Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses
Predictors of reservoir statusOur analyses include all known rodent reservoirs for zoonotic pathogens (282 species). These reservoirs harbour a total of 95 known zoonotic pathogens (34 viruses, 26 bacteria, 17 helminths, 12 protozoa and six fungi) employing all known modes of transmission (43 vector-borne, 32 close-contact, 28 non-close contact, and 13 using multiple transmission modes) (Supplementary Data 2). Compared to presumed non-reservoirs (species currently not known to harbour any zoonotic pathogens), we observed that reservoir rodents are strikingly synanthropic (Figs. 2, 3a, Table 1). Despite potential geographic biases, and the general possibility that synanthropic species are better studied compared to non-synanthropic species (see Sampling bias and Supplementary Figs. 1, 2), synanthropy emerged as a defining characteristic of nearly all (95%) currently known rodent reservoirs. Of the 155 synanthropic species, only six are considered as truly synanthropic, i.e., predominately, if not exclusively, occurring in or near human dwellings, while the remaining species only occasionally show synanthropic behaviour (Supplementary Data 1).Fig. 2: Predictors of reservoir status.Final structural equation model linking reservoir status of rodent species (n = 269) with their synanthropy and hunting status, population fluctuations (s-index, log-transformed), and adult body mass, controlling for their occurrence in a range of habitats and the number of studies available per species. One-sided (directional) arrows represent a causal influence originating from the variable at the base of the arrow, with the width of the arrow and associated value representing the standardised strength of the relationship. The small double-sided arrows and numbers next to each response (endogenous) variable represent the error variance.Full size imageFig. 3: Characteristics of reservoir and synanthropic rodents.a Reservoir rodents are predominately synanthropic (n = 436 with n (non-reservoir) = 154, n (reservoir) = 282). b Synanthropic rodents display high population fluctuations (high s-index) (n = 269) and c, occur in multiple artificial habitats (n = 269) (Tables 1–3). In a, estimated probability and 95% confidence intervals are shown and in b–c, estimated probability is shown and shaded areas show 95 % confidence intervals.Full size imageTable 1 Summary of best-fit generalized linear mixed effects model for reservoir status (n = 436)Full size tableCompared to non-reservoirs, we also found that rodent reservoirs are disproportionately exploited by humans (hunted for meat and fur). Seventy-two of the regularly hunted rodent species (n = 83) are reservoirs (87%), and hunted rodent species harbour on average five times the number of zoonotic pathogens than non-hunted species (Table 2).Table 2 Summary of rodent characteristics divided by rodent group with respect to hunting, reservoir status, and synanthropic behaviourFull size tableWe explored causal pathways using a structural equation model (SEM) linking synanthropy, reservoir status, and their hypothesized predictors. The final model, which we established a priori, had 17 free parameters and 21 degrees of freedom (n = 269). The model fit, based on the SRMR (standardized root mean squared residual) and the RMSEA (root mean squared error of approximation) indicated a good fit (see Methods). From the initially formulated full model, the pathways linking reservoir status to population fluctuations (s-index, Methods), occurrence in grasslands, number of artificial habitats a species occurs in, and number of studies found per species were not significant and thus removed from the final model (Supplementary Fig. 3). Similarly, pathways linking synanthropy and occurrence in grasslands were not significant and also removed. All reported coefficients for pathways are standardized to facilitate comparisons among the different relationships. The relationships and coefficients below all refer to those in the final model.The focal variable in the model was reservoir status, which was strongly and positively associated with synanthropy and had the highest estimated pathway coefficient (standardised estimate = 0.58, 95% CI 0.49–0.66, Fig. 2). Controlling for synanthropy, species were more likely to be a reservoir with increasing adult weight (0.13, 0.04–0.22). Species that occur in savanna were less likely to be reservoirs (−0.13, −0.22 to −0.04), while hunted species were more likely to be reservoirs (Fig. 2, 0.20, 0.11–0.30).Synanthropy was influenced by four habitat variables: a species was more likely to be synanthropic if it occurs in a higher number of artificial habitats (0.17, 0.04–0.31), and occurs in urban areas (0.14, 0.01–0.27), deserts (0.12, 0.01–0.23), or forests (0.13, 0.02–0.24). Notably, species with higher s-index, and thus larger population fluctuations, were more likely to be synanthropic (0.12, 0.01–0.22), and the s-index itself decreased as adult weight increased (−0.16, −0.27 to −0.04). Finally, hunted species were characterized by higher adult bodyweight (0.35, 0.25–0.44) (Fig. 2).The number of studies per species was positively associated with both a species’ synanthropic behaviour (0.29, 0.19–0.39) and its reservoir status (0.09, 0.00– 0.19), albeit with weaker evidence for the latter effect (p = 0.054) (Fig. 2),The confirmatory generalized linear mixed effects models (GLMMs) (Tables 1, 3), which control for correlation among species within the same family, showed that our SEM results were robust. Indeed, synanthropy was a significant predictor of reservoir status. These models underscore synanthropy as the most important predictor of reservoir status in our analysis (Table 1, Figs. 2–3).Table 3 Summary of best-fit generalized linear mixed effects model for synanthropic status (n = 269)Full size tablePopulation fluctuations affect transmission riskOur newly compiled data on the magnitude of population fluctuations enabled comparative investigations beyond theoretically straightforward predictions that transmission risk increases with reservoir abundance for density-dependent systems. We show that while strong population fluctuations (measured as the s-index) are found frequently in both reservoir and non-reservoir rodents (Table 2), synanthropic rodents exhibit much larger population fluctuations compared to non-synanthropic rodents (Table 2, Figs. 2–3). This pattern was apparent despite broad confidence intervals in the relationship between the s-index and the probability of being synanthropic (Fig. 3b, Tables 2, 3). Taken together, our results suggest that larger population fluctuations in reservoir species increase zoonotic transmission risk via synanthropic behaviours of rodents, thereby increasing the likelihood of zoonotic spillover infection to humans.Habitat generalism and habitat transformation increase transmission riskWe also find that reservoir species thrive in human-created (artificial) habitats (Fig. 3a, c, Tables 2–3), which reflects a general flexibility in their use of diverse habitat types compared to non-reservoir species (Fig. 4a, Table 2). In addition, the number of zoonotic pathogens harboured by a rodent species increased with habitat breadth (r436 = 0.34, p More