More stories

  • in

    DNA reveals that mastodons roamed a forested Greenland two million years ago

    RESEARCH BRIEFINGS
    07 December 2022

    Ancient environmental DNA from northern Greenland opens a new chapter in genetic research, demonstrating that it is possible to track the ecology and evolution of biological communities two million years ago. The record shows an open boreal-forest ecosystem inhabited by large animals such as mastodons and reindeer. More

  • in

    Author Correction: Adult sex ratios: causes of variation and implications for animal and human societies

    Department of Anthropology, East Carolina University, Greenville, NC, USARyan SchachtDepartment of Environmental Science, Policy and Management and Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720, USASteven R. BeissingerDepartment of Ecology and Evolution, University of Lausanne, 1015, Lausanne, SwitzerlandClaus WedekindEcology & Evolution, Research School of Biology, The Australian National University, Acton, Canberra, 2601, AustraliaMichael D. JennionsMARBEC Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, FranceBenjamin GeffroyELKH-PE Evolutionary Ecology Research Group, University of Pannonia, 8210, Veszprém, HungaryAndrás LikerBehavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, 8210, Veszprém, HungaryAndrás LikerBehavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute of Primate Biology, 37077, Göttingen, GermanyPeter M. KappelerDepartment of Sociobiology/Anthropology, University of Göttingen, 37077, Göttingen, GermanyPeter M. KappelerGroningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The NetherlandsFranz J. WeissingDepartment of Anthropology, University of Utah, Salt Lake City, UT, USAKaren L. KramerInstitute of Global Health, University College London, London, UKTherese HeskethCentre for Global Health, Zhejiang University School of Medicine, Hangzhou, P.R. ChinaTherese HeskethIHPE Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, FranceJérôme BoissierStockholm University Demography Unit, Sociology Department, Stockholm University, 106 91, Stockholm, SwedenCaroline UgglaKem C. Gardner Policy Institute, David Eccles School of Business, University of Utah, Salt Lake City, UT, USAMike HollingshausMilner Centre for Evolution, University of Bath, Bath, BA2 7AY, UKTamás SzékelyELKH-DE Reproductive Strategies Research Group, Department of Zoology and Human Biology, University of Debrecen, H-4032, Debrecen, HungaryTamás Székely More

  • in

    Herbivores drive scarcity of some nitrogen-fixing tropical trees

    Friedlingstein, P. et al. Earth Syst. Sci. Data 12, 3269–3340 (2020).Article 

    Google Scholar 
    LeBauer, D. S. & Treseder, K. K. Ecology 89, 371–379 (2008).Article 
    PubMed 

    Google Scholar 
    Vitousek, P. M. & Howarth, R. W. Biogeochemistry 13, 87–115 (1991).Article 

    Google Scholar 
    Barker, W. et al. Nature https://doi.org/10.1038/s41586-022-05502-6 (2022).Article 

    Google Scholar 
    Sprent, J. I. Legume Nodulation: A Global Perspective (Wiley-Blackwell, 2009).
    Google Scholar 
    Gei, M. et al. Nature Ecol. Evol. 2, 1104–1111 (2018).Article 
    PubMed 

    Google Scholar 
    Peng, J. et al. Glob. Biogeochem. Cycles 34, e2019GB006296 (2020).Article 

    Google Scholar 
    Batterman, S. A. et al. Nature 502, 224–227 (2013).Article 
    PubMed 

    Google Scholar 
    Taylor, B. N. & Menge, D. N. L. Nature Plants 4, 655–661 (2018).
    Google Scholar 
    McCulloch, L. A. & Porder, S. New Phytol. 231, 1734–1745 (2021).Article 
    PubMed 

    Google Scholar 
    Sheffer, E., Batterman, S. A., Levin, S. A. & Hedin, L. O. Nature Plants 1, 15182 (2015).Article 

    Google Scholar 
    Barron, A. R., Purves, D. W. & Hedin, L. O. Oecologia 165, 511–520 (2011).Article 
    PubMed 

    Google Scholar 
    Adams, M. A., Turnbull, T. L., Sprent, J. I. & Buchmann, N. Proc. Natl Acad. Sci. USA 113, 4098–4103 (2016).Article 
    PubMed 

    Google Scholar 
    Taylor, B. N. & Ostrowsky, L. R. J. Trop. Ecol. 35, 270–279 (2019).Article 

    Google Scholar 
    Sprent, J. I. New Phytol. 174, 11–25 (2007).Article 
    PubMed 

    Google Scholar  More

  • in

    Plastic adjustments in xylem vessel traits to drought events in three Cedrela species from Peruvian Tropical Andean forests

    Bruijnzeel, L. A., Mulligan, M. & Scatena, F. N. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol. Processes 25, 25 (2011).
    Google Scholar 
    Myster, R. W. The Andean Cloud Forest. Andean Cloud Forest https://doi.org/10.1007/978-3-030-57344-7 (2021).Article 

    Google Scholar 
    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).Article 
    ADS 

    Google Scholar 
    Hu, J. & Riveros-Iregui, D. A. Life in the clouds: are tropical montane cloud forests responding to changes in climate?. Oecologia 180, 1061–1073 (2016).Article 
    ADS 

    Google Scholar 
    Peterson, A. T. Ecological niche conservatism: A time-structured review of evidence. J. Biogeogr. 38, 817–827 (2011).Article 

    Google Scholar 
    Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).Article 

    Google Scholar 
    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).Article 

    Google Scholar 
    Trugman, A. T. et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552–1560 (2018).Article 
    CAS 

    Google Scholar 
    Hacket-Pain, A. J., Friend, A. D., Lageard, J. G. A. & Thomas, P. A. The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol. 00, 1–12 (2015).
    Google Scholar 
    Lourenço, J. et al. Hydraulic tradeoffs underlie local variation in tropical forest functional diversity and sensitivity to drought. New Phytol. https://doi.org/10.1111/nph.17944 (2022).Article 

    Google Scholar 
    Fonti, P., von Arx, G., García-González, I. & Sass-Klaassen, U. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185, 42–53 (2010).Article 

    Google Scholar 
    Jupa, R., Krabičková, D., Plichta, R., Mayr, S. & Gloser, V. Do angiosperm tree species adjust intervessel lateral contact in response to soil drought?. Physiol. Plant. 20, 1–11. https://doi.org/10.1111/ppl.13435 (2021).Article 
    CAS 

    Google Scholar 
    Peters, J. M. R. et al. Living on the edge: a continental-scale assessment of forest vulnerability to drought. Glob. Change Biol. 20, 1–22. https://doi.org/10.1111/gcb.15641 (2021).Article 
    CAS 

    Google Scholar 
    Rita, A., Borghetti, M., Todaro, L. & Saracino, A. Interpreting the climatic effects on xylem functional traits in two Mediterranean oak species: the role of extreme climatic events. Front. Plant Sci. 7, 1–11 (2016).Article 

    Google Scholar 
    Rodríguez-Ramírez, E. C., Vázquez-García, J. A., García-González, I., Alcántara-Ayala, O. & Luna-Vega, I. Drought effects on the plasticity in vessel traits of two endemic Magnolia species in the tropical montane cloud forests of eastern Mexico. J. Plant Ecol. 13, 331–340. https://doi.org/10.1093/jpe/rtaa019 (2020).Article 

    Google Scholar 
    Aide, T. M. & Grau, H. R. Globalization, migration and Latin American ecosystems. Science 305, 1915–1917 (2004).Article 

    Google Scholar 
    Oliveira, R. S., Eller, C. B., Bittencourt, P. R. L. & Mulligan, M. The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Ann. Bot. 113, 909–920 (2014).Article 

    Google Scholar 
    Pereyra-Espinoza, M. J., Inga-Guillen, G. J., Santos-Morales, M. & Rodríguez-Arisméndiz, R. Potencialidad de Cedrela odorata (Meliaceae) para estudios dendrocronológicos en la selva central del Perú. Rev. Biol. Trop. 62, 783–793 (2014).Article 

    Google Scholar 
    Layme-Huaman, E. T., Ferrero, M. E., Palacios-Lazaro, K. S. & Requena-Rojas, E. J. Cedrela nebulosa: A novel species for dendroclimatological studies in the montane tropics of South America. Dendrochronologia 50, 105–112 (2018).Article 

    Google Scholar 
    Rodríguez-Ramírez, E. C., Valdez-Nieto, J. A., Vázquez-García, J. A., Dieringer, G. & Luna-Vega, I. Plastic responses of Magnolia schiedeana Schltdl., a relict-endangered Mexican cloud forest tree, to climatic events: Evidences from leaf venation and wood vessel anatomy. Forests 11, 25 (2020).Article 

    Google Scholar 
    Carlquist, S. Ecological factors in wood evolution: a floristic approach. Am. J. Bot. 64, 887–896 (2020).Article 

    Google Scholar 
    Speer, B. J. H. Fundamentals of tree-ring research. 509 (2010). https://doi.org/10.1002/gea.20357.Rita, A., Cherubini, P., Leonardi, S., Todaro, L. & Borghetti, M. Functional adjustments of xylem anatomy to climatic variability: Insights from long-Term Ilex aquifolium tree-ring series. Tree Physiol. 35, 817–828 (2015).Article 

    Google Scholar 
    Paredes-Villanueva, K., López, L. & Navarro Cerrillo, R. M. Regional chronologies of Cedrela fissilis and Cedrela angustifolia in three forest types and their relation to climate. Trees Struct. Funct. 30, 1581–1593 (2016).Article 

    Google Scholar 
    Köhl, M., Lotfiomran, N. & Gauli, A. Influence of local climate and ENSO on the growth of Cedrela odorata L. in Suriname. Atmosphere 13, 1119 (2022).Article 
    ADS 

    Google Scholar 
    Menezes, I. R. N., Aragão, J. R. V., Pagotto, M. A. & Lisi, C. S. Teleconnections and edaphoclimatic effects on tree growth of Cedrela odorata L in a seasonally dry tropical forest in Brazil. Dendrochronologia 72, 125923 (2022).Article 

    Google Scholar 
    Jiménez-Rodríguez, C. D., Coenders-Gerrits, M., Schilperoort, B., González-Angarita, A. D. P. & Savenije, H. Vapor plumes in a tropical wet forest: Spotting the invisible evaporation. Hydrol. Earth Syst. Sci. 25, 619–635 (2021).Article 
    ADS 

    Google Scholar 
    Bräuning, A. et al. Climatic control of radial growth of Cedrela montana in a humid mountain rainforest in southern Ecuador. Erdkunde 63, 337–345 (2009).Article 

    Google Scholar 
    Goldsmith, G. R., Matzke, N. J. & Dawson, T. E. The incidence and implications of clouds for cloud forest plant water relations. Ecol. Lett. 16, 307–314 (2013).Article 

    Google Scholar 
    Toledo, M. et al. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. J. Ecol. 99, 254–264 (2011).Article 

    Google Scholar 
    Pandey, S., Carrer, M., Castagneri, D. & Petit, G. Xylem anatomical responses to climate variability in Himalayan birch trees at one of the world’s highest forest limit. Perspect. Plant Ecol. Evol. Syst. 33, 34–41 (2018).Article 

    Google Scholar 
    Bose, A. K. et al. Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. Glob. Change Biol. 26, 4521–4537 (2020).Article 
    ADS 

    Google Scholar 
    Aloni, R. Ecophysiological implications of vascular differentiation and plant evolution. Trees Struct. Funct. 29, 25 (2015).Article 

    Google Scholar 
    Venegas-González, A., von Arx, G., Chagas, M. P. & Filho, M. T. Plasticity in xylem anatomical traits of two tropical species in response to intra-seasonal climate variability. Trees Struct. Funct. 29, 423–435 (2015).Article 

    Google Scholar 
    Fonti, P. et al. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185, 42–53 (2010).Article 

    Google Scholar 
    Scholz, A., Klepsch, M., Karimi, Z. & Jansen, S. How to quantify conduits in wood?. Front. Plant Sci. 4, 1–11 (2013).Article 

    Google Scholar 
    García-González, I., Souto-Herrero, M. & Campelo, F. Ring-porosity and earlywood vessels: a review on extracting environmental information through time. IAWA J. 37, 295–314 (2016).Article 

    Google Scholar 
    Scholz, A., Stein, A., Choat, B. & Jansen, S. How drought and deciduousness shape xylem plasticity in three Costa Rican woody plant species. IAWA J. 35, 337–355 (2014).Article 

    Google Scholar 
    von Arx, G., Kueffer, C. & Fonti, P. Quantifying plasticity in vessel grouping—added value from the image analysis tool ROXAS. IAWA J. 34, 433–445 (2013).Article 

    Google Scholar 
    Koecke, A. V., Muellner-Riehl, A. N., Pennington, T. D., Schorr, G. & Schnitzler, J. Niche evolution through time and across continents: The story of Neotropical Cedrela (Meliaceae). Am. J. Bot. 100, 1800–1810 (2013).Article 

    Google Scholar 
    Sperry, J. S. & Saiendra, N. Z. Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant. Cell Environ. 17, 1233–1241 (1994).Article 

    Google Scholar 
    Rodríguez-Ramírez, E. C., Crispín-DelaCruz, D. B., Ticse-Otarola, G. & Requena-Rojas, E. J. Assessing the hydric deficit on two Polylepis species from the Peruvian Andean mountains: Xylem vessel anatomic adjusting. Forest 13, 633 (2022).
    Google Scholar 
    Islam, M., Rahman, M. & Bräuning, A. Xylem anatomical responses of diffuse porous Chukrasia tabularis to climate in a South Asian moist tropical forest. For. Ecol. Manage. 412, 9–20 (2018).Article 

    Google Scholar 
    Abrantes, J., Campelo, F., García-González, I. & Nabais, C. Environmental control of vessel traits in Quercus ilex under Mediterranean climate: Relating xylem anatomy to function. Trees Struct. Funct. 27, 655–662 (2013).Article 

    Google Scholar 
    Fahey, T. J., Sherman, R. E. & Tanner, E. V. J. Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function. J. Trop. Ecol. 20, 1–13 (2015).
    Google Scholar 
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).Article 
    ADS 

    Google Scholar 
    FAO-UNESCO. Soil Map of the World: Revised Legend (World Soil Resources Report 60. FAO-UNESCO, 1998).Stokes, M. & Smiley, T. L. An Introduction to Tree-Ring Dating (University of Arizona Press, 1996).
    Google Scholar 
    Speer, J. H. Oak mast history from dendrochronology: A new technique demonstrated in the Southern Appalachian region. Science 20, 257 (2001).
    Google Scholar 
    Schulman, E. Dendroclimatic Changes in Semiarid America (University of Arizona Press, 1956).
    Google Scholar 
    Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78 (1983).
    Google Scholar 
    Grissino-Mayer, H. D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree Ring Res. 57, 205–221 (2001).
    Google Scholar 
    Wigley, T. M. L., Briffa, K. R. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23, 201–213 (1984).Article 
    ADS 

    Google Scholar 
    Cook, E. RCSigFree, Software Specialized in Dendrochronology (2017).Barichivich, J., Sauchyn, D. J. & Lara, A. Climate signals in high elevation tree-rings from the semiarid Andes of north-central Chile: responses to regional and large-scale variability. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 320–333 (2009).Article 

    Google Scholar 
    Briffa, K. R. Interpreting high-resolution proxy climate data-The example of dendroclimatology. In Analysis of Climate Variability vol 0500 (eds von Storch, H. et al.) 77–94 (Springer, 1999).Chapter 

    Google Scholar 
    Marengo, J. A., Nobre, C. A., Tomasella, J., Cardoso, M. F. & Oyama, M. D. Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philos. Trans. R. Soc. B Biol. Sci. 363, 1773–1778 (2008).Article 
    CAS 

    Google Scholar 
    Jimenez, J. C. et al. Spatio-temporal patterns of thermal anomalies and drought over tropical forests driven by recent extreme climatic anomalies. Philos. Trans. R. Soc. B Biol. Sci. 373, 25 (2018).Article 

    Google Scholar 
    Gloor, M. et al. Recent Amazon climate as background for possible ongoing Special Section. Glob. Biogeochem. Cycles 29, 1384–1399 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Mooney, C. Z., Mooney, C. F., Duval, R. D. & Duvall, R. Bootstrapping: A Nonparametric Approach to Statistical Inference (Sage Publications, 1993).Book 

    Google Scholar 
    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    Lloret, F., Keeling, E. G. & Sala, A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests Published by Wiley on behalf of Nordic Society Oikos Stable. https://www.jstor.org/stable/41316009 Linked references are available on JSTOR for. Oikos 120, 1909–1920 (2011).Baker, J. C. A., Santos, G. M., Gloor, M. & Brienen, R. J. W. Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees Struct. Funct. 31, 1999–2009 (2017).Article 

    Google Scholar 
    Palacios, W. A., Santiana, J. & Iglesias, J. A new species of Cedrela (Meliaceae) from the eastern flanks of Ecuador. Phytotaxa 393, 84–88 (2019).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
    CAS 

    Google Scholar 
    Souto-Herrero, M., Rozas, V. & García-González, I. Earlywood vessels and latewood width explain the role of climate on wood formation of Quercus pyrenaica Willd. across the Atlantic-Mediterranean boundary in NW Iberia. For. Ecol. Manage. 425, 126–137 (2018).Article 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community ecology package. R Package version 2.4-1. https://cran.r-project.org/web/packages/vegan/index.html. (2016).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Media Vol 35 (Springer, 2016).Book 
    MATH 

    Google Scholar 
    Ver Hoef, J. M. & Boveng, P. L. Binomial Regression: How should we model overdispersed count data?. Ecology 88, 2766–2772 (2007).Article 

    Google Scholar 
    Karger, D., Nobis, M., Normand, S., Graham, C. & Zimmermann, N. CHELSA-TraCE21k v1.0. Downscaled transient temperature and precipitation data since the last glacial maximum. Clim. Past Discuss. https://doi.org/10.5194/cp-2021-30 (2021).Hurvich, C. M. & Tsai, C. L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2011). https://doi.org/10.1007/978-1-4419-7976-6.Book 
    MATH 

    Google Scholar 
    ‘glm2’, P. http://mirror.psu.ac.th/pub/cran/web/packages/glm2/glm2.pdf. Accessed 20 Mar 2020. 4–11 http://mirror.psu.ac.th/pub/cran/web/packages/glm2/glm2.pdf (2020).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 25 (2015).Article 

    Google Scholar 
    Barton, K. Package ‘ MuMIn ’ Version 1.46.0. R Package (2022). More

  • in

    Aphid species specializing on milkweed harbor taxonomically similar bacterial communities that differ in richness and relative abundance of core symbionts

    Barbosa, P., Krischik, V. A. & Jones, C. G. Microbial mediation of plant-herbivore interactions (John Wiley & Sons, 1991).
    Google Scholar 
    Berenbaum, M. R. Allelochemicals in insect–microbe–plant interactions; agents provocateurs in the
    coevolutionary arms race. In Nov. Asp. Insect-Plant Interact. (eds Barbosa, P. & Letourneau, D. K.) 97–123 (1988).Mason, C. J., Jones, A. G. & Felton, G. W. Co-option of microbial associates by insects and their impact on plant–folivore interactions. Plant Cell Environ. 42, 1078–1086 (2019).Article 
    CAS 

    Google Scholar 
    Sugio, A., Dubreuil, G., Giron, D. & Simon, J.-C. Plant–insect interactions under bacterial influence: Ecological implications and underlying mechanisms. J. Exp. Bot. 66, 467–478 (2015).Article 
    CAS 

    Google Scholar 
    Hansen, A. K. & Moran, N. A. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol. Ecol. 23, 1473–1496 (2014).Article 

    Google Scholar 
    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).Article 
    CAS 

    Google Scholar 
    Pineda, A. et al. Helping plants to deal with insects: The role of beneficial soil-borne microbes. Trends Plant Sci. 15, 507–514 (2010).Article 
    CAS 

    Google Scholar 
    Hammer, T. J. & Bowers, M. D. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179, 1–14 (2015).Article 
    ADS 

    Google Scholar 
    Liu, H. et al. An ecological loop: Host microbiomes across multitrophic interactions. Trends Ecol. Evol. 34, 1118–1130 (2019).Article 

    Google Scholar 
    Grunseich, J. M., Thompson, M. N., Aguirre, N. M. & Helms, A. M. The role of plant-associated microbes in mediating host-plant selection by insect herbivores. Plants 9, 6 (2020).Article 
    CAS 

    Google Scholar 
    Ferrari, J. et al. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol. Entomol. 29, 60–65 (2004).Article 

    Google Scholar 
    McLean, A. H. et al. Insect symbionts in food webs. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150325 (2016).Article 

    Google Scholar 
    Giron, D., Dedeine, F., Dubreuil, G. et al. Influence of microbial symbionts on plant–insect interactions. In: Advances in botanical research. Elsevier, pp 225–257 (2017).Jones, A. G., Mason, C. J., Felton, G. W. & Hoover, K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci. Rep. 9, 1–11 (2019).Article 

    Google Scholar 
    Xu, T.-T., Jiang, L.-Y., Chen, J. & Qiao, G.-X. Host plants influence the symbiont diversity of Eriosomatinae (Hemiptera: Aphididae). Insects 11, 217. https://doi.org/10.3390/insects11040217 (2020).Article 

    Google Scholar 
    Qin, M. et al. Microbiota associated with Mollitrichosiphum aphids (Hemiptera: Aphididae: Greenideinae): Diversity, host species specificity and phylosymbiosis. Environ. Microbiol. 23(4), 2184–2198. https://doi.org/10.1111/1462-2920.15391 (2021).Article 
    CAS 

    Google Scholar 
    Douglas, A. E. Microbial brokers of insect-plant interactions revisited. J. Chem. Ecol. 39, 952–961 (2013).Article 
    CAS 

    Google Scholar 
    Engel, P. & Moran, N. A. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).Article 
    CAS 

    Google Scholar 
    Chung, S. H. et al. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Sci. Rep. 7, 1–13 (2017).
    Google Scholar 
    Holt, J. R. et al. Differences in microbiota between two multilocus lineages of the sugarcane aphid (Melanaphis sacchari) in the continental United States. Ann. Entomol. Soc. Am. 113(4), 257–265 (2020).Article 
    CAS 

    Google Scholar 
    McLean, A. H., Godfray, H. C. J., Ellers, J. & Henry, L. M. Host relatedness influences the composition of aphid microbiomes. Environ. Microbiol. Rep. 11, 808–816 (2019).Article 

    Google Scholar 
    Jones, R. T., Sanchez, L. G. & Fierer, N. A cross-taxon analysis of insect-associated bacterial diversity. PLoS ONE 8, e61218 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Najar-Rodríguez, A. J. et al. The microbial flora of Aphis gossypii: Patterns across host plants and geographical space. J. Invertebr. Pathol. 100, 123–126. https://doi.org/10.1016/j.jip.2008.10.005 (2009).Article 

    Google Scholar 
    Blankenchip, C. L., Michels, D. E., Braker, H. E. & Goffredi, S. K. Diet breadth and exploitation of exotic plants shift the core microbiome of tropical herbivorous beetles. PeerJ. Prepr. 6, e26692v1 (2018).
    Google Scholar 
    Gauthier, J.-P., Outreman, Y., Mieuzet, L. & Simon, J.-C. Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA. PLoS ONE 10, e0120664 (2015).Article 

    Google Scholar 
    Wagner, S. M. et al. Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct. Ecol. 29, 1402–1410 (2015).Article 

    Google Scholar 
    Guidolin, A. S. & Cônsoli, F. L. Symbiont diversity of Aphis (Toxoptera) citricidus (Hemiptera: Aphididae) as influenced by host plants. Microb. Ecol. 73, 201–210 (2017).Article 

    Google Scholar 
    Leonardo, T. E. & Muiru, G. T. Facultative symbionts are associated with host plant specialization in pea aphid populations. Proc. R. Soc. Lond. B Biol. Sci. 270, S209–S212 (2003).Article 

    Google Scholar 
    Xu, S., Jiang, L., Qiao, G. & Chen, J. The bacterial flora associated with the polyphagous aphid Aphis gossypii Glover (Hemiptera: Aphididae) is strongly affected by host plants. Microb. Ecol. 79, 971–984. https://doi.org/10.1007/s00248-019-01435-2 (2020).Article 
    CAS 

    Google Scholar 
    Ferrari, J., West, J. A., Via, S. & Godfray, H. C. J. Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution 66, 375–390. https://doi.org/10.1111/j.1558-5646.2011.01436.x (2012).Article 

    Google Scholar 
    Brady, C. M. et al. Worldwide populations of the aphid Aphis craccivora are infected with diverse facultative bacterial symbionts. Microb. Ecol. 67, 195–204. https://doi.org/10.1007/s00248-013-0314-0 (2014).Article 

    Google Scholar 
    Henry, L. M., Maiden, M. C., Ferrari, J. & Godfray, H. C. J. Insect life history and the evolution of bacterial mutualism. Ecol. Lett. 18, 516–525 (2015).Article 

    Google Scholar 
    Simon, J.-C. et al. Host–based divergence in populations of the pea aphid: Insights from nuclear markers and the prevalence of facultative symbionts. Proc. R. Soc. Lond. B Biol. Sci. 270, 1703–1712. https://doi.org/10.1098/rspb.2003.2430 (2003).Article 

    Google Scholar 
    Brady, C. M. & White, J. A. Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecol. Entomol. 38, 433–437. https://doi.org/10.1111/een.12020 (2013).Article 

    Google Scholar 
    Blackman, R. L. & Eastop, V. F. Aphids on the world’s herbaceous plants and shrubs, 2 Vol. set (John Wiley & Sons, 2008).
    Google Scholar 
    Züst, T. & Agrawal, A. A. Population growth and sequestration of plant toxins along a gradient of specialization in four aphid species on the common milkweed Asclepias syriaca. Funct. Ecol. 30, 547–556 (2016).Article 

    Google Scholar 
    Zytynska, S. E. & Weisser, W. W. The natural occurrence of secondary bacterial symbionts in aphids. Ecol. Entomol. 41, 13–26 (2016).Article 

    Google Scholar 
    Harrison, J. S. & Mondor, E. B. Evidence for an invasive aphid “Superclone”: Extremely low genetic diversity in Oleander aphid (Aphis nerii) populations in the Southern United States. PLoS ONE 6, e17524. https://doi.org/10.1371/journal.pone.0017524 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Mooney, K., Jones, P. & Agrawal, A. Coexisting congeners: Demography, competition, and interactions with cardenolides for two milkweed-feeding aphids. Oikos 117, 450–458 (2008).Article 
    CAS 

    Google Scholar 
    Groeters, F. R. Geographic and clonal variation in the milkweed-oleander aphid, Aphis nerii (Homoptera: Aphididae), for winged morph production, life history, and morphology in relation to host plant permanence. Evol. Ecol. 3, 327–341 (1989).Article 

    Google Scholar 
    Dolan, R. W., Moore, M. E. Indiana Plant Atlas. [S.M. Landry and K.N. Campbell (original application development), USF Water Institute. University of South Florida]. Butler University Friesner Herbarium, Indianapolis, Indiana (2022).McMartin, K. A., Malcolm, S. B. Defense expression in the aphid Myzocallis asclepiadis. Final Report. Pierce Cedar Creek Institute, Hastings, MI (2008).Zaya, D. N., Pearse, I. S. & Spyreas, G. Long-term trends in Midwestern Milkweed abundances and their relevance to monarch butterfly declines. Bioscience 67, 343–356. https://doi.org/10.1093/biosci/biw186 (2017).Article 

    Google Scholar 
    Binetruy, F., Dupraz, M., Buysse, M. & Duron, O. Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasit. Vectors 12, 268 (2019).Article 

    Google Scholar 
    Gohl, D. M. et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949 (2016).Article 
    CAS 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522. https://doi.org/10.1073/pnas.1000080107 (2011).Article 
    ADS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Jousselin, E. et al. Assessment of a 16S rRNA amplicon Illumina sequencing procedure for studying the microbiome of a symbiont-rich aphid genus. Mol. Ecol. Resour. 16, 628–640. https://doi.org/10.1111/1755-0998.12478 (2016).Article 
    CAS 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article 

    Google Scholar 
    Wright, E. S. Using DECIPHER v2. 0 to analyze big biological sequence data in R. R J. 8(1), 352 (2016).Article 

    Google Scholar 
    Schliep, K., Potts, A. A., Morrison, D. A. & Grimm, G. W. Intertwining phylogenetic trees and networks (No. e2054v1). PeerJ Preprints (2016).Hannula, S. E., Zhu, F., Heinen, R. & Bezemer, T. M. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10, 1–9 (2019).Article 
    CAS 

    Google Scholar 
    Gomes, S. I. et al. Microbiomes of a specialist caterpillar are consistent across different habitats but also resemble the local soil microbial communities. Anim. Microbiome 2, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    Malacrinò, A. Host species identity shapes the diversity and structure of insect microbiota. Mol. Ecol. 31, 723–735. https://doi.org/10.1111/mec.16285 (2022).Article 

    Google Scholar 
    Colman, D. R., Toolson, E. C. & Takacs-Vesbach, C. D. Do diet and taxonomy influence insect gut bacterial communities?. Mol. Ecol. 21, 5124–5137 (2012).Article 
    CAS 

    Google Scholar 
    Pons, I., Renoz, F., Noël, C. & Hance, T. Circulation of the cultivable symbiont Serratia symbiotica in aphids is mediated by plants. Front. Microbiol. 10, 764. https://doi.org/10.3389/fmicb.2019.00764 (2019).Article 

    Google Scholar 
    Li, Q. et al. Plant-mediated horizontal transmission of Hamiltonella defensa in the wheat aphid Sitobion miscanthi. J. Agric. Food Chem. 66, 13367–13377. https://doi.org/10.1021/acs.jafc.8b04828 (2018).Article 
    CAS 

    Google Scholar 
    Jousselin, E., Cø eur d’Acier, A., Vanlerberghe-Masutti, F. & Duron, O. Evolution and diversity of A rsenophonus endosymbionts in aphids. Mol. Ecol. 22, 260–270 (2013).Article 

    Google Scholar 
    Nováková, E., Hypša, V. & Moran, N. A. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 9, 143 (2009).Article 

    Google Scholar 
    Chong, R. A. & Moran, N. A. Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids. ISME J. 12, 898–908 (2018).Article 
    CAS 

    Google Scholar 
    Wulff, J. A. & White, J. A. The endosymbiont Arsenophonus provides a general benefit to soybean aphid (Hemiptera: Aphididae) regardless of host plant resistance (Rag). Environ. Entomol. 44, 574–581 (2015).Article 
    CAS 

    Google Scholar 
    Ivens, A. B., Gadau, A., Kiers, E. T. & Kronauer, D. J. Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists. Mol. Ecol. 27, 1898–1914 (2018).Article 

    Google Scholar 
    Fischer, C. Y. et al. Bacteria may enhance species association in an ant–aphid mutualistic relationship. Chemoecology 25, 223–232 (2015).Article 
    CAS 

    Google Scholar 
    Smith, R. A., Mooney, K. A. & Agrawal, A. A. Coexistence of three specialist aphids on common Milkweed, Asclepias syriaca. Ecology 89, 2187–2196 (2009).Article 

    Google Scholar 
    Katayama, N., Tsuchida, T., Hojo, M. K. & Ohgushi, T. aphid genotype determines intensity of ant attendance: Do endosymbionts and honeydew composition matter?. Ann. Entomol. Soc. Am. 106, 761–770 (2013).Article 
    CAS 

    Google Scholar 
    Hansen, T. E. & Enders, L. S. Host Plant species influences the composition of milkweed and Monarch microbiomes. Front. Microbiol. https://doi.org/10.3389/fmicb.2022.840078 (2022).Article 

    Google Scholar  More

  • in

    Microbial predators form a new supergroup of eukaryotes

    Keeling, P. J. & Burki, F. Progress towards the tree of eukaryotes. Curr. Biol. 29, R808–R817 (2019).Article 
    CAS 

    Google Scholar 
    Gawryluk, R. M. R. et al. Non-photosynthetic predators are sister to red algae. Nature 572, 240–243 (2019).Article 
    CAS 

    Google Scholar 
    Janouškovec, J. et al. A new lineage of eukaryotes illuminates early mitochondrial genome reduction. Curr. Biol. 27, 3717–3724 (2017).Article 

    Google Scholar 
    Lax, G. et al. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature 564, 410–414 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Oren, A. Prokaryote diversity and taxonomy: current status and future challenges. Philos. Trans. R. Soc. Lond. B 359, 623–638 (2004).Article 
    CAS 

    Google Scholar 
    Shu, W. S. & Huang, L. N. Microbial diversity in extreme environments. Nat. Rev. Microbiol. 20, 219–235 (2022).Article 
    CAS 

    Google Scholar 
    Massana, R., del Campo, J., Sieracki, M. E., Audic, S. & Logares, R. Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME J. 8, 854–866 (2014).Article 

    Google Scholar 
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).Article 

    Google Scholar 
    Flegontova, O. et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060–3065 (2016).Article 
    CAS 

    Google Scholar 
    Ahlering, M. A. & Carrel, J. E. Predators are rare even when they are small. Oikos 95, 471–475 (2001).Article 

    Google Scholar 
    Hehenberger, E. et al. Novel predators reshape holozoan phylogeny and reveal the presence of a two-component signaling system in the ancestor of animals. Curr. Biol. 27, 2043–2050 (2017).Article 
    CAS 

    Google Scholar 
    Tikhonenkov, D. V. et al. Description of Colponema vietnamica sp. n. and Acavomonas peruviana n. gen. n. sp., two new alveolate phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes. PLoS ONE 9, e95467 (2014).Article 
    ADS 

    Google Scholar 
    Tikhonenkov, D. V. et al. New lineage of microbial predators adds complexity to reconstructing the evolutionary origin of animals. Curr. Biol. 30, 4500–4509 (2020).Article 
    CAS 

    Google Scholar 
    Mylnikov, A. P. & Tikhonenkov, D. V. The new alveolate carnivorous flagellate Colponema marisrubri sp. n. (Colponemida, Alveolata) from the Red Sea. Zool. Zh. 88, 1163–1169 (2009).
    Google Scholar 
    Strassert, J. F. H., Irisarri, I., Williams, T. A. & Burki, F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat. Commun. 12, 1879 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodriguez-Ezpeleta, N. et al. Detecting and overcoming systematic errors in genome-scale phylogenies. Syst. Biol. 56, 389–399 (2007).Article 
    CAS 

    Google Scholar 
    Strassert, J. F. H., Jamy, M., Mylnikov, A. P., Tikhonenkov, D. V. & Burki, F. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life. Mol. Biol. Evol. 36, 757–765 (2019).Article 
    CAS 

    Google Scholar 
    Lanfear, R., Kokko, H. & Eyre-Walker, A. Population size and the rate of evolution. Trends Ecol. Evol. 29, 33–41 (2014).Article 

    Google Scholar 
    Bahler, M. & Rhoads, A. Calmodulin signaling via the IQ motif. FEBS Lett. 513, 107–113 (2002).Article 
    CAS 

    Google Scholar 
    Schaffer, D. E., Iyer, L. M., Burroughs, A. M. & Aravind, L. Functional innovation in the evolution of the calcium-dependent system of the eukaryotic endoplasmic reticulum. Front. Genet. 11, 34 (2020).Article 

    Google Scholar 
    Morita-Yamamuro, C. et al. The Arabidopsis gene CAD1 controls programmed cell death in the plant immune system and encodes a protein containing a MACPF domain. Plant Cell Physiol. 46, 902–912 (2005).Article 
    CAS 

    Google Scholar 
    Rosado, C. J. et al. The MACPF/CDC family of pore-forming toxins. Cell. Microbiol. 10, 1765–1774 (2008).Article 
    CAS 

    Google Scholar 
    Ishino, T., Chinzei, Y. & Yuda, M. A Plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection. Cell. Microbiol. 7, 199–208 (2005).Article 
    CAS 

    Google Scholar 
    Satoh, H., Oshiro, N., Iwanaga, S., Namikoshi, M. & Nagai, H. Characterization of PsTX-60B, a new membrane-attack complex/perforin (MACPF) family toxin, from the venomous sea anemone Phyllodiscus semoni. Toxicon 49, 1208–1210 (2007).Article 
    CAS 

    Google Scholar 
    Tikhonenkov, D. V., Mazei, Y. A. & Embulaeva, E. A. Degradation succession of heterotrophic flagellate communities in microcosms. Zh. Obs. Biol. 69, 57–64 (2008).CAS 

    Google Scholar 
    Tikhonenkov, D. V. et al. On the origin of TSAR: morphology, diversity and phylogeny of Telonemia. Open Biol. 12, 210325 (2022).Article 
    CAS 

    Google Scholar 
    Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).Article 
    CAS 

    Google Scholar 
    Keeling, P. J., Poulson, N. & McFadden, G. I. Phylogenetic diversity of parabasalian symbionts from termites, including the phylogenetic position of Pseudotrypanosoma and Trichonympha. J. Eukaryot. Microbiol. 45, 643–650 (1998).Article 
    CAS 

    Google Scholar 
    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).Article 
    CAS 

    Google Scholar 
    Tikhonenkov, D. V., Janouškovec, J., Keeling, P. J. & Mylnikov, A. P. The morphology, ultrastructure and SSU rRNA gene sequence of a new freshwater flagellate, Neobodo borokensis n. sp. (Kinetoplastea, Excavata). J. Eukaryot. Microbiol. 63, 220–232 (2016).Article 
    CAS 

    Google Scholar 
    Andrews, S. FastQC: a quality control tool for high throughput sequence data (Babraham Bioinformatics, 2010); https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2013).Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 

    Google Scholar 
    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).Article 
    CAS 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article 
    CAS 

    Google Scholar 
    Laetsch, D. R. & Blaxter, M. L. BlobTools: interrogation of genome assemblies. F1000Research 6, 1287 (2017).Article 

    Google Scholar 
    Haas, B. J. et al. Denovo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).Article 
    CAS 

    Google Scholar 
    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).Article 
    CAS 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).Article 
    CAS 

    Google Scholar 
    Shen, W. & Ren, H. TaxonKit: a practical and efficient NCBI taxonomy toolkit. J. Genet. Genomics 48, 844–850 (2021).Richter, D. J. et al. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community Journal 2, e56 (2022).Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).Article 
    CAS 

    Google Scholar 
    Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551 (2021).Article 
    CAS 

    Google Scholar 
    Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C. & Kanehisa, M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–W185 (2007).Article 

    Google Scholar 
    Burki, F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb. Perspect. Biol. 6, a016147 (2014).Article 

    Google Scholar 
    Waskom, M. et al. mwaskom/Seaborn: v0.8.1 (September 2017). Zenodo https://doi.org/10.5281/zenodo.883859 (2017).Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 
    Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).Article 
    CAS 

    Google Scholar 
    Letunic, I. & Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 46, D493–D496 (2018).Article 
    CAS 

    Google Scholar 
    Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).Article 
    CAS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    CAS 

    Google Scholar 
    Burns, J. A., Pittis, A. A. & Kim, E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat. Ecol. Evol. 2, 697–704 (2018).Article 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).Article 

    Google Scholar 
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).Article 
    CAS 

    Google Scholar 
    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).Article 
    CAS 

    Google Scholar 
    Whelan, S., Irisarri, I. & Burki, F. PREQUAL: detecting non-homologous characters in sets of unaligned homologous sequences. Bioinformatics 34, 3929–3930 (2018).CAS 

    Google Scholar 
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).Article 
    CAS 

    Google Scholar 
    Roure, B., Rodriguez-Ezpeleta, N. & Philippe, H. SCaFoS: a tool for selection, concatenation and fusion of sequences for phylogenomics. BMC Evol. Biol. 7, S2 (2007).Article 

    Google Scholar 
    Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615 (2013).Article 
    CAS 

    Google Scholar 
    Dayhoff, M., Schwartz, R. & Orcutt, B. in Atlas of Protein Sequence and Structure (ed. Dayhoff, M.) 345–352 (National Biomedical Research Foundation, 1978).Susko, E. & Roger, A. J. On reduced amino acid alphabets for phylogenetic inference. Mol. Biol. Evol. 24, 2139–2150 (2007).Article 
    CAS 

    Google Scholar 
    Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109 (2004).Article 
    CAS 

    Google Scholar 
    Quang le, S., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24, 2317–2323 (2008).Article 

    Google Scholar 
    Wang, H. C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216–235 (2018).Article 
    CAS 

    Google Scholar 
    Kück, P. & Struck, T. H. BaCoCa—a heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. Mol. Phylogenet. Evol. 70, 94–98 (2014).Article 

    Google Scholar 
    Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).Article 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).Article 
    CAS 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).Article 
    MathSciNet 
    CAS 

    Google Scholar 
    Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45, e18 (2017).
    Google Scholar 
    Kuznetsov, A. & Bollin, C. J. in Multiple Sequence Alignment (ed. Katoh, K.) 261–295 (Springer, 2021).Lohse, M., Drechsel, O., Kahlau, S. & Bock, R. OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 41, W575–W581 (2013).Article 

    Google Scholar 
    Johnson, P. Z., Kasprzak, W. K., Shapiro, B. A. & Simon, A. E. RNA2Drawer: geometrically strict drawing of nucleic acid structures with graphical structure editing and highlighting of complementary subsequences. RNA Biol. 16, 1667–1671 (2019).Article 

    Google Scholar 
    Burger, G., Gray, M. W., Forget, L. & Lang, B. F. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol. Evol. 5, 418–438 (2013).Article 

    Google Scholar 
    Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).Article 

    Google Scholar 
    Zhang, D. et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348–355 (2020).Article 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).Article 
    CAS 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097 (2019).Article 
    CAS 

    Google Scholar 
    Massana, R. et al. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ. Microbiol. 17, 4035–4049 (2015).Article 
    CAS 

    Google Scholar 
    Gendron, E. M. S., Darcy, J. L., Hell, K. & Schmidt, S. K. Structure of bacterial and eukaryote communities reflect in situ controls on community assembly in a high-alpine lake. J. Microbiol. 57, 852–864 (2019).Article 
    CAS 

    Google Scholar 
    Minerovic, A. D. et al. 18S-V9 DNA metabarcoding detects the effect of water-quality impairment. Ecol. Indic. 113, 106225 (2020).Article 
    CAS 

    Google Scholar 
    Pearman, J. K. et al. Cross-shelf investigation of coral reef cryptic benthic organisms reveals diversity patterns of the hidden majority. Sci. Rep. 8, 8090 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodas, A. M. et al. Eukaryotic plankton communities across reef environments in Bocas del Toro Archipelago, Panamá. Coral Reefs 39, 1453–1467 (2020).Article 

    Google Scholar 
    Schoenle, A. et al. High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. Commun. Biol. 4, 501 (2021).Article 
    CAS 

    Google Scholar 
    Schulhof, M. A. et al. Sierra Nevada mountain lake microbial communities are structured by temperature, resources and geographic location. Mol. Ecol. 29, 2080–2093 (2020).Article 
    CAS 

    Google Scholar 
    Yi, Z. et al. High-throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations. FEMS Microbiol. Ecol. 93, fix073 (2017). More

  • in

    Widespread herbivory cost in tropical nitrogen-fixing tree species

    Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Chang. 4, 471–476 (2014).Article 
    ADS 

    Google Scholar 
    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).Article 

    Google Scholar 
    Levy-Varon, J. H. et al. Tropical carbon sink accelerated by symbiotic dinitrogen fixation. Nat. Commun. 10, 5637 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).Article 
    ADS 

    Google Scholar 
    Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. The nitrogen paradox in tropical forest ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 613–635 (2009).Article 

    Google Scholar 
    Menge, D. N. L. et al. Patterns of nitrogen-fixing tree abundance in forests across Asia and America. J. Ecol. 107, 2598–2610 (2019).Article 
    CAS 

    Google Scholar 
    Matson, W. J.Jr Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119–161 (1980).Article 

    Google Scholar 
    Coley, P. D., Bateman, M. L. & Kusar, T. A. The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos 115, 219–228 (2006).Article 

    Google Scholar 
    Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Barron, A. R., Purves, D. W. & Hedin, L. O. Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165, 511–520 (2011).Article 
    ADS 

    Google Scholar 
    McCulloch, L. A. & Porder, S. Light fuels while nitrogen suppresses symbiotic nitrogen fixation hotspots in neotropical canopy gap seedlings. New Phytol. 231, 1734–1745 (2021).Article 
    CAS 

    Google Scholar 
    Brookshire, E. N. J. et al. Symbiotic N fixation is sufficient to support net aboveground biomass accumulation in a humid tropical forest. Sci Rep. 9, 7571 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Gei, M. et al. Legume abundance along successional and rainfall gradients in Neotropical forests. Nat. Ecol. Evol. 2, 1104–1111 (2018).Article 

    Google Scholar 
    Vance, C. P. in Nitrogen-fixing Leguminous Symbioses. Nitrogen Fixation: Origins, Applications, and Research Progress, Vol. 7 (eds Dilworth, M. J. et al.) (Springer, 2008).Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).Article 

    Google Scholar 
    Menge, D. N. L., Levin, S. A. & Hedin, L. O. Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation. Proc. Natl Acad. Sci. USA 105, 1573–1578 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Sheffer, E., Batterman, S. A., Levin, S. A. & Hedin, L. O. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. Nat. Plants 1, 15182 (2015).Article 
    CAS 

    Google Scholar 
    Vitousek, P. M. & Field, C. B. Ecosystem constraints to symbiotic nitrogen fixers: a simple model and its implications. Biogeochemistry 46, 179–202 (1999).Article 
    CAS 

    Google Scholar 
    Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).Article 

    Google Scholar 
    Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).Article 
    ADS 

    Google Scholar 
    Batterman, S. A. et al. Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees. Ecol. Lett. 21, 1486–1495 (2018).Article 

    Google Scholar 
    Menge, D. N. L., Wolf, A. A. & Funk, J. L. Diversity of nitrogen fixation strategies in Mediterranean legumes. Nat. Plants 1, 15064 (2015).Article 
    CAS 

    Google Scholar 
    Ritchie, M. E. & Tilman, D. Responses of legumes to herbivores and nutrients during succession on a nitrogen-poor soil. Ecol. Soc. Am. 76, 2648–2655 (1995).
    Google Scholar 
    Taylor, B. N. & Ostrowsky, L. R. Nitrogen-fixing and non-fixing trees differ in leaf chemistry and defence but not herbivory in a lowland Costa Rican rain forest. J. Trop. Ecol. 35, 270–279 (2019).Article 

    Google Scholar 
    Endara, M.-J. et al. Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. Proc. Natl Acad. Sci. USA 114, E7499–E7505 (2017).Article 
    CAS 

    Google Scholar 
    Kursar, T. A. & Coley, P. D. Convergence in defense syndromes of young leaves in tropical rainforests. Biochem. Syst. Ecol. 31, 929–949 (2003).Article 
    CAS 

    Google Scholar 
    Kursar, T. A. et al. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc. Natl Acad. Sci. USA 106, 18073–18078 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Taylor, B. N. & Menge, D. N. L. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nat. Plants 4, 655–661 (2018).Article 
    CAS 

    Google Scholar 
    Adams, M., Turnbull, T., Sprent, J. & Buchmann, N. Legumes are different: leaf nitrogen, photosynthesis, and water use efficiency. Proc. Natl Acad. Sci. USA 113, 4098–4103 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Coley, P. D. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74, 531–536 (1988).Article 
    ADS 
    CAS 

    Google Scholar 
    Batterman, S. A., Wurzburger, N. & Hedin, L. O. Nitrogen and phosphorus interact to control tropical symbiotic N2 fixation: a test in Inga punctata. J. Ecol. 101, 1400–1408 (2013).Article 
    CAS 

    Google Scholar 
    Eichhorn, M. P., Nilus, R., Compton, S. G., Hartley, S. E. & Burslem, D. F. R. P. Herbivory of tropical rain forest tree seedlings correlates with future mortality. Ecology 91, 1092–1101 (2010).Article 

    Google Scholar 
    Wink, M. Evolution of secondary metabolites in legumes (Fabaceae). South African J. Bot. 89, 164–175 (2013).Article 
    CAS 

    Google Scholar 
    Currano, E. D. & Jacobs, B. F. Bug-bitten leaves from the early Miocene of Ethiopia elucidate the impacts of plant nutrient concentrations and climate on insect herbivore communities. Glob. Planet. Change 207, 103655 (2021).Article 

    Google Scholar 
    Wieder, W. R., Cleveland, C. C., Lawrence, D. M. & Bonan, G. B. Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study. Environ. Res. Lett. 10, 044016 (2015).Article 
    ADS 

    Google Scholar 
    Sprent, J. I. Legume Nodulation: A Global Perspective (John Wiley, 2009).Leigh, E. G. Jr Tropical Forest Ecology: A View from Barro Colorado Island (Oxford Univ. Press, 1999).Comita, L. S., Muller-Landau, H. C., Aguilar, S. & Hubbell, S. P. Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329, 330–332 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Queenborough, S. A., Metz, M. R., Valencia, R. & Wright, S. J. Demographic consequences of chromatic leaf defence in tropical tree communities: do red young leaves increase growth and survival? Ann. Bot. 112, 677–684 (2013).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).Article 
    CAS 

    Google Scholar 
    Pasquini, S. C. & Santiago, L. S. Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. Oecologia 168, 311–319 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Collalti, A. & Prentice, I. C. Is NPP proportional to GPP? Waring’s hypothesis 20 years on. Tree Physiol. 39, 1473–1483 (2019).Article 
    CAS 

    Google Scholar 
    Westbrook, J. W. et al. What makes a leaf tough? Patterns of correlated evolution between leaf toughness traits and demographic rates among 197 shade-tolerant woody species in a Neotropical forest. Am. Nat. 177, 800–811 (2011).Article 

    Google Scholar 
    Wright, S. J. et al. Functional traits and the growth–mortality trade‐off in tropical trees. Ecology 91, 3664–3674 (2010).Article 

    Google Scholar 
    Kitajima, K. et al. How cellulose-based leaf toughness and lamina density contribute to long leaf lifespans of shade-tolerant species. New Phytol. 195, 640–652 (2012).Article 

    Google Scholar 
    Kitajima, K., Wright, S. J. & Westbrook, J. W. Leaf cellulose density as the key determinant of inter- and intra-specific variation in leaf fracture toughness in a species-rich tropical forest. Interface Focus https://doi.org/10.1098/rsfs.2015.0100 (2016).Sedio, B. E., Echeverri, J. C. R., Boya, C. A. & Wright, S. J. Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology 98, 616–623 (2017).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).Article 

    Google Scholar 
    Murphy, S. J., Xu, K. & Comita, L. S. Tree seedling richness, but not neighborhood composition, influences insect herbivory in a temperate deciduous forest community. Ecol. Evol. 6, 6310–6319 (2016).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Preprint at https://arxiv.org/abs/1406.5823 (2014).Moles, A. T. & Westoby, M. Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90, 517–524 (2000).Article 

    Google Scholar 
    Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. https://doi.org/10.18637/jss.v080.i01 (2017). More

  • in

    Biodiversity and climate COPs

    Restoring the connection between people and the rest of nature hinges on whole-system science, actions and negotiations.
    Those who think about and practise sustainability are constantly looking for holistic interpretations of the world and are trying to understand systemic relations, networks and connections. Biodiversity has all of these things. It shows how every species needs other species to exist and thrive. It shows that all living organisms are part of a sophisticated and fascinating system made up of myriads of links. And humans are undoubtedly a part of it.
    Credit: Pulsar Imagens / Alamy Stock PhotoIn the realm of sustainability, experts also ponder about time: how can life exist and thrive over time? Indeed, the above mentioned fascinating system evolves over time. And, over time, it has to adapt to unexpected change. It does that well when it is healthy, and less well when it is ill and constantly disturbed.For a long time, man-made impacts kept accumulating almost completely unchecked by societies, until the consequences for human well-being became untenable. Nowadays, environmental crises make the headlines regularly. They are nothing but the result of a broken connection between people and the rest of nature.Climate change is one major outcome of the broken human–rest of nature connection and has wide ramifications for both people and the planet. We now face imminent disaster, unequally across the world, yet addressing climate change remains an incredibly thorny task. Country representatives from most nations around the world meet regularly at the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCC) — most recently at COP27, which was held in Egypt — to continue the debate on what actions are needed to move the climate agenda forward, all while disasters continue to hit the most vulnerable populations. The world has seen 27 COP meetings to the UNFCC so far; one wonders how many more meetings will be needed to see real change happen.Interestingly, country representatives also meet regularly to discuss biodiversity protection; biodiversity decline — the other major consequence of the broken human–rest of nature connection — is just as worrying, with severe and ramified implications that are still largely underappreciated by decision-makers. These gatherings are the COP meetings to the Convention on Biological Diversity (CBD). Last year, we wrote about the then forthcoming COP15 to the CBD (Nat. Sustain. 4, 189; 2021), the meeting in which the new conservation targets to be met by 2030 were to be agreed. We highlighted the extent to which experts worried that those new targets might not go far enough. The meeting was postponed more than once due to the COVID-19 pandemic, and it is finally happening on 7 December 2022, in Montreal, Canada. The world has already seen 15 COP meetings to the CBD, how many more meetings will be needed for the biodiversity crisis to be averted?But let’s go back to thinking about sustainability. Experts look for holistic visions of the world. Here is an interesting example of what holism means. Biodiversity decline and climate change are both the result of the broken connection between people and the rest of nature, they ultimately have the same, deep roots. They are mutually reinforcing phenomena: unhealthy biodiversity contributes to climate change, and climate change makes biodiversity ill. All this is bad news for human and planetary well-being. The climate–biodiversity conundrum, at least to some degree, has been recognized at a higher level — during COP27, leaders dedicated one day to biodiversity.Yet, given that these issues are highly interconnected and have the same origin, why is the world insisting on discussing them as separate agendas? Why are we still holding two separate COPs? How are these meetings going to promote any fruitful synergy? How will they lead people to reconnect with the rest of nature? Country representatives should be breaking silos, embracing holism and bringing these intertwined issues, and their multiple ramifications, to the same negotiating table.Nature Sustainability welcomes the long-awaited COP15 to the CBD and hopes that countries will agree on feasible yet ambitious 2030 targets to protect and enhance biodiversity. But most of all, we hope that all of the experts and leaders involved in addressing the environmental crises embrace holism to promote meaningful actions across the world aimed at restoring people’s connection with the rest of nature. We are eager to see progress to this end. In the meantime, the collection we started in March 2021 with Nature Ecology & Evolution has been updated to renew our support to the biodiversity community. More