Tölgyesi, C., Buisson, E., Helm, A., Temperton, V. M. & Török, P. Urgent need for updating a slogan of global climate actions from ‘tree planting’ to ‘restore native vegetation’. Restor. Ecol. 30, e13594. https://doi.org/10.1111/rec.13594 (2021).Article
Google Scholar
Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).Article
Google Scholar
Dass, P., Houlton, B. Z., Wang, Y. & Warlind, D. Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. 13, 074027. https://doi.org/10.1088/1748-9326/aacb39 (2018).Article
ADS
Google Scholar
Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).Article
ADS
CAS
Google Scholar
Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).Article
ADS
CAS
Google Scholar
Stevens, C. J. Recent advances in understanding grasslands. F1000 Res. https://doi.org/10.12688/f1000research.15050.1 (2018).Article
Google Scholar
Klaus, V. H. et al. Do biodiversity-ecosystem functioning experiments inform stakeholders how to simultaneously conserve biodiversity and increase ecosystem service provisioning in grasslands?. Biol. Conserv. 245, 108552. https://doi.org/10.1016/j.biocon.2020.108552 (2020).Article
Google Scholar
Dudley, N. et al. Grasslands and savannahs in the UN decade on ecosystem restoration. Restor. Ecol. 28, 1313–1317 (2020).Article
Google Scholar
Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).Article
ADS
Google Scholar
Lengyel, S. et al. Restoration for variability: Emergence of the habitat diversity paradigm in terrestrial ecosystem restoration. Restor. Ecol. 28, 1087–1099 (2020).Article
Google Scholar
Waldén, E. & Lindborg, R. Long term positive effect of grassland restoration on plant diversity: Success or not?. PLoS ONE 11, e0155836. https://doi.org/10.1371/journal.pone.0155836 (2016).Article
CAS
Google Scholar
Lengyel, S. et al. Grassland restoration to conserve landscape-level biodiversity: A synthesis of early results from a large-scale project. Appl. Veg. Sci. 15, 264–276 (2012).Article
Google Scholar
Sojneková, M. & Chytrý, M. From arable land to species-rich semi-natural grasslands: Succession in abandoned fields in a dry region of central Europe. Ecol. Eng. 77, 373–381 (2015).Article
Google Scholar
Ellis, E. C. et al. Used planet: A global history. Proc. Natl. Acad. Sci. USA 110, 7978–7985 (2013).Article
ADS
CAS
Google Scholar
Levers, C., Schneider, M., Prishchepov, A. V., Estel, S. & Kuemmerle, T. Spatial variation in determinants of agricultural land abandonment in Europe. Sci. Total Environ. 644, 95–111 (2018).Article
ADS
CAS
Google Scholar
Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501. https://doi.org/10.1038/s41467-021-22702-2 (2021).Article
ADS
CAS
Google Scholar
Perpiña Castillo, C. et al. Agricultural Land Abandonment in the EU within 2015–2030 (No: JRC113718) (Joint Research Centre (Seville site), 2018).Müller, D., Leitão, P. J. & Sikor, T. Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees. Agric. Syst. 117, 66–77 (2013).Article
Google Scholar
Prishchepov, A. V., Müller, D., Dubinin, M., Baumann, M. & Radeloff, V. C. Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 30, 873–884 (2013).Article
Google Scholar
Prishchepov, A. V., Schierhorn, F. & Löw, F. Unraveling the diversity of trajectories and drivers of global agricultural land abandonment. Land 10, 97 (2021).Article
Google Scholar
Bossuyt, B. & Honnay, O. Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. J. Veg. Sci. 19, 875–884 (2008).Article
Google Scholar
Humphries, T., Florentine, S., Dowling, K., Turville, C. & Sinclair, S. Weed management for landscape scale restoration of global temperate grasslands. Land Degrad. Dev. 32, 1090–1102 (2021).Article
Google Scholar
Valkó, O. et al. Dynamics in vegetation and seed bank composition highlight the importance of post-restoration management in sown grasslands. Restor. Ecol. 29, e13192. https://doi.org/10.1111/rec.13192 (2021).Article
Google Scholar
Valkó, O. et al. High-diversity sowing in establishment gaps: A promising new tool for enhancing grassland biodiversity. Tuexenia 36, 359–378 (2016).
Google Scholar
Kövendi-Jakó, A. et al. Three years of vegetation development worth 30 years of secondary succession in urban-industrial grassland restoration. Appl. Veg. Sci. 22, 138–149 (2019).Article
Google Scholar
Kiss, R. et al. Establishment gaps in species-poor grasslands: Artificial biodiversity hotspots to support the colonization of target species. Restor. Ecol. 29, e13135. https://doi.org/10.1111/rec.13135 (2021).Article
Google Scholar
Török, P., Vida, E., Deák, B., Lengyel, S. & Tóthmérész, B. Grassland restoration on former croplands in Europe: An assessment of applicability of techniques and costs. Biodivers. Conserv. 20, 2311–2332 (2011).Article
Google Scholar
Critchley, C. N. R., Fowbert, J. A., Sherwood, A. J. & Pywell, R. F. Vegetation development of sown grass margins in arable fields under a countrywide agri-environment scheme. Biol. Conserv. 132, 1–11 (2006).Article
Google Scholar
Wagner, M., Walker, K. J. & Pywell, R. F. Seed bank dynamics in restored grassland following the sowing of high-and low-diversity seed mixtures. Restor. Ecol. 26, S189–S199 (2018).Article
Google Scholar
Lepš, J. et al. Long-term effectiveness of sowing high and low diversity seed mixtures to enhance plant community development on ex-arable fields. Appl. Veg. Sci. 10, 97–110 (2007).
Google Scholar
Török, P. et al. Restoring grassland biodiversity: Sowing low diversity seed mixtures can lead to rapid favourable changes. Biol. Conserv. 148, 806–812 (2010).Article
Google Scholar
Schaub, S. et al. The costs of diversity: Higher prices for more diverse grassland seed mixtures. Environ. Res. Lett. 16, 094011. https://doi.org/10.1088/1748-9326/ac1a9c (2021).Article
ADS
CAS
Google Scholar
Werner, C. M., Vaughn, K. J., Stuble, K. L., Wolf, K. & Young, T. P. Persistent asymmetrical priority effects in a California grassland restoration experiment. Ecol. Appl. 26, 1624–1632 (2016).Article
Google Scholar
Williams, D. W., Jackson, L. L. & Smith, D. D. Effects of frequent mowing on survival and persistence of forbs seeded into a species-poor grassland. Restor. Ecol. 15, 24–33 (2007).Article
Google Scholar
Klaus, V. H. et al. Enriching plant diversity in grasslands by large-scale experimental sward disturbance and seed addition along gradients of land-use intensity. J. Plant Ecol. 10, 581–591 (2017).
Google Scholar
Kiss, R. et al. Zoochory on and off: A field experiment for trait-based analysis of establishment success of grassland species. J. Veg. Sci. 32, e13051. https://doi.org/10.1111/jvs.13051 (2021).Article
Google Scholar
Weidlich, E. W. A. et al. Priority effects and ecological restoration. Restor. Ecol. 29, e13317. https://doi.org/10.1111/rec.13317 (2021).Article
Google Scholar
Wilsey, B. Restoration in the face of changing climate: Importance of persistence, priority effects, and species diversity. Restor. Ecol. 29, e13132. https://doi.org/10.1111/rec.13132 (2021).Article
Google Scholar
von Gillhaussen, P. et al. Priority effects of time of arrival of plant functional groups override sowing interval or density effects: A grassland experiment. PLoS ONE 9, e86906. https://doi.org/10.1371/journal.pone.0086906 (2014).Article
ADS
CAS
Google Scholar
Eddy, K. C. & Van Auken, O. W. Priority effects allow Coreopsis tinctoria to avoid interspecific competition with a C4 grass. Am. Midl. Nat. 181, 104–114 (2019).Article
Google Scholar
Delory, B. M., Weidlich, E. W., von Gillhaussen, P. & Temperton, V. M. When history matters: The overlooked role of priority effects in grassland overyielding. Funct. Ecol. 33, 2369–2380 (2019).Article
Google Scholar
Fenner, M. The effects of the parent environment on seed germinability. Seed Sci. Res. 1, 75–84 (1991).Article
Google Scholar
Ruprecht, E., Donath, T. W., Otte, A. & Eckstein, R. L. Chemical effects of a dominant grass on seed germination of four familial pairs of dry grassland species. Seed Sci. Res. 18, 239–248 (2008).Article
Google Scholar
Partzsch, M., Faulhaber, M. & Meier, T. The effect of the dominant grass Festuca rupicola on the establishment of rare forbs in semi-dry grasslands. Folia Geobot. 53, 103–113 (2018).Article
Google Scholar
Fenesi, A., Kelemen, K., Sándor, D. & Ruprecht, E. Influential neighbours: Seeds of dominant species affect the germination of common grassland species. J. Veg. Sci. 31, 1028–1038 (2020).Article
Google Scholar
Garbowski, M. et al. Getting to the root of restoration: Considering root traits for improved restoration outcomes under drought and competition. Restor. Ecol. 28, 1384–1395 (2020).Article
Google Scholar
Rehling, F., Sandner, T. M. & Matthies, D. Biomass partitioning in response to intraspecific competition depends on nutrients and species characteristics: A study of 43 plant species. J. Ecol. 109, 2219–2233 (2021).Article
Google Scholar
Gross, K. L. & Mittelbach, G. G. Negative effects of fertilization on grassland species richness are stronger when tall clonal species are present. Folia Geobot. 52, 401–409 (2017).Article
Google Scholar
Bakker, J. P. & Berendse, F. Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends Ecol. Evol. 14, 63–68 (1999).Article
CAS
Google Scholar
Kiss, R., Valkó, O., Tóthmérész, B. & Török, P. Seed bank research in Central-European grasslands: An overview. In Seed Banks: Types Roles and Research (ed. Murphy, J.) 1–34 (Nova Science Publishers, 2016).
Google Scholar
Prach, K., Jongepierová, I. & Řehounková, K. Large-scale restoration of dry grasslands on ex-arable land using a regional seed mixture: Establishment of target species. Restor. Ecol. 21, 33–39 (2013).Article
Google Scholar
Adler, P. B. et al. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecol. Lett. 21, 1319–1329 (2018).Article
Google Scholar
Baskin, C. C. & Baskin, J. M. Seeds: Ecology, Biogeography, And Evolution of Dormancy and Germination (Academic Press, 1998).
Google Scholar
Kövendi-Jakó, A. et al. Effect of seed storing duration and sowing year on the seedling establishment of grassland species in xeric environments. Restor. Ecol. 29, e13209. https://doi.org/10.1111/rec.13209 (2020).Article
Google Scholar
Cevallos, D., Szitár, K., Halassy, M., Kövendi-Jakó, A. & Török, K. Larger seed mass predicts higher germination and emergence rates in sand grassland species with non-dormant seeds. Acta Bot. Hung. 64, 237–258 (2022).Article
Google Scholar
Leishman, M. R., Wright, I. J., Moles, A. T. & Westoby, M. The evolutionary ecology of seed size. In Seeds: The Ecology of Regeneration in Plant Communities (ed. Fenner, M.) 31–57 (CAB International, 2000).Chapter
Google Scholar
Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Evol. Syst. 33, 125–215 (2002).Article
Google Scholar
Moles, A. T. & Westoby, M. Seed size and plant strategy across the whole life cycle. Oikos 113, 91–105 (2006).Article
Google Scholar
Scotton, M. Seed production in grassland species: Morpho-biological determinants in a species-rich semi-natural grassland. Grass Forage Sci. 73, 764–776 (2018).Article
Google Scholar
Thompson, K., Bakker, J. P. & Bekker, R. M. The Soil Seed Banks of North West Europe: Methodology, Density and Longevity (Cambridge University Press, 1997).
Google Scholar
Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article
Google Scholar
ENSCONET (European Native Seed Conservation Network). ENSCONET Seed Collecting Manual for Wild Species. ENSCONET, Royal Botanic Gardens, Kew and Universidad Politécnica de Madrid (2009). http://www.kew.org/sites/default/files/ENSCONET_Collecting_protocol_English.pdf. Accessed 15 April 2014).Borhidi, A. Social behaviour types, the naturalness and relative indicator values of the higher plants in the Hungarian flora. Acta Bot. Hung. 39, 97–181 (1995).
Google Scholar
Király, G. (ed). Új magyar füvészkönyv. Magyarország hatásos növényei (New Hungarian Herbal. The Vascular Plants of Hungary. Identification Key) [in Hungarian]. (Aggtelek National Park Directorate, 2009).R Core Team. R: A Language and Environment for Statistical Computing (4.0.5). Computer Software. R Foundation for Statistical Computing. https://www.R-project.org (2021).Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).Article
Google Scholar
Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means (Version 1.3.4) [R]. https://CRAN.R-project.org/package=emmeans (2019). More