More stories

  • in

    Biomechanical traits of salt marsh vegetation are insensitive to future climate scenarios

    Narayan, S. et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 11, e0154735 (2016).Article 

    Google Scholar 
    Schürch, M., Rapaglia, J., Liebetrau, V., Vafeidis, A. T. & Reise, K. Salt marsh accretion and storm tide variation: An example from a barrier island in the North Sea. ESCO 35, 486–500 (2012).
    Google Scholar 
    de Groot, A. V., Veeneklaas, R. M., Kuijper, D. P. & Bakker, J. P. Spatial patterns in accretion on barrier-island salt marshes. Geomorphology 134, 280–296 (2011).Article 
    ADS 

    Google Scholar 
    Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Barbier, E. B. et al. Coastal ecosystem: Based management with nonlinear ecologial functions and values. Science 319, 321–323 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Schoonees, T. et al. Hard structures for coastal protection, towards greener designs. Estuaries Coasts 21, 755 (2019).
    Google Scholar 
    IPCC. Summary for Policymakers. in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).Lenssen, G. M., Lamers, J., Stroetenga, M. & Rozema, J. CO2 and biosphere 379–390 (Kluwer Academic Publishers, 1993).Book 

    Google Scholar 
    Cherry, J. A., McKee, K. L. & Grace, J. B. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. J. Ecol. 97, 67–77 (2009).Article 

    Google Scholar 
    Arp, W. J., Drake, B. G., Pockman, W. T., Curtis, P. S. & Whigham, D. F. CO2 and Biosphere 133–143 (Kluwer Academic Publishers, 1993).Book 

    Google Scholar 
    Cao, H. et al. Wave effects on seedling establishment of three pioneer marsh species: survival, morphology and biomechanics. Ann. Bot. 125, 345–352 (2020).Article 

    Google Scholar 
    Puijalon, S. et al. Plant resistance to mechanical stress: Evidence of an avoidance-tolerance trade-off. New Phytol. 191, 1141–1149 (2011).Article 
    CAS 

    Google Scholar 
    Niklas, K. Plant Biomechanics: An Engineering Approach to Plant Form and Function (University of Chicago Press, 1992).
    Google Scholar 
    Silinski, A. et al. Effects of wind waves versus ship waves on tidal marsh plants: A flume study on different life stages of Scirpus maritimus. PLoS ONE 10, e0118687 (2015).Article 

    Google Scholar 
    Rupprecht, F., Möller, I., Evans, B. R., Spencer, T. & Jensen, K. Biophysical properties of salt marsh canopies: Quantifying plant stem flexibility and above ground biomass. Coast. Eng. 100, 48–57 (2015).Article 

    Google Scholar 
    Paul, M. & de los Santos, C. B. Variation in flexural, morphological, and biochemical leaf properties of eelgrass (Zostera marina) along the European Atlantic climate regions. Mar. Biol. 166, 2187 (2019).Article 

    Google Scholar 
    Carus, J., Paul, M. & Schröder, B. Vegetation as self-adaptive coastal protection: Reduction of current velocity and morphologic plasticity of a brackish marsh pioneer. Ecol. Evol. 6, 1579–1589 (2016).Article 

    Google Scholar 
    Callaghan, F. M. et al. A submersible device for measuring drag forces on aquatic plants and other organisms. NZ J. Mar. Freshw. Res. 41, 119–127 (2007).Article 

    Google Scholar 
    Paul, M., Bouma, T. J. & Amos, C. L. Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current. Mar. Ecol. Prog. Ser. 444, 31–41 (2012).Article 
    ADS 

    Google Scholar 
    Taphorn, M., Villanueva, R., Paul, M., Visscher, J. H. & Schlurmann, T. Flow field and wake structure characteristics imposed by single seagrass blade surrogates. J. Ecohydraul. 1, 1–13 (2021).
    Google Scholar 
    Lightbody, A. F. & Nepf, H. M. Prediction of velocity profiles and longitudinal dispersion in emergent salt marsh vegetation. Limnol. Oceangr 51, 218–228 (2006).Article 
    ADS 

    Google Scholar 
    Kobayashi, N., Raichle, A. W. & Asano, T. Wave attenuation by vegetation. J. Waterway Port Coastal Ocean Eng. 119, 30–48 (1993).Article 

    Google Scholar 
    Villanueva, R., Thom, M., Visscher, J. H., Paul, M. & Schlurmann, T. Wake length of an artificial seagrass meadow: A study of shelter and its feasibility for restoration. J. Ecohydraul. 1, 1–15 (2021).
    Google Scholar 
    Paul, M. & Amos, C. L. Spatial and seasonal variation in wave attenuation over Zostera noltii. J. Geophys. Res. 116, C08019 (2011).ADS 

    Google Scholar 
    Marjoribanks, T. I. & Paul, M. Modelling flow-induced reconfiguration of variable rigidity aquatic vegetation. J. Hydraul. Res. 1, 1–16 (2021).
    Google Scholar 
    Schulze, D., Rupprecht, F., Nolte, S. & Jensen, K. Seasonal and spatial within-marsh differences of biophysical plant properties: Implications for wave attenuation capacity of salt marshes. Aquat. Sci. 81, 82 (2019).Article 

    Google Scholar 
    Gillis, L. G. et al. Living on the edge: How traits of ecosystem engineers drive bio-physical interactions at coastal wetland edges. Adv. Water Resour. 166, 104257 (2022).Article 

    Google Scholar 
    Zhao, H. & Chen, Q. Modeling attenuation of storm surge over deformable vegetation: methodology and verification. J. Eng. Mech. 140, 4014090 (2014).
    Google Scholar 
    Möller, I. et al. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci 7, 727–731 (2014).Article 
    ADS 

    Google Scholar 
    Maza, M. et al. Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 2. Experimental analysis. Coast. Eng. 106, 73–86 (2015).Article 

    Google Scholar 
    Gray, A. J. & Mogg, R. J. Climate impacts on pioneer saltmarsh plants. Clim. Res. 18, 105–112 (2001).Article 

    Google Scholar 
    Novaes, E., Kirst, M., Chiang, V., Winter-Sederoff, H. & Sederoff, R. Lignin and biomass: A negative correlation for wood formation and lignin content in trees. Plant Physiol. 154, 555–561 (2010).Article 
    CAS 

    Google Scholar 
    Redfield, A. C. Development of a New England salt marsh. Ecol. Monogr. 42, 201–237 (1972).Article 

    Google Scholar 
    Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, 1–10 (2010).Article 

    Google Scholar 
    Idier, D., Dumas, F. & Muller, H. Tide-surge interaction in the English Channel. Nat. Hazards Earth Syst. Sci. 12, 3709–3718 (2012).Article 
    ADS 

    Google Scholar 
    Weisse, R., von Storch, H., Niemeyer, H. D. & Knaack, H. Changing North Sea storm surge climate: An increasing hazard?. Ocean Coast. Manag. 68, 58–68 (2012).Article 

    Google Scholar 
    Idier, D., Paris, F., Le Cozannet, G., Boulahya, F. & Dumas, F. Sea-level rise impacts on the tides of the European Shelf. Cont. Shelf Res. 137, 56–71 (2017).Article 
    ADS 

    Google Scholar 
    Marcos, M., Calafat, F. M., Berihuete, Á. & Dangendorf, S. Long-term variations in global sea level extremes. J. Geophys. Res. Oceans 120, 8115–8134 (2015).Article 
    ADS 

    Google Scholar 
    Dangendorf, S., Mudersbach, C., Jensen, J., Anette, G. & Heinrich, H. Seasonal to decadal forcing of high water level percentiles in the German Bight throughout the last century. Ocean Dyn. 46, 277 (2013).
    Google Scholar 
    de Winter, R. C., Sterl, A. & Ruessink, B. G. Wind extremes in the North Sea Basin under climate change: An ensemble study of 12 CMIP5 GCMs. J. Geophys. Res. Atmos. 118, 1601–1612 (2013).Article 
    ADS 

    Google Scholar 
    Arns, A. et al. Sea-level rise induced amplification of coastal protection design heights. Sci. Rep. 7, 40171 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Pansch, A., Winde, V., Asmus, R. & Asmus, H. Tidal benthic mesocosms simulating future climate change scenarios in the field of marine ecology. Limnol. Oceanogr. Methods 14, 257–267 (2016).Article 

    Google Scholar 
    Meehl, G. A. et al. Climate Change 2007: The Physical Science Basis: Summary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).
    Google Scholar 
    Miler, O., Albayrak, I., Nikora, V. I. & O’Hare, M. T. Biomechanical properties of aquatic plants and their effects on plant–flow interactions in streams and rivers. Aquat. Sci. 74, 31–44 (2012).Article 

    Google Scholar  More

  • in

    Hydrochemical and isotopic baselines for understanding hydrological processes across Macquarie Island

    Field parameters and major ionsThe results of the hydrochemistry and environmental isotopes for the 40 lakes are presented spatially in Figs. S1–S11 and are located in Tables S1 and S2.The lake waters are oxic (8.6–12.6 mg l−1) and range from slightly acidic (pH 6.0) to slightly alkaline (pH 9.2). Lake water temperatures are generally highest for lakes along the west coast (greater than 10 °C, Table S2). Phosphate concentrations are below detection level (0.1 mg l−1) for all lakes and nitrate was low ranging from below detection limit ( More

  • in

    Differences in fish herbivory among tropical and temperate seaweeds and annual patterns in kelp consumption influence the tropicalisation of temperate reefs

    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4(8), 1044–1059 (2020).Article 

    Google Scholar 
    Hobbs, R. J., Valentine, L. E., Standish, R. J. & Jackson, S. T. Movers and stayers: Novel assemblages in changing environments. Trends Ecol. Evol. 33, 116–128 (2017).Article 

    Google Scholar 
    Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).Article 

    Google Scholar 
    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: Altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).Article 
    ADS 

    Google Scholar 
    Gómez-Aparicio, L., García-Valdés, R., Ruíz-Benito, P. & Zavala, M. A. Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: Implications for forest management under global change. Glob. Change Biol. 17, 2400–2414 (2011).Article 
    ADS 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science https://doi.org/10.1126/science.aai9214 (2017).Article 

    Google Scholar 
    Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671. https://doi.org/10.1126/science.aaf7671 (2016).Article 
    CAS 

    Google Scholar 
    Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B-Biol. Sci. 281, 20140846. https://doi.org/10.1098/rspb.2014.0846 (2014).Article 

    Google Scholar 
    Poore, A. G. B. et al. Global patterns in the impact of marine herbivores on benthic primary producers. Ecol. Lett. 15, 912–922. https://doi.org/10.1111/j.1461-0248.2012.01804.x (2012).Article 

    Google Scholar 
    Bennett, S., Wernberg, T., Harvey, E. S., Santana-Garcon, J. & Saunders, B. J. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol. Lett. 18, 714–723 (2015).Article 

    Google Scholar 
    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory and loss of kelp. Proc. Natl. Acad. Sci. 113(48), 13791–13796 (2016).Article 
    ADS 

    Google Scholar 
    Vergés, A. et al. Tropical rabbitfish and the deforestation of a warming temperate sea. J. Ecol. 102, 1518–1527. https://doi.org/10.1111/1365-2745.12324 (2014).Article 

    Google Scholar 
    Kumagai, N. H. et al. Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming. Proc. Natl. Acad. Sci. 115, 8990–8995 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Demko, A. M. et al. Declines in plant palatability from polar to tropical latitudes depend on herbivore and plant identity. Ecology 98, 2312–2321. https://doi.org/10.1002/ecy.1918 (2017).Article 

    Google Scholar 
    Floeter, S. R., Behrens, M. D., Ferreira, C. E. L., Paddack, M. J. & Horn, M. H. Geographical gradients of marine herbivorous fishes: Patterns and processes. Mar Biol 147, 1435–1447 (2005).Article 

    Google Scholar 
    Longo, G. O., Hay, M. E., Ferreira, C. E. L. & Floeter, S. R. Trophic interactions across 61 degrees of latitude in the Western Atlantic. Glob. Ecol. Biogeogr. 28, 107–117. https://doi.org/10.1111/geb.12806 (2019).Article 

    Google Scholar 
    Bolser, R. & Hay, M. Are tropical plants better defended? Palatability and defenses of temperate versus tropical seaweeds. Ecology 77, 2269–2286 (1996).Article 

    Google Scholar 
    Borer, E. T. et al. Global biogeography of autotroph chemistry: is insolation a driving force?. Oikos 122, 1121–1130. https://doi.org/10.1111/j.1600-0706.2013.00465.x (2013).Article 
    CAS 

    Google Scholar 
    Miranda, T. et al. Convictfish on the move: Variation in growth and trophic niche space along a latitudinal gradient. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsz098%JICESJournalofMarineScience (2019).Article 

    Google Scholar 
    Linton, S. M. The structure and function of cellulase (endo-β-1, 4-glucanase) and hemicellulase (β-1, 3-glucanase and endo-β-1, 4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 240, 110354 (2020).Article 
    CAS 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925. https://doi.org/10.1038/nclimate1958 (2013).Article 
    ADS 

    Google Scholar 
    Nakamura, Y., Feary, D. A., Kanda, M. & Yamaoka, K. Tropical fishes dominate temperate reef fish communities within western Japan. PLoS ONE 8, e81107 (2013).Article 
    ADS 

    Google Scholar 
    Tanaka, K., Taino, S., Haraguchi, H., Prendergast, G. & Hiraoka, M. Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds. Ecol. Evol. 2, 2854–2865. https://doi.org/10.1002/ece3.391 (2012).Article 

    Google Scholar 
    Pessarrodona, A. et al. Homogenization and miniaturization of habitat structure in temperate marine forests. Glob. Change Biol. 27, 5262–5275 (2021).Article 
    CAS 

    Google Scholar 
    Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, L04601. https://doi.org/10.1029/2010gl046474 (2011).Article 
    ADS 

    Google Scholar 
    Mezaki, T. & Kubota, S. Changes of hermatypic coral community in coastal sea area of Kochi, high-latitude Japan. Aquabiology 201, 332–337 (2012).
    Google Scholar 
    Serisawa, Y., Imoto, Z., Ishikawa, T. & Ohno, M. Decline of the Ecklonia cava population associated with increased seawater temperatures in Tosa Bay, southern Japan. Fish Sci 70, 189–191. https://doi.org/10.1111/j.0919-9268.2004.00788.x (2004).Article 
    CAS 

    Google Scholar 
    Kiriyama, T., Mitsunaga, N., Yasumoto, S., Fujii, A. & Yotsui, T. Undergrown phenomenon of brown alga, Hizikia fusiformis, thought to be caused by grazing of herbivores at Tsutsuura, Tsushima Islands [Japan]. Bulletin of Nagasaki Prefectural Institute of Fisheries (Japan) (1999).Kiriyama, T., Fujii, A. & Fujita, Y. Feeding and characteristic bite marks on Sargassum fusiforme by several herbivorous fishes. Aquac. Sci. 53, 355–365 (2005).
    Google Scholar 
    Yatsuya, K., Kiriyama, T., Kiyomoto, S., Taneda, T. & Yoshimura, T. On the deterioration process of Ecklonia and Eisenia beds observed in 2013 at Gounoura, Iki Island, Nagasaki Prefecture, Japan.-Initiation of the bed degradation due to high water temperature in summer and subsequent cascading effect by the grazing of herbivorous fish in autumn. Algal Resour. 7, 79–94 (2014).
    Google Scholar 
    Noda, M., Ohara, H., Murase, N., Ikeda, I. & Yamamoto, K. The grazing of Eisenia bicyclis and several species of Sargassaceous and Cystoseiraceous seaweeds by Siganus fuscescens in relation to the differences of species composition of their seaweed beds. Nippon Suisan Gakkaishi 80, 201–213 (2014).Article 

    Google Scholar 
    Noda, M., Kinoshita, J., Tanada, N. & Murase, N. Characteristics of bite scars observed in kelp forests of Lessoniaceae denuded by short-term foraging damages of the herbivorous fish Siganus fuscecens. J. Natl. Fish. Univ. 66, 111–122 (2018).
    Google Scholar 
    Wernberg, T. et al. Seaweed communities in retreat from ocean warming. Curr. Biol. 21, 1828–1832. https://doi.org/10.1016/j.cub.2011.09.028 (2011).Article 
    CAS 

    Google Scholar 
    Terazono, Y., Nakamura, Y., Imoto, Z. & Hiraoka, M. Fish response to expanding tropical Sargassum beds on the temperate coasts of Japan. Mar. Ecol. Prog. Ser. 464, 209–220. https://doi.org/10.3354/meps09873 (2012).Article 
    ADS 

    Google Scholar 
    Duffy, J. E. & Hay, M. E. Seaweed adaptations to herbivory – chemical, structural, and morphological defenses are often adjusted to spatial or temporal patterns of attack. Bioscience 40, 368–375 (1990).Article 

    Google Scholar 
    Endo, H., Suehiro, K., Kinoshita, J. & Agatsuma, Y. Combined effects of temperature and nutrient enrichment on palatability of the brown alga Sargassum yezoense (Yamada) Yoshida & T. Konno. Am. J. Plant Sci. 6, 275 (2015).Article 
    CAS 

    Google Scholar 
    Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: Multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. 120, 729–751. https://doi.org/10.1111/bij.12914 (2017).Article 

    Google Scholar 
    Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. mvabund–an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).Article 

    Google Scholar 
    Wilson, S. K., Bellwood, D. R., Choat, J. H. & Furnas, M. J. Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanogr. Mar. Biol. Annu. Rev. 41, 279–309 (2003).
    Google Scholar 
    Helfman, G. S. in The Behaviour of Teleost Fishes 366–387 (Springer, 1986).Prince, J., LeBlanc, W. & Maciá, S. Design and analysis of multiple choice feeding preference data. Oecologia 138, 1–4 (2004).Article 
    ADS 

    Google Scholar 
    Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3 3 (2020).Ohno, M. & Ishikawa, M. Physiological ecology of brown alga, Ecklonia on coast of Tosa Bay, southern Japan. I. Seasonal variation of Ecklonia bed. Rep. USA Marine Biol. Inst. Kochi Univ. 4, 59–73 (1982).
    Google Scholar 
    Agostini, S. et al. Simplification, not “tropicalization”, of temperate marine ecosystems under ocean warming and acidification. Glob. Change Biol. 27, 4771–4784 (2021).Article 
    CAS 

    Google Scholar 
    Clements, K. & Choat, J. Influence of season, ontogeny and tide on the diet of the temperate marine herbivorous fish Odax pullus (Odacidae). Mar. Biol. 117, 213–220 (1993).Article 

    Google Scholar 
    Mizuta, H., Hayasaki, J. & Yamamoto, H. Relationship between nitrogen content and sorus formation in the brown alga Laminaria japonica cultivated in southern Hokkaido, Japan. Fish. Sci. 64, 909–913 (1998).Article 
    CAS 

    Google Scholar 
    Kumura, T., Yasui, H. & Mizuta, H. Nutrient requirement for zoospore formation in two alariaceous plants Undaria pinnatifida (Harvey) Suringar and Alaria crassifolia Kjellman (Phaeophyceae: Laminariales). Fish. Sci. 72, 860–869 (2006).Article 
    CAS 

    Google Scholar 
    Qiu, Z. et al. Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp. Proc. R. Soc. B 286, 20181887 (2019).Article 

    Google Scholar 
    Hoey, A. S. & Bellwood, D. R. Limited functional redundancy in a high diversity system: Single species dominates key ecological process on coral reefs. Ecosystems 12, 1316–1328. https://doi.org/10.1007/s10021-009-9291-z (2009).Article 

    Google Scholar 
    Streit, R. P., Hoey, A. S. & Bellwood, D. R. Feeding characteristics reveal functional distinctions among browsing herbivorous fishes on coral reefs. Coral Reefs 34, 1037–1047 (2015).Article 
    ADS 

    Google Scholar 
    Van Alstyne, K. L. & Paul, V. J. The biogeography of polyphenolic compounds in marine macroalgae – Temperate brown algal defenses deter feeding by tropical herbivorous fishes. Oecologia 84, 158–163 (1990).Article 
    ADS 

    Google Scholar 
    Targett, N. M., Boettcher, A. A., Targett, T. E. & Vrolijk, N. H. Tropical marine herbivore assimilation of phenolic-rich plants. Oecologia 103, 170–179 (1995).Article 
    ADS 

    Google Scholar 
    Prado, P. & Heck, K. L. Seagrass selection by omnivorous and herbivorous consumers: Determining factors. Mar. Ecol. Prog. Ser. 429, 45–55. https://doi.org/10.3354/meps09076 (2011).Article 
    ADS 

    Google Scholar 
    Montgomery, W. L. & Gerking, S. D. Marine macroalgae as foods for fishes: an evaluation of potential food quality. Environ. Biol. Fish. 5, 143–153 (1980).Article 

    Google Scholar 
    Duffy, J. & Paul & V.J.,. Prey nutritional quality and the effectiveness of chemical defenses against tropical reef fishes. Oecologia 90, 333–339 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Michael, P. J., Hyndes, G. A., Vanderklift, M. A. & Vergés, A. Identity and behaviour of herbivorous fish influence large-scale spatial patterns of macroalgal herbivory in a coral reef. Mar. Ecol. Prog. Ser. 482, 227–240 (2013).Article 
    ADS 

    Google Scholar 
    Bennett, S. & Bellwood, D. R. Latitudinal variation in macroalgal consumption by fishes on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 426, 241–252 (2011).Article 
    ADS 

    Google Scholar 
    Zarco-Perello, S., Wernberg, T., Langlois, T. J. & Vanderklift, M. A. Tropicalization strengthens consumer pressure on habitat-forming seaweeds. Sci. Rep. 7, 820. https://doi.org/10.1038/s41598-017-00991-2 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Smith, S. M. et al. Tropicalisation and kelp loss shift trophic composition and lead to more winners than losers in fish communities. Glob. Change Biol. 27(11), 2537–2548 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Zarco-Perello, S. et al. Range-extending tropical herbivores increase diversity, intensity and extent of herbivory functions in temperate marine ecosystems. Funct. Ecol. 34, 2411–2421. https://doi.org/10.1111/1365-2435.13662 (2020).Article 

    Google Scholar  More

  • in

    RNA-Seq comparative study reveals molecular effectors linked to the resistance of Pinna nobilis to Haplosporidium pinnae parasite

    Daszak, P. Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science 287, 443–449 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: From evidence to a predictive framework. Science 1979(341), 514–519 (2013).Article 
    ADS 

    Google Scholar 
    Kilpatrick, A. M., Briggs, C. J. & Daszak, P. The ecology and impact of chytridiomycosis: An emerging disease of amphibians. Trends Ecol. Evol. 25, 109–118 (2010).Article 

    Google Scholar 
    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 1979(323), 227–227 (2009).Article 

    Google Scholar 
    Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 1979(351), 594–597 (2016).Article 
    ADS 

    Google Scholar 
    Garamszegi, L. Z. Climate change increases the risk of malaria in birds. Glob. Change Biol. 17, 1751–1759 (2011).Article 
    ADS 

    Google Scholar 
    Zamora-Vilchis, I., Williams, S. E. & Johnson, C. N. Environmental temperature affects prevalence of blood parasites of birds on an elevation gradient: Implications for disease in a warming climate. PLoS ONE 7, e39208 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Harvell, D., Altizer, S., Cattadori, I. M., Harrington, L. & Weil, E. Climate change and wildlife diseases: When does the host matter the most?. Ecology 90, 912–920 (2009).Article 

    Google Scholar 
    Burge, C. A. et al. Climate change influences on marine infectious diseases: Implications for management and society. Ann. Rev. Mar. Sci. 6, 249–277 (2014).Article 

    Google Scholar 
    Tracy, A. M., Pielmeier, M. L., Yoshioka, R. M., Heron, S. F. & Harvell, C. D. Increases and decreases in marine disease reports in an era of global change. Proc. R. Soc. B Biol. Sci. 286, 20191718 (2019).Article 

    Google Scholar 
    Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Pérez, T. Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).Article 

    Google Scholar 
    Basso, L. et al. The Pen Shell, Pinna nobilis: A review of population status and recommended research priorities in the Mediterranean Sea. Adv. Mar. Biol. 71, 109–160 (2015).Article 

    Google Scholar 
    Catanese, G. et al. Haplosporidium pinnae sp. nov., a haplosporidan parasite associated with mass mortalities of the fan mussel, Pinna nobilis, in the Western Mediterranean Sea. J. Invertebr. Pathol. 157, 9–24 (2018).Article 
    CAS 

    Google Scholar 
    Vázquez-Luis, M. et al. S.O.S. Pinna nobilis: A mass mortality event in western Mediterranean sea. Front. Mar. Sci. 4, 220 (2017).Article 

    Google Scholar 
    García-March, J. R. et al. Can we save a marine species affected by a highly infective, highly lethal, waterborne disease from extinction?. Biol. Conserv. 243, 108498 (2020).Article 

    Google Scholar 
    Prado, P. et al. Pinna nobilis in suboptimal environments are more tolerant to disease but more vulnerable to severe weather phenomena. Mar. Environ. Res. 163, 105220 (2021).Article 
    CAS 

    Google Scholar 
    Cabanellas-Reboredo, M. et al. Tracking a mass mortality outbreak of pen shell Pinna nobilis populations: A collaborative effort of scientists and citizens. Sci. Rep. 9, 13355 (2019).Article 
    ADS 

    Google Scholar 
    Kersting, D. K. et al. Recruitment disruption and the role of unaffected populations for potential recovery after the Pinna nobilis mass mortality event. Front. Mar. Sci. 7, 1–11 (2020).Article 
    ADS 

    Google Scholar 
    Box, A. et al. Reduced antioxidant response of the fan mussel Pinna nobilis related to the presence of haplosporidium pinnae. Pathogens 9, 1–14 (2020).Article 

    Google Scholar 
    Peyran, C., Morage, T., Nebot-Colomer, E., Iwankow, G. & Planes, S. Unexpected residual habitats raise hope for the survival of the fan mussel Pinna nobilis along the Occitan coast (Northwest Mediterranean Sea). Endanger Species Res. 48, 123–137 (2022).Article 

    Google Scholar 
    Rosa, R. D. et al. A hemocyte gene expression signature correlated with predictive capacity of oysters to survive Vibrio infections. BMC Genomics 13, 1–12 (2012).Article 

    Google Scholar 
    van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).Article 

    Google Scholar 
    Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. In Methods in Molecular Biology 227–245 https://doi.org/10.1007/978-1-4939-9173-0_14 (2019).Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M. & Kelly, S. TransRate: Reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 26, 1134–1144 (2016).Article 
    CAS 

    Google Scholar 
    Guo, X. & Ford, S. E. Infectious diseases of marine mollusks and host responses as revealed by genomic tools. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2015.0206 (2016).Article 

    Google Scholar 
    Pauletto, M. et al. Deep transcriptome sequencing of Pecten maximus hemocytes: A genomic resource for bivalve immunology. Fish Shellfish Immunol. 37, 154–165 (2014).Article 
    CAS 

    Google Scholar 
    Caurcel, C. et al. MolluscDB: A genome and transcriptome database for molluscs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20200157 (2021).Article 
    CAS 

    Google Scholar 
    de Oliveira, A. L. et al. Comparative transcriptomics enlarges the toolkit of known developmental genes in mollusks. BMC Genomics 17, 1–23 (2016).Article 

    Google Scholar 
    Richardson, M. F. & De Sherman, C. D. H. De novo assembly and characterization of the invasive Northern Pacific Seastar transcriptome. PLoS ONE 10, e0142003 (2015).Article 

    Google Scholar 
    Zhang, D., Wang, F., Dong, S. & Lu, Y. D. De novo assembly and transcriptome analysis of osmoregulation in Litopenaeus vannamei under three cultivated conditions with different salinities. Gene 578, 185–193 (2016).Article 
    CAS 

    Google Scholar 
    Werner, G. D. A., Gemmell, P., Grosser, S., Hamer, R. & Shimeld, S. M. Analysis of a deep transcriptome from the mantle tissue of Patella vulgata Linnaeus (Mollusca: Gastropoda: Patellidae) reveals candidate biomineralising genes. Mar. Biotechnol. 15, 230–243 (2013).Article 
    CAS 

    Google Scholar 
    Ding, J. et al. Transcriptome sequencing and characterization of Japanese scallop Patinopecten yessoensis from different shell color lines. PLoS ONE 10, e0116406 (2015).Article 

    Google Scholar 
    Harney, E. et al. De novo assembly and annotation of the European abalone Haliotis tuberculata transcriptome. Mar Genomics 28, 11–16 (2016).Article 

    Google Scholar 
    Khalturin, K., Hemmrich, G., Fraune, S., Augustin, R. & Bosch, T. C. G. More than just orphans: Are taxonomically-restricted genes important in evolution?. Trends Genet. 25, 404–413. https://doi.org/10.1016/j.tig.2009.07.006 (2009).Article 
    CAS 

    Google Scholar 
    Gibson, A. K., Smith, Z., Fuqua, C., Clay, K. & Colbourne, J. K. Why so many unknown genes? Partitioning orphans from a representative transcriptome of the lone star tick Amblyomma americanum. BMC Genomics 14, 135 (2013).Article 
    CAS 

    Google Scholar 
    Albertin, C. B. et al. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 524, 220–224 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Vogeler, S., Galloway, T. S., Lyons, B. P. & Bean, T. P. The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group. BMC Genomics 15, 369 (2014).Article 

    Google Scholar 
    Allam, B. & Raftos, D. Immune responses to infectious diseases in bivalves. J. Invertebr. Pathol. 131, 121–136. https://doi.org/10.1016/j.jip.2015.05.005 (2015).Article 
    CAS 

    Google Scholar 
    Allam, B. & Pales Espinosa, E. Bivalve immunity and response to infections: Are we looking at the right place?. Fish Shellfish Immunol. 53, 4–12. https://doi.org/10.1016/j.fsi.2016.03.037 (2016).Article 
    CAS 

    Google Scholar 
    Qiu, L., Song, L., Xu, W., Ni, D. & Yu, Y. Molecular cloning and expression of a Toll receptor gene homologue from Zhikong Scallop, Chlamys farreri. Fish Shellfish Immunol. 22, 451–466 (2007).Article 
    CAS 

    Google Scholar 
    Zhang, L., Li, L., Zhu, Y., Zhang, G. & Guo, X. Transcriptome analysis reveals a rich gene set related to innate immunity in the eastern oyster (Crassostrea virginica). Mar. Biotechnol. 16, 17–33 (2014).Article 

    Google Scholar 
    Moreira, R. et al. Transcriptomics of in vitro immune-stimulated hemocytes from the Manila clam Ruditapes philippinarum using high-throughput sequencing. PLoS ONE 7, e35009 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Toubiana, M. et al. Toll-like receptors and MyD88 adaptors in Mytilus: Complete cds and gene expression levels. Dev. Comp. Immunol. 40, 158–166 (2013).Article 
    CAS 

    Google Scholar 
    He, Y. et al. Transcriptome analysis reveals strong and complex antiviral response in a mollusc. Fish Shellfish Immunol. 46, 131–144 (2015).Article 
    CAS 

    Google Scholar 
    Zhang, L. et al. Massive expansion and functional divergence of innate immune genes in a protostome. Sci. Rep. 5, 8693 (2015).Article 
    CAS 

    Google Scholar 
    Casadevall, A. & Pirofski, L. A. Host–pathogen interactions: The attributes of virulence. J. Infect. Dis. 184, 337–344. https://doi.org/10.1086/322044 (2001).Article 
    CAS 

    Google Scholar 
    Jones, B., Pascopella, L. & Falkow, S. Entry of microbes into the host: Using M cells to break the mucosal barrier. Curr. Opin. Immunol. 7, 474–478 (1995).Article 
    CAS 

    Google Scholar 
    Liévin-Le Moal, V. & Servin, A. L. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: Mucins, antimicrobial peptides, and microbiota. Clin. Microbiol. Rev. 19, 315–337. https://doi.org/10.1128/CMR.19.2.315-337.2006 (2006).Article 
    CAS 

    Google Scholar 
    Trigos, S., Vicente, N., Prado, P. & Espinós, F. J. Adult spawning and early larval development of the endangered bivalve Pinna nobilis. Aquaculture 483, 102–110 (2018).Article 

    Google Scholar 
    Vázquez-Luis, M., Nebot-Colomer, E., Deudero, S., Planes, S. & Boissin, E. Natural hybridization between pen shell species: Pinna rudis and the critically endangered Pinna nobilis may explain parasite resistance in P. nobilis. Mol. Biol. Rep. https://doi.org/10.1007/s11033-020-06063-5 (2021).Article 

    Google Scholar 
    Katsares, V., Tsiora, A., Galinou-Mitsoudi, S. & Imsiridou, A. Genetic structure of the endangered species Pinna nobilis (Mollusca: Bivalvia) inferred from mtDNA sequences. Biologia 63, 412–417 (2008).Article 
    CAS 

    Google Scholar 
    Gonzalez-Wanguemert, M. et al. Highly polymorphic microsatellite markers for the Mediterranean endemic fan mussel Pinna nobilis. Mediterr. Mar. Sci. 16, 31 (2014).Article 

    Google Scholar 
    Peyran, C., Planes, S., Tolou, N., Iwankow, G. & Boissin, E. Development of 26 highly polymorphic microsatellite markers for the highly endangered fan mussel Pinna nobilis and cross-species amplification. Mol. Biol. Rep. 47, 2551–2559 (2020).Article 
    CAS 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).Article 
    CAS 

    Google Scholar  More

  • in

    Author Correction: Adult sex ratios: causes of variation and implications for animal and human societies

    Department of Anthropology, East Carolina University, Greenville, NC, USARyan SchachtDepartment of Environmental Science, Policy and Management and Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720, USASteven R. BeissingerDepartment of Ecology and Evolution, University of Lausanne, 1015, Lausanne, SwitzerlandClaus WedekindEcology & Evolution, Research School of Biology, The Australian National University, Acton, Canberra, 2601, AustraliaMichael D. JennionsMARBEC Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, FranceBenjamin GeffroyELKH-PE Evolutionary Ecology Research Group, University of Pannonia, 8210, Veszprém, HungaryAndrás LikerBehavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, 8210, Veszprém, HungaryAndrás LikerBehavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primate Biology, 37077, Göttingen, GermanyPeter M. KappelerDepartment of Sociobiology/Anthropology, University of Göttingen, 37077, Göttingen, GermanyPeter M. KappelerGroningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The NetherlandsFranz J. WeissingDepartment of Anthropology, University of Utah, Salt Lake City, UT, USAKaren L. KramerInstitute of Global Health, University College London, London, UKTherese HeskethCentre for Global Health, Zhejiang University School of Medicine, Hangzhou, P.R. ChinaTherese HeskethIHPE Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, FranceJérôme BoissierStockholm University Demography Unit, Sociology Department, Stockholm University, 106 91, Stockholm, SwedenCaroline UgglaKem C. Gardner Policy Institute, David Eccles School of Business, University of Utah, Salt Lake City, UT, USAMike HollingshausMilner Centre for Evolution, University of Bath, Bath, BA2 7AY, UKTamás SzékelyELKH-DE Reproductive Strategies Research Group, Department of Zoology and Human Biology, University of Debrecen, H-4032, Debrecen, HungaryTamás Székely More

  • in

    The maternal effects of dietary restriction on Dnmt expression and reproduction in two clones of Daphnia pulex

    Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, McKnight R et al. (2008) Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol 41:91–102Article 
    CAS 

    Google Scholar 
    Alekseev V, Lampert W (2001) Maternal control of resting – egg production in Daphnia. Nature 414:899–901Article 
    CAS 

    Google Scholar 
    Anderson OS, Sant KE, Dolinoy DC (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutritional Biochem 23:853–859Article 
    CAS 

    Google Scholar 
    Agrawal AA, Laforsch C, Tollrian R (1999) Transgenerational induction of defenses in animals and plants. Nature 401:60–63Article 
    CAS 

    Google Scholar 
    Asselman J, De Coninck DIM, Vandegehuchte MB, Jansen M, Decaestecker E, De Meester L, Busshe JV, Vanhaecke L, Janssen CR, De Schamphelaere KAC (2015) Global cytosine methylation in Daphnia magna depends on genotype, environment, and their interaction. Environ Toxicol 34:5
    Google Scholar 
    Bernardo J (1996) Maternal effects in animal ecology. Am Zool 36:83–105Article 

    Google Scholar 
    Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412Article 
    CAS 

    Google Scholar 
    Bewick AJ, Vogel KJ, Moore AJ, Schmitz RJ (2017) Evolution of DNA methylation across insects. Mol Biol Evol 34:654–665CAS 

    Google Scholar 
    Bird A (2007) Perceptions of epigenetics. Nature 447:396–398Article 
    CAS 

    Google Scholar 
    Boersma M (1995) The allocation of resources to reproduction in Daphnia galeata: against the odds? Ecology 76(4):121–1261Article 

    Google Scholar 
    Boersma M (1997) Offspring size in Daphnia: does it pay to be overweight? Hydrobiologia 360:79–88Article 

    Google Scholar 
    Boycott AE, Diver C (1923) On the inheritance of the sinistrality in Limnea peregra. Proc R Soc Lond B 95:207–213Article 

    Google Scholar 
    Brett MT (1993) Resource quality effects on Daphnia longispina offspring fitness. J Plankton Res 15(4):403–412Article 

    Google Scholar 
    Burns CW (1995) Effects of crowding and different food levels on growth and reproductive investment of Daphnia. Oecologia 101:234–244Article 

    Google Scholar 
    Cameron NM, Shahrokh D, Del Corpo A, Dhir SK, Szyf M, Champagne FA, Meaney MJ (2008) Epigenetic programming of phenotypic variations in reproductive strategies in the rat through maternal care. J Neuroendocrinol 20:795–801Article 
    CAS 

    Google Scholar 
    Champagne FA (2012) Epigenetics and developmental plasticity across species. Dev Psychobiol 55:33–41Article 

    Google Scholar 
    Chan SY, Vasilopoulou E, Kilby MD (2009) The role of the placenta in thyroid hormone delivery to the fetus. Nat Clin Pract Endocrinol Metab 5:45–54Article 
    CAS 

    Google Scholar 
    Chong S, Whitelaw E (2004) Epigenetic germline inheritance. Curr Opin Genet Dev 14(6):692–696Article 
    CAS 

    Google Scholar 
    Clark J, Garbutt JS, McNally L, Little TJ (2017) Disease spread in age structured populations with maternal age effects. Ecol Lett 20:445–451Article 

    Google Scholar 
    Colbourne JK, Herbert PDN, Taylor DJ (1997) Evolutionary origins of phenotypic diversity. In: Givnish TJ, Systma KJ (eds) Daphnia in molecular evolution and adaptive radiation. Cambridge University Press. p 163–188Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH et al. (2011) The ecoresponsive genome of Daphnia pulex. Science 331(6017):555–561Article 
    CAS 

    Google Scholar 
    Desmarais KH (1997) Keeping Daphnia out of the surface film with cetyl alcohol. J Plankton Res 19(1):149–154Article 

    Google Scholar 
    Dorts J, Falisse E, Schoofs E, Flamion E, Kestermont P, Silvestre F (2016) DNA methyltransferases and stress-related genes expression in zebrafish larvae after exposure to heat and copper during reprogramming of DNA methylation. Sci Rep 6:34254Article 
    CAS 

    Google Scholar 
    Ducker GS, Rabinowitz JD (2016) One-carbon metabolism in health and disease. Cell Metab 25:27–42. https://doi.org/10.1016/j.cmet.2016.08Dudycha JL, Brandon CS, Deitz KC (2012) Population genomics of resource exploitation: insights from gene expression profiles of two Daphnia ecotypes fed alternate resources. Ecol Evol 2:329–340Dzialowski EM, Reed WL, Sotherland PR (2009) Effects of egg size on double-crested cormorant (Phalacrocorax auritus) egg composition and hatchling phenotype. Comp Biochem Physiol A Mol Integr Physiol 152:262–267Article 

    Google Scholar 
    Frost PC, Ebert D, Larson JH, Marcus MA, Wagner ND, Zalewski A (2010) Transgenerational effects of poor elemental food quality on Daphnia magna. Oecologia 162(4):865–872Article 

    Google Scholar 
    Gabsi F, Glazier DS, Hammers-Wirtz M, Ratte HT, Preuss TG (2014) How to interactive maternal traits and environmental factors determine offspring size in Daphnia magna?. Ann Limnol 50:9–18Article 

    Google Scholar 
    Garbutt JS, Little TJ (2016) Bigger is better: changes in body size explain a maternal effect of food on offspring disease resistance. Ecol Evolution 7:1403–1409Article 

    Google Scholar 
    Gibney ER, Nolan CM (2010) Epigenetics and gene expression. Heredity 105:4–13Article 
    CAS 

    Google Scholar 
    Gillis MK, Walsh MR (2019) Individual variation in plasticity dulls transgenerational responses to stress. Funct Ecol 33:1993–2002Glazier DS (1992) Effects of food, genotype, and maternal size and age on offspring investment in Daphnia magna. Ecology 73(3):910–926Article 

    Google Scholar 
    Gliwicz ZM, Guisande C (1992) Family planning in Daphnia: resistance to starvation in offspring born to mothers grown at different food levels. Oceologia 91:463–467Article 

    Google Scholar 
    Goos JM, Swain CJ, Munch SB, Walsh MR (2018) Maternal diet and age alter direct and indirect relationships between lifer-history traits across multiple generations. Funct Ecol 33:491–502Article 

    Google Scholar 
    Goulden CE, Horning LL (1980) Population oscillations and energy reserves in planktonic cladocera and their consequences to competition. Proc Natl Acad Sci USA 77:1716–1720Article 
    CAS 

    Google Scholar 
    Groothuis TG, Schwabl H (2008) Hormone-mediated maternal effects in birds: mechanisms matter but what do we know of them? Philos Trans R Soc Lond B Biol Sci 363:1647–1661Article 
    CAS 

    Google Scholar 
    Guisande C, Gliwicz ZM (1992) Egg size and clutch size in two Daphnia species at different food levels. J Plankton Res 14(7):997–1007Article 

    Google Scholar 
    Hearn J, Chow FW-N, Barton H, Tung M, Wilson P, Blaxter M et al. (2018) Daphnia magna microRNAs respond to nutritional stress and ageing but are not transgenerational. Mol Ecol 27:1402–1412Article 
    CAS 

    Google Scholar 
    Hearn J, Pearson M, Blaxter M, Wilson PJ, Little TJ (2019) Genome-wide methylation is modified by caloric restriction in Daphnia magna. BCM Genetics 20:197Hearn J, Plenderleith F, Little TJ (2021) DNA methylation differs extensively between strains of the same geographical origin and changes with age in Daphnia magna. Epigenetics Chromatin 14:4. https://doi.org/10.1186/s13072-020-00379-zHead JA (2014) Patterns of DNA methylation in animals: an ecotoxicological perspective. Integr Comp Biol 54:77–86Article 
    CAS 

    Google Scholar 
    Hebert PDN (1981) Obligate asexuality in Daphnia. Am Nate 117:784–789Article 

    Google Scholar 
    Herman JJ, Sultan SE (2016) DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc Biol Sci 283(1838):20160988. https://doi.org/10.1098/rspb.2016.0988Article 
    CAS 

    Google Scholar 
    Hiruta C, Nishida C, Tochinai S (2010) Abortive meiosis in the oogenesis of parthenogenetic Daphnia pulex. Chromosome Res 18:833–840Article 
    CAS 

    Google Scholar 
    Ho DH, Burggren WW (2010) Epigenetics and transgenerational transfer: a physiological perspective. J Exp Biol 213:3–16Article 
    CAS 

    Google Scholar 
    Ho DH (2008) Morphological and physiological developmental consequences of parental effects in the chicken embryo (Gallus gallus domesticus) and the zebrafish larva (Danio rerio). Diss: University of North TexasInnes DJ, Fox CJ, Winsor GL (2000) Avoiding the cost of males in obligately asexual Daphnia pulex (Leydig). Proc: Biol Sci 267(1447):991–997CAS 

    Google Scholar 
    Jeremias G, Barbosa J, Marques SM, De Schamphelaere KAC, Van Nieuwerburgh F, Deforce D, Gonçalves FJM, Pereira JL, Asselman J (2018) Transgenerational inheritance of dna hypomethylation in Daphnia magna in response to salinity stress. Environ Sci Technol 52(17):10114–10123Article 
    CAS 

    Google Scholar 
    Jian X, Yang W, Zhao S, Liang H, Zhao Y, Chen L et al. (2013) Maternal effects of inducible tolerance against the toxic cyanobacterium Microcystis aeruginosa in the grazer Daphnia carinata. Environ Pollut 178:142–146Article 

    Google Scholar 
    Keating KI (1985) The influence of vitamin-B12 deficiency on the reproduction of Daphnia-Pulex Leydig (Cladocera). J Crustacean Biol 5:30–136Article 

    Google Scholar 
    Kleiven OT, Larsson P, Hobaek A (1992) Sexual reproduction in Daphnia magna requires three stimulie. Oikos 65:197–206Article 

    Google Scholar 
    Kusari F, O’Doherty AM, Hodges NJ, Wojewodzic MW (2017) Bi-directional effects of vitamin B12 and methotrexate on Daphnia magna fitness and genomic methylation. Sci Rep 7:11872Article 

    Google Scholar 
    Kvist J, Athanasio CG, Solari OS, Brown JB, Colbourne JK, Pfrender ME, Mirbahai L (2018) Pattern of DNA methylation in Daphnia: evolutionary perspective. Genome Biol Evolution 10(8):1988–2007Article 
    CAS 

    Google Scholar 
    Lamka GF, Harder AM, Sundaram M, Schwartz TS, Christie MR, DeWoody JA, Willoughby JR (2022) Epigenetics in ecology, evolution, and conservation. Front Ecol Evol 10. https://doi.org/10.3389/fevo.2022.871791LaMontagne JM, McCauley E (2001) Maternal effects in Daphnia: what mothers are telling their offspring and do they listen. Ecol Lett 4:64–71Article 

    Google Scholar 
    Li Q, Jiang X (2014) Offspring tolerance to toxic Microcystis aeruginosa in Daphnia pulex shaped by maternal food availability and age. Fundam Appl Limnol 185:315–319Article 

    Google Scholar 
    Mastorci F, Vicentini M, Viltart O, Manghi M, Graiani G, Quaini Fet al. (2009) Long-term effects of prenatal stress: changes in adult cardiovascular regulation and sensitivity to stress. Neurosci Biobehav Rev 33:191–203Article 

    Google Scholar 
    Mkee D, Ebert D (1996) The interactive effects of temperature, food level and maternal phenotype on offspring size in Daphnia magna. Oecologia 107(2):189–196Article 

    Google Scholar 
    Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407Article 
    CAS 

    Google Scholar 
    Nguyen ND, Matsuura T, Kato Y, Watanabe H (2020) Caloric restriction upregulates the expression of DNMT3.1, lacking the conserved catalytic domain, in Daphnia magna. Genesis 58:12Article 

    Google Scholar 
    Nguyen ND, Matsuura T, Kato Y, Watanabe H (2021) DNMT3.1 controls trade-offs between growth, reproduction, and life span under starved conditions in Daphnia magna. Sci Rep 11:7326Article 
    CAS 

    Google Scholar 
    Nusslein-Volhard C, Frohnhofer HG, Lehmann R (1987) Determination of anteroposterior polarity in Drosophila. Science 238:1675–1681Article 
    CAS 

    Google Scholar 
    Pieters BJ, Liess M (2006) Maternal nutritional state determines the sensitivity of Daphnia magna offspring to short-term fenvalerate exposure. Aquat Toxicol 76:286–277Article 

    Google Scholar 
    R Core Team (2021) R: a language and environmental for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Richards EJ (2006) Inherited epigenetic variation – revisiting soft inheritance. Nat Rev Genet 7:395–401Article 
    CAS 

    Google Scholar 
    Stollewerk A (2010) The water flea Daphnia – a new model system for ecology and evolution? J Biol 9(2):21Article 

    Google Scholar 
    Sturtevant AH (1923) Inheritance of direction of coiling in Limnea. Science 58:269Article 
    CAS 

    Google Scholar 
    Suter MA, Chen A, Burdine MS, Choudhury M, Harris RA, Lane RH et al. (2012) A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates. FASEB J 26:5106–5114Article 
    CAS 

    Google Scholar 
    Tessier AJ, Consolatti NL (1989) Variation in offspring size in Daphnia and consequences for individual fitness. Oikos 56:269–276Article 

    Google Scholar 
    Tessier AJ, Consolatti NL (1991) Resource quantity and offspring quality in Daphnia. Ecology 72(2):468–478Article 

    Google Scholar 
    Trerotola M, Relli V, Simeone P, Alberti S (2015) Epigenetic inheritance and the missing heritability. Hum Genomics 9(1):17. https://doi.org/10.1186/s40246-015-0041-3Article 
    CAS 

    Google Scholar 
    Trijau M, Asselman J, Armant O, Adam-Guillermin C, De Schamphelaere KAC, Alonzo F (2018) Transgenerational DNA methylation changes in Daphnia magna exposed to chronic γ irradiation. Environ Sci Technol 52(7):4331–4339Article 
    CAS 

    Google Scholar 
    Urabe J, Sterner RW (2001) Contrasting effects of different types of resource depletion on life-history traits in Daphnia. Funct Ecol 15:165–174Article 

    Google Scholar 
    Vandegehuchte MB, Kyndt T, Vanholme B, Haegeman A, Gheysen G, Janssen CR (2009a) Occurrence of DNA methylation in Daphnia magna and influence of multigeneration Cd exposure. Environ Int 35(4):700–706Article 
    CAS 

    Google Scholar 
    Vandegehuchte MB, Lemiere F, Janssen CR (2009b) Quantitative DNA-methylation in Daphnia magna and effects of multigeneration Zn exposure. Comp Biochem Physiol C Toxicol Pharmacol 150:343–348Article 
    CAS 

    Google Scholar 
    Vandegehuchte MB, Janssen CR (2011) Epigenetics and its implications for ecotoxicology. Ecotoxicology 20:607–624Article 
    CAS 

    Google Scholar 
    Vandegehuchte MB, Janssen CR (2014) Epigenetics in an ecotoxicological context. Mutat Res Genet Toxicol Environ Mutagen 764–765:36–45Article 

    Google Scholar 
    Walsh MR, La Pierre KJ, Post DM (2014) Phytoplankton composition modifies predator-driven life history evolution in Daphnia. Evol Ecol 28:397–411Article 

    Google Scholar 
    Walsh MR, Cooley F, Biles K, Munch SB (2015) Predator-induced phenotypic plasticity within- and across generations: a challenge for theory? Proc R Soc B Biol Sci 282:20142205Article 

    Google Scholar 
    Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.orgWolf JB, Wade MJ (2009) What are maternal effects (and what are they not)? Philos Trans R Soc Lond B Biol Sci 364(1520):1107–1115Article 

    Google Scholar 
    Zaffagnini F (1987) Reproduction in Daphnia. Mem Ist Ital Idrobiol 45:245–284
    Google Scholar 
    Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12(8):1045–1062Article 

    Google Scholar  More

  • in

    Widespread herbivory cost in tropical nitrogen-fixing tree species

    Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Chang. 4, 471–476 (2014).Article 
    ADS 

    Google Scholar 
    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).Article 

    Google Scholar 
    Levy-Varon, J. H. et al. Tropical carbon sink accelerated by symbiotic dinitrogen fixation. Nat. Commun. 10, 5637 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).Article 
    ADS 

    Google Scholar 
    Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. The nitrogen paradox in tropical forest ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 613–635 (2009).Article 

    Google Scholar 
    Menge, D. N. L. et al. Patterns of nitrogen-fixing tree abundance in forests across Asia and America. J. Ecol. 107, 2598–2610 (2019).Article 
    CAS 

    Google Scholar 
    Matson, W. J.Jr Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119–161 (1980).Article 

    Google Scholar 
    Coley, P. D., Bateman, M. L. & Kusar, T. A. The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos 115, 219–228 (2006).Article 

    Google Scholar 
    Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Barron, A. R., Purves, D. W. & Hedin, L. O. Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165, 511–520 (2011).Article 
    ADS 

    Google Scholar 
    McCulloch, L. A. & Porder, S. Light fuels while nitrogen suppresses symbiotic nitrogen fixation hotspots in neotropical canopy gap seedlings. New Phytol. 231, 1734–1745 (2021).Article 
    CAS 

    Google Scholar 
    Brookshire, E. N. J. et al. Symbiotic N fixation is sufficient to support net aboveground biomass accumulation in a humid tropical forest. Sci Rep. 9, 7571 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Gei, M. et al. Legume abundance along successional and rainfall gradients in Neotropical forests. Nat. Ecol. Evol. 2, 1104–1111 (2018).Article 

    Google Scholar 
    Vance, C. P. in Nitrogen-fixing Leguminous Symbioses. Nitrogen Fixation: Origins, Applications, and Research Progress, Vol. 7 (eds Dilworth, M. J. et al.) (Springer, 2008).Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).Article 

    Google Scholar 
    Menge, D. N. L., Levin, S. A. & Hedin, L. O. Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation. Proc. Natl Acad. Sci. USA 105, 1573–1578 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Sheffer, E., Batterman, S. A., Levin, S. A. & Hedin, L. O. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. Nat. Plants 1, 15182 (2015).Article 
    CAS 

    Google Scholar 
    Vitousek, P. M. & Field, C. B. Ecosystem constraints to symbiotic nitrogen fixers: a simple model and its implications. Biogeochemistry 46, 179–202 (1999).Article 
    CAS 

    Google Scholar 
    Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).Article 

    Google Scholar 
    Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).Article 
    ADS 

    Google Scholar 
    Batterman, S. A. et al. Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees. Ecol. Lett. 21, 1486–1495 (2018).Article 

    Google Scholar 
    Menge, D. N. L., Wolf, A. A. & Funk, J. L. Diversity of nitrogen fixation strategies in Mediterranean legumes. Nat. Plants 1, 15064 (2015).Article 
    CAS 

    Google Scholar 
    Ritchie, M. E. & Tilman, D. Responses of legumes to herbivores and nutrients during succession on a nitrogen-poor soil. Ecol. Soc. Am. 76, 2648–2655 (1995).
    Google Scholar 
    Taylor, B. N. & Ostrowsky, L. R. Nitrogen-fixing and non-fixing trees differ in leaf chemistry and defence but not herbivory in a lowland Costa Rican rain forest. J. Trop. Ecol. 35, 270–279 (2019).Article 

    Google Scholar 
    Endara, M.-J. et al. Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. Proc. Natl Acad. Sci. USA 114, E7499–E7505 (2017).Article 
    CAS 

    Google Scholar 
    Kursar, T. A. & Coley, P. D. Convergence in defense syndromes of young leaves in tropical rainforests. Biochem. Syst. Ecol. 31, 929–949 (2003).Article 
    CAS 

    Google Scholar 
    Kursar, T. A. et al. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc. Natl Acad. Sci. USA 106, 18073–18078 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Taylor, B. N. & Menge, D. N. L. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nat. Plants 4, 655–661 (2018).Article 
    CAS 

    Google Scholar 
    Adams, M., Turnbull, T., Sprent, J. & Buchmann, N. Legumes are different: leaf nitrogen, photosynthesis, and water use efficiency. Proc. Natl Acad. Sci. USA 113, 4098–4103 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Coley, P. D. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74, 531–536 (1988).Article 
    ADS 
    CAS 

    Google Scholar 
    Batterman, S. A., Wurzburger, N. & Hedin, L. O. Nitrogen and phosphorus interact to control tropical symbiotic N2 fixation: a test in Inga punctata. J. Ecol. 101, 1400–1408 (2013).Article 
    CAS 

    Google Scholar 
    Eichhorn, M. P., Nilus, R., Compton, S. G., Hartley, S. E. & Burslem, D. F. R. P. Herbivory of tropical rain forest tree seedlings correlates with future mortality. Ecology 91, 1092–1101 (2010).Article 

    Google Scholar 
    Wink, M. Evolution of secondary metabolites in legumes (Fabaceae). South African J. Bot. 89, 164–175 (2013).Article 
    CAS 

    Google Scholar 
    Currano, E. D. & Jacobs, B. F. Bug-bitten leaves from the early Miocene of Ethiopia elucidate the impacts of plant nutrient concentrations and climate on insect herbivore communities. Glob. Planet. Change 207, 103655 (2021).Article 

    Google Scholar 
    Wieder, W. R., Cleveland, C. C., Lawrence, D. M. & Bonan, G. B. Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study. Environ. Res. Lett. 10, 044016 (2015).Article 
    ADS 

    Google Scholar 
    Sprent, J. I. Legume Nodulation: A Global Perspective (John Wiley, 2009).Leigh, E. G. Jr Tropical Forest Ecology: A View from Barro Colorado Island (Oxford Univ. Press, 1999).Comita, L. S., Muller-Landau, H. C., Aguilar, S. & Hubbell, S. P. Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329, 330–332 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Queenborough, S. A., Metz, M. R., Valencia, R. & Wright, S. J. Demographic consequences of chromatic leaf defence in tropical tree communities: do red young leaves increase growth and survival? Ann. Bot. 112, 677–684 (2013).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).Article 
    CAS 

    Google Scholar 
    Pasquini, S. C. & Santiago, L. S. Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. Oecologia 168, 311–319 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Collalti, A. & Prentice, I. C. Is NPP proportional to GPP? Waring’s hypothesis 20 years on. Tree Physiol. 39, 1473–1483 (2019).Article 
    CAS 

    Google Scholar 
    Westbrook, J. W. et al. What makes a leaf tough? Patterns of correlated evolution between leaf toughness traits and demographic rates among 197 shade-tolerant woody species in a Neotropical forest. Am. Nat. 177, 800–811 (2011).Article 

    Google Scholar 
    Wright, S. J. et al. Functional traits and the growth–mortality trade‐off in tropical trees. Ecology 91, 3664–3674 (2010).Article 

    Google Scholar 
    Kitajima, K. et al. How cellulose-based leaf toughness and lamina density contribute to long leaf lifespans of shade-tolerant species. New Phytol. 195, 640–652 (2012).Article 

    Google Scholar 
    Kitajima, K., Wright, S. J. & Westbrook, J. W. Leaf cellulose density as the key determinant of inter- and intra-specific variation in leaf fracture toughness in a species-rich tropical forest. Interface Focus https://doi.org/10.1098/rsfs.2015.0100 (2016).Sedio, B. E., Echeverri, J. C. R., Boya, C. A. & Wright, S. J. Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology 98, 616–623 (2017).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).Article 

    Google Scholar 
    Murphy, S. J., Xu, K. & Comita, L. S. Tree seedling richness, but not neighborhood composition, influences insect herbivory in a temperate deciduous forest community. Ecol. Evol. 6, 6310–6319 (2016).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Preprint at https://arxiv.org/abs/1406.5823 (2014).Moles, A. T. & Westoby, M. Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90, 517–524 (2000).Article 

    Google Scholar 
    Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. https://doi.org/10.18637/jss.v080.i01 (2017). More

  • in

    DNA reveals that mastodons roamed a forested Greenland two million years ago

    RESEARCH BRIEFINGS
    07 December 2022

    Ancient environmental DNA from northern Greenland opens a new chapter in genetic research, demonstrating that it is possible to track the ecology and evolution of biological communities two million years ago. The record shows an open boreal-forest ecosystem inhabited by large animals such as mastodons and reindeer. More