Exploring the response of a key Mediterranean gorgonian to heat stress across biological and spatial scales
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change. 9, 306–312 (2019).Article
Google Scholar
Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Global Change Biol. 15, 1090–1103 (2009).Article
Google Scholar
Hoeksema, B. W. & Matthews, J. L. Contrasting bleaching patterns in mushroom coral assemblages at Koh Tao Gulf of Thailand. Coral Reefs 30, 95 (2011).Article
Google Scholar
Coleman, M. A., Minne, A. J. P., Vranken, S. & Wernberg, T. Genetic tropicalisation following a marine heatwave. Sci. Rep. 10, 12726 (2020).Article
Google Scholar
Hutchinson G. E. Concluding remarks. – Cold Spring Harb. Symp. Quant. Biol. 22: 415–427 (1957).Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. Biodiversity and climate change: Integrating evolutionary and ecological responses of species and communities. Ann. Rev. Ecol. Evol. Syst. 41, 321–350 (2010).Article
Google Scholar
King, N. G., McKeown, N. J., Smale, D. A. & Moore, P. J. The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes. Ecography 41(9), 1469–1484 (2018).Article
Google Scholar
Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: Lessons from Ofu American Samoa. Front. Mar. Sci. 4, 434 (2018).Article
Google Scholar
Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Phil. Trans. R. Soc. B. 37420180174 (2019).Howells, E. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Change 2, 116–120 (2012).Article
Google Scholar
Haguenauer, A., Zuberer, F., Ledoux, J.-B. & Aurelle, D. Adaptive abilities of the Mediterranean red coral Corallium rubrum in a heterogeneous and changing environment: from population to functional genetics. J. Exp. Mar. Biol. Ecol. 449, 349–357 (2013).Article
Google Scholar
Linares, C., Cebrian, E., Kipson, S. & Garrabou, J. Does thermal history influence the tolerance of temperate gorgonians to future warming?. Mar. Environ. Res. 89, 45–52 (2013).Article
Google Scholar
Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).Article
Google Scholar
Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).Article
Google Scholar
Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. Rapid thermal adaptation in photosymbionts of reefbuilding corals. Glob. Chang. Biol. 23, 4675–4688 (2017).Article
Google Scholar
Krueger, T. et al. Common reef-building coral in the northern Red Sea resistant to elevated temperature and acidification. R. Soc. Open Sci. 4, 170038 (2017).Article
Google Scholar
Middlebrook, R., Hoegh-Guldberg, O. & Leggat, W. The effect of thermal history on the susceptibility of reef building corals to thermal stress. J. Exp. Biol. 211, 1050–1056 (2008).Article
Google Scholar
Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: Tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).Article
Google Scholar
Hawkins, T. D. & Warner, M. E. Warm preconditioning protects against acute heat-induced respiratory dysfunction and delays bleaching in a symbiotic sea anemone. J. Exp. Biol. 220, 969–983 (2017).
Google Scholar
Williams, D. E., Miller, M. W., Bright, A. J., Pausch, R. E. & Valdivia, A. Thermal stress exposure, bleaching response, and mortality in the threatened coral Acropora palmata. Bull. Mar. Poll. 124, 189–197 (2017).Article
Google Scholar
Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Change 9, 40–43 (2019).Article
Google Scholar
Ferrier-Pagès, C. et al. Physiological response of the symbiotic gorgonian Eunicella singularis to a long-term temperature increase. J. Exp. Biol. 212, 3007–3015 (2009).Article
Google Scholar
Rodolfo-Metalpa, R. et al. Thermally tolerant corals have limited capacity to acclimatize to future warming. Global Change Biol. 20, 3036–3049 (2014).Article
Google Scholar
Ledoux, J-B., Aurelle, D., Bensoussan, N, Marschal, C., Feral & Garrabou, J. Potential for adaptive evolution at species range margins: contrasting interactions between red coral populations and their environment in a changing ocean. Ecol. Evol. 5, 1178–1192 (2015).Crisci, C. et al. Regional and local environmental conditions do not shape the response to warming of a marine habitat-forming species. Sci. Rep. 7, 5069 (2017).Article
Google Scholar
Jurriaans, S. & Hoogenboom M. O. Thermal performance of scleractinian corals along a latitudinal gradient on the Great Barrier Reef. Phil. Trans. R. Soc. B. 37420180546 (2019).Cerrano, C. et al. Catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), Summer 1999. Ecol. Lett. 3, 284–293 (2000).Article
Google Scholar
Garrabou, J., Gómez-Gras, D., Medrano, A., Cerrano, C., Ponti, M., et al. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Global. Chang. Biol. (in press).Rossi, S. et al. Temporal variation in protein, carbohydrate, and lipid concentrations in Paramuricea clavata (Anthozoa, Octocorallia): evidence for summer–autumn feeding constraints. Mar Biol. 149, 643–651 (2006).Article
Google Scholar
Coma, R. et al. Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc. Natl. Acad. Sci. U.S.A. 106, 6176–6181 (2009).Article
Google Scholar
Kipson, S. Ecology of gorgonian dominated communities in the Eastern Adriatic Sea. PhD thesis. University of Zagreb, Zagreb, 160 pp. (2013).Bally, M. & Garrabou, J. Thermodependent bacterial pathogens and mass mortalities in temperate benthic communities: a new case of emerging disease linked to climate change. Global Change Biol. 13, 2078–2088 (2007).Article
Google Scholar
Vezzulli, L., Previati, M., Pruzzo, C., Marchese, A., Bourne. D. G. & Cerrano C. Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ. Microbiol. 12, 2007–2019 (2010).Corinaldesi, C. et al. Changes in coral forest microbiomes predict the impact of marine heatwaves on habitat-forming species down to mesophotic depths. Sci. Total Environ. 823, 153701 (2022).Article
Google Scholar
Tignat-Perrier, R. et al. The effect of thermal stress on the physiology and bacterial communities of two key Mediterranean gorgonians. Appl. Environ. Microbiol. 88(6), e0234021 (2022).Article
Google Scholar
Arizmendi-Mejía, R. et al. Demographic responses to warming: reproductive maturity and sex influence vulnerability in an octocoral. Coral Reefs 34, 1207–1216 (2015).Article
Google Scholar
Arizmendi-Mejía, R. et al. Combining genetic and demographic data for the conservation of a mediterranean marine habitat-forming species. PLoS ONE 10, e0119585 (2015).Article
Google Scholar
Ponti, M. et al. Ecological shifts in Mediterranean coralligenous assemblages related to gorgonian forest loss. PLoS ONE 9(7), e102782 (2014).Article
Google Scholar
Ponti, M., Turicchia, E., Ferro, F., Cerrano, C. & Abbiati, M. The understorey of gorgonian forests in mesophotic temperate reefs. Aquat. Conserv. Mar. Freshw. Ecosyst. 28(5), 1153–1166 (2018).Gómez-Gras, D. et al. Climate change transforms the functional identity of Mediterranean coralligenous assemblages. Ecol. Lett. 24(5), 1038–1051 (2021).Article
Google Scholar
Boavida, J., Assis, J., Silva, I., & Serrão, E. A. Overlooked habitat of a vulnerable gorgonian revealed in the Mediterranean and Eastern Atlantic by ecological niche modelling. Sci. Rep. 6(1) (2016).Linares, C., Doak, D., Coma, R., Diaz, D. & Zabala, M. Life history and viability of a long-lived marine invertebrate: The octocoral Paramuricea clavata. Ecology 88, 918–928 (2007).Article
Google Scholar
Coma, R., Ribes, M., Zabala, M. & Gili, J. M. Growth in a modular colonial marine invertebrates. Estuar. Coast. Shef Sci. 47, 459–470 (1998).Article
Google Scholar
Linares, C. et al. Early life history of the Mediterranean gorgonian Paramuricea clavata: Implication for population dynamics. Invertebr. Biol. 127, 1–11 (2008).Article
Google Scholar
Mokhtar-Jamaï, K. et al. From global to local genetic structuring in the red gorgonian Paramuricea clavata: The interplay between oceanographic conditions and limited larval dispersal. Mol. Ecol. 20, 3291–3305 (2011).Article
Google Scholar
Ledoux, J. et al. Postglacial range expansion shaped the spatial genetic structure in a marine habitat-forming species: Implications for conservation plans in the Eastern Adriatic Sea. J. Biogeogr. 45, 2645–2657 (2018).Article
Google Scholar
Dias, V. et al. High coral bycatch in bottom-set gillnet coastal fisheries reveals rich coral habitats in Southern Portugal. Front. Mar. Sci. 7, 1–16 (2020).Article
Google Scholar
Cebrian, E., Linares, C., Marshall, C. & Garrabou, J. Exploring the effects of invasive algae on the persistence of gorgonian populations. Biol. Invas. 14, 2647–2656 (2012).Article
Google Scholar
Mateos-Molina, D. et al. Assessing consequences of land cover changes on sediment deliveries to coastal waters at regional level over the last two decades in the northwestern Mediterranean Sea. Ocean Coast. Manag. 116, 435–442 (2015).Article
Google Scholar
Gómez-Gras, D. et al. Population collapse of habitat-forming species in the Mediterranean: a long-term study of gorgonian populations affected by recurrent marine heatwaves. Proc. R. Soc. B. 288, 20212384 (2021).Article
Google Scholar
Otero, M. M., Numa, C., Bo, M., Orejas, C., Garrabou, J. et al., Overview of the conservation status of Mediterranean anthozoans. IUCN, Malaga, Spain, 73 (2017).Bensoussan, N., Cebrian, E., Dominici, J. M., Kersting, D. K., Kipson, S., et al. Using CMEMS and the Mediterranean Marine protected Area sentinel network to track ocean warming effects in coastal areas. In: Copernicus Marine Service Ocean State Report. J. Oper. Oceanogr. 3 (2019).Garrabou, J. et al. Collaborative database to track mass mortality events in the Mediterranean Sea. Front. Mar. Sci. 6, 707 (2019).Article
Google Scholar
Gómez-Gras, D. et al. Response diversity in Mediterranean coralligenous assemblages facing climate change: insights from a multi-specific thermotolerance experiment. Ecol. Evol. 9(7), 4168–4180 (2019).Article
Google Scholar
Cox, D. R. Regression models and life tables (with discussion). J. R. Stat. Soc. Series B 34, 187–220 (1972).MATH
Google Scholar
Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958).Article
MathSciNet
MATH
Google Scholar
Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration. C. Chemoth. Rep. 50(3), 163–170 (1966).
Google Scholar
Galli, G., Solidoro, C. & Lovato, T. Marine heat waves hazard 3D maps and the risk for low motility organisms in a warming Mediterranean Sea. Fronts Mar. Sci. 4 (2017).Darmaraki, S. et al. Future evolution of marine heatwaves in the mediterranean sea. Clim. Dyn. 53, 1371–1392 (2019).Article
Google Scholar
Coles, S. L., Jokiel, P. L. & Lewis, C. R. Thermal tolerance in tropical versus subtropical Pacific reef corals. Pac. Sci. 30, 156–166 (1976).
Google Scholar
Bay, R. A. & Palumbi, S. R. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol. Evol. 7, 1602–1612 (2015).Article
Google Scholar
Fangue, N. A., Hofmeister, M. & Schulte, P. M. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish Fundulus heteroclitus. J. Exp. Biol. 209, 2859–2872 (2006).Article
Google Scholar
Jensen, L. F. et al. Local adaptation in brown trout early life-history traits: Implications for climate change adaptability. Proc. R. Soc. B Biol. Sci. 275, 2859–2868 (2008).Article
Google Scholar
Kuo, E. S. L. & Sanford, E. Geographic variation in the upper thermal limits of an intertidal snail: implications for climate envelope models. Mar. Ecol.: Prog. Ser. 388, 137–146 (2009).Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).Article
Google Scholar
Thompson, D. M. & van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. R. Soc. Biol. Sci. B 276, 2893–2901 (2009).Article
Google Scholar
Gates, R. D. & Edmunds, P. J. The physiological mechanisms of acclimatization in tropical reef corals. Am. Zool. 39, 30–43 (1999).Article
Google Scholar
West-Eberhard, M. J. Developmental plasticity and evolution (Oxford University Press, 2003).Book
Google Scholar
Brown, B. E., Dunne, R. P., Edwards, A. J., Sweet, M. J. & Phongsuwan, N. Decadal environmental ’memory’ in a reef coral?. Mar. Biol. 162, 479–483 (2015).Article
Google Scholar
Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Change 7, 627 (2017).Article
Google Scholar
Liew, Y. J. et al. Intergenerational epigenetic inheritance in reef-building corals. Nat. Clim. Change 10, 254–259 (2020).Article
Google Scholar
Howells, E. J., Abrego, D., Liew, Y. J., Burt, J. A., Meyer, E. & Aranda, M. Enhancing the heat tolerance of reef-building corals to future warming. Sci. Adv. 7, eabg6070 (2021).Palstra, F. P. & Ruzzante, D. E. Genetic estimates of contemporary effective population size: What can they tell us about the importance of genetic stochasticity for wild population persistence?. Mol. Ecol. 17, 3428–3447 (2008).Article
Google Scholar
Hague, M. & Routman, E. Does population size affect genetic diversity? A test with sympatric lizard species. Heredity 116, 92–98 (2016).Article
Google Scholar
Gurgel, C. F. D., Camacho, O., Minne, A. J., Wernberg, T. & Coleman, M. A. Marine heatwave drives cryptic loss of genetic diversity in underwater forests. Curr. Biol. 30(7), 1199–1206 (2020).Article
Google Scholar
Ledoux, J.-B. et al. Assessing the impact of population decline on mating system in the overexploited Mediterranean red coral. Aquat. Conserv: Mar. Freshw. Ecosyst. 30(6), 1149–1159 (2020).Article
Google Scholar
Howells, E. J., Berkelmans, R., van Oppen, M. J. H., Willis, B. L. & Bay, L. K. Historical thermal regimes define limits to coral acclimatization. Ecology 94, 1078–1088 (2013).Article
Google Scholar
Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Nat. Acad. Sci. USA 101, 15261–15264 (2004).Article
Google Scholar
Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Cons. 170, 56–63 (2014).Article
Google Scholar
Gori, A. et al. Effects of food availability on the sexual reproduction and biochemical composition of the Mediterranean gorgonian Paramuricea clavata. J. Exp. Mar. Biol. Ecol. 444, 38–45 (2013).Article
Google Scholar
Darmaraki, S., Somot, S., Sevault, F. & Nabat, P. Past variability of Mediterranean Sea marine heatwaves. Geophys. Res. Lett. 46, 9813–9823 (2019).Article
Google Scholar
Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 309–327 (2010).Article
Google Scholar
Pilczynska, J. et al. Genetic diversity increases with depth in red gorgonian populations of the Mediterranean Sea and the Atlantic Ocean. Peer J 7, e6794 (2019).Article
Google Scholar
Gugliotti, E. F., DeLorenzo, M. E. & Etnoyer, P. J. Depth-dependent temperature variability in the Southern California bight with implications for the cold-water gorgonian octocoral Adelogorgia phyllosclera. J. Exp. Mar. Biol. Ecol. 514–515, 118–126 (2019).Article
Google Scholar
Aurelle, D. et al. Genetic insights into recolonization processes of Mediterranean octocorals. Mar. Biol. 167, 73 (2020).Article
Google Scholar
Morikawa, M. K., & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Nat. Acad. Sci. USA 116(21), 10586 LP–10591 (2019).Crisci, C., Bensoussan, N., Romano, J. C. & Garrabou, J. Temperature anomalies and mortality events in marine communities: Insights on factors behind differential mortality impacts in the NW Mediterranean. PLoS ONE 6, e23814 (2011).Article
Google Scholar
Brener-Raffalli, K., Vidal-Dupiol, J., Adjeroud, M., Rey, O., Romans, P., et al. Gene expression plasticity and frontloading promote thermotolerance in Pocilloporid corals. bioRxiv 398602 (2018).Ledoux, J. B. et al. The Genome Sequence of the Octocoral Paramuricea clavata – A Key resource to study the impact of climate change in the Mediterranean. G3 10(9), 2941–2952 (2020).Article
Google Scholar More