Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).Article
CAS
Google Scholar
Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).Article
CAS
Google Scholar
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).Article
CAS
Google Scholar
Hughes, A. R. et al. Predicting the sensitivity of marine populations to rising temperatures. Front. Ecol. Environ. 17, 17–24 (2019).Article
Google Scholar
Sunday, J. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).Article
Google Scholar
Bennett, S., Duarte, C. M., Marbà, N. & Wernberg, T. Integrating within-species variation in thermal physiology into climate change ecology. Philos. Trans. R. Soc. B 374, 20180550 (2019).Article
Google Scholar
Sasaki, M. C. & Dam, H. G. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Glob. Change Biol. 25, 4147–4164 (2019).Article
Google Scholar
Kelly, M. W., Sanford, E. & Grosberg, R. K. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc. R. Soc. B 279, 349–356 (2012).Article
Google Scholar
Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).Article
Google Scholar
Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).Article
Google Scholar
Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).Article
CAS
Google Scholar
Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).Article
Google Scholar
Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).Article
CAS
Google Scholar
Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282, 20150401 (2015).Article
Google Scholar
Barley, J. M. et al. Limited plasticity in thermally tolerant ectotherm populations: evidence for a trade-off. Proc. R. Soc. B 288, 202110765 (2021).Article
Google Scholar
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article
Google Scholar
Grummer, J. A. et al. Aquatic landscape genomics and environmental effects on genetic variation. Trends Ecol. Evol. 34, 641–654 (2019).Article
Google Scholar
Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).Article
Google Scholar
Lester, S. E., Ruttenberg, B. I., Gaines, S. D. & Kinlan, B. P. The relationship between dispersal ability and geographic range size. Ecol. Lett. 10, 745–758 (2007).Article
Google Scholar
Kinlan, B. P., Gaines, S. D. & Lester, S. E. Propagule dispersal and the scales of marine community process. Diversity Distrib. 11, 139–148 (2005).Article
Google Scholar
Mayr, E. Animal Species and Evolution (Harvard Univ. Press, 2014).Haldane, J. B. S. The relation between density regulation and natural selection. Proc. R. Soc. Lond. B 145, 306–308 (1956).Article
CAS
Google Scholar
Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).Article
CAS
Google Scholar
Burgess, S. C., Treml, E. A. & Marshall, D. J. How do dispersal costs and habitat selection influence realized population connectivity? Ecology 93, 1378–1387 (2012).Article
Google Scholar
Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Annu. Rev. Mar. Sci. 3, 509–535 (2011).Article
Google Scholar
Caplat, P. et al. Looking beyond the mountain: dispersal barriers in a changing world. Front. Ecol. Environ. 14, 261–268 (2016).Article
Google Scholar
Nickols, K. J., Wilson White, J., Largier, J. L. & Gaylord, B. Marine population connectivity: reconciling large-scale dispersal and high self-retention. Am. Nat. 185, 196–211 (2015).Article
Google Scholar
Pinsky, M. L., Comte, L. & Sax, D. F. Unifying climate change biology across realms and taxa. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.04.011 (2022).Fourcade, Y. et al. Habitat amount and distribution modify community dynamics under climate change. Ecol. Lett. 24, 950–957 (2021).Article
Google Scholar
Kappes, H., Tackenberg, O. & Haase, P. Differences in dispersal- and colonization-related traits between taxa from the freshwater and the terrestrial realm. Aquat. Ecol. 48, 73–83 (2014).Article
CAS
Google Scholar
Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).Article
Google Scholar
Kappes, H. & Haase, P. Slow, but steady: dispersal of freshwater molluscs. Aquat. Sci. 74, 1–14 (2012).Article
Google Scholar
Sasaki, M. & Dam, H. G. Global patterns in copepod thermal tolerance. J. Plankton Res. 43, 598–609 (2021).Article
Google Scholar
Cereja, R. Critical thermal maxima in aquatic ectotherms. Ecol. Indic. 119, 106856 (2020).Article
Google Scholar
Vinagre, C. et al. Upper thermal limits and warming safety margins of coastal marine species – Indicator baseline for future reference. Ecol. Indic. 102, 644–649 (2019).Article
Google Scholar
Muñoz, M. M. The Bogert effect, a factor in evolution. Evolution 76, 49–66 (2022).Article
Google Scholar
Muñoz, M. M. & Bodensteiner, B. L. Janzen’s hypothesis meets the Bogert effect: connecting climate variation, thermoregulatory behavior, and rates of physiological evolution. Integr. Org. Biol. 1, oby002 (2019).Spence, A. R. & Tingley, M. W. The challenge of novel abiotic conditions for species undergoing climate-induced range shifts. Ecography 43, 1571–1590 (2020).Article
Google Scholar
Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).Article
CAS
Google Scholar
Steele, J. H., Brink, K. H. & Scott, B. E. Comparison of marine and terrestrial ecosystems: suggestions of an evolutionary perspective influenced by environmental variation. ICES J. Mar. Sci. 76, 50–59 (2019).Article
Google Scholar
Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).Article
Google Scholar
Chuang, A. & Peterson, C. R. Expanding population edges: theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).Article
Google Scholar
Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).Article
CAS
Google Scholar
Gaston, K. J. et al. Macrophysiology: a conceptual reunification. Am. Nat. 174, 595–612 (2009).Article
Google Scholar
Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).Article
CAS
Google Scholar
Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).Article
CAS
Google Scholar
Cooper, H., Hedges, L. V. & Valentine, J. C. The Handbook of Research Synthesis and Meta-Analysis (Russel Sage Foundation, 2009).Gleser, L. & Olkin, I. in The Handbook of Research Synthesis and Meta-Analysis (eds Cooper, H. et al.) Ch. 19 (Russel Sage Foundation, 2009).Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).Article
Google Scholar
Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).Article
CAS
Google Scholar
Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’’ animals against climate warming. Proc. Natl Acad. Sci. USA 10, 3835–3840 (2009).Article
Google Scholar
Denney, D. A., Jameel, M. I., Bemmels, J. B., Rochford, M. E. & Anderson, J. T. Small spaces, big impacts: contributions of micro-environmental variation to population persistence under climate change. AoB Plants 12, plaa005 (2020).Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).Article
CAS
Google Scholar
Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).Article
Google Scholar
Wanders, N., van Vliet, M. T. H., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. High-resolution global water temperature modeling. Water Resour. Res. 55, 2760–2778 (2019).Article
Google Scholar
Todgham, A. E. & Stillman, J. H. Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr. Comp. Biol. 53, 539–544 (2013).Article
Google Scholar
Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).Article
CAS
Google Scholar
Pespeni, M. H. & Palumbi, S. R. Signals of selection in outlier loci in a widely dispersing species across an environmental mosaic. Mol. Ecol. 22, 3580–3597 (2013).Article
CAS
Google Scholar
Hoey, J. A. & Pinsky, M. L. Genomic signatures of environmental selection despite near-panmixia in summer flounder. Evolut. Appl. 11, 1732–1747 (2018).Article
CAS
Google Scholar
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).Article
CAS
Google Scholar
Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of Anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).Article
Google Scholar
Morelli, T. L. et al. Managing Climate Change refugia for climate adaptation. PLoS ONE 11, e0159909 (2016).Article
Google Scholar
Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1, 443–466 (2009).Article
Google Scholar
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Internal Med. 151, 264–270 (2009).Article
Google Scholar
O’Dea, R. E. et al. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev. https://doi.org/10.1111/brv.12721 (2021).Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, 89 (2021).Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 1198 (2018).Lancaster, L. T. & Humphreys, A. M. Global variation in the thermal tolerances of plants. Proc. Natl Acad. Sci. USA 117, 13580–13587 (2020).Article
CAS
Google Scholar
Rohatgi, A. WebPlotDigitizer (2020); https://automeris.io/WebPlotDigitizerAssis, J. et al. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).Article
Google Scholar
Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).Article
Google Scholar
Dee, D. P. et al. The ERA–interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorolog. Soc. 137, 553–597 (2011).Article
Google Scholar
Helmuth, B. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).Article
CAS
Google Scholar
Helmuth, B. Thermal biology of rocky intertidal mussels: quantifying body temperature using climatological data. Ecology 80, 15–34 (1999).Article
Google Scholar
Bell, E. C. Environmental and morphological influences on thallus temperature and desiccation of the intertidal alga Mastocarpus papillatus Kützing. J. Exp. Mar. Biol. Ecol. 191, 29–55 (1995).Article
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Software 36, 1–48 (2010).Article
Google Scholar
Sasaki, M. et al. Data for ‘greater local adaptation to temperature in the ocean than on land’. figshare https://doi.org/10.6084/m9.figshare.20173571 (2022). More