Tree species composition mapping with dimension reduction and post-classification using very high-resolution hyperspectral imaging
Vo, Q. T., Oppelt, N., Leinenkugel, P. & Kuenzer, C. Remote sensing in mapping mangrove ecosystems: An object-based approach. Remote Sens. 5, 183–201. https://doi.org/10.3390/rs5010183 (2013).Article
Google Scholar
Kertész, Á. & Křeček, J. Landscape degradation in the world and in Hungary. Hung. Geogr. Bull. 68, 201–221. https://doi.org/10.15201/hungeobull.68.3.1 (2019).Article
Google Scholar
Vorster, A. G., Evangelista, P. H., Stovall, A. E. L. & Ex, S. Variability and uncertainty in forest biomass estimates from the tree to landscape scale: The role of allometric equations. Carbon Balance Manag. 15, 8. https://doi.org/10.1186/s13021-020-00143-6 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Blackman, A. Evaluating forest conservation policies in developing countries using remote sensing data: An introduction and practical guide. For. Policy Econ. 34, 1–16. https://doi.org/10.1016/j.forpol.2013.04.006 (2013).Article
Google Scholar
Wilfong, B. N., Gorchov, D. L. & Henry, M. C. Detecting an invasive shrub in deciduous forest understories using remote sensing. Weed Sci. 57, 512–520. https://doi.org/10.1614/WS-09-012.1 (2009).Article
CAS
Google Scholar
Dyderski, M. K. & Pawlik, Ł. Spatial distribution of tree species in mountain national parks depends on geomorphology and climate. For. Ecol. Manag. 474, 118366. https://doi.org/10.1016/j.foreco.2020.118366 (2020).Article
Google Scholar
Milosevic, D., Dunjić, J. & Stojanović, V. Investigating micrometeorological differences between saline steppe, forest-steppe and forest environments in northern Serbia during a clear and sunny autumn day. Geogr. Pannonica 24(3), 176–186. https://doi.org/10.5937/gp24-25885 (2020).Article
Google Scholar
Modzelewska, A., Fassnacht, F. E. & Stereńczak, K. Tree species identification within an extensive forest area with diverse management regimes using airborne hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 84, 101960. https://doi.org/10.1016/j.jag.2019.101960 (2020).Article
Google Scholar
Wulder, M. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Prog. Phys. Geogr. Earth Environ. 22, 449–476. https://doi.org/10.1177/030913339802200402 (1998).Article
Google Scholar
Tang, L., Shao, G. & Dai, L. Roles of digital technology in China’s sustainable forestry development. Int. J. Sustain. Dev. World Ecol. 16, 94–101. https://doi.org/10.1080/13504500902794000 (2009).Article
Google Scholar
Richter, R., Reu, B., Wirth, C., Doktor, D. & Vohland, M. The use of airborne hyperspectral data for tree species classification in a species-rich Central European forest area. Int. J. Appl. Earth Obs. Geoinform. 52, 464–474. https://doi.org/10.1016/j.jag.2016.07.018 (2016).Article
Google Scholar
Thenkabail, P., Gumma, M., Teluguntla, P. & Ahmed, M. I. Hyperspectral remote sensing of vegetation and agricultural crops. Photogramm. Eng. Remote Sens. 80, 695–723 (2014).
Google Scholar
Fassnacht, F. E. et al. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 186, 64–87. https://doi.org/10.1016/j.rse.2016.08.013 (2016).Article
Google Scholar
Vangi, E. et al. The new hyperspectral satellite PRISMA: Imagery for forest types discrimination. Sensors 21, 1182. https://doi.org/10.3390/s21041182 (2021).Article
PubMed
PubMed Central
Google Scholar
Burai, P., Beko, L., Lenart, C., Tomor, T. & Kovacs, Z. Individual tree species classification using airborne hyperspectral imagery and lidar data. In 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS) 1–4. https://doi.org/10.1109/WHISPERS.2019.8921016 (2019).Kumar, B., Dikshit, O., Gupta, A. & Singh, M. K. Feature extraction for hyperspectral image classification: A review. Int. J. Remote Sens. 41, 6248–6287. https://doi.org/10.1080/01431161.2020.1736732 (2020).Article
Google Scholar
Li, X., Li, Z., Qiu, H., Hou, G. & Fan, P. An overview of hyperspectral image feature extraction, classification methods and the methods based on small samples. Appl. Spectrosc. Rev. https://doi.org/10.1080/05704928.2021.1999252 (2021).Article
Google Scholar
Wang, J. & Chang, C.-I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 44, 1586–1600. https://doi.org/10.1109/TGRS.2005.863297 (2006).Article
Google Scholar
Hamada, Y., Stow, D. A., Coulter, L. L., Jafolla, J. C. & Hendricks, L. W. Detecting Tamarisk species (Tamarix spp.) in riparian habitats of Southern California using high spatial resolution hyperspectral imagery. Remote Sens. Environ. 109, 237–248. https://doi.org/10.1016/j.rse.2007.01.003 (2007).Article
Google Scholar
Ibarrola-Ulzurrun, E., Marcello, J. & Gonzalo-Martin, C. Assessment of component selection strategies in hyperspectral imagery. Entropy 19, 666. https://doi.org/10.3390/e19120666 (2017).Article
MathSciNet
Google Scholar
Dabiri, Z. & Lang, S. Comparison of independent component analysis, principal component analysis, and minimum noise fraction transformation for tree species classification using APEX hyperspectral imagery. ISPRS Int. J. Geo-Inf. 7, 488. https://doi.org/10.3390/ijgi7120488 (2018).Article
Google Scholar
Priyadarshini, K. N., Sivashankari, V., Shekhar, S. & Balasubramani, K. Comparison and evaluation of dimensionality reduction techniques for hyperspectral data analysis. Proceedings 24, 6. https://doi.org/10.3390/IECG2019-06209 (2019).Article
Google Scholar
Arslan, O., Akyürek, Ö., Kaya, Ş & Şeker, D. Z. Dimension reduction methods applied to coastline extraction on hyperspectral imagery. Geocarto Int. 35, 376–390. https://doi.org/10.1080/10106049.2018.1520920 (2020).Article
Google Scholar
Kadavi, P. R., Lee, W.-J. & Lee, C.-W. Analysis of the pyroclastic flow deposits of mount sinabung and Merapi using landsat imagery and the artificial neural networks approach. Appl. Sci. 7, 935. https://doi.org/10.3390/app7090935 (2017).Article
Google Scholar
Schlosser, A. D. et al. Building extraction using orthophotos and dense point cloud derived from visual band aerial imagery based on machine learning and segmentation. Remote Sens. 12, 2397. https://doi.org/10.3390/rs12152397 (2020).Article
Google Scholar
Latifi, H., Fassnacht, F. & Koch, B. Forest structure modeling with combined airborne hyperspectral and LiDAR data. Remote Sens. Environ. 121, 10–25. https://doi.org/10.1016/j.rse.2012.01.015 (2012).Article
Google Scholar
Clark, M. L., Roberts, D. A. & Clark, D. B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 96, 375–398. https://doi.org/10.1016/j.rse.2005.03.009 (2005).Article
Google Scholar
Melgani, F. & Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42, 1778–1790. https://doi.org/10.1109/ICIECS.2009.5363456 (2004).Article
Google Scholar
Belgiu, M. & Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011 (2016).Article
Google Scholar
Manandhar, R., Odeh, I. O. A. & Ancev, T. Improving the accuracy of land use and land cover classification of landsat data using post-classification enhancement. Remote Sens. 1, 330–344. https://doi.org/10.3390/rs1030330 (2009).Article
Google Scholar
Thakkar, A. K., Desai, V. R., Patel, A. & Potdar, M. B. Post-classification corrections in improving the classification of Land Use/Land Cover of arid region using RS and GIS: The case of Arjuni watershed, Gujarat, India. Egypt. J. Remote Sens. Space Sci. 20, 79–89. https://doi.org/10.1016/j.ejrs.2016.11.006 (2017).Article
Google Scholar
El-Hattab, M. M. Applying post classification change detection technique to monitor an Egyptian coastal zone (Abu Qir Bay), Egypt. J. Remote Sens. Space Sci. 19, 23–36. https://doi.org/10.1016/j.ejrs.2016.02.002 (2016).Article
Google Scholar
Bhosale, N., Manza, R., Kale, K., Scholar, R. & Professor, A. Analysis of effect of gaussian, salt and pepper noise removal from noisy remote sensing images. Pceedings of teh Second International Conference on ERCICA 386–390. http://rameshmanza.in/Publication/Narayan_Bhosle/Analysis%20of%20Effect%20of%20Gaussian.pdf (2014).Schöll, K., Kiss, A., Dinka, M. & Berczik, Á. Flood-pulse effects on zooplankton assemblages in a river-floodplain system (Gemenc Floodplain of the Danube, Hungary). Int. Rev. Hydrobiol. 97, 41–54. https://doi.org/10.1002/iroh.201111427 (2012).Article
Google Scholar
Ágoston-Szabó, E., Schöll, K., Kiss, A. & Dinka, M. The effects of tree species richness and composition on leaf litter decomposition in a Danube oxbow lake (Gemenc, Hungary). Fundam. Appl. Limnol. https://doi.org/10.1127/fal/2017/0675 (2017).Article
Google Scholar
Guti, G. Water bodies in the Gemenc floodplain of the Danube, Hungary: (A theoretical basis for their typology). Opusc Zool. 33, 49–60 (2001).
Google Scholar
Berczik, Á. & Dinka, M. Bibliography of hydrobiological research on the Gemenc and Béda: Karapancsa floodplains of the River Danube (1498–1436 rkm) including the publications of the Danube Research Institute of the Hungarian Academy of Sciences between 1968 and 2017. Opusc. Zool. 49, 191–197. https://doi.org/10.18348/opzool.2018.2.191 (2018).Article
Google Scholar
Ceulemans, R., McDonald, A. J. S. & Pereira, J. S. A comparison among eucalypt, poplar and willow characteristics with particular reference to a coppice, growth-modelling approach. Biomass Bioenergy 11, 215–231. https://doi.org/10.1016/0961-9534(96)00035-9 (1996).Article
Google Scholar
Haneca, K., Katarina, Č & Beeckman, H. Oaks, tree-rings and wooden cultural heritage: A review of the main characteristics and applications of oak dendrochronology in Europe. J. Archaeol. Sci. 36, 1–11. https://doi.org/10.1016/j.jas.2008.07.005 (2009).Article
Google Scholar
Jones, T. G., Coops, N. C. & Sharma, T. Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada. Remote Sens. Environ. 114, 2841–2852. https://doi.org/10.1016/j.rse.2010.07.002 (2010).Article
Google Scholar
Sothe, C. et al. Tree species classification in a highly diverse subtropical forest integrating UAV-based photogrammetric point cloud and hyperspectral data. Remote Sens. 11, 1338. https://doi.org/10.3390/rs11111338 (2019).Article
Google Scholar
Nambiar, E. K. S. & Sands, R. Competition for water and nutrients in forests. Can. J. For. Res. 23, 1955–1968. https://doi.org/10.1139/x93-247 (1993).Article
Google Scholar
Mayoral, C., Calama, R., Sánchez-González, M. & Pardos, M. Modelling the influence of light, water and temperature on photosynthesis in young trees of mixed Mediterranean forests. New For. 46, 485–506. https://doi.org/10.1007/s11056-015-9471-y (2015).Article
Google Scholar
Stojanović, D. B., Levanič, T., Matović, B. & Orlović, S. Growth decrease and mortality of oak floodplain forests as a response to change of water regime and climate. Eur. J. For. Res. 134, 555–567. https://doi.org/10.1007/s10342-015-0871-5 (2015).Article
Google Scholar
Dyderski, M. K. & Jagodziński, A. M. Impact of invasive tree species on natural regeneration species composition, diversity, and density. Forests 11, 456. https://doi.org/10.3390/f11040456 (2020).Article
Google Scholar
Jia, S., Ji, Z., Qian, Y. & Shen, L. Unsupervised band selection for hyperspectral imagery classification without manual band removal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5, 531–543. https://doi.org/10.1109/JSTARS.2012.2187434 (2012).Article
Google Scholar
Karpouzli, E. & Malthus, T. The empirical line method for the atmospheric correction of IKONOS imagery. Int. J. Remote Sens. 24, 1143–1150. https://doi.org/10.1080/0143116021000026779 (2003).Article
Google Scholar
Richards, J. A. Remote Sensing Digital Image Analysis (Springer, 2013). https://doi.org/10.1007/978-3-642-30062-2.Book
Google Scholar
Sharifi Hashjin, S. & Khazai, S. A new method to detect targets in hyperspectral images based on principal component analysis. Geocarto Int. 37, 2679–2697. https://doi.org/10.1080/10106049.2020.1831625 (2022).Article
Google Scholar
Kaiser, H. F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187–200 (1958).Article
MATH
Google Scholar
Shah, C. A., Arora, M. K. & Varshney, P. K. Unsupervised classification of hyperspectral data: An ICA mixture model based approach. Int. J. Remote Sens. 25, 481–487. https://doi.org/10.1080/01431160310001618040 (2004).Article
Google Scholar
Tharwat, A. Independent component analysis: An introduction. Appl. Comput. Inform. 17, 222–249. https://doi.org/10.1016/S1364-6613(00)01813-1 (2020).Article
Google Scholar
Villa, A., Chanussot, J., Jutten, C., Benediktsson, J. A. & Moussaoui, S. On the use of ICA for hyperspectral image analysis. In 2009 IEEE International Geoscience and Remote Sensing Symposium vol. 4 IV-97-IV–100. https://doi.org/10.1109/IGARSS.2009.5417363 (2009).Hyvärinen, A. & Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 13, 411–430. https://doi.org/10.1016/s0893-6080(00)00026-5 (2000).Article
PubMed
Google Scholar
Otukei, J. R. & Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 12, S27–S31. https://doi.org/10.1016/j.jag.2009.11.002 (2010).Article
Google Scholar
Murty, M. N. & Raghava, R. Kernel-based SVM. In Support Vector Machines and Perceptrons: Learning, Optimization, Classification, and Application to Social Networks (eds Murty, M. N. & Raghava, R.) 57–67 (Springer, 2016). https://doi.org/10.1007/978-3-319-41063-0_5.Chapter
MATH
Google Scholar
Seidl, D., Ružiak, I., Koštialová Jančíková, Z. & Koštial, P. Sensitivity analysis: A tool for tailoring environmentally friendly materials. Expert Syst. Appl. 208, 118039. https://doi.org/10.1016/j.eswa.2022.118039 (2022).Article
Google Scholar
Zhao, D., Pang, Y., Liu, L. & Li, Z. Individual tree classification using airborne LiDAR and hyperspectral data in a natural mixed forest of Northeast China. Forests 11, 303. https://doi.org/10.3390/f11030303 (2020).Article
Google Scholar
Aksoy, S. & Akcay, H. G. Multi-resolution segmentation and shape analysis for remote sensing image classification. In Proceedings of 2nd International Conference on Recent Advances in Space Technologies, 2005. RAST 2005. 599–604 (2005). https://doi.org/10.1109/RAST.2005.1512638.Dalponte, M., Ørka, H. O., Ene, L. T., Gobakken, T. & Næsset, E. Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sens. Environ. 140, 306–317. https://doi.org/10.1016/j.rse.2013.09.006 (2014).Article
Google Scholar
Amini, S., Homayouni, S., Safari, A. & Darvishsefat, A. A. Object-based classification of hyperspectral data using Random Forest algorithm. Geo-Spat. Inf. Sci. 21, 127–138. https://doi.org/10.1080/10095020.2017.1399674 (2018).Article
Google Scholar
Congalton, R. G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35–46. https://doi.org/10.1016/0034-4257(91)90048-B (1991).Article
Google Scholar
Foody, G. M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 80, 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4 (2002).Article
Google Scholar
Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 17, 168–192. https://doi.org/10.1016/j.aci.2018.08.003 (2020).Article
Google Scholar
Field, F. Discovering Statistics Using IBM SPSS Statistics. SAGE Publications Ltd https://uk.sagepub.com/en-gb/eur/discovering-statistics-using-ibm-spss-statistics/book257672 (2022).R Core Team. R: A language and environment for statistical computing. https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing (2022).Galucci, M. Generalized Mixed Models module. R package version 2.0.5. https://gamlj.github.io/gzlmmixed.html More