More stories

  • in

    Compound heat and moisture extreme impacts on global crop yields under climate change

    Ray, D. K., Gerber, J. S., Macdonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).Article 

    Google Scholar 
    Frieler, K. et al. Understanding the weather signal in national crop-yield variability. Earths Future 5, 605–616 (2017).Article 

    Google Scholar 
    Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).Article 

    Google Scholar 
    Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).Article 

    Google Scholar 
    Ridder, N. N., Ukkola, A. M., Pitman, A. J. & Perkins-Kirkpatrick, S. E. Increased occurrence of high impact compound events under climate change. npj Clim. Atmos. Sci. 5, 3 (2022).Article 

    Google Scholar 
    Lesk, C. & Anderson, W. Decadal variability modulates trends in concurrent heat and drought over global croplands. Environ. Res. Lett. 16, 055024 (2021).Article 

    Google Scholar 
    Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D. & Diffenbaugh, N. S. Multidimensional risk in a nonstationary climate: joint probability of increasingly severe warm and dry conditions. Sci. Adv. 4, eaau3487 (2018).Article 

    Google Scholar 
    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).Article 

    Google Scholar 
    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).Article 

    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).Article 

    Google Scholar 
    Buckley, T. N. How do stomata respond to water status? New Phytol. 224, 21–36 (2019).Article 

    Google Scholar 
    Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. NY Acad. Sci. 1436, 19–35 (2019).Article 

    Google Scholar 
    Mueller, B. & Seneviratne, S. I. Hot days induced by precipitation deficits at the global scale. Proc. Natl Acad. Sci. USA 109, 12398–12403 (2012).Article 

    Google Scholar 
    Cohen, I., Zandalinas, S. I., Huck, C., Fritschi, F. B. & Mittler, R. Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiol. Plant 171, 66–76 (2021).Article 

    Google Scholar 
    Ostmeyer, T. et al. Impacts of heat, drought, and their interaction with nutrients on physiology, grain yield, and quality in field crops. Plant Physiol. Rep. 25, 549–568 (2020).Article 

    Google Scholar 
    Matiu, M., Ankerst, D. P. & Menzel, A. Interactions between temperature and drought in global and regional crop yield variability during 1961–2014. PLoS ONE 12, e0178339 (2017).Article 

    Google Scholar 
    Scheff, J., Mankin, J. S., Coats, S. & Liu, H. CO2-plant effects do not account for the gap between dryness indices and projected dryness impacts in CMIP6 or CMIP5. Environ. Res. Lett. 16, 034018 (2021).Article 

    Google Scholar 
    Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 47, e2020GL087820 (2020).Article 

    Google Scholar 
    Allan, R. P. et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. NY Acad. Sci. 1472, 49–75 (2020).Article 

    Google Scholar 
    Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).Article 

    Google Scholar 
    Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).Article 

    Google Scholar 
    Raymond, C. et al. Understanding and managing connected extreme events. Nat. Clim. Change 10, 611–621 (2020).Article 

    Google Scholar 
    Mills, G. et al. Closing the global ozone yield gap: quantification and cobenefits for multistress tolerance. Glob. Chang. Biol. 24, 4869–4893 (2018).Article 

    Google Scholar 
    Pandey, P., Irulappan, V., Bagavathiannan, M. V. & Senthil-Kumar, M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 8, 537 (2017).Article 

    Google Scholar 
    Couasnon, A. et al. Measuring compound flood potential from river discharge and storm surge extremes at the global scale. Nat. Hazards Earth Syst. Sci. 20, 489–504 (2020).Article 

    Google Scholar 
    Nguyen, L. T. T. et al. Flooding and prolonged drought have differential legacy impacts on soil nitrogen cycling, microbial communities and plant productivity. Plant Soil 431, 371–387 (2018).Article 

    Google Scholar 
    Medrano, H., Escalona, J. M., Bota, J., Gulías, J. & Flexas, J. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann. Bot. 89, 895–905 (2002).Article 

    Google Scholar 
    Scafaro, A. P. et al. Responses of leaf respiration to heatwaves. Plant Cell Environ. 44, 2090–2101 (2021).Article 

    Google Scholar 
    Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003).Article 

    Google Scholar 
    Lukac, M., Gooding, M. J., Griffiths, S. & Jones, H. E. Asynchronous flowering and within-plant flowering diversity in wheat and the implications for crop resilience to heat. Ann. Bot. 109, 843–850 (2012).Article 

    Google Scholar 
    Coast, O., Murdoch, A. J., Ellis, R. H., Hay, F. R. & Jagadish, K. S. V. Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress. Plant. Cell Environ. 39, 26–37 (2016).Article 

    Google Scholar 
    Li, Y., Guan, K., Schnitkey, G. D., Delucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Chang. Biol. https://doi.org/10.1111/gcb.14628 (2019).Article 

    Google Scholar 
    Tian, L. X. et al. How does the waterlogging regime affect crop yield? A global meta-analysis. Front. Plant Sci. 12, 634898 (2021).Article 

    Google Scholar 
    Langan, P. et al. Phenotyping for waterlogging tolerance in crops: current trends and future prospects. J. Exp. Bot. https://doi.org/10.1093/jxb/erac243 (2022).Article 

    Google Scholar 
    Tong, C. et al. Opportunities for improving waterlogging tolerance in cereal crops — physiological traits and genetic mechanisms. Plants 10, 1560 (2021).Article 

    Google Scholar 
    Colmer, T. D., Cox, M. C. H. & Voesenek, L. A. C. J. Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol. 170, 767–778 (2006).Article 

    Google Scholar 
    Hattori, Y. et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026–1030 (2009).Article 

    Google Scholar 
    Prasad, P. V. V., Pisipati, S. R., Momčilović, I. & Ristic, Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agron. Crop Sci. 197, 430–441 (2011).Article 

    Google Scholar 
    Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203, 32–43 (2014).Article 

    Google Scholar 
    Hussain, H. A. et al. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci. Rep. 9, 3890 (2019).Article 

    Google Scholar 
    Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19 (2006).Article 

    Google Scholar 
    Choudhury, F. K., Rivero, R. M., Blumwald, E. & Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90, 856–867 (2017).Article 

    Google Scholar 
    Van Der Wiel, K., Selten, F. M., Bintanja, R., Blackport, R. & Screen, J. A. Ensemble climate-impact modelling: extreme impacts from moderate meteorological conditions. Environ. Res. Lett. 15, 034050 (2020).Article 

    Google Scholar 
    Moore, C. E. et al. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J. Exp. Bot. 72, 2822–2844 (2021).Article 

    Google Scholar 
    Fahad, S. et al. Crop production under drought and heat stress: plant responses and management options. Front. Plant Sci. 8, 1147 (2017).Article 

    Google Scholar 
    Zandalinas, S. I., Fritschi, F. B. & Mittler, R. Signal transduction networks during stress combination. J. Exp. Bot. 71, 1734–1741 (2020).Article 

    Google Scholar 
    Zhang, H. & Sonnewald, U. Differences and commonalities of plant responses to single and combined stresses. Plant J. 90, 839–855 (2017).Article 

    Google Scholar 
    Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).Article 

    Google Scholar 
    Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).Article 

    Google Scholar 
    Trenberth, K. E. & Shea, D. J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 32, L14703 (2005).Article 

    Google Scholar 
    Miralles, D. G., Teuling, A. J., Van Heerwaarden, C. C. & De Arellano, J. V. G. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).Article 

    Google Scholar 
    Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).Article 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).Article 

    Google Scholar 
    Koster, R. D., Chang, Y., Wang, H. & Schubert, S. D. Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: a comprehensive analysis over North America. J. Clim. 29, 7345–7364 (2016).Article 

    Google Scholar 
    Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).Article 

    Google Scholar 
    Berg, A., Lintner, B., Findell, K. & Giannini, A. Soil moisture influence on seasonality and large-scale circulation in simulations of the West African monsoon. J. Clim. 30, 2295–2317 (2017).Article 

    Google Scholar 
    Lesk, C. et al. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2, 683–691 (2021).Article 

    Google Scholar 
    Wei, Z. et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 44, 2792–2801 (2017).Article 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 

    Google Scholar 
    Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).Article 

    Google Scholar 
    Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).Article 

    Google Scholar 
    Raymond, C. et al. Increasing spatiotemporal proximity of heat and precipitation extremes in a warming world quantified by a large model ensemble. Environ. Res. Lett. 17, 035005 (2022).Article 

    Google Scholar 
    Raymond, C. et al. On the controlling factors for globally extreme humid heat. Geophys. Res. Lett. 48, e2021GL096082 (2021).Article 

    Google Scholar 
    Speizer, S., Raymond, C., Ivanovich, C. & Horton, R. M. Concentrated and intensifying humid heat extremes in the IPCC AR6 regions. Geophys. Res. Lett. 49, e2021GL097261 (2022).Article 

    Google Scholar 
    Ning, G. et al. Rising risks of compound extreme heat‐precipitation events in China. Int. J. Climatol. https://doi.org/10.1002/joc.7561 (2022).Article 

    Google Scholar 
    Thiery, W. et al. Warming of hot extremes alleviated by expanding irrigation. Nat. Commun. 11, 290 (2020).Article 

    Google Scholar 
    Mueller, N. D. et al. Global relationships between cropland intensification and summer temperature extremes over the last 50 years. J. Clim. 30, 7505–7528 (2017).Article 

    Google Scholar 
    Siebert, S., Ewert, F., Eyshi Rezaei, E., Kage, H. & Graß, R. Impact of heat stress on crop yield — on the importance of considering canopy temperature. Environ. Res. Lett. 9, 044012 (2014).Article 

    Google Scholar 
    Singh, D. et al. Distinct influences of land cover and land management on seasonal climate. J. Geophys. Res. Atmos. 123, 12017–12039 (2018).Article 

    Google Scholar 
    Luan, X. & Vico, G. Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation — a modeling analysis. Hydrol. Earth Syst. Sci. 25, 1411–1423 (2021).Article 

    Google Scholar 
    Siebert, S., Webber, H., Zhao, G. & Ewert, F. Heat stress is overestimated in climate impact studies for irrigated agriculture. Environ. Res. Lett. 12, 054023 (2017).Article 

    Google Scholar 
    Sinha, R. et al. Differential regulation of flower transpiration during abiotic stress in annual plants. New Phytol. https://doi.org/10.1111/nph.18162 (2022).Article 

    Google Scholar 
    He, Y., Lee, E. & Mankin, J. S. Seasonal tropospheric cooling in Northeast China associated with cropland expansion. Environ. Res. Lett. 15, 034032 (2020).Article 

    Google Scholar 
    Alter, R. E., Douglas, H. C., Winter, J. M. & Eltahir, E. A. B. Twentieth century regional climate change during the summer in the Central United States attributed to agricultural intensification. Geophys. Res. Lett. 45, 1586–1594 (2018).Article 

    Google Scholar 
    Sánchez, B., Rasmussen, A. & Porter, J. R. Temperatures and the growth and development of maize and rice: a review. Glob. Chang. Biol. 20, 408–417 (2014).Article 

    Google Scholar 
    Prasad, P. V. V., Bheemanahalli, R. & Jagadish, S. V. K. Field crops and the fear of heat stress — opportunities, challenges and future directions. Field Crops Res. 200, 114–121 (2017).Article 

    Google Scholar 
    Schauberger, B. et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 13931 (2017).Article 

    Google Scholar 
    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).Article 

    Google Scholar 
    Sadok, W. & Jagadish, S. V. K. The hidden costs of nighttime warming on yields. Trends Plant Sci. 25, 644–651 (2020).Article 

    Google Scholar 
    Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).Article 

    Google Scholar 
    Cook, B. I., Shukla, S. P., Puma, M. J. & Nazarenko, L. S. Irrigation as an historical climate forcing. Clim. Dyn. 44, 1715–1730 (2015).Article 

    Google Scholar 
    Li, Y. et al. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob. Chang. Biol. 26, 3065–3078 (2020).Article 

    Google Scholar 
    Entekhabi, B. D. et al. The Soil Moisture Active Passive (SMAP). IEEE Proc. 98, 704–716 (2010).Article 

    Google Scholar 
    Ortiz-Bobea, A., Wang, H., Carrillo, C. M. & Ault, T. R. Unpacking the climatic drivers of US agricultural yields. Environ. Res. Lett. 14, 064003 (2019).Article 

    Google Scholar 
    Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).Article 

    Google Scholar 
    Proctor, J., Rigden, A., Chan, D. & Huybers, P. Accurate specification of water availability shows its importance for global crop production. Preprint at EarthArXiv https://doi.org/10.31223/X5ZS7P (2021).Article 

    Google Scholar 
    Carter, E. K., Melkonian, J., Riha, S. J. & Shaw, S. B. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize. Environ. Res. Lett. 11, 094012 (2016).Article 

    Google Scholar 
    Hamed, R., Van Loon, A. F., Aerts, J. & Coumou, D. Impacts of compound hot-dry extremes on US soybean yields. Earth Syst. Dyn. 12, 1371–1391 (2021).Article 

    Google Scholar 
    Feng, S., Hao, Z., Zhang, X. & Hao, F. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields. Sci. Total Environ. 689, 1228–1234 (2019).Article 

    Google Scholar 
    Haqiqi, I., Grogan, D. S., Hertel, T. W. & Schlenker, W. Quantifying the impacts of compound extremes on agriculture. Hydrol. Earth Syst. Sci. 25, 551–564 (2021).Article 

    Google Scholar 
    Zhu, P., Zhuang, Q., Archontoulis, S. V., Bernacchi, C. & Müller, C. Dissecting the nonlinear response of maize yield to high temperature stress with model-data integration. Glob. Chang. Biol. 25, 2470–2484 (2019).Article 

    Google Scholar 
    Jin, Z. et al. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Glob. Chang. Biol. 22, 3112–3126 (2016).Article 

    Google Scholar 
    Filipa Silva Ribeiro, A., Russo, A., Gouveia, C. M., Páscoa, P. & Zscheischler, J. Risk of crop failure due to compound dry and hot extremes estimated with nested copulas. Biogeosciences 17, 4815–4830 (2020).Article 

    Google Scholar 
    Hsiao, J., Swann, A. L. S. & Kim, S. H. Maize yield under a changing climate: the hidden role of vapor pressure deficit. Agric. For. Meteorol. 279, 107692 (2019).Article 

    Google Scholar 
    Heinicke, S., Frieler, K., Jägermeyr, J. & Mengel, M. Global gridded crop models underestimate yield responses to droughts and heatwaves. Environ. Res. Lett. 17, 044026 (2022).Article 

    Google Scholar 
    Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).Article 

    Google Scholar 
    He, Y., Hu, X., Xu, W., Fang, J. & Shi, P. Increased probability and severity of compound dry and hot growing seasons over world’s major croplands. Sci. Total Environ. 824, 153885 (2022).Article 

    Google Scholar 
    Wu, Y. et al. Global observations and CMIP6 simulations of compound extremes of monthly temperature and precipitation. GeoHealth 5, e2021GH000390 (2021).Article 

    Google Scholar 
    Zhang, Y., Hao, Z., Zhang, X. & Hao, F. Anthropogenically forced increases in compound dry and hot events at the global and continental scales. Environ. Res. Lett. 17, 024018 (2022).Article 

    Google Scholar 
    Chen, Y., Liao, Z., Shi, Y., Tian, Y. & Zhai, P. Detectable increases in sequential flood-heatwave events across China during 1961–2018. Geophys. Res. Lett. 48, e2021GL092549 (2021).
    Google Scholar 
    Raymond, C., Matthews, T. & Horton, R. M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).Article 

    Google Scholar 
    Vogel, M. M. et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture–temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).Article 

    Google Scholar 
    Garcia-Herrera, R., Díaz, J., Trigo, R. M., Luterbacher, J. & Fischer, E. M. A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 40, 267–306 (2010).Article 

    Google Scholar 
    Wegren, S. Food security and Russia’s 2010 drought. Eurasian Geogr. Econ. 52, 140–156 (2011).Article 

    Google Scholar 
    Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A. & Xiao, X. Flash drought development and cascading impacts associated with the 2010 Russian heatwave. Environ. Res. Lett. 15, 094078 (2020).Article 

    Google Scholar 
    Glotter, M. & Elliott, J. Simulating US agriculture in a modern Dust Bowl drought. Nat. Plants 3, 16193 (2016).Article 

    Google Scholar 
    Yuan, X., Wang, L. & Wood, E. F. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season. Bull. Am. Meteorol. Soc. 99, S86–S90 (2018).Article 

    Google Scholar 
    Ben-Ari, T. et al. Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France. Nat. Commun. 9, 1627 (2018).Article 

    Google Scholar 
    Gampe, D. et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 11, 772–779 (2021).Article 

    Google Scholar 
    Iizumi, T. & Ramankutty, N. Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ. Res. Lett. 11, 034003 (2016).Article 

    Google Scholar 
    Brás, T. A., Seixas, J., Carvalhais, N. & Jagermeyr, J. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ. Res. Lett. 16, 065012 (2021).Article 

    Google Scholar 
    Lobell, D. B., Deines, J. M. & Di Tommaso, S. Changes in the drought sensitivity of US maize yields. Nat. Food 1, 729–735 (2020).Article 

    Google Scholar 
    Seneviratne, S. I. et al. Climate extremes, land–climate feedbacks and land-use forcing at 1.5 °C. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20160450 (2018).Article 

    Google Scholar 
    Pfleiderer, P., Schleussner, C. F., Kornhuber, K. & Coumou, D. Summer weather becomes more persistent in a 2 °C world. Nat. Clim. Change 9, 666–671 (2019).Article 

    Google Scholar 
    Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).Article 

    Google Scholar 
    Dai, A., Zhao, T. & Chen, J. Climate change and drought: a precipitation and evaporation perspective. Curr. Clim. Chang. Rep. 4, 301–312 (2018).Article 

    Google Scholar 
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).Article 

    Google Scholar 
    Lesk, C., Coffel, E. & Horton, R. Net benefits to US soy and maize yields from intensifying hourly rainfall. Nat. Clim. Change 10, 819–822 (2020).Article 

    Google Scholar 
    Goulart, H. M. D., Van Der Wiel, K., Folberth, C., Balkovic, J. & Van Den Hurk, B. Weather-induced crop failure events under climate change: a storyline approach. Earth Syst. Dyn. https://doi.org/10.5194/esd-2021-40 (2021).Article 

    Google Scholar 
    Franke, J. A. et al. Agricultural breadbaskets shift poleward given adaptive farmer behavior under climate change. Glob. Chang. Biol. 28, 167–181 (2022).Article 

    Google Scholar 
    Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).Article 

    Google Scholar 
    Waha, K. et al. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Chang. 64, 102131 (2020).Article 

    Google Scholar 
    Zhu, T., Fonseca De Lima, C. F. & De Smet, I. The heat is on: how crop growth, development, and yield respond to high temperature. J. Exp. Bot. 72, 7359–7373 (2021).
    Google Scholar 
    Lizaso, J. I. et al. Impact of high temperatures in maize: phenology and yield components. Field Crops Res. 216, 129–140 (2018).Article 

    Google Scholar 
    Rezaei, E. E., Siebert, S. & Ewert, F. Intensity of heat stress in winter wheat — phenology compensates for the adverse effect of global warming. Environ. Res. Lett. 10, 024012 (2015).Article 

    Google Scholar 
    Liu, K. et al. Climate change shifts forward flowering and reduces crop waterlogging stress. Environ. Res. Lett. 16, 094017 (2021).Article 

    Google Scholar 
    Bagley, J. et al. The influence of photosynthetic acclimation to rising CO2 and warmer temperatures on leaf and canopy photosynthesis models. Global Biogeochem. Cycles https://doi.org/10.1002/2014GB004848 (2015).Article 

    Google Scholar 
    Hossain, M. A. et al. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma 255, 399–412 (2018).Article 

    Google Scholar 
    Wolz, K. J., Wertin, T. M., Abordo, M., Wang, D. & Leakey, A. D. B. Diversity in stomatal function is integral to modelling plant carbon and water fluxes. Nat. Ecol. Evol. 1, 1292–1298 (2017).Article 

    Google Scholar 
    Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Chang. Biol. 27, 27–49 (2021).Article 

    Google Scholar 
    Toreti, A. et al. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat. Food 1, 775–782 (2020).Article 

    Google Scholar 
    Myers, S. S. et al. Climate change and global food systems: potential impacts on food security and undernutrition. Annu. Rev. Public Health 38, 259–277 (2017).Article 

    Google Scholar 
    Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1094 (2018).Article 

    Google Scholar 
    Houshmandfar, A., Fitzgerald, G. J., Armstrong, R., Macabuhay, A. A. & Tausz, M. Modelling stomatal conductance of wheat: an assessment of response relationships under elevated CO2. Agric. For. Meteorol. 214–215, 117–123 (2015).Article 

    Google Scholar 
    Chavan, S. G., Duursma, R. A., Tausz, M. & Ghannoum, O. Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. J. Exp. Bot. 70, 6447–6459 (2019).Article 

    Google Scholar 
    Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 16132 (2016).Article 

    Google Scholar 
    Coffel, E. D. et al. Future hot and dry years worsen Nile basin water scarcity despite projected precipitation increases. Earths Future 7, 967–977 (2019).Article 

    Google Scholar 
    Mishra, V., Thirumalai, K., Singh, D. & Aadhar, S. Future exacerbation of hot and dry summer monsoon extremes in India. npj Clim. Atmos. Sci. 3, 10 (2020).Article 

    Google Scholar 
    Bevacqua, E., Zappa, G., Lehner, F. & Zscheischler, J. Precipitation trends determine future occurrences of compound hot–dry events. Nat. Clim. Change 12, 350–355 (2022).Article 

    Google Scholar 
    Seager, R. et al. Climate variability and change of Mediterranean-type climates. J. Clim. 32, 2887–2915 (2019).Article 

    Google Scholar 
    Vogel, M. M., Hauser, M. & Seneviratne, S. I. Projected changes in hot, dry and wet extreme events’ clusters in CMIP6 multi-model ensemble. Environ. Res. Lett. 15, 094021 (2020).Article 

    Google Scholar 
    Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).Article 

    Google Scholar 
    Byrne, M. P. Amplified warming of extreme temperatures over tropical land. Nat. Geosci. 14, 837–841 (2021).Article 

    Google Scholar 
    McDermid, S. S. et al. Disentangling the regional climate impacts of competing vegetation responses to elevated atmospheric CO2. J. Geophys. Res. Atmos. 126, e2020JD034108 (2021).Article 

    Google Scholar 
    Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).Article 

    Google Scholar 
    Ali, H., Fowler, H. J., Lenderink, G., Lewis, E. & Pritchard, D. Consistent large-scale response of hourly extreme precipitation to temperature variation over land. Geophys. Res. Lett. https://doi.org/10.1029/2020GL090317 (2021).Article 

    Google Scholar 
    Dai, A., Rasmussen, R. M., Liu, C., Ikeda, K. & Prein, A. F. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Clim. Dyn. 55, 343–368 (2020).Article 

    Google Scholar 
    Fishman, R. More uneven distributions overturn benefits of higher precipitation for crop yields. Environ. Res. Lett. 11, 024004 (2016).Article 

    Google Scholar 
    Shortridge, J. Observed trends in daily rainfall variability result in more severe climate change impacts to agriculture. Clim. Chang. 157, 429–444 (2019).Article 

    Google Scholar 
    Guan, K., Sultan, B., Biasutti, M., Baron, C. & Lobell, D. B. What aspects of future rainfall changes matter for crop yields in West Africa? Geophys. Res. Lett. 42, 8001–8010 (2015).Article 

    Google Scholar 
    Byrne, M. P. & O’Gorman, P. A. Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl Acad. Sci. USA 115, 4863–4868 (2018).Article 

    Google Scholar 
    Coffel, E. D., Horton, R. M. & De Sherbinin, A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett. 13, 014001 (2018).Article 

    Google Scholar 
    Matthews, T. Humid heat and climate change. Prog. Phys. Geogr. 42, 391–405 (2018).Article 

    Google Scholar 
    McKinnon, K. A. & Poppick, A. Estimating changes in the observed relationship between humidity and temperature using noncrossing quantile smoothing splines. J. Agric. Biol. Environ. Stat. 25, 292–314 (2020).Article 

    Google Scholar 
    Parsons, L. A. et al. Global labor loss due to humid heat exposure underestimated for outdoor workers. Environ. Res. Lett. 17, 014050 (2022).Article 

    Google Scholar 
    Ridder, N. N., Pitman, A. J. & Ukkola, A. M. Do CMIP6 climate models simulate global or regional compound events skillfully? Geophys. Res. Lett. 48, e2020GL091152 (2021).Article 

    Google Scholar 
    Hao, Z., Aghakouchak, A. & Phillips, T. J. Changes in concurrent monthly precipitation and temperature extremes. Environ. Res. Lett. 8, 034014 (2013).Article 

    Google Scholar 
    Zhang, B. & Soden, B. J. Constraining climate model projections of regional precipitation change. Geophys. Res. Lett. 46, 10522–10531 (2019).Article 

    Google Scholar 
    Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).Article 

    Google Scholar 
    Butler, E. E., Mueller, N. D. & Huybers, P. Peculiarly pleasant weather for US maize. Proc. Natl Acad. Sci. USA 115, 11935–11940 (2018).Article 

    Google Scholar 
    Lombardozzi, D. L. et al. Simulating agriculture in the Community Land Model Version 5. J. Geophys. Res. Biogeosci. 125, e2019JG005529 (2020).Article 

    Google Scholar 
    Puma, M. J. & Cook, B. I. Effects of irrigation on global climate during the 20th century. J. Geophys. Res. Atmos. 115, D16120 (2010).Article 

    Google Scholar 
    Coffel, E. D., Lesk, C., Winter, J. M., Osterberg, E. C. & Mankin, J. S. Crop–climate feedbacks boost US maize and soy yields. Environ. Res. Lett. 17, 024012 (2022).Article 

    Google Scholar 
    Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2016).Article 

    Google Scholar 
    Zaveri, E. & B. Lobell, D. The role of irrigation in changing wheat yields and heat sensitivity in India. Nat. Commun. 10, 4144 (2019).Article 

    Google Scholar 
    DeLucia, E. H. et al. Are we approaching a water ceiling to maize yields in the United States? Ecosphere 10, e02773 (2019).Article 

    Google Scholar 
    Cook, B. I. et al. Divergent regional climate consequences of maintaining current irrigation rates in the 21st century. J. Geophys. Res. Atmos. 125, e2019JD031814 (2020).Article 

    Google Scholar 
    Tigchelaar, M., Battisti, D. S., Naylor, R. L. & Ray, D. K. Future warming increases probability of globally synchronized maize production shocks. Proc. Natl Acad. Sci. USA 115, 6644–6649 (2018).Article 

    Google Scholar 
    Liu, W. et al. Future climate change significantly alters interannual wheat yield variability over half of harvested areas. Environ. Res. Lett. 16, 094045 (2021).Article 

    Google Scholar 
    Wang, X. et al. Global irrigation contribution to wheat and maize yield. Nat. Commun. 12, 1235 (2021).Article 

    Google Scholar 
    Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J. & D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 6, eaaz6031 (2020).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article 

    Google Scholar 
    Livneh, B. & Badger, A. M. Drought less predictable under declining future snowpack. Nat. Clim. Change 10, 452–458 (2020).Article 

    Google Scholar 
    Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).Article 

    Google Scholar 
    Jägermeyr, J. et al. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 11, 025002 (2016).Article 

    Google Scholar 
    Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).Article 

    Google Scholar 
    Gleeson, T., Wada, Y., Bierkens, M. F. P. & Van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).Article 

    Google Scholar 
    Bhattarai, N. et al. The impact of groundwater depletion on agricultural production in India. Environ. Res. Lett. 16, 085003 (2021).Article 

    Google Scholar 
    Nie, W. et al. Irrigation water demand sensitivity to climate variability across the contiguous United States. Water Resour. Res. 57, e2020WR027738 (2021).Article 

    Google Scholar 
    Wu, W.-Y. et al. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat. Commun. 11, 3710 (2020).Article 

    Google Scholar 
    Jain, M. et al. Groundwater depletion will reduce cropping intensity in India. Sci. Adv. 7, eabd2849 (2021).Article 

    Google Scholar 
    Kerr, R. B., Hasegawa, T. & Lasco, R. Food, fibre and other ecosystem products. In IPCC WGII Sixth Assessment Report 11–13 Ch. 5 (IPCC, 2022).Zandalinas, S. I. & Mittler, R. Plant responses to multifactorial stress combination. New Phytol. 234, 1161–1167 (2022).Article 

    Google Scholar 
    Barrett, C. B. et al. Bundling innovations to transform agri-food systems. Nat. Sustain. 3, 974–976 (2020).Article 

    Google Scholar 
    Peng, B. & Guan, K. Harmonizing climate-smart and sustainable agriculture. Nat. Food 2, 853–854 (2021).Article 

    Google Scholar 
    Zabel, F. et al. Large potential for crop production adaptation depends on available future varieties. Glob. Chang. Biol. 27, 3870–3882 (2021).Article 

    Google Scholar 
    Challinor, A. J., Koehler, A.-K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).Article 

    Google Scholar 
    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).Article 

    Google Scholar 
    Vogel, E. & Meyer, R. Climate Change, Climate Extremes, and Global Food Production — Adaptation in the Agricultural Sector. Resilience: The Science of Adaptation to Climate Change (Elsevier Inc., 2018).Lal, R. Soil health and carbon management. Food Energy Secur. 5, 212–222 (2016).Article 

    Google Scholar 
    Davis, K. F., Downs, S. & Gephart, J. A. Towards food supply chain resilience to environmental shocks. Nat. Food 2, 54–65 (2021).Article 

    Google Scholar 
    Baldos, U. L. C. & Hertel, T. W. The role of international trade in managing food security risks from climate change. Food Secur. 7, 275–290 (2015).Article 

    Google Scholar 
    Deguines, N. et al. Large-scale trade-off between agricultural intensification and crop pollination services. Front. Ecol. Environ. 12, 212–217 (2014).Article 

    Google Scholar 
    Vyas, S., Dalhaus, T., Kropff, M., Aggarwal, P. & Meuwissen, M. P. M. Mapping global research on agricultural insurance. Environ. Res. Lett. 16, 103003 (2021).Article 

    Google Scholar 
    Hazell, P. & Varangis, P. Best practices for subsidizing agricultural insurance. Glob. Food Sec. 25, 100326 (2020).Article 

    Google Scholar 
    Funk, C. et al. Recognizing the famine early warning systems network over 30 years of drought early warning science advances and partnerships promoting global food security. Bull. Am. Meteorol. Soc. 100, 1011–1027 (2019).Article 

    Google Scholar 
    Reichstein, M., Riede, F. & Frank, D. More floods, fires and cyclones — plan for domino effects on sustainability goals. Nature 592, 347–349 (2021).Article 

    Google Scholar 
    Müller, C. et al. Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environ. Res. Lett. 16, 034040 (2021).Article 

    Google Scholar 
    Hao, Z., Hao, F., Xia, Y., Singh, V. P. & Zhang, X. A monitoring and prediction system for compound dry and hot events. Environ. Res. Lett. 14, 114034 (2019).Article 

    Google Scholar 
    Benami, E. et al. Uniting remote sensing, crop modelling and economics for agricultural risk management. Nat. Rev. Earth Environ. 2, 140–159 (2021).Article 

    Google Scholar 
    Famine Early Warning System Network. East Africa seasonal monitor. FEWS https://fews.net/sites/default/files/documents/reports/EAST_AFRICA_Seasonal_Monitor_20_May_2022_1.pdf (2022).Becker-Reshef, I. et al. The GEOGLAM crop monitor for AMIS: assessing crop conditions in the context of global markets. Glob. Food Sec. 23, 173–181 (2019).Article 

    Google Scholar 
    GEOGLAM Crop Monitor. Special report: unprecedented 4th consecutive poor rainfall season for the Horn of Africa. Crop Monitor https://cropmonitor.org/documents/SPECIAL/reports/Special_Report_20220523_East_Africa.pdf (2022).Geange, S. R. et al. The thermal tolerance of photosynthetic tissues: a global systematic review and agenda for future research. New Phytol. 229, 2497–2513 (2021).Article 

    Google Scholar 
    Reynolds, M. P. et al. Harnessing translational research in wheat for climate resilience. J. Exp. Bot. 72, 5134–5157 (2021).Article 

    Google Scholar 
    Makondo, C. C. & Thomas, D. S. G. Climate change adaptation: linking indigenous knowledge with western science for effective adaptation. Environ. Sci. Policy 88, 83–91 (2018).Article 

    Google Scholar 
    Sharafi, L., Zarafshani, K., Keshavarz, M., Azadi, H. & Van Passel, S. Farmers’ decision to use drought early warning system in developing countries. Sci. Total Environ. 758, 142761 (2021).Article 

    Google Scholar 
    Fischer, K. Why new crop technology is not scale-neutral — A critique of the expectations for a crop-based African Green Revolution. Res. Policy 45, 1185–1194 (2016).Article 

    Google Scholar 
    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).Article 

    Google Scholar 
    Glauber, J., Baldwin, K., Antón, J. & Ziebinska, U. Design principles for agricultural risk management policies. OECD Food Agric. Fish. Pap. https://doi.org/10.1787/1048819f-en (2021).Article 

    Google Scholar 
    Annan, F. & Schlenker, W. Federal crop insurance and the disincentive to adapt to extreme heat. Am. Econ. Rev. 105, 262–266 (2015).Article 

    Google Scholar 
    Deryugina, T. & Konar, M. Impacts of crop insurance on water withdrawals for irrigation. Adv. Water Resour. 110, 437–444 (2017).Article 

    Google Scholar 
    Agrimonti, C., Lauro, M. & Visioli, G. Smart agriculture for food quality: facing climate change in the 21st century. Crit. Rev. Food Sci. Nutr. 61, 971–981 (2021).Article 

    Google Scholar 
    Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 1243 (2020).Article 

    Google Scholar 
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).Article 

    Google Scholar 
    Willmott, C. J. & Matsuura, K. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1999). University of Delaware http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts.html (2000).Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations — the CRU TS3.10 dataset. Int. J. Clim. 34, 623–642 (2014).Article 

    Google Scholar 
    Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).Article 

    Google Scholar 
    Beyer, R. M., Hua, F., Martin, P. A., Manica, A. & Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022).Article 

    Google Scholar  More

  • in

    Multiple drivers and lineage-specific insect extinctions during the Permo–Triassic

    Fossil record of insectsWe compiled all species-level fossil occurrences of insects using https://paleobiodb.org/ (PBDB) as a starting point (downloaded October 12, 2021). The dataset obtained from PBDB contained initially 5808 occurrences for a period ranging from the Asselian to the Rhaetian. The dataset was cleaned of synonyms, outdated combinations, nomina dubia, and other erroneous and doubtful records, based on revisions provided in the literature and/or on the expertise of the authors. After correction, including data addition from the literature, our dataset was composed of 3636 species (1784 genera, and 418 families) for 17,250 occurrences resulting from an in-depth study and curation of the entire bibliography of fossil insects, spanning from the Asselian (lowermost Permian) to the Rhaetian (uppermost Triassic). Although most of the taxa included in the datasets are nominal taxa (published and named), a few unnamed taxa (genera or species) that are considered separate from others were also included, although not formally named in the literature or not published yet. These unpublished taxa are identifiable by the notation ‘fam. nov.’ or ‘gen. nov.’ following their names.Occurrences used here are specimens originating from a given stratigraphic horizon assigned to a given taxon. The age of each occurrence is based on data from PBDB, corrected with a more precise age (generally stage, sometimes substage), and the age of each time bin boundaries relies on the stratigraphic framework proposed in the International Chronostratigraphic Chart (updated to correspond with the ICS 2022/0295). Similarly, the ages of some species assigned to the wrong stage were corrected. In fact, some species from the French Permian deposit of Lodève were initially considered to be of Artinskian age in PBDB but most species from this deposit originate from the Merifons member, which is of Kungurian age96.Our data compilation allows a robust integration of data before and after our period of interest (i.e. the lower Permian and all geologic stages after the Carnian) to encompass occurrences of genera that may survive until the Late Triassic and to generate a sufficient background for the model to correctly estimate the extinction events around the P/T boundary. Since we used different datasets, the differences between genus-level or family-level occurrence numbers are explained by the systematic placement of some specimens that can only be placed confidently in a family but not in a genus (Supplementary Table 1). Tentative species identifications originally placed with uncertainty (reported as ‘aff.’ or ‘?’) were always included at a higher taxonomic level. Uncertain generic attributions were integrated as occurrences at the family level (e.g. a fossil initially considered Tupus? is recorded as an occurrence of Meganeuridae). Our total dataset was subdivided into smaller datasets, which represent orders or other subclades of insects (e.g. Mecoptera, Holometabola and Polyneoptera). Note that all the ichnospecies—a species name assigned to trace fossils (e.g. resting trace, nest and leaf damage)— and insect eggs (e.g. Clavapartus latus, Furcapartus exilis and Monilipartus tenuis) were not included in the analyses97. To prevent potential issues regarding the diversification estimates for clades with poor delineation, we refrained from analysing several orders that serve as taxonomic ‘wastebaskets’ (e.g. Grylloblattodea). These groups are poorly defined, likely polyphyletic or paraphyletic, and not supported by apomorphic characters—e.g. the monophyly of the ‘Grylloblattodea’ (Grylloblattida Walker, 1914 plus numerous fossil families and genera of uncertain affinities) is not supported by any synapomorphy, nor the relationships within this group. The occurrences assigned to these orders were rather included in analyses conducted at a higher taxonomic level (at the Polyneoptera level in the case of the ‘Grylloblattodea’). The detail of the composition of all the datasets is given in Supplementary Table 14, and each dataset is available in Supplementary Data 1.Studying extinction should, when possible, rely on species-level diversity to better circumscribe extinction events at this taxonomic rank, which is primarily affected by extinction98,99,100. However, in palaeoentomology, species-level occurrence data may contain less information than genus-level data, mainly because species are most of the time only known from one deposit, resulting in reduced life span, and are also sometimes poorly defined. Insects are also less prone to long-lasting genera or species than other lineages, maybe because of the relatively short time between generations (allowing for rapid evolution) or because morphological characters are better preserved or more diagnostic than in other lineages (i.e. wing venation), allowing easier differentiation. Another argument for the use of genus-level datasets is the possibility to add occurrences represented by fossils that cannot be assigned at the species level because of poor preservation or an insufficient number of specimens/available characters. By extension, the genus life span provides clues as to survivor taxa and times of origination during periods of post-extinction or recovery. A genus encompassing extinction events indicates that at least one species of this genus crossed the extinction. To get the best signal and infer a robust pattern of insect dynamics around the P/T events, we have chosen to analyse our dataset at different taxonomic ranks (e.g. genus, family and order levels) to extract as much evidence as possible.To further support our choice to work at these different levels, most recent works aiming to decipher the diversification and extinction in insect lineages have worked using a combination of analyses21,22,26; this also applies to non-insect clades51,101,102. This multi-level approach should maximise our understanding of the Permo–Triassic events.Assessing optimal parameters and preliminary testsPrior to choosing the settings for the final analyses (see detail in Dynamics of origination and extinction), a series of tests were carried out to better evaluate the convergence of our analyses. First, we analysed our genus-level dataset with PyRate36 running for 10 million generations and sampling every 10,000 generations, on ten randomly replicated datasets using the reversible-jump Markov Chain Monte Carlo (RJMCMC) model37 and the parameters of PyRate set by default. As the convergence was too low, new settings were used, notably increasing the number of generations to 50 million generations and monitoring the MCMC mixing and effective sample size (ESS) each 10 million generations. We modified the minimal interval between two shifts (-min_dt option, testing 0.5, 1.5 and 2), and found no major difference in diversification patterns between our tests. We have opted for 50 million generations with a predefined time frame set for bins corresponding to the Permian and Triassic stages, and a minimum interval between two shifts of two Ma. These parameters allow for maintaining a short bin frame and high convergence values while correctly identifying periods of diversification and extinction. For each analysis, ten datasets were generated using the extract.ages function to randomly resample the age of fossil occurrences within their respective temporal ranges (i.e. resampled ages are randomly drawn between the minimum and the maximum ages of the geological stratum). We monitored chain mixing and ESS by examining the log files in Tracer 1.7.1103 after excluding the first 10% of the samples as a burn-in period. The parameters are considered convergent when their ESS are greater than 200.Dynamics of origination and extinctionWe carried out the analyses of the fossil datasets based on the Bayesian framework implemented in the programme PyRate36. We analysed the fossil datasets under two models: the birth–death model with constrained shifts (BDCS38) and the RJMCMC (-A 4 option37). These models allow for a simultaneous estimate for each taxon: (1) the parameters of the preservation process (Supplementary Fig. 17), (2) the times of origination (Ts) and extinction (Te) of each taxon, (3) the origination and extinction rates and their variation through time for each stage and (4) the number and magnitude of shifts in origination and extinction rates.All analyses were set with the best-fit preservation process after comparing (-PPmodeltest option) the homogeneous Poisson process (-mHPP option), the non-homogeneous Poisson process (default option), and the time-variable Poisson process (-qShift option). The preservation process infers the individual origination and extinction times of each taxon based on all fossil occurrences and on an estimated preservation rate, denoted q, expressed as expected occurrences per taxon per Ma. The time-variable Poisson process assumes that preservation rates are constant within a predefined time frame but may vary over time (here, set for bins corresponding to stages). This model is thus appropriate when rates over time are heterogeneous.We ran PyRate for 50 million MCMC generations and a sampling every 50,000 generations for the BDCS and RJMCMC models with time bins corresponding to Permian and Triassic stages (-fixShift option). All analyses were set with a time-variable Poisson process (-qShift option) of preservation and accounted for varying preservation rates across taxa using the Gamma model (-mG option), that is, with gamma-distributed rate heterogeneity with four rate categories36. As explained above, the minimal interval between two shifts (-min_dt option) was modified and a value of 2 was used. The default prior to the vector of preservation rates is a single gamma distribution with shape = 1.5 and rate = 1.5. We reduced the subjectivity of this parameter, and favoured a better adequation to the data, allowing PyRate to estimate the rate parameter of the prior from the data by setting the rate parameter to 0 (-pP option). Therefore, PyRate assigns a vague exponential hyper-prior to the rate and samples the rate along with all other model parameters. Similarly, because our dataset does not encompass the entire fossil record of insects, we assumed that a possible edge effect may interfere with our analyses, with a strong diversification during the lowermost Permian and, conversely a strong extinction during the uppermost Triassic. Because the RJMCMC and BDCS algorithms look for rate shifts, we constrained the algorithm to only search for shifts (-edgeShift option) within the following time range 295.0 to 204.5 Ma. We monitored chain mixing and ESS by examining the log files in Tracer 1.7.1103 after excluding the first 10% of the samples as a burn-in period. The parameters are considered convergent when their ESS are greater than 200.We then combined the posterior estimates of the origination and extinction rates across all replicates to generate rates through-time plots (origination, extinction, and net diversification). Shifts of diversification were considered significant when log Bayes factors were >6 in the RJMCMC model, while we considered shifts to be significant in the BDCS model when mean rates in a time bin did not overlap with the 95% credibility interval (CI) of the rates of adjacent time bins.We replicated all the analyses on ten randomly generated datasets of each clade and calculated estimates of the Ts and the Te as the average of the posterior samples from each replicate. Thus, we obtained ten posterior estimates of the Ts and Te for all taxa and we used these values to estimate the past diversity dynamics by calculating the number of living taxa at each time point. For all the subsequent analyses, we used the estimated Ts and Te of all taxa to test whether or not the origination and the extinction rate dynamics were correlated with particular abiotic factors, as suggested by the drastic changes in environmental conditions known during the Permo–Triassic. We used proxies for abiotic factors, such as global continental fragmentation or the dynamic of major clades of plants, and for biotic factors via species interaction within and between ecological guilds. This approach avoids re-modelling preservation and re-estimating times of origination and extinction, which reduces drastically the computational burden, while still allowing to account for the preservation process and the uncertainties associated with fossil ages. Similarly, the times of origination and extinction used in all the subsequent analyses were obtained while accounting for the heterogeneity of preservation, origination and extinction rates. To discuss the magnitude of the periods of extinction and diversification, we compared the magnitude of these events to the background origination and extinction rates (i.e. not during extinction or diversification peaks).The PyRate approach has proven to be robust following a series of tests and simulations that reflect commonly observed biases when modelling past diversity dynamics31,38. These simulations were based on datasets simulated under a range of potential biases (i.e. violations of the sampling assumptions, variable preservation rates, and incomplete taxon sampling) and reflecting the limitations of the fossil record. Simulation results showed that PyRate is able to correctly estimate the dynamics of origination and extinction rates, including sudden rate changes and mass extinction, even if the preservation levels are low (down to 1–3 fossil occurrences per species on average), the taxon sampling is partial (up to 80% missing) or if the datasets have a high proportion of singletons (exceeding 30% of the taxa in some cases). The strongest bias in birth–death rate estimates is caused by incomplete data (i.e. missing lineages) altering the distribution of taxa; a pervasive effect often mentioned for phylogeny-based models104,105,106. However, in the case of PyRate, the simulations confirm the absence of consistent biases due to an incomplete fossil record36. Finally, the recently implemented RJMCMC model was shown to be very accurate for estimating origination and extinction rates (i.e. more accurate than the BDCS model, the boundary-crossing and three-time methods) and is able to recover sudden extinction events regardless of the biases in the fossil dataset37.The severity of extinctions and survivorsFor each event—the Roadian–Wordian, the LPME, and the Ladinian–Carnian—we quantified the percentage of extinctions and survivors at the genus level. We used the Te and Ts from our RJMCMC analysis and computed the mean for the Te (Tem) and for the Ts (Tsm) of each genus. We then filtered our dataset to keep only the genera with a Tsm older than the upper boundary of the focal event, i.e., we only kept the genera that appeared before the end of the event. Then, we discarded the genera that have disappeared before the lower boundary of the focal event, i.e. Tem older that the lower boundary of the event. The remaining genera, which corresponds to all the genera (total) present during the crisis (Ttgen), can be classified into two categories, ‘survivor genera’ (Sgen), i.e. those that survived the crisis, and those that died: ‘extinct genera’ (Egen). The survivors have a Tem younger than the upper boundary of the focal event, while the ‘extinct genera’ died out during the event and have a Tem between the lower and upper boundaries of the event of interest. To obtain the percentage of survivors, we used the following formula: (Sgen/Ttgen) × 100. Similarly, the percentage of extinction is calculated as: (Egen/Ttgen) × 100.Age-dependent extinction modelWe assessed the effect of taxon age on the extinction probability by fitting the age-dependent extinction (ADE; -ADE 1 option) model50. This model estimates the probability for a lineage to become extinct as a function of its age, also named longevity, which is the elapsed time since its origination. It is recommended to run the ADE model over time windows with roughly constant origination and extinction rates, as convergence is difficult—but not impossible—to reach in extinction or diversification contexts50. We ran PyRate for 50 million MCMC generations with a sampling every 50,000 generations, with a time-variable Poisson process of preservation (-qShift option), while accounting for varying preservation rates across taxa using the Gamma model (-mG option). We replicated the analyses on ten randomised datasets and combined the posterior estimates across all replicates. We estimated the shape (Φ) and scale (Ψ) parameters of the Weibull distribution, and the taxon longevity in a million years. According to ref. 50, there is no evidence of age-dependent extinction rates if Φ = 1. However, the extinction rate is higher for young species and decreases with species age if Φ  1. Although ADE models are prone to high error rates when origination and extinction rates increase or decrease through time, simulations with PyRate have shown that fossil-based inferences are robust50. We investigated the effect of ADE during three different periods (-filter option) as follows: (1) between 264.28 Ma and 255 Ma (pre-decline), (2) between 254.5 Ma and 251.5 Ma (decline) and (3) between 234 Ma and 212 Ma (post-crisis). We monitored chain mixing and ESS by examining the log files in Tracer 1.7.1103 and considered the convergence of parameters sufficient when their ESS were greater than 200.Selection of abiotic and biotic variablesTo test correlations of insect diversification with environmental changes, we examined the link between a series of environmental variables and origination/extinction rates over a period encompassing the GEE, the LPME and the CPE but also for each extinction event. We focused on the role of nine variables, also called proxies, which have been demonstrated or assumed to be linked to extinctions and changes in insect diversity26,67.The variations in the atmospheric CO2 and O2 concentrations are thought to be correlated with the diversification of several insect lineages, including the charismatic giant Meganeuridae65,66,67. Because the increase of O2 concentration has likely driven the diversification of some insects, its diminution may have resulted in the extinction or decline of some lineages. Therefore, we investigated the potential correlation of the variations of this variable with insect dynamics using data from ref. 55. We extracted the data, with 1-million-year time intervals, spanning the Permo–Triassic.Similarly, the modification of CO2 concentration, notably its increase, is known to promote speciation in some modern insect groups107. Therefore, a similar effect may have occurred during the Permian and Triassic but remains to be tested. We based our analyses on the dataset of ref. 108. We used their cleaned dataset and extracted all verified values for the Permo–Triassic interval. Because the initial data (i.e. independent estimates) were made in various locations for the same age, different values of the CO2 concentration are provided. We incorporated all these values in our analysis, allowing PyRate to search for a correlation for each value of the CO2 concentration. We obtain a final correlation independent of the sampling location, in line with our large-scale analysis.The continental fragmentation, as approximated by plate tectonic change over time, has recently been proposed as a driver of Plecoptera dynamics26. Because the period studied encompasses a major geological event, the fragmentation of the supercontinent Pangea, we investigated the effect of continental fragmentation on insect diversification dynamics. We retrieved the index of continental fragmentation developed by ref. 69 using paleogeographic reconstructions for 1-million-year time intervals. This index approaches 1 when all plates are disjoined (complete plate fragmentation) and approaches 0 when the continental aggregation is maximal.Climate change (variations in warming and cooling periods) is a probable driver of diversification changes over the history of insects21,109. Temperature is likely directly linked with insect dynamics109 but also with their food sources, notably plants110. Because it was demonstrated that modification of temperature impacted floral assemblages110, we tested the correlation between temperature variations and the diversification dynamic of insects. Major trends in global climate change through time are typically estimated from relative proportions of different oxygen isotopes (δ18O) in samples of benthic foraminiferan shells111. We used the data from ref. 112, converted to absolute temperatures following the methodology described in Condamine et al.113 (see their section Global temperature variations through time). The resulting temperature data reflects planetary-scale climatic trends, with time intervals inferior to 1-million-year, which can be expected to have led to temporally coordinated diversification changes in several clades rather than local or seasonal fluctuations.The fluctuation in relative diversity of gymnosperms, non-Polypodiales ferns, Polypodiales ferns, spore-plants, and later the rise of angiosperms has likely driven the diversification of numerous insects57,60,61,114. Close interactions between insects and plants are well-recorded during the Permian and Triassic57,60,61. In fact, herbivorous insects are known to experience high selection pressure from bottom-up forces, resulting from interactions with their hosts or feeding plants30,72. Therefore, it appears crucial to investigate the effect of these modifications on the insects’ past dynamics. We used the data from ref. 38 for the different plant lineages (all with 1-million-year time intervals). All the datasets for these variables are available in the publications cited aside from each variable or in Supplementary Data 1.Multivariate birth–death modelWe used the multivariate birth–death (MBD) model to assess to what extent biotic and abiotic factors can explain temporal variation in origination and extinction rates55. The model is described in ref. 55, where origination and extinction rates can change through time in relation to environmental variables so that origination and extinction rates depend on the temporal variations of each factor. The strength and sign (positive or negative) of the correlations are jointly estimated for each variable. The sign of the correlation parameters indicates the sign of the resulting correlation. When their value is estimated around zero, no correlation is estimated. An MCMC algorithm combined with a horseshoe prior, controlling for over-parameterisation and for the potential effects of multiple testing, jointly estimates the baseline origination (λ0) and extinction (µ0) rates and all correlation parameters (Gλ and Gµ)55. The horseshoe prior is used to discriminate which correlation parameters should be treated as noise (shrunk around 0) and which represent a true signal (i.e. significantly different from 0). In the MBD model, a correlation parameter is estimated to quantify independently the role of each variable on the origination and the extinction.We ran the MBD model using 20 (for short intervals) or 50 million MCMC generations and sampling every 20,000 or 50,000 to approximate the posterior distribution of all parameters (λ0, µ0, nine Gλ, nine Gµ and the shrinkage weights of each correlation parameter, ωG). The MBD analyses used the Ts and the Te derived from our previous analyses under the RJMCMC model. The results of the MBD analyses were summarised by calculating the posterior mean and 95% CI of all correlation parameters and the mean of the respective shrinkage weights (across ten replicates), as well as the mean and 95% CI of the baseline origination and extinction rates. We carried out six analyses, over: (1) the Permo–Triassic (between 298.9 and 201.3 Ma); (2) the Roadian–Wordian (R/W) boundary (between 270 and 265 Ma), (3) the LPME (between 254.5 and 250 Ma), (4) the Ladinian–Carnian (L/C) boundary (between 240 to 234 Ma), (5) the Permian period (between 298.9 and 251.902 Ma) and (6) the Triassic period (between 251.902 and 201.3 Ma). We monitored chain mixing and ESS by examining the log files in Tracer 1.7.1103 and considered the convergence of parameters sufficient when their ESS were greater than 200.Multiple clade diversity-dependence modelTo assess the potential effect of diversity-dependence on the diversity dynamics of three or four insect guilds, we used the multiple clade diversity-dependence (MCDD) model in which origination and extinction rates are correlated with the diversity trajectory of other clades31. This model postulates that competitive interactions linked with an increase in diversity results in decreasing origination rates and/or increasing extinction rates. The MCDD model allows for testing diversity-dependence between genera of a given clade or between genera of distinct clades sharing a similar ecology.We estimated the past diversity dynamics for three (i.e. herbivores, predators, and a guild composed of generalists + detritivores/fungivores dubbed ‘others’) or four insect groups or guilds (i.e. herbivores, predators, generalists and detritivores/fungivores) by calculating the number of living species at every point in time based on the times of origination (Ts) and extinction (Te) estimated under the RJMCMC model (see above) (Supplementary Figs. 19–24). We defined our four insect groups with a cautious approach i.e. insect genera, families or orders for which nothing is known about the ecology or about the ecology of their close relatives were not considered for the analysis. For example, no diet was assigned to Diptera, Mecoptera or Glosselytrodea. The ecology of the Triassic Diptera and Permo–Triassic Mecoptera is difficult to establish because extant Diptera and Mecoptera have a wide diversity of ecology. Fossil Mecoptera are also putatively involved in numerous interactions with plants (species with elongated mouthparts), suggesting a placement in the herbivore group, while other species were likely predators. Therefore, we cannot decide to which group each species belongs. Similarly, nothing is known about the body and mouthparts of the Glosselytrodea, most of the time described based on isolated wings; we did not assign the order to any group. The definition and delineation of insect clades have also challenged the placement of several orders (e.g. ‘Grylloblattodea’) in one of our four groups. The order ‘Grylloblattodea’ is poorly delineated and mostly serves as a taxonomic ‘wastebasket’ to which it is impossible to assign a particular ecology. Finally, genera, species, or families not placed in a higher clade (e.g. Meshemipteron, Perielytridae) were not included in the analysis. Oppositely, the guilds ‘herbivores’ and ‘predators’ are well defined, and their ecology is evidenced by the morphology of their representatives and the principle of actualism. For example, the ecology of Meganeurites gracilipes (Meganeuridae) has been deeply studied, and its enlarged compound eyes, its sturdy mandibles with acute teeth, its tarsi and tibiae bearing strong spines, and the presence of a pronounced thoracic skewness are specialisations today found in dragonflies that capture their prey while in flight115. All Odonatoptera are well-known predator insects. The raptorial forelegs of the representatives of the order Titanoptera and their mouthparts with strong mandibles are linked with predatory habits81. The Palaeodictyopteroidea were herbivorous insects with long, beak-like, piercing mouthparts, and probably a sucking organ81,82. Most Hemiptera are confidently considered herbivorous insects by comparison with their extant representatives. For example, the Cicadomorpha or Sternorrhyncha are known to feed on plants and their fossil representatives likely possessed the same ecology because of similar morphologies116. Some hemipteran families (e.g. Nabidae) are predators and we cautiously distinguished herbivorous and carnivorous taxa among Hemiptera. The detail of the ecological assignations for the 1009 genera included in our analyses can be found in Supplementary Data 1 (Table MCCD).We calculated ten diversity trajectories from the ten replicated analyses under the RJMCMC model. The estimation of past species diversity might be biased by low preservation rates or taxonomic uncertainties. However, such trajectory curves are likely to provide a reasonably accurate representation of the past diversity changes in the studied clades, notably because the preservation during the Permian and Triassic period is relatively good for insects (i.e. no gaps).Our MCDD analyses comprise all the insect genera spanning from the lowermost Permian to the uppermost Triassic and were run and repeated on ten replicates (using the Te and Ts estimated under the RJMCMC model) with 50 million MCMC generations and a sampling frequency of 50,000. For each of the four insect groups, we computed the median and the 95% CI of the baseline origination and extinction rates (λi and µi), the within-group diversity-dependence parameters gλi and gµi, and the between-groups diversity dependence parameters gλij and gµij. The mean of the sampled diversity dependence parameters (e.g. gλij) was used as a measure of the intensity of the negative (if positive) or positive interactions (if negative) between each pair of groups. The interactions were considered significant when their median was different from 0 and the 95% CI did not overlap with 0. We monitored chain mixing and ESS by examining the log files in Tracer 1.7.1103 and considered the convergence of parameters sufficient when their ESS were greater than 200.We cross-validated the result of the MCDD model using the MBD model. The MBD model can be used to run a multiple clade diversity-dependence analysis by providing the diversity trajectories of insect guilds as a continuous variable. These data are directly generated by PyRate using the lineages-through-time generated by the RJMCMC analyses (-ltt option). We ran the MBD model using 50 million MCMC generations and sampling every 50,000 to approximate the posterior distribution of all parameters (λ0, µ0, four Gλ, four Gµ and the shrinkage weights of each correlation parameter, ωG). We carried out three analyses, over the period encompassing the three extinction events (between 275 and 230 Ma): (1) for herbivores; (2) for predators; and (3) for ‘others’. For each analysis, the lineages-through-time data of the two other guilds are used as continuous variables to investigate a diversity dependence effect. We monitored chain mixing and ESS by examining the log files in Tracer 1.7.1103 and considered the convergence of parameters sufficient when their ESS were greater than 200.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    World leaders must step up to put biodiversity deal on path to success

    Pristine ecosystems such as mangrove forests protect against the effects of climate change.Credit: Karine Aigner/Nature Picture Library

    The Paris climate agreement, signed in December 2015, ranks as one of the most momentous global treaties ever negotiated, setting a crucial goal to seek to limit warming to 1.5–2 °C above pre-industrial levels. At the time, the opening ceremony of the COP21 climate-change conference that led to the agreement also held the record for the largest number of world leaders ever to attend a United Nations event in a single day — more than 150. The two things are probably more than coincidence.Now biodiversity is hoping for its Paris moment. The long-delayed COP15 conference, starting on 7 December in Montreal, Canada, aims to seal a bold new international deal committing countries to precise targets to curb species loss and to protect and restore nature.Many factors suggest the time is ripe. The problem of biodiversity loss is more prominent than ever before. As ecologist Sandra Díaz wrote in Nature last week, researchers have assembled the strongest evidence base yet ahead of COP15, the Fifteenth Conference of the Parties to the Convention on Biological Diversity (S. Díaz Nature 612, 9; 2022). Initiatives such as the Dasgupta Review, commissioned by the UK government, have made plain that the protection of biodiversity is an economic necessity.
    COP15 biodiversity plan risks being alarmingly diluted
    There is also much greater public awareness of how pollution and habitat destruction threaten the health of ecosystems on which we depend for food, clean water and disease prevention, and a better understanding of nature’s crucial role in mitigating climate change — for example, by storing carbon in soils and trees — as well as in helping us to adapt to its impacts. Mangrove forests, for instance, are hugely effective in stopping influxes of seawater from tsunamis and sea-level rise.But when it comes to getting stalled negotiations motoring again, the scale of support by world leaders that was a feature of climate’s road to Paris is currently lacking.Change cannot come too soon. Nature is on the brink. Of 20 decadal targets to preserve nature that were set in Aichi, Japan, in 2010, not a single one had been fully met by 2020. That, coupled with underfunding and lack of regard for the rights of Indigenous peoples who steward much of the world’s remaining biodiversity, means more species than ever are at risk of extinction. Serious impacts on human wealth and health from biodiversity loss loom ever larger. Yet over the past three years, four difficult rounds of negotiations aiming to agree on a framework to replace Aichi have not yielded results. Hundreds of issues remain unresolved.
    COVID delays are frustrating the world’s plans to save biodiversity
    Many experts worry that the lacklustre progress made at COP27, the climate summit held last month in Sharm El-Sheikh, Egypt, augur badly for the biodiversity meeting. But there is also reason for hope. The agreement made at COP27 to establish a ‘loss and damage’ fund to compensate low- and middle-income countries (LMICs) for climate impacts indicates that richer nations are open to talking about funding, which has also been a major sticking point in biodiversity negotiations.Global funding for biodiversity is severely in the red. A UN estimate published last week suggests that only US$154 billion per year flows to ‘nature-based solutions’ from all sources, including government aid and private investment — a number the UN says needs to triple by 2030. Many LMICs — which are home to much of the world’s remaining biodiversity — would like rich nations to put fresh finance into a new multilateral fund. One option is that such a fund could compensate LMICs for bio-diversity loss and associated damages driven by the consumption of products in rich nations through international trade.A second major sticking point is how to fairly and equitably share the benefits of digital sequence information — genetic data collected from plants, animals and other organisms. Communities in biodiversity-rich regions where genetic material is collected have little control over the commercialization of the data, and no way to recoup financial or other benefits. A multipurpose fund for bio-diversity could provide a simple and effective way to share the benefits of these data and support other conservation needs of LMICs.Another reason to hope for a breakthrough is the forthcoming change in Brazil’s leadership. Conservation organizations such as the wildlife charity WWF have accused the world’s most biodiverse nation of deliberately obstructing previous negotiations, holding up agreement on targets such as protecting at least 30% of the world’s land and seas by 2030. But Brazil’s incoming president, Luiz Inácio Lula da Silva, has signalled that the environment is one of his top priorities. Although he does not take over until January 2023, he is thought to be sending an interim team of negotiators to Montreal.
    Crucial biodiversity summit will go ahead in Canada, not China: what scientists think
    All negotiators face a Herculean task to get a deal over the line at COP15, with many issues in the text still unresolved and contested. What’s needed above all is global leadership to empower national negotiators to reach a strong deal, including a new fund of some kind for biodiversity. More than 90 heads of state and heads of government have signed a pledge to tackle the nature crisis. At the time of writing, only Justin Trudeau, the host nation’s prime minster, has confirmed that he is to attend in person.The no-shows send the wrong signal. It’s also true at the time of writing that neither Canada nor China — the original intended host of COP15 and still the meeting’s chair — has issued formal invitations. But leaders have regularly attended climate COPs for more than a decade. This shows in the ambition of climate agreements, if not in their implementation. Research communities and civil society must continue to pressure leaders to engage similarly with the biodiversity agenda. Otherwise, the world risks failing to grasp this opportunity to secure the kind of ambitious deal that nature — and humanity — desperately needs. More

  • in

    Rare and declining bird species benefit most from designating protected areas for conservation in the UK

    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 
    PubMed 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulze, K. et al. An assessment of threats to terrestrial protected areas. Conserv. Lett. 11, e12435 (2018).Article 

    Google Scholar 
    Bingham, H. C. et al. (eds). Protected Planet Report 2020 (UNEP-WCMC & IUCN, 2021); https://livereport.protectedplanet.net/Buchanan, G. M., Butchart, S. H., Chandler, G. & Gregory, R. D. Assessment of national-level progress towards elements of the Aichi Biodiversity Targets. Ecol. Indic. 116, 106497 (2020).Article 

    Google Scholar 
    Xu, H. et al. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 5, 411–418 (2021).Article 
    PubMed 

    Google Scholar 
    Report of the Open-ended Working Group on the Post-2020 Global Biodiversity Framework on Its Third Meeting (CBD Secretariat, 2022); https://www.cbd.int/conferences/post2020/wg2020-03/documentsRodrigues, A. S. & Cazalis, V. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11, 5147 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Starnes, T. et al. The extent and effectiveness of protected areas in the UK. Glob. Ecol. Conserv. 30, e01745 (2021).Article 

    Google Scholar 
    Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cazalis, V. et al. Mismatch between bird species sensitivity and the protection of intact habitats across the Americas. Ecol. Lett. 24, 2394–2405 (2021).Article 
    PubMed 

    Google Scholar 
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Gamero, A. et al. Tracking progress toward EU biodiversity strategy targets: EU policy effects in preserving its common farmland birds. Conserv. Lett. 10, 395–402 (2017).Article 

    Google Scholar 
    Pellissier, V. et al. Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data. Conserv. Biol. 34, 666–676 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Princé, K., Rouveyrol, P., Pellissier, V., Touroult, J. & Jiguet, F. Long-term effectiveness of Natura 2000 network to protect biodiversity: a hint of optimism for common birds. Biol. Conserv. 253, 108871 (2021).Article 

    Google Scholar 
    Cunningham, C. A., Thomas, C. D., Morecroft, M. D., Crick, H. Q. P. & Beale, C. M. The effectiveness of the protected area network of Great Britain. Biol. Conserv. 257, 109146 (2021).Article 

    Google Scholar 
    Duckworth, G. D. & Altwegg, R. Effectiveness of protected areas for bird conservation depends on guild. Divers. Distrib. 24, 1083–1091 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Rada, S. et al. Protected areas do not mitigate biodiversity declines: a case study on butterflies. Divers. Distrib. 25, 217–224 (2019).Article 

    Google Scholar 
    Terraube, J., Van Doninck, J., Helle, P., & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Lenoir, J. et al. Species better track the shifting isotherms in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 
    PubMed 

    Google Scholar 
    van Teeffelen, A., Meller, L., van Minnen, J., Vermaat, J. & Cabeza, M. How climate proof is the European Union’s biodiversity policy? Regional Environ. Change 15, 997–1010 (2015).Article 

    Google Scholar 
    Thomas, C. D. & Gillingham, P. K. The performance of protected areas for biodiversity under climate change. Biol. J. Linn. Soc. Lond. 115, 718–730 (2015).Article 

    Google Scholar 
    Gillingham, P. K. et al. The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biol. J. Linn. Soc. Lond. 115, 707–717 (2015).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Stokstad, E. Species? Climate? Cost? Ambitious goal means trade-offs. Science 371, 555 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brlík, V. et al. Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Sci. Data 8, 21 (2021).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Stanbury, A. et al. The status of bird populations: the fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723–747 (2021).
    Google Scholar 
    Dudley, N. (ed). Guidelines for Applying Protected Area Management Categories (IUCN, 2008).Deguignet, M. et al. Measuring the extent of overlaps in protected area designations. PLoS ONE 12, e0188681 (2017).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    JNCC. Common Standards Monitoring: Introduction to the Guidance Manual (JNCC Resource Hub, 2004).Hayhow, D. B. et al. State of Nature 2019 (RSPB, 2019).Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020); https://helda.helsinki.fi/handle/10138/326470Franks, S. E., Roodbergen, M., Teunissen, W., Carrington Cotton, A. & Pearce‐Higgins, J. W. Evaluating the effectiveness of conservation measures for European grassland‐breeding waders. Ecol. Evol. 8, 10555–10568 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Pearce-Higgins, J. W. et al. Site-based adaptation reduces the negative effects of weather upon a southern range margin Welsh black grouse Tetrao tetrix population that is vulnerable to climate change. Clim. Change 153, 253–265 (2019).Article 

    Google Scholar 
    Jellesmark, S. et al. A counterfactual approach to measure the impact of wet grassland conservation on U.K. breeding bird populations. Conserv. Biol. 35, 1575–1585 (2021).Article 
    PubMed 

    Google Scholar 
    Morrison, C. A. et al. Covariation in population trends and demography reveals targets for conservation action. Proc. Biol. Sci. 288, 20202955 (2021).PubMed Central 
    PubMed 

    Google Scholar 
    Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Martay, B. et al. Monitoring landscape-scale environmental changes with citizen scientists: Twenty years of land use change in Great Britain. J. Nat. Conserv. 44, 33–42 (2018).Article 

    Google Scholar 
    Sullivan, M. J. P., Newson, S. E. & Pearce‐Higgins, J. W. Changing densities of generalist species underlie apparent homogenization of UK bird communities. Ibis 158, 645–655 (2016).Article 

    Google Scholar 
    Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).Article 
    PubMed 

    Google Scholar 
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).Article 

    Google Scholar 
    Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change—evidence from large‐scale, long‐term abundance data. Glob. Change Biol. 25, 304–313 (2019).Article 

    Google Scholar 
    Gaüzère, P., Jiguet, F. & Devictor, V. Can protected areas mitigate the impacts of climate change on bird’s species and communities? Diversity Distrib. 22, 625–637 (2016).Article 

    Google Scholar 
    Neate‐Clegg, M. H. C., Jones, S. E. I., Burdekin, O., Jocque, M. & Şekercioğlu, Ç. H. Elevational changes in the avian community of a Mesoamerican cloud forest park. Biotropica 50, 805–815 (2018).Article 

    Google Scholar 
    Oliver, T. H. et al. Large extents of intensive land use limit community reorganization during climate warming. Glob. Change Biol. 23, 2272–2283 (2017).Article 

    Google Scholar 
    Hiley, J. R., Bradbury, R. B., Holling, M. & Thomas, C. D. Protected areas act as establishment centres for species colonizing the UK. Proc. Biol. Sci. 280, 20122310 (2013).PubMed Central 
    PubMed 

    Google Scholar 
    Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Grace, M. K. et al. Testing a global standard for quantifying species recovery and assessing conservation impact. Conserv. Biol. 35, 1833–1849 (2021).Article 
    PubMed 

    Google Scholar 
    Gibbons, D. W., Reid, J. B. & Chapman, R. A. The New Atlas of Breeding Birds in Britain & Ireland 1988–1991 (T. & A. D. Poyser, 1993).Balmer, D. E. et al. Bird Atlas 2007–11: the Breeding and Wintering Birds of Britain and Ireland (BTO, 2013).Gillings, S. et al. Breeding and wintering bird distributions in Britain and Ireland from citizen science bird atlases. Glob. Ecol. Biogeogr. 28, 866–874 (2019).Article 

    Google Scholar 
    Freeman, S. N., Noble, D. G., Newson, S. E. & Baillie, S. R. Modelling population changes using data from different surveys: the Common Birds Census and the Breeding Bird Survey. Bird Study 54, 61–72 (2007).Article 

    Google Scholar 
    Robinson, R. A., Julliard, R. & Saracco, J. F. Constant effort: studying avian population processes using standardised ringing. Ring. Migr. 24, 199–204 (2009).Article 

    Google Scholar 
    Cave, V. M., Freeman, S. N., Brooks, S. P., King, R. & Balmer, D. E. in Modeling Demographic Processes in Marked Populations, 949–963 (Springer, 2009).Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, GB) (eds Thomson, D. L. et al) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/7115bc48-3ab0-475d-84ae-fd3126c20984Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, N. Ireland) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/362feaea-0ccf-4a45-b11f-980c6b89a858ASTER Global Digital Elevation Model V003 (dataset). NASA EOSDIS Land Processes DAAC (NASA/METI/AIST/Japan Space Systems and U.S./Japan ASTER Science Team, 2019); https://doi.org/10.5067/ASTER/ASTGTM.003Schiavina, M., Freire, S. & MacManus, K. GHS-SMOD R2019A – GHS Settlement Layers, Updated and Refined REGIO Model 2014 in Application to GHS-BUILT R2018A and GHS-POP R2019A, Multitemporal (1975-1990-2000-2015) (European Commission Joint Research Centre, 2019); https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218Robinson, R. A. BirdFacts: Profiles of Birds Occurring in Britain & Ireland (BTO, 2005).Gibbons, D. W. et al. Bird species of conservation concern in the United Kingdom, Channel Islands and Isle of Man: revising the Red Data List. RSPB Conserv. Rev. 10, 7–18 (1996).
    Google Scholar 
    Stone, B. H. et al. Population estimates of birds in Britain and in the United Kingdom. Br. Birds 90, 1–22 (1997).
    Google Scholar 
    Woodward, I. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69–104 (2020).
    Google Scholar 
    R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Bull, J. W., Strange, N., Smith, R. J. & Gordon, A. Reconciling multiple counterfactuals when evaluating biodiversity conservation impact in social‐ecological systems. Conserv. Biol. 35, 510–521 (2020).Article 
    PubMed 

    Google Scholar 
    Jellesmark, S. et al. Assessing the global impact of targeted conservation actions on species abundance. Preprint at bioRxiv https://doi.org/10.1101/2022.01.14.476374 (2022).Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds but management helps. Nature 605, 103–107 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.4.4 (2021); https://CRAN.R-project.org/package=DHARMaJetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnston, A. et al. Species traits explain variation in detectability of UK birds. Bird Study 61, 340–350 (2014).Article 

    Google Scholar 
    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).Article 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Anal. 15, 199–236 (2007).Article 

    Google Scholar 
    Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).Article 
    PubMed 

    Google Scholar 
    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. Biol. Sci. 275, 2743–2748 (2008).PubMed Central 
    PubMed 

    Google Scholar  More

  • in

    Phytoplankton in the middle

    Marine phytoplankton both follow and actively influence the environment they inhabit. Unpacking the complex ecological and biogeochemical roles of these tiny organisms can help reveal the workings of the Earth system.
    Phytoplankton are the workers of an ocean-spanning factory converting sunlight and raw nutrients into organic matter. These little organisms — the foundation of the marine ecosystem — feed into a myriad of biogeochemical cycles, the balance of which help control the distribution of carbon on the Earth surface and ultimately the overall climate state. As papers in this issue of Nature Geoscience show, phytoplankton are far from passive actors in the global web of biogeochemical cycles. The functioning of phytoplankton is not just a matter for biologists, but is also important for geoscientists seeking to understand the Earth system more broadly.Phytoplankton are concentrated where local nutrient and sea surface temperatures are optimal, factors which aren’t always static in time. Prominent temperature fluctuations, from seasonal to daily cycles, are reflected in phytoplankton biomass, with cascading effects on other parts of marine ecosystems, such as economically-important fisheries. In an Article in this issue, Keerthi et al., show that phytoplankton biomass, tracked by satellite measurements of chlorophyll for relatively small ( More

  • in

    Algal sensitivity to nickel toxicity in response to phosphorus starvation

    Effect of phosphorus starved cultures of Dunaliella tertiolecta on growth represented as optical density under stress of nickel ionsIn the case of normal culture, phosphorus starved control culture (without nickel stress), and phosphorus-starved treated cultures, data presented in Table 1 and graphed in figure (S1, Supplementary Data) clearly showed a progressive increase in optical density with increasing culturing period in case of normal culture, phosphorus-starved control culture, and phosphorus-starved treated cultures. Our findings are consistent with those of18 who found that in phosphorus starved cultures of three algae species, Microcystic aeruginosa, Chlorella pyrenoidesa, and Cyclotella sp., the biomass, specific growth rate, and Chl-a all declined significantly.The optical density achieved during the four periods of culturing was lower in phosphorus-depleted control cultures than in normal cultures (i.e., cultures contained phosphorus). When compared to a normal control (without nickel addition), the optical density was reduced by 9.1% after 4 days of culturing under phosphorus deprivation and by 10.0 percent after 8 days of culturing. In the case of 5 mg/L dissolved nickel, however, the obtained optical density values in phosphorus starved treatment cultures rose with the increase in culturing period during all culturing periods as compared to phosphorus-starved control (without nickel addition) cultures.At 10 mg/L dissolved nickel and after 4 days of culturing, the optical density although less than those in case of concentration 5 mg/L, yet it was higher than control (− P) but by increasing the culturing period more than 4 days, the optical density was less than control (− P). Our results are similar to those of19 who observed that the decrease in cell division rate signaled the onset of P-deficiency. The cultures that showed no significant increase in cell number for at least three consecutive days under the experimental conditions were considered P-depleted. In addition20, observed that the growth rate of Dunaliella prava was found to be dramatically lowered when phosphorus was limited. The content of chlorophyll fractions, total soluble carbohydrates, and proteins all fell considerably as a result of phosphorus restriction.The results concerning the effect of dissolved nickel on the growth of Dunaliella tertiolecta under conditions of phosphorus limitation show that phosphorus starved Dunaliella had lower growth as compared to the control (phosphorus-containing culture medium). These results are in agreement with those obtained by7 who reported that the optical density of Chlorella kessleri cell suspension decreased with phosphorus deficiency compared to control. Also21, found that Chlorella vulgaris cells grew 30–40% slower in phosphorus-starved cultures than in control cultures. Furthermore22, showed that diatoms were unable to thrive when phosphorus levels were insufficient. Diatom dominances were reduced to 45 and 55% in enclosures where phosphate was not provided23 observed that, under salt stress, Chlorella’s metabolic rate was substantially lower than Dunaliella’s.It can be concluded that when microorganisms are deprived of phosphorus, dissolved nickel uptake decreases, resulting in an increase in algal metabolism24. Also25, examined the effects of phosphorus and nitrogen starvation on the life cycle of Emiliania huxleyi (Haptophyta) and proved that various biochemical pathways’ metabolic load increased under P-starvation while it decreased under N-starvation.Effect of phosphorus starved cultures of Dunaliella tertiolecta on chlorophylls content under stress of nickel ionsTable 2 and figure (S2, Supplementary Data) show the sequences of change in the amount of chlorophylls a and b in phosphorus-depleted cultures of Dunaliella tertiolecta in response to various dissolved nickel concentrations. The results show that total chlorophyll content rose steadily until the end of the experiment under normal conditions (a control containing phosphorus). These results are in harmony with those obtained by24. The ratio between chlorophylls “a” and “b” remained nearly constant till the end of the 12th day. At the 16th day of culturing, the ratio decreased from 2.9:1 to 2.4:1. On the contrary, the total chlorophylls under control (in the absence of nickel element) in case of phosphorus-starved cultures showed a progressive increase up to the 12th day. At the 12th day the total chlorophylls in case of phosphorus-starved cultures decreased by 10.7% compared to the normal control. At the 16th day, the total chlorophylls in case of untreated phosphorus starved culture decreased by 20.8% compared to those obtained at normal control26. Reported that the chlorophyll content of Chlorella sorokiniana was significantly reduced due to a lack of nitrogen and phosphorus in the medium.Table 2 Effect of different concentrations of dissolved nickel (mg/L) on chlorophylls content (µg/ml) of Dunaliella tertiolecta under the stress of phosphorus starvation.Full size tableThe total chlorophyll content of Dunaliella tertiolecta in the phosphorus-starved cultures treated with 5 mg/L of dissolved nickel increased gradually until the 12th day, when the content of the total chlorophylls reached 2.11 µg/ml, i.e., higher than the phosphorus-starved control (− P) by 15.3%. At the 16th day, the total chlorophylls, although lower than those obtained at the 12th day, were still higher than the control (− P). At a concentration of 10 mg/L of dissolved nickel, slight increase in the content of total chlorophylls was recorded from the beginning to the end of the culturing period, i.e., from the 4th to the 16th day. At the other concentrations of dissolved nickel (15, 20, and 25 mg/L), a pronounced decrease in the total chlorophylls could be observed from the 4th to the 16th day of culturing compared to control (− P). Our results are going with an agreement with those obtained by27 who found that chlorophylls were inhibited maximum at higher dissolved nickel concentrations but activated at lower values. The normal ratio between chlorophylls “a” and “b” (3:1) was upset after the 8th day of culturing under concentrations 5, 10, and 15 mg/L of dissolved nickel. At 20 and 25 mg/L of dissolved nickel, this ratio was unstable from the beginning to the end of the experiment. The fact that dissolved nickel is extremely mobile and hence only absorbed to a minimal level may explain the sensitivity of the tested alga to nickel in response to phosphorus deficiency, and an increase in phosphorus concentration favors its absorption by microorganisms28. It can be concluded that when microorganisms are deprived of phosphorus, dissolved nickel uptake decreases, resulting in an increase in algal metabolism.Effect of different concentrations of dissolved nickel on photosynthesis (O2-evolution) of phosphorus starved cells of Dunaliella tertiolecta
    Data represented in Table 3 and graphed in figure (S3, Supplementary Data S3) showed that the effect of phosphorus limitation on the photosynthetic activity of Dunaliella tertiolecta in response to five different concentrations of dissolved nickel revealed that, under phosphorus limiting conditions, the amount of O2-evolution was lower than in untreated cultures (the control). The evolution of O2 after 4 days of culturing in case of phosphorus starved control decreased by 8.7% compared to normal control, while after 12 days it decreased by 30.4%. The rate of O2-evolution at different concentrations of dissolved nickel over 5 mg/L caused successive reductions in the O2-evolution of phosphorus starved cells. Application of 5 mg/L of dissolved nickel, the results cleared that the rate of O2-evolution increased under the effect of all tested concentrations till the end of the experiment. It is clear from our data that the rate of O2-evolution depended mainly on the concentration of the nickel element and the length of culturing period. The lower the rate of O2-evolution, the higher the element’s concentration, and the longer the culturing period. This coincided with the findings of7 who found that low phosphorus treatment causes Chlorella kessleri to lose its photosynthetic activity. In this regard, it was discovered that phosphorus deficiency resulted in a decrease in photosynthetic electron transport activity29 found that the O2-evolution of Chlamydomon reinhardtii declined by 75%. This decrease reflects damage of PSII and the generation of PSII QB-non reducing centers.Table 3 Effect of different concentrations of dissolved nickel (mg/L) on photosynthetic activity (O2-evolution calculated as µ mol O2 mg chl-1 h-1) on phosphorus supplemented and starved cells of Dunaliella tertiolecta.Full size tableAlso30 found that P- deficiency has been correlated with lower photosynthetic rates. In the case of the treated phosphorus-starved cultures with lower concentrations (5 mg/L) of dissolved nickel, the rate of photosynthesis increased when compared to the phosphorus-starved control, but was less than that of the normal control (without nickel treatment). On the contrary, it was found that, in the treated phosphorus-starved cultures at concentrations of 10, 15, 20 and 25 mg/L of the tested element, the rate of photosynthesis decreased from the beginning to the end of the experiment. With increasing concentration, duration of the culturing period, and kind of element, the condition of decrease in O2-evolution became more pronounced; the same results were also recorded by24. The stimulation of growth and photosynthesis in the presence of some concentrations of dissolved nickel under phosphorus-limiting conditions is observed by31 they report that in Cu2+ sensitive Scenedesmus acutus, intracellular polyphosphate plays a key role in shielding photosynthesis from Cu2+ toxicity but not in copper resistant species.Effect of different concentrations of dissolved nickel on respiration (O2-uptake) of phosphorus starved cells of Dunaliella tertiolectaData obtained in Table 4 and graphed in figure (S4, Supplementary Data S4) concerning the rate of respiration of Dunaliella tertiolecta under phosphorus-limiting conditions was higher than that of untreated phosphorus-starved (control) for a short period of time only, i.e., after 4 days, at concentrations 5, 10 and 15 mg/L of dissolved nickel, After 8 days of culturing, the rate of O2- uptake increased only at 5 mg/L of dissolved nickel, while at the other concentrations it decreased gradually with increasing the concentration of the element. This finding is consistent with the findings of23, who discovered that Dunaliella cells increased their O2 absorption and evolution rates in the presence of 2 M salt NaCl in the media. In terms of oxygen uptake rate, Dunaliella cells demonstrated an increase in salt concentrations. In 1.5 M NaCl, it increased significantly by 60–80%.Table 4 Effect of different concentrations of dissolved nickel (mg/L) on respiration activity (O2-uptake calculated as µ mol O2 h-1) on phosphorus supplemented and starved cells of Dunaliella tertiolecta.Full size tableConcerning the increase in respiration in P-depleted green alga species cultures5 suggested that Scenedesmus, for example, can utilize the energy stored in starch and lipids for active phosphorus uptake from lake sediments. This process is aided by an increase in phosphatase production32 and these cells’ ability to operate anaerobically33. When unicellular green algae or higher plants are exposed to P deficiency, the majority of newly fixed carbon appears to be allocated to the synthesis of non-phosphorylated storage polyglucans (i.e., starch) or sucrose, with less photosynthetic activity directed to respiratory metabolism and other biosynthesis pathways34. It can be concluded from the obtained results that, when the alga was cultivated under phosphorus deficiency and treated with varied amounts of dissolved nickel, the growth was the most sensitive characteristic, followed by photosynthesis, and then dark respiration. In the few comparative studies with several species of green algae, growth was more sensitive than the other physiological processes examined. Out of them35, reported that growth was more susceptible to phosphorus deficiency in Chlorella pyrenoidosa and Asterionella gracilis than photosynthesis and respiration (the least sensitive processes). Growth was also more sensitive than photosynthesis in Nitzschia closterium 36 . Another important fact reported by37 is that under low phosphorus conditions, Dunaliella parva accumulates lipids rather than carbohydrates. These findings imply that phosphorus stress may prevent starch and/or protein production, leading to an increase in carbon flux to lipids. More

  • in

    Pathways to engineering the phyllosphere microbiome for sustainable crop production

    Koskella, B. The phyllosphere. Curr. Biol. 30, R1143–R1146 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lu, N. et al. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods 15, 17 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arye, G. C. & Harel, A. in Microbial Genomics in Sustainable Agroecosystems (eds Tripathi, V. et al.) 39–65 (Springer, 2020).Universal plant healthcare. Nat. Plants 6, 47 (2020).Fones, H. N. et al. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1, 332–342 (2020).Article 

    Google Scholar 
    Li, W., Deng, Y., Ning, Y., He, Z. & Wang, G. L. Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu. Rev. Plant Biol. 71, 575–603 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Matsumoto, H. et al. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 7, 60–72 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Thomazella, D. P. T. et al. Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proc. Natl Acad. Sci. USA 118, e2026152118 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guo, Y. Molecular design for rice breeding. Nat. Food 2, 849–849 (2021).Article 

    Google Scholar 
    Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).Article 
    PubMed 

    Google Scholar 
    Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carrion, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chialva, M., Lanfranco, L. & Bonfante, P. The plant microbiota: composition, functions, and engineering. Curr. Opin. Biotechnol. 73, 135–142 (2021).Article 
    PubMed 

    Google Scholar 
    Liu, H., Brettell, L. E. & Singh, B. Linking the phyllosphere microbiome to plant health. Trends Plant Sci. 25, 841–844 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liu, H., Brettell, L. E., Qiu, Z. & Singh, B. K. Microbiome-mediated stress resistance in plants. Trends Plant Sci. 25, 733–743 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xu, P. et al. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. J. Adv. Res. 39, 49–60 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, M. & Cernava, T. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environ. Sci. Ecotechnol. 4, 100061 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hegazi, N., Hartmann, A. & Ruppel, S. The plant microbiome: exploration of plant–microbe interactions for improving agricultural productivity. J. Adv. Res. 19, 1–2 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mittelviefhaus, M., Muller, D. B., Zambelli, T. & Vorholt, J. A. A modular atomic force microscopy approach reveals a large range of hydrophobic adhesion forces among bacterial members of the leaf microbiota. ISME J. 13, 1878–1882 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sapkota, R., Knorr, K., Jorgensen, L. N., O’Hanlon, K. A. & Nicolaisen, M. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol. 207, 1134–1144 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. & Vorholt, J. A. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10, e1004283 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horton, M. W. et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 5, 5320 (2014).Article 
    PubMed 

    Google Scholar 
    Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shakir, S., Zaidi, S. S., de Vries, F. T. & Mansoor, S. Plant genetic networks shaping phyllosphere microbial community. Trends Genet. 37, 306–316 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xiong, C. et al. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 9, 171 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pang, Z. et al. Linking plant secondary metabolites and plant microbiomes: a review. Front. Plant Sci. 12, 621276 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pfeilmeier, S. et al. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat. Microbiol. 6, 852–864 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gupta, R. et al. Cytokinin drives assembly of the phyllosphere microbiome and promotes disease resistance through structural and chemical cues. ISME J. 16, 122–137 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Massoni, J. et al. Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J. 14, 245–258 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ren, G. et al. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 392, 27–44 (2015).Article 
    CAS 

    Google Scholar 
    Meyer, K.M. et al. Plant neighborhood shapes diversity and reduces interspecific variation of the phyllosphere microbiome. ISME J. 16, 1376–1387 (2022).Article 
    PubMed 

    Google Scholar 
    Qiu, Y. et al. Warming and elevated ozone induce tradeoffs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition. Sci. Adv. 7, eabe9256 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yu, H., Zhang, Y. & Tan, W. The “neighbor avoidance effect” of microplastics on bacterial and fungal diversity and communities in different soil horizons. Environ. Sci. Ecotechnol. 8, 100121 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Q. et al. Interactive effects of ozone exposure and nitrogen addition on the rhizosphere bacterial community of poplar saplings. Sci. Total Environ. 754, 142134 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, H., Jiang, Q., Wang, J., Li, K. & Wang, F. Analysis on the impact of two winter precipitation episodes on PM2.5 in Beijing. Environ. Sci. Ecotechnol. 5, 100080 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Feng, Z. et al. Ozone pollution threatens the production of major staple crops in East Asia. Nat. Food 3, 47–56 (2022).Article 
    CAS 

    Google Scholar 
    Zhu, Y. G. et al. Impacts of global change on the phyllosphere microbiome. New Phytol. 234, 1977–1986 (2021).Article 

    Google Scholar 
    Sawada, H. et al. Elevated ozone deteriorates grain quality of japonica rice cv. Koshihikari, even if it does not cause yield reduction. Rice 9, 7 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Agathokleous, E. et al. Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity. Sci. Adv. 6, eabc1176 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mieczan, T. & Bartkowska, A. The effect of experimentally simulated climate warming on the microbiome of carnivorous plants—a microcosm experiment. Glob. Ecol. Conserv. 34, e02040 (2022).Article 

    Google Scholar 
    Liu, H. et al. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens. New Phytol. 229, 2873–2885 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gao, M. et al. Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome 9, 187 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Snelders, N. C. et al. Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. Nat. Plants 6, 1365–1374 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Humphrey, P. T. & Whiteman, N. K. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 4, 221–229 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Tree leaf bacterial community structure and diversity differ along a gradient of urban intensity. mSystems 2, e00087–17 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Imperato, V. et al. Characterisation of the Carpinus betulus L. phyllomicrobiome in urban and forest areas. Front. Microbiol. 10, 1110 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perreault, R. & Laforest-Lapointe, I. Plant–microbe interactions in the phyllosphere: facing challenges of the anthropocene. ISME J. 16, 339–345 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jain, A., Ranjan, S., Dasgupta, N. & Ramalingam, C. Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit. Rev. Food Sci. Nutr. 58, 297–317 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sillen, W. M. A. et al. Nanoparticle treatment of maize analyzed through the metatranscriptome: compromised nitrogen cycling, possible phytopathogen selection, and plant hormesis. Microbiome 8, 127 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berg, G. & Cernava, T. The plant microbiota signature of the Anthropocene as a challenge for microbiome research. Microbiome 10, 54 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fan, X. et al. Microenvironmental interplay predominated by beneficial Aspergillus abates fungal pathogen incidence in paddy environment. Environ. Sci. Technol. 53, 13042–13052 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, Y. et al. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat. Commun. 9, 3429 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, M., Hashimoto, M. & Hashidoko, Y. Repression of tropolone production and induction of a Burkholderia plantarii pseudo-biofilm by carot-4-en-9,10-diol, a cell-to-cell signaling disrupter produced by Trichoderma virens. PLoS ONE 8, e78024 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bauermeister, A., Mannochio-Russo, H., Costa-Lotufo, L. V., Jarmusch, A. K. & Dorrestein, P. C. Mass spectrometry-based metabolomics in microbiome investigations. Nat. Rev. Microbiol. 20, 143–160 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Matsumoto, H. et al. Reprogramming of phytopathogen transcriptome by a non-bactericidal pesticide residue alleviates its virulence in rice. Fundam. Res. 2, 198–207 (2022).Article 
    CAS 

    Google Scholar 
    Hou, S. et al. A microbiota–root–shoot circuit favours Arabidopsis growth over defence under suboptimal light. Nat. Plants 7, 1078–1092 (2021).Mathur, M., Nair, A. & Kadoo, N. Plant–pathogen interactions: microRNA-mediated trans-kingdom gene regulation in fungi and their host plants. Genomics 112, 3021–3035 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kaur, C. et al. Microbial methylglyoxal metabolism contributes towards growth promotion and stress tolerance in plants. Environ. Microbiol. 24, 2817–2836 (2021).Article 
    PubMed 

    Google Scholar 
    Castrillo, G. et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513–518 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korenblum, E. et al. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc. Natl Acad. Sci. USA 117, 3874–3883 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chisholm, S. T., Coaker, G., Day, B. & Staskawicz, B. J. Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vogel, C., Bodenhausen, N., Gruissem, W. & Vorholt, J. A. The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. New Phytol. 212, 192–207 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 11, 539–548 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stringlis, I. A. et al. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J. 93, 166–180 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    He, J. et al. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Mol. Plant 12, 1561–1576 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bozsoki, Z. et al. Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Plant Sci. 369, 663–670 (2020).CAS 

    Google Scholar 
    Stringlis, I. A., Zhang, H., Pieterse, C. M. J., Bolton, M. D. & de Jonge, R. Microbial small molecules—weapons of plant subversion. Nat. Prod. Rep. 35, 410–433 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kong, H. G., Song, G. C., Sim, H. J. & Ryu, C. M. Achieving similar root microbiota composition in neighbouring plants through airborne signalling. ISME J. 15, 397–408 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vacher, C. et al. The phyllosphere: microbial jungle at the plant–climate interface. Annu. Rev. Ecol. Evol. Syst. 47, 1–24 (2016).Article 

    Google Scholar 
    Thapa, S. & Prasanna, R. Prospecting the characteristics and significance of the phyllosphere microbiome. Ann. Microbiol. 68, 229–245 (2018).Article 
    CAS 

    Google Scholar 
    Vorholt, J. A., Vogel, C., Carlstrom, C. I. & Muller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, X., Wicaksono, W. A., Berg, G. & Cernava, T. Bacterial communities in the plant phyllosphere harbour distinct responders to a broad-spectrum pesticide. Sci. Total Environ. 751, 141799 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liu, Y. X. et al. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 12, 315–330 (2021).Article 
    PubMed 

    Google Scholar 
    Hosokawa, M. et al. Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes. Biosens. Bioelectron. 67, 379–385 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. et al. High-throughput cultivation and identification of bacteria from the plant root microbiota. Nat. Protoc. 16, 988–1012 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grosskopf, T. & Soyer, O. S. Synthetic microbial communities. Curr. Opin. Microbiol. 18, 72–77 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vogel, C. M., Potthoff, D. B., Schafer, M., Barandun, N. & Vorholt, J. A. Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen. Nat. Microbiol. 6, 1537–1548 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Finkel, O. M. et al. A single bacterial genus maintains root growth in a complex microbiome. Nature 587, 103–108 (2020).Wagner, M. R. et al. Microbe-dependent heterosis in maize. Proc. Natl Acad. Sci. USA 118, e2021965118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schafer, M., Vogel, C. M., Bortfeld-Miller, M., Mittelviefhaus, M. & Vorholt, J. A. Mapping phyllosphere microbiota interactions in planta to establish genotype–phenotype relationships. Nat. Microbiol. 7, 856–867 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Han, B. & Huang, X. Sequencing-based genome-wide association study in rice. Curr. Opin. Plant Biol. 16, 133–138 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Roman-Reyna, V. et al. The rice leaf microbiome has a conserved community structure controlled by complex host-microbe interactions. Cell Host Microbe https://doi.org/10.2139/ssrn.3382544 (2019).Deng, S. et al. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME J. 15, 3181–3194 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, M. R., Busby, P. E. & Balint-Kurti, P. Analysis of leaf microbiome composition of near-isogenic maize lines differing in broad-spectrum disease resistance. New Phytol. 225, 2152–2165 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wagner, M. R., Roberts, J. H., Balint-Kurti, P. & Holland, J. B. Heterosis of leaf and rhizosphere microbiomes in field-grown maize. New Phytol. 228, 1055–1069 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nobori, T. et al. Transcriptome landscape of a bacterial pathogen under plant immunity. Proc. Natl Acad. Sci. USA 115, E3055–E3064 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, L. et al. Holo-omics for deciphering plant–microbiome interactions. Microbiome 9, 69 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    French, E., Kaplan, I., Iyer-Pascuzzi, A., Nakatsu, C. H. & Enders, L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).Article 
    PubMed 

    Google Scholar 
    Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4, 766–770 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kamilaris, A. & Prenafeta-Boldú, F. X. Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018).Article 

    Google Scholar 
    Zhou, L., Zhang, C., Liu, F., Qiu, Z. & He, Y. Application of deep learning in food: a review. Compr. Rev. Food Sci. Food Saf. 18, 1793–1811 (2019).Article 
    PubMed 

    Google Scholar 
    Moreno-Indias, I. et al. Statistical and machine learning techniques in human microbiome studies: contemporary challenges and solutions. Front. Microbiol. 12, 635781 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song, P., Wang, J., Guo, X., Yang, W. & Zhao, C. High-throughput phenotyping: breaking through the bottleneck in future crop breeding. Crop J. 9, 633–645 (2021).Article 

    Google Scholar  More

  • in

    A survey of vocal mimicry in companion parrots

    It is well known that parrots are excellent vocal learners; here we quantified that ability across a wide variety of species, using human mimicry as a proxy for vocal learning of natural repertoires. Results confirm that parrot vocal mimicry varies substantially both within and among species22. Parrot age, social interactions, and sex do not appear to be universal drivers of vocal learning ability within the order Psittaciformes, but all of these factors may have effects within individual species.Vocal learning variation by speciesWithin species, mimicry sound repertoires are extremely variable bird to bird; for example, our data indicate that a grey parrot may mimic anywhere from 0 to 600 different human words. Many other species showed smaller repertoires but similar variability. It is not entirely clear whether this range of variation would be present in natural sounds within wild parrot populations, but research has demonstrated intraspecific repertoire size variation in multiple species of parrots30,31.The vast majority of parrots presented a pattern in which their repertoire size was largest for words, intermediate for phrases (composed of the reported words), and smallest for non-linguistic sounds (Fig. 2). In the wild, parrots mimic the most socially relevant vocalizations, and presumably do so in captivity as well15. Thus, the spoken word and phrase interactions with their human “flock” likely reflect the most socially relevant cues. The interesting exceptions to this pattern were Fischer’s lovebirds, cockatiels, and Senegal parrots who all used more sounds than phrases. Cockatiels are well-known in the pet world to be excellent whistlers, and thus it was satisfying to see that our data support that informal information. We suspect that deviations from the typical patterns may represent acoustic learning preferences, templates, or limitations32.Although individual variation was substantial, we nevertheless saw strong evidence that overall vocal learning abilities differed by species. Pacific parrotlets and sun parakeets showed very limited human mimicry, while grey parrots, Amazona parrots, cockatoos, and macaws were generally very accomplished mimics. The patterns that we documented appeas to reflect natural vocal repertoire variation across species. The documented calls of wild parrots generally range from 5 to 15 calls25,33,34,35,36. Several species, however, present additional complexity: yellow-naped parrots (Amazona auropalliata), palm cockatoos (Probosciger aterrimus), and grey parrots all have natural repertoires of more than 25 discrete elements, with additional elements given in duets13,27,37 Members of these three groups, grey parrots, Amazona parrots and cockatoos also had relatively large repertoires in our study. In several of these species (particularly grey parrots) our measure of mimicked “words” (60) was higher than estimates of natural call “elements” (39) in the literature27. This discrepancy suggests that parrots are capable of learning vocalizations with more than 25 elements and, simultaneously, might reflect a sampling bias wherein survey-takers are more likely to report on individuals with high mimicry ability.Parrot species varied in their tendency to improvise new combinations of elements, although most species did rearrange words to some degree. Research shows that parrot vocalization length and structure carry signal content, so there may be selective pressures favoring this ability24,33. If so, then our data suggest that those pressures are strongest in some cockatoos and weakest in sun parakeets and green-cheeked parakeets. In general, species with larger repertoires also showed more vocal flexibility (Fig. 2, Appendix 6). Additionally, wild birds typically use particular vocalizations in set contexts, so the ability to do so is likely to be adaptive24. Previous studies of captive parrots have demonstrated contextual use of mimicked words, both in tutored lab settings and in home-raised birds28,38. In our sample, contextual use of learned sounds was supported across 89% of individuals and most species. Survey-taker responses on this topic are necessarily subjective, so we emphasize that this rate of contextual use should be interpreted as a general estimate. Nevertheless, the data indicated that parrots frequently associated mimicked human sounds with appropriate human contexts. This finding is particularly revealing because the relevant human contexts are, by their nature, outside the range of typical wild parrot experiences. Contextual vocalization use must, therefore, rely on extremely flexible vocal learning mechanisms.Vocal learning variation by ageOn average, birds aged with high confidence were younger than those aged with low or medium confidence. This pattern might indicate that people tend to overestimate the age of captive birds of uncertain age. This pattern might also reflect the facts that older birds are more likely to be wild-caught and that younger birds are more likely to have good hatch-date documentation. In either case, there are few ramifications of inaccurate age estimates relating to vocal behavior because our data gave no evidence that adult vocal mimicry repertoires varied with age. Our analyses of grey parrots confirmed that repertoires expanded through the juvenile phase, but did not show reliable expansion among adults. Studies of wild birds indicate that parrots can learn vocalizations throughout life; such open-ended learning is limited to a subset of vocal learning species, and can generate different outcomes as animals age15. In some species, animals can add new vocal features over the course of a lifetime, leading to repertoire expansion39,40. In other species, animals may replace parts of their repertoire with newly-learned vocalizations, leading to stable vocal production repertoire sizes across age groups39,41. Our data suggest that parrots fit the second pattern; although they are open-ended vocal learners, their adult repertoires change more by element replacement, than by expansion. This does not necessarily imply that vocalizations are “forgotten” through time, but merely that some sounds are no longer used as conditions change42. Many parrot vocalizations function in social coordination with flock-mates22. The fission–fusion nature of parrot flocks creates changing social conditions for each individual over its lifetime43. A vocal replacement model for repertoire learning would allow individuals to adjust their vocal signatures to match new social situations and stop producing vocalizations that are no longer socially relevant11,44.Vocal learning variation by sexOur analyses of the full data set confirmed the generally held understanding that males and females in most species of parrots have similar vocal learning abilities15. We did, however see sex differences in some species that merit future study. First, we found a substantial overrepresentation of males in our sample. This could be interpreted several ways; (1) there are legitimately more males in the parrot pet trade, (2) pet owners are giving us accurate data but are more likely to give us data on males or (3) some bias exists in which pet owners assume their talking parrots are males, rather than females. Possibilities 1 and 2 seem unlikely because after we eliminated all parrots sexed with low confidence, we were left with a nearly 1:1 ratio of males:females in the subset of parrots that were sexed with high confidence. That trend suggests that the male bias in our data comes (at least in part) from a human tendency to label their pet parrots as male when the sex is not clear. Among songbirds, there is a strong tendency to assume that singing birds are male, and a similar bias may hold true for parrots45. It is unclear whether parrots in this study were mislabeled as male because they vocalize or, more simply, because that is the default human tendency for any animal.Although we conclude that some of the male bias in our data is human error, we also saw patterns that suggest real sex differences in vocal learning some species. For example, Pacific parrotlets are a dimorphic species, and all of our sampled birds were sexed by plumage46. Thus, we expect sexing in this species to be fairly accurate. Our data set included 10 males and no females, a bias unlikely to result purely from sampling error. We saw a similar trend in cockatiels for which there was a large overabundance of males in the data set, even among the 17 birds sexed with high confidence. Humans may be more likely to report on parrots that are good mimics. Therefore, the results likely reflect a real-world tendency for male cockatiels to mimic more human sounds than females. Figure 3 suggests that the same might be true for galahs, sulphur-crested cockatoos, rose-ringed parakeets, Senegal parrots, and budgerigars. Existing research supports the idea that sex differences in vocal behavior are important in several of these species. Among galahs, male and female calls evoke different responses47, and patterns of call adjustment vary by sex among budgerigars20. We also note that several of these species (Pacific parrotlets, rose-ringed parakeets, budgerigars, and cockatiels; Appendix 2b) show sex-based differences in both plumage and vocal learning, raising questions about whether those traits co-evolve.In addition to sex-based differences in the tendency to mimic humans, several well-sampled species showed evidence of sex-based differences in repertoire sizes. Particularly interesting are the blue-and-yellow macaws, in which repertoire size was significantly male-biased. We had more females (15) than males (9) in the data set, but males used on average 3–4 times as many mimicry sounds, phrases and words as females did. Galahs and budgerigars showed a similar male-bias in repertoire sizes, matching the trend of males being overrepresented in our data set for those two species. Prior research on galahs and budgerigars has found that males can be more vocal and more flexible with their vocalizations; perhaps these abilities translate to learning more call types20,47. A similar, but weaker, male mimicry increase occurred in rose-ringed parakeets. In only one species, yellow-headed parrots, did females show a significantly larger mimicry repertoire than males in any category (Appendix 5). Interestingly, the tendency to mimic humans (measured as sampling in the data set) and repertoire sizes did not always show the same patterns. Among sulphur-crested cockatoos, cockatiels, and Senegal parrots, males were more likely to show human mimicry, but their repertoires were not larger than the repertoires of females. This suggests that in some species, females may be less likely to mimic vocalizations, but when they do so they have just as large a vocabulary as males.The reported sex differences in parrot vocal mimicry repertoires are intriguing, but also are tentative conclusions. In many species, including our best sampled species, grey parrots, we saw no evidence of sex-differences in repertoire size. The sex-biases that we did document lose statistical significance after controlling for the many comparisons that we conducted. Nevertheless, we expect that some of our data represent true biological differences, especially because studies of wild birds have shown similar trends47,48. Thus, we offer our data as a starting point for additional research. Taken together, the analyses by sex provide interesting points of comparison to other vocal learning animals. Our combined analyses suggest that sex differences in vocal learning are vastly smaller and less common among parrots than they are among oscine passerines and hummingbirds45,49,50. Sex-based patterns of vocal learning in parrots appear more similar to those of vocal learning mammals than to those of other vocal learning birds51. Overall, parrots and songbirds present excellent comparative study systems for all aspects of sex differences in song learning, from the mechanistic to the functional17,51.Vocal learning variation by social contextMany parrot vocalizations function in social organization for individuals within flocks, and the ability to learn from conspecifics is essential to parrot familial and social integration12,15,52. Although our study specifically examined vocal learning of human sounds, we thought it possible that the presence of other parrots would increase mimicry rates if parrots learned human vocalizations from their parrot companions. Anecdotal stories of parrots teaching words to other parrots abound53, and studies of grey parrot cognition show that vocal modeling by multiple tutors can lead to better learning of human words54. Most existing results, however, are based on human tutoring, with controlled studies of parrot-parrot word transmission lacking. Here we tested whether social interactions with other parrots correlated with more vocal learning of human sounds. Our data gave no evidence that parrot-parrot social interactions drive human vocal mimicry. This was true across the full sample (controlling for species identity), and for our best sampled species, grey parrots. Although companion parrots are known to learn from conspecifics, that learning does not appear to shape repertoire sizes53. Open questions remain about whether signal complexity, repertoire size, or aspects of vocal learning covary with social complexity at a larger scale among parrots55. Follow up studies should address these questions using phylogenetically-controlled methods56. More