More stories

  • in

    Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses

    Predictors of reservoir statusOur analyses include all known rodent reservoirs for zoonotic pathogens (282 species). These reservoirs harbour a total of 95 known zoonotic pathogens (34 viruses, 26 bacteria, 17 helminths, 12 protozoa and six fungi) employing all known modes of transmission (43 vector-borne, 32 close-contact, 28 non-close contact, and 13 using multiple transmission modes) (Supplementary Data 2). Compared to presumed non-reservoirs (species currently not known to harbour any zoonotic pathogens), we observed that reservoir rodents are strikingly synanthropic (Figs. 2, 3a, Table 1). Despite potential geographic biases, and the general possibility that synanthropic species are better studied compared to non-synanthropic species (see Sampling bias and Supplementary Figs. 1, 2), synanthropy emerged as a defining characteristic of nearly all (95%) currently known rodent reservoirs. Of the 155 synanthropic species, only six are considered as truly synanthropic, i.e., predominately, if not exclusively, occurring in or near human dwellings, while the remaining species only occasionally show synanthropic behaviour (Supplementary Data 1).Fig. 2: Predictors of reservoir status.Final structural equation model linking reservoir status of rodent species (n = 269) with their synanthropy and hunting status, population fluctuations (s-index, log-transformed), and adult body mass, controlling for their occurrence in a range of habitats and the number of studies available per species. One-sided (directional) arrows represent a causal influence originating from the variable at the base of the arrow, with the width of the arrow and associated value representing the standardised strength of the relationship. The small double-sided arrows and numbers next to each response (endogenous) variable represent the error variance.Full size imageFig. 3: Characteristics of reservoir and synanthropic rodents.a Reservoir rodents are predominately synanthropic (n = 436 with n (non-reservoir) = 154, n (reservoir) = 282). b Synanthropic rodents display high population fluctuations (high s-index) (n = 269) and c, occur in multiple artificial habitats (n = 269) (Tables 1–3). In a, estimated probability and 95% confidence intervals are shown and in b–c, estimated probability is shown and shaded areas show 95 % confidence intervals.Full size imageTable 1 Summary of best-fit generalized linear mixed effects model for reservoir status (n = 436)Full size tableCompared to non-reservoirs, we also found that rodent reservoirs are disproportionately exploited by humans (hunted for meat and fur). Seventy-two of the regularly hunted rodent species (n = 83) are reservoirs (87%), and hunted rodent species harbour on average five times the number of zoonotic pathogens than non-hunted species (Table 2).Table 2 Summary of rodent characteristics divided by rodent group with respect to hunting, reservoir status, and synanthropic behaviourFull size tableWe explored causal pathways using a structural equation model (SEM) linking synanthropy, reservoir status, and their hypothesized predictors. The final model, which we established a priori, had 17 free parameters and 21 degrees of freedom (n = 269). The model fit, based on the SRMR (standardized root mean squared residual) and the RMSEA (root mean squared error of approximation) indicated a good fit (see Methods). From the initially formulated full model, the pathways linking reservoir status to population fluctuations (s-index, Methods), occurrence in grasslands, number of artificial habitats a species occurs in, and number of studies found per species were not significant and thus removed from the final model (Supplementary Fig. 3). Similarly, pathways linking synanthropy and occurrence in grasslands were not significant and also removed. All reported coefficients for pathways are standardized to facilitate comparisons among the different relationships. The relationships and coefficients below all refer to those in the final model.The focal variable in the model was reservoir status, which was strongly and positively associated with synanthropy and had the highest estimated pathway coefficient (standardised estimate = 0.58, 95% CI 0.49–0.66, Fig. 2). Controlling for synanthropy, species were more likely to be a reservoir with increasing adult weight (0.13, 0.04–0.22). Species that occur in savanna were less likely to be reservoirs (−0.13, −0.22 to −0.04), while hunted species were more likely to be reservoirs (Fig. 2, 0.20, 0.11–0.30).Synanthropy was influenced by four habitat variables: a species was more likely to be synanthropic if it occurs in a higher number of artificial habitats (0.17, 0.04–0.31), and occurs in urban areas (0.14, 0.01–0.27), deserts (0.12, 0.01–0.23), or forests (0.13, 0.02–0.24). Notably, species with higher s-index, and thus larger population fluctuations, were more likely to be synanthropic (0.12, 0.01–0.22), and the s-index itself decreased as adult weight increased (−0.16, −0.27 to −0.04). Finally, hunted species were characterized by higher adult bodyweight (0.35, 0.25–0.44) (Fig. 2).The number of studies per species was positively associated with both a species’ synanthropic behaviour (0.29, 0.19–0.39) and its reservoir status (0.09, 0.00– 0.19), albeit with weaker evidence for the latter effect (p = 0.054) (Fig. 2),The confirmatory generalized linear mixed effects models (GLMMs) (Tables 1, 3), which control for correlation among species within the same family, showed that our SEM results were robust. Indeed, synanthropy was a significant predictor of reservoir status. These models underscore synanthropy as the most important predictor of reservoir status in our analysis (Table 1, Figs. 2–3).Table 3 Summary of best-fit generalized linear mixed effects model for synanthropic status (n = 269)Full size tablePopulation fluctuations affect transmission riskOur newly compiled data on the magnitude of population fluctuations enabled comparative investigations beyond theoretically straightforward predictions that transmission risk increases with reservoir abundance for density-dependent systems. We show that while strong population fluctuations (measured as the s-index) are found frequently in both reservoir and non-reservoir rodents (Table 2), synanthropic rodents exhibit much larger population fluctuations compared to non-synanthropic rodents (Table 2, Figs. 2–3). This pattern was apparent despite broad confidence intervals in the relationship between the s-index and the probability of being synanthropic (Fig. 3b, Tables 2, 3). Taken together, our results suggest that larger population fluctuations in reservoir species increase zoonotic transmission risk via synanthropic behaviours of rodents, thereby increasing the likelihood of zoonotic spillover infection to humans.Habitat generalism and habitat transformation increase transmission riskWe also find that reservoir species thrive in human-created (artificial) habitats (Fig. 3a, c, Tables 2–3), which reflects a general flexibility in their use of diverse habitat types compared to non-reservoir species (Fig. 4a, Table 2). In addition, the number of zoonotic pathogens harboured by a rodent species increased with habitat breadth (r436 = 0.34, p  More

  • in

    The maternal effects of dietary restriction on Dnmt expression and reproduction in two clones of Daphnia pulex

    Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, McKnight R et al. (2008) Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol 41:91–102Article 
    CAS 

    Google Scholar 
    Alekseev V, Lampert W (2001) Maternal control of resting – egg production in Daphnia. Nature 414:899–901Article 
    CAS 

    Google Scholar 
    Anderson OS, Sant KE, Dolinoy DC (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutritional Biochem 23:853–859Article 
    CAS 

    Google Scholar 
    Agrawal AA, Laforsch C, Tollrian R (1999) Transgenerational induction of defenses in animals and plants. Nature 401:60–63Article 
    CAS 

    Google Scholar 
    Asselman J, De Coninck DIM, Vandegehuchte MB, Jansen M, Decaestecker E, De Meester L, Busshe JV, Vanhaecke L, Janssen CR, De Schamphelaere KAC (2015) Global cytosine methylation in Daphnia magna depends on genotype, environment, and their interaction. Environ Toxicol 34:5
    Google Scholar 
    Bernardo J (1996) Maternal effects in animal ecology. Am Zool 36:83–105Article 

    Google Scholar 
    Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412Article 
    CAS 

    Google Scholar 
    Bewick AJ, Vogel KJ, Moore AJ, Schmitz RJ (2017) Evolution of DNA methylation across insects. Mol Biol Evol 34:654–665CAS 

    Google Scholar 
    Bird A (2007) Perceptions of epigenetics. Nature 447:396–398Article 
    CAS 

    Google Scholar 
    Boersma M (1995) The allocation of resources to reproduction in Daphnia galeata: against the odds? Ecology 76(4):121–1261Article 

    Google Scholar 
    Boersma M (1997) Offspring size in Daphnia: does it pay to be overweight? Hydrobiologia 360:79–88Article 

    Google Scholar 
    Boycott AE, Diver C (1923) On the inheritance of the sinistrality in Limnea peregra. Proc R Soc Lond B 95:207–213Article 

    Google Scholar 
    Brett MT (1993) Resource quality effects on Daphnia longispina offspring fitness. J Plankton Res 15(4):403–412Article 

    Google Scholar 
    Burns CW (1995) Effects of crowding and different food levels on growth and reproductive investment of Daphnia. Oecologia 101:234–244Article 

    Google Scholar 
    Cameron NM, Shahrokh D, Del Corpo A, Dhir SK, Szyf M, Champagne FA, Meaney MJ (2008) Epigenetic programming of phenotypic variations in reproductive strategies in the rat through maternal care. J Neuroendocrinol 20:795–801Article 
    CAS 

    Google Scholar 
    Champagne FA (2012) Epigenetics and developmental plasticity across species. Dev Psychobiol 55:33–41Article 

    Google Scholar 
    Chan SY, Vasilopoulou E, Kilby MD (2009) The role of the placenta in thyroid hormone delivery to the fetus. Nat Clin Pract Endocrinol Metab 5:45–54Article 
    CAS 

    Google Scholar 
    Chong S, Whitelaw E (2004) Epigenetic germline inheritance. Curr Opin Genet Dev 14(6):692–696Article 
    CAS 

    Google Scholar 
    Clark J, Garbutt JS, McNally L, Little TJ (2017) Disease spread in age structured populations with maternal age effects. Ecol Lett 20:445–451Article 

    Google Scholar 
    Colbourne JK, Herbert PDN, Taylor DJ (1997) Evolutionary origins of phenotypic diversity. In: Givnish TJ, Systma KJ (eds) Daphnia in molecular evolution and adaptive radiation. Cambridge University Press. p 163–188Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH et al. (2011) The ecoresponsive genome of Daphnia pulex. Science 331(6017):555–561Article 
    CAS 

    Google Scholar 
    Desmarais KH (1997) Keeping Daphnia out of the surface film with cetyl alcohol. J Plankton Res 19(1):149–154Article 

    Google Scholar 
    Dorts J, Falisse E, Schoofs E, Flamion E, Kestermont P, Silvestre F (2016) DNA methyltransferases and stress-related genes expression in zebrafish larvae after exposure to heat and copper during reprogramming of DNA methylation. Sci Rep 6:34254Article 
    CAS 

    Google Scholar 
    Ducker GS, Rabinowitz JD (2016) One-carbon metabolism in health and disease. Cell Metab 25:27–42. https://doi.org/10.1016/j.cmet.2016.08Dudycha JL, Brandon CS, Deitz KC (2012) Population genomics of resource exploitation: insights from gene expression profiles of two Daphnia ecotypes fed alternate resources. Ecol Evol 2:329–340Dzialowski EM, Reed WL, Sotherland PR (2009) Effects of egg size on double-crested cormorant (Phalacrocorax auritus) egg composition and hatchling phenotype. Comp Biochem Physiol A Mol Integr Physiol 152:262–267Article 

    Google Scholar 
    Frost PC, Ebert D, Larson JH, Marcus MA, Wagner ND, Zalewski A (2010) Transgenerational effects of poor elemental food quality on Daphnia magna. Oecologia 162(4):865–872Article 

    Google Scholar 
    Gabsi F, Glazier DS, Hammers-Wirtz M, Ratte HT, Preuss TG (2014) How to interactive maternal traits and environmental factors determine offspring size in Daphnia magna?. Ann Limnol 50:9–18Article 

    Google Scholar 
    Garbutt JS, Little TJ (2016) Bigger is better: changes in body size explain a maternal effect of food on offspring disease resistance. Ecol Evolution 7:1403–1409Article 

    Google Scholar 
    Gibney ER, Nolan CM (2010) Epigenetics and gene expression. Heredity 105:4–13Article 
    CAS 

    Google Scholar 
    Gillis MK, Walsh MR (2019) Individual variation in plasticity dulls transgenerational responses to stress. Funct Ecol 33:1993–2002Glazier DS (1992) Effects of food, genotype, and maternal size and age on offspring investment in Daphnia magna. Ecology 73(3):910–926Article 

    Google Scholar 
    Gliwicz ZM, Guisande C (1992) Family planning in Daphnia: resistance to starvation in offspring born to mothers grown at different food levels. Oceologia 91:463–467Article 

    Google Scholar 
    Goos JM, Swain CJ, Munch SB, Walsh MR (2018) Maternal diet and age alter direct and indirect relationships between lifer-history traits across multiple generations. Funct Ecol 33:491–502Article 

    Google Scholar 
    Goulden CE, Horning LL (1980) Population oscillations and energy reserves in planktonic cladocera and their consequences to competition. Proc Natl Acad Sci USA 77:1716–1720Article 
    CAS 

    Google Scholar 
    Groothuis TG, Schwabl H (2008) Hormone-mediated maternal effects in birds: mechanisms matter but what do we know of them? Philos Trans R Soc Lond B Biol Sci 363:1647–1661Article 
    CAS 

    Google Scholar 
    Guisande C, Gliwicz ZM (1992) Egg size and clutch size in two Daphnia species at different food levels. J Plankton Res 14(7):997–1007Article 

    Google Scholar 
    Hearn J, Chow FW-N, Barton H, Tung M, Wilson P, Blaxter M et al. (2018) Daphnia magna microRNAs respond to nutritional stress and ageing but are not transgenerational. Mol Ecol 27:1402–1412Article 
    CAS 

    Google Scholar 
    Hearn J, Pearson M, Blaxter M, Wilson PJ, Little TJ (2019) Genome-wide methylation is modified by caloric restriction in Daphnia magna. BCM Genetics 20:197Hearn J, Plenderleith F, Little TJ (2021) DNA methylation differs extensively between strains of the same geographical origin and changes with age in Daphnia magna. Epigenetics Chromatin 14:4. https://doi.org/10.1186/s13072-020-00379-zHead JA (2014) Patterns of DNA methylation in animals: an ecotoxicological perspective. Integr Comp Biol 54:77–86Article 
    CAS 

    Google Scholar 
    Hebert PDN (1981) Obligate asexuality in Daphnia. Am Nate 117:784–789Article 

    Google Scholar 
    Herman JJ, Sultan SE (2016) DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc Biol Sci 283(1838):20160988. https://doi.org/10.1098/rspb.2016.0988Article 
    CAS 

    Google Scholar 
    Hiruta C, Nishida C, Tochinai S (2010) Abortive meiosis in the oogenesis of parthenogenetic Daphnia pulex. Chromosome Res 18:833–840Article 
    CAS 

    Google Scholar 
    Ho DH, Burggren WW (2010) Epigenetics and transgenerational transfer: a physiological perspective. J Exp Biol 213:3–16Article 
    CAS 

    Google Scholar 
    Ho DH (2008) Morphological and physiological developmental consequences of parental effects in the chicken embryo (Gallus gallus domesticus) and the zebrafish larva (Danio rerio). Diss: University of North TexasInnes DJ, Fox CJ, Winsor GL (2000) Avoiding the cost of males in obligately asexual Daphnia pulex (Leydig). Proc: Biol Sci 267(1447):991–997CAS 

    Google Scholar 
    Jeremias G, Barbosa J, Marques SM, De Schamphelaere KAC, Van Nieuwerburgh F, Deforce D, Gonçalves FJM, Pereira JL, Asselman J (2018) Transgenerational inheritance of dna hypomethylation in Daphnia magna in response to salinity stress. Environ Sci Technol 52(17):10114–10123Article 
    CAS 

    Google Scholar 
    Jian X, Yang W, Zhao S, Liang H, Zhao Y, Chen L et al. (2013) Maternal effects of inducible tolerance against the toxic cyanobacterium Microcystis aeruginosa in the grazer Daphnia carinata. Environ Pollut 178:142–146Article 

    Google Scholar 
    Keating KI (1985) The influence of vitamin-B12 deficiency on the reproduction of Daphnia-Pulex Leydig (Cladocera). J Crustacean Biol 5:30–136Article 

    Google Scholar 
    Kleiven OT, Larsson P, Hobaek A (1992) Sexual reproduction in Daphnia magna requires three stimulie. Oikos 65:197–206Article 

    Google Scholar 
    Kusari F, O’Doherty AM, Hodges NJ, Wojewodzic MW (2017) Bi-directional effects of vitamin B12 and methotrexate on Daphnia magna fitness and genomic methylation. Sci Rep 7:11872Article 

    Google Scholar 
    Kvist J, Athanasio CG, Solari OS, Brown JB, Colbourne JK, Pfrender ME, Mirbahai L (2018) Pattern of DNA methylation in Daphnia: evolutionary perspective. Genome Biol Evolution 10(8):1988–2007Article 
    CAS 

    Google Scholar 
    Lamka GF, Harder AM, Sundaram M, Schwartz TS, Christie MR, DeWoody JA, Willoughby JR (2022) Epigenetics in ecology, evolution, and conservation. Front Ecol Evol 10. https://doi.org/10.3389/fevo.2022.871791LaMontagne JM, McCauley E (2001) Maternal effects in Daphnia: what mothers are telling their offspring and do they listen. Ecol Lett 4:64–71Article 

    Google Scholar 
    Li Q, Jiang X (2014) Offspring tolerance to toxic Microcystis aeruginosa in Daphnia pulex shaped by maternal food availability and age. Fundam Appl Limnol 185:315–319Article 

    Google Scholar 
    Mastorci F, Vicentini M, Viltart O, Manghi M, Graiani G, Quaini Fet al. (2009) Long-term effects of prenatal stress: changes in adult cardiovascular regulation and sensitivity to stress. Neurosci Biobehav Rev 33:191–203Article 

    Google Scholar 
    Mkee D, Ebert D (1996) The interactive effects of temperature, food level and maternal phenotype on offspring size in Daphnia magna. Oecologia 107(2):189–196Article 

    Google Scholar 
    Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407Article 
    CAS 

    Google Scholar 
    Nguyen ND, Matsuura T, Kato Y, Watanabe H (2020) Caloric restriction upregulates the expression of DNMT3.1, lacking the conserved catalytic domain, in Daphnia magna. Genesis 58:12Article 

    Google Scholar 
    Nguyen ND, Matsuura T, Kato Y, Watanabe H (2021) DNMT3.1 controls trade-offs between growth, reproduction, and life span under starved conditions in Daphnia magna. Sci Rep 11:7326Article 
    CAS 

    Google Scholar 
    Nusslein-Volhard C, Frohnhofer HG, Lehmann R (1987) Determination of anteroposterior polarity in Drosophila. Science 238:1675–1681Article 
    CAS 

    Google Scholar 
    Pieters BJ, Liess M (2006) Maternal nutritional state determines the sensitivity of Daphnia magna offspring to short-term fenvalerate exposure. Aquat Toxicol 76:286–277Article 

    Google Scholar 
    R Core Team (2021) R: a language and environmental for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Richards EJ (2006) Inherited epigenetic variation – revisiting soft inheritance. Nat Rev Genet 7:395–401Article 
    CAS 

    Google Scholar 
    Stollewerk A (2010) The water flea Daphnia – a new model system for ecology and evolution? J Biol 9(2):21Article 

    Google Scholar 
    Sturtevant AH (1923) Inheritance of direction of coiling in Limnea. Science 58:269Article 
    CAS 

    Google Scholar 
    Suter MA, Chen A, Burdine MS, Choudhury M, Harris RA, Lane RH et al. (2012) A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates. FASEB J 26:5106–5114Article 
    CAS 

    Google Scholar 
    Tessier AJ, Consolatti NL (1989) Variation in offspring size in Daphnia and consequences for individual fitness. Oikos 56:269–276Article 

    Google Scholar 
    Tessier AJ, Consolatti NL (1991) Resource quantity and offspring quality in Daphnia. Ecology 72(2):468–478Article 

    Google Scholar 
    Trerotola M, Relli V, Simeone P, Alberti S (2015) Epigenetic inheritance and the missing heritability. Hum Genomics 9(1):17. https://doi.org/10.1186/s40246-015-0041-3Article 
    CAS 

    Google Scholar 
    Trijau M, Asselman J, Armant O, Adam-Guillermin C, De Schamphelaere KAC, Alonzo F (2018) Transgenerational DNA methylation changes in Daphnia magna exposed to chronic γ irradiation. Environ Sci Technol 52(7):4331–4339Article 
    CAS 

    Google Scholar 
    Urabe J, Sterner RW (2001) Contrasting effects of different types of resource depletion on life-history traits in Daphnia. Funct Ecol 15:165–174Article 

    Google Scholar 
    Vandegehuchte MB, Kyndt T, Vanholme B, Haegeman A, Gheysen G, Janssen CR (2009a) Occurrence of DNA methylation in Daphnia magna and influence of multigeneration Cd exposure. Environ Int 35(4):700–706Article 
    CAS 

    Google Scholar 
    Vandegehuchte MB, Lemiere F, Janssen CR (2009b) Quantitative DNA-methylation in Daphnia magna and effects of multigeneration Zn exposure. Comp Biochem Physiol C Toxicol Pharmacol 150:343–348Article 
    CAS 

    Google Scholar 
    Vandegehuchte MB, Janssen CR (2011) Epigenetics and its implications for ecotoxicology. Ecotoxicology 20:607–624Article 
    CAS 

    Google Scholar 
    Vandegehuchte MB, Janssen CR (2014) Epigenetics in an ecotoxicological context. Mutat Res Genet Toxicol Environ Mutagen 764–765:36–45Article 

    Google Scholar 
    Walsh MR, La Pierre KJ, Post DM (2014) Phytoplankton composition modifies predator-driven life history evolution in Daphnia. Evol Ecol 28:397–411Article 

    Google Scholar 
    Walsh MR, Cooley F, Biles K, Munch SB (2015) Predator-induced phenotypic plasticity within- and across generations: a challenge for theory? Proc R Soc B Biol Sci 282:20142205Article 

    Google Scholar 
    Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.orgWolf JB, Wade MJ (2009) What are maternal effects (and what are they not)? Philos Trans R Soc Lond B Biol Sci 364(1520):1107–1115Article 

    Google Scholar 
    Zaffagnini F (1987) Reproduction in Daphnia. Mem Ist Ital Idrobiol 45:245–284
    Google Scholar 
    Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12(8):1045–1062Article 

    Google Scholar  More

  • in

    Widespread herbivory cost in tropical nitrogen-fixing tree species

    Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Chang. 4, 471–476 (2014).Article 
    ADS 

    Google Scholar 
    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).Article 

    Google Scholar 
    Levy-Varon, J. H. et al. Tropical carbon sink accelerated by symbiotic dinitrogen fixation. Nat. Commun. 10, 5637 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).Article 
    ADS 

    Google Scholar 
    Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. The nitrogen paradox in tropical forest ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 613–635 (2009).Article 

    Google Scholar 
    Menge, D. N. L. et al. Patterns of nitrogen-fixing tree abundance in forests across Asia and America. J. Ecol. 107, 2598–2610 (2019).Article 
    CAS 

    Google Scholar 
    Matson, W. J.Jr Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119–161 (1980).Article 

    Google Scholar 
    Coley, P. D., Bateman, M. L. & Kusar, T. A. The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos 115, 219–228 (2006).Article 

    Google Scholar 
    Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Barron, A. R., Purves, D. W. & Hedin, L. O. Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165, 511–520 (2011).Article 
    ADS 

    Google Scholar 
    McCulloch, L. A. & Porder, S. Light fuels while nitrogen suppresses symbiotic nitrogen fixation hotspots in neotropical canopy gap seedlings. New Phytol. 231, 1734–1745 (2021).Article 
    CAS 

    Google Scholar 
    Brookshire, E. N. J. et al. Symbiotic N fixation is sufficient to support net aboveground biomass accumulation in a humid tropical forest. Sci Rep. 9, 7571 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Gei, M. et al. Legume abundance along successional and rainfall gradients in Neotropical forests. Nat. Ecol. Evol. 2, 1104–1111 (2018).Article 

    Google Scholar 
    Vance, C. P. in Nitrogen-fixing Leguminous Symbioses. Nitrogen Fixation: Origins, Applications, and Research Progress, Vol. 7 (eds Dilworth, M. J. et al.) (Springer, 2008).Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).Article 

    Google Scholar 
    Menge, D. N. L., Levin, S. A. & Hedin, L. O. Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation. Proc. Natl Acad. Sci. USA 105, 1573–1578 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Sheffer, E., Batterman, S. A., Levin, S. A. & Hedin, L. O. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. Nat. Plants 1, 15182 (2015).Article 
    CAS 

    Google Scholar 
    Vitousek, P. M. & Field, C. B. Ecosystem constraints to symbiotic nitrogen fixers: a simple model and its implications. Biogeochemistry 46, 179–202 (1999).Article 
    CAS 

    Google Scholar 
    Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).Article 

    Google Scholar 
    Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).Article 
    ADS 

    Google Scholar 
    Batterman, S. A. et al. Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees. Ecol. Lett. 21, 1486–1495 (2018).Article 

    Google Scholar 
    Menge, D. N. L., Wolf, A. A. & Funk, J. L. Diversity of nitrogen fixation strategies in Mediterranean legumes. Nat. Plants 1, 15064 (2015).Article 
    CAS 

    Google Scholar 
    Ritchie, M. E. & Tilman, D. Responses of legumes to herbivores and nutrients during succession on a nitrogen-poor soil. Ecol. Soc. Am. 76, 2648–2655 (1995).
    Google Scholar 
    Taylor, B. N. & Ostrowsky, L. R. Nitrogen-fixing and non-fixing trees differ in leaf chemistry and defence but not herbivory in a lowland Costa Rican rain forest. J. Trop. Ecol. 35, 270–279 (2019).Article 

    Google Scholar 
    Endara, M.-J. et al. Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. Proc. Natl Acad. Sci. USA 114, E7499–E7505 (2017).Article 
    CAS 

    Google Scholar 
    Kursar, T. A. & Coley, P. D. Convergence in defense syndromes of young leaves in tropical rainforests. Biochem. Syst. Ecol. 31, 929–949 (2003).Article 
    CAS 

    Google Scholar 
    Kursar, T. A. et al. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc. Natl Acad. Sci. USA 106, 18073–18078 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Taylor, B. N. & Menge, D. N. L. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nat. Plants 4, 655–661 (2018).Article 
    CAS 

    Google Scholar 
    Adams, M., Turnbull, T., Sprent, J. & Buchmann, N. Legumes are different: leaf nitrogen, photosynthesis, and water use efficiency. Proc. Natl Acad. Sci. USA 113, 4098–4103 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Coley, P. D. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74, 531–536 (1988).Article 
    ADS 
    CAS 

    Google Scholar 
    Batterman, S. A., Wurzburger, N. & Hedin, L. O. Nitrogen and phosphorus interact to control tropical symbiotic N2 fixation: a test in Inga punctata. J. Ecol. 101, 1400–1408 (2013).Article 
    CAS 

    Google Scholar 
    Eichhorn, M. P., Nilus, R., Compton, S. G., Hartley, S. E. & Burslem, D. F. R. P. Herbivory of tropical rain forest tree seedlings correlates with future mortality. Ecology 91, 1092–1101 (2010).Article 

    Google Scholar 
    Wink, M. Evolution of secondary metabolites in legumes (Fabaceae). South African J. Bot. 89, 164–175 (2013).Article 
    CAS 

    Google Scholar 
    Currano, E. D. & Jacobs, B. F. Bug-bitten leaves from the early Miocene of Ethiopia elucidate the impacts of plant nutrient concentrations and climate on insect herbivore communities. Glob. Planet. Change 207, 103655 (2021).Article 

    Google Scholar 
    Wieder, W. R., Cleveland, C. C., Lawrence, D. M. & Bonan, G. B. Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study. Environ. Res. Lett. 10, 044016 (2015).Article 
    ADS 

    Google Scholar 
    Sprent, J. I. Legume Nodulation: A Global Perspective (John Wiley, 2009).Leigh, E. G. Jr Tropical Forest Ecology: A View from Barro Colorado Island (Oxford Univ. Press, 1999).Comita, L. S., Muller-Landau, H. C., Aguilar, S. & Hubbell, S. P. Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329, 330–332 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Queenborough, S. A., Metz, M. R., Valencia, R. & Wright, S. J. Demographic consequences of chromatic leaf defence in tropical tree communities: do red young leaves increase growth and survival? Ann. Bot. 112, 677–684 (2013).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).Article 
    CAS 

    Google Scholar 
    Pasquini, S. C. & Santiago, L. S. Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. Oecologia 168, 311–319 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Collalti, A. & Prentice, I. C. Is NPP proportional to GPP? Waring’s hypothesis 20 years on. Tree Physiol. 39, 1473–1483 (2019).Article 
    CAS 

    Google Scholar 
    Westbrook, J. W. et al. What makes a leaf tough? Patterns of correlated evolution between leaf toughness traits and demographic rates among 197 shade-tolerant woody species in a Neotropical forest. Am. Nat. 177, 800–811 (2011).Article 

    Google Scholar 
    Wright, S. J. et al. Functional traits and the growth–mortality trade‐off in tropical trees. Ecology 91, 3664–3674 (2010).Article 

    Google Scholar 
    Kitajima, K. et al. How cellulose-based leaf toughness and lamina density contribute to long leaf lifespans of shade-tolerant species. New Phytol. 195, 640–652 (2012).Article 

    Google Scholar 
    Kitajima, K., Wright, S. J. & Westbrook, J. W. Leaf cellulose density as the key determinant of inter- and intra-specific variation in leaf fracture toughness in a species-rich tropical forest. Interface Focus https://doi.org/10.1098/rsfs.2015.0100 (2016).Sedio, B. E., Echeverri, J. C. R., Boya, C. A. & Wright, S. J. Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology 98, 616–623 (2017).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).Article 

    Google Scholar 
    Murphy, S. J., Xu, K. & Comita, L. S. Tree seedling richness, but not neighborhood composition, influences insect herbivory in a temperate deciduous forest community. Ecol. Evol. 6, 6310–6319 (2016).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Preprint at https://arxiv.org/abs/1406.5823 (2014).Moles, A. T. & Westoby, M. Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90, 517–524 (2000).Article 

    Google Scholar 
    Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. https://doi.org/10.18637/jss.v080.i01 (2017). More

  • in

    Biodiversity and climate COPs

    Restoring the connection between people and the rest of nature hinges on whole-system science, actions and negotiations.
    Those who think about and practise sustainability are constantly looking for holistic interpretations of the world and are trying to understand systemic relations, networks and connections. Biodiversity has all of these things. It shows how every species needs other species to exist and thrive. It shows that all living organisms are part of a sophisticated and fascinating system made up of myriads of links. And humans are undoubtedly a part of it.
    Credit: Pulsar Imagens / Alamy Stock PhotoIn the realm of sustainability, experts also ponder about time: how can life exist and thrive over time? Indeed, the above mentioned fascinating system evolves over time. And, over time, it has to adapt to unexpected change. It does that well when it is healthy, and less well when it is ill and constantly disturbed.For a long time, man-made impacts kept accumulating almost completely unchecked by societies, until the consequences for human well-being became untenable. Nowadays, environmental crises make the headlines regularly. They are nothing but the result of a broken connection between people and the rest of nature.Climate change is one major outcome of the broken human–rest of nature connection and has wide ramifications for both people and the planet. We now face imminent disaster, unequally across the world, yet addressing climate change remains an incredibly thorny task. Country representatives from most nations around the world meet regularly at the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCC) — most recently at COP27, which was held in Egypt — to continue the debate on what actions are needed to move the climate agenda forward, all while disasters continue to hit the most vulnerable populations. The world has seen 27 COP meetings to the UNFCC so far; one wonders how many more meetings will be needed to see real change happen.Interestingly, country representatives also meet regularly to discuss biodiversity protection; biodiversity decline — the other major consequence of the broken human–rest of nature connection — is just as worrying, with severe and ramified implications that are still largely underappreciated by decision-makers. These gatherings are the COP meetings to the Convention on Biological Diversity (CBD). Last year, we wrote about the then forthcoming COP15 to the CBD (Nat. Sustain. 4, 189; 2021), the meeting in which the new conservation targets to be met by 2030 were to be agreed. We highlighted the extent to which experts worried that those new targets might not go far enough. The meeting was postponed more than once due to the COVID-19 pandemic, and it is finally happening on 7 December 2022, in Montreal, Canada. The world has already seen 15 COP meetings to the CBD, how many more meetings will be needed for the biodiversity crisis to be averted?But let’s go back to thinking about sustainability. Experts look for holistic visions of the world. Here is an interesting example of what holism means. Biodiversity decline and climate change are both the result of the broken connection between people and the rest of nature, they ultimately have the same, deep roots. They are mutually reinforcing phenomena: unhealthy biodiversity contributes to climate change, and climate change makes biodiversity ill. All this is bad news for human and planetary well-being. The climate–biodiversity conundrum, at least to some degree, has been recognized at a higher level — during COP27, leaders dedicated one day to biodiversity.Yet, given that these issues are highly interconnected and have the same origin, why is the world insisting on discussing them as separate agendas? Why are we still holding two separate COPs? How are these meetings going to promote any fruitful synergy? How will they lead people to reconnect with the rest of nature? Country representatives should be breaking silos, embracing holism and bringing these intertwined issues, and their multiple ramifications, to the same negotiating table.Nature Sustainability welcomes the long-awaited COP15 to the CBD and hopes that countries will agree on feasible yet ambitious 2030 targets to protect and enhance biodiversity. But most of all, we hope that all of the experts and leaders involved in addressing the environmental crises embrace holism to promote meaningful actions across the world aimed at restoring people’s connection with the rest of nature. We are eager to see progress to this end. In the meantime, the collection we started in March 2021 with Nature Ecology & Evolution has been updated to renew our support to the biodiversity community. More

  • in

    Plastic adjustments in xylem vessel traits to drought events in three Cedrela species from Peruvian Tropical Andean forests

    Bruijnzeel, L. A., Mulligan, M. & Scatena, F. N. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol. Processes 25, 25 (2011).
    Google Scholar 
    Myster, R. W. The Andean Cloud Forest. Andean Cloud Forest https://doi.org/10.1007/978-3-030-57344-7 (2021).Article 

    Google Scholar 
    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).Article 
    ADS 

    Google Scholar 
    Hu, J. & Riveros-Iregui, D. A. Life in the clouds: are tropical montane cloud forests responding to changes in climate?. Oecologia 180, 1061–1073 (2016).Article 
    ADS 

    Google Scholar 
    Peterson, A. T. Ecological niche conservatism: A time-structured review of evidence. J. Biogeogr. 38, 817–827 (2011).Article 

    Google Scholar 
    Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).Article 

    Google Scholar 
    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).Article 

    Google Scholar 
    Trugman, A. T. et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552–1560 (2018).Article 
    CAS 

    Google Scholar 
    Hacket-Pain, A. J., Friend, A. D., Lageard, J. G. A. & Thomas, P. A. The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol. 00, 1–12 (2015).
    Google Scholar 
    Lourenço, J. et al. Hydraulic tradeoffs underlie local variation in tropical forest functional diversity and sensitivity to drought. New Phytol. https://doi.org/10.1111/nph.17944 (2022).Article 

    Google Scholar 
    Fonti, P., von Arx, G., García-González, I. & Sass-Klaassen, U. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185, 42–53 (2010).Article 

    Google Scholar 
    Jupa, R., Krabičková, D., Plichta, R., Mayr, S. & Gloser, V. Do angiosperm tree species adjust intervessel lateral contact in response to soil drought?. Physiol. Plant. 20, 1–11. https://doi.org/10.1111/ppl.13435 (2021).Article 
    CAS 

    Google Scholar 
    Peters, J. M. R. et al. Living on the edge: a continental-scale assessment of forest vulnerability to drought. Glob. Change Biol. 20, 1–22. https://doi.org/10.1111/gcb.15641 (2021).Article 
    CAS 

    Google Scholar 
    Rita, A., Borghetti, M., Todaro, L. & Saracino, A. Interpreting the climatic effects on xylem functional traits in two Mediterranean oak species: the role of extreme climatic events. Front. Plant Sci. 7, 1–11 (2016).Article 

    Google Scholar 
    Rodríguez-Ramírez, E. C., Vázquez-García, J. A., García-González, I., Alcántara-Ayala, O. & Luna-Vega, I. Drought effects on the plasticity in vessel traits of two endemic Magnolia species in the tropical montane cloud forests of eastern Mexico. J. Plant Ecol. 13, 331–340. https://doi.org/10.1093/jpe/rtaa019 (2020).Article 

    Google Scholar 
    Aide, T. M. & Grau, H. R. Globalization, migration and Latin American ecosystems. Science 305, 1915–1917 (2004).Article 

    Google Scholar 
    Oliveira, R. S., Eller, C. B., Bittencourt, P. R. L. & Mulligan, M. The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Ann. Bot. 113, 909–920 (2014).Article 

    Google Scholar 
    Pereyra-Espinoza, M. J., Inga-Guillen, G. J., Santos-Morales, M. & Rodríguez-Arisméndiz, R. Potencialidad de Cedrela odorata (Meliaceae) para estudios dendrocronológicos en la selva central del Perú. Rev. Biol. Trop. 62, 783–793 (2014).Article 

    Google Scholar 
    Layme-Huaman, E. T., Ferrero, M. E., Palacios-Lazaro, K. S. & Requena-Rojas, E. J. Cedrela nebulosa: A novel species for dendroclimatological studies in the montane tropics of South America. Dendrochronologia 50, 105–112 (2018).Article 

    Google Scholar 
    Rodríguez-Ramírez, E. C., Valdez-Nieto, J. A., Vázquez-García, J. A., Dieringer, G. & Luna-Vega, I. Plastic responses of Magnolia schiedeana Schltdl., a relict-endangered Mexican cloud forest tree, to climatic events: Evidences from leaf venation and wood vessel anatomy. Forests 11, 25 (2020).Article 

    Google Scholar 
    Carlquist, S. Ecological factors in wood evolution: a floristic approach. Am. J. Bot. 64, 887–896 (2020).Article 

    Google Scholar 
    Speer, B. J. H. Fundamentals of tree-ring research. 509 (2010). https://doi.org/10.1002/gea.20357.Rita, A., Cherubini, P., Leonardi, S., Todaro, L. & Borghetti, M. Functional adjustments of xylem anatomy to climatic variability: Insights from long-Term Ilex aquifolium tree-ring series. Tree Physiol. 35, 817–828 (2015).Article 

    Google Scholar 
    Paredes-Villanueva, K., López, L. & Navarro Cerrillo, R. M. Regional chronologies of Cedrela fissilis and Cedrela angustifolia in three forest types and their relation to climate. Trees Struct. Funct. 30, 1581–1593 (2016).Article 

    Google Scholar 
    Köhl, M., Lotfiomran, N. & Gauli, A. Influence of local climate and ENSO on the growth of Cedrela odorata L. in Suriname. Atmosphere 13, 1119 (2022).Article 
    ADS 

    Google Scholar 
    Menezes, I. R. N., Aragão, J. R. V., Pagotto, M. A. & Lisi, C. S. Teleconnections and edaphoclimatic effects on tree growth of Cedrela odorata L in a seasonally dry tropical forest in Brazil. Dendrochronologia 72, 125923 (2022).Article 

    Google Scholar 
    Jiménez-Rodríguez, C. D., Coenders-Gerrits, M., Schilperoort, B., González-Angarita, A. D. P. & Savenije, H. Vapor plumes in a tropical wet forest: Spotting the invisible evaporation. Hydrol. Earth Syst. Sci. 25, 619–635 (2021).Article 
    ADS 

    Google Scholar 
    Bräuning, A. et al. Climatic control of radial growth of Cedrela montana in a humid mountain rainforest in southern Ecuador. Erdkunde 63, 337–345 (2009).Article 

    Google Scholar 
    Goldsmith, G. R., Matzke, N. J. & Dawson, T. E. The incidence and implications of clouds for cloud forest plant water relations. Ecol. Lett. 16, 307–314 (2013).Article 

    Google Scholar 
    Toledo, M. et al. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. J. Ecol. 99, 254–264 (2011).Article 

    Google Scholar 
    Pandey, S., Carrer, M., Castagneri, D. & Petit, G. Xylem anatomical responses to climate variability in Himalayan birch trees at one of the world’s highest forest limit. Perspect. Plant Ecol. Evol. Syst. 33, 34–41 (2018).Article 

    Google Scholar 
    Bose, A. K. et al. Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. Glob. Change Biol. 26, 4521–4537 (2020).Article 
    ADS 

    Google Scholar 
    Aloni, R. Ecophysiological implications of vascular differentiation and plant evolution. Trees Struct. Funct. 29, 25 (2015).Article 

    Google Scholar 
    Venegas-González, A., von Arx, G., Chagas, M. P. & Filho, M. T. Plasticity in xylem anatomical traits of two tropical species in response to intra-seasonal climate variability. Trees Struct. Funct. 29, 423–435 (2015).Article 

    Google Scholar 
    Fonti, P. et al. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185, 42–53 (2010).Article 

    Google Scholar 
    Scholz, A., Klepsch, M., Karimi, Z. & Jansen, S. How to quantify conduits in wood?. Front. Plant Sci. 4, 1–11 (2013).Article 

    Google Scholar 
    García-González, I., Souto-Herrero, M. & Campelo, F. Ring-porosity and earlywood vessels: a review on extracting environmental information through time. IAWA J. 37, 295–314 (2016).Article 

    Google Scholar 
    Scholz, A., Stein, A., Choat, B. & Jansen, S. How drought and deciduousness shape xylem plasticity in three Costa Rican woody plant species. IAWA J. 35, 337–355 (2014).Article 

    Google Scholar 
    von Arx, G., Kueffer, C. & Fonti, P. Quantifying plasticity in vessel grouping—added value from the image analysis tool ROXAS. IAWA J. 34, 433–445 (2013).Article 

    Google Scholar 
    Koecke, A. V., Muellner-Riehl, A. N., Pennington, T. D., Schorr, G. & Schnitzler, J. Niche evolution through time and across continents: The story of Neotropical Cedrela (Meliaceae). Am. J. Bot. 100, 1800–1810 (2013).Article 

    Google Scholar 
    Sperry, J. S. & Saiendra, N. Z. Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant. Cell Environ. 17, 1233–1241 (1994).Article 

    Google Scholar 
    Rodríguez-Ramírez, E. C., Crispín-DelaCruz, D. B., Ticse-Otarola, G. & Requena-Rojas, E. J. Assessing the hydric deficit on two Polylepis species from the Peruvian Andean mountains: Xylem vessel anatomic adjusting. Forest 13, 633 (2022).
    Google Scholar 
    Islam, M., Rahman, M. & Bräuning, A. Xylem anatomical responses of diffuse porous Chukrasia tabularis to climate in a South Asian moist tropical forest. For. Ecol. Manage. 412, 9–20 (2018).Article 

    Google Scholar 
    Abrantes, J., Campelo, F., García-González, I. & Nabais, C. Environmental control of vessel traits in Quercus ilex under Mediterranean climate: Relating xylem anatomy to function. Trees Struct. Funct. 27, 655–662 (2013).Article 

    Google Scholar 
    Fahey, T. J., Sherman, R. E. & Tanner, E. V. J. Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function. J. Trop. Ecol. 20, 1–13 (2015).
    Google Scholar 
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).Article 
    ADS 

    Google Scholar 
    FAO-UNESCO. Soil Map of the World: Revised Legend (World Soil Resources Report 60. FAO-UNESCO, 1998).Stokes, M. & Smiley, T. L. An Introduction to Tree-Ring Dating (University of Arizona Press, 1996).
    Google Scholar 
    Speer, J. H. Oak mast history from dendrochronology: A new technique demonstrated in the Southern Appalachian region. Science 20, 257 (2001).
    Google Scholar 
    Schulman, E. Dendroclimatic Changes in Semiarid America (University of Arizona Press, 1956).
    Google Scholar 
    Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78 (1983).
    Google Scholar 
    Grissino-Mayer, H. D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree Ring Res. 57, 205–221 (2001).
    Google Scholar 
    Wigley, T. M. L., Briffa, K. R. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23, 201–213 (1984).Article 
    ADS 

    Google Scholar 
    Cook, E. RCSigFree, Software Specialized in Dendrochronology (2017).Barichivich, J., Sauchyn, D. J. & Lara, A. Climate signals in high elevation tree-rings from the semiarid Andes of north-central Chile: responses to regional and large-scale variability. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 320–333 (2009).Article 

    Google Scholar 
    Briffa, K. R. Interpreting high-resolution proxy climate data-The example of dendroclimatology. In Analysis of Climate Variability vol 0500 (eds von Storch, H. et al.) 77–94 (Springer, 1999).Chapter 

    Google Scholar 
    Marengo, J. A., Nobre, C. A., Tomasella, J., Cardoso, M. F. & Oyama, M. D. Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philos. Trans. R. Soc. B Biol. Sci. 363, 1773–1778 (2008).Article 
    CAS 

    Google Scholar 
    Jimenez, J. C. et al. Spatio-temporal patterns of thermal anomalies and drought over tropical forests driven by recent extreme climatic anomalies. Philos. Trans. R. Soc. B Biol. Sci. 373, 25 (2018).Article 

    Google Scholar 
    Gloor, M. et al. Recent Amazon climate as background for possible ongoing Special Section. Glob. Biogeochem. Cycles 29, 1384–1399 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Mooney, C. Z., Mooney, C. F., Duval, R. D. & Duvall, R. Bootstrapping: A Nonparametric Approach to Statistical Inference (Sage Publications, 1993).Book 

    Google Scholar 
    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    Lloret, F., Keeling, E. G. & Sala, A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests Published by Wiley on behalf of Nordic Society Oikos Stable. https://www.jstor.org/stable/41316009 Linked references are available on JSTOR for. Oikos 120, 1909–1920 (2011).Baker, J. C. A., Santos, G. M., Gloor, M. & Brienen, R. J. W. Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees Struct. Funct. 31, 1999–2009 (2017).Article 

    Google Scholar 
    Palacios, W. A., Santiana, J. & Iglesias, J. A new species of Cedrela (Meliaceae) from the eastern flanks of Ecuador. Phytotaxa 393, 84–88 (2019).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
    CAS 

    Google Scholar 
    Souto-Herrero, M., Rozas, V. & García-González, I. Earlywood vessels and latewood width explain the role of climate on wood formation of Quercus pyrenaica Willd. across the Atlantic-Mediterranean boundary in NW Iberia. For. Ecol. Manage. 425, 126–137 (2018).Article 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community ecology package. R Package version 2.4-1. https://cran.r-project.org/web/packages/vegan/index.html. (2016).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Media Vol 35 (Springer, 2016).Book 
    MATH 

    Google Scholar 
    Ver Hoef, J. M. & Boveng, P. L. Binomial Regression: How should we model overdispersed count data?. Ecology 88, 2766–2772 (2007).Article 

    Google Scholar 
    Karger, D., Nobis, M., Normand, S., Graham, C. & Zimmermann, N. CHELSA-TraCE21k v1.0. Downscaled transient temperature and precipitation data since the last glacial maximum. Clim. Past Discuss. https://doi.org/10.5194/cp-2021-30 (2021).Hurvich, C. M. & Tsai, C. L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2011). https://doi.org/10.1007/978-1-4419-7976-6.Book 
    MATH 

    Google Scholar 
    ‘glm2’, P. http://mirror.psu.ac.th/pub/cran/web/packages/glm2/glm2.pdf. Accessed 20 Mar 2020. 4–11 http://mirror.psu.ac.th/pub/cran/web/packages/glm2/glm2.pdf (2020).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 25 (2015).Article 

    Google Scholar 
    Barton, K. Package ‘ MuMIn ’ Version 1.46.0. R Package (2022). More

  • in

    Herbivores drive scarcity of some nitrogen-fixing tropical trees

    Friedlingstein, P. et al. Earth Syst. Sci. Data 12, 3269–3340 (2020).Article 

    Google Scholar 
    LeBauer, D. S. & Treseder, K. K. Ecology 89, 371–379 (2008).Article 
    PubMed 

    Google Scholar 
    Vitousek, P. M. & Howarth, R. W. Biogeochemistry 13, 87–115 (1991).Article 

    Google Scholar 
    Barker, W. et al. Nature https://doi.org/10.1038/s41586-022-05502-6 (2022).Article 

    Google Scholar 
    Sprent, J. I. Legume Nodulation: A Global Perspective (Wiley-Blackwell, 2009).
    Google Scholar 
    Gei, M. et al. Nature Ecol. Evol. 2, 1104–1111 (2018).Article 
    PubMed 

    Google Scholar 
    Peng, J. et al. Glob. Biogeochem. Cycles 34, e2019GB006296 (2020).Article 

    Google Scholar 
    Batterman, S. A. et al. Nature 502, 224–227 (2013).Article 
    PubMed 

    Google Scholar 
    Taylor, B. N. & Menge, D. N. L. Nature Plants 4, 655–661 (2018).
    Google Scholar 
    McCulloch, L. A. & Porder, S. New Phytol. 231, 1734–1745 (2021).Article 
    PubMed 

    Google Scholar 
    Sheffer, E., Batterman, S. A., Levin, S. A. & Hedin, L. O. Nature Plants 1, 15182 (2015).Article 

    Google Scholar 
    Barron, A. R., Purves, D. W. & Hedin, L. O. Oecologia 165, 511–520 (2011).Article 
    PubMed 

    Google Scholar 
    Adams, M. A., Turnbull, T. L., Sprent, J. I. & Buchmann, N. Proc. Natl Acad. Sci. USA 113, 4098–4103 (2016).Article 
    PubMed 

    Google Scholar 
    Taylor, B. N. & Ostrowsky, L. R. J. Trop. Ecol. 35, 270–279 (2019).Article 

    Google Scholar 
    Sprent, J. I. New Phytol. 174, 11–25 (2007).Article 
    PubMed 

    Google Scholar  More

  • in

    DNA reveals that mastodons roamed a forested Greenland two million years ago

    RESEARCH BRIEFINGS
    07 December 2022

    Ancient environmental DNA from northern Greenland opens a new chapter in genetic research, demonstrating that it is possible to track the ecology and evolution of biological communities two million years ago. The record shows an open boreal-forest ecosystem inhabited by large animals such as mastodons and reindeer. More

  • in

    Aminolipids elicit functional trade-offs between competitiveness and bacteriophage attachment in Ruegeria pomeroyi

    Bacterial strains and cultivationAll marine bacteria used in this study were cultivated using the ½ YTSS (yeast-tryptone-sea salt) medium (DSMZ 974), containing yeast extract 2 g/L, tryptone 1.25 g/L and Sigma sea salts 20 g/L or the defined marine ammonium mineral salt (MAMS) medium (DSMZ 1313) where HEPES (10 mM, pH 8.0) replaced the phosphate buffer [16]. All cultures were grown at 30 °C aerobically in a shaker (150 rpm).For growth competition assays between the WT and the olsA mutant, cultures of bacteria were grown in 10 mL ½ YTSS medium for the WT strain, or with the addition of 10 µg/mL gentamicin for the olsA mutant since a gentamicin cassette was inserted to construct the mutant [4]. Cells were harvested at mid-late exponential phase and diluted to an optical density measured at 540 nm (OD540) of 1.0. These cells were then both inoculated at 1% (v/v) into 250 mL flasks containing 50 mL growth media (either ½ YTSS or MAMS + 0.5 mM Pi) in triplicate and grown at 30 °C with shaking at 140 rpm. At time point 0 h, 100 µL samples were removed in triplicate from each flask. These samples were then ten-fold serially diluted in the same growth media to a dilution of 10−9. From each serial dilution tube, 10 µL droplets were pipetted in triplicate onto agar plates containing either ½ YTSS agar (to count both the WT and the olsA mutant) or ½ YTSS agar + 10 µg/mL gentamicin (to count just the olsA mutant). Once the droplets were dry, plates were incubated at 30 °C for 3-4 days. Colony forming units (CFU) were determined by counting the number of colonies in the dilution number where single colonies were clearly visible. For the cultures grown in ½ YTSS medium, samples were removed and enumerated using the same method at time points 24 h and 96 h. For the cultures grown in MAMS media + 0.5 mM Pi, samples were removed and enumerated at time points 0 h, 48 h and 96 h.Membrane separation by sucrose density gradient ultracentrifugationThe WT strain and the olsA mutant were grown in ½ YTSS medium to OD540 ~0.8. One litre of culture was then collected by centrifugation at 12,300 × g at 4 °C for 10 minutes, using a JLA 10.5 rotor. Cells were washed and resuspended in 50 mL HEPES buffer (pH 8.0, 10 mM). Cells were then pelleted by centrifugation at 4,500 × g at 4 °C for 10 min, before resuspending the pellet in 3 mL HEPES buffer (pH 8.0, 10 mM), containing 1.6X cOmplete Protease Inhibitor cocktail (Roche), 3X DNAse I buffer (NEB) and 6 units/mL DNase I (NEB). Cells were then lysed using a French Press at 1000 PSI. Cell debris was removed by centrifugation at 4,500 × g at 4 °C for 10 min and the supernatant was transferred to a new Oakridge centrifuge tube for pelleting total membranes by centrifugation at 75,600 × g at 10 °C for 45 min in a JA25.5 rotor. Pelleted membranes were then washed and resuspended in 20% (w/v) sucrose in HEPES buffer (10 mM, pH 8.0). Resuspended membrane samples were then layered on top of a stepwise gradient containing 3.3 mL 73% (w/v) sucrose at the bottom and 6.7 mL 53% (w/v) sucrose in between. Inner (IM) and outer (OM) membranes were separated by centrifugation at 140,000 × g at 4 °C, for 16 hours in a SW40-Ti rotor. The IM resided in the interface between the 53% (w/v) and 20% (w/v) sucrose layers and the OM in the interface between the 53% (w/v) and 73% (w/v) sucrose layers. Both IM and OM samples were removed from the sucrose density interface, diluted with 30 mL HEPES buffer (10 mM, pH 8.0), and pelleted by centrifugation at 75,600 × g for 45 min. IM and OM were then resuspended in 1 mL of the same HEPES buffer before lipid and protein extractions.Proteomics sample preparation, in-gel digestion and nanoLC-MS analysisIM and OM samples were carefully dissolved in 100 μL 1X LDS loading buffer (Invitrogen) before loading on a precast Tris-Bis NuPAGE gel (Invitrogen) using 1X MOPS running solution (Invitrogen). SDS-polyacrylamide gel electrophoresis was run for approximately 5 min to purify polypeptides in the polyacrylamide gel by removing contaminants. Polyacrylamide gel bands containing the membrane proteome were excised and digested by trypsin (Roche) proteolysis. The resulting tryptic peptides were extracted using formic acid-acetonitrile (5%:25%, v/v) before resuspension in acetonitrile-trifluoroacetate (2.5%:0.05%, v/v). Tryptic peptides were separated by nano-liquid chromatography (nanoLC) using an Ultimate 3000 LC system with an Acclaim PepMap RSLC C18 reverse phase column (ThermoFisher) at the Proteomics Research Technology Platform (PRTP) at the University of Warwick. MS/MS spectra were collected using an Orbitrap Fusion mass spectrometer (ThermoFisher) in electrospray ionization (ESI) mode. Survey scans of peptides from m/z 350 to 1500 were collected for each sample in a 1.5-hr LC-MS run. This resulted in 12 mass spectra (3 biological replicates of IM and OM of WT and the olsA mutant) with a total of ~ 7.5 G of MS/MS data.MS/MS data search and statistical analysesCompiled MS/MS raw files were searched against the genome of Ruegeria pomeroyi DSS-3 using the MaxQuant software package [17, 18]. Default settings were used and samples were matched between runs. The software package Perseus (v1.6.5.0) was used to determine differentially expressed proteins with a false discovery rate (FDR) of 0.01 [19]. The LFQ (label-free quantitation) intensity of each protein was normalized by dividing the total peptide intensity of each sample by the length of each protein. Peptides were retained for further analyses only if they were consistently found in all three biological replicates in at least one set of the four samples (IM_WT, IM_olsA, OM_WT, OM_olsA). Missing values were imputed using the default parameters (width, 0.3; down-shift 1.8) and statistical analyses were performed using a two-sample Student’s t-test. Principle component analysis (PCA) plots and volcano plots were generated using default settings in the Perseus package.To analyse the pathways of differentially expressed proteins between the wild-type and the mutant, the sequences of those proteins that were significantly overrepresented (FDR  More