Drivers of habitat quality for a reintroduced elk herd
Ah-King, M. Flexible mate choice in Encyclopedia of Animal Behavior, 2nd edn Vol. 4 (ed Jae Chun Choe) 421–431 (Academic Press, 2019).Harestad, A. S. & Bunnell, F. L. Home range and body weight—A reevaluation. Ecology 60, 389–402 (1979).Article
Google Scholar
O’Neill, R. V., Milne, B. T., Turner, M. G. & Gardner, R. H. Resource utilization scales and landscape pattern. Landsc. Ecol. 2, 63–69 (1988).Article
Google Scholar
Tricas, T. C. Determinants of feeding territory size in the corallivorous butterflyfish, Chaetodon multicinctus. Anim. Behav. 37, 830–841. https://doi.org/10.1016/0003-3472(89)90067-5 (1989).Article
Google Scholar
Tremblay, I., Thomas, D., Blondel, J., Perret, P. & Lambrechts, M. M. The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican Blue Tits Parus caeruleus. Ibis 147, 17–24. https://doi.org/10.1111/j.1474-919x.2004.00312.x (2005).Article
Google Scholar
Watts, D. P. The influence of male mating tactics on habitat use in Mountain Gorillas (Gorilla gorilla beringei). Primates 35, 35–47. https://doi.org/10.1007/BF02381484 (1994).Article
Google Scholar
Lescroël, A. et al. Working less to gain more: when breeding quality relates to foraging efficiency. Ecology 91, 2044–2055. https://doi.org/10.1890/09-0766.1 (2010).Article
PubMed
Google Scholar
Tufto, J., Anderson, R. & Linnell, J. Habitat use and ecological correlates of home range size in a small cervid: the roe deer. J. Anim. Ecol. 65, 715–724. https://doi.org/10.2307/5670 (1996).Article
Google Scholar
Morellet, N. et al. Seasonality, weather and climate affect home range size in roe deer across a wide latitudinal gradient within Europe. J. Anim. Ecol. 82, 1326–1339. https://doi.org/10.1111/1365-2656.12105 (2013).Article
PubMed
Google Scholar
Anderson, D. P. et al. Scale-dependent summer resource selection by reintroduced elk in Wisconsin, USA. J. Wildl. Manag. 69, 298–310. https://doi.org/10.2193/0022-541X(2005)069%3c0298:SSRSBR%3e2.0.CO;2 (2005).Article
Google Scholar
Olsson, P. M. O. et al. Movement and activity patterns of translocated elk (Cervus elaphus nelsoni) on an active coal mine in Kentucky. Wildl. Biol. Pract. 3, 1–8. https://doi.org/10.2461/wbp.2007.3.1 (2007).Article
Google Scholar
Porter, W. P., Sabo, J. L., Tracy, C. R., Reichman, O. J. & Ramankutty, N. Physiology on a landscape scale: plant–animal interactions. Integr. Comp. Biol. 42, 431–453. https://doi.org/10.1093/icb/42.3.431 (2002).Article
PubMed
Google Scholar
Berg, J. E. et al. Mothers’ movements: shifts in calving area selection by partially migratory elk. J. Wildl. Manag. 85, 1476–1489. https://doi.org/10.1002/jwmg.22099 (2021).Article
Google Scholar
Lehman, C. P. et al. Elk resource selection at parturition sites, Black Hills, South Dakota. J. Wildl. Manag. 80, 465–478. https://doi.org/10.1002/jwmg.1017 (2016).Article
Google Scholar
Johnson, B. K., Kern, J. W., Wisdom, M. J., Findholt, S. L. & Kie, J. G. Resource selection and spatial separation of mule deer and elk during spring. J. Wildl. Manag. 64, 685–697. https://doi.org/10.2307/3802738 (2000).Article
Google Scholar
Grace, J. & Easterbee, N. The natural shelter for red deer (Cervus elaphus) in a Scottish glen. J. Appl. Ecol. 16, 37–48. https://doi.org/10.2307/2402726 (1979).Article
Google Scholar
Demarchi, M. W. & Bunnell, F. L. Estimating forest canopy effects on summer thermal cover for Cervidae (deer family). Can. J. For. Res. 23, 2419–2426. https://doi.org/10.1139/x93-299 (1993).Article
Google Scholar
Parker, K. L. & Gillingham, M. P. Estimates of critical thermal environments for mule deer. J. Range. Manag. 43, 73–81 (1990).Article
Google Scholar
Proffitt, K. M. et al. Changes in elk resource selection and distributions associated with a late-season elk hunt. J. Wildl. Manag. 74, 210–218. https://doi.org/10.2193/2008-593 (2010).Article
Google Scholar
Webb, S. L., Dzialak, M. R., Harju, S. M., Hayden-Wing, L. D. & Winstead, J. B. Influence of land development on home range use dynamics of female elk. Wildl. Res. 38, 163–167. https://doi.org/10.1071/WR10101 (2011).Article
Google Scholar
Rumble, M. A., Benkobi, L. & Gamo, R. S. Elk responses to humans in a densely roaded area. Intermt. J. Sci. 11, 10–24 (2005).
Google Scholar
McCorquodale, S. M. Sex-specific movements and habitat use by elk in the Cascade Range of Washington. J. Wildl. Manag. 67, 729–741. https://doi.org/10.1890/15-1607.1 (2003).Article
Google Scholar
Saïd, S. & Servanty, S. The influence of landscape structure on female roe deer home-range size. Landsc. Ecol. 20, 1003–1012. https://doi.org/10.1007/s10980-005-7518-8 (2005).Article
Google Scholar
Seddon, P. J., Armstrong, D. P. & Maloney, R. F. Developing the science of reintroduction biology. Conserv. Biol. 21, 303–312. https://doi.org/10.1111/j.1523-1739.2006.00627.x (2007).Article
PubMed
Google Scholar
Hale, S. L. & Koprowski, J. L. Ecosystem-level effects of keystone species reintroduction: a literature review. Restor. Ecol. 26, 439–445. https://doi.org/10.1111/rec.12684 (2018).Article
Google Scholar
Cheyne, S. M. Wildlife reintroduction: considerations of habitat quality at the release site. BMC Ecol. 6, 5. https://doi.org/10.1186/1472-6785-6-5 (2006).Article
PubMed
PubMed Central
Google Scholar
Hegel, T. M., Gates, C. C. & Eslinger, D. The geography of conflict between elk and agricultural values in the Cypress Hills, Canada. J. Eniron. Manag. 90, 222–235. https://doi.org/10.1016/j.jenvman.2007.09.005 (2009).Article
Google Scholar
Walter, W. D. et al. Management of damage by elk (Cervus elaphus) in North America: a review. Wildl. Res. 37, 630–646. https://doi.org/10.1071/WR10021 (2010).Article
Google Scholar
Jung, T. S. Extralimital movements of reintroduced bison (Bison bison): implications for potential range expansion and human–wildlife conflict. Eur. J. Wildl. Res. 63, 35. https://doi.org/10.1007/s10344-017-1094-5 (2017).Article
Google Scholar
Buchholtz, E. K., Stronza, A., Songhurst, A., McCulloch, G. & Fitzgerald, L. A. Using landscape connectivity to predict human-wildlife conflict. Biol. Conserv. 248, 108677. https://doi.org/10.1016/j.biocon.2020.108677 (2020).Article
Google Scholar
Hodgson, J. A., Moilanen, A., Wintle, B. A. & Thomas, C. D. Habitat area, quality and connectivity: striking the balance for efficient conservation. J. Appl. Ecol. 48, 148–152. https://doi.org/10.1111/j.1365-2664.2010.01919.x (2011).Article
Google Scholar
Murie, O. The Elk of North America (Stackpole Co., 1951).
Google Scholar
VDWR. Virginia elk management plan 2019–2028 (ed Virginia Department of Wildlife Resources) (Virginia Department of Wildlife Resources, 2019).Lituma, C. M. et al. Terrestrial wildlife in the post-mined Appalachian landscape: status and opportunities in Appalachia’s Coal-Mined Landscapes (eds Carl E. Zipper & Jeff Skousen) 135–166 (Springer, 2021).Lupardus, J. L., Muller, L. I. & Kindall, J. L. Seasonal forage availability and diet for reintroduced elk in the Cumberland Mountains, Tennessee. Southeast. Nat. 10, 53–74. https://doi.org/10.1656/058.010.0105 (2011).Article
Google Scholar
Schneider, J. et al. Food habits of reintroduced elk in southeastern Kentucky. Southeast. Nat. 5, 535–546. https://doi.org/10.1656/1528-7092(2006)5[535:Fhorei]2.0.Co;2 (2006).Article
Google Scholar
Smith, T. N., Keller, B. J., Chitwood, M. C., Hansen, L. P. & Millspaugh, J. J. Diet composition and selection of recently reintroduced elk in Missouri. Am. Midl. Nat. 180, 143–159. https://doi.org/10.1674/0003-0031-180.1.143 (2018).Article
Google Scholar
Franklin, J. A., Zipper, C. E., Burger, J. A., Skousen, J. G. & Jacobs, D. F. Influence of herbaceous ground cover on forest restoration of eastern US coal surface mines. New. For. 43, 905–924. https://doi.org/10.1007/s11056-012-9342-8 (2012).Article
Google Scholar
Popp, J. N., Toman, T., Mallory, F. F. & Hamr, J. A century of elk restoration in eastern North America. Restor. Ecol. 22, 723–730. https://doi.org/10.1111/rec.12150 (2014).Article
Google Scholar
Cook, J. G., Irwin, L. L., Bryant, L. D., Riggs, R. A. & Thomas, J. W. Relations of forest cover and condition of elk: a test of the thermal cover hypothesis in the summer and winter. Wildl. Monogr. 141, 3–61 (1998).
Google Scholar
Parker, K. L. & Robbins, C. T. Thermoregulation in mule deer and elk. Can. J. Zool. 62, 1409–1422. https://doi.org/10.1139/z84-202 (1984).Article
Google Scholar
Mao, J. S. et al. Habitat selection by elk before and after wolf reintroduction in Yellowstone National Park. J. Wildl. Manag. 69, 1691–1707. https://doi.org/10.2193/0022-541X (2005).Article
Google Scholar
Wolff, J. O. & Van Horn, T. Vigilance and foraging patterns of American elk during the rut in habitats with and without predators. Can. J. Zool. 81, 266–271. https://doi.org/10.1139/z03-011 (2003).Article
Google Scholar
Beck, J. L. & Peek, J. M. Diet composition, forage selection, and potential for forage competition among elk, deer, and livestock on aspen–sagebrush summer range. Rangel. Ecol. Manag. 58, 135–147. https://doi.org/10.2111/03-13.1 (2005).Article
Google Scholar
Ford, W. M., Johnson, A. S. & Hale, P. E. Nutritional quality of deer browse in southern Appalachian clearcuts and mature forests. For. Ecol. Manag. 67, 149–157. https://doi.org/10.1016/0378-1127(94)90013-2 (1994).Article
Google Scholar
Sikes, R. S., Gannon, W. L. & The American Care and Use Committee of the American Society of Mammalogists. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253. https://doi.org/10.1644/10-mamm-f-355.1 (2011).Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410 (2020).Article
PubMed
PubMed Central
Google Scholar
Powell, J. W. Physiographic Regions of the United States. (American Book Company, 1895).Braun, E. L. Forests of the Cumberland Mountains. Ecol. Monogr. 12, 413–447. https://doi.org/10.2307/1943039 (1942).Article
Google Scholar
Clark, J. B. The Vascular Flora of Breaks Interstate Park, Pike County, Kentucky, and Dickenson County, Virginia Master of Science thesis, Eastern Kentucky University (2012).Pericak, A. A. et al. Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine. PLoS ONE 13, e0197758. https://doi.org/10.1371/journal.pone.0197758 (2018).Article
PubMed
PubMed Central
Google Scholar
Boettner, F. et al. An assessment of the natural assets in the Appalachian Region: forest resources (ed Appalachian Regional Commission Report) 97 (Washington, DC, 2014).NOAA. Summary of monthly normals Grundy, VA 1991 – 2020 data (National Oceanic and Atmospheric Administration (2022).U.S. Geological Survey (USGS) Gap Analysis Project (GAP). GAP/LANDFIRE national terrestrial ecosystems 2011: U.S. Geological Survey data release (2016).Clark, M. The Nature Conservancy Eastern Division & North Atlantic Landscape Conservation Cooperative. Terrestrial habitat, Northeast data (2017).ESRI. ArcGIS desktop version 10.8.1 (Environmental Systems Research Institute, 2020).Ford, W. M. et al. Influence of elevation and forest type on community assemblage and species distribution of shrews in the central and southern Appalachians in Advances in the Biology of the Shrews II Vol. 1(eds. J.F. Merritt, S. Churchfield, R. Hutterer and B.A. Sheftel) 303–315(Special Publication of the International Society of Shrew Biologists, 2006).Kniowski, A. B. & Ford, W. M. Predicting intensity of white-tailed deer herbivory in the Central Appalachian Mountains. J. For. Res. 29, 841–850. https://doi.org/10.1007/s11676-017-0476-6 (2018).Article
Google Scholar
Fleming, C. H. & Calabrese, J. M. ctmm: continuous-time movement modeling. R package version 0.6.0 (2021).R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).Fleming, C. H. et al. Estimating where and how animals travel: an optimal framework for path reconstruction from autocorrelated tracking data. Ecology 97, 576–582. https://doi.org/10.1890/15-1607.1 (2016).Article
PubMed
Google Scholar
Hijmans, R. J. raster: geographic data analysis and modeling. R package version 3.4-5 (2020).Becker, R. A., Chambers, J. M. & Wilks, A. R. The New S Language (Wadsworth and Brooks/Cole, 1988).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. B. H. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).Article
Google Scholar
Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Use of the Information-Theoretic Approach (Springer, 1998).Turner, M. G., Wu, Y., Romme, W. H. & Wallace, L. L. A landscape simulation model of winter foraging by large ungulates. Ecol. Modell. 69, 163–184. https://doi.org/10.1016/0304-3800(93)90026-O (1993).Article
Google Scholar
Taper, M. L. & Gogan, P. J. P. The northern Yellowstone elk: density dependence and climatic conditions. J. Wildl. Manag. 66, 106–122. https://doi.org/10.2307/3802877 (2002).Article
Google Scholar
Green, R. A. & Bear, G. D. Seasonal cycles and daily activity patterns of Rocky Mountain elk. J. Wildl. Manag. 54, 272–279. https://doi.org/10.2307/3809041 (1990).Article
Google Scholar
Craighead, J. J., Craighead, F. C. J., Ruff, R. L. & O’Gara, B. W. Home ranges and activity patterns of nonmigratory elk of the Madison Drainage herd as determined by biotelemetry. Wildl. Monogr. 33, 3–50 (1973).
Google Scholar
Gittleman, J. L. & Thompson, S. D. Energy allocation in mammalian reproduction. Am. Zool. 28, 863–875. https://doi.org/10.1093/icb/28.3.863 (1988).Article
Google Scholar
Beier, P. & McCullough, D. R. Factors influencing white-tailed deer activity patterns and habitat use. Wildl. Monogr. 109, 3–51 (1990).
Google Scholar
Ciuti, S., Davini, S., Luccarini, S. & Apollonio, M. Variation in home range size of female fallow deer inhabiting a sub-Mediterranean habitat. Rev. Ecol. 58, 381–395 (2003).
Google Scholar
Vore, J. M. & Schmidt, E. M. Movements of female elk during calving season in northwest Montana. Wildl. Soc. Bull. 29, 720–725 (2001).
Google Scholar
Wickstrom, M. L., Robbins, C. T., Hanley, T. A., Spalinger, D. E. & Parish, S. M. Food intake and foraging energetics of elk and mule deer. J. Wildl. Manag. 48, 1285–1301. https://doi.org/10.2307/3801789 (1984).Article
Google Scholar
Van Soest, P. J. Allometry and ecology of feeding behavior and digestive capacity in herbivores: a review. Zoo. Biol. 15, 455–479 (1996). https://doi.org/10.1002/(SICI)1098-2361(1996)15:53.0.CO;2-AEsmaeili, S. et al. Body size and digestive system shape resource selection by ungulates: a cross-taxa test of the forage maturation hypothesis. Ecol. Lett. 24, 2178–2191. https://doi.org/10.1111/ele.13848 (2021).Article
PubMed
Google Scholar
Demment, M. W. & Van Soest, P. J. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 125, 641–672 (1985).Article
Google Scholar
Anderson, D. P. et al. Factors influencing female home range sizes in elk (Cervus elaphus) in North American landscapes. Landsc. Ecol. 20, 257–271. https://doi.org/10.1007/s10980-005-0062-8 (2005).Article
Google Scholar
Maigret, T. A., Cox, J. J. & Yang, J. Persistent geophysical effects of mining threaten ridgetop biota of Appalachian forests. Front. Ecol. Environ. 17, 85–91. https://doi.org/10.1002/fee.1992 (2019).Article
Google Scholar
Beier, P. Sex differences in quality of white-tailed deer diets. J. Mammal. 68, 323–329. https://doi.org/10.2307/1381471 (1987).Article
Google Scholar
Parker, K. L., Barboza, P. S. & Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 23, 57–69. https://doi.org/10.1111/j.1365-2435.2008.01528.x (2009).Article
Google Scholar
Wichrowski, M. W., Maehr, D. S., Larkin, J. L., Cox, J. J. & Olsson, M. P. O. Activity and movements of reintroduced elk in southeastern Kentucky. Southeast. Nat. 4, 365–374. https://doi.org/10.1656/1528-7092(2005)004[0365:Aamore]2.0.Co;2 (2005).Article
Google Scholar
Relyea, R. A., Lawrence, R. K. & Demarais, S. Home range of desert mule deer: testing the body-size and habitat-productivity hypotheses. J. Wildl. Manag. 64, 146–153. https://doi.org/10.2307/3802984 (2000).Article
Google Scholar More