More stories

  • in

    Rare and declining bird species benefit most from designating protected areas for conservation in the UK

    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 
    PubMed 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulze, K. et al. An assessment of threats to terrestrial protected areas. Conserv. Lett. 11, e12435 (2018).Article 

    Google Scholar 
    Bingham, H. C. et al. (eds). Protected Planet Report 2020 (UNEP-WCMC & IUCN, 2021); https://livereport.protectedplanet.net/Buchanan, G. M., Butchart, S. H., Chandler, G. & Gregory, R. D. Assessment of national-level progress towards elements of the Aichi Biodiversity Targets. Ecol. Indic. 116, 106497 (2020).Article 

    Google Scholar 
    Xu, H. et al. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 5, 411–418 (2021).Article 
    PubMed 

    Google Scholar 
    Report of the Open-ended Working Group on the Post-2020 Global Biodiversity Framework on Its Third Meeting (CBD Secretariat, 2022); https://www.cbd.int/conferences/post2020/wg2020-03/documentsRodrigues, A. S. & Cazalis, V. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11, 5147 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Starnes, T. et al. The extent and effectiveness of protected areas in the UK. Glob. Ecol. Conserv. 30, e01745 (2021).Article 

    Google Scholar 
    Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cazalis, V. et al. Mismatch between bird species sensitivity and the protection of intact habitats across the Americas. Ecol. Lett. 24, 2394–2405 (2021).Article 
    PubMed 

    Google Scholar 
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Gamero, A. et al. Tracking progress toward EU biodiversity strategy targets: EU policy effects in preserving its common farmland birds. Conserv. Lett. 10, 395–402 (2017).Article 

    Google Scholar 
    Pellissier, V. et al. Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data. Conserv. Biol. 34, 666–676 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Princé, K., Rouveyrol, P., Pellissier, V., Touroult, J. & Jiguet, F. Long-term effectiveness of Natura 2000 network to protect biodiversity: a hint of optimism for common birds. Biol. Conserv. 253, 108871 (2021).Article 

    Google Scholar 
    Cunningham, C. A., Thomas, C. D., Morecroft, M. D., Crick, H. Q. P. & Beale, C. M. The effectiveness of the protected area network of Great Britain. Biol. Conserv. 257, 109146 (2021).Article 

    Google Scholar 
    Duckworth, G. D. & Altwegg, R. Effectiveness of protected areas for bird conservation depends on guild. Divers. Distrib. 24, 1083–1091 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Rada, S. et al. Protected areas do not mitigate biodiversity declines: a case study on butterflies. Divers. Distrib. 25, 217–224 (2019).Article 

    Google Scholar 
    Terraube, J., Van Doninck, J., Helle, P., & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Lenoir, J. et al. Species better track the shifting isotherms in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 
    PubMed 

    Google Scholar 
    van Teeffelen, A., Meller, L., van Minnen, J., Vermaat, J. & Cabeza, M. How climate proof is the European Union’s biodiversity policy? Regional Environ. Change 15, 997–1010 (2015).Article 

    Google Scholar 
    Thomas, C. D. & Gillingham, P. K. The performance of protected areas for biodiversity under climate change. Biol. J. Linn. Soc. Lond. 115, 718–730 (2015).Article 

    Google Scholar 
    Gillingham, P. K. et al. The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biol. J. Linn. Soc. Lond. 115, 707–717 (2015).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Stokstad, E. Species? Climate? Cost? Ambitious goal means trade-offs. Science 371, 555 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brlík, V. et al. Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Sci. Data 8, 21 (2021).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Stanbury, A. et al. The status of bird populations: the fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723–747 (2021).
    Google Scholar 
    Dudley, N. (ed). Guidelines for Applying Protected Area Management Categories (IUCN, 2008).Deguignet, M. et al. Measuring the extent of overlaps in protected area designations. PLoS ONE 12, e0188681 (2017).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    JNCC. Common Standards Monitoring: Introduction to the Guidance Manual (JNCC Resource Hub, 2004).Hayhow, D. B. et al. State of Nature 2019 (RSPB, 2019).Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020); https://helda.helsinki.fi/handle/10138/326470Franks, S. E., Roodbergen, M., Teunissen, W., Carrington Cotton, A. & Pearce‐Higgins, J. W. Evaluating the effectiveness of conservation measures for European grassland‐breeding waders. Ecol. Evol. 8, 10555–10568 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Pearce-Higgins, J. W. et al. Site-based adaptation reduces the negative effects of weather upon a southern range margin Welsh black grouse Tetrao tetrix population that is vulnerable to climate change. Clim. Change 153, 253–265 (2019).Article 

    Google Scholar 
    Jellesmark, S. et al. A counterfactual approach to measure the impact of wet grassland conservation on U.K. breeding bird populations. Conserv. Biol. 35, 1575–1585 (2021).Article 
    PubMed 

    Google Scholar 
    Morrison, C. A. et al. Covariation in population trends and demography reveals targets for conservation action. Proc. Biol. Sci. 288, 20202955 (2021).PubMed Central 
    PubMed 

    Google Scholar 
    Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Martay, B. et al. Monitoring landscape-scale environmental changes with citizen scientists: Twenty years of land use change in Great Britain. J. Nat. Conserv. 44, 33–42 (2018).Article 

    Google Scholar 
    Sullivan, M. J. P., Newson, S. E. & Pearce‐Higgins, J. W. Changing densities of generalist species underlie apparent homogenization of UK bird communities. Ibis 158, 645–655 (2016).Article 

    Google Scholar 
    Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).Article 
    PubMed 

    Google Scholar 
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).Article 

    Google Scholar 
    Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change—evidence from large‐scale, long‐term abundance data. Glob. Change Biol. 25, 304–313 (2019).Article 

    Google Scholar 
    Gaüzère, P., Jiguet, F. & Devictor, V. Can protected areas mitigate the impacts of climate change on bird’s species and communities? Diversity Distrib. 22, 625–637 (2016).Article 

    Google Scholar 
    Neate‐Clegg, M. H. C., Jones, S. E. I., Burdekin, O., Jocque, M. & Şekercioğlu, Ç. H. Elevational changes in the avian community of a Mesoamerican cloud forest park. Biotropica 50, 805–815 (2018).Article 

    Google Scholar 
    Oliver, T. H. et al. Large extents of intensive land use limit community reorganization during climate warming. Glob. Change Biol. 23, 2272–2283 (2017).Article 

    Google Scholar 
    Hiley, J. R., Bradbury, R. B., Holling, M. & Thomas, C. D. Protected areas act as establishment centres for species colonizing the UK. Proc. Biol. Sci. 280, 20122310 (2013).PubMed Central 
    PubMed 

    Google Scholar 
    Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Grace, M. K. et al. Testing a global standard for quantifying species recovery and assessing conservation impact. Conserv. Biol. 35, 1833–1849 (2021).Article 
    PubMed 

    Google Scholar 
    Gibbons, D. W., Reid, J. B. & Chapman, R. A. The New Atlas of Breeding Birds in Britain & Ireland 1988–1991 (T. & A. D. Poyser, 1993).Balmer, D. E. et al. Bird Atlas 2007–11: the Breeding and Wintering Birds of Britain and Ireland (BTO, 2013).Gillings, S. et al. Breeding and wintering bird distributions in Britain and Ireland from citizen science bird atlases. Glob. Ecol. Biogeogr. 28, 866–874 (2019).Article 

    Google Scholar 
    Freeman, S. N., Noble, D. G., Newson, S. E. & Baillie, S. R. Modelling population changes using data from different surveys: the Common Birds Census and the Breeding Bird Survey. Bird Study 54, 61–72 (2007).Article 

    Google Scholar 
    Robinson, R. A., Julliard, R. & Saracco, J. F. Constant effort: studying avian population processes using standardised ringing. Ring. Migr. 24, 199–204 (2009).Article 

    Google Scholar 
    Cave, V. M., Freeman, S. N., Brooks, S. P., King, R. & Balmer, D. E. in Modeling Demographic Processes in Marked Populations, 949–963 (Springer, 2009).Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, GB) (eds Thomson, D. L. et al) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/7115bc48-3ab0-475d-84ae-fd3126c20984Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, N. Ireland) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/362feaea-0ccf-4a45-b11f-980c6b89a858ASTER Global Digital Elevation Model V003 (dataset). NASA EOSDIS Land Processes DAAC (NASA/METI/AIST/Japan Space Systems and U.S./Japan ASTER Science Team, 2019); https://doi.org/10.5067/ASTER/ASTGTM.003Schiavina, M., Freire, S. & MacManus, K. GHS-SMOD R2019A – GHS Settlement Layers, Updated and Refined REGIO Model 2014 in Application to GHS-BUILT R2018A and GHS-POP R2019A, Multitemporal (1975-1990-2000-2015) (European Commission Joint Research Centre, 2019); https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218Robinson, R. A. BirdFacts: Profiles of Birds Occurring in Britain & Ireland (BTO, 2005).Gibbons, D. W. et al. Bird species of conservation concern in the United Kingdom, Channel Islands and Isle of Man: revising the Red Data List. RSPB Conserv. Rev. 10, 7–18 (1996).
    Google Scholar 
    Stone, B. H. et al. Population estimates of birds in Britain and in the United Kingdom. Br. Birds 90, 1–22 (1997).
    Google Scholar 
    Woodward, I. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69–104 (2020).
    Google Scholar 
    R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Bull, J. W., Strange, N., Smith, R. J. & Gordon, A. Reconciling multiple counterfactuals when evaluating biodiversity conservation impact in social‐ecological systems. Conserv. Biol. 35, 510–521 (2020).Article 
    PubMed 

    Google Scholar 
    Jellesmark, S. et al. Assessing the global impact of targeted conservation actions on species abundance. Preprint at bioRxiv https://doi.org/10.1101/2022.01.14.476374 (2022).Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds but management helps. Nature 605, 103–107 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.4.4 (2021); https://CRAN.R-project.org/package=DHARMaJetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnston, A. et al. Species traits explain variation in detectability of UK birds. Bird Study 61, 340–350 (2014).Article 

    Google Scholar 
    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).Article 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Anal. 15, 199–236 (2007).Article 

    Google Scholar 
    Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).Article 
    PubMed 

    Google Scholar 
    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. Biol. Sci. 275, 2743–2748 (2008).PubMed Central 
    PubMed 

    Google Scholar  More

  • in

    10 startling images of nature in crisis — and the struggle to save it

    Global statistics on declining biodiversity can give the impression that every population of every species is in a downward spiral. In fact, many populations are stable or growing, while a small number of species faces truly existential challenges. These photos capture some specific crises. They are images of threats unfolding, of desperate attempts at species defence and of the beautiful living world that is at stake.
    The 15th United Nations Biodiversity Conference, COP15, opens in Montreal, Canada, on 7 December. At the meeting, delegates will attempt to agree on goals for stabilizing species’ declines by 2030 and reverse them by mid-century. The current draft framework agreement promises nothing less than a “transformation in society’s relationship with biodiversity”.
    Help for the kelp. Tasmania’s forests of giant kelp (Macrocystis pyrifera) are dying as climate change shifts ocean currents, bringing warm water to the east coast of the temperate Australian island. The kelp forests host an entire ecosystem, including abalone and crayfish — both economically important species and part of local food culture. Now, researchers at the Institute for Marine and Antarctic Studies in Hobart are breeding kelp plants that can tolerate warmer conditions, and replanting them along the coast — a trial for what they hope will become a landscape-scale restoration. More

  • in

    Pathways to engineering the phyllosphere microbiome for sustainable crop production

    Koskella, B. The phyllosphere. Curr. Biol. 30, R1143–R1146 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lu, N. et al. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods 15, 17 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arye, G. C. & Harel, A. in Microbial Genomics in Sustainable Agroecosystems (eds Tripathi, V. et al.) 39–65 (Springer, 2020).Universal plant healthcare. Nat. Plants 6, 47 (2020).Fones, H. N. et al. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1, 332–342 (2020).Article 

    Google Scholar 
    Li, W., Deng, Y., Ning, Y., He, Z. & Wang, G. L. Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu. Rev. Plant Biol. 71, 575–603 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Matsumoto, H. et al. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 7, 60–72 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Thomazella, D. P. T. et al. Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proc. Natl Acad. Sci. USA 118, e2026152118 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guo, Y. Molecular design for rice breeding. Nat. Food 2, 849–849 (2021).Article 

    Google Scholar 
    Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).Article 
    PubMed 

    Google Scholar 
    Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carrion, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chialva, M., Lanfranco, L. & Bonfante, P. The plant microbiota: composition, functions, and engineering. Curr. Opin. Biotechnol. 73, 135–142 (2021).Article 
    PubMed 

    Google Scholar 
    Liu, H., Brettell, L. E. & Singh, B. Linking the phyllosphere microbiome to plant health. Trends Plant Sci. 25, 841–844 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liu, H., Brettell, L. E., Qiu, Z. & Singh, B. K. Microbiome-mediated stress resistance in plants. Trends Plant Sci. 25, 733–743 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xu, P. et al. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. J. Adv. Res. 39, 49–60 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, M. & Cernava, T. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environ. Sci. Ecotechnol. 4, 100061 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hegazi, N., Hartmann, A. & Ruppel, S. The plant microbiome: exploration of plant–microbe interactions for improving agricultural productivity. J. Adv. Res. 19, 1–2 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mittelviefhaus, M., Muller, D. B., Zambelli, T. & Vorholt, J. A. A modular atomic force microscopy approach reveals a large range of hydrophobic adhesion forces among bacterial members of the leaf microbiota. ISME J. 13, 1878–1882 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sapkota, R., Knorr, K., Jorgensen, L. N., O’Hanlon, K. A. & Nicolaisen, M. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol. 207, 1134–1144 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. & Vorholt, J. A. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10, e1004283 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horton, M. W. et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 5, 5320 (2014).Article 
    PubMed 

    Google Scholar 
    Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shakir, S., Zaidi, S. S., de Vries, F. T. & Mansoor, S. Plant genetic networks shaping phyllosphere microbial community. Trends Genet. 37, 306–316 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xiong, C. et al. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 9, 171 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pang, Z. et al. Linking plant secondary metabolites and plant microbiomes: a review. Front. Plant Sci. 12, 621276 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pfeilmeier, S. et al. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat. Microbiol. 6, 852–864 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gupta, R. et al. Cytokinin drives assembly of the phyllosphere microbiome and promotes disease resistance through structural and chemical cues. ISME J. 16, 122–137 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Massoni, J. et al. Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J. 14, 245–258 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ren, G. et al. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 392, 27–44 (2015).Article 
    CAS 

    Google Scholar 
    Meyer, K.M. et al. Plant neighborhood shapes diversity and reduces interspecific variation of the phyllosphere microbiome. ISME J. 16, 1376–1387 (2022).Article 
    PubMed 

    Google Scholar 
    Qiu, Y. et al. Warming and elevated ozone induce tradeoffs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition. Sci. Adv. 7, eabe9256 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yu, H., Zhang, Y. & Tan, W. The “neighbor avoidance effect” of microplastics on bacterial and fungal diversity and communities in different soil horizons. Environ. Sci. Ecotechnol. 8, 100121 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Q. et al. Interactive effects of ozone exposure and nitrogen addition on the rhizosphere bacterial community of poplar saplings. Sci. Total Environ. 754, 142134 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, H., Jiang, Q., Wang, J., Li, K. & Wang, F. Analysis on the impact of two winter precipitation episodes on PM2.5 in Beijing. Environ. Sci. Ecotechnol. 5, 100080 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Feng, Z. et al. Ozone pollution threatens the production of major staple crops in East Asia. Nat. Food 3, 47–56 (2022).Article 
    CAS 

    Google Scholar 
    Zhu, Y. G. et al. Impacts of global change on the phyllosphere microbiome. New Phytol. 234, 1977–1986 (2021).Article 

    Google Scholar 
    Sawada, H. et al. Elevated ozone deteriorates grain quality of japonica rice cv. Koshihikari, even if it does not cause yield reduction. Rice 9, 7 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Agathokleous, E. et al. Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity. Sci. Adv. 6, eabc1176 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mieczan, T. & Bartkowska, A. The effect of experimentally simulated climate warming on the microbiome of carnivorous plants—a microcosm experiment. Glob. Ecol. Conserv. 34, e02040 (2022).Article 

    Google Scholar 
    Liu, H. et al. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens. New Phytol. 229, 2873–2885 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gao, M. et al. Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome 9, 187 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Snelders, N. C. et al. Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. Nat. Plants 6, 1365–1374 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Humphrey, P. T. & Whiteman, N. K. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 4, 221–229 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Tree leaf bacterial community structure and diversity differ along a gradient of urban intensity. mSystems 2, e00087–17 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Imperato, V. et al. Characterisation of the Carpinus betulus L. phyllomicrobiome in urban and forest areas. Front. Microbiol. 10, 1110 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perreault, R. & Laforest-Lapointe, I. Plant–microbe interactions in the phyllosphere: facing challenges of the anthropocene. ISME J. 16, 339–345 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jain, A., Ranjan, S., Dasgupta, N. & Ramalingam, C. Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit. Rev. Food Sci. Nutr. 58, 297–317 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sillen, W. M. A. et al. Nanoparticle treatment of maize analyzed through the metatranscriptome: compromised nitrogen cycling, possible phytopathogen selection, and plant hormesis. Microbiome 8, 127 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berg, G. & Cernava, T. The plant microbiota signature of the Anthropocene as a challenge for microbiome research. Microbiome 10, 54 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fan, X. et al. Microenvironmental interplay predominated by beneficial Aspergillus abates fungal pathogen incidence in paddy environment. Environ. Sci. Technol. 53, 13042–13052 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, Y. et al. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat. Commun. 9, 3429 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, M., Hashimoto, M. & Hashidoko, Y. Repression of tropolone production and induction of a Burkholderia plantarii pseudo-biofilm by carot-4-en-9,10-diol, a cell-to-cell signaling disrupter produced by Trichoderma virens. PLoS ONE 8, e78024 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bauermeister, A., Mannochio-Russo, H., Costa-Lotufo, L. V., Jarmusch, A. K. & Dorrestein, P. C. Mass spectrometry-based metabolomics in microbiome investigations. Nat. Rev. Microbiol. 20, 143–160 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Matsumoto, H. et al. Reprogramming of phytopathogen transcriptome by a non-bactericidal pesticide residue alleviates its virulence in rice. Fundam. Res. 2, 198–207 (2022).Article 
    CAS 

    Google Scholar 
    Hou, S. et al. A microbiota–root–shoot circuit favours Arabidopsis growth over defence under suboptimal light. Nat. Plants 7, 1078–1092 (2021).Mathur, M., Nair, A. & Kadoo, N. Plant–pathogen interactions: microRNA-mediated trans-kingdom gene regulation in fungi and their host plants. Genomics 112, 3021–3035 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kaur, C. et al. Microbial methylglyoxal metabolism contributes towards growth promotion and stress tolerance in plants. Environ. Microbiol. 24, 2817–2836 (2021).Article 
    PubMed 

    Google Scholar 
    Castrillo, G. et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513–518 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korenblum, E. et al. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc. Natl Acad. Sci. USA 117, 3874–3883 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chisholm, S. T., Coaker, G., Day, B. & Staskawicz, B. J. Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vogel, C., Bodenhausen, N., Gruissem, W. & Vorholt, J. A. The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. New Phytol. 212, 192–207 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 11, 539–548 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stringlis, I. A. et al. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J. 93, 166–180 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    He, J. et al. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Mol. Plant 12, 1561–1576 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bozsoki, Z. et al. Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Plant Sci. 369, 663–670 (2020).CAS 

    Google Scholar 
    Stringlis, I. A., Zhang, H., Pieterse, C. M. J., Bolton, M. D. & de Jonge, R. Microbial small molecules—weapons of plant subversion. Nat. Prod. Rep. 35, 410–433 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kong, H. G., Song, G. C., Sim, H. J. & Ryu, C. M. Achieving similar root microbiota composition in neighbouring plants through airborne signalling. ISME J. 15, 397–408 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vacher, C. et al. The phyllosphere: microbial jungle at the plant–climate interface. Annu. Rev. Ecol. Evol. Syst. 47, 1–24 (2016).Article 

    Google Scholar 
    Thapa, S. & Prasanna, R. Prospecting the characteristics and significance of the phyllosphere microbiome. Ann. Microbiol. 68, 229–245 (2018).Article 
    CAS 

    Google Scholar 
    Vorholt, J. A., Vogel, C., Carlstrom, C. I. & Muller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, X., Wicaksono, W. A., Berg, G. & Cernava, T. Bacterial communities in the plant phyllosphere harbour distinct responders to a broad-spectrum pesticide. Sci. Total Environ. 751, 141799 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liu, Y. X. et al. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 12, 315–330 (2021).Article 
    PubMed 

    Google Scholar 
    Hosokawa, M. et al. Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes. Biosens. Bioelectron. 67, 379–385 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. et al. High-throughput cultivation and identification of bacteria from the plant root microbiota. Nat. Protoc. 16, 988–1012 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grosskopf, T. & Soyer, O. S. Synthetic microbial communities. Curr. Opin. Microbiol. 18, 72–77 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vogel, C. M., Potthoff, D. B., Schafer, M., Barandun, N. & Vorholt, J. A. Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen. Nat. Microbiol. 6, 1537–1548 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Finkel, O. M. et al. A single bacterial genus maintains root growth in a complex microbiome. Nature 587, 103–108 (2020).Wagner, M. R. et al. Microbe-dependent heterosis in maize. Proc. Natl Acad. Sci. USA 118, e2021965118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schafer, M., Vogel, C. M., Bortfeld-Miller, M., Mittelviefhaus, M. & Vorholt, J. A. Mapping phyllosphere microbiota interactions in planta to establish genotype–phenotype relationships. Nat. Microbiol. 7, 856–867 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Han, B. & Huang, X. Sequencing-based genome-wide association study in rice. Curr. Opin. Plant Biol. 16, 133–138 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Roman-Reyna, V. et al. The rice leaf microbiome has a conserved community structure controlled by complex host-microbe interactions. Cell Host Microbe https://doi.org/10.2139/ssrn.3382544 (2019).Deng, S. et al. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME J. 15, 3181–3194 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, M. R., Busby, P. E. & Balint-Kurti, P. Analysis of leaf microbiome composition of near-isogenic maize lines differing in broad-spectrum disease resistance. New Phytol. 225, 2152–2165 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wagner, M. R., Roberts, J. H., Balint-Kurti, P. & Holland, J. B. Heterosis of leaf and rhizosphere microbiomes in field-grown maize. New Phytol. 228, 1055–1069 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nobori, T. et al. Transcriptome landscape of a bacterial pathogen under plant immunity. Proc. Natl Acad. Sci. USA 115, E3055–E3064 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, L. et al. Holo-omics for deciphering plant–microbiome interactions. Microbiome 9, 69 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    French, E., Kaplan, I., Iyer-Pascuzzi, A., Nakatsu, C. H. & Enders, L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).Article 
    PubMed 

    Google Scholar 
    Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4, 766–770 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kamilaris, A. & Prenafeta-Boldú, F. X. Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018).Article 

    Google Scholar 
    Zhou, L., Zhang, C., Liu, F., Qiu, Z. & He, Y. Application of deep learning in food: a review. Compr. Rev. Food Sci. Food Saf. 18, 1793–1811 (2019).Article 
    PubMed 

    Google Scholar 
    Moreno-Indias, I. et al. Statistical and machine learning techniques in human microbiome studies: contemporary challenges and solutions. Front. Microbiol. 12, 635781 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song, P., Wang, J., Guo, X., Yang, W. & Zhao, C. High-throughput phenotyping: breaking through the bottleneck in future crop breeding. Crop J. 9, 633–645 (2021).Article 

    Google Scholar  More

  • in

    Revealing the global longline fleet with satellite radar

    To estimate the total number of non-broadcasting vessels, including those that were not detected by SAR, we: (1) obtained SAR detections of vessels from RADARSAT-2 and the corresponding vessel lengths as estimated from the SAR image; (2) processed a global feed of AIS data to identify every broadcasting vessel that should have appeared in the SAR images at the moment the images were taken; (3) developed a novel technique to determine which vessels in AIS matched to detections in SAR, which AIS vessels were not detected by SAR, and which SAR detections represented non-broadcasting vessels; (4) after matching SAR to AIS, we could then (a) model the relationship between a vessel’s actual length and the length as estimated by the SAR image (Fig. 3b) and (b) model the relationship between the likelihood that a vessel is detected and its length (Fig. 3a); and (5) finally, we combined these relationships to develop an estimate of the number and lengths of non-broadcasting vessels in the region.SAR imagery and vessel detectionsWorking with the satellite company Kongsberg Satellite Services (KSAT), we tasked the Canadian Space Agency’s satellite RADARSAT-2 to acquire SAR images from its ship detection mode (DVWF mode, GRD product), with a pixel size of about 40 m and a swath width over 400 km (19). These images were processed following standard procedures for GRD products (e.g. applying radiometric calibration and geometric corrections)29,30. Vessel locations were extracted from the images with the widely used ship detection algorithms, which discriminates objects at sea based on the backscatter difference (pixel values) between the sea clutter and the targets31. Vessel lengths were estimated by measuring distances directly on the images with the aid of a graphical user interface tool31.Identifying Vessels using AISIn each region, AIS data, obtained from satellite providers ORBCOMM and Spire, were processed using Global Fishing Watch’s data pipeline1. The identities and lengths of all AIS devices that operated near the SAR scenes in both space and time were first obtained using Global Fishing Watch’s database1. To be sure vessels were identified correctly, two analysts reviewed the tracks of every AIS device in each region.In both regions, it is common practice for fishers to put AIS beacons on their longlines, likely to aid in retrieving them, meaning that many AIS devices were longline gear and not vessels. Because gear outnumbered vessels by several-fold, it was critical to differentiate gear and fishing vessels. In the Indian Ocean, 521 unique AIS devices associated with gear were detected that were likely within the SAR scenes, and 390 unique AIS devices associated with gear in the Pacific that were likely within the SAR scenes. Transponders were determined to be associated with gear by inspecting the name broadcast in the AIS messages (gear frequently broadcasts one of several standard names and/or a voltage reading) and classification using the Global Fishing Watch vessel classification algorithm1. Most gear also had an MMSI number (unique identifier number for AIS) that started with 1, 8, or 9 or broadcast names that signified gear. We eliminated all gear from the analysis because (1) these gear buoys have reflectors that are only ~ 1 m in size, and they should not be visible in ~ 40 m resolution SAR images, and (2) we found that gear matched to SAR detections only when traveling faster than 2 knots (and thus was on the deck of a boat); of 159 instances of gear in scenes where the gear was traveling slower than two knots, zero matched to a radar detection (Fig. S9).Generating probability rasters for matching AIS to SARMost AIS positions did not correspond to the exact time when the SAR images were taken. Hence, to determine the likelihood that a vessel broadcasting AIS corresponded to a specific SAR detection, we first developed probability rasters of where a vessel was likely to be minutes before or after a GPS position was recorded (Figs. S1,S2). We mined one year of global AIS data, including roughly 10 billion GPS positions, and computed these rasters for six different vessel classes (trawlers, purse seines, tug, cargo or tanker, drifting longlines, and others) and considered six different speeds (1, 3, 5, 7, 9, and 12.5 knots) and 36 time intervals (− 448, − 320, − 224, − 160, − 112, − 80, − 56, − 40, − 28, − 20, − 14, − 10, − 7, − 5, − 3.5, − 2.5, − 1.5, − 0.5, 0.5, 1.5, 2.5, 3.5, 5, 7, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, and 448 min).For example, we queried a year of AIS data to find every example of where a tugboat had two positions that were 10 min apart from one another when the vessel had been traveling at 10 knots at the first position. We then recorded each of these locations relative to the location the vessel would have been if it traveled in a straight line, with x coordinates being in the direction of travel and the y coordinates being perpendicular to the direction of travel. When collected for hundreds of thousands of examples across the AIS dataset, the result is a heatmap of where tug boats are located 10 min after a position when it was traveling at 10 knots. The raster is centered on a point that is the extrapolated position of the vessel based on its speed. For instance, the purse seine raster that corresponds to a vessel traveling between 6 and 8 knots between 96 and 128 min after the most recent position is centered at a point that is 13.1 km (7 knots × 112 min) straight ahead of the direction the vessel was traveling. Figure S1 shows samples of these rasters for different vessels.We built rasters of 1000 by 1000 pixels for each vessel class and time interval, with the area covered by the raster dependent on the time interval (longer time intervals imply longer traveled distances, covering more area). The scale of each pixel was given by:$${text{pixel}};{text{width = max(1, }}Delta {text{m) / 1000}}$$
    (1)
    where Δm is the time interval in minutes, and pixel width is measured in km. Thus, if the Δm is under one minute, the entire raster is one kilometer wide with each pixel one meter by one meter. If the time is 10 min, then each pixel is 10 m wide, and the entire raster is 10 km by 10 km.Since the pixel width varies between rasters, the units of the rasters are probability per km2, thus summing the area of each pixel times its value equals one. Six vessel classes with 36 time intervals for each and six speeds led to 1296 different rasters. This probability raster approach could be seen as a utilization distribution32—for each vessel class, speed and time interval—where the space is relative to the position of the individual.Combining probability rasters to produce a matching scoreFor a few vessels (~ 4%) there was only one AIS position available before or after the scene. This resulted from a long gap in the AIS data due to poor reception, a weak AIS device, or cases where the vessels disabled their AIS. For these vessels, we used the raster values for a single position. For the vast majority of vessels, however, there was a GPS position right before and after the scene, and thus two probability rasters. We used two methods to combine these probability rasters to obtain information about the most likely location:Multiply and renormalize the rastersTo multiply the rasters, we interpolated the raster values, using bilinear interpolation, to a constant grid at the highest resolution between the before and after rasters. Then, we multiplied the values at each point and renormalized the resulting raster (Fig. S2):$$p_{i} = frac{{p_{ai} cdot p_{bi} }}{{mathop sum nolimits_{k = 0}^{N} p_{ak} cdot p_{bk} cdot da}}$$
    (2)
    where pi is the probability in vessel density per km2 at location i, pai is the value of the raster before the image, pbi is the value of the raster after the image. The denominator is the sum of all multiplied values across the raster, scaled by the area of each cell, da.Weight and average the rasters For this method, we weighted the raster by the squared value of the probabilities of that scene. This has the effect of giving the concentrated raster a higher weight, thus weighting higher the raster that is closer in time to the image:$${w}_{a}=sum_{k=0}^{N} {p}_{ak}^{2}cdot da$$
    (3)
    and the weighted average at location i is:$${p}_{i}=frac{{p}_{ai}cdot {w}_{a}+{p}_{bi}cdot {w}_{b}}{{w}_{a}+{w}_{b}}$$
    (4)
    where wa is the weight for raster a, wb the weight for raster b (calculation analogous to wa’s in Eq. 3), pi is the probability in vessel density per km2 at location i.To determine whether we should multiply (Eq. 2) or average (Eq. 4) the probabilities, we compared the performance of these two metrics against a direct inspection of the detections. We found that at short intervals, multiplying the rasters and renormalizing often made probability values extremely small ( {d}_{d}cdot {p}_{d} + {p}_{f}$$
    (5)
    where ({p}_{v}) is the probability density of the vessel presence at the location of the SAR detection (the score listed above), ({p}_{d}) is the probability that the vessel is detected by SAR, ({d}_{d}) is the density of non-broadcasting vessels in the region, and ({p}_{f}) is the density of false detections in the scene. The greater ({p}_{d}), the more dark vessels there are in a scene, and the more likely it is that any given detection is a dark vessel instead of a vessel broadcasting AIS. The right-hand side of the equation ({d}_{d}cdot {p}_{d} + {p}_{f}) should roughly equal the number of detections per unit area that do not match to AIS in the region. In other words, the probability of the vessel with AIS being at that specific location and detected by SAR (left side of the equation) should be greater than the probability of a dark vessel or a false detection at that location (right side of the equation).The total number of unmatched vessels in each studied region normalized by total area covered gives a density of non-broadcasting vessels of 2.6–2.8 × 10–5 vessels km-2 (Indian Ocean) and 6.8–7.2 × 10–6 vessels km−2 (Pacific Ocean), similar to the thresholds estimated by analysts. For the most likely number of matched vessels, we use a threshold that is halfway between the higher and lower bound of the analyst (5 × 10–5 to 1 × 10–4), 2.5 × 10–5 which is also roughly equal to the theoretical estimate of the Indian Ocean.This threshold approach performed significantly better than a metric based on the distance between the SAR detection and the most likely location of the vessel, where the likely location is based on extrapolating speed and course of the position closest in time to the image (Fig. S4).Determining whether a vessel with AIS was within a sceneVessel positions from AIS are usually available before and/or after the SAR images, and sometimes it is unclear if a vessel should have been within the scene footprint at the time of the image.To estimate the probability that a vessel (with AIS) was within a scene, we used the multiplied probability raster, summing the values inside the scene boundaries. This provides an estimate of the likelihood that the vessel was within the scene footprint at the time of the image. We applied this to every vessel that had at least one AIS position within 12 h and 200 nautical miles of the scene footprint. The vast majority of vessels were either very likely inside or outside the scene footprints, with 516 vessels having a probability of  > 95% and only 16 having a probability between 5 and 95%. We filtered out all vessels that were definitely outside of the image footprint before matching.Estimating the likelihood of detecting a vessel with SARThe AIS data show that not all vessels broadcasting AIS were captured by the RADARSAT-2 images (Fig. 3a). Using the known lengths of detected vessels with AIS, we estimated the likelihood of detecting a vessel with SAR as a function of vessel length (Fig. 3a). For vessels shorter than 60 m, we approximated the detection rate as a linear function. Treating each vessel as an individual detection, we fitted the 50th percentile using quantile regression to approximate the detection rate. For vessels above 60 m, we assumed a constant detection rate as very few vessels above this length did now show up in the SAR images. Of the 46 unique vessels larger than 62 m, 42 were detected, implying a detection rate of ~ 91%. Given that it is highly likely that large vessels will be captured by medium-resolution SAR imagery, we manually reviewed these cases to confirm that they were (almost surely) inside the scene footprints at the time the images were taken.We should note that the probability of detecting a vessel in SAR also depends on the sea state, incidence angle, polarization, material of the vessel, and orientation of the vessel. We are unable, however, to measure these effects directly so we cannot explicitly model these effects.With sufficient scenes, these effects should be randomly distributed across our scenes, so they likely account for some of the variability in detectability and the inaccuracy in our length estimates from SAR.Estimating the number and length of non-broadcasting vesselsBecause SAR does not detect all vessels, and because the length as estimated by SAR can be incorrect, there are many possible distributions of actual non-broadcasting vessels that could have produced the distribution of unmatched SAR detections that we found in the scenes. To estimate the most likely such distribution, we built a model to combine the two key relationships—between vessel length and likelihood of detection, and between vessel length and the length as estimated by SAR. This model allowed us to estimate, based on the number and distribution of SAR vessels, the likely number and distribution of actual vessels present (Fig. 3c,d).We binned the likelihood of vessel detection as a function of length into 1 m intervals, yielding a vector (alpha) of length 400. We also binned into 1 m intervals the population of lengths of all detected vessels ((ell_{D})) as reported by AIS (i.e. number of vessels at each length bin), the population of expected SAR lengths ((ell_{E})), and the population of lengths of all vessels ((ell_{A}), the quantity we wish to estimate). Thus, (ell_{D}) can be expressed as the product of (alpha) and (ell_{A}):$$ell_{D} = {upalpha } odot ell_{{text{A}}}$$
    (6)
    where (odot) is the element-wise product. We then estimated a matrix (L_{{}}) that relates (ell_{D}) to (ell_{E}).$$ell_{E} = Lell_{D}$$
    (7)
    where each element (L_{ij}) represents the probability that a vessel with length in bin j would be estimated by SAR to be of length in bin i. We calculated these probabilities as lognormal probability density functions, with one distribution per column. To estimate the scale and shape parameters of these distributions, we first fitted a quantile regression using the (non-binned) lengths from AIS of detected vessels as the predictor for the lengths reported by SAR. Assuming that the predicted 1/3 and 2/3 quantiles (as shown in Fig. 3a) represent the quantiles of a lognormal distribution, allow us to calculate the shape and scale parameters. We chose a lognormal distribution because: 1) the variable of interest, length, was always greater than zero, 2) the population of lengths was skewed towards larger values, and 3) there is an explicit and relatively simple relationship between the lognormal quantiles and the shape and scale parameters that simplified the calculations.Combining Eqs. (6) and (7) provides a relation between (ell_{A}) and (ell_{E}):$$ell_{E} = {text{L}}left( {alpha odot ell_{A} } right)$$
    (8)
    To estimate ({mathcal{l}}_{A}) we minimized an objective function (O({mathcal{l}}_{E},{mathcal{l}}_{o})) between the vector of expected counts binned by length (({mathcal{l}}_{E})) and the vector of counts observed in SAR binned by length (({mathcal{l}}_{o})). For this objective function, we chose the sum of the Kolmogorov –Smirnov distance between length distributions and the squared difference of the total numbers of detections. The first term controls the shape of the resulting distribution while the second one controls the magnitude. Specifically:$$Oleft( {ell_{E} ,ell_{o} } right) = max left( {left| {C_{E} – C_{O} } right|} right) + left( {T_{E} – T_{O} } right)^{2}$$
    (9)
    where:$$T_{x} = mathop sum limits_{ } ell_{x}$$$$D_{x} = ell_{x} /T_{x}$$$$C_{x} = cumsumleft( {D_{x} } right)$$Assessing the uncertainty in the estimationTo test how accurately our approach predicts the correct number of vessels, we performed a bootstrap simulation. We computed the vector (alpha) and the matrix L from a random subset of vessels with AIS that had a high confidence ( > 95%) of appearing within the scenes. We then used our method on the SAR detections that matched the remaining vessels to predict the number of vessels they corresponded to ((ell_{text{A}})). By running 10,000 experiments we found a mean absolute percent error of + − 9% (Figs. S5 and S6). This provides a rough estimate of the uncertainty in our prediction due to the estimation process itself. We used the distribution of these samples to estimate the 90% confidence interval that we report with our estimates. We note that this uncertainty refers to the parametrization of the model and there may be other sources of error, such as the possibility that vessels without AIS have different radar properties (e.g. made out of materials with different reflectiveness), that we did not account for in our model.Catch and effort data in the overlapping area between WCPFC and IATTCWe downloaded gridded effort and catch data from the WCPFC and IATTC websites, and compared the reported number of hooks and catch from September to December of 2019 for the area between − 140 to − 150 longitude and − 5 to − 15 latitude, a bounding box that contains our study region in the Pacific and which is entirely within both the WCPFC and IATTC convention zones. We found that the reported number of hooks for Korea is three times higher for the IATTC as it is for the WCPFC (Fig. S7), and the numbers of hooks also disagree by more than 10% for most other flag states. Catch is also 2.5 times higher for IATTC than for WCPFC for Korea as well, with catch also differing by more than 10% for most other flag states. This finding suggests that the different RFMOs may not be accounting for the same vessels in the overlap region between the two RFMOs. More

  • in

    Algal sensitivity to nickel toxicity in response to phosphorus starvation

    Effect of phosphorus starved cultures of Dunaliella tertiolecta on growth represented as optical density under stress of nickel ionsIn the case of normal culture, phosphorus starved control culture (without nickel stress), and phosphorus-starved treated cultures, data presented in Table 1 and graphed in figure (S1, Supplementary Data) clearly showed a progressive increase in optical density with increasing culturing period in case of normal culture, phosphorus-starved control culture, and phosphorus-starved treated cultures. Our findings are consistent with those of18 who found that in phosphorus starved cultures of three algae species, Microcystic aeruginosa, Chlorella pyrenoidesa, and Cyclotella sp., the biomass, specific growth rate, and Chl-a all declined significantly.The optical density achieved during the four periods of culturing was lower in phosphorus-depleted control cultures than in normal cultures (i.e., cultures contained phosphorus). When compared to a normal control (without nickel addition), the optical density was reduced by 9.1% after 4 days of culturing under phosphorus deprivation and by 10.0 percent after 8 days of culturing. In the case of 5 mg/L dissolved nickel, however, the obtained optical density values in phosphorus starved treatment cultures rose with the increase in culturing period during all culturing periods as compared to phosphorus-starved control (without nickel addition) cultures.At 10 mg/L dissolved nickel and after 4 days of culturing, the optical density although less than those in case of concentration 5 mg/L, yet it was higher than control (− P) but by increasing the culturing period more than 4 days, the optical density was less than control (− P). Our results are similar to those of19 who observed that the decrease in cell division rate signaled the onset of P-deficiency. The cultures that showed no significant increase in cell number for at least three consecutive days under the experimental conditions were considered P-depleted. In addition20, observed that the growth rate of Dunaliella prava was found to be dramatically lowered when phosphorus was limited. The content of chlorophyll fractions, total soluble carbohydrates, and proteins all fell considerably as a result of phosphorus restriction.The results concerning the effect of dissolved nickel on the growth of Dunaliella tertiolecta under conditions of phosphorus limitation show that phosphorus starved Dunaliella had lower growth as compared to the control (phosphorus-containing culture medium). These results are in agreement with those obtained by7 who reported that the optical density of Chlorella kessleri cell suspension decreased with phosphorus deficiency compared to control. Also21, found that Chlorella vulgaris cells grew 30–40% slower in phosphorus-starved cultures than in control cultures. Furthermore22, showed that diatoms were unable to thrive when phosphorus levels were insufficient. Diatom dominances were reduced to 45 and 55% in enclosures where phosphate was not provided23 observed that, under salt stress, Chlorella’s metabolic rate was substantially lower than Dunaliella’s.It can be concluded that when microorganisms are deprived of phosphorus, dissolved nickel uptake decreases, resulting in an increase in algal metabolism24. Also25, examined the effects of phosphorus and nitrogen starvation on the life cycle of Emiliania huxleyi (Haptophyta) and proved that various biochemical pathways’ metabolic load increased under P-starvation while it decreased under N-starvation.Effect of phosphorus starved cultures of Dunaliella tertiolecta on chlorophylls content under stress of nickel ionsTable 2 and figure (S2, Supplementary Data) show the sequences of change in the amount of chlorophylls a and b in phosphorus-depleted cultures of Dunaliella tertiolecta in response to various dissolved nickel concentrations. The results show that total chlorophyll content rose steadily until the end of the experiment under normal conditions (a control containing phosphorus). These results are in harmony with those obtained by24. The ratio between chlorophylls “a” and “b” remained nearly constant till the end of the 12th day. At the 16th day of culturing, the ratio decreased from 2.9:1 to 2.4:1. On the contrary, the total chlorophylls under control (in the absence of nickel element) in case of phosphorus-starved cultures showed a progressive increase up to the 12th day. At the 12th day the total chlorophylls in case of phosphorus-starved cultures decreased by 10.7% compared to the normal control. At the 16th day, the total chlorophylls in case of untreated phosphorus starved culture decreased by 20.8% compared to those obtained at normal control26. Reported that the chlorophyll content of Chlorella sorokiniana was significantly reduced due to a lack of nitrogen and phosphorus in the medium.Table 2 Effect of different concentrations of dissolved nickel (mg/L) on chlorophylls content (µg/ml) of Dunaliella tertiolecta under the stress of phosphorus starvation.Full size tableThe total chlorophyll content of Dunaliella tertiolecta in the phosphorus-starved cultures treated with 5 mg/L of dissolved nickel increased gradually until the 12th day, when the content of the total chlorophylls reached 2.11 µg/ml, i.e., higher than the phosphorus-starved control (− P) by 15.3%. At the 16th day, the total chlorophylls, although lower than those obtained at the 12th day, were still higher than the control (− P). At a concentration of 10 mg/L of dissolved nickel, slight increase in the content of total chlorophylls was recorded from the beginning to the end of the culturing period, i.e., from the 4th to the 16th day. At the other concentrations of dissolved nickel (15, 20, and 25 mg/L), a pronounced decrease in the total chlorophylls could be observed from the 4th to the 16th day of culturing compared to control (− P). Our results are going with an agreement with those obtained by27 who found that chlorophylls were inhibited maximum at higher dissolved nickel concentrations but activated at lower values. The normal ratio between chlorophylls “a” and “b” (3:1) was upset after the 8th day of culturing under concentrations 5, 10, and 15 mg/L of dissolved nickel. At 20 and 25 mg/L of dissolved nickel, this ratio was unstable from the beginning to the end of the experiment. The fact that dissolved nickel is extremely mobile and hence only absorbed to a minimal level may explain the sensitivity of the tested alga to nickel in response to phosphorus deficiency, and an increase in phosphorus concentration favors its absorption by microorganisms28. It can be concluded that when microorganisms are deprived of phosphorus, dissolved nickel uptake decreases, resulting in an increase in algal metabolism.Effect of different concentrations of dissolved nickel on photosynthesis (O2-evolution) of phosphorus starved cells of Dunaliella tertiolecta
    Data represented in Table 3 and graphed in figure (S3, Supplementary Data S3) showed that the effect of phosphorus limitation on the photosynthetic activity of Dunaliella tertiolecta in response to five different concentrations of dissolved nickel revealed that, under phosphorus limiting conditions, the amount of O2-evolution was lower than in untreated cultures (the control). The evolution of O2 after 4 days of culturing in case of phosphorus starved control decreased by 8.7% compared to normal control, while after 12 days it decreased by 30.4%. The rate of O2-evolution at different concentrations of dissolved nickel over 5 mg/L caused successive reductions in the O2-evolution of phosphorus starved cells. Application of 5 mg/L of dissolved nickel, the results cleared that the rate of O2-evolution increased under the effect of all tested concentrations till the end of the experiment. It is clear from our data that the rate of O2-evolution depended mainly on the concentration of the nickel element and the length of culturing period. The lower the rate of O2-evolution, the higher the element’s concentration, and the longer the culturing period. This coincided with the findings of7 who found that low phosphorus treatment causes Chlorella kessleri to lose its photosynthetic activity. In this regard, it was discovered that phosphorus deficiency resulted in a decrease in photosynthetic electron transport activity29 found that the O2-evolution of Chlamydomon reinhardtii declined by 75%. This decrease reflects damage of PSII and the generation of PSII QB-non reducing centers.Table 3 Effect of different concentrations of dissolved nickel (mg/L) on photosynthetic activity (O2-evolution calculated as µ mol O2 mg chl-1 h-1) on phosphorus supplemented and starved cells of Dunaliella tertiolecta.Full size tableAlso30 found that P- deficiency has been correlated with lower photosynthetic rates. In the case of the treated phosphorus-starved cultures with lower concentrations (5 mg/L) of dissolved nickel, the rate of photosynthesis increased when compared to the phosphorus-starved control, but was less than that of the normal control (without nickel treatment). On the contrary, it was found that, in the treated phosphorus-starved cultures at concentrations of 10, 15, 20 and 25 mg/L of the tested element, the rate of photosynthesis decreased from the beginning to the end of the experiment. With increasing concentration, duration of the culturing period, and kind of element, the condition of decrease in O2-evolution became more pronounced; the same results were also recorded by24. The stimulation of growth and photosynthesis in the presence of some concentrations of dissolved nickel under phosphorus-limiting conditions is observed by31 they report that in Cu2+ sensitive Scenedesmus acutus, intracellular polyphosphate plays a key role in shielding photosynthesis from Cu2+ toxicity but not in copper resistant species.Effect of different concentrations of dissolved nickel on respiration (O2-uptake) of phosphorus starved cells of Dunaliella tertiolectaData obtained in Table 4 and graphed in figure (S4, Supplementary Data S4) concerning the rate of respiration of Dunaliella tertiolecta under phosphorus-limiting conditions was higher than that of untreated phosphorus-starved (control) for a short period of time only, i.e., after 4 days, at concentrations 5, 10 and 15 mg/L of dissolved nickel, After 8 days of culturing, the rate of O2- uptake increased only at 5 mg/L of dissolved nickel, while at the other concentrations it decreased gradually with increasing the concentration of the element. This finding is consistent with the findings of23, who discovered that Dunaliella cells increased their O2 absorption and evolution rates in the presence of 2 M salt NaCl in the media. In terms of oxygen uptake rate, Dunaliella cells demonstrated an increase in salt concentrations. In 1.5 M NaCl, it increased significantly by 60–80%.Table 4 Effect of different concentrations of dissolved nickel (mg/L) on respiration activity (O2-uptake calculated as µ mol O2 h-1) on phosphorus supplemented and starved cells of Dunaliella tertiolecta.Full size tableConcerning the increase in respiration in P-depleted green alga species cultures5 suggested that Scenedesmus, for example, can utilize the energy stored in starch and lipids for active phosphorus uptake from lake sediments. This process is aided by an increase in phosphatase production32 and these cells’ ability to operate anaerobically33. When unicellular green algae or higher plants are exposed to P deficiency, the majority of newly fixed carbon appears to be allocated to the synthesis of non-phosphorylated storage polyglucans (i.e., starch) or sucrose, with less photosynthetic activity directed to respiratory metabolism and other biosynthesis pathways34. It can be concluded from the obtained results that, when the alga was cultivated under phosphorus deficiency and treated with varied amounts of dissolved nickel, the growth was the most sensitive characteristic, followed by photosynthesis, and then dark respiration. In the few comparative studies with several species of green algae, growth was more sensitive than the other physiological processes examined. Out of them35, reported that growth was more susceptible to phosphorus deficiency in Chlorella pyrenoidosa and Asterionella gracilis than photosynthesis and respiration (the least sensitive processes). Growth was also more sensitive than photosynthesis in Nitzschia closterium 36 . Another important fact reported by37 is that under low phosphorus conditions, Dunaliella parva accumulates lipids rather than carbohydrates. These findings imply that phosphorus stress may prevent starch and/or protein production, leading to an increase in carbon flux to lipids. More

  • in

    Phytoplankton in the middle

    Marine phytoplankton both follow and actively influence the environment they inhabit. Unpacking the complex ecological and biogeochemical roles of these tiny organisms can help reveal the workings of the Earth system.
    Phytoplankton are the workers of an ocean-spanning factory converting sunlight and raw nutrients into organic matter. These little organisms — the foundation of the marine ecosystem — feed into a myriad of biogeochemical cycles, the balance of which help control the distribution of carbon on the Earth surface and ultimately the overall climate state. As papers in this issue of Nature Geoscience show, phytoplankton are far from passive actors in the global web of biogeochemical cycles. The functioning of phytoplankton is not just a matter for biologists, but is also important for geoscientists seeking to understand the Earth system more broadly.Phytoplankton are concentrated where local nutrient and sea surface temperatures are optimal, factors which aren’t always static in time. Prominent temperature fluctuations, from seasonal to daily cycles, are reflected in phytoplankton biomass, with cascading effects on other parts of marine ecosystems, such as economically-important fisheries. In an Article in this issue, Keerthi et al., show that phytoplankton biomass, tracked by satellite measurements of chlorophyll for relatively small ( More

  • in

    Dominant phytoplankton groups as the major source of polyunsaturated fatty acids for hilsa (Tenualosa ilisha) in the Meghna estuary Bangladesh

    Valle-Levinson, A. Contemporary Issues in Estuarine Physics (Cambridge University Press, 2010).Book 

    Google Scholar 
    Singh, S. Analysis of plankton diversity and density with physico-chemical parameters of open pond in town Deeg (Bhratpur) Rajasthan, India. Int. Res. J. Biol. Sci 4, 61–69 (2015).
    Google Scholar 
    Roussel, M., Pontier, D., Cohen, J.-M., Lina, B. & Fouchet, D. Quantifying the role of weather on seasonal influenza. BMC Public Health 16, 1–14 (2016).Article 

    Google Scholar 
    Davies, O., Abowei, J. & Tawari, C. Phytoplankton community of Elechi creek, Niger Delta, Nigeria-a nutrient-polluted tropical creek. Am. J. Appl. Sci. 6, 1143–1152 (2009).Article 
    CAS 

    Google Scholar 
    Choudhury, S. & Panigrahy, R. Seasonal distribution and behavior of nutrients in the Greek and coastal waters of Gopalpur, East coast of India: Mahasagar. Bull. Natl. Inst. Oeanogr 24, 91–88 (1991).
    Google Scholar 
    Ratheesh, K., Krishnan, A., Das, R. & Vimexen, V. Seasonal phytoplankton succession in Netravathi-Gurupura estuary, Karnataka, India: Study on a three tier hydrographic platform. Estuar. Coast. Shelf Sci. 242, 106830 (2020).Article 

    Google Scholar 
    Deng, Y., Tang, X., Huang, B. & Ding, L. Effect of temperature and irradiance on the growth and reproduction of the green macroalga, Chaetomorpha valida (Cladophoraceae, Chlorophyta). J. Appl. Phycol. 24, 927–933 (2012).Article 
    CAS 

    Google Scholar 
    Gamier, J., Billen, G. & Coste, M. Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: Observation and modeling. Limnol. Oceanogr. 40, 750–765 (1995).Article 

    Google Scholar 
    Meng, F. et al. Phytoplankton alpha diversity indices response the trophic state variation in hydrologically connected aquatic habitats in the Harbin Section of the Songhua River. Sci. Rep. 10, 1–13 (2020).Article 

    Google Scholar 
    Köhler, J. Growth, production and losses of phytoplankton in the lowland River Spree. I. Population dynamics. J. Plankton Res. 15, 335–349 (1993).Article 

    Google Scholar 
    Murrell, M. C. & Caffrey, J. M. High cyanobacterial abundance in three northeastern Gulf of Mexico estuaries. Gulf Caribbean Res. 17, 95–106 (2005).Article 

    Google Scholar 
    Haldar, G., Rahman, M. & Haroon, A. Hilsa, Tenualosa ilisha (Ham.) fishery of the Feni River with reference to the impacts of the flood control structure. J. Zool. 7, 51–56 (1992).
    Google Scholar 
    Hossain, M. S., Sarker, S., Chowdhury, S. R. & Sharifuzzaman, S. Discovering spawning ground of Hilsa shad (Tenualosa ilisha) in the coastal waters of Bangladesh. Ecol. Model. 282, 59–68 (2014).Article 

    Google Scholar 
    Bhaumik, U. & Sharma, A. The fishery of Indian Shad (Tenualosa ilisha) in the Bhagirathi-Hooghly river system. Fishing Chimes 31, 21–27 (2011).
    Google Scholar 
    Mitra, G. & Devsundaram, M. P. On the hilsa of Chilka Lake with note on the Hilsa in Orissa. J. Asiatic Soc. Sci. 20, 33–40 (1954).
    Google Scholar 
    Abdul, W., Phillips, M. & Beveridge, M. (WorldFish (WF), 2020).Hasan, K. M. M., Wahab, M. A., Ahmed, Z. F. & Mohammed, E. Y. The biophysical assessments of the hilsa fish (Tenualosa ilisha) habitat in the lower Meghna, Bangladesh (International Institute for Environment and Development, 2015).Begum, M. et al. Fatty acid composition of Hilsa (Tenualosa ilisha) fish muscle from different locations in Bangladesh. Thai J. Agric. Sci. 52, 172–179 (2019).
    Google Scholar 
    Jónasdóttir, S. H. Fatty acid profiles and production in marine phytoplankton. Mar. Drugs 17, 151 (2019).Article 

    Google Scholar 
    Otero, P., Ruiz-Villarreal, M., Peliz, Á. & Cabanas, J. M. Climatology and reconstruction of runoff time series in northwest Iberia: Influence in the shelf buoyancy budget off Ría de Vigo. Sci. Mar. 74, 247–266 (2010).Article 

    Google Scholar 
    Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis (Wiley, 2009).
    Google Scholar 
    Parsons, T., Maita, Y. & Lalli, C. A manual of chemical and biological methods for seawater analysis. Pergamon, Oxford sized algae and natural seston size fractions. Mar. Ecol. Prog. Ser. 199, 43–53 (1984).
    Google Scholar 
    Scor-Unesco, W. Determination of photosynthetic pigments. Determination of Photosynthetic Pigments in Sea-water, 9–18 (1966).Snow, G., Bate, G. & Adams, J. The effects of a single freshwater release into the Kromme Estuary. 2: Microalgal response. Water SA-Pretoria 26, 301–310 (2000).CAS 

    Google Scholar 
    Ward, H. B. & Whipple, G. C. Freshwater Biology Vol. 2, 12–48 (Willey, London, 1959).
    Google Scholar 
    Prescott, G. W. Algae of the western Great Lakes area. (1962).Bellinger, E. G. A Key to Common Algae: Freshwater, Estuarine and Some Coastal Species (Institution of Water and Environmental Management London, 1992).
    Google Scholar 
    Kimmerer, W. J. & Slaughter, A. M. A new electivity index for diet studies that use count data. Limnol. Oceanogr. Methods 19, 552–565 (2021).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Development Core Team. nlme: Linear and nonlinear mixed effects models, 2012. http://CRAN.R-project.org/package=nlme. R package version, 3.1–103 (2020).Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).Article 

    Google Scholar 
    Galili, T., O’Callaghan, A., Sidi, J. & Sievert, C. heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 34, 1600–1602 (2018).Article 
    CAS 

    Google Scholar 
    Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. Create Elegant Data Visualisations Using the Grammar of Graphics. Version 2, 1–189 (2016).Peterson, B. G. et al. Package ‘PerformanceAnalytics’. R Team Cooperation (2018).Lewis, R. E. & Uncles, R. J. Factors affecting longitudinal dispersion in estuaries of different scale. Ocean Dyn. 53, 197–207 (2003).Article 

    Google Scholar 
    Shaha, D., Cho, Y.-K., Seo, G.-H., Kim, C.-S. & Jung, K. Using flushing rate to investigate spring-neap and spatial variations of gravitational circulation and tidal exchanges in an estuary. Hydrol. Earth Syst. Sci. 14, 1465–1476 (2010).Article 

    Google Scholar 
    Shaha, D. C., Cho, Y.-K., Kim, T.-W. & Valle-Levinson, A. Spatio-temporal variation of flushing time in the Sumjin River Estuary. Terrestr. Atmos. Ocean. Sci. 23, 119 (2012).Article 

    Google Scholar 
    Shivaprasad, A. et al. Seasonal stratification and property distributions in a tropical estuary (Cochin estuary, west coast, India). Hydrol. Earth Syst. Sci. 17, 187–199 (2013).Article 

    Google Scholar 
    Haralambidou, K., Sylaios, G. & Tsihrintzis, V. A. Salt-wedge propagation in a Mediterranean micro-tidal river mouth. Estuar. Coast. Shelf Sci. 90, 174–184 (2010).Article 
    CAS 

    Google Scholar 
    Dyer, K. R. Estuaries: A physical introduction (1973).Rahman, M. et al. Impact assessment of twenty-two days fishing ban in the major spawning grounds of Tenualosa ilisha (Hamilton, 1822) on its spawning success in Bangladesh. J. Aquac. Res. Dev. 8, 489 (2017).Article 

    Google Scholar 
    Alves, A. S. et al. Spatial distribution of subtidal meiobenthos along estuarine gradients in two southern European estuaries (Portugal). J. Mar. Biol. Assoc. U.K. 89, 1529–1540 (2009).Article 
    CAS 

    Google Scholar 
    Teixeira, H., Salas, F., Borja, A., Neto, J. & Marques, J. A benthic perspective in assessing the ecological status of estuaries: The case of the Mondego estuary (Portugal). Ecol. Ind. 8, 404–416 (2008).Article 

    Google Scholar 
    Garmendia, M. et al. Eutrophication assessment in Basque estuaries: Comparing a North American and a European method. Estuar. Coasts 35, 991–1006 (2012).Article 

    Google Scholar 
    Istvánovics, V. Eutrophication of Lakes and Reservoirs. Lake Ecosystem Ecology 47–55 (Elsevier, 2010).
    Google Scholar 
    Dodds, W. K. Eutrophication and trophic state in rivers and streams. Limnol. Oceanogr. 51, 671–680 (2006).Article 
    CAS 

    Google Scholar 
    Bricker, S., Ferreira, J. & Simas, T. An integrated methodology for assessment of estuarine trophic status. Ecol. Model. 169, 39–60 (2003).Article 
    CAS 

    Google Scholar 
    Vega, M., Pardo, R., Barrado, E. & Debán, L. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res. 32, 3581–3592 (1998).Article 
    CAS 

    Google Scholar 
    Huang, Y., Yang, C., Wen, C. & Wen, G. S-type dissolved oxygen distribution along water depth in a canyon-shaped and algae blooming water source reservoir: Reasons and control. Int. J. Environ. Res. Public Health 16, 987 (2019).Article 
    CAS 

    Google Scholar 
    Rahman, M. & Cowx, I. Lunar periodicity in growth increment formation in otoliths of hilsa shad (Tenualosa ilisha, Clupeidae) in Bangladesh waters. Fish. Res. 81, 342–344 (2006).Article 

    Google Scholar 
    Rahman, M. J. Population Biology and Management of hilsa shad (Tenualosa ilisha) in Bangladesh (University of Hull, 2001).Milton, D. A. & Chenery, S. R. Movement patterns of the tropical shad hilsa (Tenualosa ilisha) inferred from transects of 87Sr/86Sr isotope ratios in their otoliths. Can. J. Fish. Aquat. Sci. 60, 1376–1385 (2003).Article 

    Google Scholar 
    Rahman, S., Sarker, M. R. H. & Mia, M. Y. Spatial and temporal variation of soil and water salinity in the South-Western and South-Central Coastal Region of Bangladesh. Irrig. Drain. 66, 854–871 (2017).Article 

    Google Scholar 
    Kida, S. & Yamazaki, D. The mechanism of the freshwater outflow through the Ganges–Brahmaputra–Meghna delta. Water Resour. Res. 56, e2019WR026412 (2020).Article 

    Google Scholar 
    Sarma, V. et al. Intra-annual variability in nutrients in the Godavari estuary, India. Contin. Shelf Res. 30, 2005–2014 (2010).Article 

    Google Scholar 
    Burford, M. et al. Controls on phytoplankton productivity in a wet–dry tropical estuary. Estuar. Coast. Shelf Sci. 113, 141–151 (2012).Article 
    CAS 

    Google Scholar 
    Vitousek, P. M. et al. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57, 1–45 (2002).Article 

    Google Scholar 
    Galloway, J. N. & Cowling, E. B. Reactive nitrogen and the world: 200 years of change. Ambio 31, 64–71 (2002).Article 

    Google Scholar 
    Kennish, M. & De Jonge, V. in Human-Induced Problems (Uses and Abuses) 113–148 (Elsevier Inc., 2012).Alongi, D., Boto, K. & Robertson, A. Nitrogen and phosphorus cycles. Coastal and Estuarine Studies, 251–251 (1993).Wolanski, E., McLusky, D., Laane, R. & Middleburg, J. (Academic Press, 2011).Suthers, I., Rissik, D. & Richardson, A. Plankton: A Guide to Their Ecology and Monitoring for Water Quality (CSIRO Publishing, 2019).Book 

    Google Scholar 
    Mackay, D. W. & Fleming, G. Correlation of dissolved oxygen levels, fresh-water flows and temperatures in a polluted estuary. Water Res. 3, 121–128 (1969).Article 

    Google Scholar 
    Lomas, M. W. & Glibert, P. M. Temperature regulation of nitrate uptake: A novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnol. Oceanogr. 44, 556–572 (1999).Article 
    CAS 

    Google Scholar 
    Dortch, Q. The interaction between ammonium and nitrate uptake in phytoplankton. Mar. Ecol. Prog. Ser. Oldendorf 61, 183–201 (1990).Article 
    CAS 

    Google Scholar 
    Admiraal, W., Riaux-Gobin, C. & Laane, R. W. Interactions of ammonium, nitrate, and D-and L-amino acids in the nitrogen assimilation of two species of estuarine benthic diatoms. Mar. Ecol. Prog. Ser. 40, 267–273 (1987).Article 
    CAS 

    Google Scholar 
    Rabalais, N., Turner, R., Dortch, Q., Wiseman, W. Jr. & Sen Gupta, B. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19, 386 (1996).Article 
    CAS 

    Google Scholar 
    Gholizadeh, M. H., Melesse, A. M. & Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total Environ. 566, 1552–1567 (2016).Article 

    Google Scholar 
    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).Article 

    Google Scholar 
    Teichberg, M. et al. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: Nutrient enrichment experiments with Ulva spp. Glob. Change Biol. 16, 2624–2637 (2010).Article 

    Google Scholar 
    Valiela, I. & Bowen, J. Nitrogen sources to watersheds and estuaries: Role of land cover mosaics and losses within watersheds. Environ. Pollut. 118, 239–248 (2002).Article 
    CAS 

    Google Scholar 
    Woodland, R. J. et al. Nitrogen loads explain primary productivity in estuaries at the ecosystem scale. Limnol. Oceanogr. 60, 1751–1762 (2015).Article 

    Google Scholar 
    Howarth, R. et al. Coupled biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front. Ecol. Environ. 9, 18–26 (2011).Article 

    Google Scholar 
    Winder, J. A. & Cheng, D. M. Quantification of Factors Controlling the Development of Anabaena Circinalis Blooms (Urban Water Research Association of Australia, 1995).
    Google Scholar 
    Descy, J.-P. Phytoplankton composition and dynamics in the River Meuse (Belgium). Arch. Hydrobiol. Supplementband. Monographische Beiträge 78, 225–245 (1987).
    Google Scholar 
    Robarts, R. D. & Zohary, T. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. NZ J. Mar. Freshw. Res. 21, 391–399 (1987).Article 
    CAS 

    Google Scholar 
    Visser, P. M., Ibelings, B. W., Bormans, M. & Huisman, J. Artificial mixing to control cyanobacterial blooms: A review. Aquat. Ecol. 50, 423–441 (2016).Article 
    CAS 

    Google Scholar 
    Krishnan, A., Das, R. & Vimexen, V. Seasonal phytoplankton succession in Netravathi-Gurupura estuary, Karnataka, India: Study on a three tier hydrographic platform. Estuar. Coast. Shelf Sci. 242, 106830 (2020).Article 

    Google Scholar 
    Srinivas, L., Seeta, Y. & Reddy, M. Bacillariophyceae as ecological indicators of water quality in Manair Dam, Karimnagar, India. Int. J. Sci. Res. Sci. Tech 4, 468–474 (2018).
    Google Scholar 
    Mohanty, B. P. et al. Fatty acid profile of Indian shad Tenualosa ilisha oil and its dietary significance. Natl. Acad. Sci. Lett. 35, 263–269 (2012).Article 
    CAS 

    Google Scholar 
    De, D. et al. Nutritional profiling of hilsa (Tenualosa ilisha) of different size groups and sensory evaluation of their adults from different riverine systems. Sci. Rep. 9, 1–11 (2019).Article 
    CAS 

    Google Scholar 
    Hasan, K. M. M., Ahmed, Z. F., Wahab, M. A. & Mohammed, E. Y. Food and Feeding Ecology of hilsa (Tenualosa ilisha) in Bangladesh’s Meghna River Basin. (International Institute for Environment and Development, 2016). More