More stories

  • in

    Phytoplankton in the middle

    Marine phytoplankton both follow and actively influence the environment they inhabit. Unpacking the complex ecological and biogeochemical roles of these tiny organisms can help reveal the workings of the Earth system.
    Phytoplankton are the workers of an ocean-spanning factory converting sunlight and raw nutrients into organic matter. These little organisms — the foundation of the marine ecosystem — feed into a myriad of biogeochemical cycles, the balance of which help control the distribution of carbon on the Earth surface and ultimately the overall climate state. As papers in this issue of Nature Geoscience show, phytoplankton are far from passive actors in the global web of biogeochemical cycles. The functioning of phytoplankton is not just a matter for biologists, but is also important for geoscientists seeking to understand the Earth system more broadly.Phytoplankton are concentrated where local nutrient and sea surface temperatures are optimal, factors which aren’t always static in time. Prominent temperature fluctuations, from seasonal to daily cycles, are reflected in phytoplankton biomass, with cascading effects on other parts of marine ecosystems, such as economically-important fisheries. In an Article in this issue, Keerthi et al., show that phytoplankton biomass, tracked by satellite measurements of chlorophyll for relatively small ( More

  • in

    10 startling images of nature in crisis — and the struggle to save it

    Global statistics on declining biodiversity can give the impression that every population of every species is in a downward spiral. In fact, many populations are stable or growing, while a small number of species faces truly existential challenges. These photos capture some specific crises. They are images of threats unfolding, of desperate attempts at species defence and of the beautiful living world that is at stake.
    The 15th United Nations Biodiversity Conference, COP15, opens in Montreal, Canada, on 7 December. At the meeting, delegates will attempt to agree on goals for stabilizing species’ declines by 2030 and reverse them by mid-century. The current draft framework agreement promises nothing less than a “transformation in society’s relationship with biodiversity”.
    Help for the kelp. Tasmania’s forests of giant kelp (Macrocystis pyrifera) are dying as climate change shifts ocean currents, bringing warm water to the east coast of the temperate Australian island. The kelp forests host an entire ecosystem, including abalone and crayfish — both economically important species and part of local food culture. Now, researchers at the Institute for Marine and Antarctic Studies in Hobart are breeding kelp plants that can tolerate warmer conditions, and replanting them along the coast — a trial for what they hope will become a landscape-scale restoration. More

  • in

    Reply to: Erroneous predictions of auxotrophies by CarveMe

    Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, M. Erroneous predictions of auxotrophies by CarveMe. https://doi.org/10.1038/s41559-022-01936-3 (2022).Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, M. N., Deutschbauer, A. M. & Arkin, A. P. GapMind: automated annotation of amino acid biosynthesis. mSystems 5, e00291-20 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. USA 111, E2149–E2156 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ponomarova, O. et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 5, 345–357.e6 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zengler, K. & Zaramela, L. S. The social network of microorganisms—how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giri, S. et al. Metabolic dissimilarity determines the establishment of cross-feeding interactions in bacteria. Curr. Biol. 31, 5547–5557.e6 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Morris, J. J., Lenski, R. E. & Zinser, E. R. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campbell, K. et al. Self-establishing communities enable cooperative metabolite exchange in a eukaryote. eLife 4, e09943 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    D’Souza, G. & Kost, C. Experimental evolution of metabolic dependency in bacteria. PLOS Genet. 12, e1006364 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ziesack, M. et al. Engineered interspecies amino acid cross-feeding increases population evenness in a synthetic bacterial consortium. mSystems 4, e00352-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryback, B., Bortfeld-Miller, M. & Vorholt, J. A. Metabolic adaptation to vitamin auxotrophy by leaf-associated bacteria. ISME J. https://doi.org/10.1038/s41396-022-01303-x (2022). More

  • in

    Assessment of suitable habitat of mangrove species for prioritizing restoration in coastal ecosystem of Sundarban Biosphere Reserve, India

    Banerjee, A. K. et al. Setting the priorities straight-Species distribution models assist to prioritize conservation targets for the mangroves. Sci. Total Environ. 806, 150937 (2022).Article 
    CAS 

    Google Scholar 
    Duke, N. C. et al. A world without mangroves?. Science 317(5834), 41–42 (2007).Article 
    CAS 

    Google Scholar 
    Friess, D. A. Ecosystem services and disservices of mangrove forests: Insights from historical colonial observations. Forests 7(9), 183 (2016).Article 

    Google Scholar 
    Hu, W. et al. Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China. Sci. Total Environ. 748, 142321 (2020).Article 
    CAS 

    Google Scholar 
    Blankespoor, B., Dasgupta, S. & Lange, G. M. Mangroves as a protection from storm surges in a changing climate. Ambio 46(4), 478–491 (2017).Article 

    Google Scholar 
    FAO. TheWorld’s Mangroves 1980–2005. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/3/a1427e/a1427e00.htm. (2007).Abd-El Monsef, H., Hassan, M. A. & Shata, S. Using spatial data analysis for delineating existing mangroves stands and siting suitable locations for mangroves plantation. Comput. Electron. Agric. 141, 310–326 (2017).Article 

    Google Scholar 
    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123 (2011).Article 
    CAS 

    Google Scholar 
    Aheto, D. W. et al. Community-based mangrove forest management: Implications for local livelihoods and coastal resource conservation along the Volta estuary catchment area of Ghana. Ocean Coast. Manag. 127, 43–54 (2016).Article 

    Google Scholar 
    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).Article 

    Google Scholar 
    Stephanie, S. R. et al. Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manag. 154, 72–82. https://doi.org/10.1016/j.ocecoaman.2018.01.009 (2018).Article 

    Google Scholar 
    Friess, D. A. et al. Mangroves give cause for conservation optimism, for now. Curr. Biol. 30, R153–R154 (2020).Article 
    CAS 

    Google Scholar 
    Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: One of the world’s threatened major tropical environments: At least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. Bioscience 51, 807–815. https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2 (2001).Article 

    Google Scholar 
    Feller, I. C. et al. Biocomplexity in mangrove ecosystems. Ann. Rev. Mar. Sci. 2, 395–417 (2010).Article 
    CAS 

    Google Scholar 
    Polidoro, B. A. et al. The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).Article 

    Google Scholar 
    IUCN. Global Assessments of Mangrove Losses and Degradation, 2016; https://www.iucn.org/sites/dev/files/content/documents/mangroveloss-brief-4pp-19.10.low_.pdf.Sreelekshmi, S., Nandan, S. B., Kaimal, S. V., Radhakrishnan, C. K. & Suresh, V. R. Mangrove species diversity, stand structure and zonation pattern in relation to environmental factors—a case study at Sundarban delta, east coast of India. Reg. Stud. Mar. Sci. 35, 101111 (2020).
    Google Scholar 
    Sahana, M. et al. Assessing coastal island vulnerability in the Sundarban Biosphere Reserve, India, using geospatial technology. Environ. Earth Sci. 78(10), 1–22 (2019).Article 

    Google Scholar 
    FSI. India State of Forest Report. Forest Survey of India, Dehradun (2017).Ellison, A. M., Mukherjee, B. B. & Karim, A. Testing patterns of zonation in mangroves: Scale dependence and environmental correlates in the Sundarbans of Bangladesh. J. Ecol. 88(5), 813–824 (2000).Article 

    Google Scholar 
    Sahana, M., Rehman, S., Sajjad, H. & Hong, H. Exploring effectiveness of frequency ratio and support vector machine models in storm surge flood susceptibility assessment: A study of Sundarban Biosphere Reserve, India. CATENA 189, 104450 (2020).Article 

    Google Scholar 
    Sahana, M. & Sajjad, H. Vulnerability to storm surge flood using remote sensing and GIS techniques: A study on Sundarban Biosphere Reserve, India. Rem. Sens. Appl. Soc. Env. 13, 106–120 (2019).
    Google Scholar 
    Chowdhury, M. Q. et al. Nature and periodicity of growth rings in two Bangladeshi mangrove species. IAWA J. 29(3), 265–276 (2008).Article 

    Google Scholar 
    Sarker, S. K., Reeve, R., Thompson, J., Paul, N. K. & Matthiopoulos, J. Are we failing to protect threatened mangroves in the Sundarbans world heritage ecosystem?. Sci. Rep. 6(1), 1–12 (2016).Article 

    Google Scholar 
    Iftekhar, M. S. & Saenger, P. Vegetation dynamics in the Bangladesh Sundarbans mangroves: A review of forest inventories. Wetlands Ecol. Manage. 16(4), 291–312 (2008).Article 

    Google Scholar 
    Siddiqi, N. A. In Mangrove forestry in Bangladesh, Institute of Forestry and Environmental Sciences. University of Chittagong, Chittagong, Bangladesh 201 (2001).Lewis, R. R. III. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 24(4), 403–418 (2005).Article 

    Google Scholar 
    Peterson, T. A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography 30, 550–560. https://doi.org/10.1111/j.0906-7590.2007.05102.x (2007).Article 

    Google Scholar 
    Stockwell, D. & Peters, D. The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158. https://doi.org/10.1080/136588199241391 (1999).Article 

    Google Scholar 
    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x (2005).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Feng, Z. et al. Dynamics ofmangrove forests in Shenzhen Bay in response to natural and anthropogenic factors from 1988 to 2017. J. Hydrol. 591, 125271. https://doi.org/10.1016/j.jhydrol.2020.125271 (2020).Article 

    Google Scholar 
    Kaky, E. & Gilbert, F. Using species distribution models to assess the importance of Egypt’s protected areas for the conservation of medicinal plants. J. Arid Environ. 135, 140–146. https://doi.org/10.1016/j.jaridenv.2016.09.001 (2016).Article 

    Google Scholar 
    Pecchi, M. et al. Species distribution modelling to support forest management A literature review. Ecol. Model. 411, 108817 (2019).Article 

    Google Scholar 
    Spiers, J. A., Oatham, M. P., Rostant, L. V. & Farrell, A. D. Applying species distribution modelling to improving conservation-based decisions: A gap analysis of Trinidad and Tobago’s endemic vascular plants. Biodivers. Conserv. 27, 2931–2949 (2018).Article 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 (2009).Article 

    Google Scholar 
    Fois, M., Cuena-Lombraña, A., Fenu, G. & Bacchetta, G. Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecol. Model. 385, 124–132 (2018).Article 

    Google Scholar 
    Gilani, H., Goheer, M. A., Ahmad, H. & Hussain, K. Under predicted climate change: Distribution and ecological niche modelling of six native tree species in Gilgit-Baltistan, Pakistan. Ecol. Indic. 111, 106049 (2020).Article 

    Google Scholar 
    Ellison, A. M., Felson, A. J. & Friess, D. A. Mangrove rehabilitation and restoration as experimental adaptive management. Front. Mar. Sci. 7, 327. https://doi.org/10.3389/fmars.2020.00327 (2020).Article 

    Google Scholar 
    Ellison, A. M. Mangrove restoration: Do we know enough?. Restor. Ecol. 8(3), 219–229 (2000).Article 

    Google Scholar 
    Brown, B., Fadillah, R., Nurdin, Y., Soulsby, I., & Ahmad, R. CASE STUDY: Community Based Ecological Mangrove Rehabilitation (CBEMR) in Indonesia. In From small (12–33 ha) to medium scales (400 ha) with pathways for adoption at larger scales ( > 5000 ha). SAPI EN. S. Surveys and Perspectives Integrating Environment and Society 7.2 (2014).Rodríguez-Rodríguez, J. A., Mancera-Pineda, J. E. & Tavera, H. Mangrove restoration in Colombia: Trends and lessons learned. For. Ecol. Manage. 496, 119414 (2021).Article 

    Google Scholar 
    Romañach, S. S. et al. Conservation and restoration
    of mangroves: Global status, perspectives, and prognosis. Ocean Coast Manag. 154, 72–82. https://doi.org/10.1016/j.ocecoaman.2018.01.009 (2018).Article 

    Google Scholar 
    Sulochanan, B. et al. Water and sediment quality parameters of the restored mangrove ecosystem of Gurupura River and natural mangrove ecosystem of Shambhavi River in Dakshina Kannada, India. Marine Pollution Bulletin 176, 113450. https://doi.org/10.1016/j.marpolbul.2022.113450 (2022).Lovelock, C. E., Barbier, E. & Duarte, C. M. Tackling the mangrove restoration challenge. PLoS Biol. 20(10), e3001836 (2022).Article 
    CAS 

    Google Scholar 
    Lovelock, C. E. & Brown, B. M. Land tenure considerations are key to successful mangrove restoration. Nature Ecol. Evol. 3(8), 1135–1135 (2019).Article 

    Google Scholar 
    Su, J., Friess, D. A. & Gasparatos, A. A meta-analysis of the ecological and economic outcomes of mangrove restoration. Nat. Commun. 12(1), 1–13 (2021).Article 

    Google Scholar 
    Lee, S. Y., Hamilton, S., Barbier, E. B., Primavera, J. & Lewis, R. R. Better restoration policies are needed to conserve mangrove ecosystems. Nature Ecol. Evol. 3(6), 870–872 (2019).Article 

    Google Scholar 
    Chakraborty, S., Sahoo, S., Majumdar, D., Saha, S. & Roy, S. Future Mangrove suitability assessment of Andaman to strengthen sustainable development. J. Clean. Prod. 234, 597–614 (2019).Article 

    Google Scholar 
    Charrua, A. B., Bandeira, S. O., Catarino, S., Cabral, P. & Romeiras, M. M. Assessment of the vulnerability of coastal mangrove ecosystems in Mozambique. Ocean Coast. Manag. 189, 105145 (2020).Article 

    Google Scholar 
    Hu, W. et al. Predicting potential mangrove distributions at the global northern distribution margin using an ecological niche model: Determining conservation and reforestation involvement. For. Ecol. Manage. 478, 118517 (2020).Article 

    Google Scholar 
    Rodríguez-Medina, K., Yañez-Arenas, C., Peterson, A. T., Euán Ávila, J. & Herrera-Silveira, J. Evaluating the capacity of species distribution modeling to predict the geographic distribution of the mangrove community in Mexico. PLoS ONE 15(8), e0237701 (2020).Article 

    Google Scholar 
    Wang, Y. et al. Simulating spatial change of mangrove habitat under the impact of coastal land use: Coupling MaxEnt and Dyna-CLUE models. Sci. Total Environ. 788, 147914 (2021).Article 
    CAS 

    Google Scholar 
    Gopal, B. & Chauhan, M. Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat. Sci. 68(3), 338–354 (2006).Article 

    Google Scholar 
    Sahana, M., Rehman, S., Paul, A. K. & Sajjad, H. Assessing socio-economic vulnerability to climate change-induced disasters: Evidence from Sundarban Biosphere Reserve, India. Geol. Ecol. Landsc. 5(1), 40–52 (2021).Article 

    Google Scholar 
    Giri, C. et al. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 35(3), 519–528 (2008).Article 

    Google Scholar 
    Giri, C., Pengra, B., Zhu, Z., Singh, A. & Tieszen, L. L. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 73(1–2), 91–100 (2007).Article 

    Google Scholar 
    Islam, S. N. & Gnauck, A. Effects of salinity intrusion in mangrove wetlands ecosystems in the Sundarbans: An alternative approach for sustainable management. Wetlands Monitor. Modell. Manag. 2007, 315 (2007).
    Google Scholar 
    Hazra, S., Ghosh, T., DasGupta, R. & Sen, G. Sea level and associated changes in the Sundarbans. Sci. Cult. 68(9/12), 309–321 (2002).
    Google Scholar 
    Purkait, B. Coastal erosion in response to wave dynamics operative in Sagar Island, Sundarban delta, India. Front. Earth Sci. China 3(1), 21–33 (2009).Article 

    Google Scholar 
    World Bank (2014). Building resilience for sustainable development of the Sundarbans: Strategy report (No. 20116; World Bank Other Operational Studies). The World Bank Group. https://ideas.repec.org/p/wbk/wboper/20116.html.Das, M. A. H. U. A. Impact of commercial coastal fishing on the environment of Sundarbans for sustainable development. Asian Fish. Sci. 22(1), 157–167 (2009).
    Google Scholar 
    Hoq, M. E. An analysis of fisheries exploitation and management practices in Sundarbans mangrove ecosystem, Bangladesh. Ocean Coast. Manag. 50(5–6), 411–427 (2007).Article 

    Google Scholar 
    Census of India (2011). Primary census abstract, census of India. The government of India, Registrar General and Census Commissioner of India, Ministry of Home Affairs, New Delhi, India. https://censusindia.gov.in/nada/index.php/catalog/41021Chowdhury, A. & Maiti, S. K. Assessing the ecological health risk in a conserved mangrove ecosystem due to heavy metal pollution: A case study from Sundarbans Biosphere Reserve, India. Hum. Ecol. Risk Assess. Int. J. 22(7), 1519–1541 (2016).Article 
    CAS 

    Google Scholar 
    Hajra, R. et al. Unravelling the association between the impact of natural hazards and household poverty: Evidence from the Indian Sundarban delta. Sustain. Sci. 12(3), 453–464 (2017).Article 

    Google Scholar 
    Sahana, M. & Sajjad, H. Assessing Influence of Erosion and Accretion on Landscape Diversity in Sundarban Biosphere Reserve, Lower Ganga Basin: A Geospatial Approach. In Quaternary Geomorphology in India, (eds Das, B. et al.) (Springer, Cham, 2019). https://doi.org/10.1007/978-3-319-90427-6_10 (2018).Chaudhuri, A. B., Choudhury, A., Hussain, Z., & Acharya, G. Mangroves of the Sundarbans. Vol. I. India, The IUCN Wetlands Programme 247 (IUCN, 1994).GBIF.org. GBIF Occurrence Download, 2018. https://www.gbif.org/. Avicennia marina: https://doi.org/10.15468/dl.vmlooq and R. mucronata: https://doi.org/10.15468/dl.ewnqnm (accessed March 2019).Mandal, R. N. & Naskar, K. R. Diversity and classification of Indian mangroves: A review. Trop. Ecol. 49(2), 131–146 (2008).
    Google Scholar 
    Mandal, A. K., & Nandi, N. C. Fauna of Sundarban mangrove ecosystem, west Bengal, India, Vol. 3 (Zoological Survey of India, 1989).Mitra, A. & Pal, S. The Oscillating Mangrove Ecosystem and the Indian Sundarbans (WWF-India-WBSO, 2002).Naskar, K., & Guha Bakshi, D. N. Mangrove Swamps of the Sundarbans (Naya Prokash, 1987).Barik, J. & Chowdhury, S. True mangrove species of Sundarbans delta, West Bengal, eastern India. Check list 10(2), 329–334. https://doi.org/10.15560/10.2.329 (2014).IUCN 2018. The IUCN Red List of Threatened Species. Version 2018. 2018. Electronic database accessible, accessed 15 Nov 2018; http://www.iucnredlist.org.Guyon, I. & Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003).MATH 

    Google Scholar 
    Cavanaugh, K. C. et al. Climate-driven regime shifts in a mangrove–salt marsh ecotone over the past 250 years. Proc. Natl. Acad. Sci. 116(43), 21602–21608 (2019).Article 
    CAS 

    Google Scholar 
    Naskar, K. & Mandal, R. Ecology and Biodiversity of Indian Mangroves, Vol. 1 (Daya Books, 1999).Figueiredo, F. O. et al. Beyond climate control on species range: The importance of soil data to predict distribution of Amazonian plant species. J. Biogeogr. 45(1), 190–200 (2018).Article 

    Google Scholar 
    Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 20(1), 1–9 (2014).Article 

    Google Scholar 
    Asbridge, E., Lucas, R., Ticehurst, C. & Bunting, P. Mangrove response to environmental change in Australia’s Gulf of Carpentaria. Ecol. Evol. 6(11), 3523–3539 (2016).Article 

    Google Scholar 
    He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the Anthropocene. Curr. Biol. 29(19), R1021–R1035. https://doi.org/10.1016/j.cub.2019.08.042 (2019).Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186(2), 251–270 (2005).Article 

    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge University Press, 2017).Book 

    Google Scholar 
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).Article 

    Google Scholar 
    STR Annual Report. In Conservator of Forest & Field Director, Sundarban Tiger Reserve. Canning, West Bengal, India: Directorate of Forests, Government of West Bengal (2013–2014).Segurado, P. & Araujo, M. B. An evaluation of methods for modelling species distributions. J. biogeogr. 31(10), 1555–1568. https://doi.org/10.1111/j.1365-2699.2004.01076.x (2004).Kadmon, R., Farber, O. & Danin, A. A systematic analysis of factors affecting the performance of climatic envelope models. Ecol. Appl. 13(3), 853–867. https://doi.org/10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2 (2003).Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. distribut. 14(5), 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x (2008).Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12(1), 40–45 (2019).Article 
    CAS 

    Google Scholar 
    Hoguane, A. M., Hill, A. E., Simpson, J. H. & Bowers, D. G. Diurnal and tidal variation of temperature and salinity in the Ponta Rasa mangrove swamp, Mozambique. Estuar. Coast. Shelf S. 49(2), 251–264. https://doi.org/10.1006/ecss.1999.0499 (1999).  Article 
    CAS 

    Google Scholar 
    Sanders, C. J. et al. Are global mangrove carbon stocks driven by rainfall? J. Geophys. Res. Biogeosci. 121(10), 2600–2609. https://doi.org/10.1002/2016JG003510 (2016).Srivastava, J., Farooqui, A. & Seth, P. Pollen-vegetation relationship in surface sediments, Coringa mangrove ecosystem, India: palaeoecological applications. Palynology 43(3), 451–466. https://doi.org/10.1080/01916122.2018.1458755 (2019).Nandy, P., Das, S., Ghose, M. & Spooner-Hart, R. Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. Wetlands Ecol. Manage. 15(4), 347–357 (2007).Article 
    CAS 

    Google Scholar 
    Washington, W., Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40 (2001).
    Google Scholar 
    Blasco, F., Aizpuru, M. & Gers, C. Depletion of the mangroves of Continental Asia. Wetlands Ecol. Manage. 9(3), 255–266 (2001).Article 

    Google Scholar 
    Datta, D. & Deb, S. Forest structure and soil properties of mangrove ecosystems under management scenarios: Experiences from the intensely humanized landscape of Indian Sunderbans. Ocean Coast. Manag. 140, 22–33 (2017).Article 

    Google Scholar 
    Wahid, S. M., Babel, M. S. & Bhuiyan, A. R. Hydrologic monitoring and analysis in the Sundarbans mangrove ecosystem, Bangladesh. J. Hydrol. 332(3–4), 381–395 (2007).Article 

    Google Scholar 
    Iftekhar, M. S. & Islam, M. R. Degeneration of Bangladesh’s Sundarbans mangroves: A management issue. Int. For. Rev. 6(2), 123–135 (2004).
    Google Scholar 
    Saenger, P. Mangrove Ecology, Silviculture, and Conservation (Kluwer Academic Publishers, 2002).Book 

    Google Scholar 
    Feka, Z. N. Sustainable management of mangrove forests in West Africa: A new policy perspective?. Ocean Coast. Manag. 116, 341–352. https://doi.org/10.1016/j.ocecoaman.2015.08.006 (2015).Article 

    Google Scholar 
    Giri, S. et al. A study on abundance and distribution of mangrove species in Indian Sundarban using remote sensing technique. J. Coast Conserv. 18, 359–367. https://doi.org/10.1007/s11852-014-0322-3 (2014).Article 

    Google Scholar 
    Moschetto, F. A., Ribeiro, R. B. & De Freitasa, D. M. Urban expansion, regeneration and socioenvironmental vulnerability in a mangrove ecosystem at the southeast coastal of São Paulo, Brazil. Ocean Coast. Manag. 24, 105418. https://doi.org/10.1016/j.ocecoaman.2020.105418 (2020).Article 

    Google Scholar 
    Tuholskea, C., Tane, Z., López-Carra, D., Roberts, D. & Cassels, S. Thirty years of land use/cover change in the Caribbean: Assessing the relationship between urbanization and mangrove loss in Roatán, Honduras. Appl. Geogr. 88, 84–93. https://doi.org/10.1016/j.apgeog.2017.08.018 (2017).Article 

    Google Scholar 
    Kantharajan, G. et al. Vegetative structure and species composition of mangroves along the Mumbai coast, Maharashtra, India. Reg. Stud. Mar. Sci. 19, 1–8 (2018).
    Google Scholar 
    Marcinko, C. L. et al. The development of a framework for the integrated assessment of SDG trade-offs in the Sundarban Biosphere Reserve. Water 13(4), 528 (2021).Article 

    Google Scholar 
    Sahana, M. et al. Assessing Wetland ecosystem health in Sundarban Biosphere Reserve using pressure-state-response model and geospatial techniques. Remot. Sens. Appl. Soc. Environ. 26, 100754. https://doi.org/10.1016/j.rsase.2022.100754 (2022).Saha, S., & Choudhury, A. Vegetation Analysis of Restored And Natural Mangrove Forest In Sagar Island, Sundarbans, East Coast of India. Indian J. Mar. Sci. 24, 133–136. http://nopr.niscpr.res.in/bitstream/123456789/37297/1/IJMS%2024%283%29%20133-136.pdf (1995).Balke, T. & Friess, D. A. Geomorphic knowledge for mangrove restoration: A pantropical categorization. Earth Surf. Process. Landf. 41, 231–239. https://doi.org/10.1002/esp.3841 (2016).Article 

    Google Scholar 
    Alongi, D. M. Mangrove forests of timor-leste: Ecology, degradation and vulnerability to climate change. In Mangrove ecosystems of Asia 199–212 (Springer, 2014).Biswas, S. R., Mallik, A. U., Choudhury, J. K. & Nishat, A. A unified framework for the restoration of Southeast Asian mangroves—bridging ecology, society and economics. Wetlands Ecol. Manage. 17(4), 365–383 (2009).Article 

    Google Scholar 
    Dubey, S. K., Censkowsky, U., Roy, M., Chand, B. K., & Dey, A. Framework for rapid evaluation of a mangrove restoration site: A case study from Indian Sundarban. In Sabkha Ecosystems 363–378 (Springer, 2019).Islam, M. M. & Shamsuddoha, M. Coastal and marine conservation strategy for Bangladesh in the context of achieving blue growth and sustainable development goals (SDGs). Environ. Sci. Pol. 87, 45–54. https://doi.org/10.1016/j.envsci.2018.05.014 (2018).Article 

    Google Scholar 
    Bosire, J., Celliers, L., Groeneveld, J., Paula, J. & Schleyer, M.H. Regional State of the Coast Report-Western Indian Ocean. UNEP-Nairobi Convention and WIOMSA 546 (2015).Owuor, M. A., Mulwa, R., Otieno, R., Icely, J. & Newton, A. Valuing mangrove biodiversity and ecosystem services: A deliberative choice experiment in Mida Creek, Kenya. Ecosyst. Serv. 40, 101040. https://doi.org/10.1016/j.ecoser.2019.101040 (2019).Article 

    Google Scholar 
    Barwell, L. et al. (2018). Regional
    State of the Coast Report Western Indian Ocean. The United Nations Environment
    Programme/Nairobi Convention Secretariat. https://wedocs.unep.org/handle/20.500.11822/9700?show=fullde Jesús Arce-Mojica, T., Nehren, U., Sudmeier-Rieux, K., Miranda, P. J. & Anhuf, D. Nature-based solutions (NbS) for reducing the risk of shallow landslides: where do we stand? Int. J. disaster risk reduct. 41, 101293. https://doi.org/10.1016/j.ijdrr.2019.101293 (2019).Bardhan, M. An empirical study on mangrove restoration in Indian Sundarbans—a community-based environmental approach. In Modern Cartography Series, vol. 10 387–405 (Academic Press, 2021).Kumar, M. C., Bholanath, M. & Debashis, S. Study on utility and revival through community approach in sundarbans mangrove. Int. J. Soc. Sci. https://doi.org/10.5958/2321-5771.2014.00101.X (2014).Article 

    Google Scholar 
    Chakraborty, S. K., Giri, S., Chakravarty, G. & Bhattacharya, N. Impact of eco-restoration on the biodiversity of Sundarbans Mangrove Ecosystem, India. Water Air Soil Pollut. Focus 9(3), 303–320 (2009).Article 

    Google Scholar 
    Paulson Institute. Research report on mangrove protection and restoration strategy in China, 2020; https://paulsoninstitute.org.cn/wpcontent/uploads/2020/06/%E4%B8%AD%E5%9B%BD%E7%BA%A2%E6%A0%91%E6%9E%97%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%81%A2%E5%A4%8D%E6%88%98%E7%95%A5%E7%A0%94%E7%A9%B6%E6%8A%A5%E5%91%8A%E2%80%94%E6%91%98%E8%A6%81%E7%89%88.pdf.Fan, H. Q. & Wang, W. Q. Some thematic issues for mangrove conservation in China. J. Xiamen Univ. Nat. Sci 56, 323–330. https://doi.org/10.6043/j.issn.0438-0479.201612003 (2017).Article 

    Google Scholar 
    Wang, W., Fu, H., Lee, S. Y., Fan, H. & Wang, M. Can strict protection stop the decline of mangrove ecosystems in China? Fromrapid destruction to rampant degradation. Forests 11, 55. https://doi.org/10.3390/f11010055 (2020).Article 

    Google Scholar 
    Roy, A. K. D. & Alam, K. Participatory forest management for the sustainable management of the sundarbans mangrove forest. Am. J. Env. Sci. 8(5), 549–555. https://doi.org/10.3844/ajessp.2012.549.555 (2012).Article 

    Google Scholar 
    Selvam, V. et al. In Toolkit for establishing coastal bioshield. M. S. Swaminathan Research Foundation, Centre for Research on Sustainable Agriculture and Rural Development (2005).Raju, J. S. S. N. Xylocarpus (Meliaceae): A less-known mangrove taxon of the Godavari estuary, India. Curr. Sci. 84(7), 879–881. https://www.currentscience.ac.in/Volumes/84/07/0879.pdf (2003).
    Google Scholar 
    Siddiqui, A. H. & Khair, A. Infestation status of heart rot disease of pasur (Xylocarpus mekongensis), tree in the sundarbans. Indian For. 138(2), 165–168 (2012).
    Google Scholar 
    Iqbal, M. & Hossain, M. Tourists’ willingness to pay for restoration of Sundarbans Mangrove forest ecosystems: A contingent valuation modeling study. Env. Dev. Sustain. 2022, 1–22 (2022).
    Google Scholar 
    Ekka, A. & Pandit, A. Willingness to pay for restoration of natural ecosystem: A study of Sundarban mangroves by contingent valuation approach. Indian J. Agric. Econ. 67, 902 (2012).
    Google Scholar 
    Datta, D., Chattopadhyay, R. N. & Guha, P. Community based mangrove management: A review on status and sustainability. J. Env. Manag. 107, 84–95. https://doi.org/10.1016/j.jenvman.2012.04.013 (2012).Article 

    Google Scholar 
    Ghosh, A., Schmidt, S., Fickert, T. & Nusser, M. The Indian Sundarban mangrove forests: History, utilization, conservation strategies and local perception. Diversity 7(2), 149–169. https://doi.org/10.3390/d7020149 (2015).Article 
    CAS 

    Google Scholar 
    Ranjan, R. Optimal mangrove restoration through community engagement on coastal lands facing climatic risks: The case of Sundarbans region in India. Land Use Policy 81, 736–749 (2019).Article 

    Google Scholar 
    Dutta, M., Roy, S. & Nibirh, S. Joint forest management and forest protection committees: Negotiation systems and the design of incentives—a case study of West Bengal. Electron. J. https://doi.org/10.2139/ssrn.2245965 (2001).Article 

    Google Scholar 
    McKee, K. L., Rooth, J. E. & Feller, I. C. Mangrove recruitment after forest disturbance is facilitated by herbaceous species in the Caribbean. Ecol. Appl. 17(6), 1678–1693 (2007).Article 

    Google Scholar 
    Begam, M. et al. Native salt-tolerant grass species for habitat restoration, their acclimation and contribution to improving edaphic conditions: A study from a degraded mangrove in the Indian Sundarbans. Hydrobiologia 803(1), 373–387 (2017).Article 
    CAS 

    Google Scholar 
    Donnelly, M. & Walters, L. Trapping of Rhizophora mangle propagules by coexisting early successional species. Estuaries Coasts 37, 1562–1571 (2014).Article 

    Google Scholar 
    Ren, H. et al. Sonneratia apetala Buch. Ham in the mangrove ecosystems of China: An invasive species or restoration species?. Ecol. Eng. 35(8), 1243–1248 (2009).Article 

    Google Scholar 
    Cheong, S.-M. et al. Coastal adaptation with ecological engineering. Nature Clim. Change 3, 787–791. https://doi.org/10.1038/nclimate1854 (2013).Article 

    Google Scholar  More

  • in

    Rare and declining bird species benefit most from designating protected areas for conservation in the UK

    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 
    PubMed 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulze, K. et al. An assessment of threats to terrestrial protected areas. Conserv. Lett. 11, e12435 (2018).Article 

    Google Scholar 
    Bingham, H. C. et al. (eds). Protected Planet Report 2020 (UNEP-WCMC & IUCN, 2021); https://livereport.protectedplanet.net/Buchanan, G. M., Butchart, S. H., Chandler, G. & Gregory, R. D. Assessment of national-level progress towards elements of the Aichi Biodiversity Targets. Ecol. Indic. 116, 106497 (2020).Article 

    Google Scholar 
    Xu, H. et al. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 5, 411–418 (2021).Article 
    PubMed 

    Google Scholar 
    Report of the Open-ended Working Group on the Post-2020 Global Biodiversity Framework on Its Third Meeting (CBD Secretariat, 2022); https://www.cbd.int/conferences/post2020/wg2020-03/documentsRodrigues, A. S. & Cazalis, V. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11, 5147 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Starnes, T. et al. The extent and effectiveness of protected areas in the UK. Glob. Ecol. Conserv. 30, e01745 (2021).Article 

    Google Scholar 
    Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cazalis, V. et al. Mismatch between bird species sensitivity and the protection of intact habitats across the Americas. Ecol. Lett. 24, 2394–2405 (2021).Article 
    PubMed 

    Google Scholar 
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Gamero, A. et al. Tracking progress toward EU biodiversity strategy targets: EU policy effects in preserving its common farmland birds. Conserv. Lett. 10, 395–402 (2017).Article 

    Google Scholar 
    Pellissier, V. et al. Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data. Conserv. Biol. 34, 666–676 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Princé, K., Rouveyrol, P., Pellissier, V., Touroult, J. & Jiguet, F. Long-term effectiveness of Natura 2000 network to protect biodiversity: a hint of optimism for common birds. Biol. Conserv. 253, 108871 (2021).Article 

    Google Scholar 
    Cunningham, C. A., Thomas, C. D., Morecroft, M. D., Crick, H. Q. P. & Beale, C. M. The effectiveness of the protected area network of Great Britain. Biol. Conserv. 257, 109146 (2021).Article 

    Google Scholar 
    Duckworth, G. D. & Altwegg, R. Effectiveness of protected areas for bird conservation depends on guild. Divers. Distrib. 24, 1083–1091 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Rada, S. et al. Protected areas do not mitigate biodiversity declines: a case study on butterflies. Divers. Distrib. 25, 217–224 (2019).Article 

    Google Scholar 
    Terraube, J., Van Doninck, J., Helle, P., & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Lenoir, J. et al. Species better track the shifting isotherms in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 
    PubMed 

    Google Scholar 
    van Teeffelen, A., Meller, L., van Minnen, J., Vermaat, J. & Cabeza, M. How climate proof is the European Union’s biodiversity policy? Regional Environ. Change 15, 997–1010 (2015).Article 

    Google Scholar 
    Thomas, C. D. & Gillingham, P. K. The performance of protected areas for biodiversity under climate change. Biol. J. Linn. Soc. Lond. 115, 718–730 (2015).Article 

    Google Scholar 
    Gillingham, P. K. et al. The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biol. J. Linn. Soc. Lond. 115, 707–717 (2015).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Stokstad, E. Species? Climate? Cost? Ambitious goal means trade-offs. Science 371, 555 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brlík, V. et al. Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Sci. Data 8, 21 (2021).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Stanbury, A. et al. The status of bird populations: the fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723–747 (2021).
    Google Scholar 
    Dudley, N. (ed). Guidelines for Applying Protected Area Management Categories (IUCN, 2008).Deguignet, M. et al. Measuring the extent of overlaps in protected area designations. PLoS ONE 12, e0188681 (2017).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    JNCC. Common Standards Monitoring: Introduction to the Guidance Manual (JNCC Resource Hub, 2004).Hayhow, D. B. et al. State of Nature 2019 (RSPB, 2019).Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020); https://helda.helsinki.fi/handle/10138/326470Franks, S. E., Roodbergen, M., Teunissen, W., Carrington Cotton, A. & Pearce‐Higgins, J. W. Evaluating the effectiveness of conservation measures for European grassland‐breeding waders. Ecol. Evol. 8, 10555–10568 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Pearce-Higgins, J. W. et al. Site-based adaptation reduces the negative effects of weather upon a southern range margin Welsh black grouse Tetrao tetrix population that is vulnerable to climate change. Clim. Change 153, 253–265 (2019).Article 

    Google Scholar 
    Jellesmark, S. et al. A counterfactual approach to measure the impact of wet grassland conservation on U.K. breeding bird populations. Conserv. Biol. 35, 1575–1585 (2021).Article 
    PubMed 

    Google Scholar 
    Morrison, C. A. et al. Covariation in population trends and demography reveals targets for conservation action. Proc. Biol. Sci. 288, 20202955 (2021).PubMed Central 
    PubMed 

    Google Scholar 
    Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Martay, B. et al. Monitoring landscape-scale environmental changes with citizen scientists: Twenty years of land use change in Great Britain. J. Nat. Conserv. 44, 33–42 (2018).Article 

    Google Scholar 
    Sullivan, M. J. P., Newson, S. E. & Pearce‐Higgins, J. W. Changing densities of generalist species underlie apparent homogenization of UK bird communities. Ibis 158, 645–655 (2016).Article 

    Google Scholar 
    Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).Article 
    PubMed 

    Google Scholar 
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).Article 

    Google Scholar 
    Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change—evidence from large‐scale, long‐term abundance data. Glob. Change Biol. 25, 304–313 (2019).Article 

    Google Scholar 
    Gaüzère, P., Jiguet, F. & Devictor, V. Can protected areas mitigate the impacts of climate change on bird’s species and communities? Diversity Distrib. 22, 625–637 (2016).Article 

    Google Scholar 
    Neate‐Clegg, M. H. C., Jones, S. E. I., Burdekin, O., Jocque, M. & Şekercioğlu, Ç. H. Elevational changes in the avian community of a Mesoamerican cloud forest park. Biotropica 50, 805–815 (2018).Article 

    Google Scholar 
    Oliver, T. H. et al. Large extents of intensive land use limit community reorganization during climate warming. Glob. Change Biol. 23, 2272–2283 (2017).Article 

    Google Scholar 
    Hiley, J. R., Bradbury, R. B., Holling, M. & Thomas, C. D. Protected areas act as establishment centres for species colonizing the UK. Proc. Biol. Sci. 280, 20122310 (2013).PubMed Central 
    PubMed 

    Google Scholar 
    Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Grace, M. K. et al. Testing a global standard for quantifying species recovery and assessing conservation impact. Conserv. Biol. 35, 1833–1849 (2021).Article 
    PubMed 

    Google Scholar 
    Gibbons, D. W., Reid, J. B. & Chapman, R. A. The New Atlas of Breeding Birds in Britain & Ireland 1988–1991 (T. & A. D. Poyser, 1993).Balmer, D. E. et al. Bird Atlas 2007–11: the Breeding and Wintering Birds of Britain and Ireland (BTO, 2013).Gillings, S. et al. Breeding and wintering bird distributions in Britain and Ireland from citizen science bird atlases. Glob. Ecol. Biogeogr. 28, 866–874 (2019).Article 

    Google Scholar 
    Freeman, S. N., Noble, D. G., Newson, S. E. & Baillie, S. R. Modelling population changes using data from different surveys: the Common Birds Census and the Breeding Bird Survey. Bird Study 54, 61–72 (2007).Article 

    Google Scholar 
    Robinson, R. A., Julliard, R. & Saracco, J. F. Constant effort: studying avian population processes using standardised ringing. Ring. Migr. 24, 199–204 (2009).Article 

    Google Scholar 
    Cave, V. M., Freeman, S. N., Brooks, S. P., King, R. & Balmer, D. E. in Modeling Demographic Processes in Marked Populations, 949–963 (Springer, 2009).Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, GB) (eds Thomson, D. L. et al) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/7115bc48-3ab0-475d-84ae-fd3126c20984Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, N. Ireland) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/362feaea-0ccf-4a45-b11f-980c6b89a858ASTER Global Digital Elevation Model V003 (dataset). NASA EOSDIS Land Processes DAAC (NASA/METI/AIST/Japan Space Systems and U.S./Japan ASTER Science Team, 2019); https://doi.org/10.5067/ASTER/ASTGTM.003Schiavina, M., Freire, S. & MacManus, K. GHS-SMOD R2019A – GHS Settlement Layers, Updated and Refined REGIO Model 2014 in Application to GHS-BUILT R2018A and GHS-POP R2019A, Multitemporal (1975-1990-2000-2015) (European Commission Joint Research Centre, 2019); https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218Robinson, R. A. BirdFacts: Profiles of Birds Occurring in Britain & Ireland (BTO, 2005).Gibbons, D. W. et al. Bird species of conservation concern in the United Kingdom, Channel Islands and Isle of Man: revising the Red Data List. RSPB Conserv. Rev. 10, 7–18 (1996).
    Google Scholar 
    Stone, B. H. et al. Population estimates of birds in Britain and in the United Kingdom. Br. Birds 90, 1–22 (1997).
    Google Scholar 
    Woodward, I. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69–104 (2020).
    Google Scholar 
    R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Bull, J. W., Strange, N., Smith, R. J. & Gordon, A. Reconciling multiple counterfactuals when evaluating biodiversity conservation impact in social‐ecological systems. Conserv. Biol. 35, 510–521 (2020).Article 
    PubMed 

    Google Scholar 
    Jellesmark, S. et al. Assessing the global impact of targeted conservation actions on species abundance. Preprint at bioRxiv https://doi.org/10.1101/2022.01.14.476374 (2022).Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds but management helps. Nature 605, 103–107 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.4.4 (2021); https://CRAN.R-project.org/package=DHARMaJetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnston, A. et al. Species traits explain variation in detectability of UK birds. Bird Study 61, 340–350 (2014).Article 

    Google Scholar 
    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).Article 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Anal. 15, 199–236 (2007).Article 

    Google Scholar 
    Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).Article 
    PubMed 

    Google Scholar 
    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. Biol. Sci. 275, 2743–2748 (2008).PubMed Central 
    PubMed 

    Google Scholar  More

  • in

    Sap flow of sweet cherry reveals distinct effects of humidity and wind under rain covered and netted protected cropping systems

    Jensen, M. H. & Malter, A. J. Protected Agriculture—A Global Review. World Bank Technical Paper Number 253 (World Bank, 1995).
    Google Scholar 
    Meli, T., Riesen, W. & Widmer, A. Protection of sweet cherry hedgerows with polyethylene films. Acta Hortic. 155, 463–467 (1984).Article 

    Google Scholar 
    Janick, J. (ed.) Horticultural Reviews Vol. 30, 115–162 (Wiley, 2004).
    Google Scholar 
    Janke, R. R., Altamimi, M. E. & Khan, M. The use of high tunnels to produce fruit and vegetable crops in North America. Agric. Sci. 08, 692–715. https://doi.org/10.4236/as.2017.87052 (2017).Article 

    Google Scholar 
    Alarcon, J. J. et al. Sap flow as an indicator of transpiration and the water status of young apricot trees. Plant Soil 227, 77–85. https://doi.org/10.1023/A:1026520111166 (2000).Article 
    CAS 

    Google Scholar 
    Ferrara, G. & Flore, J. Comparison between different methods for measuring tranpiration in potted apple trees. Biol. Plant. 46, 41–47 (2003).Article 

    Google Scholar 
    Nicolás, E., Torrecillas, A., Amico, J. D. & Alarcón, J. J. Sap flow, gas exchange, and hydraulic conductance of young apricot trees growing under a shading net and different water supplies. J. Plant Physiol. 162, 439–447. https://doi.org/10.1016/j.jplph.2004.05.014 (2005).Article 
    CAS 

    Google Scholar 
    Green, S. & Romero, R. Can we improve heat-pulse to measure low and reverse flows. Acta Hortic. 951, 19–30 (2012).Article 

    Google Scholar 
    Noitsakis, B. & Nastis, A. S. Seasonal changes of water potential, stomatal conductance and transpiration in the leaf of cherry trees grown in shelter. CIHEAM 12, 267–270 (1995).
    Google Scholar 
    Lang, G. A. High tunnel tree fruit production: The final frontier. HortTechnology 19, 50–55 (2009).Article 

    Google Scholar 
    Lang, G. A. Tree fruit production in high tunnels: Current status and case study of sweet cherries. Acta Hortic. 987, 73–82 (2013).Article 

    Google Scholar 
    Meland, M., Frøynes, O. & Kaiser, C. High tunnel production systems improve yields and fruit size of sweet cherry. Acta Hortic. 1161, 117–124. https://doi.org/10.17660/ActaHortic.2017.1161.20 (2017).Article 

    Google Scholar 
    Cohen, S., Moreshet, S., Guillou, L. L., Simon, J.-C. & Cohen, M. Response of citrus trees to modified radiation regime in semi-arid conditions. J. Exp. Bot. 48, 35–44. https://doi.org/10.1093/jxb/48.1.35 (1997).Article 
    CAS 

    Google Scholar 
    Zeppel, M., Murray, B. R., Barton, C. & Eamus, D. Seasonal responses of xylem sap velocity to VPD and solar radiation during drought in a stand of native trees in temperate Australia. Funct. Plant Biol. 31, 461–470 (2004).Article 

    Google Scholar 
    Bonada, M., Buesa, I., Moran, M. A. & Sadras, V. O. Interactive effects of warming and water deficit on Shiraz vine transpiration in the Barossa Valley, Australia. OENO One 52, 189–202. https://doi.org/10.20870/oeno-one.2018.52.2.2141 (2018).Article 
    CAS 

    Google Scholar 
    Wang, K. Y., Kellomaki, S., Zha, T. & Peltola, H. Annual and seasonal variation of sap flow and conductance of pine trees grown in elevated carbon dioxide and temperature. J. Exp. Bot. 56, 155–165. https://doi.org/10.1093/jxb/eri013 (2005).Article 
    CAS 

    Google Scholar 
    Laplace, S., Chu, C. & Kume, S. Wind speed response of sap flow in five subtropical trees based on wind tunnel experiments. Br. J. Environ. Clim. Change 3, 160–171. https://doi.org/10.9734/BJECC/2013/3842 (2013).Article 

    Google Scholar 
    Kellomäki, S. & Wang, K. Y. Sap flow in Scots pine growing under conditions of year-round carbon dioxide enrichment and temperature elevation. Plant, Cell Environ. 21, 969–981. https://doi.org/10.1046/j.1365-3040.1998.00352.x (2002).Article 

    Google Scholar 
    Urban, J., Ingwers, M., McGuire, M. A. & Teskey, R. O. Stomatal conductance increases with rising temperature. Plant Signal. Behav. 12, 3–6. https://doi.org/10.1080/15592324.2017.1356534 (2017).Article 
    CAS 

    Google Scholar 
    Wu, J. et al. Nocturnal sap flow is mainly caused by stem refilling rather than nocturnal transpiration for Acer truncatum in urban environment. Urban For. Urban Green. 56, 126800. https://doi.org/10.1016/j.ufug.2020.126800 (2020).Article 

    Google Scholar 
    Chen, Y.-J. et al. Time lags between crown and basal sap flows in tropical lianas and co-occurring trees. Tree Physiol. 36, 736–747. https://doi.org/10.1093/treephys/tpv103 (2015).Article 

    Google Scholar 
    Marshall, D. C. Measurment of sap flow in conifers by heat transport. Plant Physiol. 33, 385–396 (1958).Article 
    CAS 

    Google Scholar 
    Swanson, R. H. & Whitfield, W. A. A numerical analysis of heat pulse velocity theory and practice. J. Exp. Bot. 32, 221–239 (1981).Article 

    Google Scholar 
    Green, S., Clothier, B. & Jardine, B. Theory and practical application of heat pulse to measure sap flow. Am. Soc. Agron. 95, 1371–1379 (2003).Article 

    Google Scholar 
    Goodwin, I., Cornwall, D. & Green, S. R. Pear transpiration and basal crop coefficients estimated by sap flow. Acta Hortic. 951, 183–190. https://doi.org/10.17660/ActaHortic.2012.951.22 (2012).Article 

    Google Scholar 
    Fernandez, J. E. et al. Heat-pulse measurements of sap flow in olives for automating irrigation, tests, root flow and diagnostics of water stress. Agric. Water Manag. 51, 99–123 (2001).Article 

    Google Scholar 
    Green, S. R. & Clothier, B. Water use of kiwifruit vines and apple trees by the heat-pulse technique. J. Exp. Bot. 39, 115–123 (1988).Article 

    Google Scholar 
    Green, S. R. et al. Measurement of sap flow in young apple trees using the average gradient heat-pulse method. Acta Hortic. 1222, 173–178. https://doi.org/10.17660/ActaHortic.2018.1222.35 (2018).Article 

    Google Scholar 
    Green, S., Clothier, B. & Perie, E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 846, 95–104 (2009).Article 

    Google Scholar 
    Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage Paper 56 300 (FAO, 1998).
    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2010).Hastie, T. & Tibshirani, R. Generalized Additive Models (Chapman and Hall/CRC, 1990).MATH 

    Google Scholar 
    Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723. https://doi.org/10.1109/TAC.1974.1100705 (1974).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Sams, C. E. & Flore, J. A. The influence of leaf age, leaf position on the shoot, and environmental variables on net photosynthetic rate of sour cherry (Prunus cerasus L. ’Montmorency’). J. Am. Soc. Hortic. Sci. 107, 339–344 (1982).Article 

    Google Scholar 
    Wallberg, B. N. & Sagredo, K. X. Vegetative and reproductive development of “Lapins” sweet cherry trees under rain protective cropping. Int. Soc. Hortic. Sci. 1058, 411–417 (2014).
    Google Scholar 
    Lang, G. A. Growing sweet cherries under plastic covers and tunnels: Physiological aspects and practical considerations. Acta Hortic. 1020, 303–312. https://doi.org/10.17660/ActaHortic.2014.1020.43 (2014).Article 

    Google Scholar 
    Goodwin, I., McClymont, L., Turpin, S. & Darbyshire, R. Effectiveness of netting in decreasing fruit surface temperature and sunburn damage of red-blushed pear. N. Z. J. Crop. Hortic. Sci. 46, 334–345. https://doi.org/10.1080/01140671.2018.1432492 (2018).Article 
    CAS 

    Google Scholar 
    Mika, A., Buler, Z., Wójcik, K. & Konopacka, D. Influence of the plastic cover on the protection of sweet cherry fruit against cracking, on the microclimate under cover and fruit quality. J. Hortic. Res. 27, 31–38. https://doi.org/10.2478/johr-2019-0018 (2019).Article 
    CAS 

    Google Scholar 
    Blanco, V., Zoffoli, J. P. & Ayala, M. High tunnel cultivation of sweet cherry (Prunus avium L.): Physiological and production variables. Sci. Hortic. 251, 108–117. https://doi.org/10.1016/j.scienta.2019.02.023 (2019).Article 

    Google Scholar 
    Sams, C. E. & Flore, J. A. Net photosynthetic rate of sour cherry (Prunus cerasus L. ‘Montmorency’) during the growing season with particular reference to fruiting. Photosynth. Res. 4, 307–316. https://doi.org/10.1007/BF00054139 (1983).Article 

    Google Scholar 
    Lange, O. L., Schulze, E. D., Evenari, M., Kappen, L. & Buschbom, U. The temperature-related photosynthesis capacity of plants under desert conditions. Oecologia 17, 97–110. https://doi.org/10.1007/BF00346273 (1974).Article 
    CAS 

    Google Scholar 
    Beckman, T. G., Perry, R. L. & Flore, J. A. Short-term flooding affects gas exchange characteristics of containerized sour cherry trees. HortScience 27, 1297. https://doi.org/10.21273/hortsci.27.12.1297 (1992).Article 

    Google Scholar 
    Lei, H., Zhi-Shan, Z. & Xin-Rong, L. Sap flow of Artemisia ordosica and the influence of environmental factors in a revegetated desert area: Tengger Desert, China. Hydrol. Processes 24, 1248–1253. https://doi.org/10.1002/hyp.7584 (2010).Article 

    Google Scholar 
    Juhász, A., Hrotko, K. & Tokei, L. Air and Water Components of the Environment, 76–82.Ravi, S. & D’Odorico, P. A field-scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophys. Res. Lett. 32, 023675. https://doi.org/10.1029/2005gl023675 (2005).Article 

    Google Scholar 
    Holmes, M. & Farrell, D. South African Avocado Growers Association Yearbook Vol. 16, 59–64 (1993).Jones, H. G. Plants and Microclimate: A quantitative Approach to Environmental Plant Physiology 3rd edn. (Cambridge University Press, 2014).
    Google Scholar 
    Juhász, Á., Sepsi, P., Nagy, Z., Tőkei, L. & Hrotkó, K. Water consumption of sweet cherry trees estimated by sap flow measurement. Sci. Hortic. 164, 41–49. https://doi.org/10.1016/j.scienta.2013.08.022 (2013).Article 

    Google Scholar 
    Gussakovsky, E. E., Salomon, E., Ratner, K., Shahak, Y. & Driesenaar, A. R. J. Photoinhibition (light stress) in citrus leaves. Acta Hortic. 349, 139–143 (1993).Article 

    Google Scholar 
    Grappadelli, L. C. & Lakso, A. N. Is maximizing orchard light interception always the best choice? Acta Hortic. 732, 507–518. https://doi.org/10.17660/ActaHortic.2007.732.77 (2007).Article 

    Google Scholar  More

  • in

    Carbon turnover gets wet

    Whether land acts as a carbon sink or source depends largely on two opposite fluxes: carbon uptake through photosynthesis and carbon release through turnover. Turnover occurs through multiple processes, including but not limited to, leaf senescence, tree mortality, and respiration by plants, microbes, and animals. Each of these processes is sensitive to climate, and ecologists and climatologists have been working to figure out how temperature regulates biological activities and to what extent the carbon cycle responds to global warming. Previous theoretical and experimental studies have yielded conflicting relationships between temperature and carbon turnover, with large variations across ecosystems, climate and time-scale1,2,3,4. Writing in Nature Geoscience, Fan et al.5 find that hydrometeorological factors have an important influence on how the turnover time of land carbon responds to changes in temperature. More

  • in

    A trait-based conceptual framework to examine urban biodiversity, socio-ecological filters, and ecosystem services linkages

    United Nations. World Urbanization Prospects: The 2018 revision. (Department of Economic and Social Affairs, Population Division, United Nations, 2018).Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).Article 

    Google Scholar 
    McPhearson, T. et al. Advancing urban ecology toward a science of cities. Bioscience 66, 198–212 (2016).Article 

    Google Scholar 
    Dodman, D. et al. Cities, settlements and key infrastructure. In Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pörtner, H.-O. et al.) 997–1040 (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022).Díaz, S. et al. Assessing nature’s contributions to people: Recognizing culture, and diverse sources of knowledge, can improve assessments. Science 359, 270–272 (2018).Article 

    Google Scholar 
    Grabowski, Z. J., McPhearson, T., Matsler, A. M., Groffman, P. & Pickett, S. T. A. What is green infrastructure? A study of definitions in US city planning. Front. Ecol. Environ. 20, 152–160 (2022).Article 

    Google Scholar 
    Childers, D. L. et al. Urban ecological infrastructure: An inclusive concept for the non-built urban environment. Elementa 7, 1–14 (2019).
    Google Scholar 
    Gómez-Baggethun, E. et al. Urban ecosystem services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities (eds. Elmqvist, T. et al.) 175–251 (Springer, Netherlands, 2013).Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Burkhard, B. & Maes, J. Mapping Ecosystem Services (Pensoft Publishers, Sofia, 2017).Eviner, V. T. & Chapin, F. S. Functional Matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes. Annu. Rev. Ecol. Evol. Syst. 34, 455–485 (2003).Article 

    Google Scholar 
    Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T. D. A. Plant functional classifications: From general groups to specific groups based on response to disturbance. Trends Ecol. Evol. 12, 474–478 (1997).Article 

    Google Scholar 
    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article 

    Google Scholar 
    Suding, K. N. et al. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Glob. Chang. Biol. 14, 1125–1140 (2008).Article 

    Google Scholar 
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).Article 

    Google Scholar 
    Hevia, V. et al. Trait-based approaches to analyze links between the drivers of change and ecosystem services: Synthesizing existing evidence and future challenges. Ecol. Evol. 7, 831–844 (2017).Article 

    Google Scholar 
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).Article 

    Google Scholar 
    Lavorel, S. Plant functional effects on ecosystem services. J. Ecol. 101, 4–8 (2013).Article 

    Google Scholar 
    Andersson, E. et al. What are the traits of a social-ecological system: Towards a framework in support of urban sustainability. npj Urban Sustain. 1, 14 (2021).Article 

    Google Scholar 
    Pickett, S. T. A. et al. Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 32, 127–157 (2001).Article 

    Google Scholar 
    McPhearson, T., Haase, D., Kabisch, N. & Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 70, 566–573 (2016).Article 

    Google Scholar 
    Zhou, W., Pickett, S. T. A. & McPhearson, T. Conceptual frameworks facilitate integration for transdisciplinary urban science. npj Urban Sustain. 1, 1 (2021).Article 

    Google Scholar 
    Andersson, E. et al. Scale and context dependence of ecosystem service providing units. Ecosyst. Serv. 12, 157–164 (2015).Article 

    Google Scholar 
    Pinho, P. et al. Research agenda on biodiversity and ecosystem functions and services in European cities. Basic Appl. Ecol. 53, 124–133 (2021).Article 

    Google Scholar 
    Bullock, J. M. et al. Human-mediated dispersal and the rewiring of spatial networks. Trends Ecol. Evol. 33, 958–970 (2018).Article 

    Google Scholar 
    Avolio, M. L., Swan, C., Pataki, D. E. & Jenerette, G. D. Incorporating human behaviors into theories of urban community assembly and species coexistence. Oikos 130, 1849–1864 (2021).Article 

    Google Scholar 
    Aronson, M. F. J. et al. Hierarchical filters determine community assembly of urban species pools. Ecology 97, 2952–2963 (2016).Article 

    Google Scholar 
    Woodward, F. I. & Diament, A. D. Functional approaches to predicting the ecological effects of global change. Funct. Ecol. 5, 212 (1991).Article 

    Google Scholar 
    Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).Article 

    Google Scholar 
    Boet, O., Arnan, X. & Retana, J. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLoS ONE 15, e0228625 (2020).Article 

    Google Scholar 
    Grimm, N. B., Grove, J. M., Pickett, S. T. A. & Redman, C. L. Integrated approaches to long-term studies of urban ecological systems. Bioscience 50, 571–584 (2000).Article 

    Google Scholar 
    Vandewalle, M. et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 19, 2921–2947 (2010).Article 

    Google Scholar 
    Williams, N. S. G. et al. A conceptual framework for predicting the effects of urban environments on floras. J. Ecol. 97, 4–9 (2009).Article 

    Google Scholar 
    Cavender-Bares, J. et al. Horticultural availability and homeowner preferences drive plant diversity and composition in urban yards. Ecol. Appl. 30, 1–16 (2020).Article 

    Google Scholar 
    Pearse, W. D. et al. Homogenization of plant diversity, composition, and structure in North American urban yards. Ecosphere 9, e02105 (2018).Article 

    Google Scholar 
    Cubino, J. P. et al. Drivers of plant species richness and phylogenetic composition in urban yards at the continental scale. Landsc. Ecol. 34, 63–77 (2019).Article 

    Google Scholar 
    Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1982).
    Google Scholar 
    Sukopp, H. Human-caused impact on preserved vegetation. Landsc. Urban Plan. 68, 347–355 (2004).Article 

    Google Scholar 
    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. USA 104, 20684–20689 (2007).Article 

    Google Scholar 
    Williams, N. S. G., Hahs, A. K. & Vesk, P. A. Urbanisation, plant traits and the composition of urban floras. Perspect. Plant Ecol. Evol. Syst. 17, 78–86 (2015).Article 

    Google Scholar 
    Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).Article 

    Google Scholar 
    Jochner, S. & Menzel, A. Urban phenological studies—past, present, future. Environ. Pollut. 203, 250–261 (2015).Article 

    Google Scholar 
    Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).Article 

    Google Scholar 
    de Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).Article 

    Google Scholar 
    Santangelo, J. S. et al. Global urban environmental change drives adaptation in white clover. Science 375, 1275–1281 (2022).Article 

    Google Scholar 
    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).Article 

    Google Scholar 
    Martin, C. A., Warren, P. S. & Kinzig, A. P. Neighborhood socioeconomic status is a useful predictor of perennial landscape vegetation in residential neighborhoods and embedded small parks of Phoenix, AZ. Landsc. Urban Plan. 69, 355–368 (2004).Article 

    Google Scholar 
    Kinzig, A. P., Warren, P., Martin, C., Hope, D. & Katti, M. The effects of human socioeconomic status and cultural characteristics on urban patterns of biodiversity. Ecol. Soc. 10, 23 (2005).Article 

    Google Scholar 
    Stephenson, J. The cultural values model: An integrated approach to values in landscapes. Landsc. Urban Plan. 84, 127–139 (2008).Article 

    Google Scholar 
    Andersson, E., Barthel, S. & Ahrné, K. Measuring social–ecological dynamics behind the generation of ecosystem services. Ecol. Appl. 17, 1267–1278 (2007).Article 

    Google Scholar 
    Fraser, E. D. G. & Kenney, W. A. Cultural background and landscape history as factors affecting perceptions of the urban forest. J. Arboric. 26, 106–113 (2000).
    Google Scholar 
    Hope, D. et al. Socioeconomics drive urban plant diversity. Proc. Natl. Acad. Sci. USA 100, 8788–8792 (2003).Article 

    Google Scholar 
    Avolio, M. L. et al. Understanding preferences for tree attributes: The relative effects of socio-economic and local environmental factors. Urban Ecosyst. 18, 73–86 (2015).Article 

    Google Scholar 
    Körmöndi, B., Tempfli, J., Kocsis, J. B., Adams, J. & Szkordilisz, F. E. The secret ingredient—The role of governance in green infrastructure development: Through the examples of European cities. IOP Conf. Ser. Earth Environ. Sci. 323, (2019).Conway, T. M. & Vander Vecht, J. Growing a diverse urban forest: species selection decisions by practitioners planting and supplying trees. Landsc. Urban Plan. 138, 1–10 (2015).Article 

    Google Scholar 
    Lack, W. H. The Book of Palms (Taschen-Bibliotheca Universalis, 2015).Grilo, F. et al. Using green to cool the grey: Modelling the cooling effect of green spaces with a high spatial resolution. Sci. Total Environ. 724, 138182 (2020).Article 

    Google Scholar 
    Prasifka, J. R. et al. Using nectar-related traits to enhance crop–pollinator interactions. Front. Plant Sci. 9, 1–8 (2018).Article 

    Google Scholar 
    Veerkamp, C. J. et al. A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosyst. Serv. 52, 101367 (2021).Article 

    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 576 (2020).Article 

    Google Scholar 
    Farmer, J. Trees in Paradise: A California History (WW Norton & Company, 2013).Goodness, J., Andersson, E., Anderson, P. M. L. & Elmqvist, T. Exploring the links between functional traits and cultural ecosystem services to enhance urban ecosystem management. Ecol. Indic. 70, 597–605 (2016).Article 

    Google Scholar 
    Masterson, V. A. et al. The contribution of sense of place to social-ecological systems research: A review and research agenda. Ecol. Soc. 22, 49 (2017).Article 

    Google Scholar 
    Masterson, V. A., Enqvist, J. P., Stedman, R. C. & Tengö, M. Sense of place in social-ecological systems: From theory to empirics. Sustain. Sci. 14, 555–564 (2019).Article 

    Google Scholar 
    Mukherjee, A. & Agrawal, M. Use of GLM approach to assess the responses of tropical trees to urban air pollution in relation to leaf functional traits and tree characteristics. Ecotoxicol. Environ. Saf. 152, 42–54 (2018).Article 

    Google Scholar 
    Singh, S. K., Rao, D. N., Agrawal, M., Pandey, J. & Naryan, D. Air pollution tolerance index of plants. J. Environ. Manage. 32, 45–55 (1991).Article 

    Google Scholar 
    Mukherjee, A. & Agrawal, M. Pollution response score of tree species in relation to ambient air quality in an urban area. Bull. Environ. Contam. Toxicol. 96, 197–202 (2016).Article 

    Google Scholar 
    Barwise, Y. & Kumar, P. Designing vegetation barriers for urban air pollution abatement: A practical review for appropriate plant species selection. npj Clim. Atmos. Sci. 3, 12 (2020).Article 

    Google Scholar 
    Grote, R. et al. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 14, 543–550 (2016).Article 

    Google Scholar 
    Tomson, M. et al. Green infrastructure for air quality improvement in street canyons. Environ. Int. 146, 106288 (2021).Article 

    Google Scholar  More