More stories

  • in

    Algal sensitivity to nickel toxicity in response to phosphorus starvation

    Effect of phosphorus starved cultures of Dunaliella tertiolecta on growth represented as optical density under stress of nickel ionsIn the case of normal culture, phosphorus starved control culture (without nickel stress), and phosphorus-starved treated cultures, data presented in Table 1 and graphed in figure (S1, Supplementary Data) clearly showed a progressive increase in optical density with increasing culturing period in case of normal culture, phosphorus-starved control culture, and phosphorus-starved treated cultures. Our findings are consistent with those of18 who found that in phosphorus starved cultures of three algae species, Microcystic aeruginosa, Chlorella pyrenoidesa, and Cyclotella sp., the biomass, specific growth rate, and Chl-a all declined significantly.The optical density achieved during the four periods of culturing was lower in phosphorus-depleted control cultures than in normal cultures (i.e., cultures contained phosphorus). When compared to a normal control (without nickel addition), the optical density was reduced by 9.1% after 4 days of culturing under phosphorus deprivation and by 10.0 percent after 8 days of culturing. In the case of 5 mg/L dissolved nickel, however, the obtained optical density values in phosphorus starved treatment cultures rose with the increase in culturing period during all culturing periods as compared to phosphorus-starved control (without nickel addition) cultures.At 10 mg/L dissolved nickel and after 4 days of culturing, the optical density although less than those in case of concentration 5 mg/L, yet it was higher than control (− P) but by increasing the culturing period more than 4 days, the optical density was less than control (− P). Our results are similar to those of19 who observed that the decrease in cell division rate signaled the onset of P-deficiency. The cultures that showed no significant increase in cell number for at least three consecutive days under the experimental conditions were considered P-depleted. In addition20, observed that the growth rate of Dunaliella prava was found to be dramatically lowered when phosphorus was limited. The content of chlorophyll fractions, total soluble carbohydrates, and proteins all fell considerably as a result of phosphorus restriction.The results concerning the effect of dissolved nickel on the growth of Dunaliella tertiolecta under conditions of phosphorus limitation show that phosphorus starved Dunaliella had lower growth as compared to the control (phosphorus-containing culture medium). These results are in agreement with those obtained by7 who reported that the optical density of Chlorella kessleri cell suspension decreased with phosphorus deficiency compared to control. Also21, found that Chlorella vulgaris cells grew 30–40% slower in phosphorus-starved cultures than in control cultures. Furthermore22, showed that diatoms were unable to thrive when phosphorus levels were insufficient. Diatom dominances were reduced to 45 and 55% in enclosures where phosphate was not provided23 observed that, under salt stress, Chlorella’s metabolic rate was substantially lower than Dunaliella’s.It can be concluded that when microorganisms are deprived of phosphorus, dissolved nickel uptake decreases, resulting in an increase in algal metabolism24. Also25, examined the effects of phosphorus and nitrogen starvation on the life cycle of Emiliania huxleyi (Haptophyta) and proved that various biochemical pathways’ metabolic load increased under P-starvation while it decreased under N-starvation.Effect of phosphorus starved cultures of Dunaliella tertiolecta on chlorophylls content under stress of nickel ionsTable 2 and figure (S2, Supplementary Data) show the sequences of change in the amount of chlorophylls a and b in phosphorus-depleted cultures of Dunaliella tertiolecta in response to various dissolved nickel concentrations. The results show that total chlorophyll content rose steadily until the end of the experiment under normal conditions (a control containing phosphorus). These results are in harmony with those obtained by24. The ratio between chlorophylls “a” and “b” remained nearly constant till the end of the 12th day. At the 16th day of culturing, the ratio decreased from 2.9:1 to 2.4:1. On the contrary, the total chlorophylls under control (in the absence of nickel element) in case of phosphorus-starved cultures showed a progressive increase up to the 12th day. At the 12th day the total chlorophylls in case of phosphorus-starved cultures decreased by 10.7% compared to the normal control. At the 16th day, the total chlorophylls in case of untreated phosphorus starved culture decreased by 20.8% compared to those obtained at normal control26. Reported that the chlorophyll content of Chlorella sorokiniana was significantly reduced due to a lack of nitrogen and phosphorus in the medium.Table 2 Effect of different concentrations of dissolved nickel (mg/L) on chlorophylls content (µg/ml) of Dunaliella tertiolecta under the stress of phosphorus starvation.Full size tableThe total chlorophyll content of Dunaliella tertiolecta in the phosphorus-starved cultures treated with 5 mg/L of dissolved nickel increased gradually until the 12th day, when the content of the total chlorophylls reached 2.11 µg/ml, i.e., higher than the phosphorus-starved control (− P) by 15.3%. At the 16th day, the total chlorophylls, although lower than those obtained at the 12th day, were still higher than the control (− P). At a concentration of 10 mg/L of dissolved nickel, slight increase in the content of total chlorophylls was recorded from the beginning to the end of the culturing period, i.e., from the 4th to the 16th day. At the other concentrations of dissolved nickel (15, 20, and 25 mg/L), a pronounced decrease in the total chlorophylls could be observed from the 4th to the 16th day of culturing compared to control (− P). Our results are going with an agreement with those obtained by27 who found that chlorophylls were inhibited maximum at higher dissolved nickel concentrations but activated at lower values. The normal ratio between chlorophylls “a” and “b” (3:1) was upset after the 8th day of culturing under concentrations 5, 10, and 15 mg/L of dissolved nickel. At 20 and 25 mg/L of dissolved nickel, this ratio was unstable from the beginning to the end of the experiment. The fact that dissolved nickel is extremely mobile and hence only absorbed to a minimal level may explain the sensitivity of the tested alga to nickel in response to phosphorus deficiency, and an increase in phosphorus concentration favors its absorption by microorganisms28. It can be concluded that when microorganisms are deprived of phosphorus, dissolved nickel uptake decreases, resulting in an increase in algal metabolism.Effect of different concentrations of dissolved nickel on photosynthesis (O2-evolution) of phosphorus starved cells of Dunaliella tertiolecta
    Data represented in Table 3 and graphed in figure (S3, Supplementary Data S3) showed that the effect of phosphorus limitation on the photosynthetic activity of Dunaliella tertiolecta in response to five different concentrations of dissolved nickel revealed that, under phosphorus limiting conditions, the amount of O2-evolution was lower than in untreated cultures (the control). The evolution of O2 after 4 days of culturing in case of phosphorus starved control decreased by 8.7% compared to normal control, while after 12 days it decreased by 30.4%. The rate of O2-evolution at different concentrations of dissolved nickel over 5 mg/L caused successive reductions in the O2-evolution of phosphorus starved cells. Application of 5 mg/L of dissolved nickel, the results cleared that the rate of O2-evolution increased under the effect of all tested concentrations till the end of the experiment. It is clear from our data that the rate of O2-evolution depended mainly on the concentration of the nickel element and the length of culturing period. The lower the rate of O2-evolution, the higher the element’s concentration, and the longer the culturing period. This coincided with the findings of7 who found that low phosphorus treatment causes Chlorella kessleri to lose its photosynthetic activity. In this regard, it was discovered that phosphorus deficiency resulted in a decrease in photosynthetic electron transport activity29 found that the O2-evolution of Chlamydomon reinhardtii declined by 75%. This decrease reflects damage of PSII and the generation of PSII QB-non reducing centers.Table 3 Effect of different concentrations of dissolved nickel (mg/L) on photosynthetic activity (O2-evolution calculated as µ mol O2 mg chl-1 h-1) on phosphorus supplemented and starved cells of Dunaliella tertiolecta.Full size tableAlso30 found that P- deficiency has been correlated with lower photosynthetic rates. In the case of the treated phosphorus-starved cultures with lower concentrations (5 mg/L) of dissolved nickel, the rate of photosynthesis increased when compared to the phosphorus-starved control, but was less than that of the normal control (without nickel treatment). On the contrary, it was found that, in the treated phosphorus-starved cultures at concentrations of 10, 15, 20 and 25 mg/L of the tested element, the rate of photosynthesis decreased from the beginning to the end of the experiment. With increasing concentration, duration of the culturing period, and kind of element, the condition of decrease in O2-evolution became more pronounced; the same results were also recorded by24. The stimulation of growth and photosynthesis in the presence of some concentrations of dissolved nickel under phosphorus-limiting conditions is observed by31 they report that in Cu2+ sensitive Scenedesmus acutus, intracellular polyphosphate plays a key role in shielding photosynthesis from Cu2+ toxicity but not in copper resistant species.Effect of different concentrations of dissolved nickel on respiration (O2-uptake) of phosphorus starved cells of Dunaliella tertiolectaData obtained in Table 4 and graphed in figure (S4, Supplementary Data S4) concerning the rate of respiration of Dunaliella tertiolecta under phosphorus-limiting conditions was higher than that of untreated phosphorus-starved (control) for a short period of time only, i.e., after 4 days, at concentrations 5, 10 and 15 mg/L of dissolved nickel, After 8 days of culturing, the rate of O2- uptake increased only at 5 mg/L of dissolved nickel, while at the other concentrations it decreased gradually with increasing the concentration of the element. This finding is consistent with the findings of23, who discovered that Dunaliella cells increased their O2 absorption and evolution rates in the presence of 2 M salt NaCl in the media. In terms of oxygen uptake rate, Dunaliella cells demonstrated an increase in salt concentrations. In 1.5 M NaCl, it increased significantly by 60–80%.Table 4 Effect of different concentrations of dissolved nickel (mg/L) on respiration activity (O2-uptake calculated as µ mol O2 h-1) on phosphorus supplemented and starved cells of Dunaliella tertiolecta.Full size tableConcerning the increase in respiration in P-depleted green alga species cultures5 suggested that Scenedesmus, for example, can utilize the energy stored in starch and lipids for active phosphorus uptake from lake sediments. This process is aided by an increase in phosphatase production32 and these cells’ ability to operate anaerobically33. When unicellular green algae or higher plants are exposed to P deficiency, the majority of newly fixed carbon appears to be allocated to the synthesis of non-phosphorylated storage polyglucans (i.e., starch) or sucrose, with less photosynthetic activity directed to respiratory metabolism and other biosynthesis pathways34. It can be concluded from the obtained results that, when the alga was cultivated under phosphorus deficiency and treated with varied amounts of dissolved nickel, the growth was the most sensitive characteristic, followed by photosynthesis, and then dark respiration. In the few comparative studies with several species of green algae, growth was more sensitive than the other physiological processes examined. Out of them35, reported that growth was more susceptible to phosphorus deficiency in Chlorella pyrenoidosa and Asterionella gracilis than photosynthesis and respiration (the least sensitive processes). Growth was also more sensitive than photosynthesis in Nitzschia closterium 36 . Another important fact reported by37 is that under low phosphorus conditions, Dunaliella parva accumulates lipids rather than carbohydrates. These findings imply that phosphorus stress may prevent starch and/or protein production, leading to an increase in carbon flux to lipids. More

  • in

    Drivers of habitat quality for a reintroduced elk herd

    Ah-King, M. Flexible mate choice in Encyclopedia of Animal Behavior, 2nd edn Vol. 4 (ed Jae Chun Choe) 421–431 (Academic Press, 2019).Harestad, A. S. & Bunnell, F. L. Home range and body weight—A reevaluation. Ecology 60, 389–402 (1979).Article 

    Google Scholar 
    O’Neill, R. V., Milne, B. T., Turner, M. G. & Gardner, R. H. Resource utilization scales and landscape pattern. Landsc. Ecol. 2, 63–69 (1988).Article 

    Google Scholar 
    Tricas, T. C. Determinants of feeding territory size in the corallivorous butterflyfish, Chaetodon multicinctus. Anim. Behav. 37, 830–841. https://doi.org/10.1016/0003-3472(89)90067-5 (1989).Article 

    Google Scholar 
    Tremblay, I., Thomas, D., Blondel, J., Perret, P. & Lambrechts, M. M. The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican Blue Tits Parus caeruleus. Ibis 147, 17–24. https://doi.org/10.1111/j.1474-919x.2004.00312.x (2005).Article 

    Google Scholar 
    Watts, D. P. The influence of male mating tactics on habitat use in Mountain Gorillas (Gorilla gorilla beringei). Primates 35, 35–47. https://doi.org/10.1007/BF02381484 (1994).Article 

    Google Scholar 
    Lescroël, A. et al. Working less to gain more: when breeding quality relates to foraging efficiency. Ecology 91, 2044–2055. https://doi.org/10.1890/09-0766.1 (2010).Article 
    PubMed 

    Google Scholar 
    Tufto, J., Anderson, R. & Linnell, J. Habitat use and ecological correlates of home range size in a small cervid: the roe deer. J. Anim. Ecol. 65, 715–724. https://doi.org/10.2307/5670 (1996).Article 

    Google Scholar 
    Morellet, N. et al. Seasonality, weather and climate affect home range size in roe deer across a wide latitudinal gradient within Europe. J. Anim. Ecol. 82, 1326–1339. https://doi.org/10.1111/1365-2656.12105 (2013).Article 
    PubMed 

    Google Scholar 
    Anderson, D. P. et al. Scale-dependent summer resource selection by reintroduced elk in Wisconsin, USA. J. Wildl. Manag. 69, 298–310. https://doi.org/10.2193/0022-541X(2005)069%3c0298:SSRSBR%3e2.0.CO;2 (2005).Article 

    Google Scholar 
    Olsson, P. M. O. et al. Movement and activity patterns of translocated elk (Cervus elaphus nelsoni) on an active coal mine in Kentucky. Wildl. Biol. Pract. 3, 1–8. https://doi.org/10.2461/wbp.2007.3.1 (2007).Article 

    Google Scholar 
    Porter, W. P., Sabo, J. L., Tracy, C. R., Reichman, O. J. & Ramankutty, N. Physiology on a landscape scale: plant–animal interactions. Integr. Comp. Biol. 42, 431–453. https://doi.org/10.1093/icb/42.3.431 (2002).Article 
    PubMed 

    Google Scholar 
    Berg, J. E. et al. Mothers’ movements: shifts in calving area selection by partially migratory elk. J. Wildl. Manag. 85, 1476–1489. https://doi.org/10.1002/jwmg.22099 (2021).Article 

    Google Scholar 
    Lehman, C. P. et al. Elk resource selection at parturition sites, Black Hills, South Dakota. J. Wildl. Manag. 80, 465–478. https://doi.org/10.1002/jwmg.1017 (2016).Article 

    Google Scholar 
    Johnson, B. K., Kern, J. W., Wisdom, M. J., Findholt, S. L. & Kie, J. G. Resource selection and spatial separation of mule deer and elk during spring. J. Wildl. Manag. 64, 685–697. https://doi.org/10.2307/3802738 (2000).Article 

    Google Scholar 
    Grace, J. & Easterbee, N. The natural shelter for red deer (Cervus elaphus) in a Scottish glen. J. Appl. Ecol. 16, 37–48. https://doi.org/10.2307/2402726 (1979).Article 

    Google Scholar 
    Demarchi, M. W. & Bunnell, F. L. Estimating forest canopy effects on summer thermal cover for Cervidae (deer family). Can. J. For. Res. 23, 2419–2426. https://doi.org/10.1139/x93-299 (1993).Article 

    Google Scholar 
    Parker, K. L. & Gillingham, M. P. Estimates of critical thermal environments for mule deer. J. Range. Manag. 43, 73–81 (1990).Article 

    Google Scholar 
    Proffitt, K. M. et al. Changes in elk resource selection and distributions associated with a late-season elk hunt. J. Wildl. Manag. 74, 210–218. https://doi.org/10.2193/2008-593 (2010).Article 

    Google Scholar 
    Webb, S. L., Dzialak, M. R., Harju, S. M., Hayden-Wing, L. D. & Winstead, J. B. Influence of land development on home range use dynamics of female elk. Wildl. Res. 38, 163–167. https://doi.org/10.1071/WR10101 (2011).Article 

    Google Scholar 
    Rumble, M. A., Benkobi, L. & Gamo, R. S. Elk responses to humans in a densely roaded area. Intermt. J. Sci. 11, 10–24 (2005).
    Google Scholar 
    McCorquodale, S. M. Sex-specific movements and habitat use by elk in the Cascade Range of Washington. J. Wildl. Manag. 67, 729–741. https://doi.org/10.1890/15-1607.1 (2003).Article 

    Google Scholar 
    Saïd, S. & Servanty, S. The influence of landscape structure on female roe deer home-range size. Landsc. Ecol. 20, 1003–1012. https://doi.org/10.1007/s10980-005-7518-8 (2005).Article 

    Google Scholar 
    Seddon, P. J., Armstrong, D. P. & Maloney, R. F. Developing the science of reintroduction biology. Conserv. Biol. 21, 303–312. https://doi.org/10.1111/j.1523-1739.2006.00627.x (2007).Article 
    PubMed 

    Google Scholar 
    Hale, S. L. & Koprowski, J. L. Ecosystem-level effects of keystone species reintroduction: a literature review. Restor. Ecol. 26, 439–445. https://doi.org/10.1111/rec.12684 (2018).Article 

    Google Scholar 
    Cheyne, S. M. Wildlife reintroduction: considerations of habitat quality at the release site. BMC Ecol. 6, 5. https://doi.org/10.1186/1472-6785-6-5 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hegel, T. M., Gates, C. C. & Eslinger, D. The geography of conflict between elk and agricultural values in the Cypress Hills, Canada. J. Eniron. Manag. 90, 222–235. https://doi.org/10.1016/j.jenvman.2007.09.005 (2009).Article 

    Google Scholar 
    Walter, W. D. et al. Management of damage by elk (Cervus elaphus) in North America: a review. Wildl. Res. 37, 630–646. https://doi.org/10.1071/WR10021 (2010).Article 

    Google Scholar 
    Jung, T. S. Extralimital movements of reintroduced bison (Bison bison): implications for potential range expansion and human–wildlife conflict. Eur. J. Wildl. Res. 63, 35. https://doi.org/10.1007/s10344-017-1094-5 (2017).Article 

    Google Scholar 
    Buchholtz, E. K., Stronza, A., Songhurst, A., McCulloch, G. & Fitzgerald, L. A. Using landscape connectivity to predict human-wildlife conflict. Biol. Conserv. 248, 108677. https://doi.org/10.1016/j.biocon.2020.108677 (2020).Article 

    Google Scholar 
    Hodgson, J. A., Moilanen, A., Wintle, B. A. & Thomas, C. D. Habitat area, quality and connectivity: striking the balance for efficient conservation. J. Appl. Ecol. 48, 148–152. https://doi.org/10.1111/j.1365-2664.2010.01919.x (2011).Article 

    Google Scholar 
    Murie, O. The Elk of North America (Stackpole Co., 1951).
    Google Scholar 
    VDWR. Virginia elk management plan 2019–2028 (ed Virginia Department of Wildlife Resources) (Virginia Department of Wildlife Resources, 2019).Lituma, C. M. et al. Terrestrial wildlife in the post-mined Appalachian landscape: status and opportunities in Appalachia’s Coal-Mined Landscapes (eds Carl E. Zipper & Jeff Skousen) 135–166 (Springer, 2021).Lupardus, J. L., Muller, L. I. & Kindall, J. L. Seasonal forage availability and diet for reintroduced elk in the Cumberland Mountains, Tennessee. Southeast. Nat. 10, 53–74. https://doi.org/10.1656/058.010.0105 (2011).Article 

    Google Scholar 
    Schneider, J. et al. Food habits of reintroduced elk in southeastern Kentucky. Southeast. Nat. 5, 535–546. https://doi.org/10.1656/1528-7092(2006)5[535:Fhorei]2.0.Co;2 (2006).Article 

    Google Scholar 
    Smith, T. N., Keller, B. J., Chitwood, M. C., Hansen, L. P. & Millspaugh, J. J. Diet composition and selection of recently reintroduced elk in Missouri. Am. Midl. Nat. 180, 143–159. https://doi.org/10.1674/0003-0031-180.1.143 (2018).Article 

    Google Scholar 
    Franklin, J. A., Zipper, C. E., Burger, J. A., Skousen, J. G. & Jacobs, D. F. Influence of herbaceous ground cover on forest restoration of eastern US coal surface mines. New. For. 43, 905–924. https://doi.org/10.1007/s11056-012-9342-8 (2012).Article 

    Google Scholar 
    Popp, J. N., Toman, T., Mallory, F. F. & Hamr, J. A century of elk restoration in eastern North America. Restor. Ecol. 22, 723–730. https://doi.org/10.1111/rec.12150 (2014).Article 

    Google Scholar 
    Cook, J. G., Irwin, L. L., Bryant, L. D., Riggs, R. A. & Thomas, J. W. Relations of forest cover and condition of elk: a test of the thermal cover hypothesis in the summer and winter. Wildl. Monogr. 141, 3–61 (1998).
    Google Scholar 
    Parker, K. L. & Robbins, C. T. Thermoregulation in mule deer and elk. Can. J. Zool. 62, 1409–1422. https://doi.org/10.1139/z84-202 (1984).Article 

    Google Scholar 
    Mao, J. S. et al. Habitat selection by elk before and after wolf reintroduction in Yellowstone National Park. J. Wildl. Manag. 69, 1691–1707. https://doi.org/10.2193/0022-541X (2005).Article 

    Google Scholar 
    Wolff, J. O. & Van Horn, T. Vigilance and foraging patterns of American elk during the rut in habitats with and without predators. Can. J. Zool. 81, 266–271. https://doi.org/10.1139/z03-011 (2003).Article 

    Google Scholar 
    Beck, J. L. & Peek, J. M. Diet composition, forage selection, and potential for forage competition among elk, deer, and livestock on aspen–sagebrush summer range. Rangel. Ecol. Manag. 58, 135–147. https://doi.org/10.2111/03-13.1 (2005).Article 

    Google Scholar 
    Ford, W. M., Johnson, A. S. & Hale, P. E. Nutritional quality of deer browse in southern Appalachian clearcuts and mature forests. For. Ecol. Manag. 67, 149–157. https://doi.org/10.1016/0378-1127(94)90013-2 (1994).Article 

    Google Scholar 
    Sikes, R. S., Gannon, W. L. & The American Care and Use Committee of the American Society of Mammalogists. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253. https://doi.org/10.1644/10-mamm-f-355.1 (2011).Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Powell, J. W. Physiographic Regions of the United States. (American Book Company, 1895).Braun, E. L. Forests of the Cumberland Mountains. Ecol. Monogr. 12, 413–447. https://doi.org/10.2307/1943039 (1942).Article 

    Google Scholar 
    Clark, J. B. The Vascular Flora of Breaks Interstate Park, Pike County, Kentucky, and Dickenson County, Virginia Master of Science thesis, Eastern Kentucky University (2012).Pericak, A. A. et al. Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine. PLoS ONE 13, e0197758. https://doi.org/10.1371/journal.pone.0197758 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boettner, F. et al. An assessment of the natural assets in the Appalachian Region: forest resources (ed Appalachian Regional Commission Report) 97 (Washington, DC, 2014).NOAA. Summary of monthly normals Grundy, VA 1991 – 2020 data (National Oceanic and Atmospheric Administration (2022).U.S. Geological Survey (USGS) Gap Analysis Project (GAP). GAP/LANDFIRE national terrestrial ecosystems 2011: U.S. Geological Survey data release (2016).Clark, M. The Nature Conservancy Eastern Division & North Atlantic Landscape Conservation Cooperative. Terrestrial habitat, Northeast data (2017).ESRI. ArcGIS desktop version 10.8.1 (Environmental Systems Research Institute, 2020).Ford, W. M. et al. Influence of elevation and forest type on community assemblage and species distribution of shrews in the central and southern Appalachians in Advances in the Biology of the Shrews II Vol. 1(eds. J.F. Merritt, S. Churchfield, R. Hutterer and B.A. Sheftel) 303–315(Special Publication of the International Society of Shrew Biologists, 2006).Kniowski, A. B. & Ford, W. M. Predicting intensity of white-tailed deer herbivory in the Central Appalachian Mountains. J. For. Res. 29, 841–850. https://doi.org/10.1007/s11676-017-0476-6 (2018).Article 

    Google Scholar 
    Fleming, C. H. & Calabrese, J. M. ctmm: continuous-time movement modeling. R package version 0.6.0 (2021).R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).Fleming, C. H. et al. Estimating where and how animals travel: an optimal framework for path reconstruction from autocorrelated tracking data. Ecology 97, 576–582. https://doi.org/10.1890/15-1607.1 (2016).Article 
    PubMed 

    Google Scholar 
    Hijmans, R. J. raster: geographic data analysis and modeling. R package version 3.4-5 (2020).Becker, R. A., Chambers, J. M. & Wilks, A. R. The New S Language (Wadsworth and Brooks/Cole, 1988).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. B. H. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Use of the Information-Theoretic Approach (Springer, 1998).Turner, M. G., Wu, Y., Romme, W. H. & Wallace, L. L. A landscape simulation model of winter foraging by large ungulates. Ecol. Modell. 69, 163–184. https://doi.org/10.1016/0304-3800(93)90026-O (1993).Article 

    Google Scholar 
    Taper, M. L. & Gogan, P. J. P. The northern Yellowstone elk: density dependence and climatic conditions. J. Wildl. Manag. 66, 106–122. https://doi.org/10.2307/3802877 (2002).Article 

    Google Scholar 
    Green, R. A. & Bear, G. D. Seasonal cycles and daily activity patterns of Rocky Mountain elk. J. Wildl. Manag. 54, 272–279. https://doi.org/10.2307/3809041 (1990).Article 

    Google Scholar 
    Craighead, J. J., Craighead, F. C. J., Ruff, R. L. & O’Gara, B. W. Home ranges and activity patterns of nonmigratory elk of the Madison Drainage herd as determined by biotelemetry. Wildl. Monogr. 33, 3–50 (1973).
    Google Scholar 
    Gittleman, J. L. & Thompson, S. D. Energy allocation in mammalian reproduction. Am. Zool. 28, 863–875. https://doi.org/10.1093/icb/28.3.863 (1988).Article 

    Google Scholar 
    Beier, P. & McCullough, D. R. Factors influencing white-tailed deer activity patterns and habitat use. Wildl. Monogr. 109, 3–51 (1990).
    Google Scholar 
    Ciuti, S., Davini, S., Luccarini, S. & Apollonio, M. Variation in home range size of female fallow deer inhabiting a sub-Mediterranean habitat. Rev. Ecol. 58, 381–395 (2003).
    Google Scholar 
    Vore, J. M. & Schmidt, E. M. Movements of female elk during calving season in northwest Montana. Wildl. Soc. Bull. 29, 720–725 (2001).
    Google Scholar 
    Wickstrom, M. L., Robbins, C. T., Hanley, T. A., Spalinger, D. E. & Parish, S. M. Food intake and foraging energetics of elk and mule deer. J. Wildl. Manag. 48, 1285–1301. https://doi.org/10.2307/3801789 (1984).Article 

    Google Scholar 
    Van Soest, P. J. Allometry and ecology of feeding behavior and digestive capacity in herbivores: a review. Zoo. Biol. 15, 455–479 (1996). https://doi.org/10.1002/(SICI)1098-2361(1996)15:53.0.CO;2-AEsmaeili, S. et al. Body size and digestive system shape resource selection by ungulates: a cross-taxa test of the forage maturation hypothesis. Ecol. Lett. 24, 2178–2191. https://doi.org/10.1111/ele.13848 (2021).Article 
    PubMed 

    Google Scholar 
    Demment, M. W. & Van Soest, P. J. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 125, 641–672 (1985).Article 

    Google Scholar 
    Anderson, D. P. et al. Factors influencing female home range sizes in elk (Cervus elaphus) in North American landscapes. Landsc. Ecol. 20, 257–271. https://doi.org/10.1007/s10980-005-0062-8 (2005).Article 

    Google Scholar 
    Maigret, T. A., Cox, J. J. & Yang, J. Persistent geophysical effects of mining threaten ridgetop biota of Appalachian forests. Front. Ecol. Environ. 17, 85–91. https://doi.org/10.1002/fee.1992 (2019).Article 

    Google Scholar 
    Beier, P. Sex differences in quality of white-tailed deer diets. J. Mammal. 68, 323–329. https://doi.org/10.2307/1381471 (1987).Article 

    Google Scholar 
    Parker, K. L., Barboza, P. S. & Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 23, 57–69. https://doi.org/10.1111/j.1365-2435.2008.01528.x (2009).Article 

    Google Scholar 
    Wichrowski, M. W., Maehr, D. S., Larkin, J. L., Cox, J. J. & Olsson, M. P. O. Activity and movements of reintroduced elk in southeastern Kentucky. Southeast. Nat. 4, 365–374. https://doi.org/10.1656/1528-7092(2005)004[0365:Aamore]2.0.Co;2 (2005).Article 

    Google Scholar 
    Relyea, R. A., Lawrence, R. K. & Demarais, S. Home range of desert mule deer: testing the body-size and habitat-productivity hypotheses. J. Wildl. Manag. 64, 146–153. https://doi.org/10.2307/3802984 (2000).Article 

    Google Scholar  More

  • in

    Dominant phytoplankton groups as the major source of polyunsaturated fatty acids for hilsa (Tenualosa ilisha) in the Meghna estuary Bangladesh

    Valle-Levinson, A. Contemporary Issues in Estuarine Physics (Cambridge University Press, 2010).Book 

    Google Scholar 
    Singh, S. Analysis of plankton diversity and density with physico-chemical parameters of open pond in town Deeg (Bhratpur) Rajasthan, India. Int. Res. J. Biol. Sci 4, 61–69 (2015).
    Google Scholar 
    Roussel, M., Pontier, D., Cohen, J.-M., Lina, B. & Fouchet, D. Quantifying the role of weather on seasonal influenza. BMC Public Health 16, 1–14 (2016).Article 

    Google Scholar 
    Davies, O., Abowei, J. & Tawari, C. Phytoplankton community of Elechi creek, Niger Delta, Nigeria-a nutrient-polluted tropical creek. Am. J. Appl. Sci. 6, 1143–1152 (2009).Article 
    CAS 

    Google Scholar 
    Choudhury, S. & Panigrahy, R. Seasonal distribution and behavior of nutrients in the Greek and coastal waters of Gopalpur, East coast of India: Mahasagar. Bull. Natl. Inst. Oeanogr 24, 91–88 (1991).
    Google Scholar 
    Ratheesh, K., Krishnan, A., Das, R. & Vimexen, V. Seasonal phytoplankton succession in Netravathi-Gurupura estuary, Karnataka, India: Study on a three tier hydrographic platform. Estuar. Coast. Shelf Sci. 242, 106830 (2020).Article 

    Google Scholar 
    Deng, Y., Tang, X., Huang, B. & Ding, L. Effect of temperature and irradiance on the growth and reproduction of the green macroalga, Chaetomorpha valida (Cladophoraceae, Chlorophyta). J. Appl. Phycol. 24, 927–933 (2012).Article 
    CAS 

    Google Scholar 
    Gamier, J., Billen, G. & Coste, M. Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: Observation and modeling. Limnol. Oceanogr. 40, 750–765 (1995).Article 

    Google Scholar 
    Meng, F. et al. Phytoplankton alpha diversity indices response the trophic state variation in hydrologically connected aquatic habitats in the Harbin Section of the Songhua River. Sci. Rep. 10, 1–13 (2020).Article 

    Google Scholar 
    Köhler, J. Growth, production and losses of phytoplankton in the lowland River Spree. I. Population dynamics. J. Plankton Res. 15, 335–349 (1993).Article 

    Google Scholar 
    Murrell, M. C. & Caffrey, J. M. High cyanobacterial abundance in three northeastern Gulf of Mexico estuaries. Gulf Caribbean Res. 17, 95–106 (2005).Article 

    Google Scholar 
    Haldar, G., Rahman, M. & Haroon, A. Hilsa, Tenualosa ilisha (Ham.) fishery of the Feni River with reference to the impacts of the flood control structure. J. Zool. 7, 51–56 (1992).
    Google Scholar 
    Hossain, M. S., Sarker, S., Chowdhury, S. R. & Sharifuzzaman, S. Discovering spawning ground of Hilsa shad (Tenualosa ilisha) in the coastal waters of Bangladesh. Ecol. Model. 282, 59–68 (2014).Article 

    Google Scholar 
    Bhaumik, U. & Sharma, A. The fishery of Indian Shad (Tenualosa ilisha) in the Bhagirathi-Hooghly river system. Fishing Chimes 31, 21–27 (2011).
    Google Scholar 
    Mitra, G. & Devsundaram, M. P. On the hilsa of Chilka Lake with note on the Hilsa in Orissa. J. Asiatic Soc. Sci. 20, 33–40 (1954).
    Google Scholar 
    Abdul, W., Phillips, M. & Beveridge, M. (WorldFish (WF), 2020).Hasan, K. M. M., Wahab, M. A., Ahmed, Z. F. & Mohammed, E. Y. The biophysical assessments of the hilsa fish (Tenualosa ilisha) habitat in the lower Meghna, Bangladesh (International Institute for Environment and Development, 2015).Begum, M. et al. Fatty acid composition of Hilsa (Tenualosa ilisha) fish muscle from different locations in Bangladesh. Thai J. Agric. Sci. 52, 172–179 (2019).
    Google Scholar 
    Jónasdóttir, S. H. Fatty acid profiles and production in marine phytoplankton. Mar. Drugs 17, 151 (2019).Article 

    Google Scholar 
    Otero, P., Ruiz-Villarreal, M., Peliz, Á. & Cabanas, J. M. Climatology and reconstruction of runoff time series in northwest Iberia: Influence in the shelf buoyancy budget off Ría de Vigo. Sci. Mar. 74, 247–266 (2010).Article 

    Google Scholar 
    Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis (Wiley, 2009).
    Google Scholar 
    Parsons, T., Maita, Y. & Lalli, C. A manual of chemical and biological methods for seawater analysis. Pergamon, Oxford sized algae and natural seston size fractions. Mar. Ecol. Prog. Ser. 199, 43–53 (1984).
    Google Scholar 
    Scor-Unesco, W. Determination of photosynthetic pigments. Determination of Photosynthetic Pigments in Sea-water, 9–18 (1966).Snow, G., Bate, G. & Adams, J. The effects of a single freshwater release into the Kromme Estuary. 2: Microalgal response. Water SA-Pretoria 26, 301–310 (2000).CAS 

    Google Scholar 
    Ward, H. B. & Whipple, G. C. Freshwater Biology Vol. 2, 12–48 (Willey, London, 1959).
    Google Scholar 
    Prescott, G. W. Algae of the western Great Lakes area. (1962).Bellinger, E. G. A Key to Common Algae: Freshwater, Estuarine and Some Coastal Species (Institution of Water and Environmental Management London, 1992).
    Google Scholar 
    Kimmerer, W. J. & Slaughter, A. M. A new electivity index for diet studies that use count data. Limnol. Oceanogr. Methods 19, 552–565 (2021).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Development Core Team. nlme: Linear and nonlinear mixed effects models, 2012. http://CRAN.R-project.org/package=nlme. R package version, 3.1–103 (2020).Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).Article 

    Google Scholar 
    Galili, T., O’Callaghan, A., Sidi, J. & Sievert, C. heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 34, 1600–1602 (2018).Article 
    CAS 

    Google Scholar 
    Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. Create Elegant Data Visualisations Using the Grammar of Graphics. Version 2, 1–189 (2016).Peterson, B. G. et al. Package ‘PerformanceAnalytics’. R Team Cooperation (2018).Lewis, R. E. & Uncles, R. J. Factors affecting longitudinal dispersion in estuaries of different scale. Ocean Dyn. 53, 197–207 (2003).Article 

    Google Scholar 
    Shaha, D., Cho, Y.-K., Seo, G.-H., Kim, C.-S. & Jung, K. Using flushing rate to investigate spring-neap and spatial variations of gravitational circulation and tidal exchanges in an estuary. Hydrol. Earth Syst. Sci. 14, 1465–1476 (2010).Article 

    Google Scholar 
    Shaha, D. C., Cho, Y.-K., Kim, T.-W. & Valle-Levinson, A. Spatio-temporal variation of flushing time in the Sumjin River Estuary. Terrestr. Atmos. Ocean. Sci. 23, 119 (2012).Article 

    Google Scholar 
    Shivaprasad, A. et al. Seasonal stratification and property distributions in a tropical estuary (Cochin estuary, west coast, India). Hydrol. Earth Syst. Sci. 17, 187–199 (2013).Article 

    Google Scholar 
    Haralambidou, K., Sylaios, G. & Tsihrintzis, V. A. Salt-wedge propagation in a Mediterranean micro-tidal river mouth. Estuar. Coast. Shelf Sci. 90, 174–184 (2010).Article 
    CAS 

    Google Scholar 
    Dyer, K. R. Estuaries: A physical introduction (1973).Rahman, M. et al. Impact assessment of twenty-two days fishing ban in the major spawning grounds of Tenualosa ilisha (Hamilton, 1822) on its spawning success in Bangladesh. J. Aquac. Res. Dev. 8, 489 (2017).Article 

    Google Scholar 
    Alves, A. S. et al. Spatial distribution of subtidal meiobenthos along estuarine gradients in two southern European estuaries (Portugal). J. Mar. Biol. Assoc. U.K. 89, 1529–1540 (2009).Article 
    CAS 

    Google Scholar 
    Teixeira, H., Salas, F., Borja, A., Neto, J. & Marques, J. A benthic perspective in assessing the ecological status of estuaries: The case of the Mondego estuary (Portugal). Ecol. Ind. 8, 404–416 (2008).Article 

    Google Scholar 
    Garmendia, M. et al. Eutrophication assessment in Basque estuaries: Comparing a North American and a European method. Estuar. Coasts 35, 991–1006 (2012).Article 

    Google Scholar 
    Istvánovics, V. Eutrophication of Lakes and Reservoirs. Lake Ecosystem Ecology 47–55 (Elsevier, 2010).
    Google Scholar 
    Dodds, W. K. Eutrophication and trophic state in rivers and streams. Limnol. Oceanogr. 51, 671–680 (2006).Article 
    CAS 

    Google Scholar 
    Bricker, S., Ferreira, J. & Simas, T. An integrated methodology for assessment of estuarine trophic status. Ecol. Model. 169, 39–60 (2003).Article 
    CAS 

    Google Scholar 
    Vega, M., Pardo, R., Barrado, E. & Debán, L. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res. 32, 3581–3592 (1998).Article 
    CAS 

    Google Scholar 
    Huang, Y., Yang, C., Wen, C. & Wen, G. S-type dissolved oxygen distribution along water depth in a canyon-shaped and algae blooming water source reservoir: Reasons and control. Int. J. Environ. Res. Public Health 16, 987 (2019).Article 
    CAS 

    Google Scholar 
    Rahman, M. & Cowx, I. Lunar periodicity in growth increment formation in otoliths of hilsa shad (Tenualosa ilisha, Clupeidae) in Bangladesh waters. Fish. Res. 81, 342–344 (2006).Article 

    Google Scholar 
    Rahman, M. J. Population Biology and Management of hilsa shad (Tenualosa ilisha) in Bangladesh (University of Hull, 2001).Milton, D. A. & Chenery, S. R. Movement patterns of the tropical shad hilsa (Tenualosa ilisha) inferred from transects of 87Sr/86Sr isotope ratios in their otoliths. Can. J. Fish. Aquat. Sci. 60, 1376–1385 (2003).Article 

    Google Scholar 
    Rahman, S., Sarker, M. R. H. & Mia, M. Y. Spatial and temporal variation of soil and water salinity in the South-Western and South-Central Coastal Region of Bangladesh. Irrig. Drain. 66, 854–871 (2017).Article 

    Google Scholar 
    Kida, S. & Yamazaki, D. The mechanism of the freshwater outflow through the Ganges–Brahmaputra–Meghna delta. Water Resour. Res. 56, e2019WR026412 (2020).Article 

    Google Scholar 
    Sarma, V. et al. Intra-annual variability in nutrients in the Godavari estuary, India. Contin. Shelf Res. 30, 2005–2014 (2010).Article 

    Google Scholar 
    Burford, M. et al. Controls on phytoplankton productivity in a wet–dry tropical estuary. Estuar. Coast. Shelf Sci. 113, 141–151 (2012).Article 
    CAS 

    Google Scholar 
    Vitousek, P. M. et al. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57, 1–45 (2002).Article 

    Google Scholar 
    Galloway, J. N. & Cowling, E. B. Reactive nitrogen and the world: 200 years of change. Ambio 31, 64–71 (2002).Article 

    Google Scholar 
    Kennish, M. & De Jonge, V. in Human-Induced Problems (Uses and Abuses) 113–148 (Elsevier Inc., 2012).Alongi, D., Boto, K. & Robertson, A. Nitrogen and phosphorus cycles. Coastal and Estuarine Studies, 251–251 (1993).Wolanski, E., McLusky, D., Laane, R. & Middleburg, J. (Academic Press, 2011).Suthers, I., Rissik, D. & Richardson, A. Plankton: A Guide to Their Ecology and Monitoring for Water Quality (CSIRO Publishing, 2019).Book 

    Google Scholar 
    Mackay, D. W. & Fleming, G. Correlation of dissolved oxygen levels, fresh-water flows and temperatures in a polluted estuary. Water Res. 3, 121–128 (1969).Article 

    Google Scholar 
    Lomas, M. W. & Glibert, P. M. Temperature regulation of nitrate uptake: A novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnol. Oceanogr. 44, 556–572 (1999).Article 
    CAS 

    Google Scholar 
    Dortch, Q. The interaction between ammonium and nitrate uptake in phytoplankton. Mar. Ecol. Prog. Ser. Oldendorf 61, 183–201 (1990).Article 
    CAS 

    Google Scholar 
    Admiraal, W., Riaux-Gobin, C. & Laane, R. W. Interactions of ammonium, nitrate, and D-and L-amino acids in the nitrogen assimilation of two species of estuarine benthic diatoms. Mar. Ecol. Prog. Ser. 40, 267–273 (1987).Article 
    CAS 

    Google Scholar 
    Rabalais, N., Turner, R., Dortch, Q., Wiseman, W. Jr. & Sen Gupta, B. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19, 386 (1996).Article 
    CAS 

    Google Scholar 
    Gholizadeh, M. H., Melesse, A. M. & Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total Environ. 566, 1552–1567 (2016).Article 

    Google Scholar 
    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).Article 

    Google Scholar 
    Teichberg, M. et al. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: Nutrient enrichment experiments with Ulva spp. Glob. Change Biol. 16, 2624–2637 (2010).Article 

    Google Scholar 
    Valiela, I. & Bowen, J. Nitrogen sources to watersheds and estuaries: Role of land cover mosaics and losses within watersheds. Environ. Pollut. 118, 239–248 (2002).Article 
    CAS 

    Google Scholar 
    Woodland, R. J. et al. Nitrogen loads explain primary productivity in estuaries at the ecosystem scale. Limnol. Oceanogr. 60, 1751–1762 (2015).Article 

    Google Scholar 
    Howarth, R. et al. Coupled biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front. Ecol. Environ. 9, 18–26 (2011).Article 

    Google Scholar 
    Winder, J. A. & Cheng, D. M. Quantification of Factors Controlling the Development of Anabaena Circinalis Blooms (Urban Water Research Association of Australia, 1995).
    Google Scholar 
    Descy, J.-P. Phytoplankton composition and dynamics in the River Meuse (Belgium). Arch. Hydrobiol. Supplementband. Monographische Beiträge 78, 225–245 (1987).
    Google Scholar 
    Robarts, R. D. & Zohary, T. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. NZ J. Mar. Freshw. Res. 21, 391–399 (1987).Article 
    CAS 

    Google Scholar 
    Visser, P. M., Ibelings, B. W., Bormans, M. & Huisman, J. Artificial mixing to control cyanobacterial blooms: A review. Aquat. Ecol. 50, 423–441 (2016).Article 
    CAS 

    Google Scholar 
    Krishnan, A., Das, R. & Vimexen, V. Seasonal phytoplankton succession in Netravathi-Gurupura estuary, Karnataka, India: Study on a three tier hydrographic platform. Estuar. Coast. Shelf Sci. 242, 106830 (2020).Article 

    Google Scholar 
    Srinivas, L., Seeta, Y. & Reddy, M. Bacillariophyceae as ecological indicators of water quality in Manair Dam, Karimnagar, India. Int. J. Sci. Res. Sci. Tech 4, 468–474 (2018).
    Google Scholar 
    Mohanty, B. P. et al. Fatty acid profile of Indian shad Tenualosa ilisha oil and its dietary significance. Natl. Acad. Sci. Lett. 35, 263–269 (2012).Article 
    CAS 

    Google Scholar 
    De, D. et al. Nutritional profiling of hilsa (Tenualosa ilisha) of different size groups and sensory evaluation of their adults from different riverine systems. Sci. Rep. 9, 1–11 (2019).Article 
    CAS 

    Google Scholar 
    Hasan, K. M. M., Ahmed, Z. F., Wahab, M. A. & Mohammed, E. Y. Food and Feeding Ecology of hilsa (Tenualosa ilisha) in Bangladesh’s Meghna River Basin. (International Institute for Environment and Development, 2016). More

  • in

    Phytoplankton in the middle

    Marine phytoplankton both follow and actively influence the environment they inhabit. Unpacking the complex ecological and biogeochemical roles of these tiny organisms can help reveal the workings of the Earth system.
    Phytoplankton are the workers of an ocean-spanning factory converting sunlight and raw nutrients into organic matter. These little organisms — the foundation of the marine ecosystem — feed into a myriad of biogeochemical cycles, the balance of which help control the distribution of carbon on the Earth surface and ultimately the overall climate state. As papers in this issue of Nature Geoscience show, phytoplankton are far from passive actors in the global web of biogeochemical cycles. The functioning of phytoplankton is not just a matter for biologists, but is also important for geoscientists seeking to understand the Earth system more broadly.Phytoplankton are concentrated where local nutrient and sea surface temperatures are optimal, factors which aren’t always static in time. Prominent temperature fluctuations, from seasonal to daily cycles, are reflected in phytoplankton biomass, with cascading effects on other parts of marine ecosystems, such as economically-important fisheries. In an Article in this issue, Keerthi et al., show that phytoplankton biomass, tracked by satellite measurements of chlorophyll for relatively small ( More

  • in

    Carbon turnover gets wet

    Whether land acts as a carbon sink or source depends largely on two opposite fluxes: carbon uptake through photosynthesis and carbon release through turnover. Turnover occurs through multiple processes, including but not limited to, leaf senescence, tree mortality, and respiration by plants, microbes, and animals. Each of these processes is sensitive to climate, and ecologists and climatologists have been working to figure out how temperature regulates biological activities and to what extent the carbon cycle responds to global warming. Previous theoretical and experimental studies have yielded conflicting relationships between temperature and carbon turnover, with large variations across ecosystems, climate and time-scale1,2,3,4. Writing in Nature Geoscience, Fan et al.5 find that hydrometeorological factors have an important influence on how the turnover time of land carbon responds to changes in temperature. More

  • in

    Assessment of suitable habitat of mangrove species for prioritizing restoration in coastal ecosystem of Sundarban Biosphere Reserve, India

    Banerjee, A. K. et al. Setting the priorities straight-Species distribution models assist to prioritize conservation targets for the mangroves. Sci. Total Environ. 806, 150937 (2022).Article 
    CAS 

    Google Scholar 
    Duke, N. C. et al. A world without mangroves?. Science 317(5834), 41–42 (2007).Article 
    CAS 

    Google Scholar 
    Friess, D. A. Ecosystem services and disservices of mangrove forests: Insights from historical colonial observations. Forests 7(9), 183 (2016).Article 

    Google Scholar 
    Hu, W. et al. Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China. Sci. Total Environ. 748, 142321 (2020).Article 
    CAS 

    Google Scholar 
    Blankespoor, B., Dasgupta, S. & Lange, G. M. Mangroves as a protection from storm surges in a changing climate. Ambio 46(4), 478–491 (2017).Article 

    Google Scholar 
    FAO. TheWorld’s Mangroves 1980–2005. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/3/a1427e/a1427e00.htm. (2007).Abd-El Monsef, H., Hassan, M. A. & Shata, S. Using spatial data analysis for delineating existing mangroves stands and siting suitable locations for mangroves plantation. Comput. Electron. Agric. 141, 310–326 (2017).Article 

    Google Scholar 
    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123 (2011).Article 
    CAS 

    Google Scholar 
    Aheto, D. W. et al. Community-based mangrove forest management: Implications for local livelihoods and coastal resource conservation along the Volta estuary catchment area of Ghana. Ocean Coast. Manag. 127, 43–54 (2016).Article 

    Google Scholar 
    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).Article 

    Google Scholar 
    Stephanie, S. R. et al. Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manag. 154, 72–82. https://doi.org/10.1016/j.ocecoaman.2018.01.009 (2018).Article 

    Google Scholar 
    Friess, D. A. et al. Mangroves give cause for conservation optimism, for now. Curr. Biol. 30, R153–R154 (2020).Article 
    CAS 

    Google Scholar 
    Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: One of the world’s threatened major tropical environments: At least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. Bioscience 51, 807–815. https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2 (2001).Article 

    Google Scholar 
    Feller, I. C. et al. Biocomplexity in mangrove ecosystems. Ann. Rev. Mar. Sci. 2, 395–417 (2010).Article 
    CAS 

    Google Scholar 
    Polidoro, B. A. et al. The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).Article 

    Google Scholar 
    IUCN. Global Assessments of Mangrove Losses and Degradation, 2016; https://www.iucn.org/sites/dev/files/content/documents/mangroveloss-brief-4pp-19.10.low_.pdf.Sreelekshmi, S., Nandan, S. B., Kaimal, S. V., Radhakrishnan, C. K. & Suresh, V. R. Mangrove species diversity, stand structure and zonation pattern in relation to environmental factors—a case study at Sundarban delta, east coast of India. Reg. Stud. Mar. Sci. 35, 101111 (2020).
    Google Scholar 
    Sahana, M. et al. Assessing coastal island vulnerability in the Sundarban Biosphere Reserve, India, using geospatial technology. Environ. Earth Sci. 78(10), 1–22 (2019).Article 

    Google Scholar 
    FSI. India State of Forest Report. Forest Survey of India, Dehradun (2017).Ellison, A. M., Mukherjee, B. B. & Karim, A. Testing patterns of zonation in mangroves: Scale dependence and environmental correlates in the Sundarbans of Bangladesh. J. Ecol. 88(5), 813–824 (2000).Article 

    Google Scholar 
    Sahana, M., Rehman, S., Sajjad, H. & Hong, H. Exploring effectiveness of frequency ratio and support vector machine models in storm surge flood susceptibility assessment: A study of Sundarban Biosphere Reserve, India. CATENA 189, 104450 (2020).Article 

    Google Scholar 
    Sahana, M. & Sajjad, H. Vulnerability to storm surge flood using remote sensing and GIS techniques: A study on Sundarban Biosphere Reserve, India. Rem. Sens. Appl. Soc. Env. 13, 106–120 (2019).
    Google Scholar 
    Chowdhury, M. Q. et al. Nature and periodicity of growth rings in two Bangladeshi mangrove species. IAWA J. 29(3), 265–276 (2008).Article 

    Google Scholar 
    Sarker, S. K., Reeve, R., Thompson, J., Paul, N. K. & Matthiopoulos, J. Are we failing to protect threatened mangroves in the Sundarbans world heritage ecosystem?. Sci. Rep. 6(1), 1–12 (2016).Article 

    Google Scholar 
    Iftekhar, M. S. & Saenger, P. Vegetation dynamics in the Bangladesh Sundarbans mangroves: A review of forest inventories. Wetlands Ecol. Manage. 16(4), 291–312 (2008).Article 

    Google Scholar 
    Siddiqi, N. A. In Mangrove forestry in Bangladesh, Institute of Forestry and Environmental Sciences. University of Chittagong, Chittagong, Bangladesh 201 (2001).Lewis, R. R. III. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 24(4), 403–418 (2005).Article 

    Google Scholar 
    Peterson, T. A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography 30, 550–560. https://doi.org/10.1111/j.0906-7590.2007.05102.x (2007).Article 

    Google Scholar 
    Stockwell, D. & Peters, D. The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158. https://doi.org/10.1080/136588199241391 (1999).Article 

    Google Scholar 
    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x (2005).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Feng, Z. et al. Dynamics ofmangrove forests in Shenzhen Bay in response to natural and anthropogenic factors from 1988 to 2017. J. Hydrol. 591, 125271. https://doi.org/10.1016/j.jhydrol.2020.125271 (2020).Article 

    Google Scholar 
    Kaky, E. & Gilbert, F. Using species distribution models to assess the importance of Egypt’s protected areas for the conservation of medicinal plants. J. Arid Environ. 135, 140–146. https://doi.org/10.1016/j.jaridenv.2016.09.001 (2016).Article 

    Google Scholar 
    Pecchi, M. et al. Species distribution modelling to support forest management A literature review. Ecol. Model. 411, 108817 (2019).Article 

    Google Scholar 
    Spiers, J. A., Oatham, M. P., Rostant, L. V. & Farrell, A. D. Applying species distribution modelling to improving conservation-based decisions: A gap analysis of Trinidad and Tobago’s endemic vascular plants. Biodivers. Conserv. 27, 2931–2949 (2018).Article 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 (2009).Article 

    Google Scholar 
    Fois, M., Cuena-Lombraña, A., Fenu, G. & Bacchetta, G. Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecol. Model. 385, 124–132 (2018).Article 

    Google Scholar 
    Gilani, H., Goheer, M. A., Ahmad, H. & Hussain, K. Under predicted climate change: Distribution and ecological niche modelling of six native tree species in Gilgit-Baltistan, Pakistan. Ecol. Indic. 111, 106049 (2020).Article 

    Google Scholar 
    Ellison, A. M., Felson, A. J. & Friess, D. A. Mangrove rehabilitation and restoration as experimental adaptive management. Front. Mar. Sci. 7, 327. https://doi.org/10.3389/fmars.2020.00327 (2020).Article 

    Google Scholar 
    Ellison, A. M. Mangrove restoration: Do we know enough?. Restor. Ecol. 8(3), 219–229 (2000).Article 

    Google Scholar 
    Brown, B., Fadillah, R., Nurdin, Y., Soulsby, I., & Ahmad, R. CASE STUDY: Community Based Ecological Mangrove Rehabilitation (CBEMR) in Indonesia. In From small (12–33 ha) to medium scales (400 ha) with pathways for adoption at larger scales ( > 5000 ha). SAPI EN. S. Surveys and Perspectives Integrating Environment and Society 7.2 (2014).Rodríguez-Rodríguez, J. A., Mancera-Pineda, J. E. & Tavera, H. Mangrove restoration in Colombia: Trends and lessons learned. For. Ecol. Manage. 496, 119414 (2021).Article 

    Google Scholar 
    Romañach, S. S. et al. Conservation and restoration
    of mangroves: Global status, perspectives, and prognosis. Ocean Coast Manag. 154, 72–82. https://doi.org/10.1016/j.ocecoaman.2018.01.009 (2018).Article 

    Google Scholar 
    Sulochanan, B. et al. Water and sediment quality parameters of the restored mangrove ecosystem of Gurupura River and natural mangrove ecosystem of Shambhavi River in Dakshina Kannada, India. Marine Pollution Bulletin 176, 113450. https://doi.org/10.1016/j.marpolbul.2022.113450 (2022).Lovelock, C. E., Barbier, E. & Duarte, C. M. Tackling the mangrove restoration challenge. PLoS Biol. 20(10), e3001836 (2022).Article 
    CAS 

    Google Scholar 
    Lovelock, C. E. & Brown, B. M. Land tenure considerations are key to successful mangrove restoration. Nature Ecol. Evol. 3(8), 1135–1135 (2019).Article 

    Google Scholar 
    Su, J., Friess, D. A. & Gasparatos, A. A meta-analysis of the ecological and economic outcomes of mangrove restoration. Nat. Commun. 12(1), 1–13 (2021).Article 

    Google Scholar 
    Lee, S. Y., Hamilton, S., Barbier, E. B., Primavera, J. & Lewis, R. R. Better restoration policies are needed to conserve mangrove ecosystems. Nature Ecol. Evol. 3(6), 870–872 (2019).Article 

    Google Scholar 
    Chakraborty, S., Sahoo, S., Majumdar, D., Saha, S. & Roy, S. Future Mangrove suitability assessment of Andaman to strengthen sustainable development. J. Clean. Prod. 234, 597–614 (2019).Article 

    Google Scholar 
    Charrua, A. B., Bandeira, S. O., Catarino, S., Cabral, P. & Romeiras, M. M. Assessment of the vulnerability of coastal mangrove ecosystems in Mozambique. Ocean Coast. Manag. 189, 105145 (2020).Article 

    Google Scholar 
    Hu, W. et al. Predicting potential mangrove distributions at the global northern distribution margin using an ecological niche model: Determining conservation and reforestation involvement. For. Ecol. Manage. 478, 118517 (2020).Article 

    Google Scholar 
    Rodríguez-Medina, K., Yañez-Arenas, C., Peterson, A. T., Euán Ávila, J. & Herrera-Silveira, J. Evaluating the capacity of species distribution modeling to predict the geographic distribution of the mangrove community in Mexico. PLoS ONE 15(8), e0237701 (2020).Article 

    Google Scholar 
    Wang, Y. et al. Simulating spatial change of mangrove habitat under the impact of coastal land use: Coupling MaxEnt and Dyna-CLUE models. Sci. Total Environ. 788, 147914 (2021).Article 
    CAS 

    Google Scholar 
    Gopal, B. & Chauhan, M. Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat. Sci. 68(3), 338–354 (2006).Article 

    Google Scholar 
    Sahana, M., Rehman, S., Paul, A. K. & Sajjad, H. Assessing socio-economic vulnerability to climate change-induced disasters: Evidence from Sundarban Biosphere Reserve, India. Geol. Ecol. Landsc. 5(1), 40–52 (2021).Article 

    Google Scholar 
    Giri, C. et al. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 35(3), 519–528 (2008).Article 

    Google Scholar 
    Giri, C., Pengra, B., Zhu, Z., Singh, A. & Tieszen, L. L. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 73(1–2), 91–100 (2007).Article 

    Google Scholar 
    Islam, S. N. & Gnauck, A. Effects of salinity intrusion in mangrove wetlands ecosystems in the Sundarbans: An alternative approach for sustainable management. Wetlands Monitor. Modell. Manag. 2007, 315 (2007).
    Google Scholar 
    Hazra, S., Ghosh, T., DasGupta, R. & Sen, G. Sea level and associated changes in the Sundarbans. Sci. Cult. 68(9/12), 309–321 (2002).
    Google Scholar 
    Purkait, B. Coastal erosion in response to wave dynamics operative in Sagar Island, Sundarban delta, India. Front. Earth Sci. China 3(1), 21–33 (2009).Article 

    Google Scholar 
    World Bank (2014). Building resilience for sustainable development of the Sundarbans: Strategy report (No. 20116; World Bank Other Operational Studies). The World Bank Group. https://ideas.repec.org/p/wbk/wboper/20116.html.Das, M. A. H. U. A. Impact of commercial coastal fishing on the environment of Sundarbans for sustainable development. Asian Fish. Sci. 22(1), 157–167 (2009).
    Google Scholar 
    Hoq, M. E. An analysis of fisheries exploitation and management practices in Sundarbans mangrove ecosystem, Bangladesh. Ocean Coast. Manag. 50(5–6), 411–427 (2007).Article 

    Google Scholar 
    Census of India (2011). Primary census abstract, census of India. The government of India, Registrar General and Census Commissioner of India, Ministry of Home Affairs, New Delhi, India. https://censusindia.gov.in/nada/index.php/catalog/41021Chowdhury, A. & Maiti, S. K. Assessing the ecological health risk in a conserved mangrove ecosystem due to heavy metal pollution: A case study from Sundarbans Biosphere Reserve, India. Hum. Ecol. Risk Assess. Int. J. 22(7), 1519–1541 (2016).Article 
    CAS 

    Google Scholar 
    Hajra, R. et al. Unravelling the association between the impact of natural hazards and household poverty: Evidence from the Indian Sundarban delta. Sustain. Sci. 12(3), 453–464 (2017).Article 

    Google Scholar 
    Sahana, M. & Sajjad, H. Assessing Influence of Erosion and Accretion on Landscape Diversity in Sundarban Biosphere Reserve, Lower Ganga Basin: A Geospatial Approach. In Quaternary Geomorphology in India, (eds Das, B. et al.) (Springer, Cham, 2019). https://doi.org/10.1007/978-3-319-90427-6_10 (2018).Chaudhuri, A. B., Choudhury, A., Hussain, Z., & Acharya, G. Mangroves of the Sundarbans. Vol. I. India, The IUCN Wetlands Programme 247 (IUCN, 1994).GBIF.org. GBIF Occurrence Download, 2018. https://www.gbif.org/. Avicennia marina: https://doi.org/10.15468/dl.vmlooq and R. mucronata: https://doi.org/10.15468/dl.ewnqnm (accessed March 2019).Mandal, R. N. & Naskar, K. R. Diversity and classification of Indian mangroves: A review. Trop. Ecol. 49(2), 131–146 (2008).
    Google Scholar 
    Mandal, A. K., & Nandi, N. C. Fauna of Sundarban mangrove ecosystem, west Bengal, India, Vol. 3 (Zoological Survey of India, 1989).Mitra, A. & Pal, S. The Oscillating Mangrove Ecosystem and the Indian Sundarbans (WWF-India-WBSO, 2002).Naskar, K., & Guha Bakshi, D. N. Mangrove Swamps of the Sundarbans (Naya Prokash, 1987).Barik, J. & Chowdhury, S. True mangrove species of Sundarbans delta, West Bengal, eastern India. Check list 10(2), 329–334. https://doi.org/10.15560/10.2.329 (2014).IUCN 2018. The IUCN Red List of Threatened Species. Version 2018. 2018. Electronic database accessible, accessed 15 Nov 2018; http://www.iucnredlist.org.Guyon, I. & Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003).MATH 

    Google Scholar 
    Cavanaugh, K. C. et al. Climate-driven regime shifts in a mangrove–salt marsh ecotone over the past 250 years. Proc. Natl. Acad. Sci. 116(43), 21602–21608 (2019).Article 
    CAS 

    Google Scholar 
    Naskar, K. & Mandal, R. Ecology and Biodiversity of Indian Mangroves, Vol. 1 (Daya Books, 1999).Figueiredo, F. O. et al. Beyond climate control on species range: The importance of soil data to predict distribution of Amazonian plant species. J. Biogeogr. 45(1), 190–200 (2018).Article 

    Google Scholar 
    Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 20(1), 1–9 (2014).Article 

    Google Scholar 
    Asbridge, E., Lucas, R., Ticehurst, C. & Bunting, P. Mangrove response to environmental change in Australia’s Gulf of Carpentaria. Ecol. Evol. 6(11), 3523–3539 (2016).Article 

    Google Scholar 
    He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the Anthropocene. Curr. Biol. 29(19), R1021–R1035. https://doi.org/10.1016/j.cub.2019.08.042 (2019).Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186(2), 251–270 (2005).Article 

    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge University Press, 2017).Book 

    Google Scholar 
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).Article 

    Google Scholar 
    STR Annual Report. In Conservator of Forest & Field Director, Sundarban Tiger Reserve. Canning, West Bengal, India: Directorate of Forests, Government of West Bengal (2013–2014).Segurado, P. & Araujo, M. B. An evaluation of methods for modelling species distributions. J. biogeogr. 31(10), 1555–1568. https://doi.org/10.1111/j.1365-2699.2004.01076.x (2004).Kadmon, R., Farber, O. & Danin, A. A systematic analysis of factors affecting the performance of climatic envelope models. Ecol. Appl. 13(3), 853–867. https://doi.org/10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2 (2003).Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. distribut. 14(5), 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x (2008).Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12(1), 40–45 (2019).Article 
    CAS 

    Google Scholar 
    Hoguane, A. M., Hill, A. E., Simpson, J. H. & Bowers, D. G. Diurnal and tidal variation of temperature and salinity in the Ponta Rasa mangrove swamp, Mozambique. Estuar. Coast. Shelf S. 49(2), 251–264. https://doi.org/10.1006/ecss.1999.0499 (1999).  Article 
    CAS 

    Google Scholar 
    Sanders, C. J. et al. Are global mangrove carbon stocks driven by rainfall? J. Geophys. Res. Biogeosci. 121(10), 2600–2609. https://doi.org/10.1002/2016JG003510 (2016).Srivastava, J., Farooqui, A. & Seth, P. Pollen-vegetation relationship in surface sediments, Coringa mangrove ecosystem, India: palaeoecological applications. Palynology 43(3), 451–466. https://doi.org/10.1080/01916122.2018.1458755 (2019).Nandy, P., Das, S., Ghose, M. & Spooner-Hart, R. Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. Wetlands Ecol. Manage. 15(4), 347–357 (2007).Article 
    CAS 

    Google Scholar 
    Washington, W., Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40 (2001).
    Google Scholar 
    Blasco, F., Aizpuru, M. & Gers, C. Depletion of the mangroves of Continental Asia. Wetlands Ecol. Manage. 9(3), 255–266 (2001).Article 

    Google Scholar 
    Datta, D. & Deb, S. Forest structure and soil properties of mangrove ecosystems under management scenarios: Experiences from the intensely humanized landscape of Indian Sunderbans. Ocean Coast. Manag. 140, 22–33 (2017).Article 

    Google Scholar 
    Wahid, S. M., Babel, M. S. & Bhuiyan, A. R. Hydrologic monitoring and analysis in the Sundarbans mangrove ecosystem, Bangladesh. J. Hydrol. 332(3–4), 381–395 (2007).Article 

    Google Scholar 
    Iftekhar, M. S. & Islam, M. R. Degeneration of Bangladesh’s Sundarbans mangroves: A management issue. Int. For. Rev. 6(2), 123–135 (2004).
    Google Scholar 
    Saenger, P. Mangrove Ecology, Silviculture, and Conservation (Kluwer Academic Publishers, 2002).Book 

    Google Scholar 
    Feka, Z. N. Sustainable management of mangrove forests in West Africa: A new policy perspective?. Ocean Coast. Manag. 116, 341–352. https://doi.org/10.1016/j.ocecoaman.2015.08.006 (2015).Article 

    Google Scholar 
    Giri, S. et al. A study on abundance and distribution of mangrove species in Indian Sundarban using remote sensing technique. J. Coast Conserv. 18, 359–367. https://doi.org/10.1007/s11852-014-0322-3 (2014).Article 

    Google Scholar 
    Moschetto, F. A., Ribeiro, R. B. & De Freitasa, D. M. Urban expansion, regeneration and socioenvironmental vulnerability in a mangrove ecosystem at the southeast coastal of São Paulo, Brazil. Ocean Coast. Manag. 24, 105418. https://doi.org/10.1016/j.ocecoaman.2020.105418 (2020).Article 

    Google Scholar 
    Tuholskea, C., Tane, Z., López-Carra, D., Roberts, D. & Cassels, S. Thirty years of land use/cover change in the Caribbean: Assessing the relationship between urbanization and mangrove loss in Roatán, Honduras. Appl. Geogr. 88, 84–93. https://doi.org/10.1016/j.apgeog.2017.08.018 (2017).Article 

    Google Scholar 
    Kantharajan, G. et al. Vegetative structure and species composition of mangroves along the Mumbai coast, Maharashtra, India. Reg. Stud. Mar. Sci. 19, 1–8 (2018).
    Google Scholar 
    Marcinko, C. L. et al. The development of a framework for the integrated assessment of SDG trade-offs in the Sundarban Biosphere Reserve. Water 13(4), 528 (2021).Article 

    Google Scholar 
    Sahana, M. et al. Assessing Wetland ecosystem health in Sundarban Biosphere Reserve using pressure-state-response model and geospatial techniques. Remot. Sens. Appl. Soc. Environ. 26, 100754. https://doi.org/10.1016/j.rsase.2022.100754 (2022).Saha, S., & Choudhury, A. Vegetation Analysis of Restored And Natural Mangrove Forest In Sagar Island, Sundarbans, East Coast of India. Indian J. Mar. Sci. 24, 133–136. http://nopr.niscpr.res.in/bitstream/123456789/37297/1/IJMS%2024%283%29%20133-136.pdf (1995).Balke, T. & Friess, D. A. Geomorphic knowledge for mangrove restoration: A pantropical categorization. Earth Surf. Process. Landf. 41, 231–239. https://doi.org/10.1002/esp.3841 (2016).Article 

    Google Scholar 
    Alongi, D. M. Mangrove forests of timor-leste: Ecology, degradation and vulnerability to climate change. In Mangrove ecosystems of Asia 199–212 (Springer, 2014).Biswas, S. R., Mallik, A. U., Choudhury, J. K. & Nishat, A. A unified framework for the restoration of Southeast Asian mangroves—bridging ecology, society and economics. Wetlands Ecol. Manage. 17(4), 365–383 (2009).Article 

    Google Scholar 
    Dubey, S. K., Censkowsky, U., Roy, M., Chand, B. K., & Dey, A. Framework for rapid evaluation of a mangrove restoration site: A case study from Indian Sundarban. In Sabkha Ecosystems 363–378 (Springer, 2019).Islam, M. M. & Shamsuddoha, M. Coastal and marine conservation strategy for Bangladesh in the context of achieving blue growth and sustainable development goals (SDGs). Environ. Sci. Pol. 87, 45–54. https://doi.org/10.1016/j.envsci.2018.05.014 (2018).Article 

    Google Scholar 
    Bosire, J., Celliers, L., Groeneveld, J., Paula, J. & Schleyer, M.H. Regional State of the Coast Report-Western Indian Ocean. UNEP-Nairobi Convention and WIOMSA 546 (2015).Owuor, M. A., Mulwa, R., Otieno, R., Icely, J. & Newton, A. Valuing mangrove biodiversity and ecosystem services: A deliberative choice experiment in Mida Creek, Kenya. Ecosyst. Serv. 40, 101040. https://doi.org/10.1016/j.ecoser.2019.101040 (2019).Article 

    Google Scholar 
    Barwell, L. et al. (2018). Regional
    State of the Coast Report Western Indian Ocean. The United Nations Environment
    Programme/Nairobi Convention Secretariat. https://wedocs.unep.org/handle/20.500.11822/9700?show=fullde Jesús Arce-Mojica, T., Nehren, U., Sudmeier-Rieux, K., Miranda, P. J. & Anhuf, D. Nature-based solutions (NbS) for reducing the risk of shallow landslides: where do we stand? Int. J. disaster risk reduct. 41, 101293. https://doi.org/10.1016/j.ijdrr.2019.101293 (2019).Bardhan, M. An empirical study on mangrove restoration in Indian Sundarbans—a community-based environmental approach. In Modern Cartography Series, vol. 10 387–405 (Academic Press, 2021).Kumar, M. C., Bholanath, M. & Debashis, S. Study on utility and revival through community approach in sundarbans mangrove. Int. J. Soc. Sci. https://doi.org/10.5958/2321-5771.2014.00101.X (2014).Article 

    Google Scholar 
    Chakraborty, S. K., Giri, S., Chakravarty, G. & Bhattacharya, N. Impact of eco-restoration on the biodiversity of Sundarbans Mangrove Ecosystem, India. Water Air Soil Pollut. Focus 9(3), 303–320 (2009).Article 

    Google Scholar 
    Paulson Institute. Research report on mangrove protection and restoration strategy in China, 2020; https://paulsoninstitute.org.cn/wpcontent/uploads/2020/06/%E4%B8%AD%E5%9B%BD%E7%BA%A2%E6%A0%91%E6%9E%97%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%81%A2%E5%A4%8D%E6%88%98%E7%95%A5%E7%A0%94%E7%A9%B6%E6%8A%A5%E5%91%8A%E2%80%94%E6%91%98%E8%A6%81%E7%89%88.pdf.Fan, H. Q. & Wang, W. Q. Some thematic issues for mangrove conservation in China. J. Xiamen Univ. Nat. Sci 56, 323–330. https://doi.org/10.6043/j.issn.0438-0479.201612003 (2017).Article 

    Google Scholar 
    Wang, W., Fu, H., Lee, S. Y., Fan, H. & Wang, M. Can strict protection stop the decline of mangrove ecosystems in China? Fromrapid destruction to rampant degradation. Forests 11, 55. https://doi.org/10.3390/f11010055 (2020).Article 

    Google Scholar 
    Roy, A. K. D. & Alam, K. Participatory forest management for the sustainable management of the sundarbans mangrove forest. Am. J. Env. Sci. 8(5), 549–555. https://doi.org/10.3844/ajessp.2012.549.555 (2012).Article 

    Google Scholar 
    Selvam, V. et al. In Toolkit for establishing coastal bioshield. M. S. Swaminathan Research Foundation, Centre for Research on Sustainable Agriculture and Rural Development (2005).Raju, J. S. S. N. Xylocarpus (Meliaceae): A less-known mangrove taxon of the Godavari estuary, India. Curr. Sci. 84(7), 879–881. https://www.currentscience.ac.in/Volumes/84/07/0879.pdf (2003).
    Google Scholar 
    Siddiqui, A. H. & Khair, A. Infestation status of heart rot disease of pasur (Xylocarpus mekongensis), tree in the sundarbans. Indian For. 138(2), 165–168 (2012).
    Google Scholar 
    Iqbal, M. & Hossain, M. Tourists’ willingness to pay for restoration of Sundarbans Mangrove forest ecosystems: A contingent valuation modeling study. Env. Dev. Sustain. 2022, 1–22 (2022).
    Google Scholar 
    Ekka, A. & Pandit, A. Willingness to pay for restoration of natural ecosystem: A study of Sundarban mangroves by contingent valuation approach. Indian J. Agric. Econ. 67, 902 (2012).
    Google Scholar 
    Datta, D., Chattopadhyay, R. N. & Guha, P. Community based mangrove management: A review on status and sustainability. J. Env. Manag. 107, 84–95. https://doi.org/10.1016/j.jenvman.2012.04.013 (2012).Article 

    Google Scholar 
    Ghosh, A., Schmidt, S., Fickert, T. & Nusser, M. The Indian Sundarban mangrove forests: History, utilization, conservation strategies and local perception. Diversity 7(2), 149–169. https://doi.org/10.3390/d7020149 (2015).Article 
    CAS 

    Google Scholar 
    Ranjan, R. Optimal mangrove restoration through community engagement on coastal lands facing climatic risks: The case of Sundarbans region in India. Land Use Policy 81, 736–749 (2019).Article 

    Google Scholar 
    Dutta, M., Roy, S. & Nibirh, S. Joint forest management and forest protection committees: Negotiation systems and the design of incentives—a case study of West Bengal. Electron. J. https://doi.org/10.2139/ssrn.2245965 (2001).Article 

    Google Scholar 
    McKee, K. L., Rooth, J. E. & Feller, I. C. Mangrove recruitment after forest disturbance is facilitated by herbaceous species in the Caribbean. Ecol. Appl. 17(6), 1678–1693 (2007).Article 

    Google Scholar 
    Begam, M. et al. Native salt-tolerant grass species for habitat restoration, their acclimation and contribution to improving edaphic conditions: A study from a degraded mangrove in the Indian Sundarbans. Hydrobiologia 803(1), 373–387 (2017).Article 
    CAS 

    Google Scholar 
    Donnelly, M. & Walters, L. Trapping of Rhizophora mangle propagules by coexisting early successional species. Estuaries Coasts 37, 1562–1571 (2014).Article 

    Google Scholar 
    Ren, H. et al. Sonneratia apetala Buch. Ham in the mangrove ecosystems of China: An invasive species or restoration species?. Ecol. Eng. 35(8), 1243–1248 (2009).Article 

    Google Scholar 
    Cheong, S.-M. et al. Coastal adaptation with ecological engineering. Nature Clim. Change 3, 787–791. https://doi.org/10.1038/nclimate1854 (2013).Article 

    Google Scholar  More

  • in

    Rare and declining bird species benefit most from designating protected areas for conservation in the UK

    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 
    PubMed 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulze, K. et al. An assessment of threats to terrestrial protected areas. Conserv. Lett. 11, e12435 (2018).Article 

    Google Scholar 
    Bingham, H. C. et al. (eds). Protected Planet Report 2020 (UNEP-WCMC & IUCN, 2021); https://livereport.protectedplanet.net/Buchanan, G. M., Butchart, S. H., Chandler, G. & Gregory, R. D. Assessment of national-level progress towards elements of the Aichi Biodiversity Targets. Ecol. Indic. 116, 106497 (2020).Article 

    Google Scholar 
    Xu, H. et al. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 5, 411–418 (2021).Article 
    PubMed 

    Google Scholar 
    Report of the Open-ended Working Group on the Post-2020 Global Biodiversity Framework on Its Third Meeting (CBD Secretariat, 2022); https://www.cbd.int/conferences/post2020/wg2020-03/documentsRodrigues, A. S. & Cazalis, V. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11, 5147 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Starnes, T. et al. The extent and effectiveness of protected areas in the UK. Glob. Ecol. Conserv. 30, e01745 (2021).Article 

    Google Scholar 
    Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cazalis, V. et al. Mismatch between bird species sensitivity and the protection of intact habitats across the Americas. Ecol. Lett. 24, 2394–2405 (2021).Article 
    PubMed 

    Google Scholar 
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Gamero, A. et al. Tracking progress toward EU biodiversity strategy targets: EU policy effects in preserving its common farmland birds. Conserv. Lett. 10, 395–402 (2017).Article 

    Google Scholar 
    Pellissier, V. et al. Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data. Conserv. Biol. 34, 666–676 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Princé, K., Rouveyrol, P., Pellissier, V., Touroult, J. & Jiguet, F. Long-term effectiveness of Natura 2000 network to protect biodiversity: a hint of optimism for common birds. Biol. Conserv. 253, 108871 (2021).Article 

    Google Scholar 
    Cunningham, C. A., Thomas, C. D., Morecroft, M. D., Crick, H. Q. P. & Beale, C. M. The effectiveness of the protected area network of Great Britain. Biol. Conserv. 257, 109146 (2021).Article 

    Google Scholar 
    Duckworth, G. D. & Altwegg, R. Effectiveness of protected areas for bird conservation depends on guild. Divers. Distrib. 24, 1083–1091 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Rada, S. et al. Protected areas do not mitigate biodiversity declines: a case study on butterflies. Divers. Distrib. 25, 217–224 (2019).Article 

    Google Scholar 
    Terraube, J., Van Doninck, J., Helle, P., & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Lenoir, J. et al. Species better track the shifting isotherms in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 
    PubMed 

    Google Scholar 
    van Teeffelen, A., Meller, L., van Minnen, J., Vermaat, J. & Cabeza, M. How climate proof is the European Union’s biodiversity policy? Regional Environ. Change 15, 997–1010 (2015).Article 

    Google Scholar 
    Thomas, C. D. & Gillingham, P. K. The performance of protected areas for biodiversity under climate change. Biol. J. Linn. Soc. Lond. 115, 718–730 (2015).Article 

    Google Scholar 
    Gillingham, P. K. et al. The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biol. J. Linn. Soc. Lond. 115, 707–717 (2015).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Stokstad, E. Species? Climate? Cost? Ambitious goal means trade-offs. Science 371, 555 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brlík, V. et al. Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Sci. Data 8, 21 (2021).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Stanbury, A. et al. The status of bird populations: the fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723–747 (2021).
    Google Scholar 
    Dudley, N. (ed). Guidelines for Applying Protected Area Management Categories (IUCN, 2008).Deguignet, M. et al. Measuring the extent of overlaps in protected area designations. PLoS ONE 12, e0188681 (2017).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    JNCC. Common Standards Monitoring: Introduction to the Guidance Manual (JNCC Resource Hub, 2004).Hayhow, D. B. et al. State of Nature 2019 (RSPB, 2019).Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020); https://helda.helsinki.fi/handle/10138/326470Franks, S. E., Roodbergen, M., Teunissen, W., Carrington Cotton, A. & Pearce‐Higgins, J. W. Evaluating the effectiveness of conservation measures for European grassland‐breeding waders. Ecol. Evol. 8, 10555–10568 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Pearce-Higgins, J. W. et al. Site-based adaptation reduces the negative effects of weather upon a southern range margin Welsh black grouse Tetrao tetrix population that is vulnerable to climate change. Clim. Change 153, 253–265 (2019).Article 

    Google Scholar 
    Jellesmark, S. et al. A counterfactual approach to measure the impact of wet grassland conservation on U.K. breeding bird populations. Conserv. Biol. 35, 1575–1585 (2021).Article 
    PubMed 

    Google Scholar 
    Morrison, C. A. et al. Covariation in population trends and demography reveals targets for conservation action. Proc. Biol. Sci. 288, 20202955 (2021).PubMed Central 
    PubMed 

    Google Scholar 
    Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Martay, B. et al. Monitoring landscape-scale environmental changes with citizen scientists: Twenty years of land use change in Great Britain. J. Nat. Conserv. 44, 33–42 (2018).Article 

    Google Scholar 
    Sullivan, M. J. P., Newson, S. E. & Pearce‐Higgins, J. W. Changing densities of generalist species underlie apparent homogenization of UK bird communities. Ibis 158, 645–655 (2016).Article 

    Google Scholar 
    Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).Article 
    PubMed 

    Google Scholar 
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).Article 

    Google Scholar 
    Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change—evidence from large‐scale, long‐term abundance data. Glob. Change Biol. 25, 304–313 (2019).Article 

    Google Scholar 
    Gaüzère, P., Jiguet, F. & Devictor, V. Can protected areas mitigate the impacts of climate change on bird’s species and communities? Diversity Distrib. 22, 625–637 (2016).Article 

    Google Scholar 
    Neate‐Clegg, M. H. C., Jones, S. E. I., Burdekin, O., Jocque, M. & Şekercioğlu, Ç. H. Elevational changes in the avian community of a Mesoamerican cloud forest park. Biotropica 50, 805–815 (2018).Article 

    Google Scholar 
    Oliver, T. H. et al. Large extents of intensive land use limit community reorganization during climate warming. Glob. Change Biol. 23, 2272–2283 (2017).Article 

    Google Scholar 
    Hiley, J. R., Bradbury, R. B., Holling, M. & Thomas, C. D. Protected areas act as establishment centres for species colonizing the UK. Proc. Biol. Sci. 280, 20122310 (2013).PubMed Central 
    PubMed 

    Google Scholar 
    Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Grace, M. K. et al. Testing a global standard for quantifying species recovery and assessing conservation impact. Conserv. Biol. 35, 1833–1849 (2021).Article 
    PubMed 

    Google Scholar 
    Gibbons, D. W., Reid, J. B. & Chapman, R. A. The New Atlas of Breeding Birds in Britain & Ireland 1988–1991 (T. & A. D. Poyser, 1993).Balmer, D. E. et al. Bird Atlas 2007–11: the Breeding and Wintering Birds of Britain and Ireland (BTO, 2013).Gillings, S. et al. Breeding and wintering bird distributions in Britain and Ireland from citizen science bird atlases. Glob. Ecol. Biogeogr. 28, 866–874 (2019).Article 

    Google Scholar 
    Freeman, S. N., Noble, D. G., Newson, S. E. & Baillie, S. R. Modelling population changes using data from different surveys: the Common Birds Census and the Breeding Bird Survey. Bird Study 54, 61–72 (2007).Article 

    Google Scholar 
    Robinson, R. A., Julliard, R. & Saracco, J. F. Constant effort: studying avian population processes using standardised ringing. Ring. Migr. 24, 199–204 (2009).Article 

    Google Scholar 
    Cave, V. M., Freeman, S. N., Brooks, S. P., King, R. & Balmer, D. E. in Modeling Demographic Processes in Marked Populations, 949–963 (Springer, 2009).Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, GB) (eds Thomson, D. L. et al) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/7115bc48-3ab0-475d-84ae-fd3126c20984Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, N. Ireland) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/362feaea-0ccf-4a45-b11f-980c6b89a858ASTER Global Digital Elevation Model V003 (dataset). NASA EOSDIS Land Processes DAAC (NASA/METI/AIST/Japan Space Systems and U.S./Japan ASTER Science Team, 2019); https://doi.org/10.5067/ASTER/ASTGTM.003Schiavina, M., Freire, S. & MacManus, K. GHS-SMOD R2019A – GHS Settlement Layers, Updated and Refined REGIO Model 2014 in Application to GHS-BUILT R2018A and GHS-POP R2019A, Multitemporal (1975-1990-2000-2015) (European Commission Joint Research Centre, 2019); https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218Robinson, R. A. BirdFacts: Profiles of Birds Occurring in Britain & Ireland (BTO, 2005).Gibbons, D. W. et al. Bird species of conservation concern in the United Kingdom, Channel Islands and Isle of Man: revising the Red Data List. RSPB Conserv. Rev. 10, 7–18 (1996).
    Google Scholar 
    Stone, B. H. et al. Population estimates of birds in Britain and in the United Kingdom. Br. Birds 90, 1–22 (1997).
    Google Scholar 
    Woodward, I. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69–104 (2020).
    Google Scholar 
    R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Bull, J. W., Strange, N., Smith, R. J. & Gordon, A. Reconciling multiple counterfactuals when evaluating biodiversity conservation impact in social‐ecological systems. Conserv. Biol. 35, 510–521 (2020).Article 
    PubMed 

    Google Scholar 
    Jellesmark, S. et al. Assessing the global impact of targeted conservation actions on species abundance. Preprint at bioRxiv https://doi.org/10.1101/2022.01.14.476374 (2022).Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds but management helps. Nature 605, 103–107 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.4.4 (2021); https://CRAN.R-project.org/package=DHARMaJetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnston, A. et al. Species traits explain variation in detectability of UK birds. Bird Study 61, 340–350 (2014).Article 

    Google Scholar 
    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).Article 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Anal. 15, 199–236 (2007).Article 

    Google Scholar 
    Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).Article 
    PubMed 

    Google Scholar 
    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. Biol. Sci. 275, 2743–2748 (2008).PubMed Central 
    PubMed 

    Google Scholar  More