nature 265, 548–550. https://doi.org/10.1038/265548a0 (1977).Article 
    ADS 
    CAS 

    Google Scholar 
    Kumar, K. G. A. et al. Chemo-profiling and bioassay of phytoextracts from Ageratum conyzoides for acaricidal properties against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) infesting cattle and buffaloes in India. Ticks Tick-Borne Dis. 7(2), 342–349 (2016).Article 

    Google Scholar 
    Fahmi, A. G., Nassar, M., Mansour, E. & Salama, R. Toxicological and biochemical effects of precocene II against cotton leafworm, Spodoptera littoralis (boisd.). Egypt. J. Agric. Res. 97(1), 179–186. https://doi.org/10.21608/ejar.2019.68627 (2019).Article 

    Google Scholar 
    Benelli, G., Pavela, R., Drenaggi, E., Desneux, N. & Maggi, F. Phytol, (E)-nerolidol and spathulenol from Stevia rebaudiana leaf essential oil as effective and eco-friendly botanical insecticides against Metopolophium dirhodum. Ind. Crops Prod. 155, 112844. https://doi.org/10.1016/j.indcrop.2020.112844 (2020).Article 
    CAS 

    Google Scholar 
    Tennyson, S., Ravindran, K. J., Eapen, A. & William, S. J. Ovicidal activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae. Asian Pac. J. Trop. Dis. 5, 199–203 (2015).Article 

    Google Scholar 
    Tennyson, S., Ravindran, K. J., Eapen, A. & William, S. J. Effect of Ageratum houstonianum Mill. (Asteraceae) leaf extracts on the oviposition activity of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 111, 2295–2299. https://doi.org/10.1007/s00436-012-3083-7 (2012).Article 

    Google Scholar 
    Després, L., David, J. P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22(6), 298–307 (2007).Article 

    Google Scholar 
    Navarro-Roldán, M. A., Bosch, D., Gemeno, C. & Siegwart, M. Enzymatic detoxification strategies for neurotoxic insecticides in adults of three tortricid pests. Bull. Entomol. Res. https://doi.org/10.1017/S0007485319000415 (2020).Article 

    Google Scholar 
    Abdel Haleem, D. R., Gad, A. A. & Farag, S. M. Larvicidal, biochemical and physiological effects of acetamiprid and thiamethoxam against Culex pipiens L. (Diptera: Culicidae). Egypt. J. Aquat. Biol. Fish. 24(3), 271–283. https://doi.org/10.21608/ejabf.2020.91119 (2020).Article 

    Google Scholar 
    Li, X., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231–253 (2007).Article 

    Google Scholar 
    Montella, I. R., Schama, R. & Valle, D. The classification of esterases: An important gene family involved in insecticide resistance—A review. Mem. Inst. Oswaldo Cruz. 107(4), 437–449 (2012).Article 
    CAS 

    Google Scholar 
    Vasantha-Srinivasan, P. et al. Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L.. Ecotoxicol. Environ. Saf. 139, 439–446. https://doi.org/10.1016/j.ecoenv.2017.01.026 (2017).Article 
    CAS 

    Google Scholar 
    Ramasamy, V. et al. Chemical characterization of billy goat weed extracts Ageratum conyzoides (Asteraceae) and their mosquitocidal activity against three blood-sucking pests and their non-toxicity against aquatic predators. Environ. Sci. Pollut. Res. 28(22), 28456–28469. https://doi.org/10.1007/s11356-021-12362-6 (2021).Article 

    Google Scholar 
    Shoukat, R. F. et al. Larvicidal, ovicidal, synergistic, and repellent activities of Sophora alopecuroides and its dominant constituents against Aedes albopictus. Insects 11, 246. https://doi.org/10.3390/insects11040246 (2020).Article 

    Google Scholar 
    Boily, M., Sarrasin, B., Deblois, C., Aras, P. & Chagnon, M. Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: Laboratory and field experiments. Environ. Sci. Pollut. Res. Int. 20(8), 5603–5614. https://doi.org/10.1007/s11356-013-1568-2 (2013).Article 
    CAS 

    Google Scholar 
    Rajashekar, Y., Raghavendra, A. & Bakthavatsalam, N. Acetylcholinesterase inhibition by biofumigant (Coumaran) from leaves of lantana camara in stored grain and household insect pests. Biomed. Res. Int. 2014, 1–6. https://doi.org/10.1155/2014/187019 (2014).Article 
    CAS 

    Google Scholar 
    Yuan, Y., Li, L., Zhao, J. & Chen, M. Effect of tannic acid on nutrition and activities of detoxification enzymes and acetylcholinesterase of the fall webworm (Lepidoptera: Arctiidae). J. Insect Sci. 20(1), 8 (2020).Article 

    Google Scholar 
    Koodalingam, A., Mullainadhan, P. & Arumugam, M. Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito, Aedes aegypti (Diptera: Culicidae). Acta Trop. 118(1), 27–36 (2011).Article 
    CAS 

    Google Scholar 
    Nathan, S. S. et al. Effect of azadirachtin on acetylcholinesterase (AChE) activity and histology of the brown plant hopper Nilaparvata lugens (Stål). Ecotoxicol. Environ. Saf. 70, 244–250 (2008).Article 
    CAS 

    Google Scholar 
    Abdel-Haleem, D. R., Genidy, N. A., Fahmy, A. R., Abu-El Azm, F. S. M. & Ismail, N. S. M. Comparative modeling, toxicological and biochemical studies of imidacloprid and thiamethoxam insecticides on the House Fly, Musca domestica L. (Diptera: Muscidae). Egypt. Acad. J. Biol. Sci. 11(1), 33–42. https://doi.org/10.21608/EAJB.2018.11977 (2018).Article 

    Google Scholar 
    Kliot, A., Kontsedalov, S., Ramsey, J. S., Jande, G. & Ghanim, M. Adaptation to nicotine in the facultative tobacco-feeding hemipteran Bemisia tabaci. Pest Manag. Sci 70, 1595–1603 (2014).Article 
    CAS 

    Google Scholar 
    Silva, T. R. F. B. et al. Effect of the flavonoid rutin on the biology of Spodoptera frugiperda (Lepidoptera: Noctuidae) Fitossanidade. Acta Sci. Agron. 38(2), 165–170. https://doi.org/10.4025/actasciagron.v38i2.27956 (2016).Article 

    Google Scholar 
    Petschenka, G., Wagschal, V., Von Tschirnhaus, M., Donath, A. & Dobler, S. Convergently evolved toxic secondary metabolites in plants drive the parallel molecular evolution of insect resistance. Am. Nat. 190, 29–43 (2017).Article 

    Google Scholar 
    Emam, M. et al. Phytochemical profiling of Lavandula coronopifolia Poir. aerial parts extract and its larvicidal, antibacterial, and antibiofilm activity against Pseudomonas aeruginosa. Molecules 26, 1710. https://doi.org/10.3390/molecules26061710 (2021).Article 
    CAS 

    Google Scholar 
    El Hadidy, D., El Sayed, A. M., El Tantawy, M. & El Alfy, T. Phytochemical analysis and biological activities of essential oils of the leaves and flowers of Ageratum houstonianum Mill. cultivated in Egypt. J. Essent. Oil-Bear. Plants 22(5), 1241–1251. https://doi.org/10.1080/0972060X.2019.1673831 (2019).Article 

    Google Scholar 
    Tennyson, S., Ravindran, J., Eapen, A. & William, J. Repellent activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2(6), 478–480 (2012).Article 

    Google Scholar 
    Pintong, A. et al. Insecticidal and histopathological effects of Ageratum conyzoides weed extracts against dengue vector, Aedes aegypti. Insects 11, 224 (2020).Article 

    Google Scholar 
    Parveen, S. et al. In vitro evaluation of ethanolic extracts of Ageratum conyzoides and Artemisia absinthium against cattle tick, Rhipicephalus microplus. Sci. World J. 2014, 858973 (2014).Article 
    CAS 

    Google Scholar 
    Ichihara, K. & Fukubayashi, Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 51(3), 635–640 (2010).Article 
    CAS 

    Google Scholar 
    Mruthunjaya, K. & Hukkeri, V. I. In vitro antioxidant and free radical scavenging potential of Parkinsonia aculeata Linn.. Pharmacogn. Mag. 4(13), 42–52 (2008).
    Google Scholar 
    Atanassova, M., Georgieva, S. & Ivancheva, K. Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J. Chem. Technol. Metall. 46(1), 81–88 (2011).CAS 

    Google Scholar 
    Mizzi, L., Chatzitzika, C., Gatt, R. & Valdramidis, V. HPLC analysis of phenolic compounds and flavonoids with overlapping peaks. Food Technol. Biotechnol. 58(1), 12–19. https://doi.org/10.17113/ftb.58.01.20.6395 (2020).Article 
    CAS 

    Google Scholar 
    Kasap, M. & Demirhan, H. The effect of various larval foods on the rate of adult emergence and fecundity of mosquitoes. Turk. Parasitol. Dergisi 161, 87–97 (1992).
    Google Scholar 
    WHO. Guidelines for Laboratory & Field Testing of Mosquito Larvicides 1–4 (Bulletin of the World Health Organization, 2005).
    Google Scholar 
    El-Sheikh, T., Bosly, H. & Shalaby, N. Insecticidal and repellent activities of methanolic extract of Tribulus terrestris L. (Zygophyllaceae) against the malarial vector Anopheles arabiensis (Diptera: Culicidae). Egypt. Acad. J. Biol. Sci. 5(2), 13–22 (2012).
    Google Scholar 
    Abbott, W. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18(2), 256–267 (1952).
    Google Scholar 
    Amin, T. R. Biochemical and Physiological Studies of Some Insect Growth Regulators on the Cotton Leafworm, Spodoptera littoralis (Boisd.). Ph.D. thesis, Faculty of Science, Cairo University (1998).Simpson, D. R., Bulland, D. L. & Linquist, D. A. A semimicrotechnique for estimation of cholinesterase activity in boll weevils. Ann. Entomol. Soc. Am. 57, 367–371 (1964).Article 
    CAS 

    Google Scholar 
    Amaral, M. C., Bonecker, A. C. T. & Ortiz, C. H. D. Activity determination of Na+ K+-ATPase and Mg++-ATPase enzymes in the gill of Poecilia vivpara (Osteichthyes, Cyprinodontiformes) in different salinities. Braz. Arch. Biol. Technol. 44, 1–6 (2001).Article 
    CAS 

    Google Scholar 
    Hansen, I. G. & Hodgson, E. Biochemical characteristics of insect microsomes, N-and o-demethylation. Biochem. Pharmacol. 20, 1569–1578 (1971).Article 
    CAS 

    Google Scholar 
    Finney, D. J. Probit Analysis 3rd edn. (Cambridge University Press, 1971).MATH 

    Google Scholar 
    Duncan, D. B. Multiple range, and multiple F tests. Biometrics 2, 1–42 (1955).Article 
    MathSciNet 

    Google Scholar  More

  • in

    Recent global decline in rainfall interception loss due to altered rainfall regimes

    Savenije, H. H. G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol. Process. 18, 1507–1511 (2004).Article 
    ADS 

    Google Scholar 
    Gerrits, A. M. J., Pfister, L. & Savenije, H. H. G. Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol. Process. 24, 3011–3025 (2010).Article 
    ADS 

    Google Scholar 
    Porada, P., Van Stan, J. T. & Kleidon, A. Significant contribution of non-vascular vegetation to global rainfall interception. Nat. Geosci. 11, 563–567 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W. & Savenije, H. H. G. Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: moisture recycling. Earth Syst. Dyn. 5, 471–489 (2014).Article 
    ADS 

    Google Scholar 
    Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).Article 
    ADS 

    Google Scholar 
    Coenders-Gerrits, A. M. et al. Uncertainties in transpiration estimates. Nature 506, E1–E2 (2014).Article 
    CAS 

    Google Scholar 
    Chang, L.-L. et al. Why do large-scale land surface models produce a low ratio of transpiration to evapotranspiration? J. Geophys. Res. Atmos. 123, 9109–9130 (2018).Article 

    Google Scholar 
    Zwieback, S., Chang, Q., Marsh, P. & Berg, A. Shrub tundra ecohydrology: rainfall interception is a major component of the water balance. Environ. Res. Lett. 14, 055005 (2019).Article 
    ADS 

    Google Scholar 
    Cuartas, L. A. et al. Interception water-partitioning dynamics for a pristine rainforest in Central Amazonia: Marked differences between normal and dry years. Agric. For. Meteorol. 145, 69–83 (2007).Article 
    ADS 

    Google Scholar 
    Yue, K. et al. Global patterns and drivers of rainfall partitioning by trees and shrubs. Glob. Change Biol. 27, 3350–3357 (2021).Article 

    Google Scholar 
    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).Article 

    Google Scholar 
    Tramontana, G. et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13, 4291–4313 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Jung, M., Reichstein, M. & Bondeau, A. Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences 6, 2001–2013 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, X. et al. Spatiotemporal pattern of terrestrial evapotranspiration in China during the past thirty years. Agric. For. Meteorol. 259, 131–140 (2018).Article 
    ADS 

    Google Scholar 
    Koppa, A., Rains, D., Hulsman, P., Poyatos, R. & Miralles, D. G. A deep learning-based hybrid model of global terrestrial evaporation. Nat. Commun. 13, 1912 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Zheng, C. & Jia, L. Global canopy rainfall interception loss derived from satellite Earth observations. Ecohydrology 13, e2186 (2019).
    Google Scholar 
    Muzylo, A. et al. A review of rainfall interception modelling. J. Hydrol. 370, 191–206 (2009).Article 
    ADS 

    Google Scholar 
    Miralles, D. G., Gash, J. H., Holmes, T. R. H., de Jeu, R. A. M., & Dolman, A. J. Global canopy interception from satellite observations. J. Geophys. Res. 115, D16122 (2010).Article 
    ADS 

    Google Scholar 
    Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).Article 
    ADS 

    Google Scholar 
    Oleson, K. et al. Technical Description of Version 4.5 of the Community Land Model (CLM) Report NCAR/TN-503+STR, https://doi.org/10.5065/D6RR1W7M (2013).Gash, J. An analytical model of rainfall interception by forests. Q. J. Roy. Meteor. Soc. 105, 43–55 (1979).Article 
    ADS 

    Google Scholar 
    Fan, Y. et al. Reconciling canopy interception parameterization and rainfall forcing frequency in the Community Land Model for simulating evapotranspiration of rainforests and oil palm plantations in Indonesia. J. Adv. Model. Earth Syst. 11, 732–751 (2019).Article 
    ADS 

    Google Scholar 
    Návar, J. Modeling rainfall interception loss components of forests. J. Hydrol. 584, 124449 (2019).Article 

    Google Scholar 
    Kang, M., Kwon, H., Cheon, J. H. & Kim, J. On estimating wet canopy evaporation from deciduous and coniferous forests in the Asian monsoon climate. J. Hydrometeorol. 13, 950–965 (2012).Article 
    ADS 

    Google Scholar 
    Llorens, P., Domingo, F., Garcia-Estringana, P., Muzylo, A. & Gallart, F. Canopy wetness patterns in a Mediterranean deciduous stand. J. Hydrol. 512, 254–262 (2014).Article 
    ADS 

    Google Scholar 
    Czikowsky, M. J. & Fitzjarrald, D. R. Detecting rainfall interception in an Amazonian rain forest with eddy flux measurements. J. Hydrol. 377, 92–105 (2009).Article 
    ADS 

    Google Scholar 
    Renninger, H. J., Phillips, N. & Salvucci, G. D. Wet- vs. dry-season transpiration in an Amazonian rain forest palm iriartea deltoidea. Biotropica 42, 470–478 (2010).Article 

    Google Scholar 
    Zhao, W. et al. Physics-constrained machine learning of evapotranspiration. Geophys. Res. Lett. 46, 14496–14507 (2019).Article 
    ADS 

    Google Scholar 
    Zabret, K. & Šraj, M. How characteristics of a rainfall event and the meteorological conditions determine the development of stemflow: A case study of a birch tree. Front. Glob. Change 4, 663100 (2022).Article 

    Google Scholar 
    Calder, I. R. Dependence of rainfall interception on drop size: 1. Development of the two-layer stochastic model. J. Hydrol. 185, 363–378 (1996).Article 
    ADS 

    Google Scholar 
    Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25, 693–714 (2010).Article 

    Google Scholar 
    Gordon, D. A. R., Coenders-Gerrits, M., Sellers, B. A., Sadeghi, S., & Van Stan II, J. T. Rainfall interception and redistribution by a common North American understory and pasture forb, Eupatorium capillifolium (Lam. dogfennel). Hydrol. Earth Syst. Sci. 24, 4587–4599 (2020).Article 
    ADS 

    Google Scholar 
    Ciruzzi, D. M. & Loheide, S. P. II Monitoring tree sway as an indicator of interception dynamics before, during, and following a storm. Geophys. Res. Lett. 48, e2021GL094980 (2021).Article 
    ADS 

    Google Scholar 
    Karimi, P., Bastiaanssen, W. G. & Molden, D. Water Accounting Plus (WA+)–a water accounting procedure for complex river basins based on satellite measurements. Hydrol. Earth Syst. Sci. 17, 2459–2472 (2013).Article 
    ADS 

    Google Scholar 
    del Campo, A. D., González-Sanchis, M., Lidón, A., Ceacero, C. J. & García-Prats, A. Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments. J. Hydrol. 565, 74–86 (2018).Article 

    Google Scholar 
    Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).Article 
    ADS 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 
    ADS 

    Google Scholar 
    Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).Article 
    ADS 

    Google Scholar 
    Dawson, T. E. & Goldsmith, G. R. The value of wet leaves. N. Phytol. 219, 1156–1169 (2018).Article 

    Google Scholar 
    Aparecido, L. M. T., Miller, G. R., Cahill, A. T. & Moore, G. W. Comparison of tree transpiration under wet and dry canopy conditions in a Costa Rican premontane tropical forest. Hydrol. Process. 30, 5000–5011 (2016).Article 
    ADS 

    Google Scholar 
    Huang, L. & Zhang, Z. Effect of rainfall pulses on plant growth and transpiration of two xerophytic shrubs in a revegetated desert area: Tengger Desert, China. CATENA 137, 269–276 (2016).Article 

    Google Scholar 
    Fathizadeh, O., Hosseini, S., Zimmermann, A., Keim, R. & Boloorani, A. D. Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands. Sci. Total Environ. 601, 1824–1837 (2017).Article 
    ADS 

    Google Scholar 
    Zhang, Z.-S., Zhao, Y., Li, X.-R., Huang, L. & Tan, H.-J. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert. Sci. Rep. 6, 26030 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    de Groen, M. M. & Savenije, H. H. G. A monthly interception equation based on the statistical characteristics of daily rainfall. Water Resour. Res. 42, W12417 (2006).Article 
    ADS 

    Google Scholar 
    Chinita, M. J., Richardson, M., Teixeira, J. & Miranda, P. M. A. Global mean frequency increases of daily and sub-daily heavy precipitation in ERA5. Environ. Res. Lett. 16, 074035 (2021).Article 
    ADS 

    Google Scholar 
    Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).Article 
    ADS 

    Google Scholar 
    IPCC. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al) (Cambridge Univ. Press, 2021).Ficklin, D. L., Null, S. E., Abatzoglou, J. T., Novick, K. A. & Myers, D. T. Hydrological intensification will increase the complexity of water resource management. Earth’s Futur. 10, e2021EF002487 (2022).Article 
    ADS 

    Google Scholar 
    Haslwanter, A., Hammerle, A. & Wohlfahrt, G. Open-path vs. closed-path eddy covariance measurements of the net ecosystem carbon dioxide and water vapour exchange: a long-term perspective. Agric. For. Meteorol. 149, 291–302 (2009).Article 
    ADS 

    Google Scholar 
    Migliavacca, M. et al. The three major axes of terrestrial ecosystem function. Nature 598, 468–472 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, W. et al. The effect of relative humidity on eddy covariance latent heat flux measurements and its implication for partitioning into transpiration and evaporation. Preprint at https://doi.org/10.2139/ssrn.4106267 (2022).van Dijk, A. I. J. M. et al. Rainfall interception and the coupled surface water and energy balance. Agric. For. Meteorol. 214–215, 402–415 (2015).Article 

    Google Scholar 
    Barr, A. G., Morgenstern, K., Black, T. A., McCaughey, J. H. & Nesic, Z. Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. Agric. Meteorol. 140, 322–337 (2006).Article 

    Google Scholar 
    Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhi, W. et al. From hydrometeorology to river water quality: can a deep learning model predict dissolved oxygen at the continental scale? Environ. Sci. Technol. 55, 2357–2368 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Kraft, B., Jung, M., Körner, M. & Reichstein, M. Hybrid modeling: fusion of a deep approach and physics-based model for global hydrological modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 43, 1537–1544 (2020).Article 

    Google Scholar 
    Hoffmann, L. et al. From ERA-Interim to ERA5: the considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys. 19, 3097–3124 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Wang, D., Wang, G. & Anagnostou, E. N. Evaluation of canopy interception schemes in land surface models. J. Hydrol. 347, 308–318 (2007).Article 
    ADS 

    Google Scholar 
    Wang, G. & Eltahir, E. A. Modeling the biosphere–atmosphere system: The impact of the subgrid variability in rainfall interception. J. Clim. 13, 2887–2899 (2000).Article 
    ADS 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).Article 
    ADS 

    Google Scholar 
    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).Article 
    ADS 

    Google Scholar  More

  • in

    Uptrend in global managed honey bee colonies and production based on a six-decade viewpoint, 1961–2017

    Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49(1), 1–6 (2010).Article 

    Google Scholar 
    Osterman, J. et al. Global trends in the number and diversity of managed pollinator species. Agr. Ecosyst. Environ. 322, 107653. https://doi.org/10.1016/j.agee.2021.107653 (2021).Article 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).Article 

    Google Scholar 
    Hristov, P., Shumkova, R., Palova, N. & Neov, B. Factors associated with honey bee colony losses: A mini-review. Vet. Sci. 7(4), 166 (2020).Article 

    Google Scholar 
    Dukas, R. Mortality rates of honey bees in the wild. Insectes Soc. 55, 252–255 (2008).Article 

    Google Scholar 
    Ellis, J. D., Evans, J. D. & Pettis, J. Colony losses, managed colony population decline, and colony collapse disorder in the United States. J. Apic. Res. 49, 134–136 (2010).Article 

    Google Scholar 
    Vanengelsdorp, D. & Meixner, M. D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103(Suppl 1), S80-95 (2010).Article 

    Google Scholar 
    Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).Article 

    Google Scholar 
    Patel, V., Pauli, N., Biggs, E., Barbour, L. & Boruff, B. Why bees are critical for achieving sustainable development. Ambio 50, 49–59 (2021).Article 

    Google Scholar 
    Aylanc, V., Falcão, S. I., Ertosun, S. & Vilas-Boas, M. From the hive to the table: Nutrition value, digestibility and bioavailability of the dietary phytochemicals present in the bee pollen and bee bread. Trends Food Sci. Tech. 109, 464–481 (2021).Article 
    CAS 

    Google Scholar 
    Kieliszek, M. et al. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci. Tech. 71, 170–180 (2018).Article 
    CAS 

    Google Scholar 
    Bixby, M. et al. Honey bee queen production: Canadian costing case study and profitability analysis. J. Econ. Entomol. 113, 1618–1627 (2020).Article 

    Google Scholar 
    Ghosh, S., Jung, C. & Meyer-Rochow, V. B. Nutritional value and chemical composition of larvae, pupae, and adults of worker honey bee, Apis mellifera ligustica as a sustainable food source. J. Asia-Pac. Entomol. 19, 487–495 (2016).Article 
    CAS 

    Google Scholar 
    Ulmer, M., Smetana, S. & Heinz, V. Utilizing honeybee drone brood as a protein source for food products: Life cycle assessment of apiculture in Germany. Resour. Conser. Recy. 154, 104576. https://doi.org/10.1016/j.resconrec.2019.104576 (2020).Article 

    Google Scholar 
    FAO. Value-added products from beekeeping. FAO Agricultural Services Bulletin. https://www.fao.org/publications/card/en/c/a76265ff-7440-57a6-82da-21976b9fde8d (1996).FAO. Beekeeping and sustainable livelihoods. Diversification booklet 1. https://www.fao.org/3/y5110e/y5110e00.htm (2004).Halvorson, K., Baumung, R., Leroy, G., Chen, C. & Boettcher, P. Protection of honeybees and other pollinators: One global study. Apidologie 52, 535–547 (2021).Article 

    Google Scholar 
    Moritz, R. F. A. & Erler, S. Lost colonies found in a data mine: Global honey trade but not pests or pesticides as a major cause of regional honeybee colony declines. Agr. Ecosyst. Environ. 216, 44–50 (2016).Article 

    Google Scholar 
    Naug, D. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol. Conserv. 142, 2369–2372 (2009).Article 

    Google Scholar 
    Pohorecka, K., Szczęsna, T., Witek, M., Miszczak, A. & Sikorski, P. The exposure of honey bees to pesticide residues in the hive environment with regard to winter colony losses. J. Apicult. Sci. 61, 105 (2017).Article 
    CAS 

    Google Scholar 
    Van Dooremalen, C. et al. Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation. PLoS ONE 7, e36285. https://doi.org/10.1371/journal.pone.0036285 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Steinhauer, N. et al. Drivers of colony losses. Curr. Opin. Insect Sci. 26, 142–148 (2018).Article 

    Google Scholar 
    Brodschneider, R. et al. Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey. J. Apic. Res. 57, 452–457 (2018).Article 

    Google Scholar 
    Degrandi-Hoffman, G., Graham, H., Ahumada, F., Smart, M. & Ziolkowski, N. The economics of honey bee (Hymenoptera: Apidae) management and overwintering strategies for colonies used to pollinate almonds. J. Econ. Entomol. 112(6), 2524–2533 (2019).Article 
    CAS 

    Google Scholar 
    Porto, R. G. et al. Pollination ecosystem services: A comprehensive review of economic values, research funding and policy actions. Food Sec. 12, 1425–1442 (2020).Article 

    Google Scholar 
    Kielmanowicz, M. G. et al. Prospective large-scale field study generates predictive model identifying major contributors to colony losses. PLoS Pathog. 11, e1004816. https://doi.org/10.1371/journal.ppat.1004816 (2015).Article 
    CAS 

    Google Scholar 
    Kulhanek, et al. A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J. Apic. Res. 56(4), 328–340 (2017).Article 

    Google Scholar 
    van Engelsdorp, D. & Meixner, M. D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103, S80–S95 (2010).Article 

    Google Scholar 
    Caron, D. M., Burgett, M., Rucker, R. & Thurman, W. Honey bee colony mortality in the Pacific Northwest winter 2008/2009. Am. Bee J. 150, 265–269 (2010).
    Google Scholar 
    Mashilingi, S. K., Zhang, H., Garibaldi, L. A. & An, J. Honeybees are far too insufficient to supply optimum pollination services in agricultural systems worldwide. Agric. Ecosyst. Environ. 335, 108003. https://doi.org/10.1016/j.agee.2022.108003 (2022).Article 

    Google Scholar 
    Kohsaka, R., Park, M. S. & Uchiyama, Y. Beekeeping and honey production in Japan and South Korea: Past and present. J. Ethn. Foods 4(2), 72–79 (2017).Article 

    Google Scholar 
    Walker, M. J., Cowen, S., Gray, K., Hancock, P. & Burns, D. T. Honey authenticity: The opacity of analytical reports – part 1 defining the problem. npj Sci. Food 6(1), 1–9 (2022).
    Google Scholar 
    Fakhlaei, R. et al. The toxic impact of honey adulteration: A review. Foods 9(11), 1538. https://doi.org/10.3390/foods9111538 (2020).Article 
    CAS 

    Google Scholar 
    Rogers, R., Hassler, E., Carey, Q. & Cazier, J. More time to fly: With a warming climate the Western honey bee (Apis mellifera, Linnaeus) now has more temperature-eligible flight hours than 40 years ago. J. Apic. Res. https://doi.org/10.1080/00218839.2022.2073633 (2022).Article 

    Google Scholar 
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19(11), 915–918 (2009).Article 
    CAS 

    Google Scholar 
    FAO. Data collection. Food and Agriculture Statistics. https://www.fao.org/food-agriculture-statistics/data-collection/en/ (2022).Le Conte, Y. & Navajas, M. Climate change: Impact on honey bee populations and diseases. Rev. Sci. Tech. 27(2), 499–510 (2008).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2022).FAO. Crops and livestock products. FAOSTAT. https://www.fao.org/faostat/en/#data/QCL (2022).Global Change Data Lab. Global and regional population estimates (US Census Bureau vs. UN), World. Our World in Data. https://ourworldindata.org/grapher/global-and-regional-population-estimates-us-census-bureau-vs-un (2021).van Brakel, J. Peak signal detection in realtime timeseries data: Robust peak detection algorithm (using z-scores). Stack Overflow. https://stackoverflow.com/questions/22583391/ (2014).Rykov, Y., Thach, T.-Q., Bojic, I., Christopoulos, G. & Car, J. Digital biomarkers for depression screening with wearable devices: Cross-sectional study with machine learning modeling. JMIR Mhealth Uhealth 9, e24872 (2021).Article 

    Google Scholar  More

  • in

    Visual threats reduce blood-feeding and trigger escape responses in Aedes aegypti mosquitoes

    World Health Organization. World Health Statistics 2018. (WHO, 2018).Wynne, N. E., Lorenzo, M. G. & Vinauger, C. Mechanism and plasticity of vectors’ host-seeking behavior. Curr. Opin. Insect Sci. 40, 1–5 (2020).Article 

    Google Scholar 
    Carlile, P. A., Peters, R. A. & Evans, C. S. Detection of a looming stimulus by the Jacky dragon: Selective sensitivity to characteristics of an aerial predator. Anim. Behav. 72, 553–562 (2006).Article 

    Google Scholar 
    Ingle, D. J. Visually elicited evasive behavior in frogs. Bioscience 40, 284–291 (1990).Article 

    Google Scholar 
    Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).Article 
    CAS 

    Google Scholar 
    Temizer, I., Donovan, J. C., Baier, H. & Semmelhack, J. L. A visual pathway for looming-evoked escape in larval zebrafish. Curr. Biol. 25, 1823–1834 (2015).Article 
    CAS 

    Google Scholar 
    Scarano, F., Tomsic, D. & Sztarker, J. Direction selective neurons responsive to horizontal motion in a crab reflect an adaptation to prevailing movements in flat environments. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.0372-20.2020 (2020).Article 

    Google Scholar 
    Scarano, F. & Tomsic, D. Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli. J. Physiol. Paris 108, 141–147 (2014).Article 

    Google Scholar 
    Santer, R. D., Rind, F. C., Stafford, R. & Simmons, P. J. Role of an identified looming-sensitive neuron in triggering a flying locust’s escape. J. Neurophysiol. 95, 3391–3400 (2006).Article 

    Google Scholar 
    Simmons, P. J., Rind, F. C. & Santer, R. D. Escapes with and without preparation: The neuroethology of visual startle in locusts. J. Insect Physiol. 56, 876–883 (2010).Article 
    CAS 

    Google Scholar 
    Dupuy, F., Casas, J., Body, M. & Lazzari, C. R. Danger detection and escape behaviour in wood crickets. J. Insect Physiol. 57, 865–871 (2011).Article 
    CAS 

    Google Scholar 
    Muijres, F. T., Elzinga, M. J., Melis, J. M. & Dickinson, M. H. Flies evade looming targets by executing rapid visually directed banked turns. Science 344, 172–177 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ache, J. M. et al. Neural basis for looming size and velocity encoding in the Drosophila giant fiber escape pathway. Curr. Biol. 29, 1073-1081.e4 (2019).Article 
    CAS 

    Google Scholar 
    Domenici, P., Booth, D., Blagburn, J. M. & Bacon, J. P. Cockroaches keep predators guessing by using preferred escape trajectories. Curr. Biol. 18, 1792–1796 (2008).Article 
    CAS 

    Google Scholar 
    Smolka, J., Zeil, J. & Hemmi, J. M. Natural visual cues eliciting predator avoidance in fiddler crabs. Proc. Biol. Sci. 278, 3584–3592 (2011).
    Google Scholar 
    Card, G. & Dickinson, M. Performance trade-offs in the flight initiation of Drosophila. J. Exp. Biol. 211, 341–353 (2008).Article 

    Google Scholar 
    Sun, Y. A. & Wyman, R. J. Neurons of the Drosophila giant fiber system: I. Dorsal longitudinal motor neurons. J. Comp. Neurol. 387, 157–166 (1997).Article 
    CAS 

    Google Scholar 
    von Reyn, C. R. et al. Feature integration drives probabilistic behavior in the Drosophila escape response. Neuron 94, 1190-1204.e6 (2017).Article 

    Google Scholar 
    Fotowat, H., Fayyazuddin, A., Bellen, H. J. & Gabbiani, F. A novel neuronal pathway for visually guided escape in Drosophila melanogaster. J. Neurophysiol. 102, 875–885 (2009).Article 

    Google Scholar 
    Card, G. & Dickinson, M. H. Visually mediated motor planning in the escape response of Drosophila. Curr. Biol. 18, 1300–1307 (2008).Article 
    CAS 

    Google Scholar 
    Matherne, M. E., Cockerill, K., Zhou, Y., Bellamkonda, M. & Hu, D. L. Mammals repel mosquitoes with their tails. J. Exp. Biol. 221, 178905 (2018).Article 

    Google Scholar 
    Cribellier, A. et al. Diurnal and nocturnal mosquitoes escape looming threats using distinct flight strategies. Curr. Biol. 32, 1232-1246.e5 (2022).Article 
    CAS 

    Google Scholar 
    Cribellier, A., Spitzen, J., Straw, A. D., van Leeuwen, J. L. & Muijres, F. T. Escape flight performances of night-active malaria mosquitoes: the role of visual and airflow cues of an approaching object. in Integrative and Comparative Biology. Vol. 61. E170–E171 (Oxford University Press Inc Journals Dept, 2021).Reid, J. A. Anopheline Mosquitoes of Malaya and Borneo. Studies from the Institute for Medical Research, Malaysia. (1968).Clements, A. N. The Biology of Mosquitoes. Volume 2: Sensory Reception and Behaviour (CABI Publishing, 1999).
    Google Scholar 
    Tuno, N., Tsuda, Y., Takagi, M. & Swonkerd, W. Pre- and postprandial mosquito resting behavior around cattle hosts. J. Am. Mosq. Control Assoc. 19, 211–219 (2003).
    Google Scholar 
    Day, J. F. & Edman, J. D. Mosquito engorgement on normally defensive hosts depends on host activity Patterns. J. Med. Entomol. 21, 732–740 (1984).Article 
    CAS 

    Google Scholar 
    Edman, J. D., Webber, L. A. & Kale, H. W. Effect of mosquito density on the interrelationship of host behavior and mosquito feeding success. Am. J. Trop. Med. Hyg. 21, 487–491 (1972).Article 
    CAS 

    Google Scholar 
    Christophers, S. R. Aedes aegypti: The Yellow Fever Mosquito. (1960).Ponlawat, A. & Harrington, L. C. Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J. Med. Entomol. 42, 844–849 (2005).Article 

    Google Scholar 
    Walilko, T. J., Viano, D. C. & Bir, C. A. Biomechanics of the head for Olympic boxer punches to the face. Br. J. Sports Med. 39, 710–719 (2005).Article 
    CAS 

    Google Scholar 
    Reiser, M. B. & Dickinson, M. H. A modular display system for insect behavioral neuroscience. J. Neurosci. Methods 167, 127–139 (2008).Article 

    Google Scholar 
    Cribellier, A. Biomechanics of Flying Mosquitoes During Capture and Escape. Doctoral Dissertation. (Wageningen University, 2021).Hu, X., Leming, M. T., Whaley, M. A. & O’Tousa, J. E. Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes. J. Exp. Biol. 217, 1003–1008 (2014).
    Google Scholar 
    Tammero, L. F., Frye, M. A. & Dickinson, M. H. Spatial organization of visuomotor reflexes in Drosophila. J. Exp. Biol. 207, 113–122 (2004).Article 

    Google Scholar 
    Tammero, L. F. & Dickinson, M. H. Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. J. Exp. Biol. 205, 2785–2798 (2002).Article 

    Google Scholar 
    Muijres, F. T. et al. Escaping blood-fed malaria mosquitoes minimize tactile detection without compromising on take-off speed. J. Exp. Biol. 220, 3751–3762 (2017).Article 
    CAS 

    Google Scholar 
    van Veen, W. G., van Leeuwen, J. L. & Muijres, F. T. Malaria mosquitoes use leg push-off forces to control body pitch during take-off. J. Exp. Zool. A Ecol. Integr. Physiol. 333, 38–49 (2020).Article 

    Google Scholar 
    Caro, T. et al. Benefits of zebra stripes: Behaviour of tabanid flies around zebras and horses. PLoS ONE 14, e0210831 (2019).Article 
    CAS 

    Google Scholar 
    Edman, J. D., Webber, L. A. & Schmid, A. A. Effect of host defenses on the feeding pattern of Culex nigripalpus when offered a choice of blood sources. J. Parasitol. 60, 874–883 (1974).Article 
    CAS 

    Google Scholar 
    Walker, E. D. & Edman, J. D. The influence of host defensive behavior on mosquito (Diptera: Culicidae) biting persistence1. J. Med. Entomol. 22, 370–372 (1985).Article 
    CAS 

    Google Scholar 
    Warnes, M. L. & Finlayson, L. H. Effect of host behaviour on host preference in Stomoxys calcitrans. Med. Vet. Entomol. 1, 53–57 (1987).Article 
    CAS 

    Google Scholar 
    Vinauger, C. et al. Modulation of host learning in Aedes aegypti mosquitoes. Curr. Biol. 28, 333-344.e8 (2018).Article 
    CAS 

    Google Scholar 
    Wolff, G. H. & Riffell, J. A. Olfaction, experience and neural mechanisms underlying mosquito host preference. J. Exp. Biol. 221, 157131 (2018).Article 

    Google Scholar 
    Alonso San Alberto, D. et al. The olfactory gating of visual preferences to human skin and visible spectra in mosquitoes. Nat. Commun. 13, 1–14 (2022).Article 

    Google Scholar 
    van Breugel, F., Riffell, J., Fairhall, A. & Dickinson, M. H. Mosquitoes use vision to associate odor plumes with thermal targets. Curr. Biol. 25, 2123–2129 (2015).Article 

    Google Scholar 
    Vinauger, C. et al. Visual-olfactory integration in the human disease vector mosquito, Aedes aegypti. Curr. Biol. 29, 2509-2516.e5 (2019).Article 
    CAS 

    Google Scholar 
    Grant, A. J. & O’Connell, R. J. Age-related changes in female mosquito carbon dioxide detection. J. Med. Entomol. 44, 617–623 (2007).Article 
    CAS 

    Google Scholar 
    Tallon, A. K., Hill, S. R. & Ignell, R. Sex and age modulate antennal chemosensory-related genes linked to the onset of host seeking in the yellow-fever mosquito, Aedes aegypti. Sci. Rep. 9, 43 (2019).Article 
    ADS 

    Google Scholar 
    Eilerts, D. F., VanderGiessen, M., Bose, E. A., Broxton, K. & Vinauger, C. Odor-specific daily rhythms in the olfactory sensitivity and behavior of Aedes aegypti mosquitoes. Insects 9, 147 (2018).Article 

    Google Scholar 
    Taylor, B. & Jones, M. D. The circadian rhythm of flight activity in the mosquito Aedes aegypti (L). The phase-setting effects of light-on and light-off. J. Exp. Biol. 51, 59–70 (1969).Article 
    CAS 

    Google Scholar 
    Peirce, J. et al. PsychoPy2: Experiments in behavior made easy. Behav. Res. Methods 51, 195–203 (2019).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. arXiv [stat.CO] (2014).Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Lund, U., & Agostinelli, C. Package “Circular”. Repository CRAN (2017).Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    Walker, J. A. Estimating velocities and accelerations of animal locomotion: A simulation experiment comparing numerical differentiation algorithms. J. Exp. Biol. 201, 981–995 (1998).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).Book 
    MATH 

    Google Scholar  More

  • in

    Suicidal chemotaxis in bacteria

    Surface-attached bacteria move towards antibiotics via twitching motilityWe used microfluidic devices and automated cell tracking to quantify the movement of P. aeruginosa cells as they are exposed to well-defined spatial gradients of antibiotics in developing biofilms (Fig. 1). We began with the antibiotic ciprofloxacin, which is widely used to treat P. aeruginosa infections27,28. To set a baseline, we first determined the minimum inhibitory concentration (hereafter MIC) of ciprofloxacin for P. aeruginosa (strain PAO1) in shaking cultures, which agrees with the published MIC of this strain (Fig. S129). We then exposed surface-attached cells to an antibiotic gradient in a microfluidic device where the antibiotic concentration ranged from zero to 10 times the MIC (Fig. 1A, B, Methods). After approximately 5 h of unbiased movement, we were surprised to see that twitching cells began to bias their movement towards increasing concentrations of ciprofloxacin (Fig. 1B, D, Movie 1). The movement bias, β, defined as the number of cells moving up the gradient divided by the number of cells moving down the gradient, peaks after approximately 10 h and then decays as the surface becomes crowded with cells (Movie 1) and tracking becomes difficult (Methods). The flow through the device also has a small influence on the direction of cell movement because it tends to pull cells in the downstream direction (Fig. 1B, C, E). However, this fluid flow is orthogonal to the direction of the antibiotic gradient, and so does not explain the movement towards antibiotics.Fig. 1: Twitching P. aeruginosa cells bias their motility towards increasing antibiotic concentrations.A A dual-inlet microfluidic device generates steady antibiotic gradients (e.g. ciprofloxacin, CMAX = 10X MIC) via molecular diffusion. Isocontours were calculated using mathematical modelling (Methods) and background shading shows approximate ciprofloxacin distribution visualised using fluorescein. B Red (blue) cell trajectories are moving towards (away from) increasing [ciprofloxacin]. Inset: A circular histogram of cell movement direction reveals movement bias towards increasing [ciprofloxacin]. A two-sided binomial test rejects the null hypothesis that trajectories are equally likely to be directed up or down the [ciprofloxacin] gradient (p  More

  • in

    Ecological study of ambient air pollution exposure and mortality of cardiovascular diseases in elderly

    Franchini, M. & Mannucci, P. M. Air pollution and cardiovascular disease. Thromb. Res. 129, 230–234 (2012).Article 
    CAS 

    Google Scholar 
    Langrish, J. P. et al. Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease. Environ. Health Perspect. 120, 367–372 (2012).Article 
    CAS 

    Google Scholar 
    Tanwar, V., Katapadi, A., Adelstein, J. M., Grimmer, J. A. & Wold, L. E. Cardiac pathophysiology in response to environmental stress: A current review. Curr. Opin. Physiol. 1, 198–205 (2018).Article 

    Google Scholar 
    Franchini, M. & Mannucci, P. M. Particulate air pollution and cardiovascular risk: short-term and long-term effects. in Seminars in Thrombosis and Hemostasis. Vol. 35. 665–670 (© Thieme Medical Publishers, 2009).Shah, A. S. V. et al. Global association of air pollution and heart failure: A systematic review and meta-analysis. Lancet 382, 1039–1048 (2013).Article 
    CAS 

    Google Scholar 
    Cesaroni, G. et al. Long term exposure to ambient air pollution and incidence of acute coronary events: Prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ 348, f7412 (2014).Article 

    Google Scholar 
    Brook, R. D. et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 121, 2331–2378 (2010).Article 
    CAS 

    Google Scholar 
    Héroux, M.-E. et al. Quantifying the health impacts of ambient air pollutants: Recommendations of a WHO/Europe project. Int. J. Public Health 60, 619–627 (2015).Article 

    Google Scholar 
    An, Z., Jin, Y., Li, J., Li, W. & Wu, W. Impact of particulate air pollution on cardiovascular health. Curr. Allergy Asthma Rep. 18, 1–7 (2018).Article 
    CAS 

    Google Scholar 
    Zanobetti, A., Baccarelli, A. & Schwartz, J. Gene-air pollution interaction and cardiovascular disease: A review. Prog. Cardiovasc. Dis. 53, 344–352 (2011).Article 
    CAS 

    Google Scholar 
    Liang, R. et al. Effect of exposure to PM2.5 on blood pressure: A systematic review and meta-analysis. J. Hypertens. 32, 2130–2141 (2014).Article 
    CAS 

    Google Scholar 
    Jerrett, M. et al. Traffic-related air pollution and obesity formation in children: A longitudinal, multilevel analysis. Environ. Heal. 13, 49 (2014).Article 

    Google Scholar 
    McConnell, R. et al. A longitudinal cohort study of body mass index and childhood exposure to secondhand tobacco smoke and air pollution: The Southern California Children’s Health Study. Environ. Health Perspect. 123, 360–366 (2015).Article 

    Google Scholar 
    Renzi, M. et al. Air pollution and occurrence of type 2 diabetes in a large cohort study. Environ. Int. 112, 68–76 (2018).Article 
    CAS 

    Google Scholar 
    Jomova, K. et al. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 31, 95–107 (2011).CAS 

    Google Scholar 
    Al-Kindi, S. G., Brook, R. D., Biswal, S. & Rajagopalan, S. Environmental determinants of cardiovascular disease: Lessons learned from air pollution. Nat. Rev. Cardiol. 17, 656–672 (2020).Article 

    Google Scholar 
    Noroozian, M. The elderly population in iran: An ever growing concern in the health system. Iran. J. Psychiatry Behav. Sci. 6, 1 (2012).
    Google Scholar 
    Chokshi, D. A. & Farley, T. A. The cost-effectiveness of environmental approaches to disease prevention. N. Engl. J. Med. 367, 295–297 (2012).Article 
    CAS 

    Google Scholar 
    Nieuwenhuijsen, M. J. Influence of urban and transport planning and the city environment on cardiovascular disease. Nat. Rev. Cardiol. 15, 432–438 (2018).Article 

    Google Scholar 
    Barnett, A. G. et al. The effects of air pollution on hospitalizations for cardiovascular disease in elderly people in Australian and New Zealand cities. Environ. Health Perspect. 114, 1018–1023 (2006).Article 
    CAS 

    Google Scholar 
    Koken, P. J. M. et al. Temperature, air pollution, and hospitalization for cardiovascular diseases among elderly people in Denver. Environ. Health Perspect. 111, 1312–1317 (2003).Article 

    Google Scholar 
    Institute for Health Metrics and Evaluation. GBD 2019. (University of Washington, 2022).IHME. GBD 2019 Data and Tools Overview. (University of Washington, 2020).Dicker, D. et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1684–1735 (2018).Article 

    Google Scholar 
    Miller, D. C. & Salkind, N. J. Handbook of Research Design and Social Measurement (Sage, 2002).Book 

    Google Scholar 
    Rosenthal, F. S., Carney, J. P. & Olinger, M. L. Out-of-hospital cardiac arrest and airborne fine particulate matter: A case–crossover analysis of emergency medical services data in Indianapolis, Indiana. Environ. Health Perspect. 116, 631–636 (2008).Article 

    Google Scholar 
    Ensor, K. B., Raun, L. H. & Persse, D. A case-crossover analysis of out-of-hospital cardiac arrest and air pollution. Circulation 127, 1192–1199 (2013).Article 
    CAS 

    Google Scholar 
    Forastiere, F. et al. A case-crossover analysis of out-of-hospital coronary deaths and air pollution in Rome, Italy. Am. J. Respir. Crit. Care Med. 172, 1549–1555 (2005).Article 

    Google Scholar 
    Levy, D. et al. A case-crossover analysis of particulate matter air pollution and out-of-hospital primary cardiac arrest. Epidemiology 12, 193–199 (2001).Article 
    CAS 

    Google Scholar 
    Silverman, R. A. et al. Association of ambient fine particles with out-of-hospital cardiac arrests in New York City. Am. J. Epidemiol. 172, 917–923 (2010).Article 

    Google Scholar 
    Naghavi, M. et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1151–1210 (2017).Article 

    Google Scholar 
    Berend, N. Contribution of air pollution to COPD and small airway dysfunction. Respirology 21, 237–244 (2016).Article 

    Google Scholar 
    Vahedian, M., Khanjani, N., Mirzaee, M. & Koolivand, A. Associations of short-term exposure to air pollution with respiratory hospital admissions in Arak, Iran. J. Environ. Health Sci. Eng. 15, 17 (2017).Yaser, H. S., Narges, K., Yaser, S. & Rasoul, M. Air pollution and cardiovascular mortality in Kerman from 2006 to 2011. Am. J. Cardiovasc. Dis. Res. 2, 27–30 (2014).
    Google Scholar 
    Khaefi, M. et al. Association of particulate matter impact on prevalence of chronic obstructive pulmonary disease in Ahvaz, southwest Iran during 2009–2013. Aerosol Air Qual. Res. 17, 230–237 (2017).Article 
    CAS 

    Google Scholar 
    Khaniabadi, Y. O. et al. Exposure to PM10, NO2, and O3 and impacts on human health. Environ. Sci. Pollut. Res. Int. 24, 2781–2789 (2017).Article 
    CAS 

    Google Scholar 
    Momtazan, M. et al. An investigation of particulate matter and relevant cardiovascular risks in Abadan and Khorramshahr in 2014–2016. Toxin Rev. 38, 1–8 (2018).Martinelli, N., Olivieri, O. & Girelli, D. Air particulate matter and cardiovascular disease: A narrative review. Eur. J. Intern. Med. 24, 295–302 (2013).Article 
    CAS 

    Google Scholar 
    Khaniabadi, Y. O. et al. Mortality and morbidity due to ambient air pollution in Iran. Clin. Epidemiol. Glob. Health 7, 222–227 (2019).Article 

    Google Scholar 
    Almeida-Silva, M. et al. Exposure and dose assessment to particle components among an elderly population. Atmos. Environ. 102, 156–166 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Suh, H. H., Zanobetti, A., Schwartz, J. & Coull, B. A. Chemical properties of air pollutants and cause-specific hospital admissions among the elderly in Atlanta, Georgia. Environ. Health Perspect. 119, 1421–1428 (2011).Article 

    Google Scholar 
    Chien, L.-C., Yang, C.-H. & Yu, H.-L. Estimated effects of Asian dust storms on spatiotemporal distributions of clinic visits for respiratory diseases in Taipei children (Taiwan). Environ. Health Perspect. 120, 1215–1220 (2012).Article 

    Google Scholar 
    Khaniabadi, Y. O. et al. Chronic obstructive pulmonary diseases related to outdoor PM10, O3, SO2, and NO2 in a heavily polluted megacity of Iran. Environ. Sci. Pollut. Res. 25, 17726–17734 (2018).Article 
    CAS 

    Google Scholar 
    Omidi Khaniabadi, Y. et al. Air quality modeling for health risk assessment of ambient PM10, PM2.5 and SO2 in Iran. Hum. Ecol. Risk Assess. Int. J. 25, 1298–1310 (2019).Newell, K., Kartsonaki, C., Lam, K. B. H. & Kurmi, O. P. Cardiorespiratory health effects of particulate ambient air pollution exposure in low-income and middle-income countries: A systematic review and meta-analysis. Lancet Planet. Health 1, e368–e380 (2017).Article 

    Google Scholar 
    Dominici, F. et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295, 1127–1134 (2006).Article 
    CAS 

    Google Scholar 
    Qiu, H. et al. Inflammatory and oxidative stress responses of healthy elders to solar-assisted large-scale cleaning system (SALSCS) and changes in ambient air pollution: A quasi-interventional study in Xi’an, China. Sci. Total Environ. 806, 151217 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Fiordelisi, A. et al. The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail. Rev. 22, 337–347 (2017).Article 
    CAS 

    Google Scholar 
    Yang, D., Yang, X., Deng, F. & Guo, X. Ambient air pollution and biomarkers of health effect. Ambient Air Pollut. Health Impact China 1017, 59–102 (2017).Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).Article 

    Google Scholar 
    Newby, D. E. et al. Expert position paper on air pollution and cardiovascular disease. Eur. Heart J. 36, 83–93 (2015).Article 
    CAS 

    Google Scholar 
    Brook, R. D., Newby, D. E. & Rajagopalan, S. Air pollution and cardiometabolic disease: An update and call for clinical trials. Am. J. Hypertens. 31, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Kang, S.-H. et al. Ambient air pollution and out-of-hospital cardiac arrest. Int. J. Cardiol. 203, 1086–1092 (2016).Article 

    Google Scholar 
    Thurston, G. D. et al. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort. Environ. Health Perspect. 124, 484–490 (2016).Article 

    Google Scholar 
    Gallagher, L. G. et al. Applying a moving total mortality count to the cities in the NMMAPS database to estimate the mortality effects of particulate matter air pollution. Circulation 172, 872–879 (2010).
    Google Scholar 
    Rodopoulou, S., Samoli, E., Chalbot, M.-C.G. & Kavouras, I. G. Air pollution and cardiovascular and respiratory emergency visits in Central Arkansas: A time-series analysis. Sci. Total Environ. 536, 872–879 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Teng, T.-H.K. et al. A systematic review of air pollution and incidence of out-of-hospital cardiac arrest. J. Epidemiol. Commun. Health 68, 37–43 (2014).Article 

    Google Scholar 
    Brook, R. D. et al. Air pollution and cardiovascular disease: A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation 109, 2655–2671 (2004).Article 

    Google Scholar 
    Raza, A. et al. Short-term effects of air pollution on out-of-hospital cardiac arrest in Stockholm. Eur. Heart J. 35, 861–868 (2014).Article 
    CAS 

    Google Scholar 
    Baccarelli, A. et al. Effects of exposure to air pollution on blood coagulation. J. Thromb. Haemost. 5, 252–260 (2007).Article 
    CAS 

    Google Scholar 
    Franchini, M. & Mannucci, P. M. Thrombogenicity and cardiovascular effects of ambient air pollution. Blood 118, 2405–2412 (2011).Article 
    CAS 

    Google Scholar 
    Yin, F. et al. Diesel exhaust induces systemic lipid peroxidation and development of dysfunctional pro-oxidant and pro-inflammatory high-density lipoprotein. Arterioscler. Thromb. Vasc. Biol. 33, 1153–1161 (2013).Article 
    CAS 

    Google Scholar 
    Chirinos, J. A. et al. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. J. Am. Coll. Cardiol. 45, 1467–1471 (2005).Article 
    CAS 

    Google Scholar 
    Adar, S. D. et al. Fine particulate air pollution and the progression of carotid intima-medial thickness: A prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med. 10, e1001430 (2013).Article 

    Google Scholar 
    Kampfrath, T. et al. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ. Res. 108, 716–726 (2011).Article 
    CAS 

    Google Scholar 
    Sun, Q. et al. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA 294, 3003–3010 (2005).Article 
    CAS 

    Google Scholar 
    Dennekamp, M. et al. Outdoor air pollution as a trigger for out-of-hospital cardiac arrests. Epidemiology 21, 494–500 (2010).Straney, L. et al. Evaluating the impact of air pollution on the incidence of out-of-hospital cardiac arrest in the Perth Metropolitan Region: 2000–2010. J. Epidemiol. Commun. Health 68, 6–12 (2014).Article 

    Google Scholar 
    Sullivan, J. et al. Exposure to ambient fine particulate matter and primary cardiac arrest among persons with and without clinically recognized heart disease. Am. J. Epidemiol. 157, 501–509 (2003).Article 
    CAS 

    Google Scholar 
    Barton, T. J. et al. Traditional cardiovascular risk factors strongly underestimate the 5-year occurrence of cardiovascular morbidity and mortality in spinal cord injured individuals. Arch. Phys. Med. Rehabil. 102, 27–34 (2021).Article 

    Google Scholar 
    Burg, M. M. et al. Risk for incident hypertension associated with PTSD in military veterans, and the effect of PTSD treatment. Psychosom. Med. 79, 181 (2017).Article 

    Google Scholar 
    Hinojosa, R. Veterans’ likelihood of reporting cardiovascular disease. J. Am. Board Fam. Med. 32, 50–57 (2019).Article 

    Google Scholar 
    Rush, T., LeardMann, C. A. & Crum-Cianflone, N. F. Obesity and associated adverse health outcomes among US military members and veterans: Findings from the millennium cohort study. Obesity 24, 1582–1589 (2016).Article 

    Google Scholar 
    Stefanovics, E. A., Potenza, M. N. & Pietrzak, R. H. Smoking, obesity, and their co-occurrence in the US military veterans: Results from the national health and resilience in veterans study. J. Affect. Disord. 274, 354–362 (2020).Article 

    Google Scholar 
    Brook, R. D. et al. Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension 54, 659–667 (2009).Article 
    CAS 

    Google Scholar 
    Rajagopalan, S. & Brook, R. D. Air pollution and type 2 diabetes: Mechanistic insights. Diabetes 61, 3037–3045 (2012).Article 
    CAS 

    Google Scholar 
    Franklin, S. S. & Wong, N. D. Hypertension and cardiovascular disease: Contributions of the Framingham Heart Study. Glob. Heart 8, 49–57 (2013).Article 

    Google Scholar 
    Gu, D. et al. Blood pressure and risk of cardiovascular disease in Chinese men and women. Am. J. Hypertens. 21, 265–272 (2008).Article 

    Google Scholar 
    Wang, H. et al. Blood pressure, body mass index and risk of cardiovascular disease in Chinese men and women. BMC Public Health 10, 189 (2010).Article 

    Google Scholar 
    O’Brien, E. The Lancet Commission on hypertension: Addressing the global burden of raised blood pressure on current and future generations. J. Clin. Hypertens. 19, 564–568 (2017).Article 

    Google Scholar 
    Cai, Y. et al. Associations of short-term and long-term exposure to ambient air pollutants with hypertension: A systematic review and meta-analysis. Hypertension 68, 62–70 (2016).Article 
    CAS 

    Google Scholar 
    Zhang, Z., Laden, F., Forman, J. P. & Hart, J. E. Long-term exposure to particulate matter and self-reported hypertension: A prospective analysis in the Nurses’ Health Study. Environ. Health Perspect. 124, 1414–1420 (2016).Article 

    Google Scholar 
    Cosselman, K. E., Navas-Acien, A. & Kaufman, J. D. Environmental factors in cardiovascular disease. Nat. Rev. Cardiol. 12, 627 (2015).Article 
    CAS 

    Google Scholar 
    Baccarelli, A. et al. Effects of particulate air pollution on blood pressure in a highly exposed population in Beijing, China: A repeated-measure study. Environ. Heal. 10, 108 (2011).Article 

    Google Scholar 
    Mordukhovich, I. et al. Black carbon exposure, oxidative stress genes, and blood pressure in a repeated-measures study. Environ. Health Perspect. 117, 1767–1772 (2009).Article 
    CAS 

    Google Scholar 
    Chen, H. et al. Spatial association between ambient fine particulate matter and incident hypertension. Circulation 129, 562–569 (2014).Article 
    CAS 

    Google Scholar 
    Honjo, K. et al. The effects of smoking and smoking cessation on mortality from cardiovascular disease among Japanese: Pooled analysis of three large-scale cohort studies in Japan. Tob. Control 19, 50–57 (2010).Article 

    Google Scholar 
    Lawlor, D. A., Song, Y.-M., Sung, J., Ebrahim, S. & Smith, G. D. The association of smoking and cardiovascular disease in a population with low cholesterol levels: A study of 648 346 men from the Korean national health system prospective cohort study. Stroke 39, 760–767 (2008).Article 
    CAS 

    Google Scholar 
    Wold, L. E. et al. Cardiovascular remodeling in response to long-term exposure to fine particulate matter air pollution. Circ. Hear. Fail. 5, 452–461 (2012).Article 
    CAS 

    Google Scholar 
    Zoeller, R. T. et al. Endocrine-disrupting chemicals and public health protection: A statement of principles from The Endocrine Society. Endocrinology 153, 4097–4110 (2012).Article 
    CAS 

    Google Scholar 
    Ruiz, D., Becerra, M., Jagai, J. S., Ard, K. & Sargis, R. M. Disparities in environmental exposures to endocrine-disrupting chemicals and diabetes risk in vulnerable populations. Diabetes Care 41, 193–205 (2018).Article 
    CAS 

    Google Scholar 
    Taylor, D. Toxic Communities: Environmental Racism, Industrial Pollution, and Residential Mobility (NYU Press, 2014).
    Google Scholar 
    Newbold, R. R., Padilla-Banks, E. & Jefferson, W. N. Environmental estrogens and obesity. Mol. Cell. Endocrinol. 304, 84–89 (2009).Article 
    CAS 

    Google Scholar 
    Szyszkowicz, M., Rowe, B. H. & Brook, R. D. Even low levels of ambient air pollutants are associated with increased emergency department visits for hypertension. Can. J. Cardiol. 28, 360–366 (2012).Article 
    CAS 

    Google Scholar 
    van den Hooven, E. H. et al. Air pollution, blood pressure, and the risk of hypertensive complications during pregnancy: The generation R study. Hypertension 57, 406–412 (2011).Article 

    Google Scholar 
    Vali, M. et al. Effect of meteorological factors and Air Quality Index on the COVID-19 epidemiological characteristics: An ecological study among 210 countries. Environ. Sci. Pollut. Res. 38, 1–11 (2021).Kiani, B. et al. Association between heavy metals and colon cancer: An ecological study based on geographical information systems in North-Eastern Iran. BMC Cancer 21, 1–12 (2021).Article 

    Google Scholar 
    Cyranoski, D. China tests giant air cleaner to combat smog. Nature 555, 152–154 (2018).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Urinary neopterin reflects immunological variation associated with age, helminth parasitism, and the microbiome in a wild primate

    Schneider-Crease, I. et al. Identifying wildlife reservoirs of neglected taeniid tapeworms: Non-invasive diagnosis of endemic Taenia serialis infection in a wild primate population. PLoS Negl Trop Dis 11, e0005709 (2017).Article 

    Google Scholar 
    Schneider-Crease, I. et al. Ecology eclipses phylogeny as a major driver of nematode parasite community structure in a graminivorous primate. Funct. Ecol. 34, 1898–1906 (2020).Article 

    Google Scholar 
    Gillespie, T. R. Noninvasive assessment of gastrointestinal parasite infections in free-ranging primates. Int. J. Primatol. 27, 1129 (2006).Article 

    Google Scholar 
    Budischak, S. A., Hoberg, E. P., Abrams, A., Jolles, A. E. & Ezenwa, V. O. A combined parasitological molecular approach for noninvasive characterization of parasitic nematode communities in wild hosts. Mol. Ecol. Resour. 15, 1112–1119 (2015).Article 

    Google Scholar 
    Ghalehnoei, H., Bagheri, A., Fakhar, M. & Mishan, M. A. Circulatory microRNAs: promising non-invasive prognostic and diagnostic biomarkers for parasitic infections. Eur. J. Clin. Microbiol. Infect. Dis. 39, 395–402 (2020).Article 
    CAS 

    Google Scholar 
    Hing, S., Narayan, E. J., Andrew Thompson, R. C. & Godfrey, S. S. The relationship between physiological stress and wildlife disease: consequences for health and conservation. Wildl Res. 43, 51–60 (2016).Article 

    Google Scholar 
    Kersey, D. C. & Dehnhard, M. The use of noninvasive and minimally invasive methods in endocrinology for threatened mammalian species conservation. Gen. Comp. Endocrinol. 203, 296–306 (2014).Article 
    CAS 

    Google Scholar 
    Behringer, V. & Deschner, T. Non-invasive monitoring of physiological markers in primates. Horm. Behav. 91, 3–18 (2017).Article 
    CAS 

    Google Scholar 
    Higham, J. P., Stahl-Hennig, C. & Heistermann, M. Urinary suPAR: A non-invasive biomarker of infection and tissue inflammation for use in studies of large free-ranging mammals. R Soc Open Sci. 7, 191825 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Heistermann, M. & Higham, J. P. Urinary neopterin, a non-invasive marker of mammalian cellular immune activation, is highly stable under field conditions. Sci Rep. 5, 16308 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Higham, J. P. et al. Evaluating noninvasive markers of nonhuman primate immune activation and inflammation. Am. J. Phys. Anthropol. 158, 673–684 (2015).Article 

    Google Scholar 
    Behringer, V. et al. Elevated neopterin levels in wild, healthy chimpanzees indicate constant investment in unspecific immune system. BMC Zool. 4, 1–7 (2019).Article 

    Google Scholar 
    Dibakou, S. E., Basset, D., Souza, A., Charpentier, M. & Huchard, E. Determinants of variations in fecal neopterin in free-ranging mandrills. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00368 (2019).Article 

    Google Scholar 
    Löhrich, T., Behringer, V., Wittig, R. M., Deschner, T. & Leendertz, F. H. The use of neopterin as a noninvasive marker in monitoring diseases in wild chimpanzees. EcoHealth 15, 792–803 (2018).Article 

    Google Scholar 
    Behringer, V., Stevens, J. M. G., Leendertz, F. H., Hohmann, G. & Deschner, T. Validation of a method for the assessment of urinary neopterin levels to monitor health status in nonhuman primate species. Front Physiol. 8, 51 (2017).Article 

    Google Scholar 
    Negrey, J. D., Behringer, V., Langergraber, K. E. & Deschner, T. Urinary neopterin of wild chimpanzees indicates that cell-mediated immune activity varies by age, sex, and female reproductive status. Sci. Rep. 11, 9298 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Behringer, V. et al. Cell-mediated immune ontogeny is affected by sex but not environmental context in a long-lived primate species. Front. Ecol. Evol. 9, 272 (2021).Article 

    Google Scholar 
    Müller, N., Heistermann, M., Strube, C., Schülke, O. & Ostner, J. Age, but not anthelmintic treatment, is associated with urinary neopterin levels in semi-free ranging Barbary macaques. Sci. Rep. 7, 41973 (2017).Article 
    ADS 

    Google Scholar 
    Dibakou, S. E. et al. Ecological, parasitological and individual determinants of plasma neopterin levels in a natural mandrill population. Int. J. Parasitol. Parasites Wildl. 11, 198–206 (2020).Article 

    Google Scholar 
    Eisenhut, M. Neopterin in diagnosis and monitoring of infectious diseases. J. Biomark. 2013, 196432 (2013).Article 

    Google Scholar 
    Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol. A Biol. Sci. Med Sci. 69(Suppl 1), S4–9 (2014).Article 

    Google Scholar 
    Basha, S., Surendran, N. & Pichichero, M. Immune responses in neonates. Expert. Rev. Clin. Immunol. 10, 1171–1184 (2014).Article 
    CAS 

    Google Scholar 
    Werner, E. R. et al. Determination of neopterin in serum and urine. Clin. Chem. 33, 62–66 (1987).Article 
    CAS 

    Google Scholar 
    Lucore, J. M., Marshall, A. J., Brosnan, S. F. & Benítez, M. E. Validating urinary neopterin as a biomarker of immune response in captive and wild capuchin monkeys. Front. Vet. Sci. 9, 918036. https://doi.org/10.3389/fvets.2022.918036 (2022).Article 

    Google Scholar 
    Berdowska, A. & Zwirska-Korczala, K. Neopterin measurement in clinical diagnosis. J. Clin. Pharm. Ther. 26, 319–329 (2001).Article 
    CAS 

    Google Scholar 
    Denz, H. et al. Value of urinary neopterin in the differential diagnosis of bacterial and viral infections. Klin. Wochenschr. 68, 218–222 (1990).Article 
    CAS 

    Google Scholar 
    Reibnegger, G. et al. Urinary neopterin reflects clinical activity in patients with rheumatoid arthritis. Arthritis Rheum. 29, 1063–1070 (1986).Article 
    CAS 

    Google Scholar 
    Huber, C. et al. Immune response-associated production of neopterin. Release from macrophages primarily under control of interferon-gamma. J. Exp. Med. 160, 310–316 (1984).Article 
    CAS 

    Google Scholar 
    Horak, E., Gassner, I., Sölder, B., Wachter, H. & Fuchs, D. Neopterin levels and pulmonary tuberculosis in infants. Lung 176, 337–344 (1998).Article 
    CAS 

    Google Scholar 
    Fendrich, C. et al. Urinary neopterin concentrations in rhesus monkeys after infection with simian immunodeficiency virus (SIVmac 251). AIDS 3, 305–307 (1989).Article 
    CAS 

    Google Scholar 
    Chan, C. P. Y. et al. Detection of serum neopterin for early assessment of dengue virus infection. J. Infect. 53, 152–158 (2006).Article 

    Google Scholar 
    Wu, D. F., Behringer, V., Wittig, R. M., Leendertz, F. H. & Deschner, T. Urinary neopterin levels increase and predict survival during a respiratory outbreak in wild chimpanzees (Taï National Park, Côte d’Ivoire). Sci. Rep. 8, 13346 (2018).Article 
    ADS 

    Google Scholar 
    Maizels, R. M. & McSorley, H. J. Regulation of the host immune system by helminth parasites. J. Allergy Clin. Immunol. 138, 666–675 (2016).Article 
    CAS 

    Google Scholar 
    Maizels, R. M. & Yazdanbakhsh, M. Immune regulation by helminth parasites: Cellular and molecular mechanisms. Nat. Rev. Immunol. 3, 733–744 (2003).Article 
    CAS 

    Google Scholar 
    Yazdanbakhsh, M., Kremsner, P. G. & van Ree, R. Allergy, parasites, and the hygiene hypothesis. Science 296, 490–494 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Faz-López, B., Morales-Montor, J. & Terrazas, L. I. Role of macrophages in the repair process during the tissue migrating and resident helminth infections. Biomed. Res. Int. 2016, 8634603 (2016).Article 

    Google Scholar 
    Garcia, H. H., Rodriguez, S., Friedland, J. S. Cysticercosis Working Group in Peru. Immunology of Taenia solium taeniasis and human cysticercosis. Parasite Immunol. 36, 388–396. https://doi.org/10.1111/pim.12126 (2014)Article 
    CAS 

    Google Scholar 
    Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature 535, 65–74 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Schneider-Crease, I. A., Griffin, R. H., Gomery, M. A., Bergman, T. J. & Beehner, J. C. High mortality associated with tapeworm parasitism in geladas (Theropithecus gelada) in the Simien Mountains National Park, Ethiopia. Am. J. Primatol. https://doi.org/10.1002/ajp.22684 (2017).Article 

    Google Scholar 
    Nguyen, N. et al. Fitness impacts of tapeworm parasitism on wild gelada monkeys at Guassa, Ethiopia. Am. J. Primatol. 77, 579–594 (2015).Article 

    Google Scholar 
    Schneider-Crease, I. A. et al. Helminth infection is associated with dampened cytokine responses to viral and bacterial stimulations in Tsimane forager-horticulturalists. Evol. Med. Public Health 9, 349–359 (2021).Article 

    Google Scholar 
    Roberts, E. K., Lu, A., Bergman, T. J. & Beehner, J. C. Female reproductive parameters in wild geladas (Theropithecus gelada). Int. J. Primatol. 38, 1–20 (2017).Article 

    Google Scholar 
    Beehner, J. C. et al. Corrigendum to “Testosterone related to age and life-history stages in male baboons and geladas” [Horm. Behav. 56/4 (2009) 472-480]. Horm Behav. 80, 149 (2016).Article 

    Google Scholar 
    Erb, R. E., Tillson, S. A., Hodgen, G. D. & Plotka, E. D. Urinary creatinine as an index compound for estimating rate of excretion of steroids in the domestic sow. J. Anim. Sci. 30, 79–85 (1970).Article 
    CAS 

    Google Scholar 
    Tinsley Johnson, E., Snyder-Mackler, N., Lu, A., Bergman, T. J. & Beehner, J. C. Social and ecological drivers of reproductive seasonality in geladas. Behav. Ecol. 29, 574–588 (2018).Article 

    Google Scholar 
    Kaushik, S. & Kaur, J. Effect of chronic cold stress on intestinal epithelial cell proliferation and inflammation in rats. Stress 8, 191–197 (2005).Article 
    CAS 

    Google Scholar 
    Jarvey, J. C., Low, B. S., Pappano, D. J. & Bergman, T. J. Graminivory and fallback foods: annual diet profile of geladas (Theropithecus gelada) living in the Simien Mountains National Park, Ethiopia. Int. J. Primatol. https://doi.org/10.1007/s10764-018-0018-x (2018).Article 

    Google Scholar 
    Gowda, C., Hadley, C. & Aiello, A. E. The association between food insecurity and inflammation in the US adult population. Am. J. Public Health. 102, 1579–1586 (2012).Article 

    Google Scholar 
    Becker, D. J. et al. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J. Anim. Ecol. 89, 972–995 (2020).Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1, 1–7 (2014).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. https://www.R-project.org/.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 282, 20143085 (2015).
    Google Scholar 
    Heinonen, S. et al. Infant immune response to respiratory viral infections. Immunol. Allergy Clin. North Am. 39, 361–376 (2019).Article 

    Google Scholar 
    Teran, R. et al. Immune system development during early childhood in tropical Latin America: Evidence for the age-dependent down regulation of the innate immune response. Clin. Immunol. 138, 299–310 (2011).Article 
    CAS 

    Google Scholar 
    van de Pol, M. & Verhulst, S. Age-dependent traits: a new statistical model to separate within- and between-individual effects. Am. Nat. 167, 766–773 (2006).Article 

    Google Scholar 
    Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).Article 
    CAS 

    Google Scholar 
    Petrovsky, N., McNair, P. & Harrison, L. C. Diurnal rhythms of pro-inflammatory cytokines: regulation by plasma cortisol and therapeutic implications. Cytokine 10, 307–312 (1998).Article 
    CAS 

    Google Scholar 
    Lasselin, J., Rehman, J.-U., Åkerstedt, T., Lekander, M. & Axelsson, J. Effect of long-term sleep restriction and subsequent recovery sleep on the diurnal rhythms of white blood cell subpopulations. Brain Behav. Immun. 47, 93–99 (2015).Article 

    Google Scholar 
    Auzéby, A., Bogdan, A., Krosi, Z. & Touitou, Y. Time-dependence of urinary neopterin, a marker of cellular immune activity. Clin Chem. 34, 1866–1867 (1988).Article 

    Google Scholar 
    Ansari, A. & Williams, J. F. The eosinophilic response of the rat to infection with Taenia taeniaeformis. J. Parasitol. 62, 728–736 (1976).Article 
    CAS 

    Google Scholar 
    Schneider-Crease, I. A., Snyder-Mackler, N., Jarvey, J. C. & Bergman, T. J. Molecular identification of Taenia serialis coenurosis in a wild Ethiopian gelada (Theropithecus gelada). Vet. Parasitol. 198, 240–243 (2013).Article 
    CAS 

    Google Scholar 
    Terrazas, L. I., Bojalil, R., Govezensky, T. & Larralde, C. Shift from an early protective Th1-type immune response to a late permissive Th2-type response in murine cysticercosis (Taenia crassiceps). J. Parasitol. 84, 74–81 (1998).Article 
    CAS 

    Google Scholar 
    Toenjes, S. A., Spolski, R. J., Mooney, K. A. & Kuhn, R. E. The systemic immune response of BALB/c mice infected with larval Taenia crassiceps is a mixed Th1/Th2-type response. Parasitology 118(Pt 6), 623–633 (1999).Article 
    CAS 

    Google Scholar 
    Gaze, S. et al. Characterising the mucosal and systemic immune responses to experimental human hookworm infection. PLoS Pathog. 8, e1002520 (2012).Article 
    CAS 

    Google Scholar 
    Johnston, M. J. G., MacDonald, J. A. & McKay, D. M. Parasitic helminths: a pharmacopeia of anti-inflammatory molecules. Parasitology 136, 125–147 (2009).Article 
    CAS 

    Google Scholar 
    Cortés, A., Muñoz-Antoli, C., Esteban, J. G. & Toledo, R. Th2 and Th1 responses: Clear and hidden sides of immunity against intestinal helminths. Trends Parasitol. 33, 678–693 (2017).Article 

    Google Scholar 
    White, M. P. J., McManus, C. M. & Maizels, R. M. Regulatory T-cells in helminth infection: induction, function and therapeutic potential. Immunology 160, 248–260 (2020).Article 
    CAS 

    Google Scholar 
    Maizels, R. M. & Holland, M. J. Parasite immunity: Pathways for expelling intestinal helminths. Curr Biol. 8, R711–R714 (1998).Article 
    CAS 

    Google Scholar 
    Zhang, D. & Frenette, P. S. Cross talk between neutrophils and the microbiota. Blood 133, 2168–2177 (2019).Article 
    CAS 

    Google Scholar 
    Wang, J., Chen, W.-D. & Wang, Y.-D. The relationship between gut microbiota and inflammatory diseases: The role of macrophages. Front. Microbiol. 11, 1065 (2020).Article 

    Google Scholar 
    Pallikkuth, S. et al. Age associated microbiome and microbial metabolites modulation and its association with systemic inflammation in a rhesus macaque model. Front. Immunol. 12, 748397 (2021).Article 
    CAS 

    Google Scholar 
    Pierce, Z. et al. The infant gut microbiome is associated with stool markers of macrophage and neutrophil activity. FASEB J. 30, 668–9 (2016).
    Google Scholar 
    Levast, B. et al. Impact on the gut microbiota of intensive and prolonged antimicrobial therapy in patients with bone and joint infection. Front. Med. https://doi.org/10.3389/fmed.2021.586875 (2021).Article 

    Google Scholar 
    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).Article 
    CAS 

    Google Scholar 
    Libertucci, J. & Young, V. B. The role of the microbiota in infectious diseases. Nat. Microbiol. 4, 35–45 (2019).Article 
    CAS 

    Google Scholar 
    Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Blaser, M. J. & Falkow, S. What are the consequences of the disappearing human microbiota?. Nat. Rev. Microbiol. 7, 887–894 (2009).Article 
    CAS 

    Google Scholar 
    Brown, E. M., Kenny, D. J. & Xavier, R. J. Gut microbiota regulation of T cells during inflammation and autoimmunity. Annu. Rev. Immunol. 37, 599–624 (2019).Article 
    CAS 

    Google Scholar 
    Gollwitzer, E. S. & Marsland, B. J. Impact of early-life exposures on immune maturation and susceptibility to disease. Trends Immunol. 36, 684–696 (2015).Article 
    CAS 

    Google Scholar 
    Ravi, A. et al. Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients. Microbial. Genomics https://doi.org/10.1099/mgen.0.000293 (2019).McLaren, M. R. & Callahan, B. J. Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190592 (2020).Article 

    Google Scholar 
    Ragonnaud, E. & Biragyn, A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun Ageing 18, 2 (2021).Article 

    Google Scholar 
    Wilmanski, T. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274–286 (2021).Article 

    Google Scholar 
    Cattadori, I. M. et al. Impact of helminth infections and nutritional constraints on the small intestine microbiota. PLoS ONE 11, e0159770 (2016).Article 

    Google Scholar 
    Houlden, A. et al. Chronic Trichuris muris infection in C57BL/6 mice causes significant changes in host microbiota and metabolome: Effects reversed by pathogen clearance. PLoS ONE 10, e0125945 (2015).Article 

    Google Scholar 
    Holm, J. B. et al. Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of Lactobacilli. PLoS ONE 10, e0125495 (2015).Article 

    Google Scholar 
    Peachey, L. E., Jenkins, T. P. & Cantacessi, C. This gut ain’t big enough for both of us. Or is it? Helminth–microbiota interactions in veterinary species. Trends Parasitol. 33, 619–632 (2017).Article 

    Google Scholar  More