More stories

  • in

    The evolutionary process of invasion in the fall armyworm (Spodoptera frugiperda)

    Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398–1407 (2014).Article 

    Google Scholar 
    Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).Article 

    Google Scholar 
    McNeely, J. A. As the world gets smaller, the chances of invasion grow. Euphytica 148, 5–15 (2006).Article 

    Google Scholar 
    Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl. Acad. Sci. USA 115, E2264–E2273 (2018).Article 

    Google Scholar 
    Roques, A. et al. Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol. Invasions 18, 907–920 (2016).Article 

    Google Scholar 
    de Poorter, M. & Browne, M. The Global Invasive Species Database (GISD) and international information exchange: Using global expertise to help in the fight against invasive alien species. Plant Prot. Plant Health Eur. 9–11, 49–54 (2005).
    Google Scholar 
    Tay, W. T. & Gordon, K. H. J. Going global: Genomic insights into insect invasions. Curr. Opin. Insect Sci. 31, 123–130 (2019).Article 

    Google Scholar 
    Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 113, 7575–7579 (2016).Article 

    Google Scholar 
    Prentis, P. J., Wilson, J. R. U., Dormontt, E. E., Richardson, D. M. & Lowe, A. J. Adaptive evolution in invasive species. Trends Plant Sci. 13, 288–294 (2008).Article 

    Google Scholar 
    Bertelsmeier, C. Globalization and the anthropogenic spread of invasive social insects. Curr. Opin. Insect Sci. 46, 16–23 (2021).Article 

    Google Scholar 
    Crawley, M. J. et al. The population biology of invaders. Philos. Trans. R. Soc. Lond. B 314, 711–731 (1986).Article 

    Google Scholar 
    Petren, K. & Case, T. J. An experimental demonstration of exploitation competition in an ongoing invasion. Ecology 77, 118–132 (1996).Article 

    Google Scholar 
    Kowarik, I. Time lags in biological invasions with regard to the success and failure of alien species. Plant Invasions Gen. Asp. Spec. Probl. 1, 15–38 (1995).
    Google Scholar 
    Andrews, K. L. The whorlworm, Spodoptera frugiperda. Cent. Am. Neighb. Areas Fla. Entomol. 63, 456–467 (1980).Article 

    Google Scholar 
    Sparks, A. N. A review of the biology of the fall armyworm. Fla. Entomol. 1, 82–87 (1979).Article 

    Google Scholar 
    Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267 (2016).Article 

    Google Scholar 
    Gutiérrez-Moreno, R. et al. Field-evolved resistance of the Fall Armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J. Econ. Entomol. 112, 792–802 (2019).Article 

    Google Scholar 
    Blanco, C. A. et al. Susceptibility of isofamilies of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1Ac and Cry1Fa proteins of Bacillus thuringiensis. Southw. Entomol. 35, 409–416 (2010).Article 

    Google Scholar 
    Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038 (2010).Article 

    Google Scholar 
    Chandrasena, D. I. et al. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperda populations from Argentina. Pest Manag. Sci. 74, 746–754 (2018).Article 

    Google Scholar 
    Pashley, D. P. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): A sibling species complex?. Ann. Entomol. Soc. Am. 79, 898–904 (1986).Article 

    Google Scholar 
    Pashley, D. P. & Martin, J. A. Reproductive incompatibility between host strains of the Fall Armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 80, 731–733 (1987).Article 

    Google Scholar 
    Dumas, P. et al. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: Two host strains or two distinct species?. Genetica 143, 305–316 (2015).Article 

    Google Scholar 
    Lu, Y. J., Kochert, G. D., Isenhour, D. J. & Adang, M. J. Molecular characterization of a strain-specific repeated DNA sequence in the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Insect Mol. Biol. 3, 123–130 (1994).Article 

    Google Scholar 
    Pashley, D. P. Host-associated differentiation in armyworms (Lepidoptera: Noctuidae): An allozymic and mtDNA perspective. in Electrophoretic Studies on Agricultural Pests, vol. 39, 103–114 (Clarendon Press, 1989).Nagoshi, R. N. The fall armyworm Triosephosphate Isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103, 283–292 (2010).Article 

    Google Scholar 
    Dumas, P. et al. Phylogenetic molecular species delimitations unravel potential new species in the pest genus Spodoptera Guenée, 1852 (Lepidoptera, Noctuidae). PLoS ONE 10, e0122407 (2015).Article 

    Google Scholar 
    Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamò, M. First report of outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11, e0165632 (2016).Article 

    Google Scholar 
    Day, R. et al. Fall armyworm: impacts and implications for Africa. Outlooks Pest Manag. 28, 196–201 (2017).Article 

    Google Scholar 
    Nuss, E. T. & Tanumihardjo, S. A. Maize: A paramount staple crop in the context of global nutrition. Compr. Rev. Food Sci. Food Saf. 9, 417–436 (2010).Article 

    Google Scholar 
    Zhang, L. et al. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol. Ecol. Resour. 20, 1682–1696 (2020).Article 

    Google Scholar 
    Zhang, D. et al. Insecticide resistance monitoring for the invasive populations of fall armyworm, Spodoptera frugiperda in China. J. Integr. Agric. 20, 783–791 (2021).Article 

    Google Scholar 
    Gui, F. et al. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein Cell 1, 1–19 (2020).
    Google Scholar 
    Schlum, K. A. et al. Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genomics 22, 179 (2021).Article 

    Google Scholar 
    Stokstad, E. New crop pest takes Africa at lightning speed. Science 356, 473–474 (2017).Article 

    Google Scholar 
    Nagoshi, R. N. et al. The fall armyworm strain associated with most rice, millet, and pasture infestations in the Western Hemisphere is rare or absent in Ghana and Togo. PLoS ONE 16, e0253528 (2021).Article 

    Google Scholar 
    Caniço, A., Mexia, A. & Santos, L. Farmers’ knowledge, perception and management practices of fall armyworm (Spodoptera frugiperda Smith) in Manica province, Mozambique. NeoBiota 68, 127 (2021).Article 

    Google Scholar 
    Nagoshi, R. N. et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 12, e0181982 (2017).Article 

    Google Scholar 
    Nagoshi, R. N., Goergen, G., Plessis, H. D., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9, 8311 (2019).Article 

    Google Scholar 
    Create your own Custom Map. MapChart https://mapchart.net/index.html.Sharanabasappa, S. et al. First report of the Fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag. Hortic. Ecosyst. 24, 23–29 (2018).
    Google Scholar 
    Liu, H. et al. Chromosome level draft genomes of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), an alien invasive pest in China. BioRxiv https://doi.org/10.1101/671560 (2019).Article 

    Google Scholar 
    Gimenez, S. et al. Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Commun. Biol. 3, 664 (2020).Article 

    Google Scholar 
    Gouin, A. et al. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 7, 11816 (2017).Article 

    Google Scholar 
    Nam, K. et al. Positive selection alone is sufficient for whole genome differentiation at the early stage of speciation process in the fall armyworm. BMC Evol. Biol. 20, 152 (2020).Article 

    Google Scholar 
    Fiteni, E. et al. Host-plant adaptation as a driver of incipient speciation in the fall armyworm (Spodoptera frugiperda). BMC Ecol. Evol. 22, 133 (2022).Article 

    Google Scholar 
    Tay, W. T. et al. Global population genomic signature of Spodoptera frugiperda (fall armyworm) supports complex introduction events across the Old World. Commun. Biol. 5, 1–15 (2022).Article 

    Google Scholar 
    Guan, F. et al. Whole-genome sequencing to detect mutations associated with resistance to insecticides and Bt proteins in Spodoptera frugiperda. Insect Sci. https://doi.org/10.1111/1744-7917.12838 (2020).Article 

    Google Scholar 
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).Article 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).Article 

    Google Scholar 
    Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23, 3133–3157 (2014).Article 

    Google Scholar 
    Pavlidis, P., Živković, D., Stamatakis, A. & Alachiotis, N. SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Mol. Biol. Evol. 30, 2224–2234 (2013).Article 

    Google Scholar 
    Charlesworth, B., Morgan, M. T. & Charlesworth, D. The effect of deleterious mutations on neutral molecular variation. Genetics 134, 1289–1303 (1993).Article 

    Google Scholar 
    Aikio, S., Duncan, R. P. & Hulme, P. E. Lag-phases in alien plant invasions: separating the facts from the artefacts. Oikos 119, 370–378 (2010).Article 

    Google Scholar 
    Morimoto, N., Kiritani, K., Yamamura, K. & Yamanaka, T. Finding indications of lag time, saturation and trading inflow in the emergence record of exotic agricultural insect pests in Japan. Appl. Entomol. Zool. 54, 437–450 (2019).Article 

    Google Scholar 
    Aagaard, K. & Lockwood, J. Exotic birds show lags in population growth. Divers. Distrib. 20, 547–554 (2014).Article 

    Google Scholar 
    Azzurro, E., Maynou, F., Belmaker, J., Golani, D. & Crooks, J. A. Lag times in Lessepsian fish invasion. Biol. Invasions 18, 2761–2772 (2016).Article 

    Google Scholar 
    McDonnell, A. M. & Dang, C. H. Basic review of the cytochrome P450 system. J. Adv. Pract. Oncol. 4, 263–268 (2013).
    Google Scholar 
    Giraudo, M. et al. Cytochrome P450s from the fall armyworm (Spodoptera frugiperda): responses to plant allelochemicals and pesticides. Insect Mol. Biol. 24, 115–128 (2015).Article 

    Google Scholar 
    Cao, W. et al. Multi-faceted epigenetic dysregulation of gene expression promotes esophageal squamous cell carcinoma. Nat. Commun. 11, 3675 (2020).Article 

    Google Scholar 
    Yainna, S. et al. Geographic monitoring of insecticide resistance mutations in native and invasive populations of the Fall Armyworm. Insects 12, 468 (2021).Article 

    Google Scholar 
    Tapadia, M. G. & Lakhotia, S. C. Expression of mdr49 and mdr65 multidrug resistance genes in larval tissues of Drosophila melanogaster under normal and stress conditions. Cell Stress Chaperones 10, 7–11 (2005).Article 

    Google Scholar 
    Lin, H. et al. Characterization and expression profiling of serine protease inhibitors in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). BMC Genomics 18, 162 (2017).Article 

    Google Scholar 
    de Fouchier, A. et al. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nat. Commun. 8, 15709 (2017).Article 

    Google Scholar 
    Tataroglu, O. & Emery, P. The molecular ticks of the Drosophila circadian clock. Curr. Opin. Insect Sci. 7, 51–57 (2015).Article 

    Google Scholar 
    Hänniger, S. et al. Genetic basis of allochronic differentiation in the fall armyworm. BMC Evol. Biol. 17, 68 (2017).Article 

    Google Scholar 
    Schöfl, G., Heckel, D. G. & Groot, A. T. Time-shifted reproductive behaviours among fall armyworm (Noctuidae: Spodoptera frugiperda) host strains: Evidence for differing modes of inheritance. J. Evol. Biol. 22, 1447–1459 (2009).Article 

    Google Scholar 
    Haenniger, S. et al. Sexual communication of Spodoptera frugiperda from West Africa: Adaptation of an invasive species and implications for pest management. Sci. Rep. 10, 2892 (2020).Article 

    Google Scholar 
    Feder, J. L. et al. Genome-wide congealing and rapid transitions across the speciation continuum during speciation with gene flow. J. Hered. 105, 810–820 (2014).Article 

    Google Scholar 
    Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article 

    Google Scholar 
    McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).Article 

    Google Scholar 
    Lu, Y. & Adang, M. J. Distinguishing fall armyworm (Lepidoptera: Noctuidae) strains using a diagnostic mitochondrial DNA marker. Fla. Entomol. 1, 48–55 (1996).Article 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 

    Google Scholar 
    Meng, G., Li, Y., Yang, C. & Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 47, e63–e63 (2019).Article 

    Google Scholar 
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).Article 

    Google Scholar 
    Tamura, K. et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).Article 

    Google Scholar 
    Li, H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics 27, 718–719 (2011).Article 

    Google Scholar 
    Rentería, M. E., Cortes, A. & Medland, S. E. Using PLINK for genome-wide association studies (GWAS) and data analysis. Methods Mol. Biol. 1019, 193–213 (2013).Article 

    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 

    Google Scholar 
    Ernst, M. D. Permutation methods: a basis for exact inference. Stat. Sci. 4, 676–685 (2004).MathSciNet 
    MATH 

    Google Scholar 
    Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).Article 

    Google Scholar 
    Kergoat, G. J. et al. A novel reference dated phylogeny for the genus Spodoptera Guenée (Lepidoptera: Noctuidae: Noctuinae): New insights into the evolution of a pest-rich genus. Mol. Phylogenet. Evol. 161, 107161 (2021).Article 

    Google Scholar 
    Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798–2800 (2015).Article 

    Google Scholar 
    Plotree, D. & Plotgram, D. PHYLIP-phylogeny inference package (version 3.2). Cladistics 5, 163–166 (1989).
    Google Scholar 
    Nelson, D. R. The cytochrome p450 homepage. Hum. Genomics 4, 1–7 (2009).Article 

    Google Scholar  More

  • in

    The evolutionary origin of avian facial bristles and the likely role of rictal bristles in feeding ecology

    SamplesWe examined 1,022 avian species (~ 10% recorded species) in this study, representing 418 genera, from 91 families (37% recorded families) and 29 orders (73% of all orders). Specimens were from the skin collection of the World Museum Liverpool, Tring Natural History Museum, Manchester Museum and Wollaton Hall Museum, all situated in the United Kingdom. All work was carried out in accordance with ethical regulations at Manchester Metropolitan University and with the permission of all aforementioned museums. Only the best-preserved adult specimens (no signs of cut off feathers or holes in the skin near the beak) were chosen for this study to ensure accurate measurements of bristle length, shape and presence, which should not be affected by the process of skin removal and specimen conservation. Species were randomly chosen, without targeting our sampling towards species known a priori to have bristles. Where possible, two specimens per species were measured (occurring in 82% of all species examined). Specimens of each sex were measured when present; however, this was not always possible since labelling was often inaccurate or missing. In total, the sample included 508 males, 412 females and 374 individuals of unknown sex. Both sexes were examined in 274 species and there was no difference whatsoever between the presence of bristles on male or female species (n = 97 with bristles present and n = 180 with bristles absent for both males and females). Length (Mann–Whitney U test, W = 37,962, N = 552, P = 0.94) and shape (Chi-square test, χ2 = 0, N = 552, df = 3, P = 1) of rictal bristles also did not significantly differ between males and females. Therefore, rictal bristles are likely to be sexually monomorphic and data for males and females was pooled for further analyses. Overall, rictal bristles were absent in 64% of species examined (n = 656) and just over a third of species (n = 366) had bristles present.Bristle descriptionsFacial bristles were initially identified by sight and touch in each specimen. Bristles were recorded as either present or absent from the upper rictal, lorial, lower rictal, narial and interramal regions (Fig. 1a). We use the term ‘rictal bristle’ here for bristles on both the upper rictal and/or the lorial region, since there was no clear differentiation and morphological differences between the bristles found in these regions forming a continuum of bristles above the edge of the beak. When present, rictal bristle shape was recorded as: (i) unbranched rictal bristles, (ii) rictal bristles with barbs only at the base (“Base”) and (iii) branched rictal bristles (“Branched”), i.e. barbs and barbules present along the bristle rachis (Fig. 1b). The three longest rictal bristles were measured on both sides of the head of each specimen using digital callipers, and these lengths were averaged to provide a mean length of rictal bristles per species. In species lacking rictal bristles, a length of “0” and a shape category of “Absent” was recorded.Ancestral reconstruction of facial bristle presenceFollowing Felice et al.19, a single consensus phylogenetic tree was generated from the Hackett posterior distribution of trees from Birdtree.org20 with a sample size of 10,000 post burn-in, using the TreeAnnotator utility in BEAST software21 with a burn-in of 0. Maximum Clade Credibility (MCC) with the option “-heights ca” was selected as the method of reconstruction. The common ancestor trees option (-heights ca) builds a consensus tree by summarising clade ages across all posterior trees. Both the consensus tree and posterior distribution of 10,000 trees were imported into RStudio v. 1.2.5 for R22,23 and pruned so that only species present in the dataset of this study remained in the phylogeny. Taxon names were modified where necessary to match those from the Birdtree.org (http://birdtree.org) species record. Negative terminal branches in our consensus tree were slightly lengthened to be positive using ‘edge.length[tree$edge.length  More

  • in

    Increases in reef size, habitat and metacommunity complexity associated with Cambrian radiation oxygenation pulses

    The rise of animals (metazoans) is a seminal event in the history of life. The Cambrian Radiation ~540 Ma marks the appearance of abundant and diverse metazoans and increasing ecosystem complexity in the fossil record1. A causal relationship between the redox and fossil records is proposed, where oxygen provision reached a threshold, or series of thresholds, which allowed for the diversification of metazoans with increasing metabolic demands2. Global geochemical data, however, suggest that oxygenation was not a simple, linear process, but rather occurred episodically via a series of short-lived pulses (1–3 Myr), or ‘oceanic oxygenation events’ (OOEs)3,4. Early and even later Cambrian seas likely had shallower, and more dynamic, oxygen minimum zones (OMZs) than modern oceans5,6. Such pulses of increased oxygenation (and related changes in productivity) are hypothesised to have increased the extent of shallow-ocean oxygenation and hence to have promoted diversification7. But what remains unquantified is the community-wide response of metazoans to such redox cycles, an insight into the evolutionary processes involved, and hence whether these pulses were indeed a driving force for the Cambrian Radiation.In order to test the hypothesis that oxic pulses led to diversification and potentially ecological development, a correlation between increased oxygenation, rates of origination, and metrics of metazoan ecosystem complexity needs to be demonstrated. Early Cambrian marine environments were heterogeneous with respect to oxygen provision and nutrient load at a regional scale, so in order to investigate potential correlations, we require the integration of global and local redox proxies, and biotic records in the same stratigraphically well-constrained geological successions.During the early Cambrian, the Siberian Platform was a vast isolated, tropical continent almost entirely covered by an epicontinental sea (Fig. 1a)8,9. The platform supported a single metacommunity, i.e. a species pool with many local, interacting communities e.g.10, representing a third of total early Cambrian metazoan benthic diversity with widespread metazoan (archaeocyath sponge) reefs that formed bioherms (Fig. 1b)7,11. Dynamic and synchronous changes of body size in archaeocyath sponges, hyoliths, and helcionelloid molluscs through the early Cambrian on the Siberian Platform have been quantified, which coincide with elevated biodiversity and rates of origination: these have been proposed to follow OOEs12. Here we consider temporal changes in both the position of archaeocyath sponge reefs as a function of relative water depth, and in individual reef size (diameter), as well as the ecological complexity of the reef-building and dwelling communities by quantification of changing reef community membership of sessile archaeocyath sponge, coralomorph, and cribricyath species, on the Siberian Platform.Fig. 1: Palaeogeographic and stratigraphic position of the early Cambrian archaeocyath reefs of the Lena-Aldan area on the Siberian Platform.a Early Cambrian palaeofacies zonation map of the Siberian Platform. b Cross section to show relative positions of sampled transects along the Lena River11,40,66,67,68. c Lithostratigraphy, biostratigraphy, carbon isotope (δ13C)29,31,32 and carbonate-associated sulfate sulfur isotope (δ34SCAS)7 data for sections from the middle Lena River (Isit’, Zhurinsky Mys, Achchagy-Kyyry-Taas, and Achchagy-Tuoydakh). S.E.—Sinsk Event; Tolb.—Tolba Formation; ATD., BOT., N.-D., TOM.—Atdabanian, Botoman, Nemakit-Daldynian, and Tommotian local stages, respectively.Full size imageTo quantify ecological complexity, we used metacommunity analyses, which compare the structure between communities in terms of taxa (generally species) compositions spatially and temporally10 (see Methods). The ‘Elements of Metacommunity Structure’ framework used here is a hierarchical analysis that identifies properties in site-by-species presence/absence matrices that are related to the underlying processes, such as species interactions, dispersal, and environmental filtering that shape species distributions10. Application to various marine and terrestrial palaeocommunities has demonstrated the robustness of these methods to fossil data and sample size variations13,14. There are fourteen different types of metacommunity structure which are determined by the calculation of three metacommunity metrics: Coherence, Turnover, and Boundary Clumping, which reveal different controlling processes of underlying metacommunity structure10,15,16,17,18.The most ecologically complex metacommunities are classified as Clementsian, and have positive coherence, turnover and boundary clumping16. Clementsian metacommunities contain groups of taxa with similar range boundaries that respond to the environment synchronously as taxa have physiological or evolutionary trade-offs within the communities associated with environmental thresholds19. By contrast, when taxa respond individualistically to the underlying environment, without accounting for other taxa within the community, the structure is Gleasonian, and is defined by positive coherence and turnover but no significant boundary clumping16. When coherence is positive, but turnover is not significantly different from random, then the resultant metacommunity structures are known as quasi-structures (e.g. quasi-Clementsian), which reflect weaker underlying structuring processes.We determined the metacommunity structure for archaeocyath sponge species on the Siberian Platform throughout their early Cambrian record using an entire previously published data set11 then on a sub-set of metacommunities which had a sufficient number of reef sites to be suitable for analyses, i.e. with a sufficient number of sites to be statistically significant. Further, to investigate the effects of water depth on metacommunity structure, we used Spearman rank correlations to test whether the metacommunity ranking (as determined by reciprocal averaging, a type of correspondence analysis which ordinates the sites based on their species composition17), is significantly correlated to water depth. Finally, to quantify how pairwise associations between taxa change between the three temporally different metacommunities, we determined which pairwise taxa co-occurrences are significantly non-random using a combinatorics approach, and whether any non-random co-occurrences are positive or negative20.Species richness estimates are highly sensitive to differences in sampling. When comparing species richness of assemblages from several time intervals, it is advisable to standardise sampling across those assemblages to ensure that changes in species richness are not attributable to sampling differences. One approach is to subsample each time interval down to a standardised number of individuals (size-based rarefaction), but this approach can underestimate changes in richness because it tends to sample low-richness assemblages more completely than high-richness ones21. Coverage-based rarefaction, where each sample is down-sampled to a standardised level of taxonomic completeness, avoids this potential issue. The coverage of a sample is the proportion of species in the assemblage which are represented in that sample, and it can be estimated by subtracting the proportion of singletons in a sample from 1 (e.g.22; see also21 for details). We used the estimateD function from R package iNEXT23 to produce coverage-standardised species richness estimates with 95% confidence intervals, by repeatedly down-sampling the sampled assemblage from each time interval to match the coverage of the lowest-coverage interval. We did this by setting datatype = “abundance”, base = “coverage” and leaving all other arguments as default.In sum, we test the biotic response to OOEs by compiling metrics of archaeocyath reef size, location, and metacommunity complexity, integrated with existing data on archaeocyath individual size, species richness and origination and extinction rates12 and high-resolution geochemistry4,7 recalculated to the same stratigraphic scale, on the Siberian Platform over 11 Myr through Cambrian stages 2–3 (mid-Tommotian to early Botoman on the Siberian stratigraphic scale; 525–514 Ma). These results are used to quantify the community-wide response of metazoans to extrinsic redox cycles, and hence gain insight into the evolutionary processes involved.Geological setting and evolution of redoxDuring the early Cambrian shallow marine carbonates associated with evaporites and siliciclastics dominated the inner Siberian Platform, passing to shallow marginal carbonates of transitional facies known as the transitional zone (or the Anabar-Sinsk), thence to deep ramp and slope settings that accumulated organic-rich limestone and shale (Fig. 1a)24,25,26. Archaeocyathan reefs or bioherms were almost entirely restricted to the transitional facies. Such reefs appeared and proliferated during Cambrian stages 2 and 3 (Tommotian, Atdabanian and earliest Botoman), disappeared at the beginning of Stage 4 (middle Botoman) and re-appeared briefly at the end of this stage (Toyonian).We integrate palaeontological (archaeocyath species number and individual size), palaeoecological (reef size and palaeodepth location) and chemostratigraphic information (carbon isotope cycles 5p, 6p, and II–VII) for sections of the Aldan, Selinde and Lena rivers with sub-metre-scale lithostratigraphic subdivisions27,28,29,30,31,32,33 (Figs. 1c, 2a–c, 3a). This results in negligible uncertainty associated with sample heights, which are fixed relative to a consistent datum within each section.Fig. 2: Lithostratigraphy, biostratigraphy and carbon isotope (δ13C) data for sections of the Aldan and Selinde rivers bearing the earlierst archaeocyath reef communities of the Siberian Platform.a Dvortsy27,28,30 b Ulakhan-Sulugur33,34, and c Selinde69,70.Full size imageFig. 3: Summary of geochemical and biotic changes through the early Cambrian, Siberian Platform, and uranium isotope data representing a global record.a International and Siberian timescale, within age model C of 57. ND—Nemakit-Daldynian regional stage; U’-Y—Ust’-Yudoma Formation. b Summary of carbon and sulphur isotopes (from the Lena River, Siberia7). c Uranium isotopes from Siberia (grey; Sukharikha and Bol’shaya Kuonamka rivers), South China (blue), and Morocco (orange) (all data points are larger than 2SE)4. d Archaeocyath sponge species diversity and maximum diameter12. Plotted richness values are the species richness estimator21 with accompanying 95% confidence interval, calculated using the estimated function from R package iNEXT62. e Rates of archaeocyath sponge species origination and extinction12. f Reef location as a function of relative water depth (Supplementary Table 1). FWWB—Fair weather wave base. SWB—Storm weather wave base. g Reef/bioherm diameter, coloured by relative water depth (see column f, and Supplementary Table 2). h Number of reef community types (Supplementary Table 3). i Archaeocyath reef ecosystem complexity, with percentage of species co-occurrence as changing proportions of total non-random and positive and negative. G = Gleasonian, QG = Quasi-Gleasonian, C = Clementsian.Full size imageThroughout Cambrian stages 2 and 3, high-amplitude positive δ13C carbon isotope excursions show a strong positive covariation with the sulphur isotope composition of carbonate-associated sulphate (δ34SCAS) in sections from the Lena River (Fig. 3b)7. The rising limbs of these excursions are interpreted as intervals of progressive burial of reductants under anoxic bottom water conditions, and a progressive increase in atmospheric oxygen7. Coincident δ13C and δ34SCAS peaks (numbered II–VII) correspond with a pulse of atmospheric oxygen into the shallow marine environment (creating an OOE), followed by a corresponding decrease in reductant burial under more widespread marine oxia (falling limbs of δ13C and δ34SCAS), and leading to gradual de-oxygenation over Myr7. In addition, phosphorous retention might have occurred under oxic shallow marine conditions, acting to reduce primary productivity and further oxygenate the shallow marine environment in the short-term ( More

  • in

    Prioritize gender equality to meet global biodiversity goals

    Parties to the Convention on Biological Diversity will meet this month to finalize the post-2020 Global Biodiversity Framework and the text for the stand-alone target on gender equality (Target 22). This target aims to reshape conservation policy and practice to make them more inclusive, equitable and effective.
    Competing Interests
    The authors declare no competing interests. More

  • in

    The overlapping burden of the three leading causes of disability and death in sub-Saharan African children

    Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USARobert C. Reiner Jr., Catherine A. Welgan, Christopher E. Troeger, Mathew M. Baumann, Aniruddha Deshpande, Brigette F. Blacker, Molly K. Miller-Petrie, Lucas Earl, Daniel C. Casey, Aubrey J. Cook, Farah Daoud, Nicole Davis Weaver, Samath Dhamminda Dharmaratne, Laura Dwyer-Lindgren, Valery L. Feigin, Joseph Jon Frostad, Kimberly B. Johnson, Alice Lazzar-Atwood, Kate E. LeGrand, Stephen S. Lim, Paulina A. Lindstedt, Laurie B. Marczak, Benjamin K. Mayala, Ali H. Mokdad, Jonathan F. Mosser, Chrisopher J. L. Murray, QuynhAnh P. Nguyen, David M. Pigott, Puja C. Rao, David L. Smith, Emma Elizabeth Spurlock & Simon I. HayDepartment of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USARobert C. Reiner Jr., Samath Dhamminda Dharmaratne, Laura Dwyer-Lindgren, Stephen S. Lim, Ali H. Mokdad, Chrisopher J. L. Murray, David M. Pigott, Benn Sartorius, David L. Smith & Simon I. HayMalaria Atlas Project, University of Oxford, Oxford, UKDaniel J. Weiss & Susan Fred RumishaImperial College London, London, UKSamir BhattDepartment of Laboratory Medicine, Karolinska University Hospital, Huddinge, SwedenHassan AbolhassaniResearch Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, IranHassan Abolhassani & Nima RezaeiDepartment of Public Health, Debre Berhan University, Debre Berhan, EthiopiaAkine Eshete AbosetugnDepartment of Clinical Sciences, University of Sharjah, Sharjah, United Arab EmiratesEman Abu-GharbiehPopulation Health Sciences, King’s College London, London, EnglandVictor AdekanmbiCentre of Excellence for Epidemiological Modelling and Analysis, Stellenbosch University, Stellenbosch, South AfricaOlatunji O. AdetokunbohDepartment of Global Health, Stellenbosch University, Cape Town, South AfricaOlatunji O. AdetokunbohDepartment of Epidemiology and Biostatistics, Qom University of Medical Sciences, Qom, IranMohammad AghaaliFaculty of Medicine and Public Health, Jenderal Soedirman University, Purwokerto, IndonesiaBudi AjiMayo Evidence-based Practice Center, Mayo Clinic Foundation for Medical Education and Research, Rochester, MN, USAFares AlahdabJohn T. Milliken Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO, USAZiyad Al-AlyClinical Epidemiology Center, Department of Veterans Affairs, St Louis, MO, USAZiyad Al-AlyInstitute of Health Research, University of Health and Allied Sciences, Ho, GhanaRobert Kaba AlhassanDepartment of Information Systems, College of Economics and Political Science, Sultan Qaboos University, Muscat, OmanSaqib AliInfectious and Tropical Disease Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, IranHesam AlizadeDepartment of Health Policy and Management, Kuwait University, Safat, KuwaitSyed Mohamed AljunidInternational Centre for Casemix and Clinical Coding, National University of Malaysia, Bandar Tun Razak, MalaysiaSyed Mohamed AljunidDepartment of Epidemiology, Arak University of Medical Sciences, Arak, IranAmir Almasi-Hashiani, Rahmatollah Moradzadeh & Maryam ZamanianMedical Research Center, Jazan University, Jazan, Saudi ArabiaHesham M. Al-MekhlafiDepartment of Parasitology, Sana’a University, Sana’a, YemenHesham M. Al-MekhlafiPediatric Intensive Care Unit, King Saud University, Riyadh, Saudi ArabiaKhalid A. Altirkawi & Mohamad-Hani TemsahResearch Group in Health Economics, University of Cartagena, Cartagena, ColombiaNelson Alvis-GuzmanResearch Group in Hospital Management and Health Policies, ALZAK Foundation, Cartagena, ColombiaNelson Alvis-GuzmanSchool of Medicine, University of Adelaide, Adelaide, SA, AustraliaAzmeraw T. AmareCollege of Medicine and Health Science, Bahir Dar University, Bahir Dar, EthiopiaAzmeraw T. AmareHealth Services Management Department, Arak University of Medical Sciences, Arak, IranSaeed AminiMaternal and Child Wellbeing, African Population and Health Research Center, Nairobi, KenyaDickson A. AmugsiPharmacy Department, Carol Davila University of Medicine and Pharmacy, Bucharest, RomaniaRobert AncuceanuCardiology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, RomaniaCatalina Liliana AndreiResearch Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, IranFereshteh AnsariRazi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization (AREEO), Tehran, IranFereshteh AnsariDepartment of Parasitology, Mazandaran University of Medical Sciences, Sari, IranDavood AnvariDepartment of Parasitology, Iranshahr University of Medical Sciences, Iranshahr, IranDavood AnvariDepartment of Sociology and Social Work, Kwame Nkrumah University of Science and Technology, Kumasi, GhanaSeth Christopher Yaw AppiahCenter for International Health, Ludwig Maximilians University, Munich, GermanySeth Christopher Yaw AppiahHealth Management and Economics Research Center, Iran University of Medical Sciences, Tehran, IranJalal Arabloo & Ahmad GhashghaeeDepartment of Public Health, Birmingham City University, Birmingham, UKOlatunde AremuFaculty of Nursing, Philadelphia University, Amman, JordanMaha Moh’d Wahbi AtoutSchool of Business, University of Leicester, Leicester, UKMarcel AusloosDepartment of Statistics and Econometrics, Bucharest University of Economic Studies, Bucharest, RomaniaMarcel Ausloos, Claudiu Herteliu & Adrian PanaGastro-enterology Department, University of Liège, Liège, BelgiumFloriane AusloosDepartment of Health Policy Planning and Management, University of Health and Allied Sciences, Ho, GhanaMartin Amogre AyanoreDepartment of Nursing, Debre Berhan University, Debre Berhan, EthiopiaYared Asmare AynalemDepartment of Reproductive Health, University of Gondar, Gondar, EthiopiaZelalem Nigussie AzenePublic Health Risk Sciences Division, Public Health Agency of Canada, Toronto, ON, CanadaAlaa BadawiDepartment of Nutritional Sciences, University of Toronto, Toronto, ON, CanadaAlaa BadawiUnit of Biochemistry, Sultan Zainal Abidin University (Universiti Sultan Zainal Abidin), Kuala Terengganu, MalaysiaAtif Amin BaigDepartment of Hypertension, Medical University of Lodz, Lodz, PolandMaciej BanachPolish Mothers’ Memorial Hospital Research Institute, Lodz, PolandMaciej BanachDepartment of Community Medicine, Gandhi Medical College Bhopal, Bhopal, IndiaNeeraj BediJazan University, Jazan, Saudi ArabiaNeeraj BediDepartment of Social and Clinical Pharmacy, Charles University, Hradec Kralova, Czech RepublicAkshaya Srikanth BhagavathulaInstitute of Public Health, United Arab Emirates University, Al Ain, United Arab EmiratesAkshaya Srikanth BhagavathulaSchool of Public Health, University of Adelaide, Adelaide, SA, AustraliaDinesh BhandariPublic Health Research Laboratory, Tribhuvan University, Kathmandu, NepalDinesh BhandariDepartment of Anatomy, Government Medical College Pali, Pali, IndiaNikha BhardwajDepartment of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Jodhpur, IndiaPankaj BhardwajSchool of Public Health, All India Institute of Medical Sciences, Jodhpur, IndiaPankaj BhardwajDepartment of Statistical and Computational Genomics, National Institute of Biomedical Genomics, Kalyani, IndiaKrittika BhattacharyyaDepartment of Statistics, University of Calcutta, Kolkata, IndiaKrittika BhattacharyyaCentre for Global Child Health, University of Toronto, Toronto, ON, CanadaZulfiqar A. BhuttaCentre of Excellence in Women & Child Health, Aga Khan University, Karachi, PakistanZulfiqar A. BhuttaSocial Determinants of Health Research Center, Babol University of Medical Sciences, Babol, IranAli BijaniPlanning, Monitoring and Evaluation Directorate, Amhara Public Health Institute, Bahir Dar, EthiopiaTesega Tesega Mengistu BirhanuNutrition Department, St. Paul’s Hospital Millennium Medical College, Addis Ababa, EthiopiaZebenay Workneh BitewSt. Paul’s Hospital Millennium Medical College, Addis Ababa, EthiopiaZebenay Workneh BitewDepartment of Internal Medicine, Manipal Academy of Higher Education, Mangalore, IndiaArchith BoloorDepartment of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UKOliver J. BradySchool of Public Health and Health Systems, University of Waterloo, Waterloo, ON, CanadaZahid A. ButtAl Shifa School of Public Health, Al Shifa Trust Eye Hospital, Rawalpindi, PakistanZahid A. ButtCentre for Population Health Sciences, Nanyang Technological University, Singapore, SingaporeJosip CarDepartment of Primary Care and Public Health, Imperial College London, London, UKJosip Car & Salman RawafResearch Unit on Applied Molecular Biosciences (UCIBIO), University of Porto, Porto, PortugalFelix CarvalhoDepartment of Medicine, University of Toronto, Toronto, ON, CanadaVijay Kumar ChattuGlobal Institute of Public Health (GIPH), Thiruvananthapuram, IndiaVijay Kumar ChattuMaternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, BangladeshMohiuddin Ahsanul Kabir ChowdhuryDepartment of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USAMohiuddin Ahsanul Kabir ChowdhuryFaculty of Biology, Hanoi National University of Education, Hanoi, VietnamDinh-Toi ChuLaboratory of Malaria Immunology and Vaccinology, National Institutes of Health, Bethesda, MD, USACamila H. CoelhoClinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, University of Milan, Milan, ItalyGiovanni DamianiDepartment of Dermatology, Case Western Reserve University, Cleveland, OH, USAGiovanni DamianiDepartment of Public Health, Ambo University, Ambo, EthiopiaJiregna Darega GelaDepartment of Pediatrics, Tanta University, Tanta, EgyptAmira Hamed DarwishToxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, IranAhmad DaryaniDivision of Women and Child Health, Aga Khan University, Karachi, PakistanJai K. DasWellcome Trust Brighton and Sussex Centre for Global Health Research, Brighton and Sussex Medical School, Brighton, UKKebede DeribeSchool of Public Health, Addis Ababa University, Addis Ababa, EthiopiaKebede DeribeSchool of Nursing and Midwifery, Haramaya University, Harar, EthiopiaAssefa DesalewDepartment of Community Medicine, University of Peradeniya, Peradeniya, Sri LankaSamath Dhamminda DharmaratneDepartment of Epidemiology and Biostatistics, Shahroud University of Medical Sciences, Shahroud, IranMostafa DianatinasabDepartment of Epidemiology, Shiraz University of Medical Sciences, Shiraz, IranMostafa DianatinasabCenter of Complexity Sciences, National Autonomous University of Mexico, Mexico City, MexicoDaniel DiazFaculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacán Rosales, MexicoDaniel DiazDevelopment of Research and Technology Center, Ministry of Health and Medical Education, Tehran, IranShirin DjalaliniaDepartment of Medical Laboratory Sciences, Iran University of Medical Sciences, Tehran, IranFariba DorostkarInstitute of Microbiology and Immunology, University of Belgrade, Belgrade, SerbiaEleonora DubljaninSchool of Public Health, Hawassa University, Hawassa, EthiopiaBereket DukoSchool of Public Health, Curtin University, Perth, WA, AustraliaBereket Duko & Ted R. MillerCentre Clinical Epidemiology and Biostatistics, University of Newcastle, Newcastle, NSW, AustraliaAndem EffiongReference Laboratory of Egyptian Universities Hospitals, Ministry of Higher Education and Research, Cairo, EgyptMaysaa El Sayed ZakiPediatric Dentistry and Dental Public Health Department, Alexandria University, Alexandria, EgyptMaha El TantawiDepartment of Microbiology and Immunology, Suez Canal University, Ismailia, EgyptShymaa EnanyResearch Center for Environmental Determinants of Health, Kermanshah University of Medical Sciences, Kermanshah, IranNazir Fattahi & Masoud MoradiNational Institute for Stroke and Applied Neurosciences, Auckland University of Technology, Auckland, New ZealandValery L. FeiginResearch Center of Neurology, Moscow, RussiaValery L. FeiginAssociated Laboratory for Green Chemistry (LAQV), University of Porto, Porto, PortugalEduarda FernandesResearch Center on Public Health, University of Milan Bicocca, Monza, ItalyPietro FerraraInstitute of Gerontological Health Services and Nursing Research, Ravensburg-Weingarten University of Applied Sciences, Weingarten, GermanyFlorian FischerInstitute of Gerontology, National Academy of Medical Sciences of Ukraine, Kyiv, UkraineNataliya A. FoigtDepartment of Child Dental Health, Obafemi Awolowo University, Ile-Ife, NigeriaMorenike Oluwatoyin FolayanDepartment of Medical Parasitology, Abadan Faculty of Medical Sciences, Abadan, IranMasoud ForoutanDepartment of Dermatology, Kobe University, Kobe, JapanTakeshi FukumotoDepartment of Community Medicine, Datta Meghe Institute of Medical Sciences, Wardha, IndiaAbhay Motiramji Gaidhane, Zahiruddin Quazi Syed & Deepak SaxenaDepartment of Pediatric Nursing, Aksum University, Aksum, EthiopiaHailemikael Gebrekidan G. K. GebrekrstosSchool of Pharmacy, Aksum University, Aksum, EthiopiaLeake GebremeskelDepartment of Pharmacy, Mekelle University, Mekelle, EthiopiaLeake GebremeskelDepartment of Reproductive Health, Mekelle University, Mekelle, EthiopiaAssefa Ayalew GebreslassieTelethon Kids Institute, Perth Children’s Hospital, Nedlands, WA, AustraliaPeter W. GethingCurtin University, Bentley, WA, AustraliaPeter W. GethingDepartment of Biostatistics, Mekelle University, Mekelle, EthiopiaKebede Embaye GezaeInfectious Disease Research Center, Kermanshah University of Medical Sciences, Kermanshah, IranKeyghobad GhadiriPediatric Department, Kermanshah University of Medical Sciences, Kermanshah, IranKeyghobad GhadiriStudent Research Committee, Iran University of Medical Sciences, Tehran, IranAhmad GhashghaeeHealth Systems and Policy Research, Indian Institute of Public Health Gandhinagar, Gandhinagar, IndiaMahaveer GolechhaDepartment of Family and Community Medicine, University Of Sulaimani, Sulaimani, IraqMohammed Ibrahim Mohialdeen GubariDepartment of Pediatrics and Child Health, Mekelle University, Mekelle, EthiopiaFikaden Berhe HadguSchool of Health and Environmental Studies, Hamdan Bin Mohammed Smart University, Dubai, United Arab EmiratesSamer HamidiDepartment of Public Health, Wachemo University, Hossana, EthiopiaDemelash Woldeyohannes HandisoDepartment of Public Health, Jigjiga University, Jijiga, EthiopiaAbdiwahab Hashi & Muktar Omer OmerCenter for International Health (CIH), University of Bergen, Bergen, NorwayShoaib HassanBergen Center for Ethics and Priority Setting (BCEPS), University of Bergen, Bergen, NorwayShoaib HassanInstitute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, PakistanKhezar HayatDepartment of Pharmacy Administration and Clinical Pharmacy, Xian Jiaotong University, Xian, ChinaKhezar HayatSchool of Business, London South Bank University, London, UKClaudiu HerteliuDepartment of Urban Planning and Design, University of Hong Kong, Hong Kong, ChinaHung Chak HoKasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, IndiaRamesh Holla & Priya RathiInstitute of Research and Development, Duy Tan University, Da Nang, VietnamMehdi Hosseinzadeh & Yasser VasseghianDepartment of Computer Science, University of Human Development, Sulaymaniyah, IraqMehdi HosseinzadehCollege of Science and Engineering, Hamad Bin Khalifa University, Doha, QatarMowafa HousehSchool of Pharmaceutical Sciences, University of Science Malaysia, Penang, MalaysiaRabia HussainDepartment of Occupational Safety and Health, China Medical University, Taichung, TaiwanBing-Fang HwangDepartment of Health Promotion and Education, University of Ibadan, Ibadan, NigeriaSegun Emmanuel IbitoyeDepartment of Community Medicine, University of Ibadan, Ibadan, NigeriaOlayinka Stephen IlesanmiDepartment of Community Medicine, University College Hospital, Ibadan, Ibadan, NigeriaOlayinka Stephen IlesanmiFaculty of Medicine, University of Belgrade, Belgrade, SerbiaIrena M. IlicDepartment of Epidemiology, University of Kragujevac, Kragujevac, SerbiaMilena D. IlicResearch Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IranSeyed Sina Naghibi IrvaniDepartment of Environmental Health Engineering, Guilan University of Medical Sciences, Rasht, IranJalil JaafariHealth Informatic Lab, Boston University, Boston, MA, USATahereh JavaheriDepartment of Community Medicine, Dr. Baba Saheb Ambedkar Medical College & Hospital, Delhi, IndiaRavi Prakash JhaDepartment of Community Medicine, Banaras Hindu University, Varanasi, IndiaRavi Prakash JhaDepartment of Ophthalmology, Heidelberg University, Heidelberg, GermanyJost B. JonasBeijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing, ChinaJost B. JonasDepartment of Family Medicine and Public Health, University of Opole, Opole, PolandJacek Jerzy JozwiakMinimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, IranAli KabirInstitute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, IranRohollah KalhorHealth Services Management Department, Qazvin University of Medical Sciences, Qazvin, IranRohollah KalhorDepartment of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, IndiaTanuj KanchanInstitute for Epidemiology and Social Medicine, University of Münster, Münster, GermanyAndré KarchInternational Research Center of Excellence, Institute of Human Virology Nigeria, Abuja, NigeriaGbenga A. KayodeJulius Centre for Health Sciences and Primary Care, Utrecht University, Utrecht, NetherlandsGbenga A. KayodeOpen, Distance and eLearning Campus, University of Nairobi, Nairobi, KenyaPeter Njenga KeiyoroDepartment of Public Health, Jordan University of Science and Technology, Irbid, JordanYousef Saleh KhaderDepartment of Global Health, University of Washington, Seattle, WA, USAIbrahim A. Khalil & Sonali KochharDepartment of Population Science, Jatiya Kabi Kazi Nazrul Islam University, Mymensingh, BangladeshMd Nuruzzaman KhanEpidemiology Department, Jazan University, Jazan, Saudi ArabiaMaseer KhanDepartment of Medical Microbiology & Immunology, United Arab Emirates University, Al Ain, United Arab EmiratesGulfaraz KhanFaculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UKKhaled KhatabCollege of Arts and Sciences, Ohio University, Zanesville, OH, USAKhaled KhatabDepartment of Medical Parasitology, Cairo University, Cairo, EgyptMona M. KhaterGlobal Evidence Synthesis Initiative, Datta Meghe Institute of Medical Sciences, Wardha, IndiaMahalaqua Nazli KhatibDepartment of Public Health, Kermanshah University of Medical Sciences, Kermanshah, IranNeda KianipourSchool of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, MalaysiaYun Jin KimDepartment of Nutrition, Simmons University, Boston, MA, USARuth W. KimokotiDepartment of Nursing and Health Promotion, Oslo Metropolitan University, Oslo, NorwaySezer KisaSchool of Health Sciences, Kristiania University College, Oslo, NorwayAdnan KisaGlobal Community Health and Behavioral Sciences, Tulane University, New Orleans, LA, USAAdnan KisaDepartment of Pediatrics, University of British Columbia, Vancouver, BC, CanadaNiranjan KissoonGlobal Healthcare Consulting, New Delhi, IndiaSonali KochharDepartment of Environmental Health Engineering, Arak University of Medical Sciences, Arak, IranAli KoolivandSchool of Population and Public Health, University of British Columbia, Vancouver, BC, CanadaJacek A. KopecArthritis Research Canada, Richmond, BC, CanadaJacek A. KopecCIBERSAM, San Juan de Dios Sanitary Park, Sant Boi de Llobregat, SpainAi KoyanagiCatalan Institution for Research and Advanced Studies (ICREA), Barcelona, SpainAi KoyanagiDepartment of Anthropology, Panjab University, Chandigarh, IndiaKewal KrishanInternational Institute for Population Sciences, Mumbai, IndiaPushpendra KumarFaculty of Health and Life Sciences, Coventry University, Coventry, UKOm P. KurmiDepartment of Medicine, McMaster University, Hamilton, ON, CanadaOm P. KurmiImperial College Business School, Imperial College London, London, UKDian KusumaFaculty of Public Health, University of Indonesia, Depok, IndonesiaDian KusumaPublic Health Foundation of India, Gurugram, IndiaDharmesh Kumar LalDepartment of Community and Family Medicine, University of Baghdad, Baghdad, IraqFaris Hasan LamiUnit of Genetics and Public Health, Institute of Medical Sciences, Las Tablas, PanamaIván LandiresMinistry of Health, Herrera, PanamaIván LandiresMedical Director, HelpMeSee, New York, NY, USAVan Charles LansinghGeneral Director, Mexican Institute of Ophthalmology, Queretaro, MexicoVan Charles LansinghDepartment of Otorhinolaryngology, Father Muller Medical College, Mangalore, IndiaSavita LasradoDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCarlo La VecchiaSchool of Nursing, Hong Kong Polytechnic University, Hong Kong, ChinaPaul H. LeeCentre for Tropical Medicine and Global Health, University of Oxford, Oxford, UKSonia LewyckaOxford University Clinical Research Unit, Wellcome Trust Asia Programme, Hanoi, VietnamSonia LewyckaDepartment of Sociology, Shenzhen University, Shenzhen, ChinaBingyu LiDepartment of Systems, Populations, and Leadership, University of Michigan, Ann Arbor, MI, USAXuefeng LiuDepartment of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UKJoshua LongbottomIndependent Consultant, Melbourne, VIC, AustraliaAlan D. LopezRadiology Department, Egypt Ministry of Health and Population, Mansoura, EgyptHassan Magdy Abd El RazekGrants, Innovation and Product Development Unit, South African Medical Research Council, Cape Town, South AfricaPhetole Walter MahashaEnvironmental Health, Tehran University of Medical Sciences, Tehran, IranAfshin MalekiEnvironmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, IranAfshin Maleki & Shadieh MohammadiInstitute for Social Science Research, The University of Queensland, Indooroopilly, QLD, AustraliaAbdullah A. MamunDepartment of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, IranMohammad Ali MansourniaCampus Caucaia, Federal Institute of Education, Science and Technology of Ceará, Caucaia, BrazilFrancisco Rogerlândio Martins-MeloICF International, DHS Program, Rockville, MD, USABenjamin K. MayalaDepartment of Pharmacy, Wollo University, Dessie, EthiopiaBirhanu Geta MeharieDepartment of Medical Laboratory Sciences, Bahir Dar University, Bahir Dar, EthiopiaAddisu MelesePeru Country Office, United Nations Population Fund (UNFPA), Lima, PeruWalter MendozaForensic Medicine Division, Imam Abdulrahman Bin Faisal University, Dammam, Saudi ArabiaRitesh G. MenezesDepartment of Reproductive Health and Population Studies, Bahir Dar University, Bahir Dar, EthiopiaEndalkachew Worku MengeshaCenter for Translation Research and Implementation Science, National Institutes of Health, Bethesda, MD, USAGeorge A. MensahDepartment of Medicine, University of Cape Town, Cape Town, South AfricaGeorge A. MensahBreast Surgery Unit, Helsinki University Hospital, Helsinki, FinlandTuomo J. MeretojaUniversity of Helsinki, Helsinki, FinlandTuomo J. MeretojaClinical Microbiology and Parasitology Unit, Dr. Zora Profozic Polyclinic, Zagreb, CroatiaTomislav MestrovicUniversity Centre Varazdin, University North, Varazdin, CroatiaTomislav MestrovicPacific Institute for Research & Evaluation, Calverton, MD, USATed R. MillerInternal Medicine Programme, Kyrgyz State Medical Academy, Bishkek, KyrgyzstanErkin M. MirrakhimovDepartment of Atherosclerosis and Coronary Heart Disease, National Center of Cardiology and Internal Disease, Bishkek, KyrgyzstanErkin M. MirrakhimovHeidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, GermanyBabak Moazen & Shafiu MohammedInstitute of Addiction Research (ISFF), Frankfurt University of Applied Sciences, Frankfurt, GermanyBabak MoazenDepartment of Biostatistics, Hamadan University of Medical Sciences, Hamadan, IranNaser Mohammad Gholi MezerjiResearch Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj City, IranShadieh MohammadiHealth Systems and Policy Research Unit, Ahmadu Bello University, Zaria, NigeriaShafiu MohammedComputer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi ArabiaPaula MoragaClinical Research Development Center, Kermanshah University of Medical Sciences, Kermanshah, IranMehdi NaderiResearch and Analytics Department, Initiative for Financing Health and Human Development, Chennai, IndiaAhamarshan Jayaraman NagarajanDepartment of Research and Analytics, Bioinsilico Technologies, Chennai, IndiaAhamarshan Jayaraman NagarajanDepartment of Pediatrics, Arak University of Medical Sciences, Arak, IranJavad NazariDisease Control and Environmental Health, Makerere University, Kampala, UgandaRawlance NdejjoDepartment of General Surgery, Carol Davila University of Medicine and Pharmacy, Bucharest, RomaniaIonut NegoiDepartment of General Surgery, Emergency Hospital of Bucharest, Bucharest, RomaniaIonut NegoiDepartment of Biological Sciences, University of Embu, Embu, KenyaJosephine W. NgunjiriInstitute for Global Health Innovations, Duy Tan University, Hanoi, VietnamHuong Lan Thi Nguyen & Hai Quang PhamSouth African Medical Research Council, Cape Town, South AfricaChukwudi A. Nnaji & Charles Shey WiysongeSchool of Public Health and Family Medicine, University of Cape Town, Cape Town, South AfricaChukwudi A. Nnaji & Charles Shey WiysongeCentre for Heart Rhythm Disorders, University of Adelaide, Adelaide, SA, AustraliaJean Jacques NoubiapUnit of Microbiology and Public Health, Institute of Medical Sciences, Las Tablas, PanamaVirginia Nuñez-SamudioDepartment of Public Health, Ministry of Health, Herrera, PanamaVirginia Nuñez-SamudioDepartment of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, CanadaAndrew T. OlagunjuDepartment of Psychiatry, University of Lagos, Lagos, NigeriaAndrew T. OlagunjuCentre for Healthy Start Initiative, Lagos, NigeriaJacob Olusegun Olusanya & Bolajoko Olubukunola OlusanyaDepartment of Pharmacology and Therapeutics, University of Nigeria Nsukka, Enugu, NigeriaObinna E. OnwujekweLaboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Dolgoprudny, RussiaNikita Otstavnov & Stanislav S. OtstavnovDepartment of Project Management, National Research University Higher School of Economics, Moscow, RussiaStanislav S. OtstavnovDepartment of Medicine, University of Ibadan, Ibadan, NigeriaMayowa O. OwolabiDepartment of Medicine, University College Hospital, Ibadan, Ibadan, NigeriaMayowa O. OwolabiDepartment of Respiratory Medicine, Jagadguru Sri Shivarathreeswara Academy of Health Education and Research, Mysore, IndiaMahesh P ADepartment of Forensic Medicine, Manipal Academy of Higher Education, Mangalore, IndiaJagadish Rao PadubidriDepartment of Health Metrics, Center for Health Outcomes & Evaluation, Bucharest, RomaniaAdrian PanaSchool of Global Public Health, New York University, New York, NY, USAEmmanuel K. PeprahDepartment of Parasitology and Entomology, Tarbiat Modares University, Tehran, IranMajid PirestaniUniversity Medical Center Groningen, University of Groningen, Groningen, NetherlandsMaarten J. PostmaSchool of Economics and Business, University of Groningen, Groningen, NetherlandsMaarten J. PostmaDepartment of Pharmacology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi ArabiaFaheem Hyder PottooDepartment of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, IranHadi PourjafarDietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, IranHadi PourjafarThalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IranFakher RahimMetabolomics and Genomics Research Center, Tehran University of Medical Sciences, Tehran, IranFakher RahimSina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, IranVafa Rahimi-MovagharDepartment of Community Medicine, Maharishi Markandeshwar Medical College & Hospital, Solan, IndiaMohammad Hifz Ur RahmanDepartment of Oral Pathology, Srinivas Institute of Dental Sciences, Mangalore, IndiaSowmya J. RaoAcademic Public Health England, Public Health England, London, UKSalman RawafWHO Collaborating Centre for Public Health Education and Training, Imperial College London, London, UKDavid Laith RawafUniversity College London Hospitals, London, UKDavid Laith RawafSchool of Health, Medical and Applied Sciences, CQ University, Sydney, NSW, AustraliaLal RawalDepartment of Computer Science, Boston University, Boston, MA, USAReza RawassizadehSchool of Public Health, Haramaya University, Harar, EthiopiaLemma Demissie RegassaSchool of Social Sciences and Psychology, Western Sydney University, Penrith, NSW, AustraliaAndre M. N. RenzahoTranslational Health Research Institute, Western Sydney University, Penrith, NSW, AustraliaAndre M. N. RenzahoNetwork of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, IranNima RezaeiPediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, IranMohammad Sadegh RezaiEpidemiology Research Unit Institute of Public Health (EPIUnit-ISPUP), University of Porto, Porto, PortugalAna Isabel RibeiroDepartment of Surgery, University of Minnesota, Minneapolis, MN, USAJennifer RickardDepartment of Surgery, University Teaching Hospital of Kigali, Kigali, RwandaJennifer RickardFaculty of Medical Sciences, Research Department, National University of Caaguazu, Cnel. Oviedo, ParaguayCarlos Miguel Rios-GonzálezDepartment of Research and Publications, National Institute of Health, Asunción, ParaguayCarlos Miguel Rios-GonzálezDepartment of Health Statistics, National Institute for Medical Research, Dar es Salaam, TanzaniaSusan Fred RumishaDepartment of Epidemiology, Shahid Beheshti University of Medical Sciences, Tehran, IranSiamak SabourDepartment of Phytochemistry, Soran University, Soran, IraqS. Mohammad SajadiDepartment of Nutrition, Cihan University-Erbil, Kurdistan Region, IraqS. Mohammad SajadiCenter for Health Policy & Center for Primary Care and Outcomes Research, Stanford University, Stanford, CA, USAJoshua A. SalomonDrug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, IranHossein Samadi KafilDepartment of Entomology, Ain Shams University, Cairo, EgyptAbdallah M. SamyDepartment of Surgery, Marshall University, Huntington, WV, USAJuan SanabriaDepartment of Nutrition and Preventive Medicine, Case Western Reserve University, Cleveland, OH, USAJuan SanabriaFaculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UKBenn SartoriusDepartment of Epidemiology, Indian Institute of Public Health, Gandhinagar, IndiaDeepak SaxenaGlobal Programs, Medical Teams International, Seattle, WA, USALauren E. SchaefferDepartment of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USALauren E. SchaefferEmergency Department, Manian Medical Centre, Erode, IndiaSubramanian SenthilkumaranCenter for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Shenzhen, ChinaFeng ShaPublic Health Division, An-Najah National University, Nablus, PalestineAmira A. ShaheenIndependent Consultant, Karachi, PakistanMasood Ali ShaikhUniversity School of Management and Entrepreneurship, Delhi Technological University, Delhi, IndiaRajesh SharmaCentre for Medical Informatics, University of Edinburgh, Edinburgh, UKAziz SheikhDivision of General Internal Medicine, Harvard University, Boston, MA, USAAziz SheikhInstitute for Population Health, King’s College London, London, UKKenji ShibuyaNational Institute of Infectious Diseases, Tokyo, JapanMika ShigematsuCollege of Medicine, Yonsei University, Seoul, South KoreaJae Il ShinDepartment of Law, Economics, Management and Quantitative Methods, University of Sannio, Benevento, ItalyBiagio SimonettiWSB University in Gdańsk, Gdansk, PolandBiagio SimonettiSchool of Medicine, University of Alabama at Birmingham, Birmingham, AL, USAJasvinder A. SinghMedicine Service, US Department of Veterans Affairs (VA), Birmingham, AL, USAJasvinder A. SinghNursing Care Research Center, Semnan University of Medical Sciences, Semnan, IranAmin SoheiliDepartment of Infectious Diseases, Kharkiv National Medical University, Kharkiv, UkraineAnton SokhanDivision of Community Medicine, International Medical University, Kuala Lumpur, MalaysiaChandrashekhar T. SreeramareddyDepartment of Community Medicine, Ahmadu Bello University, Zaria, NigeriaMu’awiyyah Babale SufiyanSchool of Medicine, University of California San Francisco, San Francisco, CA, USAScott J. SwartzJoint Medical Program, University of California Berkeley, Berkeley, CA, USAScott J. SwartzDepartment of Nursing, Aksum University, Aksum, EthiopiaDegena Bahrey TadesseDepartment of Midwifery, University of Gondar, Gondar, EthiopiaAnimut Tagele TamiruDepartment of Clinical Pharmacy, University of Gondar, Gondar, EthiopiaYonas Getaye TeferaDepartment of Epidemiology and Biostatistics, University of Gondar, Gondar, EthiopiaZemenu Tadesse TessemaK.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, RussiaMariya Vladimirovna TitovaLaboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Moscow, RussiaMariya Vladimirovna TitovaDepartment of Health Economics, Hanoi Medical University, Hanoi, VietnamBach Xuan TranFaculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, NetherlandsPhuong N. TruongKasturba Medical College, Manipal Academy of Higher Education, Mangalore, IndiaBhaskaran UnnikrishnanAmity Institute of Biotechnology, Amity University Rajasthan, Jaipur, IndiaEra UpadhyayUKK Institute, Tampere, FinlandTommi Juhani VasankariDepartment of Medical and Surgical Sciences, University of Bologna, Bologna, ItalyFrancesco S. ViolanteOccupational Health Unit, Sant’Orsola Malpighi Hospital, Bologna, ItalyFrancesco S. ViolanteCenter of Excellence in Behavioral Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, VietnamGiang Thu VuFoundation University Medical College, Foundation University Islamabad, Islamabad, PakistanYasir WaheedCultures, Societies and Global Studies, & Integrated Initiative for Global Health, Northeastern University, Boston, MA, USARichard G. WamaiSchool of Public Health, University of Nairobi, Nairobi, KenyaRichard G. WamaiDepartment of Human Nutrition and Food Sciences, Debre Markos University, Debre Markos, EthiopiaEmebet Gashaw WassieDepartment of Midwifery, Adigrat University, Adigrat, EthiopiaFissaha Tekulu WelayDepartment of Community Medicine, Rajarata University of Sri Lanka, Anuradhapura, Sri LankaNuwan Darshana WickramasingheDepartment of Epidemiology, Johns Hopkins University, Baltimore, MD, USAKirsten E. WiensDepartment of Neurology, University of Melbourne, Melbourne, VIC, AustraliaTissa WijeratneDepartment of Medicine, University of Rajarata, Saliyapura Anuradhapuraya, Sri LankaTissa WijeratneDepartment of Public Health, Samara University, Samara, EthiopiaTemesgen Gebeyehu WondmenehDepartment of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo, JapanTomohide YamadaSchool of International Development and Global Studies, University of Ottawa, Ottawa, ON, CanadaSanni YayaThe George Institute for Global Health, University of Oxford, Oxford, UKSanni YayaDepartment of Nursing, Arba Minch University, Arba Minch, EthiopiaYordanos Gizachew YeshitilaCentre for Suicide Research and Prevention, University of Hong Kong, Hong Kong, ChinaPaul YipDepartment of Social Work and Social Administration, University of Hong Kong, Hong Kong, ChinaPaul YipDepartment of Neuropsychopharmacology, National Center of Neurology and Psychiatry, Kodaira, JapanNaohiro YonemotoDepartment of Public Health, Juntendo University, Tokyo, JapanNaohiro YonemotoDepartment of Epidemiology and Biostatistics, Wuhan University, Wuhan, ChinaChuanhua YuCancer Institute, Hacettepe University, Ankara, TurkeyDeniz YuceDepartment of Health Care Management and Economics, Urmia University of Medical Science, Urmia, IranHasan YusefzadehDepartment of Medicine, University Ferhat Abbas of Setif, Sétif, AlgeriaZoubida ZaidiSocial Development and Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, IranAlireza ZangenehSchool of Medicine, Wuhan University, Wuhan, ChinaZhi-Jiang ZhangSchool of Public Health, Wuhan University of Science and Technology, Wuhan, ChinaYunquan ZhangHubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, ChinaYunquan ZhangDepartment of Health Education and Health Promotion, Kermanshah University of Medical Sciences, Kermanshah, IranArash ZiapourManaging the estimation or publication process. L.B.D. T.B.C. Writing the first draft of the manuscript. R.C.R.J. Primary responsibility for this manuscript focused on: applying analytical methods to produce estimates. L.B.D. T.B.C. Primary responsibility for this manuscript focused on: seeking, cataloguing, extracting, or cleaning data; production or coding of figures and tables. L.B.D. T.B.C. Providing data or critical feedback on data sources. L.B.D. T.B.C. and S.I.H. Development of methods or computational machinery. R.C.R.J. and L.B.D. T.B.C. Providing critical feedback on methods or results. L.B.D. T.B.C. and S.I.H. Drafting the manuscript or revising it critically for important intellectual content. R.C.R.J., L.B.D. T.B.C., and S.I.H. Management of the overall research enterprise (for example, through membership in the Scientific Council). L.B.D. T.B.C. and S.I.H. Consortia author contributions Managing the estimation or publication process. B.F.B., M.K.M.P. Writing the first draft of the manuscript. R.C.R.J. Primary responsibility for this manuscript focused on: applying analytical methods to produce estimates. C.A.W. Primary responsibility for this manuscript focused on: seeking, cataloguing, extracting, or cleaning data; production or coding of figures and tables. M.M.B. Providing data or critical feedback on data sources D.J.W., A.D., C.E.T., H.A., A.E.A., V.A., O.O.A., M.A., B.A., F.A., S.A., H.A., S.M.A., A.A.-H., N.A.-G., A.T.A., S.A., C.L.A., F.A., D.A., S.C.Y.A., J.A., O.A., M.A., F.A., Y.A.A., A.B., M.B., N.B., A.S.B., A.B., V.K.C., D.-T.C., G.D., J.D.G., A.D., S.D.D., M.D., A.E., M.El.S.Z., S.E., T.F., A.M.G., L.G., P.W.G., K.G., A.G., M.G., A.H., S.H., K.H., C.H., H.C.H., M.H., M.H., S.S.N.I., T.J., J.B.J., J.J.J., A.K., G.A.K., Y.S.K., I.A.K., M.N.K., M.K., K.K., M.N.K., Y.J.K., S.K., A.K., N.K., K.K., P.K., D.K., D.K.L., F.H.L., V.C.L., S.L., A.L.-A., K.E.L., S.S.L., P.A.L., X.L., H.M.A.E.R., M.A.M., B.K.M., W.M., R.G.M., E.M.M., B.M., N.M.G.M., S.M., S.M., A.H.M., M.M., A.J.N., J.N., I.N., J.W.N., Q.P.N., H.L.T.N., C.A.N., J.J.N., A.T.O., J.O.O., B.O.O., O.E.O., N.O., S.S.O., M.O.O., M.P.A., J.R.P., A.P., E.K.P., H.Q.P., M.P., M.J.P., H.P., Z.Q.S., F.R., V.R.-M., S.J.R., P.R., S.R., D.L.R., L.R., R.R., A.M.N.R., N.R., J.R., C.M.R.-G., S.S., S.M.S., A.M.S., B.S., D.S., A.A.S., M.A.S., J.I.S., J.A.S., A.S., E.S., C.T.S., S.J.S., D.B.T., A.T.T., B.X.T., P.N.T., B.U., E.U., T.J.V., Y.V., G.T.V., Y.W., R.G.W., T.W., C.S.W., T.G.W., S.Y., Y.G.Y., N.Y., C.Y., H.Y., Z.Z., A.Z., and S.I.H. Development of methods or computational machinery R.C.R.J., C.A.W., M.M.B., A.D., L.E., S.B., C.E.T., H.A., D.A., Y.A.A., A.S.B., D.C.C., V.K.C., F.D. A.D., M.D., M.E.S.Z., N.F., J.J.F., P.W.G., M.H., K.B.J., S.K., A., A.D.L., S.M., A.H.M., J.W.N., Q.P.N., S.F.R., A.M.S., E.E.S., S.J.S., E.U., Y.V., K.E.W., Y.G.Y., and N.Y. Providing critical feedback on methods or results C.A.W., A.D., C.E.T., H.A., A.E.A., E.A.-G., V.A., O.O.A., M.A., B.A., F.A., Z.A.-A., R.K.A., S.A., H.A., A.A.-H., H.M.A.M., K.A.A., N.A.-Gu., A.T.A., S.A., D.A.A., C.L.A., F.A., D.A., S.C.Y.A., J.A., O.A., M.M.W.A., M.A., F.A., Y.A.A., Z.N.A., A.B., M.B., A.S.B., D.B., N.B., P.B., K.B., O.J.B., Z.A.B., A.B., Z.W.B., A.B., Z.A.B., V.C., M.A.K.C., D.-T.C., C.H.C., G.D., J.D.G., A.H.D., A.D., J.K.D., K.D., A.D., S.D.D., M.D., D.D., S.D., F.D., B.D., L.D.-L., A.E., V.L.F., F.F., N.A.F., M.O.F., M.F., T.F., A.M.G., H.G.G.K.G., L.G., A.A.G., K.E.G., A.G., M.G., F.B.H., S.H., A.H., S.H., C.H., H.C.H., R.H., M.H., M.H., R.H., B.-F.H., S.E.I., O.S.I., I.M.I., M.D.I., S.S.N.I., T.J., R.P.J., J.B.J., J.J.J., A.K., R.K., T.K., A.K., G.A.K., P.N.K., Y.S.K., I.A.K., M.N.K., M.K., K.K., M.M.K., M.N.K., Y.J.K., R.W.K., S.K., A.K., N.K., S.K., A.K., J.A.K., A.K., K.K., P.K., O.P.K., D.K., D.K.L., S.L., K.E.L., S.L., B.L., X.L., A.D.L., H.M.A.E.R., P.W.M., A.A.M., M.A.M., L.B.M., F.R.M.-M., B.K.M., W.M., R.G.M., E.W.M., T.J.M., T.R.M., E.M.M., B.M., N.M.G.M., S.M., S.M., A.H.M., R.M., J.F.M., M.N., A.J.N., J.N., R.N., I.N., J.W.N., H.L.T.N., C.A.N., J.J.N., A.T.O., J.O.O., B.O.O., M.O.O., O.E.O., N.O., S.S.O., M.O.O., M.P.A., J.R.P., A.P., E.K.P., H.Q.P., M.J.P., F.H.P., H.P., Z.Q.S., F.R., V.R.-M., S.J.R., P.R., S.R., D.L.R., L.R., R.R., L.D.R., A.M.N.R., N.R., M.S.R., A.I.R., J.R., C.M.R.-G., S.S., S.M.S., J.A.S., H.S.K., A.M.S., J.S., B.S., D.S., L.E.S., S.S., F.S., A.A.S., M.A.S., A.S., K.S., M.S., J.I.S., B.S., J.A.S., D.L.S., A.S., E.E.S., C.T.S., M.B.S., D.B.T., A.T.T., Y.G.T., M.-H.T., Z.T.T., M.V.T., B.X.T., P.N.T., B.U., E.U., Y.V., F.S.V., G.T.V., Y.W., R.G.W., E.G.W., F.T.W., N.D.W., K.E.W., T.W., C.S.W., T.G.W., T.Y., S.Y., Y.G.Y., P.Y., N.Y., C.Y., D.Y., Z.Z., M.Z., Z.-J.Z., Y.Z., and S.I.H. Drafting the manuscript or revising it critically for important intellectual content R.C.R.J., C.A.W., M.K.M.-P., L.E., H.A., E.A.-G., V.A., O.O.A., M.A., B.A, F.A., R.K.A., H.A., A.A.-H., N.A.-G., A.T.A., S.A., D.A.A., R.A., C.L.A., J.A., O.A., M.M.W.A., M.A., F.A., M.A.A., Z.N.A., A.B., A.A.B., M.B., N.B. A.S.B., D.B., K.B., T.T.M.B., O.J.B., J.C., F.C., V.K.C., G.D., A.D., N.D.W., K.D., S.D.D., D.D., E.D., A.E., M.E.S.Z., M.E.T., S.E., V.L.F., E.F., P.F., F.F., N.A.F., M.O.F., M.F., T.F., A.M.G., L.G., A.G., M.I.M.G., D.W.H., A.H., S.H., C.H., H.C.H., R.H., M.H., S.E.I., O.S.I., I.M.I., M.D.I., S.S.N.I., J.J., R.P.J., J.B.J., J.J.J., A.K., A.K., G.A.K., M.N.K., M.K., G.K., K.K., M.M.K., M.N.K., A.K., N.K., A.K., A.K., K.K., P.K., O.P.K., D.K., I.L., S.L., C.L.V., P.H.L., K.E.L., J.L., A.D.L., H.M.A.E.R., P.W.M., A.M., A.A.M., M.A.M., L.B.M., F.R.M.-M., B.G.M., W.M., R.G.M., E.W.M., G.A.M., T.J.M., T.M., T.R.M., B.M., S.M., S.M., A.H.M., R.M., P.M., J.F.M., A.J.N., J.N., I.N., J.W.N., H.L.T.N., V.N.-S., A.T.O., J.O.O., B.O.O., M.O.O., O.E.O., N.O., S.S.O., M.O.O., M.P.A., J.R.P., A.P., H.Q.P., M.J.P., Z.Q.S., F.R., V.R.-M., M.H.U.R., S.J.R., S.R., D.L.R., L.R., N.R., A.I.R., J.R., C.M.R.-G., S.F.R., S.S., J.A.S., H.S.K., A.M.S., J.S., D.S., R.S., M.S., J.A.S., A.S., C.T.S., M.B.S., D.B.T., A.T.T., M.V.T., B.X.T., B.U., E.U., T.J.V., Y.V., F.S.V., G.T.V., R.G.W., N.D.W., K.E.W., T.W., .C.S.W., S.Y., Y.G.Y., Z.Z., M.Z., Z.-J.Z., and S.I.H. Management of the overall research enterprise (for example, through membership in the Scientific Council) B.F.B., A.J.C., P.W.G., J.A.K., A.H.M., C.J.L.M., P.C.R., J.A.S., B.S., and S.I.H. More

  • in

    Ruminant inner ear shape records 35 million years of neutral evolution

    Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 
    Erwin, D. H. Climate as a driver of evolutionary change. Curr. Biol. 19, R575–R583 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mayhew, P. J., Jenkins, G. B. & Benton, T. G. A long-term association between global temperature and biodiversity, origination and extinction in the fossil record. Proc. R. Soc. Lond. B 275, 47–53 (2008).
    Google Scholar 
    Raia, P. et al. Past extinctions of Homo species coincided with increased vulnerability to climatic change. One Earth 3, 480–490 (2020).Article 
    ADS 

    Google Scholar 
    deMencoal, P. Climate and human evolution. Science 331, 540–542 (2011).Article 
    ADS 

    Google Scholar 
    Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47, 507–532 (2016).Article 

    Google Scholar 
    Potts, R. & Faith, J. T. Alternating high and low climate variability: The context of natural selection and speciation in Plio-Pleistocene hominin evolution. J. Hum. Evol. 87, 5–20 (2015).Article 
    PubMed 

    Google Scholar 
    Clavel, J. & Morlon, H. Accelerated body size evolution during cold climatic periods in the Cenozoic. Proc. Natl Acad. Sci. USA 114, 4183–4188 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Mihlbachler, M. C., Rivals, F., Solounias, N. & Semprebon, G. M. Dietary change and evolution of horses in North America. Science 331, 1178–1181 (2011).Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 
    Mennecart, B. et al. Bony labyrinth morphology clarifies the origin and evolution of deer. Sci. Rep. 7, 13176 (2017).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Ponce, deLeón et al. Human bony labyrinth is an indicator of population history and dispersal from Africa. Proc. Natl Acad. Sci. USA 115, 4128–4133 (2018).Article 
    ADS 

    Google Scholar 
    Luo, Z.-X. The inner ear and its bony housing in tritylodontids and implications for the evolution of the mammalian ear. Bull. Mus. Comp. Zool. 156, 81–97 (2001).
    Google Scholar 
    Ekdale, E. G. Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS ONE 8, e66624 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    O’Leary, M. A. An anatomical and phylogenetic study of the osteology of the petrosal of extant and extinct artiodactylans (Mammalia) and relatives. Bull. Am. Mus. Nat. Hist. 335, 1–206 (2010).Article 

    Google Scholar 
    Costeur, L. et al. The bony labyrinth of toothed whales reflects both phylogeny and habitat preferences. Sci. Rep. 8, 7841 (2018).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Spoor, F., Bajpai, S., Hussain, S. T., Kumar, K. & Thewissen, J. G. M. Vestibular evidence for the evolution of aquatic behavior in early cetaceans. Nature 417, 163–166 (2002).Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 
    Davies, K. T. J., Bates, P. J. J., Maryanto, I., Cotton, J. A. & Rossiter, S. J. The evolution of bat vestibular systems in the face of potential antagonistic selection pressures for flight and echolocation. PLoS ONE 8, e61998 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Park, T., Mennecart, B., Costeur, L., Grohé, C. & Cooper, N. Convergent evolution in toothed whale cochleae. BMC Evol. Biol. 1, 195 (2019).Article 

    Google Scholar 
    Benoit, J. et al. A test of the lateral semicircular canal correlation to head posture, diet and other biological traits in “ungulate” mammals. Sci. Rep. 10, 19602 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Morimoto, N. et al. Variation of bony labyrinthine morphology in Mio-Plio-Pleistocene and modern anthropoids. Am. J. Phys. Anthropol. 2020, 1–17 (2020).
    Google Scholar 
    DeMiguel, D., Azanza, B. & Morales, J. Key innovations in ruminant evolution: A paleontological perspective. Int. Zool. 9, 412–433 (2014).Article 

    Google Scholar 
    Gunz, P., Ramsier, M., Kuhrig, M., Hublin, J. & Spoor, F. The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J. Anat. 220, 529–543 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grohe, C., Tseng, Z. J., Lebrun, R., Boistel, R. & Flynn, J. J. Bony labyrinth shape variation in extant Carnivora: a case study of Musteloidea. J. Anat. 228, 366–383 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urciuoli, A. et al. A comparative analysis of the vestibular apparatus in Epipliopithecus vindobonensis: Phylogenetic implications. J. Hum. Evol. 151, 102930 (2021).Article 
    PubMed 

    Google Scholar 
    IUCN. The IUCN red list of threatened species. Version 2021-1. https://www.iucnredlist.org. Accessed 17 June 2021.Kingdon, J. & Hoffmann. M. Mammals of Africa. Volume VI pigs, hippopotamuses, chevrotains, Giraffes, deer and bovids 704 (Bloomsbury Publishing, 2013).Chen, L. et al. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 364 eaav6202 (2019).Hassanin, A. et al. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C. R. Biol. 335, 32–50 (2012).Article 
    PubMed 

    Google Scholar 
    Wang, Y. et al. Genetic basis of ruminant headgear and rapid antler regeneration. Science 364, 1153 (2019).Article 

    Google Scholar 
    Myers, E. A. & Bubrink, F. T. Ecological opportunity: Trigger of adaptative radiation. Nat. Educ. Knowl. 3, 23 (2012).
    Google Scholar 
    Gentry, A. W. Bovidae. In Cenozoic mammals of Africa (eds Werdelin, L. & Sanders, W. J.) 741–796 (University of California Press, 2010).Harris, J. M., Solounias, N. & Geraads, D. Giraffoidea. In Werdelin, L. & Sanders, W. J. Cenozoic mammals of Africa. 797–812 (University of California Press, 2010).Clauss, M. & Rössner, G. E. Old world ruminant morphophysiology, life history, and fossil record: exploring key innovations of a diversification sequence. Ann. Zool. Fenn. 51, 80–94 (2014).Article 

    Google Scholar 
    Johnston, A. R. & Anthony, N. M. A multi-locus species phylogeny of African forest duikers in the subfamily Cephalophinae: evidence for a recent radiation in the Pleistocene. BMC Evol. Biol. 12, 120 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cooney, C. R. & Thomas, G. H. Heterogeneous relationships between rates of speciation and body size evolution across vertebrate clades. Nat. Ecol. Evol. 5, 101–110 (2020).Article 
    PubMed 

    Google Scholar 
    Köhler, M. & Moyà-Solà, S. Physiological and life history strategies of a fossil large mammal in a resource-limited environment. Proc. Natl Acad. Sci. USA 106, 20354–22035 (2009).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Bibi, F. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evol. Biol. 13, 1–15 (2013).Article 

    Google Scholar 
    Geraads, D. A reassessment of the Bovidae (Mammalia) from the Nawata Formation of Lothagam, Kenya, and the late Miocene diversification of the family in Africa. J. Syst. Palaeontol. 17, 1–14 (2017).
    Google Scholar 
    Mennecart, B., Aiglstorfer, M., Li, Y., Li, C. & Wang, S. Ruminants reveal Eocene Asiatic palaeobiogeographical provinces as the origin of diachronous mammalian Oligocene dispersals into Europe. Sci. Rep. 11, 17710 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Rössner, G. E. Family tragulidae. In: The evolution of artiodactyls (eds Prothero, D. R. & Foss S. C.) (The Johns Hopkins University Press, Baltimore, 2007).Sánchez, I. M., Quiralte, V., Morales, J. & Pickford, M. A new genus of tragulid ruminant from the early Miocene of Kenya. Acta Palaeontol. Pol. 55, 177–187 (2010).Article 

    Google Scholar 
    Sánchez, I. M., Quiralte, V., Ríos, M., Morales, J. & Pickford, M. First African record of the Miocene Asian mouse-deer Siamotragulus (Mammalia, Ruminantia, Tragulidae): implications for the phylogeny and evolutionary history of the advanced selenodont tragulids. J. Syst. Palaeontol. 13, 543–556 (2015).Article 

    Google Scholar 
    Mennecart, B. et al. The first French tragulid skull (Mammalia, Ruminantia, Tragulidae) and associated tragulid remains from the Middle Miocene of Contres (Loir-et-Cher, France). C. R. Palevol 17, 189–200 (2018).Article 

    Google Scholar 
    Bobe, R. & Eck, G. C. Responses of African bovids to Pliocene climatic change. Paleobiology 27, 1–47 (2001).Article 

    Google Scholar 
    Strömberg, C. A. E. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proc. Natl Acad. Sci. USA 102, 11980–11984 (2005).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2017).Article 

    Google Scholar 
    Gravilets, S. & Losos, J. B. Adaptive radiation: contrasting theory with data. Science 323, 732–737 (2009).Article 
    ADS 

    Google Scholar 
    Moen, D. & Morlon, H. Why does diversification slow down? Trends Ecol. Evol. 29, 190–197 (2014).Article 
    PubMed 

    Google Scholar 
    Couvreur, T. L. P. et al. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol. Rev. 96, 16–51 (2020).Article 
    PubMed 

    Google Scholar 
    Fontoura, E., Darival Ferreira, J., Bubadué, J., Ribeiro, A. M. & Kerber, L. Virtual brain endocast of Antifer (Mammalia: Cervidae), an extinct large cervid from South America. J. Morphol. 281, 1–18 (2020).Article 

    Google Scholar 
    Trauth M. A. et al. Recurring types of variability and transitions in the ∼620 kyr record of climate change from the Chew Bahir basin, southern Ethiopia Quaternary. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106777 (2021).Janis, C. M. & Manning, E. Antilocapridae. In Evolution of tertiary mammals of North America (eds Janis, C. M., Scott, K. M. & Jacobs, L. L.) 491–507 (Cambridge University Press, 1998).Klimova, A., Munguia-Vega, A., Hoffman, J. I. & Culver, M. Genetic diversity and demography of two endangered captive pronghorn subspecies from the Sonoran Desert. J. Mammal. 95, 1263–1277 (2014).Article 

    Google Scholar 
    Evin, A., et al. Size and shape of the semicircular canal of the inner ear: A new marker of pig domestication? J. Exp. Zool. B Mol. Dev. Evol. https://doi.org/10.1002/jez.b.23127 (2022).Sánchez, I. M., Cantalapiedra, J. L., Ríos, M., Quiralte, V. & Morales, J. Systematics and evolution of the Miocene three-horned Palaeomerycid ruminants (Mammalia, Cetartiodactyla). PLoS ONE 10, e0143034 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wiley, D. Landmark Editor 3.6 (Institute for Data Analysis and Visualization, Davis, CA, University of California, 2006).R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2022). https://www.R-project.org/.Gunz, P. & Mitteroecker, P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24, 103–109 (2013).
    Google Scholar 
    Adams, D. C. & Otárola-Castillo, E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).Article 

    Google Scholar 
    Adams, D. C., Collyer, M. L., Kaliontzopoulou, A. geomorph: software for geometric morphometric analyses. R package version 3.2.1 software (2020).Gunz, P., Mitteroecker, P., Bookstein, F. L. Semilandmarks in three dimensions. In Modern morphometrics in physical anthropology. Springer, pp. 73–98 (2005).Maddison, W. P., Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Version 3.04. (2010).Gromolard, C. & Guérin, C. Mise au point sur Parabos cordieri (de Christol), un Bovidé (Mammalia, Artiodactyla) du Pliocène d’Europe occidentale. Géobios 13, 741–755 (1980).Article 

    Google Scholar 
    Duvernois, M.-P. Mise au point sur le genre Leptobos (Mammalia, Artiodactyla, Bovidae); implications biostratigraphiques et phylogénétiques. Géobios 25, 155–166 (1992).Article 

    Google Scholar 
    Janis, C. M., Manning, E. Dromomerycidae. In Evolution of Tertiary mammals of North America Volume1: Terrestrial carnivores, ungulates, and ungulatelike mammals (eds. Janis, C. M., Scott, K. M., Jacobs L. L.) 477–490 (Cambridge University Press, 1998).Birungi, J. & Arctander, P. Molecular systematics and phylogeny of the reduncini (artiodactyla: bovidae) inferred from the analysis of mitochondrial cytochrome b gene sequences. J. Mamm. Evol. 8, 125–147 (2001).Article 

    Google Scholar 
    Lalueza-Fox, C. et al. Molecular dating of caprines using ancient DNA sequences of Myotragus balearicus, an extinct endemic Balear mammal. BMC Evol. Biol. 5, 1–11 (2005).Article 

    Google Scholar 
    Marot, J. D. Molecular phylogeny of terrestrial artiodactyls, conflict and resolution. In The evolution of artiodactyls (eds Prothero, D. R., Foss, S. C.) 4–18 (The Johns Hopkins University Press, 2007).Webb, D. S. Hornless ruminants. In Evolution of Tertiary mammals of North America Volume1: Terrestrial carnivores, ungulates, and ungulatelike mammals (eds Janis, C. M., Scott, K. M., Jacobs, L. L.) 463–476 (Cambridge University Press, 1998).Mennecart, B. & Métais, G. Mosaicomeryx gen. nov., a ruminant mammal from the Oligocene of Europe and the significance of ‘gelocids’. J. Syst. Palaeontol. 13, 581–600 (2015).Article 

    Google Scholar 
    Sánchez, I. M., DeMiguel, D., Quiralte, V. & Morales, J. The first known Asian Hispanomeryx (Mammalia, Ruminantia, Moschidae.). J. Vert. Paleontolo. 31, 1397–1403 (2011).Heckeberg, N. S., Erpenbeck, D., Wörheide, G. & Rössner, G. Systematic relationships of five newly sequenced cervid species. PeerJ 4, e2307 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ríos, M., Sánchez, I. M. & Morales, J. A new giraffid (Mammalia, Ruminantia, Pecora) from the late Miocene of Spain, and the evolution of the sivathere-samothere lineage. PLoS ONE 12, e0185378 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vislobokova, I. New data on late Miocene mammals of Kohfidisch, Austria. Paleontol. J. 41, 451–460 (2007).Article 

    Google Scholar 
    Aiglstorfer, M., Rössner, G. E. & Böhme, M. Dorcatherium naui and pecoran ruminants from the late Middle Miocene Gratkorn locality (Austria). Palaeobiodivers. Palaeoenviron. 94, 83–123 (2014).Article 

    Google Scholar 
    Janis, C. M. & Scott, K. M. The interrelationships of higher ruminant families with special emphasis on the members of the Cervoidea. Am. Mus. Novit. 2893, 1–85 (1987).
    Google Scholar 
    Leinders, J. Hoplitomerycidae fam. nov. (Ruminantia, Mammalia) from Neogene fissure fillings in Gargano (Italy). Scr. Geol. 70, 1–68 (1984).
    Google Scholar 
    Hassanin, A. & Douzery, E. Molecular and morphological phylogenies of Ruminantia, and the alternative position of the Moschidae. Syst. Biol. 52, 206–228 (2003).Article 
    PubMed 

    Google Scholar 
    Métais, G. & Vislobokova, I. Basal ruminants. In The evolution of artiodactyls (eds Prothero, D. R. & Foss, S. C.) 189–212 (The Johns Hopkins University Press, 2007).Mennecart, B., Zoboli, D., Costeur, L. & Pillola, G. L. On the systematic position of the oldest insular ruminant Sardomeryx oschiriensis (Mammalia, Ruminantia) and the early evolution of the Giraffomorpha. J. Syst. Palaeontol. 17, 691–704 (2019).Article 

    Google Scholar 
    Aiglstorfer, M. et al. Musk Deer on the Run – Dispersal of Miocene Moschidae in the Context of Environmental Changes. In Evolution of Cenozoic land mammal faunas and ecosystems: 25 years of the NOW database of fossil mammals. (eds Casanovas-Vilar, I., van den Hoek Ostende, L. W., Janis, C. M. & Saarinen J.) (Cham: Springer, in press).Klingenberg, C. P. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).Article 
    PubMed 

    Google Scholar 
    Schlager, S. Morpho and Rvcg – Shape analysis in R. In Zheng, G., Li, S., Szekely, G. Statistical shape and deformation analysis, 217–256 (MA: Academic Press, 2017).Klingenberg, C. P. & Gidaszewski, N. A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst. Biol. 59, 245–261 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Marriott, F. H. C. Barnard’s monte carlo tests: how many simulations? Appl. Stat. 28, 75–77 (1979).Article 

    Google Scholar 
    Edgington, E. S. Randomization tests (Marcel Dekker, 1987).Tzeng, T. D. & Yeh, S. Y. Permutation tests for difference between two multivariate allometric patterns. Zool. Stud. 38, 10–18 (1999).
    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    Renaud, S., Dufour, A.-B., Hardouin, E. A., Ledevin, R. & Auffray, C. Once upon multivariate analyses: when they tell several stories about biological evolution. PLoS ONE 10, e0132801 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mitteroecker, P. & Bookstein, F. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol. Biol. 38, 100–114 (2011).Article 

    Google Scholar 
    Raia, P., Castiglione, S., Serio, C., Mondanaro, A. & Raia, M. P. Package ‘RRphylo’. CRAN Repos. 4, 1–31 (2018).
    Google Scholar 
    Castiglione, S. et al. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods Ecol. Evol. 9, 974–983 (2018).Article 

    Google Scholar 
    Morlon, H. et al. “RPANDA: an R package for macroevolutionary analyses on phylogenetic trees.”. Methods Ecol. Evol. 7, 589–597 (2016).Article 

    Google Scholar 
    Costeur, L., Mennecart, B., Müller, B., Schulz, G. Observations on the scaling relationship between bony labyrinth, skull size and body mass in ruminants. Proc. SPIE 11113, https://doi.org/10.1117/12.2530702 (2019).Costeur, L., Mennecart, B., Müller, B. & Schulz, G. Prenatal growth stages show the development of the ruminant bony labyrinth and petrosal bone. J. Anat. 230, 347–353 (2017).Article 
    PubMed 

    Google Scholar 
    Mennecart, B. & Costeur, L. Shape variation and ontogeny of the ruminant bony labyrinth, an example in Tragulidae. J. Anat. 229, 422–435 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clauss, M., Steuer, P., Müller, D. W. H., Codron, D. & Hummel, J. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS One 8, e68714 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    du Toit, J. T. & Owen-Smith, N. Body size, population metabolism, and habitat specialization among large African herbivores. Am. Nat. 133, 736–740 (1989).Article 

    Google Scholar 
    Mennecart B., Becker D., & Berger J. -P. Mandible shape of ruminants: between phylogeny and feeding habits. In: Ruminants: Anatomy, behavior, and diseases, (ed. Mendes R. E.) 205–226 (Nova Science Publishers, 2012).Bokma, F. et al. Testing for Depéret’s rule (body size increase) in mammals using combined extinct and extant data. Syst. Biol. 65, 98–108 (2016).Article 
    PubMed 

    Google Scholar 
    Besiou, E., Choupa, M. N., Lyras, G. & van der Geer, A. Body mass divergence in sympatric deer species of Pleistocene Crete (Greece). Palaeontol. Electron. 25, a23 (2022).
    Google Scholar 
    Mennecart B., Métais G., Tissier J., Rössner G. E., & Costeur L. 3D models related to the publication: Reassessment of the enigmatic ruminant Miocene genus Amphimoschus Bourgeois, 1873 (Mammalia, Artiodactyla, Ruminantia, Pecora). MorphoMuseuM 7, e131 (2021).Mennecart, B., Perthuis de, A. D. & Costeur, L. 3D models related to the publication: The first French tragulid skull (Mammalia, Ruminantia, Tragulidae) and associated tragulid remains from the Middle Miocene of Contres (Loir-et-Cher, France). MorphoMuseuM 3, e4 (2018).Article 

    Google Scholar 
    Aiglstorfer, M., Costeur, L., Mennecart, B. & Heizmann, E. P. J. Micromeryx? eiselei – a new moschid species from Steinheim am Albuch, Germany, and the first comprehensive description of moschid cranial material from the Miocene of Central Europe. MorphoMuseuM 3, e4 (2107).Article 

    Google Scholar 
    Costeur, L. & Mennecart, B. 3D models related to the publication: Prenatal growth stages show the development of the ruminant bony labyrinth and petrosal bone. MorphoMuseuM 2, e3 (2016).Article 

    Google Scholar 
    Mennecart, B. & Costeur, L. 3D models related to the publication: a Dorcatherium (Mammalia, Ruminantia, Middle Miocene) petrosal bone and the tragulid ear region. MorphoMuseuM 2, e2 (2016).Article 

    Google Scholar 
    Mennecart, B. et al. Allometric and phylogenetic aspects of stapes morphology in ruminantia (Mammalia, Artiodactyla). Front. Earth Sci. 8, 176 (2020). More

  • in

    Phytoplankton in the middle

    Marine phytoplankton both follow and actively influence the environment they inhabit. Unpacking the complex ecological and biogeochemical roles of these tiny organisms can help reveal the workings of the Earth system.
    Phytoplankton are the workers of an ocean-spanning factory converting sunlight and raw nutrients into organic matter. These little organisms — the foundation of the marine ecosystem — feed into a myriad of biogeochemical cycles, the balance of which help control the distribution of carbon on the Earth surface and ultimately the overall climate state. As papers in this issue of Nature Geoscience show, phytoplankton are far from passive actors in the global web of biogeochemical cycles. The functioning of phytoplankton is not just a matter for biologists, but is also important for geoscientists seeking to understand the Earth system more broadly.Phytoplankton are concentrated where local nutrient and sea surface temperatures are optimal, factors which aren’t always static in time. Prominent temperature fluctuations, from seasonal to daily cycles, are reflected in phytoplankton biomass, with cascading effects on other parts of marine ecosystems, such as economically-important fisheries. In an Article in this issue, Keerthi et al., show that phytoplankton biomass, tracked by satellite measurements of chlorophyll for relatively small ( More

  • in

    Rare and declining bird species benefit most from designating protected areas for conservation in the UK

    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 
    PubMed 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulze, K. et al. An assessment of threats to terrestrial protected areas. Conserv. Lett. 11, e12435 (2018).Article 

    Google Scholar 
    Bingham, H. C. et al. (eds). Protected Planet Report 2020 (UNEP-WCMC & IUCN, 2021); https://livereport.protectedplanet.net/Buchanan, G. M., Butchart, S. H., Chandler, G. & Gregory, R. D. Assessment of national-level progress towards elements of the Aichi Biodiversity Targets. Ecol. Indic. 116, 106497 (2020).Article 

    Google Scholar 
    Xu, H. et al. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 5, 411–418 (2021).Article 
    PubMed 

    Google Scholar 
    Report of the Open-ended Working Group on the Post-2020 Global Biodiversity Framework on Its Third Meeting (CBD Secretariat, 2022); https://www.cbd.int/conferences/post2020/wg2020-03/documentsRodrigues, A. S. & Cazalis, V. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11, 5147 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Starnes, T. et al. The extent and effectiveness of protected areas in the UK. Glob. Ecol. Conserv. 30, e01745 (2021).Article 

    Google Scholar 
    Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cazalis, V. et al. Mismatch between bird species sensitivity and the protection of intact habitats across the Americas. Ecol. Lett. 24, 2394–2405 (2021).Article 
    PubMed 

    Google Scholar 
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Gamero, A. et al. Tracking progress toward EU biodiversity strategy targets: EU policy effects in preserving its common farmland birds. Conserv. Lett. 10, 395–402 (2017).Article 

    Google Scholar 
    Pellissier, V. et al. Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data. Conserv. Biol. 34, 666–676 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Princé, K., Rouveyrol, P., Pellissier, V., Touroult, J. & Jiguet, F. Long-term effectiveness of Natura 2000 network to protect biodiversity: a hint of optimism for common birds. Biol. Conserv. 253, 108871 (2021).Article 

    Google Scholar 
    Cunningham, C. A., Thomas, C. D., Morecroft, M. D., Crick, H. Q. P. & Beale, C. M. The effectiveness of the protected area network of Great Britain. Biol. Conserv. 257, 109146 (2021).Article 

    Google Scholar 
    Duckworth, G. D. & Altwegg, R. Effectiveness of protected areas for bird conservation depends on guild. Divers. Distrib. 24, 1083–1091 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Rada, S. et al. Protected areas do not mitigate biodiversity declines: a case study on butterflies. Divers. Distrib. 25, 217–224 (2019).Article 

    Google Scholar 
    Terraube, J., Van Doninck, J., Helle, P., & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Lenoir, J. et al. Species better track the shifting isotherms in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 
    PubMed 

    Google Scholar 
    van Teeffelen, A., Meller, L., van Minnen, J., Vermaat, J. & Cabeza, M. How climate proof is the European Union’s biodiversity policy? Regional Environ. Change 15, 997–1010 (2015).Article 

    Google Scholar 
    Thomas, C. D. & Gillingham, P. K. The performance of protected areas for biodiversity under climate change. Biol. J. Linn. Soc. Lond. 115, 718–730 (2015).Article 

    Google Scholar 
    Gillingham, P. K. et al. The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biol. J. Linn. Soc. Lond. 115, 707–717 (2015).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Stokstad, E. Species? Climate? Cost? Ambitious goal means trade-offs. Science 371, 555 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brlík, V. et al. Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Sci. Data 8, 21 (2021).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Stanbury, A. et al. The status of bird populations: the fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723–747 (2021).
    Google Scholar 
    Dudley, N. (ed). Guidelines for Applying Protected Area Management Categories (IUCN, 2008).Deguignet, M. et al. Measuring the extent of overlaps in protected area designations. PLoS ONE 12, e0188681 (2017).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    JNCC. Common Standards Monitoring: Introduction to the Guidance Manual (JNCC Resource Hub, 2004).Hayhow, D. B. et al. State of Nature 2019 (RSPB, 2019).Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020); https://helda.helsinki.fi/handle/10138/326470Franks, S. E., Roodbergen, M., Teunissen, W., Carrington Cotton, A. & Pearce‐Higgins, J. W. Evaluating the effectiveness of conservation measures for European grassland‐breeding waders. Ecol. Evol. 8, 10555–10568 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Pearce-Higgins, J. W. et al. Site-based adaptation reduces the negative effects of weather upon a southern range margin Welsh black grouse Tetrao tetrix population that is vulnerable to climate change. Clim. Change 153, 253–265 (2019).Article 

    Google Scholar 
    Jellesmark, S. et al. A counterfactual approach to measure the impact of wet grassland conservation on U.K. breeding bird populations. Conserv. Biol. 35, 1575–1585 (2021).Article 
    PubMed 

    Google Scholar 
    Morrison, C. A. et al. Covariation in population trends and demography reveals targets for conservation action. Proc. Biol. Sci. 288, 20202955 (2021).PubMed Central 
    PubMed 

    Google Scholar 
    Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Martay, B. et al. Monitoring landscape-scale environmental changes with citizen scientists: Twenty years of land use change in Great Britain. J. Nat. Conserv. 44, 33–42 (2018).Article 

    Google Scholar 
    Sullivan, M. J. P., Newson, S. E. & Pearce‐Higgins, J. W. Changing densities of generalist species underlie apparent homogenization of UK bird communities. Ibis 158, 645–655 (2016).Article 

    Google Scholar 
    Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).Article 
    PubMed 

    Google Scholar 
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).Article 

    Google Scholar 
    Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change—evidence from large‐scale, long‐term abundance data. Glob. Change Biol. 25, 304–313 (2019).Article 

    Google Scholar 
    Gaüzère, P., Jiguet, F. & Devictor, V. Can protected areas mitigate the impacts of climate change on bird’s species and communities? Diversity Distrib. 22, 625–637 (2016).Article 

    Google Scholar 
    Neate‐Clegg, M. H. C., Jones, S. E. I., Burdekin, O., Jocque, M. & Şekercioğlu, Ç. H. Elevational changes in the avian community of a Mesoamerican cloud forest park. Biotropica 50, 805–815 (2018).Article 

    Google Scholar 
    Oliver, T. H. et al. Large extents of intensive land use limit community reorganization during climate warming. Glob. Change Biol. 23, 2272–2283 (2017).Article 

    Google Scholar 
    Hiley, J. R., Bradbury, R. B., Holling, M. & Thomas, C. D. Protected areas act as establishment centres for species colonizing the UK. Proc. Biol. Sci. 280, 20122310 (2013).PubMed Central 
    PubMed 

    Google Scholar 
    Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Grace, M. K. et al. Testing a global standard for quantifying species recovery and assessing conservation impact. Conserv. Biol. 35, 1833–1849 (2021).Article 
    PubMed 

    Google Scholar 
    Gibbons, D. W., Reid, J. B. & Chapman, R. A. The New Atlas of Breeding Birds in Britain & Ireland 1988–1991 (T. & A. D. Poyser, 1993).Balmer, D. E. et al. Bird Atlas 2007–11: the Breeding and Wintering Birds of Britain and Ireland (BTO, 2013).Gillings, S. et al. Breeding and wintering bird distributions in Britain and Ireland from citizen science bird atlases. Glob. Ecol. Biogeogr. 28, 866–874 (2019).Article 

    Google Scholar 
    Freeman, S. N., Noble, D. G., Newson, S. E. & Baillie, S. R. Modelling population changes using data from different surveys: the Common Birds Census and the Breeding Bird Survey. Bird Study 54, 61–72 (2007).Article 

    Google Scholar 
    Robinson, R. A., Julliard, R. & Saracco, J. F. Constant effort: studying avian population processes using standardised ringing. Ring. Migr. 24, 199–204 (2009).Article 

    Google Scholar 
    Cave, V. M., Freeman, S. N., Brooks, S. P., King, R. & Balmer, D. E. in Modeling Demographic Processes in Marked Populations, 949–963 (Springer, 2009).Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, GB) (eds Thomson, D. L. et al) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/7115bc48-3ab0-475d-84ae-fd3126c20984Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, N. Ireland) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/362feaea-0ccf-4a45-b11f-980c6b89a858ASTER Global Digital Elevation Model V003 (dataset). NASA EOSDIS Land Processes DAAC (NASA/METI/AIST/Japan Space Systems and U.S./Japan ASTER Science Team, 2019); https://doi.org/10.5067/ASTER/ASTGTM.003Schiavina, M., Freire, S. & MacManus, K. GHS-SMOD R2019A – GHS Settlement Layers, Updated and Refined REGIO Model 2014 in Application to GHS-BUILT R2018A and GHS-POP R2019A, Multitemporal (1975-1990-2000-2015) (European Commission Joint Research Centre, 2019); https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218Robinson, R. A. BirdFacts: Profiles of Birds Occurring in Britain & Ireland (BTO, 2005).Gibbons, D. W. et al. Bird species of conservation concern in the United Kingdom, Channel Islands and Isle of Man: revising the Red Data List. RSPB Conserv. Rev. 10, 7–18 (1996).
    Google Scholar 
    Stone, B. H. et al. Population estimates of birds in Britain and in the United Kingdom. Br. Birds 90, 1–22 (1997).
    Google Scholar 
    Woodward, I. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69–104 (2020).
    Google Scholar 
    R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Bull, J. W., Strange, N., Smith, R. J. & Gordon, A. Reconciling multiple counterfactuals when evaluating biodiversity conservation impact in social‐ecological systems. Conserv. Biol. 35, 510–521 (2020).Article 
    PubMed 

    Google Scholar 
    Jellesmark, S. et al. Assessing the global impact of targeted conservation actions on species abundance. Preprint at bioRxiv https://doi.org/10.1101/2022.01.14.476374 (2022).Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds but management helps. Nature 605, 103–107 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.4.4 (2021); https://CRAN.R-project.org/package=DHARMaJetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnston, A. et al. Species traits explain variation in detectability of UK birds. Bird Study 61, 340–350 (2014).Article 

    Google Scholar 
    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).Article 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Anal. 15, 199–236 (2007).Article 

    Google Scholar 
    Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).Article 
    PubMed 

    Google Scholar 
    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. Biol. Sci. 275, 2743–2748 (2008).PubMed Central 
    PubMed 

    Google Scholar  More