More stories

  • in

    Long-term maintenance of a heterologous symbiont association in Acropora palmata on natural reefs

    Hoegh-Guldberg O, Smith JG. The effect of sudden changes in temperature, light, and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata (Esper) and Seriatopora hysterix (Dana). J Exp Mar Biol Ecol. 1989;129:279–303.Article 

    Google Scholar 
    Glynn PW. Coral reef bleaching: ecological perspectives. Coral Reefs. 1993;12:1–17.Article 

    Google Scholar 
    Berkelmans R, van Oppen MJH. The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc B: Biol Sci. 2006;273:2305–12.Article 

    Google Scholar 
    Cunning R, Gillette P, Capo T, Galvez K, Baker AC. Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs. 2015;34:155–60.Article 

    Google Scholar 
    Scharfenstein HJ, Chan WY, Buerger P, Humphrey C, van Oppen MJH. Evidence for de novo acquisition of microalgal symbionts by bleached adult corals. ISME J. 2022;16:1676–9.Article 

    Google Scholar 
    Goulet TL. Most corals may not change their symbionts. Mar Ecol Prog Ser. 2006;321:1–7.Article 

    Google Scholar 
    Jones A, Berkelmans R. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS ONE. 2010;5:e10437.Article 

    Google Scholar 
    van Oppen MJH, Oliver JK, Putnam HM, Gates RD. Building coral reef resilience through assisted evolution. Proc R Soc B: Biol Sci. 2015;112:2307–13.
    Google Scholar 
    Buerger P, Alvarez C, Coppin CW, Pearce SL, Chakravarti LJ, Oakeshott JG, et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci Adv. 2020;6:eaba2498.Kuffner IB, Toth LT. A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv Biol: J Soc Conserv Biol. 2016;30:706–15.Article 

    Google Scholar 
    Young CN, Schopmeyer SA, Lirman D. A review of reef restoration and Coral propagation using the threatened genus Acropora in the Caribbean and western Atlantic. Bull Mar Sci. 2012;88:1075–98.Article 

    Google Scholar 
    Reich HG, Kitchen SA, Stankiewicz KH, Devlin-Durante M, Fogarty ND, Baums IB. Genomic variation of an endosymbiotic dinoflagellate (Symbiodinium fitti) among closely related coral hosts. Mol Ecol. 2021;30:3500–14.Article 

    Google Scholar 
    Baums IB, Devlin-Durante MK, Lajeunesse TC. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol. 2014;23:4203–15.Article 

    Google Scholar 
    Gantt SE, Keister E, Manfroy A, Merck D, Fitt W, Muller E, et al. Wild and nursery-raised corals: comparative physiology of two framework coral species. Coral Reefs. (In Press).Hume BCC, Smith EG, Ziegler M, Hugh J, Warrington M, Burt J, et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol Ecol Resour. 2019;19:1063–80.Article 

    Google Scholar 
    Randall CJ, Negri AP, Quigley KM, Foster T, Ricardo GF, Webster NS, et al. Sexual production of corals for reef restoration in the Anthropocene. Mar Ecol Prog Ser. 2020;635:203–32.Article 

    Google Scholar 
    Bay LK, Cumbo VR, Abrego D, Kool JT, Ainsworth TD, Willis BL. Infection dynamics vary between Symbiodinium types and cell surface treatments during establishment of endosymbiosis with coral larvae. Diversity. 2011;3:356–74.Article 

    Google Scholar 
    Abrego D, van Oppen MJH, Willis BL. Highly infectious symbiont dominates initial uptake in coral juveniles. Mol Ecol. 2009;18:3518–31.Article 

    Google Scholar 
    Cunning R, Silverstein RN, Baker AC. Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc R Soc B: Biol Sci. 2015;282:20141725.Chamberland VF, Petersen D, Latijnhouwers KRW, Snowden S, Mueller B, Vermeij MJA. Four-year-old Caribbean Acropora colonies reared from field-collected gametes are sexually mature. Bull Mar Sci. 2016;92:263–4.Silverstein RN, Correa AMS, Baker AC. Specificity is rarely absolute in coral–algal symbiosis: implications for coral response to climate change. Proc R Soc B: Biol Sci. 2012;279:2609–18.Article 

    Google Scholar  More

  • in

    Siberian carbon sink reduced by forest disturbances

    Keenan, R. J. et al. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manage. 352, 9–20 (2015).Article 

    Google Scholar 
    Arneth, A. et al. in Special Report on Climate Change and Land (eds Shukla, P. R. et al.) Ch. 1 (IPCC, 2019).Piao, S. et al. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, GB3018 (2007).Article 

    Google Scholar 
    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).Article 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 

    Google Scholar 
    Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).Article 

    Google Scholar 
    Chen, J. M. et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 10, 4259 (2019).Article 

    Google Scholar 
    Myneni, R. B. et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).Article 

    Google Scholar 
    Filipchuk, A. et al. Russian forests: a new approach to the assessment of carbon stocks and sequestration capacity. Environ. Dev. 26, 68–75 (2018).Article 

    Google Scholar 
    Goodale, C. L. et al. Forest carbon sinks in the Northern Hemisphere. Ecol. Appl. 12, 891–899 (2002).Article 

    Google Scholar 
    Tchebakova, N. M. et al. Energy and mass exchange and the productivity of main Siberian ecosystems (from eddy covariance measurements). 2. Carbon exchange and productivity. Biol. Bull. 42, 579–588 (2015).Article 

    Google Scholar 
    Vaganov, E. A. et al. Forests and swamps of Siberia in the global carbon cycle. Contemp. Probl. Ecol. 1, 168–182 (2008).Article 

    Google Scholar 
    Schepaschenko, D. et al. Russian forest sequesters substantially more carbon than previously reported. Sci. Rep. 11, 12825 (2021).Article 

    Google Scholar 
    Shvidenko, A. & Schepaschenko, D. Climate change and wildfires in Russia. Contemp. Probl. Ecol. 6, 683–692 (2013).Article 

    Google Scholar 
    Bradshaw, C. J. A. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).Article 

    Google Scholar 
    Curtis, P. G. et al. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).Article 

    Google Scholar 
    Sukhinin, A. I. et al. AVHRR-based mapping of fires in Russia: new products for fire management and carbon cycle studies. Remote Sens. Environ. 93, 546–564 (2004).Article 

    Google Scholar 
    Soja, A. J. et al. Climate-induced boreal forest change: predictions versus current observations. Glob. Planet. Change 56, 274–296 (2007).Article 

    Google Scholar 
    Dolman, A. J. et al. An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods. Biogeosciences 9, 5323–5340 (2012).Article 

    Google Scholar 
    Schaphoff, S. et al. Tamm review: Observed and projected climate change impacts on Russia’s forests and its carbon balance. For. Ecol. Manage. 361, 432–444 (2016).Article 

    Google Scholar 
    de Jong, R. et al. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Change Biol. 18, 642–655 (2012).Article 

    Google Scholar 
    Buermann, W. et al. Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophys. Res. Lett. 41, 1995–2002 (2014).Article 

    Google Scholar 
    Rödig, E. et al. Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: Linking remote sensing, forest modelling and field inventory. Glob. Ecol. Biogeogr. 26, 1292–1302 (2017).Article 

    Google Scholar 
    Quegan, S. et al. Estimating the carbon balance of central Siberia using a landscape-ecosystem approach, atmospheric inversion and dynamic global vegetation models. Glob. Change Biol. 17, 351–365 (2011).Article 

    Google Scholar 
    Gurney, K. R. et al. Interannual variations in continental-scale net carbon exchange and sensitivity to observing networks estimated from atmospheric CO2 inversions for the period 1980 to 2005. Glob. Biogeochem. Cycles 22, GB3025 (2008).Article 

    Google Scholar 
    Stephens, B. B. et al. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316, 1732–1735 (2007).Article 

    Google Scholar 
    Leskinen, P. et al. Russian Forests and Climate Change: What Science Can Tell Us 11 (EFI, 2020); https://doi.org/10.36333/wsctu11Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).Article 

    Google Scholar 
    Stow, D. A. et al. Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems. Remote Sens. Environ. 89, 281–308 (2004).Article 

    Google Scholar 
    Karlsen, S. R. et al. A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high Arctic plant productivity. Environ. Res. Lett. 13, 025011 (2018).Article 

    Google Scholar 
    Ding, Z. et al. Nearly half of global vegetated area experienced inconsistent vegetation growth in terms of greenness, cover, and productivity. Earths Future 8, e2020EF001618 (2020).Article 

    Google Scholar 
    Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants 5, 944–951 (2019).Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article 

    Google Scholar 
    Giglio, L. et al. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).Article 

    Google Scholar 
    Blunden, J. & Arndt, D. S. State of the climate in 2015. Bull. Am. Meteorol. Soc. 97, Si–S275 (2016).Article 

    Google Scholar 
    Bastos, A. et al. Was the extreme Northern Hemisphere greening in 2015 predictable? Environ. Res. Lett. 12, 044016 (2017).Article 

    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).Article 

    Google Scholar 
    Kukavskaya, E. A. et al. Biomass dynamics of central Siberian Scots pine forests following surface fires of varying severity. Int. J. Wildland Fire 23, 872–886 (2014).Article 

    Google Scholar 
    Gauthier, S. et al. Boreal forest health and global change. Science 349, 819 (2015).Article 

    Google Scholar 
    Harris, N. L. et al. Baseline map of carbon emissions from deforestation in tropical regions. Science 336, 1573 (2012).Article 

    Google Scholar 
    Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).Article 

    Google Scholar 
    Rogers, B. M. et al. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015).Article 

    Google Scholar 
    Shvetsov, E. G. et al. Assessment of post-fire vegetation recovery in southern Siberia using remote sensing observations. Environ. Res. Lett. 14, 055001 (2019).Article 

    Google Scholar 
    Wang, J. A. et al. Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nat. Clim. Change 11, 435–441 (2021).Article 

    Google Scholar 
    Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 7, eabe9829 (2021).Article 

    Google Scholar 
    Shuman, J. K. et al. Forest forecasting with vegetation models across Russia. Can. J. For. Res. 45, 175–184 (2014).Article 

    Google Scholar 
    Flannigan, M. et al. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Change Biol. 15, 549–560 (2009).Article 

    Google Scholar 
    Yuan, W. et al. Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome. Nat. Commun. 5, 4270 (2014).Article 

    Google Scholar 
    Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).Article 

    Google Scholar 
    Larjavaara, M. et al. Post-fire carbon and nitrogen accumulation and succession in Central Siberia. Sci. Rep. 7, 12776 (2017).Article 

    Google Scholar 
    Berner, L. T. et al. Cajander larch (Larix cajanderi) biomass distribution, fire regime and post-fire recovery in northeastern Siberia. Biogeosciences 9, 3943–3959 (2012).Article 

    Google Scholar 
    Myneni, R. et al. MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500 m SIN Grid v.006 (LAADS DAAC, 2015).Houghton, R. A. et al. Mapping Russian forest biomass with data from satellites and forest inventories. Environ. Res. Lett. 2, 045032 (2007).Article 

    Google Scholar 
    DiMiceli, C. et al. Annual Global Automated MODIS Vegetation Continuous Fields (MOD44B) at 250 m Spatial Resolution for Data Years Beginning Day 65, 2000–2014, Collection 5 Percent Tree Cover v.6 (University of Maryland, 2017).Simard, M. et al. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116, G04021 (2011).
    Google Scholar 
    Broxton, P. et al. A global land cover climatology using MODIS data. J. Appl. Meteorol. Climatol. 53, 1593–1605 (2014).Article 

    Google Scholar 
    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).Article 

    Google Scholar 
    Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data. 13, 3927–3950 (2021).Article 

    Google Scholar 
    Carreiras, J. M. B. et al. Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions. Remote Sens. Environ. 196, 154–162 (2017).Article 

    Google Scholar 
    Penman, J. et al. Good Practice Guidance for Land Use, Land-Use Change and Forestry (IGES, 2013).Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).Article 

    Google Scholar 
    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).Article 

    Google Scholar 
    Fernandez-Moran, R. et al. SMOS-IC: an alternative SMOS soil moisture and vegetation optical depth product. Remote Sens. 9, 457 (2017).Article 

    Google Scholar 
    Wigneron, J.-P. et al. SMOS-IC data record of soil moisture and L-VOD: historical development, applications and perspectives. Remote Sens. Environ. 254, 112238 (2021).Article 

    Google Scholar 
    Mitchard, E. T. A. et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr. 23, 935–946 (2014).Article 

    Google Scholar 
    Mitchard, E. T. A. et al. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance Manage. 8, 10 (2013).Article 

    Google Scholar 
    Harmon, M. E. et al. Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance Manage. 15, 1 (2020).Article 

    Google Scholar 
    Bartalev, S. A. & Stytsenko, F. V. Assessment of forest-stand destruction by fires based on remote-sensing data on the seasonal distribution of burned areas. Contemp. Probl. Ecol. 14, 711–716 (2021).Article 

    Google Scholar 
    van Wees, D. et al. The role of fire in global forest loss dynamics. Glob. Change Biol. 27, 2377–2391 (2021).Article 

    Google Scholar 
    Vicente‐Serrano, S. M. et al. A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J. Clim. 23, 1696–1718 (2010).Article 

    Google Scholar 
    Schepaschenko, D. et al. A new hybrid land cover dataset for Russia: a methodology for integrating statistics, remote sensing and in situ information. J. Land Use Sci. 6, 245–259 (2011).Article 

    Google Scholar 
    Du, J. et al. A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations. Earth Syst. Sci. Data. 9, 791–808 (2017).Article 

    Google Scholar 
    Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).Article 

    Google Scholar 
    De Grandpré, L. et al. Long-term post-fire changes in the northeastern boreal forest of Quebec. J. Veg. Sci. 11, 791–800 (2000).Article 

    Google Scholar  More

  • in

    Recent global decline in rainfall interception loss due to altered rainfall regimes

    Savenije, H. H. G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol. Process. 18, 1507–1511 (2004).Article 
    ADS 

    Google Scholar 
    Gerrits, A. M. J., Pfister, L. & Savenije, H. H. G. Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol. Process. 24, 3011–3025 (2010).Article 
    ADS 

    Google Scholar 
    Porada, P., Van Stan, J. T. & Kleidon, A. Significant contribution of non-vascular vegetation to global rainfall interception. Nat. Geosci. 11, 563–567 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W. & Savenije, H. H. G. Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: moisture recycling. Earth Syst. Dyn. 5, 471–489 (2014).Article 
    ADS 

    Google Scholar 
    Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).Article 
    ADS 

    Google Scholar 
    Coenders-Gerrits, A. M. et al. Uncertainties in transpiration estimates. Nature 506, E1–E2 (2014).Article 
    CAS 

    Google Scholar 
    Chang, L.-L. et al. Why do large-scale land surface models produce a low ratio of transpiration to evapotranspiration? J. Geophys. Res. Atmos. 123, 9109–9130 (2018).Article 

    Google Scholar 
    Zwieback, S., Chang, Q., Marsh, P. & Berg, A. Shrub tundra ecohydrology: rainfall interception is a major component of the water balance. Environ. Res. Lett. 14, 055005 (2019).Article 
    ADS 

    Google Scholar 
    Cuartas, L. A. et al. Interception water-partitioning dynamics for a pristine rainforest in Central Amazonia: Marked differences between normal and dry years. Agric. For. Meteorol. 145, 69–83 (2007).Article 
    ADS 

    Google Scholar 
    Yue, K. et al. Global patterns and drivers of rainfall partitioning by trees and shrubs. Glob. Change Biol. 27, 3350–3357 (2021).Article 

    Google Scholar 
    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).Article 

    Google Scholar 
    Tramontana, G. et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13, 4291–4313 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Jung, M., Reichstein, M. & Bondeau, A. Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences 6, 2001–2013 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, X. et al. Spatiotemporal pattern of terrestrial evapotranspiration in China during the past thirty years. Agric. For. Meteorol. 259, 131–140 (2018).Article 
    ADS 

    Google Scholar 
    Koppa, A., Rains, D., Hulsman, P., Poyatos, R. & Miralles, D. G. A deep learning-based hybrid model of global terrestrial evaporation. Nat. Commun. 13, 1912 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Zheng, C. & Jia, L. Global canopy rainfall interception loss derived from satellite Earth observations. Ecohydrology 13, e2186 (2019).
    Google Scholar 
    Muzylo, A. et al. A review of rainfall interception modelling. J. Hydrol. 370, 191–206 (2009).Article 
    ADS 

    Google Scholar 
    Miralles, D. G., Gash, J. H., Holmes, T. R. H., de Jeu, R. A. M., & Dolman, A. J. Global canopy interception from satellite observations. J. Geophys. Res. 115, D16122 (2010).Article 
    ADS 

    Google Scholar 
    Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).Article 
    ADS 

    Google Scholar 
    Oleson, K. et al. Technical Description of Version 4.5 of the Community Land Model (CLM) Report NCAR/TN-503+STR, https://doi.org/10.5065/D6RR1W7M (2013).Gash, J. An analytical model of rainfall interception by forests. Q. J. Roy. Meteor. Soc. 105, 43–55 (1979).Article 
    ADS 

    Google Scholar 
    Fan, Y. et al. Reconciling canopy interception parameterization and rainfall forcing frequency in the Community Land Model for simulating evapotranspiration of rainforests and oil palm plantations in Indonesia. J. Adv. Model. Earth Syst. 11, 732–751 (2019).Article 
    ADS 

    Google Scholar 
    Návar, J. Modeling rainfall interception loss components of forests. J. Hydrol. 584, 124449 (2019).Article 

    Google Scholar 
    Kang, M., Kwon, H., Cheon, J. H. & Kim, J. On estimating wet canopy evaporation from deciduous and coniferous forests in the Asian monsoon climate. J. Hydrometeorol. 13, 950–965 (2012).Article 
    ADS 

    Google Scholar 
    Llorens, P., Domingo, F., Garcia-Estringana, P., Muzylo, A. & Gallart, F. Canopy wetness patterns in a Mediterranean deciduous stand. J. Hydrol. 512, 254–262 (2014).Article 
    ADS 

    Google Scholar 
    Czikowsky, M. J. & Fitzjarrald, D. R. Detecting rainfall interception in an Amazonian rain forest with eddy flux measurements. J. Hydrol. 377, 92–105 (2009).Article 
    ADS 

    Google Scholar 
    Renninger, H. J., Phillips, N. & Salvucci, G. D. Wet- vs. dry-season transpiration in an Amazonian rain forest palm iriartea deltoidea. Biotropica 42, 470–478 (2010).Article 

    Google Scholar 
    Zhao, W. et al. Physics-constrained machine learning of evapotranspiration. Geophys. Res. Lett. 46, 14496–14507 (2019).Article 
    ADS 

    Google Scholar 
    Zabret, K. & Šraj, M. How characteristics of a rainfall event and the meteorological conditions determine the development of stemflow: A case study of a birch tree. Front. Glob. Change 4, 663100 (2022).Article 

    Google Scholar 
    Calder, I. R. Dependence of rainfall interception on drop size: 1. Development of the two-layer stochastic model. J. Hydrol. 185, 363–378 (1996).Article 
    ADS 

    Google Scholar 
    Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25, 693–714 (2010).Article 

    Google Scholar 
    Gordon, D. A. R., Coenders-Gerrits, M., Sellers, B. A., Sadeghi, S., & Van Stan II, J. T. Rainfall interception and redistribution by a common North American understory and pasture forb, Eupatorium capillifolium (Lam. dogfennel). Hydrol. Earth Syst. Sci. 24, 4587–4599 (2020).Article 
    ADS 

    Google Scholar 
    Ciruzzi, D. M. & Loheide, S. P. II Monitoring tree sway as an indicator of interception dynamics before, during, and following a storm. Geophys. Res. Lett. 48, e2021GL094980 (2021).Article 
    ADS 

    Google Scholar 
    Karimi, P., Bastiaanssen, W. G. & Molden, D. Water Accounting Plus (WA+)–a water accounting procedure for complex river basins based on satellite measurements. Hydrol. Earth Syst. Sci. 17, 2459–2472 (2013).Article 
    ADS 

    Google Scholar 
    del Campo, A. D., González-Sanchis, M., Lidón, A., Ceacero, C. J. & García-Prats, A. Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments. J. Hydrol. 565, 74–86 (2018).Article 

    Google Scholar 
    Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).Article 
    ADS 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 
    ADS 

    Google Scholar 
    Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).Article 
    ADS 

    Google Scholar 
    Dawson, T. E. & Goldsmith, G. R. The value of wet leaves. N. Phytol. 219, 1156–1169 (2018).Article 

    Google Scholar 
    Aparecido, L. M. T., Miller, G. R., Cahill, A. T. & Moore, G. W. Comparison of tree transpiration under wet and dry canopy conditions in a Costa Rican premontane tropical forest. Hydrol. Process. 30, 5000–5011 (2016).Article 
    ADS 

    Google Scholar 
    Huang, L. & Zhang, Z. Effect of rainfall pulses on plant growth and transpiration of two xerophytic shrubs in a revegetated desert area: Tengger Desert, China. CATENA 137, 269–276 (2016).Article 

    Google Scholar 
    Fathizadeh, O., Hosseini, S., Zimmermann, A., Keim, R. & Boloorani, A. D. Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands. Sci. Total Environ. 601, 1824–1837 (2017).Article 
    ADS 

    Google Scholar 
    Zhang, Z.-S., Zhao, Y., Li, X.-R., Huang, L. & Tan, H.-J. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert. Sci. Rep. 6, 26030 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    de Groen, M. M. & Savenije, H. H. G. A monthly interception equation based on the statistical characteristics of daily rainfall. Water Resour. Res. 42, W12417 (2006).Article 
    ADS 

    Google Scholar 
    Chinita, M. J., Richardson, M., Teixeira, J. & Miranda, P. M. A. Global mean frequency increases of daily and sub-daily heavy precipitation in ERA5. Environ. Res. Lett. 16, 074035 (2021).Article 
    ADS 

    Google Scholar 
    Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).Article 
    ADS 

    Google Scholar 
    IPCC. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al) (Cambridge Univ. Press, 2021).Ficklin, D. L., Null, S. E., Abatzoglou, J. T., Novick, K. A. & Myers, D. T. Hydrological intensification will increase the complexity of water resource management. Earth’s Futur. 10, e2021EF002487 (2022).Article 
    ADS 

    Google Scholar 
    Haslwanter, A., Hammerle, A. & Wohlfahrt, G. Open-path vs. closed-path eddy covariance measurements of the net ecosystem carbon dioxide and water vapour exchange: a long-term perspective. Agric. For. Meteorol. 149, 291–302 (2009).Article 
    ADS 

    Google Scholar 
    Migliavacca, M. et al. The three major axes of terrestrial ecosystem function. Nature 598, 468–472 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, W. et al. The effect of relative humidity on eddy covariance latent heat flux measurements and its implication for partitioning into transpiration and evaporation. Preprint at https://doi.org/10.2139/ssrn.4106267 (2022).van Dijk, A. I. J. M. et al. Rainfall interception and the coupled surface water and energy balance. Agric. For. Meteorol. 214–215, 402–415 (2015).Article 

    Google Scholar 
    Barr, A. G., Morgenstern, K., Black, T. A., McCaughey, J. H. & Nesic, Z. Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. Agric. Meteorol. 140, 322–337 (2006).Article 

    Google Scholar 
    Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhi, W. et al. From hydrometeorology to river water quality: can a deep learning model predict dissolved oxygen at the continental scale? Environ. Sci. Technol. 55, 2357–2368 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Kraft, B., Jung, M., Körner, M. & Reichstein, M. Hybrid modeling: fusion of a deep approach and physics-based model for global hydrological modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 43, 1537–1544 (2020).Article 

    Google Scholar 
    Hoffmann, L. et al. From ERA-Interim to ERA5: the considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys. 19, 3097–3124 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Wang, D., Wang, G. & Anagnostou, E. N. Evaluation of canopy interception schemes in land surface models. J. Hydrol. 347, 308–318 (2007).Article 
    ADS 

    Google Scholar 
    Wang, G. & Eltahir, E. A. Modeling the biosphere–atmosphere system: The impact of the subgrid variability in rainfall interception. J. Clim. 13, 2887–2899 (2000).Article 
    ADS 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).Article 
    ADS 

    Google Scholar 
    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).Article 
    ADS 

    Google Scholar  More

  • in

    Potential hazard characteristics of trees with hollows, cavities and fruiting bodies growing along pedestrian routes

    Wood, E. M. & Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 30(7), e02149 (2020).Article 

    Google Scholar 
    Li, Z. & Ma, J. Discussing street tree planning based on pedestrian volume using machine learning and computer vision. Build. Environ. 219, 109178 (2022).Article 

    Google Scholar 
    Tan, X. & Shibata, S. Factors influencing street tree health in constrained planting spaces: Evidence from Kyoto City, Japan. Urban For. Urban Green. 67, 127416 (2022).Article 

    Google Scholar 
    Plant, L. & Sipe, N. Adapting and applying evidence gathering techniques for planning and investment in street trees: A case study from Brisbane. Australia. Urban For. Urban Green. 19, 79–87 (2016).Article 

    Google Scholar 
    Dümpelmann, S. Urban trees in times of crisis: Palliatives, mitigators, and resources. One Earth 2, 402–404 (2020).Article 
    ADS 

    Google Scholar 
    Liu, J. & Slik, F. Are street trees friendly to biodiversity?. Landsc. Urban Plan. 218, 104304 (2022).Article 

    Google Scholar 
    Suchocka, M. et al. Old trees are perceived as a valuable element of the municipal forest landscape. PeerJ 10, 12700 (2022).Article 

    Google Scholar 
    Marselle, M. R. et al. Urban Street tree biodiversity and antidepressant prescriptions. Sci. Rep. 10, 22445 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Radu, S. The ecological role of deadwood in natural forests. In Nature Conservation. Environmental Science and Engineering (eds Gafta, D. & Akeroyd, J.) (Springer, 2006).
    Google Scholar 
    Piovesan, G. & Biondi, F. On tree longevity. New Phytol. 231, 1318–1337 (2021).Article 

    Google Scholar 
    Ferenc, M., Sedláček, O. & Fuchs, R. How to improve urban greenspace for woodland birds: Site and local-scale determinants of bird species richness. Urban Ecosyst. 17, 625–640 (2014).Article 

    Google Scholar 
    Birch, J. D., Lutz, J. A., Turner, B. L. & Karst, J. Divergent, age-associated fungal communities of Pinus flexilis and Pinus longaeva. For. Ecol. Manage. 494, 119277 (2021).Article 

    Google Scholar 
    Siitonen, J., Ranius, T. The importance of veteran trees for saproxylic insects. In Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes (2015).Polyakov, A. Y., Weller, T. J. & Tietje, W. D. Remnant trees increase bat activity and facilitate the use of vineyards by edge-space bats. Agr. Ecosyst. Environ. 281, 56–63 (2019).Article 

    Google Scholar 
    Hall, S. J. G. & Bunce, R. G. H. Mature trees as keystone structures in Holarctic ecosystems – a quantitative species comparison in a northern English park. Plant Ecol. Divers. 4, 243–250 (2011).Article 

    Google Scholar 
    Suchocka, M. et al. Transit versus Nature. Depreciation of environmental values of the road alleys. Case study: Gamerki-Jonkowo, Poland. Sustain. 11(6), 1816 (2019).Article 

    Google Scholar 
    What Are Ancient & Veteran Trees. Ancient Tree Forum | Championing the Biological, Cultural And Heritage Value Of The UK’s Ancient Trees. URL https://www.ancienttreeforum.org.uk/ancient-trees/what-are-ancient-veteran-trees/ (2022).Fay, N. Environmental arboriculture, tree ecology and veteran tree management. Arbor. J. 26, 213–236 (2002).Article 

    Google Scholar 
    Dujesiefken, D., Fay, N., De Groot, J. W. & De Berker, N. Trees—a lifespan approach. Contributions to arboriculture from European practitioners (eds. Witkoś-Gnach, K., Tyszko-Chmielowiec, P.) (Fundacja EkoRozwoju, 2016).Roman, L. How many trees are enough? Tree death and the urban canopy. Scenar. J. 04, 8 (2014).
    Google Scholar 
    Roman, L. A. & Scatena, F. N. Street tree survival rates: Meta-analysis of previous studies and application to a field survey in Philadelphia, PA, USA. Urban For. Urban Green. 10(4), 269–274 (2011).Article 

    Google Scholar 
    Czaja, M., Kołton, A. & Muras, P. The complex issue of urban trees—stress factor accumulation and ecological service possibilities. Forests 11, 932 (2020).Article 

    Google Scholar 
    Olchowik, J., Suchocka, M., Jankowski, P., Malewski, T. & Hilszczańska, D. The ectomycorrhizal community of urban linden trees in Gdańsk, Poland. PlosOne. 16(4), e0237551 (2021).Article 
    CAS 

    Google Scholar 
    Nilsson, K., Konijnendijk, C. C. & Nielsen, A. B. Urban forest function, design and management. In Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) https://doi.org/10.1007/978-1-4419-0851-3_218 (Springer, New York, NY, 2013).Chapter 

    Google Scholar 
    Pokorny, J.D. Urban tree risk management, a Community Guide to Program Design and Implementation. USDA Forest Service Northeastern Area State and Private Forestry (2003).James, K. R., Haritos, N. & Ades, P. K. Mechanical stability of trees under dynamic loads. Am. J. Bot. 93(10), 1361–1369 (2006).Article 

    Google Scholar 
    Hickman, G. W., Perry, E. & Evans, R. Validation of a tree failure evaluation system. J. Arboric. 21(5), 233–234 (1995).
    Google Scholar 
    Klein, R., Koeser, A., Hauer, R., Hansen, G. & Escobedo, F. Risk assessment and risk perception of trees: A review of literature relating to arboriculture and urban forestry. Arboric. Urban For. 45(1), 26–38 (2019).
    Google Scholar 
    Smiley, E. T. Root pruning and stability of young willow oak. Arboric. Urban For. 34(2), 123–128 (2008).Article 

    Google Scholar 
    Terho, M. & Hallaksela, A.-M. Decay characteristics of hazardous Tilia, Betula, and Acer trees felled by municipal urban tree managers in the Helsinki city area. Forestry 81(2), 151–159. https://doi.org/10.1093/forestry/cpn002 (2008).Article 

    Google Scholar 
    Terho, M. An assessment of decay among urban Tilia, Betula, and Acer trees felled as hazardous. Urban For. Urban Green. 8, 77–85 (2009).Article 

    Google Scholar 
    Koeser, A. K., Klein, R. W., Hasing, G. & Northrop, R. J. Factors driving professional and public urban tree risk perception. Urban For. Urban Green. 14(4), 968–974 (2015).Article 

    Google Scholar 
    Johnson, G. R. Storms over Minnesota. Minn. Shade Tree Advocate 2(1), 1–12 (1999).ADS 

    Google Scholar 
    Zhang, Y., Hussain, A., Deng, J. & Letson, L. Public attitudes toward urban trees and supporting urban tree programs. Environ. Behav. 39(6), 797–814 (2007).Article 

    Google Scholar 
    Suchocka, M., Swoczyna, T., Kosno-Jończy, J. & Kalaji, H. M. Impact of heavy pruning on development and photosynthesis of Tilia cordata Mill Trees. PLoS ONE 16(8), e0256465. https://doi.org/10.1371/journal.pone.0256465 (2021).Article 
    CAS 

    Google Scholar 
    Gilman, E. F. & Knox, G. Pruning type affects ecay and structure of crape myrtle. J. Arboric. 31, 38–47 (2005).
    Google Scholar 
    Gilman, E. F. & Lilly, S. J. Best Management Practices: Tree Pruning (International Society of Arboriculture, 2008).
    Google Scholar 
    Perrette, G., Delagrange, S., Ramirez, J. A. & Messier, C. Optimisingreduction pruning under electrical lines: The influence of tree vitality before pruning on traumatic responses. Urban For. Urban Green. 63, 127139 (2021).Article 

    Google Scholar 
    von Döhren, P. & Haase, D. Risk assessment concerning urban ecosystem disservices: The example of street trees in Berlin. Germany. Ecosyst. Serv. 40, 101031 (2019).Article 

    Google Scholar 
    Papandrea, S. F., Cataldo, M. F., Zimbalatti, G. & Proto, A. R. Comparative evaluation of inspection techniques for decay detection in urban trees. Environ. Sci. Proc. 3, 14 (2021).
    Google Scholar 
    McPherson, G. & Peper, P. P. Costs of street tree damage to infrastructure. Arbor. J. 20, 143–160 (1996).Article 

    Google Scholar 
    Mullaney, J., Lucke, T. & Trueman, S. J. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 134, 157–166 (2015).Article 

    Google Scholar 
    Vogt, J., Hauer, R. J. & Fischer, B. C. The costs of maintaining and not maintaining the urban forest: A review of the urban forestry and arboriculture literature. Arboric. Urban For. 41(6), 293–323 (2015).
    Google Scholar 
    Mattheck, C. & Breloer, H. Field guide for visual tree assessment (VTA). Arboric. J. 18(1), 1–23 (1994).Article 

    Google Scholar 
    Smiley E.T., Matheny N., & Lilly S. Best management practices: Tree risk assessment. In International Society of Arboriculture, 86 (Champaign, Illinois, 2011).Dunster J.A., Smiley E.T., Matheny N., Lilly S. Tree risk assessment manual. International Society of Arboriculture 194 (Champaign, Illinois, 2013).Li, H., Zhang, X., Li, Z., Wen, J. & Tan, X. A review of research on tree risk assessment methods. Forests 13, 1556 (2022).Article 

    Google Scholar 
    Koeser, A. K., Hauer, R. J., Klein, R. W. & Miesbauer, J. W. Assessment of likelihood of failure using limited visual, basic, and advanced assessment techniques. Urban For. 24, 71–79 (2017).
    Google Scholar 
    TRAQ [URL TRAQandOtherTreeRiskAssessmentMethodsforEvaluationandPrioritizingTreeRiskConditions(forestmetrix.com) (2021).TRAQ Tree Risk Assessment Qualification Application Guide https://www.isa-arbor.com/Portals/0/Assets/PDF/Certification-Applications/TRAQ-App-Guide.pdf (2021).Matheny N. P., Clark J. R. A photographic guide to the evaluation of hazard trees in urban areas. In International Society of Arboriculture 85 (Champaign, 1994).Linhares, C. S. F., Gonçalves, R., Martins, L. M. & Knapic, S. Structural stability of urban trees using visual and instrumental techniques: A review. Forests 12, 1752. https://doi.org/10.3390/f12121752 (2021).Article 

    Google Scholar 
    Ellison, M. Quantified tree risk assessment: Nota De procedimiento V5.2.3 (ES)2018-01 Quantified Tree Risk Assessment Limited (2018).Forbes-Laird, J. THREATS – tree hazard risk evaluation and treatment system – Guidance note for users Retrieved March 27th, 2020 from Forbes-Laird Arboricultural Consultancy http://www.flac.uk.com/wp-content/uploads/2010/07/THREATS-GN-June-2010.pdf, (2010).Guyon C. Cleaver M. Jackson A. Saavedra P. Zambino A. Guide to Identifying, Assessing, and Managing Hazard Trees in Developed Recreational Sites of the Northern Rocky Mountains and the Intermountain West Retrieved March 31st, 2020 from USDA Forest Service, Northern and Intermountain Regions (2017). https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd571021.pdfBlodgett, J. T., Burns, K. S., Worrall J. J.Guide to hazard tree management Retrieved March 31st, 2020 from USDA Forest Service, Rocky Mountain Region (2017) https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd572690.pdf (2017).Norris M. A review of methods used to undertake risk assessments of urban trees. MSc. Thesis (2007).Smiley, E. T., Matheny, N., Lilly, S. Best management practices: Tree risk assessment. International Society of Arboriculture 86 (Champaign, Illinois, 2011).ALARP – Hart, A, 2013, ALARP – Recent Developments, ALARP: Learning from the Experiences of Others, London: IMechE, 4th June 2013 (2013).HSE, 2001 Reducing risks, protecting people, HSE’s decision making process, Liverpool: Health and Safety Executive. (2001).Rinn, F. Holzanatomische Grundlagen mechanischer impuls – Tomographie an Baumen [Wood anatomy background through mechanical pulses – tomografy of trees]. Allg. Forstwirtsch. 8, 450–456 (2003).
    Google Scholar 
    Gilbert, E. A. & Smiley, E. T. Picus sonic tomography for the quantification of decay in white oak (Quercus alba) and hickory (Carya spp.). J. Arboric 30, 277–281 (2004).
    Google Scholar 
    Wang, X. & Allison, R. B. Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling. Arboric. Urban For. 34(1), 1–4 (2008).Article 

    Google Scholar 
    Wu, Y. & Shao, Z. Measurement and mechanical analysis of the strains–stresses induced by tree-pulling experiments in tree stems. Trees 30, 675–684 (2016).Article 

    Google Scholar 
    Schindler, D. & Kolbe, S. Assessment of the response of a scots pine tree to effective wind loading. Forests 11(2), 145 (2020).Article 

    Google Scholar 
    Koeser, A. K. & Smiley, E. T. Impact of assessor on tree risk assessment ratings and prescribed mitigation measures. Urban For. 24, 109–115 (2017).
    Google Scholar 
    Klein, R. W. et al. Assessing the consequences of tree failure. Urban Forestry & Urban Greening 65, 127307 (2021).Article 

    Google Scholar 
    Renn, O. Perception of risks. Toxicol. Lett. 149(1), 405–413 (2004).Article 
    CAS 

    Google Scholar 
    Hasan, R., Othman, N. & Ismail, F. Roadside tree management in urban area for public safety and properties. Asian J. Quality Life 3, 10–21834 (2018).Article 

    Google Scholar 
    Williams, V. How do You Decide When to Remove a Tree? (University Of Maryland extension, 2018).Rhoades, H. Filling holes in tree trunks: how to patch a hole in a tree trunk or a hollow tree. https://www.gardeningknowhow.com/ornamental/trees/tgen/patching-tree-hole.htm (2020).Terho, M. & Hallaksela, A. M. Potential hazard characteristics of Tilia, Betula, and Acer trees removed in the Helsinki City Area during 2001–2003. Urban For. Urban Green. 3, 113–120 (2005).Article 

    Google Scholar 
    Nagendra, H. & Gopal, D. Tree diversity, distribution, history and change in urban parks: Studies in Bangalore India. Urban Ecosyst. 14, 211–223 (2011).Article 

    Google Scholar 
    Lindenmayer, D. B., Blanchard, W., Blair, D. & McBurney, L. The road to oblivion – Quantifying pathways in the decline of large old trees. For. Ecol. Manage. 430, 259–264 (2018).Article 

    Google Scholar 
    Lusk, A. C., da Silva Filho, D. F. & Dobbert, L. Pedestrian and cyclist preferences for tree locations by sidewalks and cycle tracks and associated benefits: Worldwide implications from a study in Boston, MA. Cities 106, 102111 (2020).Article 

    Google Scholar 
    Galenieks, A. Importance of urban street tree policies: A comparison of neighboring southern California Cities. Urban For. Urban Green. 22, 105–110 (2017).Article 

    Google Scholar 
    Wessolly, L. Material and structural features of trees Contribution to the Stargardt strength catalogue. In Proceedings of the 15th Bad Goteborg Tree Seminar (1992).Schwarze, F. Diagnosis and prognosis of the development of wood decay in urban trees. Agrios GN 1997 Plant Patology. (Academic Press, San Diego, 2008).Footway. Cycling Embassy Of Great Britain [https://www.cycling-embassy.org.uk/dictionary/footway] (2022).Roloff, A. Handbuch Baumdiagnostik Baum-Korpersprache und Baum-Beurtailung (Ulmer Verlag, 2015).
    Google Scholar 
    Koeser, A. K., Hasing, G., McLean, D., Northrop R. Tree risk assessment methods: A comparison of three common evaluation forms Retrieved March 24th, 2020 from https://edis.ifas.ufl.edu/ep487 (2016).Smiley, E. T. & Kumamoto, H. Qualitative Tree Risk Assessment. 12–18 (2012).Mattheck, C. Trees: The Mechanical Design (Springer, 1991).Book 

    Google Scholar 
    R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).Olchowik, J. et al. The ectomycorrhizal community of crimean linden trees in Warsaw, Poland. Forests 11(9), 926 (2020).Article 

    Google Scholar 
    Dupre, S., Thiebaut, B. & Tessier du Cros, E. Morphologie architecture des jeunes hfitres (Fagus sylvatica L.). Influence du milieu variability genetique. Ann. Sci. For. 43, 85–102 (1986).Article 

    Google Scholar 
    Power, S. A., Ashmore, M. R. & Ling, K. A. Recent trends in beech tree health in southern Britain and the influence of soil type. Water Air Soil Pollut. 85, 1293–1298 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Masarovičova, E. & Štefančik, L. Some ecophysiological features in sun and shade leaves of tall beech trees. Biol. Plant 32, 374–387 (1990).Article 

    Google Scholar 
    Nicolini, E. & Caraglio, Y. L’influence de divers caracteres architecturaux sur l’apparition de la fourche chez le Fagus sylvatica, en fonction de l’absence ou de la presence d’un couvert. Botany 72, 1723–1734 (1994).
    Google Scholar 
    van Wassenaer, P. V. & Richardson, M. A review of tree risk assessment using minimally invasive technologies and two case studies. Arboric. J. 32, 275–292 (2009).Article 

    Google Scholar 
    dos Reis, M. N., Gonçalves, R., Brazolin, S. & de Assis Palma, S. S. Strength loss inference due to decay or cavities in tree trunks using tomographic imaging data applied to equations proposed in the literature. Forests 13, 596 (2022).Article 

    Google Scholar 
    Kanea, B., Warrena, P. S. & Lermanab, S. B. A broad scale analysis of tree risk, mitigation and potential habitat for cavity-nesting birds. Urban For. 14, 1137–1146 (2015).
    Google Scholar 
    Wolf, K. L. Roadside urban trees—balancing safety and community values. Arborist News 15, 25–27 (2006).
    Google Scholar 
    Hightshoe, G. L. Native Trees, Shrubs and Vines for Urban and Rural America (Wiley and Sons, 1988).
    Google Scholar 
    Costello, L. R. & Jones, K. S. Western chapter of the international society of arboriculture. In Reducing Infrastructure Damage by The Tree Roots: A Compendium of Strategies. 64–65 (2003).Kjaer, E. D. Introduction part 2. Consequences of ash dieback: Damage level, resistance and resilience of European Ash Forests. Balt. For. 23, 141–143 (2017).
    Google Scholar 
    Timmermann, V., Nagy, N., Hietala, A., Børja, I. & Solheim, H. Progression of ash dieback in Norway related to tree age, disease history and regional aspects. Balt. For. 23, 150–158 (2017).
    Google Scholar 
    Zajączkowska, U., Kaczmarczyk, K. & Liana, J. Birch sap exudation: influence of tree position in a forest stand on birch sap production, trunk wood anatomy and radial bending strength. Silva Fennica 53(2), 10048. https://doi.org/10.14214/sf.10048 (2019).Article 

    Google Scholar 
    Reed, H. J. Veteran Trees: A Guide to Good Management (England Nature, 2000).
    Google Scholar  More

  • in

    Machine learning prediction of connectivity, biodiversity and resilience in the Coral Triangle

    Ravindran, S. Coral reefs at a tipping point. Proc. Natl Acad. Sci. 113, 5140–5141 (2016).CAS 

    Google Scholar 
    Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).CAS 

    Google Scholar 
    Veron, J. E. N. et al. Delineating the Coral Triangle. Galaxea J. Coral Reef. Stud. 11, 91–100 (2009).
    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science 318, 1737–1742 (2007).CAS 

    Google Scholar 
    Brown, C., Corcoran, E. & Herkenrath, P. Marine and coastal ecosystems and human well-being: a synthesis report based on the findings of the Millennium Ecosystem Assessment. (2006).Heinze, C. et al. The quiet crossing of ocean tipping points. Proc. Natl Acad. Sci. 118, e2008478118 (2021).CAS 

    Google Scholar 
    Barber, P. H. The challenge of understanding the Coral Triangle biodiversity hotspot. J. Biogeogr. 36, 1845–1846 (2009).
    Google Scholar 
    Ekman, S. Zoogeography of the Sea. (Sidgwick & Jackson, 1953).Ladd, H. S. Origin of the Pacific island molluscan fauna. Am. J. Sci. 256, 137–150 (1960).
    Google Scholar 
    Woodland, D. J. Zoogeography of the Siganidae (Pisces): an interpretation of distribution and richness patterns. Bull. Mar. Sci. 33, 713–717 (1983).
    Google Scholar 
    Loveland, T. R. & Merchant, J. M. Ecoregions and ecoregionalization: geographical and ecological perspectives. Environ. Manag. 34, S1–S13 (2004).
    Google Scholar 
    Levins, R. Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control. Bull. Entomol. Soc. Am. 15, 237–240 (1969).
    Google Scholar 
    Obura, D. The Diversity and Biogeography of Western Indian Ocean Reef-Building Corals. PLoS One. 7, e45013 (2012).CAS 

    Google Scholar 
    Fontoura, L. et al. Protecting connectivity promotes successful biodiversity and fisheries conservation. Science 375, 336–340 (2022).CAS 

    Google Scholar 
    Roberts, C. M. Connectivity and Management of Caribbean Coral Reefs. Science 278, 1454–1457 (1997).CAS 

    Google Scholar 
    Ayre, D. J. & Hughes, T. P. Climate change, genotypic diversity and gene flow in reef-building corals: Gene flow in reef building corals. Ecol. Lett. 7, 273–278 (2004).
    Google Scholar 
    Graham, N. A. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl Acad. Sci. 103, 8425–8429 (2006).CAS 

    Google Scholar 
    McClanahan, T. R. et al. Prioritizing Key Resilience Indicators to Support Coral Reef Management in a Changing Climate. PLoS One. 7, e42884 (2012).CAS 

    Google Scholar 
    Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an Isolated Coral Reef System Following Severe Disturbance. Science 340, 69–71 (2013).
    Google Scholar 
    Grayson, N., Clements, C. S., Towner, A. A., Beatty, D. S. & Hay, M. E. Did the historic overharvesting of sea cucumbers make coral more susceptible to pathogens? Coral Reefs. 41, 447–453 (2022).
    Google Scholar 
    Spalding, M. D. et al. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience 57, 573–583 (2007).
    Google Scholar 
    Berline, L., Rammou, A.-M., Doglioli, A., Molcard, A. & Petrenko, A. A Connectivity-Based Eco-Regionalization Method of the Mediterranean Sea. PLoS ONE. 9, e111978 (2014).
    Google Scholar 
    Ser-Giacomi, E., Rossi, V., López, C. & Hernández-García, E. Flow networks: A characterization of geophysical fluid transport. Chaos Interdiscip. J. Nonlinear Sci. 25, 036404 (2015).
    Google Scholar 
    Thompson, D. M. et al. Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity? Prog. Oceanogr. 165, 110–122 (2018).
    Google Scholar 
    Treml, E. A., Halpin, P. N., Urban, D. L. & Pratson, L. F. Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landsc. Ecol. 23, 19–36 (2008).
    Google Scholar 
    Liu, G., Bracco, A., Quattrini, A. M. & Herrera, S. Kilometer-Scale Larval Dispersal Processes Predict Metapopulation Connectivity Pathways for Paramuricea biscaya in the Northern Gulf of Mexico. Front. Mar. Sci. 8, 790927 (2021).
    Google Scholar 
    Fountalis, I., Dovrolis, C., Bracco, A., Dilkina, B. & Keilholz, S. δ-MAPS: from spatio-temporal data to a weighted and lagged network between functional domains. Appl. Netw. Sci. 3, 21 (2018).
    Google Scholar 
    Falasca, F., Bracco, A., Nenes, A. & Fountalis, I. Dimensionality Reduction and Network Inference for Climate Data Using δ‐MAPS: Application to the CESM Large Ensemble Sea Surface Temperature. J. Adv. Model. Earth Syst. 11, 1479–1515 (2019).
    Google Scholar 
    Novi, L., Bracco, A. & Falasca, F. Uncovering marine connectivity through sea surface temperature. Sci. Rep. 11, 8839 (2021).CAS 

    Google Scholar 
    Kleypas, J. A., Castruccio, F. S., Curchitser, E. N. & Mcleod, F. The impact of ENSO on coral heat stress in the western equatorial Pacific. Glob. Change Biol. 21, 2525–2539 (2015).
    Google Scholar 
    GLOBAL_REANALYSIS_001_030. Global Ocean Physics Reanalysis GLORYS12V1 1/12° product. MERCATOR GLORYS12V1 (global-reanalysis-001-030-monthly). E.U. Copernicus Marine Service Information (CMEMS). https://doi.org/10.48670/moi-00021.Lellouche, J.-M. et al. The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis. Front. Earth Sci. 9, 698876 (2021).
    Google Scholar 
    Treml, E. A. & Halpin, P. N. Marine population connectivity identifies ecological neighbors for conservation planning in the Coral Triangle: Ecological neighbors in conservation. Conserv. Lett. 5, 441–449 (2012).
    Google Scholar 
    Meyers, G. Variation of Indonesian throughflow and the El Niño-Southern Oscillation. J. Geophys. Res. Oceans 101, 12255–12263 (1996).
    Google Scholar 
    Wolfram Research (2012), FindGraphCommunities, Wolfram Language function. https://reference.wolfram.com/language/ref/FindGraphCommunities.html (updated 2015).MacArthur, R. H. & Wilson, E. O. The theory of island biogeography. In The Theory of Island Biogeography (Princeton university press, 2016).Brin, S. & Page, L. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 30, 107–117 (1998).
    Google Scholar 
    Wolfram Research (2010), PageRankCentrality, Wolfram Language function. https://reference.wolfram.com/language/ref/PageRankCentrality.html (Updated 2015).NOAA Coral Reef Watch program, 20180813, NOAA Coral Reef Watch Version 3.1 Daily Global 5km Satellite Coral Bleaching Heat Stress Monitoring Product Suite: NOAA Coral Reef Watch program, College Park, Maryland, USA. https://coralreefwatch.noaa.gov/product/5km/.Liu, G. et al. Reef-Scale Thermal Stress Monitoring of Coral Ecosystems: New 5-km Global Products from NOAA Coral Reef Watch. Remote Sens. 6, 11579–11606 (2014).
    Google Scholar 
    Liu, G. et al. NOAA Coral Reef Watch’s 5km Satellite Coral Bleaching Heat Stress Monitoring Product Suite Version 3 and Four-Month Outlook Version 4. 32, 7 (2017).Claar, D. C., Szostek, L., McDevitt-Irwin, J. M., Schanze, J. J. & Baum, J. K. Global patterns and impacts of El Niño events on coral reefs: A meta-analysis. PLOS ONE 13, e0190957 (2018).
    Google Scholar 
    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).CAS 

    Google Scholar 
    Darling, E. S. et al. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat. Ecol. Evol. 3, 1341–1350 (2019).
    Google Scholar 
    Dance, A. These corals could survive climate change—and help save the world’s reefs. Nature 575, 580–582 (2019).CAS 

    Google Scholar 
    Renema, W. et al. Hopping Hotspots: Global Shifts in Marine Biodiversity. Science 321, 654–657 (2008).CAS 

    Google Scholar 
    Weiss, T. L., Denniston, R. F., Wanamaker, A. D., Villarini, G. & von der Heydt, A. S. El Niño–Southern Oscillation–like variability in a late Miocene Caribbean coral. Geology 45, 643–646 (2017).
    Google Scholar 
    Watanabe, T. et al. Permanent El Niño during the Pliocene warm period not supported by coral evidence. Nature 471, 209–211 (2011).CAS 

    Google Scholar 
    Von Der Heydt, A. S. & Dijkstra, H. A. The impact of ocean gateways on ENSO variability in the Miocene. Geol. Soc. Lond. Spec. Publ. 355, 305–318 (2011).
    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. 117, 12891–12896 (2020).CAS 

    Google Scholar 
    Falasca, F., Crétat, J., Bracco, A., Braconnot, P. & Marti, O. Climate change in the Indo-Pacific basin from mid- to late Holocene. Clim. Dyn. 59, 753–766 (2022).
    Google Scholar 
    Treml, E. A., Ford, J. R., Black, K. P. & Swearer, S. E. Identifying the key biophysical drivers, connectivity outcomes, and metapopulation consequences of larval dispersal in the sea. Mov. Ecol. 3, 17 (2015).
    Google Scholar 
    Hackerott, S., Martell, H. A. & Eirin-Lopez, J. M. Coral environmental memory: causes, mechanisms, and consequences for future reefs. Trends Ecol. Evol. 36, 1011–1023 (2021).
    Google Scholar 
    Ogle, K. et al. Quantifying ecological memory in plant and ecosystem processes. Ecol. Lett. 18, 221–235 (2015).
    Google Scholar 
    Peterson, G. D. Contagious Disturbance, Ecological Memory, and the Emergence of Landscape Pattern. Ecosystems 5, 329–338 (2002).
    Google Scholar 
    Thomas, L., López, E. H., Morikawa, M. K. & Palumbi, S. R. Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reef‐building corals. Mol. Ecol. 28, 3371–3382 (2019).
    Google Scholar 
    Dziedzic, K. E., Elder, H., Tavalire, H. & Meyer, E. Heritable variation in bleaching responses and its functional genomic basis in reef‐building corals (Orbicella faveolata). Mol. Ecol. 28, 2238–2253 (2019).
    Google Scholar 
    Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342 (2016).CAS 

    Google Scholar 
    Harrison, H. B., Bode, M., Williamson, D. H., Berumen, M. L. & Jones, G. P. A connectivity portfolio effect stabilizes marine reserve performance. Proc. Natl Acad. Sci. 117, 25595–25600 (2020).CAS 

    Google Scholar 
    Leeuwenburgh, O. & Stammer, D. The Effect of Ocean Currents on Sea Surface Temperature Anomalies. J. Phys. Oceanogr. 31, 2340–2358 (2001).
    Google Scholar 
    Box, G. E., Jenkins, G. M. & Reinsel, G. C. Time series analysis: forecasting and control. (Wiley, 2011).Falasca, F. & Bracco, A. Exploring the tropical Pacific manifold in models and observations. Phys. Rev. X 12, 021054 (2022).CAS 

    Google Scholar 
    NOAA (National Oceanic and Atmospheric Administration), (2019a). Nino regions. https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/nino_regions.shtml.NOAA (National Oceanic and Atmospheric Administration), (2019b). Cold and warm episodes by season. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.Baird, A. et al. Coral Spawning Database. 10552719 Bytes https://doi.org/10.25405/DATA.NCL.13082333.V1 (2020).UNEP-WCMC, WorldFish Centre, WRI, TNC (2021). Global distribution of warm-water coral reefs, compiled from multiple sources including the Millennium Coral Reef Mapping Project. Version 4.1. Includes contributions from IMaRS-USF and IRD (2005), IMaRS-USF (2005) and Spalding et al. (2001). Cambridge (UK): UN Environment World Conservation Monitoring Centre. Data https://doi.org/10.34892/t2wk-5t34.IMaRS-USF, IRD (Institut de Recherche pour le Developpement) (2005). Millennium Coral Reef Mapping Project. Validated maps. Cambridge (UK): UNEP World Conservation Monitoring Centre.IMaRS-USF (Institute for Marine Remote Sensing-University of South Florida) (2005). Millennium Coral Reef Mapping Project. Unvalidated maps. These maps are unendorsed by IRD, but were further interpreted by UNEP World Conservation Monitoring Centre. Cambridge (UK): UNEP World Conservation Monitoring Centre.Spalding, M., Ravilious, C. & Green, E. World atlas of coral reefs. Choice Rev. Online. 39, 39-2540–39–2540 (2002).
    Google Scholar  More

  • in

    Varied response of carbon dioxide emissions to warming in oxic, anoxic and transitional soil layers in a drained peatland

    Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).
    Google Scholar 
    Joosten, H., Tapio-BiströmM, L. & Susanna, T. Peatlands: guidance for climate change mitigation through conservation, rehabilitation and sustainable use. Food and Agriculture Organization of the United Nations and Wetlands International. FAO (2012).IUCN. Issues brief: peatlands and climate change. www.icun.org (2017).Joosten, H. Peatlands, Climate Change Mitigation and Biodiversity Conservation. An Issue Brief on the Importance of Peatlands for Carbon and Biodiversity Conservation and the Role of Drained Peatlands as Greenhouse Gas Emission Hotspots (Nordic Council of Ministers, 2015).Moore, T. R. & Knowles, R. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can. J. Soil Sci. 69, 33–38 (1989).CAS 

    Google Scholar 
    Tfaily, M. M. et al. Organic matter transformation in the peat column at Marcell Experimental Forest: humification and vertical stratification. J. Geophys. Res. Biogeosci. 119, 661–675 (2014).CAS 

    Google Scholar 
    Clymo, R. S. & Bryant, C. L. Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog. Geochim. Cosmochim. Acta 72, 2048–2066 (2008).CAS 

    Google Scholar 
    Clymo, R. S. The limits to peat bog growth. Philos. Trans. R. Soc. B 303, 605–654 (1984).
    Google Scholar 
    Qin, S. et al. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Sci. Adv. 5, eaau1218. 1211–1219 (2019).
    Google Scholar 
    Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460, 616–619 (2009).CAS 

    Google Scholar 
    Luo, Z. K., Wang, G. C. & Wang, E. L. Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate. Nat. Commun. 10, 3688 (2019).
    Google Scholar 
    Wilson, R. M. et al. Stability of peatland carbon to rising temperatures. Nat. Commun. 7, 13723 (2016).CAS 

    Google Scholar 
    Sihi, D., Inglett, P. W. & Inglett, K. S. Carbon quality and nutrient status drive the temperature sensitivity of organic matter decomposition in subtropical peat soils. Biogeochemistry 131, 103–119 (2016).CAS 

    Google Scholar 
    Wang, Q., Liu, S. & Tian, P. Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Glob. Chang. Biol. 24, 2841–2849 (2018).
    Google Scholar 
    Cheng, L. et al. Warming enhances old organic carbon decomposition through altering functional microbial communities. ISME J. 11, 1825–1835 (2017).
    Google Scholar 
    Luan, J., Wu, J., Liu, S., Roulet, N. & Wang, M. Soil nitrogen determines greenhouse gas emissions from northern peatlands under concurrent warming and vegetation shifting. Commun. Biol. 2, 132 (2019).
    Google Scholar 
    Meyer, N. et al. Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil. Soil Biol. Biochem. 119, 152–161 (2018).CAS 

    Google Scholar 
    Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).CAS 

    Google Scholar 
    Moni, C. et al. Temperature response of soil organic matter mineralisation in arctic soil profiles. Soil Biol. Biochem. 88, 236–246 (2015).CAS 

    Google Scholar 
    Xu, X., Sherry, R. A., Niu, S., Zhou, J. & Luo, Y. Long-term experimental warming decreased labile soil organic carbon in a tallgrass prairie. Plant Soil 361, 307–315 (2012).CAS 

    Google Scholar 
    Broder, T., Blodau, C., Biester, H. & Knorr, K. H. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9, 1479–1491 (2012).CAS 

    Google Scholar 
    Adamczyk, M., Perez-Mon, C., Gunz, S. & Frey, B. Strong shifts in microbial community structure are associated with increased litter input rather than temperature in High Arctic soils. Soil Biol. Biochem. 151, 108054 (2020).CAS 

    Google Scholar 
    Hug, L. A. et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1, 22 (2013).
    Google Scholar 
    Yun, J. L., Ju, Y. W., Deng, Y. C. & Zhang, H. X. Bacterial community structure in two permafrost wetlands on the Tibetan Plateau and Sanjiang Plain, China. Microb. Ecol. 68, 360–369 (2014).
    Google Scholar 
    Zhong, Q. et al. Water table drawdown shapes the depth-dependent variations in prokaryotic diversity and structure in Zoige peatlands. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix049 (2017).Article 

    Google Scholar 
    Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).CAS 

    Google Scholar 
    Thiessen, S., Gleixner, G., Wutzler, T. & Reichstein, M. Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass – An incubation study. Soil Biol. Biochem. 57, 739–748 (2013).CAS 

    Google Scholar 
    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Chang. 8, 885–899 (2018).CAS 

    Google Scholar 
    Dungait, J. A. J., Hopkins, D. W., Gregory, A. S. & Whitmore, A. P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Chang. Biol. 18, 1781–1796 (2012).
    Google Scholar 
    Conant, R. T. et al. Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Global Chang. Biol. 17, 3392–3404 (2011).
    Google Scholar 
    Hietz, P. et al. Long-term change in the nitrogen cycle of tropical forests. Science 4, 334 (2011).
    Google Scholar 
    Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Agren, G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196, 79–91 (2012).CAS 

    Google Scholar 
    Sistla, S. A., Asao, S. & Schimel, J. P. Detecting microbial N-limitation in tussock tundra soil: Implications for Arctic soil organic carbon cycling. Soil Biol. Biochem. 55, 78–84 (2012).CAS 

    Google Scholar 
    Chen, L. et al. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nat. Commun. 9, 3951 (2018).
    Google Scholar 
    Soong, J. L. et al. Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux. Sci. Adv. 7, eabd1343 (2021).Chen, L. et al. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nat. Commun. 7, 13046 (2016).CAS 

    Google Scholar 
    Girkin, N. T. et al. Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat. Biogeochemistry 147, 87–97 (2019).
    Google Scholar 
    Swails, E. et al. Will CO2 emissions from drained tropical peatlands decline over time? Links between soil organic matter quality, nutrients, and C mineralization rates. Ecosystems 21, 868–885 (2017).
    Google Scholar 
    Ismawi, S., Gandaseca, S. & Ahmed, O. Effects of deforestation on soil major macro-nutrient and other selected chemical properties of secondary tropical peat swamp forest. Int. J. Phys. Sci. 7, 2225–2228 (2012).CAS 

    Google Scholar 
    Kimura, S., Melling, L. & Goh, K. Influence of soil aggregate size on greenhouse gas emission and uptake rate from tropical peat soil in forest and different oil palm development years. Geoderma 185, 1–5 (2012).
    Google Scholar 
    Takakai, F. et al. Effects of agricultural land-use change and forest fire on N2O emission from tropical peatlands, Central Kalimantan, Indonesia. Soil Sci. Plant Nutr. 52, 662–674 (2006).CAS 

    Google Scholar 
    Knoblauch, C., Beer, C., Sosnin, A., Wagner, D. & Pfeiffer, E. M. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob. Chang. Biol. 19, 1160–1172 (2013).
    Google Scholar 
    Treat, C. C. et al. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Glob. Chang. Biol. 20, 2674–2686 (2014).CAS 

    Google Scholar 
    Hobbie, S. E., Schimel, J. P., Trumbore, S. E. & Randerson, J. Controls over carbon storage and tureover in high-latitude soils. Glob. Chang. Biol. 6, 196–210 (2000).
    Google Scholar 
    Keller, J. K., Bauers, A. K., Bridgham, S. D., Kellogg, L. E. & Iversen, C. M. Nutrient control of microbial carbon cycling along an ombrotrophic-minerotrophic peatland gradient. J. Geophys. Res. https://doi.org/10.1029/2005jg000152 (2006).Chen, H. et al. A historical overview about basic issues and studies of mires (in Chinese). Sci. Sin. 51, 15–26 (2020).
    Google Scholar 
    Ridl, J. et al. Plants rather than mineral fertilization shape microbial community structure and functional potential in legacy contaminated soil. Front. Microbiol. 7, 1–10 (2016).
    Google Scholar 
    Kane, E. S. et al. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen. Soil Biol. Biochem. 58, 50–60 (2013).CAS 

    Google Scholar 
    Carrell, A. A. et al. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Glob. Chang. Biol. 25, 2993–3004 (2019).
    Google Scholar 
    Lamit, L. J. et al. Patterns and drivers of fungal community depth stratification in Sphagnum peat. FEMS Microbiol. Ecol. 93, fix082 (2017).
    Google Scholar 
    Harrison, R. B., Footen, P. W. & Strahm, B. D. Deep soil horizons: contribution and importance to soil carbon pools and in assessing whole-ecosystem response to management and global change. Forest Sci. 57, 67–76 (2011).
    Google Scholar 
    Krüger, J. P., Leifeld, J., Glatzel, S., Szidat, S. & Alewell, C. Biogeochemical indicators of peatland degradation – a case study of a temperate bog in northern Germany. Biogeosciences 12, 2861–2871 (2015).
    Google Scholar 
    Franzén, L. G. Increased decomposition of subsurface peat in Swedish raised bogs: are temperate peatlands still net sinks of carbon? Mires Peat 1, 3 (2006).
    Google Scholar 
    Eilers, K. G., Lauber, C. L., Knight, R. & Fierer, N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 42, 896–903 (2010).CAS 

    Google Scholar 
    de Graaff, M. A., Jastrow, J. D., Gillette, S., Johns, A. & Wullschleger, S. D. Differential priming of soil carbon driven by soil depth and root impacts on carbon availability. Soil Biol. Biochem. 69, 147–156 (2014).
    Google Scholar 
    Peay, K. G., Kennedy, P. G. & Brun, T. D. Fungal community ecology: a hybrid beast with a molecular master. BioScience 58, 799–810 (2008).
    Google Scholar 
    Gillabel, J., Cebrian, B., Six, J. & Merckx, R. Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Glob. Chang. Biol. 16, 2789–2798 (2010).
    Google Scholar 
    Pries, C. E. H., Castanha, C., Porras, R. C. & Torn, M. S. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).
    Google Scholar 
    Hicks Pries, C. E., Schuur, E. A. G. & Crummer, K. G. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ13C and ∆14C. Global Chang. Biol. 19, 649–661 (2013).
    Google Scholar 
    Tian, J. et al. Aerobic environments in combination with substrate additions to soil significantly reshape depth-dependent microbial distribution patterns in Zoige peatlands, China. Appl.Soil Ecol. 170, 104252 (2022).
    Google Scholar 
    Feng, W. et al. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming. Glob. Chang. Biol. 00, 1–12 (2017).
    Google Scholar 
    Feng, W. et al. Methodological uncertainty in estimating carbon turnover times of soil fractions. Soil Biol. Biochem. 100, 118–124 (2016).CAS 

    Google Scholar 
    Liang, J. et al. Methods for estimating temperature sensitivity of soil organic matter based on incubation data: A comparative evaluation. Soil Biol. Biochem. 80, 127–135 (2015).CAS 

    Google Scholar 
    Cai, A., Feng, W., Zhang, W. & Xu, M. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China. J. Environ. Manag. 172, 2–9 (2016).CAS 

    Google Scholar 
    Liu, L. et al. Response of anaerobic mineralization of different depths peat carbon to warming on Zoige plateau. Geoderma 337, 1218–1226 (2019).CAS 

    Google Scholar 
    Waldrop, M. et al. Molecular investigations into a globally important carbon pool: permafrost protected carbon in Alaskan soils. Glob. Chang. Biol. 16, 2543–2554 (2014).
    Google Scholar 
    Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S. & Richter, A. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front. Microbiol. 5, 22 (2014).
    Google Scholar 
    Blagodatskaya, E. & Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol. Fertil. Soils 45, 115–131 (2008).
    Google Scholar 
    Chen, H. et al. The carbon stock of alpine peatlands on the Qinghai–Tibetan Plateau during the Holocene and their future fate. Quat. Sci. Rev. 95, 151–158 (2014).
    Google Scholar 
    Sun, G. A study on the mineral formation law, classifictation and reserves of the peat in the Rouergai Plateau. J. Nat. Res. 7, 334–345 (1992).
    Google Scholar 
    Liu, L. et al. Responses of peat carbon at different depths to simulated warming and oxidizing. Sci. Total Environ. 548-549, 429–440 (2016).CAS 

    Google Scholar 
    Liu, L. et al. Water table drawdown reshapes soil physicochemical characteristics in Zoige peatlands. Catena 170, 119–128 (2018).CAS 

    Google Scholar 
    Liu, L. et al. Carbon stock stability in drained peatland after simulated plant carbon addition: Strong dependence on deeper soil. Sci. Total Environ. 848, 157539 (2022).CAS 

    Google Scholar 
    Yang, Z. et al. Soil properties and species composition under different grazing intensity in an alpine meadow on the eastern Tibetan Plateau, China. Environ. Monit. Assess 188, 678 (2016).
    Google Scholar 
    Simpson, M. J. & Simpson, A. J. The chemical ecology of soil organic matter molecular constituents. J. Chem. Ecol. 38, 768–784 (2012).CAS 

    Google Scholar 
    Lalonde, K., Mucci, A., Ouellet, A. & Gelinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 483, 198–200 (2012).CAS 

    Google Scholar 
    Deforest, J. L., zak, D. R., Pregitzer, K. S. & Burtonf, A. J. Atomspheric nitrate deposition and enhanced dissolved organic carbon leaching: test of a potential mechanism. Soil Sci. Soc. Am. J. 69, 1233–1237 (2005).CAS 

    Google Scholar 
    Schadel, C. et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob. Chang. Biol. 20, 641–652 (2014).
    Google Scholar 
    Bell, M. & Lawrence, D. Soil carbon sequestration – myths and mysteries. Department of Primary Industries and Fisheries, Queensland Government (2009).Schadel, C., Luo, Y., David Evans, R., Fei, S. & Schaeffer, S. M. Separating soil CO2 efflux into C-pool-specific decay rates via inverse analysis of soil incubation data. Oecologia 171, 721–732 (2013).
    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).CAS 

    Google Scholar 
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).CAS 

    Google Scholar 
    White, T. J. in PCR-Protocols: A Guide to Methods and Applications (Academic Press, 1990).Bell, C. et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J. Vis. Exp. 81, e50961 (2013).
    Google Scholar 
    DeForest, J. L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biol. Biochem. 41, 1180–1186 (2009).CAS 

    Google Scholar 
    Amundson, R. The carbon budget in soils. Annu. Rev. Earth Planet. Sci. 29, 535–562 (2001).CAS 

    Google Scholar 
    Trumbore, S. E. Potential responses of soil organic carbon to global environmental change. Proc. Natl Acad. Sci. USA 94, 8284–8291 (1997).CAS 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org (2017).Oksanen, J. et al. vegan: community ecology package. R Packag version 24-1 (2016).Asshauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).CAS 

    Google Scholar  More

  • in

    Trioecy is maintained as a time-stable mating system in the pink sea urchin Toxopneustes roseus from the Mexican Pacific

    According to the information that exists so far regarding reproduction in echinoderms, this is the first work in which the occurrence of trioecy in sea urchins is reported. This is also the first report of trioecy among members of the phylum Echinodermata, one of the most widespread taxa, both latitudinally and bathymetrically. Our results show that trioecy in this population of T. roseus is temporally stable, since the three sexes were observed together throughout the year in each month of sampling. Hermaphroditic individuals also presented the same gametogenic developmental pattern as females and males. Finally, during the spawning period of the population they contributed to the reproductive process by releasing mature gametes, which evidenced their full functionality within the studied population.We were unable to obtain evidence of self-fertilization in the studied hermaphrodites; but self- fertilization in the gonads and gonadal ducts of a hermaphrodite individual of Echinocardium cordatum was recorded in 193543. However, the embryos produced did not complete development successfully, probably due to the premature fertilization within the gonad43. Also, the cases of fully functional hermaphrodites of Arbacia punctulata have been reported44,45. The gametes of the hermaphrodites were fertilized as soon as they were released into seawater and the development of self-fertilized eggs was absolutely normal in time and morphology. After nine days, typical pluteus larvae were obtained and both the eggs and sperm of the hermaphrodites functioned ordinarily with gametes from other males and females.Therefore, we consider that there are no reasons to think that in the case of Toxopneustes roseus hermaphrodites cannot carry out self-fertilization. According to the analysis of the gonad developmental stages, their gametes were released into seawater. Theoretically, those gametes would be able to follow the normal course of fertilization, interacting among them and with gametes of females and males.The trioecic condition has been recorded so far only in some animals, such as a few nematode species and a hydra9,10,14,46,47,48. In marine invertebrates, it has been reported in one anemone under laboratory conditions and in one bivalve mollusk15,16. The coexistence of males, females and hermaphrodites has been considered an evolutionarily transitory state; for example, androdioecy (male / hermaphrodite) in nematodes such as Caenorhabditis elegans is believed to have evolved from dioecy (male / female) through a trioic intermediate. Consequently, it is very difficult to find the ecological or evolutionary causes that lead a species or population to present three sexes simultaneously49.In the species in which trioecy has been studied and monitored, it is noticeable that their populations are subjected to strong environmental stress in situ or under laboratory manipulation50,51,52. For example, some nematodes of the genus Tokorhabditis are extremophilic species that live in the Californian Mono Lake, which is characterized by being hypersaline and exhibiting high levels of arsenic10,50. In the case of Auanema freiburgensis the flexible sex determination and mating system and, consequently, its trioecy can be critical for resilience at the population level in patchy, resource-limited environments49. These results thus demonstrate that life-history, ecology and environment can play defining roles in the development of sexual systems and determine the continued presence of trioecy in the nematode. In the case of Hydra viridissima, it unlike most European species, is a “warm crisis” hydra, since it usually reproduces asexually, but when the temperatures rise to, or are maintained at high levels (≥ 20 °C), it reproduces sexually14,53. In experimental conditions, the population studied essentially behaved as androdioecic and only at the end of the research period, when the temperature was the highest (~ 25 °C), a few females appeared and joined the other existing sexes, thus generating the condition of trioecy14. Trioecy has been identified in another non-described species (e.g., Rhabditis sp. JU1783) isolated from star fruit, although it is closely related to A. rhodensis and A. freiburgensis and likely to belong to the same genus11,12. Little is known about the ecology of Auanema, as A. rhodensis has been isolated from a tick and a beetle, and A. freiburgensis from dung and a rotting plant of the genus Petasites12,47,51.Regarding the sea anemone Aiptasia diaphana, it is mainly found in isolated fouling communities, and no hermaphrodites exist in natural populations that could reproduce asexually or sexually54. However, under laboratory conditions, a single founder individual (asexual clone) produced not only males and females, but also hermaphroditic individuals. In addition, A. diaphana can fertilize within and between cloning lines, producing larval-swimming planules, which could explain the success of the species as an invader of artificial marine substrates. The condition of trioecy was also identified in individuals of this anemone manipulated in the laboratory, to create age-homogeneous populations of asexual propagules (pedal lacerations) and ontogenetic patterns of sexual differentiation were documented15.In the case of the marine bivalve Semimytilus algosus, there was not an obvious explanation for the occurrence of its trioecy, despite the intense analyses of factors such as motility versus a sessile way of life or reproductive density within a population, which could have relevance for gamete interactions16. In many respects, S. algosus is a “typical” marine intertidal mussel, since it is sessile in adulthood, occurs at high densities in wild populations, and has a very large population. S. algosus also co-occurs with other species that are close relatives within the Mytilidae family and have evolved and conserved their dioecy16.Toxopneustes roseus is another typical species of sea urchin, which has a wide latitudinal distribution throughout the tropical eastern Pacific and co-inhabits with other species of sea urchins and echinoderms that have a similar distribution and in which hermaphroditism has not been reported40,55,56,57. Regarding its population density, T. roseus is not considered among the most abundant species in the study area and its densities are relatively low (between 0.04 and 1.2 ind.m2). However, it cannot be considered a rare species in terms of abundance58,59.All of the above makes it difficult to clearly explain the reasons for the occurrence of trioecy in this species; however, certain aspects of its early development are known that could indicate the factors behind the development of this reproductive mating system in the pink sea urchin. In recent experiments carried out with gametes, larvae, and embryos of a population of T. roseus from the same area as our study, it was found that the increase in temperature above the normal values of its habitat has a deleterious effect on the success of early development60. There exists experimental evidence that at an increase of temperature to 32 °C, which is 2 °C above the maximum values registered in the study area, fertilization occurred at a very low percentage. There was also a deleterious effect on embryos, resulting in abnormal development and the lowest percentage of larval survival also occurred at 32 °C60. The same kind of experiments has been performed on other species from the study area, such as the irregular sea urchin Ryncholampas pacificus and the intertidal Echinometra vanbrunti. The deleterious effects on these species were observed only at 34 °C, which was the highest temperature tested (unpublished data). At 32 °C, however, there was no evidence of negative effects in the case on E. vanbrunti, and there was just arrested development, but no abnormalities in the case of R. pacificus. These results indicate that T. roseus is much more sensitive to the rise in temperature than other cohabiting sea urchins, and probably lives near its upper thermal limit. In that context, the continuous ocean warming could threaten the permanence of the species in the study area, since the early stages of development constitute a bottleneck for successful recruitment and later population maintenance in populations that carry out reproduction by means of external fertilization.Within the phylum Echinodermata, when stressful conditions appear in the habitat or the environment becomes hostile, the species can generally resort to asexual reproduction by fission (ophiuroids) or fission and autotomy (holothuroids and asteroids) to increase the abundance of populations in a relatively short time or counteract a threat with numbers61. This does not apply to sea urchins since they are unable to reproduce asexually. The only way for sea urchins to reproduce asexually would be by cloning larvae, but this process would also require that sexual reproduction occurs first62. Therefore, any reproductive strategy that a sea urchin population could develop to respond to drastic changes in their area must involve sexual reproduction. In this regard, in an experimental evolution study with the nematode Caenorhabditis elegans, in which partial selfing, exclusive selfing, and predominant outcrossing were compared, it was evidenced that monoecious populations only have hermaphrodites and, therefore, reproduction is carried out exclusively by self-fertilization. However, in trioic populations that have males, females, and a small number of hermaphrodites, reproduction is predominantly carried out by external crossing49. Also populations that underwent some degree of interbreeding during the evolutionary experiments (trioic and androdioic populations), maintained more genetic diversity than expected solely under genetic drift or under genetic drift and directional selection49. In this sense, it is possible that high levels of interbreeding, such as that which occurs in trioic populations, develop with populations that have sufficient deleterious recessive alleles to avoid extinction, since selection is less efficient to purge them. Trioecy, therefore, becomes an efficient system to select characteristics of the genome that allows a population that only reproduces sexually to adequately cope with significant changes in the environment that could threaten the permanence of the species in that habitat. Interbreeding (gonochorism, self-incompatible hermaphroditism) also favors genetic diversity and offers greater potential to adapt to changing environments63. The costs and advantages of crossing over selfing depend on environmental factors and, therefore, selection may favor transitions between mating systems. Androdioecy, gynodioecy, and trioecy are evolutionarily unstable intermediate strategies, but they offer important systems for testing models of the causes and consequences of the mating system in the evolution of populations63.However, the question remains why T. roseus has developed trioecy, when in the same habitat there are other sea urchins with very similar life-histories that only maintain dioecy. In the case of the bivalve Semimytilus algosus; which presents the same situation as we have with T. roseus, it was proposed that the trioecy of the species may be related to the sex determination mechanism, considering what it is known about the nematodes of the genus Auanema10,16,46. In Auanema, the male versus non-male (hermaphrodite or female) decision is determined genetically (XO for males, and XX for females and hermaphrodites)9,64. The hermaphrodite versus female decision, however, is determined by the environment of the mother. For A. freiburgensis the maternal social environment is determinant, whereas for A. rhodensis it is the age of the mother9,12,51,65. Therefore, in Auanema, environmental sex determination and genetic sex determination interact to produce trioecy.Although there is apparently no clear cause of strong, stressful conditions in the habitat of T. roseus that could threaten the survival of this species, according to the United States Environmental Protection Agency (EPA, 2021), sea surface temperature increased during the twentieth century and continues to rise. From 1901 to 2020, the global temperature rose at an average rate of 0.004 °C per decade, resulting in a total increase of 0.5 °C to date. Additionally, regional studies based on continuous monitoring, which have not yet been published, have shown that between 2002 and 2020 there has been an increase of approximately 1 °C above the historical average of the sea surface temperature in the study area.The foregoing discussion leads us to speculate that the studied population of T. roseus lives at the limit of its thermal tolerance, and the constant increase in ocean temperature due to global warming constitutes a threat to its survival and a constant source of stress for the population. This is because its early-development stages are more vulnerable to high temperature than other sea urchins that live in the same area and its population density is also significantly lower58.Phylogenetically T. roseus belongs to Family Toxopneustidae and although no other species within the genus Toxopneustes has shown hermaphroditism, this condition was reported in Tripneustes gratilla, which belongs to the same family36. Toxopneustids belong to the Order Camarodonta, and almost all the species of sea urchins in which hermaphroditism has been reported belong to this Order except for a couple that belong to the Arbacioida. At the same time, this order is contained in the Superorder Echinacea along with Camarodonta, according to the last exhaustive analysis resolving the position of the clades within Echinoidea66. In this context, theoretically T. roseus at some point underwent the environmental pressure of its early stage living under constantly rising temperatures, along with its low population densities in the study area. Consequently, it was able to develop hermaphroditism and, therefore, trioecy, similarly to what occurred to Hydra viridissima under conditions of extreme high temperature14. We hypothesize that these permanent conditions generate a constant source of strong environmental stress, which is the determining factor that keeps trioecy stable in the species in which it has been studied, and, thus, trioecy remains stable in this population of T. roseus.The mechanism of sex determination in echinoids, as well as in other echinoderms, is still unknown, although the sex ratio, which is generally close to 1:1, suggests that it occurs through sex chromosomes67. It is known that in mammals, sex determination is dictated by the presence or absence of the Y-chromosomal gene SRY. SRY functions as the primary sex-determining gene by activating testis formation, and in its absence, the embryo will form ovaries. SRY only exists in mammals; however it evolved as a duplication of the Sox gene family, which exists in all metazoans68.In vertebrates, Sox genes are involved in sex determination, neurogenesis, skeletonogenesis, eye development, pituitary development, pancreas formation, and neural crest and notochord formation69. In invertebrates, they are involved in processes such as metamorphosis, eye development, neural crest formation, and ectoderm formation70. In the sea urchin Strongylocentrotus purpuratus, SoxB1 was determined to be expressed in the primordial gut during development and is closely related in sequence to Sox genes of the mouse embryo71. An investigation of sex determination was carried out in the sea urchin Strongylocentrotus purpuratus using RNA-seq and quantitative mRNA measurements, but the mechanisms that govern sexual determination of the species could not be clearly established72. However; the results show that the male fate factors Dmrt and SoxH are expressed early and meiosis initiates early. Also, gonad-specific transcripts involved in egg and sperm biology, are first activated before rudiment formation in the larvae of this sea urchin. The study provided additional evidence for the hypothesis that in sea urchins, sex determination occurs genetically72. Another research with the sea cucumber Apostichopus japonicus, which integrated genome-wide association study and analyzes of sex-specific variations evidenced that the species exhibits genetic sexual determination73. Furthermore, analysis of homozygous and heterozygous genotypes of abundant sex-specific SNPs in females and males, confirmed that A.japonicus might have a XX/XY sex determination system73.On the other hand, it has been proposed that a deviation from the 1:1 sex ratio in echinoids could reflect environmental conditions that influence sex determination67. For example, a relatively large proportion of Lytechinus variegatus and Tripneustes ventricosus (as Tripneustes esculentus) hermaphrodites was recorded in southern Florida during an unusually cold winter, suggesting that adverse winter conditions in some way affected sex determination in juveniles74,75. Also relatively large number of Strongylocentrotus purpuratus hermaphrodites was reported in Bahía de Todos los Santos, Mexico, where extreme seasonal fluctuations in temperature (from about 12–24 °C) are recorded76. However, posterior studies did not find a single hermaphrodite of Strongylocentrotus purpuratus in more than 500 individuals analyzed77,78.Considering that sex determination in sea urchins is highly probable to occur genetically and the possibility that the environment may also influence sex determination, we think that in the case of Toxopneustes roseus, genetic sex determination and environmental sex determination are interacting to maintain the condition of trioecy stable. We propose that, especially because the cases in which environmental conditions have assumed to influence sex determination, extreme temperatures are invoked as the main affecting factor. However, more detailed studies are needed in terms of sexual determination and experimental evolution to be able to verify our assumption.In general, the efforts that have been made to explain the evolution of the sexes and the origin of hermaphroditism and trioecy are still scarce, and critical questions remain to be answered. The case of trioecy detected in T. roseus may constitute an important model to seek these answers about the evolution of sexual systems and the environmental mechanisms that trigger trioecy in marine macroinvertebrates and, in particular, in echinoderms. More

  • in

    Larvicidal and repellent potential of Ageratum houstonianum against Culex pipiens

    El-Naggar, H. A. & Hasaballah, A. I. Acute larvicidal toxicity and repellency effect of Octopus cyanea crude extracts against the filariasis vector, Culex pipiens. J. Egypt. Soc. Parasitol. 48(3), 721–728 (2018).Article 

    Google Scholar 
    Koenraadt, C. J. M., Möhlmann, T. W. R., Verhulst, N. O., Spitzen, J. & Vogels, C. B. F. Effect of overwintering on survival and vector competence of the West Nile virus vector Culex pipiens. Parasit. Vectors 12, 147. https://doi.org/10.1186/s13071-019-3400-4 (2019).Article 

    Google Scholar 
    Vloet, R. P. M. et al. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes. PLoS Negl. Trop. Dis. 11, e0006145. https://doi.org/10.1371/journal.pntd.0006145 (2017).Article 
    CAS 

    Google Scholar 
    Dyab, A. K., Galal, L. A., Mahmoud, A. E. & Mokhtar, Y. Finding Walachia in filarial larvae and culicidae mosquitoes in upper Egypt governorate. Korean J. Parasitol. 54, 265–272 (2016).Article 
    CAS 

    Google Scholar 
    Clements, A. N. & Harbach, R. E. Controversies over the scientific name of the principal mosquito vector of yellow fever virus—Expediency versus validity. J. Vector Ecol. 43, 1–14. https://doi.org/10.1111/jvec.12277 (2018).Article 

    Google Scholar 
    Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé, Cameroon. PLoS Negl. Trop. Dis. 13(4), 7229. https://doi.org/10.1371/journal.pntd.0007229 (2019).Article 

    Google Scholar 
    Shah, R. M. et al. Toxicity of 25 synthetic insecticides to the field population of Culex quinquefasciatus Say. Parasitol. Res. 115(11), 4345–4351 (2016).Article 

    Google Scholar 
    Senthil-Nathan, S. A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Front. Physiol. 10, 1591. https://doi.org/10.3389/fphys.2019.01591 (2020).Article 

    Google Scholar 
    Pavela, R. et al. Traditional herbal remedies and dietary spices from Cameroon as novel sources of larvicides against filariasis mosquitoes? Parasitol. Res. 115(12), 4617–4626 (2016).Article 

    Google Scholar 
    Samuel, T. et al. In vitro antimicrobial activity of Ageratum houstonianum Mill. (Asteraceae). Food Sci. 35, 2897–2900 (2011).
    Google Scholar 
    Boussaada, O. et al. Insecticidal activity of some Asteraceae plant extracts against Tribolium confusum. Bull. Insectol. 61(2), 8435 (2008).
    Google Scholar 
    Samuel, T., Ravindran, J., Eapen, A. & William, J. Repellent activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2(6), 478–480 (2012).Article 

    Google Scholar 
    Samuel, T., Ravindran, K. J., Eapen, A. & William, S. J. Effect of Ageratum houstonianum Mill. (Asteraceae) leaf extracts on the oviposition activity of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 111, 2295–2299 (2012).Article 

    Google Scholar 
    Tennyson, S. et al. In vitro antioxidant activity of Ageratum houstonianum Mill. (Asteraceae). Asian Pac. J. Trop. Dis. 2, S712–S714 (2012).Article 

    Google Scholar 
    Sharma, P. D. & Sharma, O. P. Natural products chemistry, and biological properties of the Ageratum plant. Toxicol. Environ. Chem. 50, 213–232 (1995).Article 
    CAS 

    Google Scholar 
    Bodner, C. C. & Gereau, R. E. A contribution of Bontoc ethnobotany. Econ. Bot. 42(3), 307–369 (1988).Article 

    Google Scholar 
    Wiedenfeld, H. & Andrade-Cetto, A. Pyrrolizidine alkaloids from Ageratum houstononiaum Mill.. Phytochemistry 57(8), 1269–1271 (2001).Article 
    CAS 

    Google Scholar 
    Siebertz, R., Proksch, P., Wray, V. & Witte, L. A benzofuran from Ageratum houstononiaum Mill.. Phytochemistry 27(12), 3996–3997 (1988).Article 
    CAS 

    Google Scholar 
    Quijano, L., Calderon, J. S., Garibay, E., Escobar, E. & Rios, T. Further polysubstituted flavones from Ageratum houstononiaum Mill.. Phytochemistry 26(7), 2075–2978 (1987).Article 
    CAS 

    Google Scholar 
    Kundu, A. & Vadassery, J. Chlorogenic acid-mediated chemical defence of plants against insect herbivores. Plant Biol. (Stuttg.) 21(2), 185–189. https://doi.org/10.1111/plb.12947 (2019).Article 
    CAS 

    Google Scholar 
    War, A. R. et al. Effect of plant secondary metabolites on legume pod borer Helicoverpa armigera. J. Pest Sci. 86, 399–408 (2013).Article 

    Google Scholar 
    Cipollini, D., Stevenson, R., Enright, S., Eyles, A. & Bonello, P. Phenolic metabolites in leaves of the invasive shrub, Lonicera maackii, and their potential phytotoxic and anti-herbivore effects. J. Chem. Ecol. 34, 144–152. https://doi.org/10.1007/s10886-008-9426-2 (2008).Article 
    CAS 

    Google Scholar 
    Regnault-Roger, C. et al. Polyphenolic compounds of Mediterranean Lamiaceae and investigation of orientational effects on Acanthoscelides obtectus (Say). J. Stored Prod. Res. 40, 395–408 (2004).Article 
    CAS 

    Google Scholar 
    Khan, S. et al. Bioactivity-guided isolation of rosmarinic acid as the principle bioactive compound from the butanol extract of Isodon rugosus against the pea aphid, Acyrthosiphon pisum. PLoS ONE 14(6), e0215048. https://doi.org/10.1371/journal.pone.0215048 (2019).Article 
    CAS 

    Google Scholar 
    War, A., Sharma, S. P. & Sharma, H. C. Differential induction of flavonoids in groundnut in response to Helicoverpa armigera and Aphis craccivora infestation. Int. J. Insect Sci. 8, 55–64. https://doi.org/10.4137/IJIS.S39619 (2016).Article 

    Google Scholar 
    Al Jabr, A. M., Hussain, A., Rizwan-ul-Haq, M. & Al-Ayedh, H. Toxicity of plant secondary metabolites modulating detoxification genes expression for natural red palm weevil pesticide development. Molecules 22, 169. https://doi.org/10.3390/molecules22010169 (2017).Article 
    CAS 

    Google Scholar 
    Moreira, M. D. et al. Plant compounds insecticide activity against coleoptera pests of stored products. Pesqui. Agropecu. Bras. 42(7), 909–915 (2007).Article 

    Google Scholar 
    Ahuchaogu, A. A. et al. GC-MS analysis of bioactive compounds from whole plant chloroform extract of Ageratum conyzoides. Int. J. Med. Plants Nat. Prod. 4(2), 13–24. https://doi.org/10.20431/2454-7999.0402003 (2018).Article 

    Google Scholar 
    Zhao, P.-L., Li, J. & Yang, G.-F. Synthesis, and insecticidal activity of chromanone and chromone analogues of diacylhydrazines. Bioorg. Med. Chem. 15, 1888–1895 (2007).Article 
    CAS 

    Google Scholar 
    Hussein, M. A. et al. Synthesis, molecular docking and insecticidal activity evaluation of chromones of date palm pits extract against Culex pipiens (Diptera: Culicidae). Int. J. Mosq. Res. 5(4), 22–32 (2018).
    Google Scholar 
    Li, F. et al. Synthesis and pharmacological evaluation of novel chromone derivatives as balanced multifunctional agents against Alzheimer’s disease. Bioorg. Med. Chem. 25(14), 3815–3826. https://doi.org/10.1016/j.bmc.2017.05.027 (2017).Article 
    CAS 

    Google Scholar 
    Feldlaufer, M. F. & Eberle, M. W. Insecticidal effect of precocene II on the human body louse, Pediculus humanus. Trans. R. Soc. Trop. Med. Hyg. 74(3), 398–399. https://doi.org/10.1016/0035-9203(80)90110-8 (1980).Article 
    CAS 

    Google Scholar 
    Lu, X. N., Liu, X. C., Liu, Q. Z. & Liu, Z. L. Isolation of insecticidal constituents from the essential oil of Ageratum houstonianum Mill. against Liposcelis bostrychophila Badonnel. J. Chem. 2014, 6. https://doi.org/10.1155/2014/645687 (2014).Article 
    CAS 

    Google Scholar 
    Pratt, G. & Bowers, W. Precocene II inhibits juvenile hormone biosynthesis by cockroach Corpora allata in vitro. Nature 265, 548–550. https://doi.org/10.1038/265548a0 (1977).Article 
    ADS 
    CAS 

    Google Scholar 
    Kumar, K. G. A. et al. Chemo-profiling and bioassay of phytoextracts from Ageratum conyzoides for acaricidal properties against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) infesting cattle and buffaloes in India. Ticks Tick-Borne Dis. 7(2), 342–349 (2016).Article 

    Google Scholar 
    Fahmi, A. G., Nassar, M., Mansour, E. & Salama, R. Toxicological and biochemical effects of precocene II against cotton leafworm, Spodoptera littoralis (boisd.). Egypt. J. Agric. Res. 97(1), 179–186. https://doi.org/10.21608/ejar.2019.68627 (2019).Article 

    Google Scholar 
    Benelli, G., Pavela, R., Drenaggi, E., Desneux, N. & Maggi, F. Phytol, (E)-nerolidol and spathulenol from Stevia rebaudiana leaf essential oil as effective and eco-friendly botanical insecticides against Metopolophium dirhodum. Ind. Crops Prod. 155, 112844. https://doi.org/10.1016/j.indcrop.2020.112844 (2020).Article 
    CAS 

    Google Scholar 
    Tennyson, S., Ravindran, K. J., Eapen, A. & William, S. J. Ovicidal activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae. Asian Pac. J. Trop. Dis. 5, 199–203 (2015).Article 

    Google Scholar 
    Tennyson, S., Ravindran, K. J., Eapen, A. & William, S. J. Effect of Ageratum houstonianum Mill. (Asteraceae) leaf extracts on the oviposition activity of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 111, 2295–2299. https://doi.org/10.1007/s00436-012-3083-7 (2012).Article 

    Google Scholar 
    Després, L., David, J. P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22(6), 298–307 (2007).Article 

    Google Scholar 
    Navarro-Roldán, M. A., Bosch, D., Gemeno, C. & Siegwart, M. Enzymatic detoxification strategies for neurotoxic insecticides in adults of three tortricid pests. Bull. Entomol. Res. https://doi.org/10.1017/S0007485319000415 (2020).Article 

    Google Scholar 
    Abdel Haleem, D. R., Gad, A. A. & Farag, S. M. Larvicidal, biochemical and physiological effects of acetamiprid and thiamethoxam against Culex pipiens L. (Diptera: Culicidae). Egypt. J. Aquat. Biol. Fish. 24(3), 271–283. https://doi.org/10.21608/ejabf.2020.91119 (2020).Article 

    Google Scholar 
    Li, X., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231–253 (2007).Article 

    Google Scholar 
    Montella, I. R., Schama, R. & Valle, D. The classification of esterases: An important gene family involved in insecticide resistance—A review. Mem. Inst. Oswaldo Cruz. 107(4), 437–449 (2012).Article 
    CAS 

    Google Scholar 
    Vasantha-Srinivasan, P. et al. Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L.. Ecotoxicol. Environ. Saf. 139, 439–446. https://doi.org/10.1016/j.ecoenv.2017.01.026 (2017).Article 
    CAS 

    Google Scholar 
    Ramasamy, V. et al. Chemical characterization of billy goat weed extracts Ageratum conyzoides (Asteraceae) and their mosquitocidal activity against three blood-sucking pests and their non-toxicity against aquatic predators. Environ. Sci. Pollut. Res. 28(22), 28456–28469. https://doi.org/10.1007/s11356-021-12362-6 (2021).Article 

    Google Scholar 
    Shoukat, R. F. et al. Larvicidal, ovicidal, synergistic, and repellent activities of Sophora alopecuroides and its dominant constituents against Aedes albopictus. Insects 11, 246. https://doi.org/10.3390/insects11040246 (2020).Article 

    Google Scholar 
    Boily, M., Sarrasin, B., Deblois, C., Aras, P. & Chagnon, M. Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: Laboratory and field experiments. Environ. Sci. Pollut. Res. Int. 20(8), 5603–5614. https://doi.org/10.1007/s11356-013-1568-2 (2013).Article 
    CAS 

    Google Scholar 
    Rajashekar, Y., Raghavendra, A. & Bakthavatsalam, N. Acetylcholinesterase inhibition by biofumigant (Coumaran) from leaves of lantana camara in stored grain and household insect pests. Biomed. Res. Int. 2014, 1–6. https://doi.org/10.1155/2014/187019 (2014).Article 
    CAS 

    Google Scholar 
    Yuan, Y., Li, L., Zhao, J. & Chen, M. Effect of tannic acid on nutrition and activities of detoxification enzymes and acetylcholinesterase of the fall webworm (Lepidoptera: Arctiidae). J. Insect Sci. 20(1), 8 (2020).Article 

    Google Scholar 
    Koodalingam, A., Mullainadhan, P. & Arumugam, M. Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito, Aedes aegypti (Diptera: Culicidae). Acta Trop. 118(1), 27–36 (2011).Article 
    CAS 

    Google Scholar 
    Nathan, S. S. et al. Effect of azadirachtin on acetylcholinesterase (AChE) activity and histology of the brown plant hopper Nilaparvata lugens (Stål). Ecotoxicol. Environ. Saf. 70, 244–250 (2008).Article 
    CAS 

    Google Scholar 
    Abdel-Haleem, D. R., Genidy, N. A., Fahmy, A. R., Abu-El Azm, F. S. M. & Ismail, N. S. M. Comparative modeling, toxicological and biochemical studies of imidacloprid and thiamethoxam insecticides on the House Fly, Musca domestica L. (Diptera: Muscidae). Egypt. Acad. J. Biol. Sci. 11(1), 33–42. https://doi.org/10.21608/EAJB.2018.11977 (2018).Article 

    Google Scholar 
    Kliot, A., Kontsedalov, S., Ramsey, J. S., Jande, G. & Ghanim, M. Adaptation to nicotine in the facultative tobacco-feeding hemipteran Bemisia tabaci. Pest Manag. Sci 70, 1595–1603 (2014).Article 
    CAS 

    Google Scholar 
    Silva, T. R. F. B. et al. Effect of the flavonoid rutin on the biology of Spodoptera frugiperda (Lepidoptera: Noctuidae) Fitossanidade. Acta Sci. Agron. 38(2), 165–170. https://doi.org/10.4025/actasciagron.v38i2.27956 (2016).Article 

    Google Scholar 
    Petschenka, G., Wagschal, V., Von Tschirnhaus, M., Donath, A. & Dobler, S. Convergently evolved toxic secondary metabolites in plants drive the parallel molecular evolution of insect resistance. Am. Nat. 190, 29–43 (2017).Article 

    Google Scholar 
    Emam, M. et al. Phytochemical profiling of Lavandula coronopifolia Poir. aerial parts extract and its larvicidal, antibacterial, and antibiofilm activity against Pseudomonas aeruginosa. Molecules 26, 1710. https://doi.org/10.3390/molecules26061710 (2021).Article 
    CAS 

    Google Scholar 
    El Hadidy, D., El Sayed, A. M., El Tantawy, M. & El Alfy, T. Phytochemical analysis and biological activities of essential oils of the leaves and flowers of Ageratum houstonianum Mill. cultivated in Egypt. J. Essent. Oil-Bear. Plants 22(5), 1241–1251. https://doi.org/10.1080/0972060X.2019.1673831 (2019).Article 

    Google Scholar 
    Tennyson, S., Ravindran, J., Eapen, A. & William, J. Repellent activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2(6), 478–480 (2012).Article 

    Google Scholar 
    Pintong, A. et al. Insecticidal and histopathological effects of Ageratum conyzoides weed extracts against dengue vector, Aedes aegypti. Insects 11, 224 (2020).Article 

    Google Scholar 
    Parveen, S. et al. In vitro evaluation of ethanolic extracts of Ageratum conyzoides and Artemisia absinthium against cattle tick, Rhipicephalus microplus. Sci. World J. 2014, 858973 (2014).Article 
    CAS 

    Google Scholar 
    Ichihara, K. & Fukubayashi, Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 51(3), 635–640 (2010).Article 
    CAS 

    Google Scholar 
    Mruthunjaya, K. & Hukkeri, V. I. In vitro antioxidant and free radical scavenging potential of Parkinsonia aculeata Linn.. Pharmacogn. Mag. 4(13), 42–52 (2008).
    Google Scholar 
    Atanassova, M., Georgieva, S. & Ivancheva, K. Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J. Chem. Technol. Metall. 46(1), 81–88 (2011).CAS 

    Google Scholar 
    Mizzi, L., Chatzitzika, C., Gatt, R. & Valdramidis, V. HPLC analysis of phenolic compounds and flavonoids with overlapping peaks. Food Technol. Biotechnol. 58(1), 12–19. https://doi.org/10.17113/ftb.58.01.20.6395 (2020).Article 
    CAS 

    Google Scholar 
    Kasap, M. & Demirhan, H. The effect of various larval foods on the rate of adult emergence and fecundity of mosquitoes. Turk. Parasitol. Dergisi 161, 87–97 (1992).
    Google Scholar 
    WHO. Guidelines for Laboratory & Field Testing of Mosquito Larvicides 1–4 (Bulletin of the World Health Organization, 2005).
    Google Scholar 
    El-Sheikh, T., Bosly, H. & Shalaby, N. Insecticidal and repellent activities of methanolic extract of Tribulus terrestris L. (Zygophyllaceae) against the malarial vector Anopheles arabiensis (Diptera: Culicidae). Egypt. Acad. J. Biol. Sci. 5(2), 13–22 (2012).
    Google Scholar 
    Abbott, W. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18(2), 256–267 (1952).
    Google Scholar 
    Amin, T. R. Biochemical and Physiological Studies of Some Insect Growth Regulators on the Cotton Leafworm, Spodoptera littoralis (Boisd.). Ph.D. thesis, Faculty of Science, Cairo University (1998).Simpson, D. R., Bulland, D. L. & Linquist, D. A. A semimicrotechnique for estimation of cholinesterase activity in boll weevils. Ann. Entomol. Soc. Am. 57, 367–371 (1964).Article 
    CAS 

    Google Scholar 
    Amaral, M. C., Bonecker, A. C. T. & Ortiz, C. H. D. Activity determination of Na+ K+-ATPase and Mg++-ATPase enzymes in the gill of Poecilia vivpara (Osteichthyes, Cyprinodontiformes) in different salinities. Braz. Arch. Biol. Technol. 44, 1–6 (2001).Article 
    CAS 

    Google Scholar 
    Hansen, I. G. & Hodgson, E. Biochemical characteristics of insect microsomes, N-and o-demethylation. Biochem. Pharmacol. 20, 1569–1578 (1971).Article 
    CAS 

    Google Scholar 
    Finney, D. J. Probit Analysis 3rd edn. (Cambridge University Press, 1971).MATH 

    Google Scholar 
    Duncan, D. B. Multiple range, and multiple F tests. Biometrics 2, 1–42 (1955).Article 
    MathSciNet 

    Google Scholar  More