More stories

  • in

    A survey of vocal mimicry in companion parrots

    It is well known that parrots are excellent vocal learners; here we quantified that ability across a wide variety of species, using human mimicry as a proxy for vocal learning of natural repertoires. Results confirm that parrot vocal mimicry varies substantially both within and among species22. Parrot age, social interactions, and sex do not appear to be universal drivers of vocal learning ability within the order Psittaciformes, but all of these factors may have effects within individual species.Vocal learning variation by speciesWithin species, mimicry sound repertoires are extremely variable bird to bird; for example, our data indicate that a grey parrot may mimic anywhere from 0 to 600 different human words. Many other species showed smaller repertoires but similar variability. It is not entirely clear whether this range of variation would be present in natural sounds within wild parrot populations, but research has demonstrated intraspecific repertoire size variation in multiple species of parrots30,31.The vast majority of parrots presented a pattern in which their repertoire size was largest for words, intermediate for phrases (composed of the reported words), and smallest for non-linguistic sounds (Fig. 2). In the wild, parrots mimic the most socially relevant vocalizations, and presumably do so in captivity as well15. Thus, the spoken word and phrase interactions with their human “flock” likely reflect the most socially relevant cues. The interesting exceptions to this pattern were Fischer’s lovebirds, cockatiels, and Senegal parrots who all used more sounds than phrases. Cockatiels are well-known in the pet world to be excellent whistlers, and thus it was satisfying to see that our data support that informal information. We suspect that deviations from the typical patterns may represent acoustic learning preferences, templates, or limitations32.Although individual variation was substantial, we nevertheless saw strong evidence that overall vocal learning abilities differed by species. Pacific parrotlets and sun parakeets showed very limited human mimicry, while grey parrots, Amazona parrots, cockatoos, and macaws were generally very accomplished mimics. The patterns that we documented appeas to reflect natural vocal repertoire variation across species. The documented calls of wild parrots generally range from 5 to 15 calls25,33,34,35,36. Several species, however, present additional complexity: yellow-naped parrots (Amazona auropalliata), palm cockatoos (Probosciger aterrimus), and grey parrots all have natural repertoires of more than 25 discrete elements, with additional elements given in duets13,27,37 Members of these three groups, grey parrots, Amazona parrots and cockatoos also had relatively large repertoires in our study. In several of these species (particularly grey parrots) our measure of mimicked “words” (60) was higher than estimates of natural call “elements” (39) in the literature27. This discrepancy suggests that parrots are capable of learning vocalizations with more than 25 elements and, simultaneously, might reflect a sampling bias wherein survey-takers are more likely to report on individuals with high mimicry ability.Parrot species varied in their tendency to improvise new combinations of elements, although most species did rearrange words to some degree. Research shows that parrot vocalization length and structure carry signal content, so there may be selective pressures favoring this ability24,33. If so, then our data suggest that those pressures are strongest in some cockatoos and weakest in sun parakeets and green-cheeked parakeets. In general, species with larger repertoires also showed more vocal flexibility (Fig. 2, Appendix 6). Additionally, wild birds typically use particular vocalizations in set contexts, so the ability to do so is likely to be adaptive24. Previous studies of captive parrots have demonstrated contextual use of mimicked words, both in tutored lab settings and in home-raised birds28,38. In our sample, contextual use of learned sounds was supported across 89% of individuals and most species. Survey-taker responses on this topic are necessarily subjective, so we emphasize that this rate of contextual use should be interpreted as a general estimate. Nevertheless, the data indicated that parrots frequently associated mimicked human sounds with appropriate human contexts. This finding is particularly revealing because the relevant human contexts are, by their nature, outside the range of typical wild parrot experiences. Contextual vocalization use must, therefore, rely on extremely flexible vocal learning mechanisms.Vocal learning variation by ageOn average, birds aged with high confidence were younger than those aged with low or medium confidence. This pattern might indicate that people tend to overestimate the age of captive birds of uncertain age. This pattern might also reflect the facts that older birds are more likely to be wild-caught and that younger birds are more likely to have good hatch-date documentation. In either case, there are few ramifications of inaccurate age estimates relating to vocal behavior because our data gave no evidence that adult vocal mimicry repertoires varied with age. Our analyses of grey parrots confirmed that repertoires expanded through the juvenile phase, but did not show reliable expansion among adults. Studies of wild birds indicate that parrots can learn vocalizations throughout life; such open-ended learning is limited to a subset of vocal learning species, and can generate different outcomes as animals age15. In some species, animals can add new vocal features over the course of a lifetime, leading to repertoire expansion39,40. In other species, animals may replace parts of their repertoire with newly-learned vocalizations, leading to stable vocal production repertoire sizes across age groups39,41. Our data suggest that parrots fit the second pattern; although they are open-ended vocal learners, their adult repertoires change more by element replacement, than by expansion. This does not necessarily imply that vocalizations are “forgotten” through time, but merely that some sounds are no longer used as conditions change42. Many parrot vocalizations function in social coordination with flock-mates22. The fission–fusion nature of parrot flocks creates changing social conditions for each individual over its lifetime43. A vocal replacement model for repertoire learning would allow individuals to adjust their vocal signatures to match new social situations and stop producing vocalizations that are no longer socially relevant11,44.Vocal learning variation by sexOur analyses of the full data set confirmed the generally held understanding that males and females in most species of parrots have similar vocal learning abilities15. We did, however see sex differences in some species that merit future study. First, we found a substantial overrepresentation of males in our sample. This could be interpreted several ways; (1) there are legitimately more males in the parrot pet trade, (2) pet owners are giving us accurate data but are more likely to give us data on males or (3) some bias exists in which pet owners assume their talking parrots are males, rather than females. Possibilities 1 and 2 seem unlikely because after we eliminated all parrots sexed with low confidence, we were left with a nearly 1:1 ratio of males:females in the subset of parrots that were sexed with high confidence. That trend suggests that the male bias in our data comes (at least in part) from a human tendency to label their pet parrots as male when the sex is not clear. Among songbirds, there is a strong tendency to assume that singing birds are male, and a similar bias may hold true for parrots45. It is unclear whether parrots in this study were mislabeled as male because they vocalize or, more simply, because that is the default human tendency for any animal.Although we conclude that some of the male bias in our data is human error, we also saw patterns that suggest real sex differences in vocal learning some species. For example, Pacific parrotlets are a dimorphic species, and all of our sampled birds were sexed by plumage46. Thus, we expect sexing in this species to be fairly accurate. Our data set included 10 males and no females, a bias unlikely to result purely from sampling error. We saw a similar trend in cockatiels for which there was a large overabundance of males in the data set, even among the 17 birds sexed with high confidence. Humans may be more likely to report on parrots that are good mimics. Therefore, the results likely reflect a real-world tendency for male cockatiels to mimic more human sounds than females. Figure 3 suggests that the same might be true for galahs, sulphur-crested cockatoos, rose-ringed parakeets, Senegal parrots, and budgerigars. Existing research supports the idea that sex differences in vocal behavior are important in several of these species. Among galahs, male and female calls evoke different responses47, and patterns of call adjustment vary by sex among budgerigars20. We also note that several of these species (Pacific parrotlets, rose-ringed parakeets, budgerigars, and cockatiels; Appendix 2b) show sex-based differences in both plumage and vocal learning, raising questions about whether those traits co-evolve.In addition to sex-based differences in the tendency to mimic humans, several well-sampled species showed evidence of sex-based differences in repertoire sizes. Particularly interesting are the blue-and-yellow macaws, in which repertoire size was significantly male-biased. We had more females (15) than males (9) in the data set, but males used on average 3–4 times as many mimicry sounds, phrases and words as females did. Galahs and budgerigars showed a similar male-bias in repertoire sizes, matching the trend of males being overrepresented in our data set for those two species. Prior research on galahs and budgerigars has found that males can be more vocal and more flexible with their vocalizations; perhaps these abilities translate to learning more call types20,47. A similar, but weaker, male mimicry increase occurred in rose-ringed parakeets. In only one species, yellow-headed parrots, did females show a significantly larger mimicry repertoire than males in any category (Appendix 5). Interestingly, the tendency to mimic humans (measured as sampling in the data set) and repertoire sizes did not always show the same patterns. Among sulphur-crested cockatoos, cockatiels, and Senegal parrots, males were more likely to show human mimicry, but their repertoires were not larger than the repertoires of females. This suggests that in some species, females may be less likely to mimic vocalizations, but when they do so they have just as large a vocabulary as males.The reported sex differences in parrot vocal mimicry repertoires are intriguing, but also are tentative conclusions. In many species, including our best sampled species, grey parrots, we saw no evidence of sex-differences in repertoire size. The sex-biases that we did document lose statistical significance after controlling for the many comparisons that we conducted. Nevertheless, we expect that some of our data represent true biological differences, especially because studies of wild birds have shown similar trends47,48. Thus, we offer our data as a starting point for additional research. Taken together, the analyses by sex provide interesting points of comparison to other vocal learning animals. Our combined analyses suggest that sex differences in vocal learning are vastly smaller and less common among parrots than they are among oscine passerines and hummingbirds45,49,50. Sex-based patterns of vocal learning in parrots appear more similar to those of vocal learning mammals than to those of other vocal learning birds51. Overall, parrots and songbirds present excellent comparative study systems for all aspects of sex differences in song learning, from the mechanistic to the functional17,51.Vocal learning variation by social contextMany parrot vocalizations function in social organization for individuals within flocks, and the ability to learn from conspecifics is essential to parrot familial and social integration12,15,52. Although our study specifically examined vocal learning of human sounds, we thought it possible that the presence of other parrots would increase mimicry rates if parrots learned human vocalizations from their parrot companions. Anecdotal stories of parrots teaching words to other parrots abound53, and studies of grey parrot cognition show that vocal modeling by multiple tutors can lead to better learning of human words54. Most existing results, however, are based on human tutoring, with controlled studies of parrot-parrot word transmission lacking. Here we tested whether social interactions with other parrots correlated with more vocal learning of human sounds. Our data gave no evidence that parrot-parrot social interactions drive human vocal mimicry. This was true across the full sample (controlling for species identity), and for our best sampled species, grey parrots. Although companion parrots are known to learn from conspecifics, that learning does not appear to shape repertoire sizes53. Open questions remain about whether signal complexity, repertoire size, or aspects of vocal learning covary with social complexity at a larger scale among parrots55. Follow up studies should address these questions using phylogenetically-controlled methods56. More

  • in

    Pathways to engineering the phyllosphere microbiome for sustainable crop production

    Koskella, B. The phyllosphere. Curr. Biol. 30, R1143–R1146 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lu, N. et al. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods 15, 17 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arye, G. C. & Harel, A. in Microbial Genomics in Sustainable Agroecosystems (eds Tripathi, V. et al.) 39–65 (Springer, 2020).Universal plant healthcare. Nat. Plants 6, 47 (2020).Fones, H. N. et al. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1, 332–342 (2020).Article 

    Google Scholar 
    Li, W., Deng, Y., Ning, Y., He, Z. & Wang, G. L. Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu. Rev. Plant Biol. 71, 575–603 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Matsumoto, H. et al. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 7, 60–72 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Thomazella, D. P. T. et al. Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proc. Natl Acad. Sci. USA 118, e2026152118 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guo, Y. Molecular design for rice breeding. Nat. Food 2, 849–849 (2021).Article 

    Google Scholar 
    Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).Article 
    PubMed 

    Google Scholar 
    Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carrion, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chialva, M., Lanfranco, L. & Bonfante, P. The plant microbiota: composition, functions, and engineering. Curr. Opin. Biotechnol. 73, 135–142 (2021).Article 
    PubMed 

    Google Scholar 
    Liu, H., Brettell, L. E. & Singh, B. Linking the phyllosphere microbiome to plant health. Trends Plant Sci. 25, 841–844 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liu, H., Brettell, L. E., Qiu, Z. & Singh, B. K. Microbiome-mediated stress resistance in plants. Trends Plant Sci. 25, 733–743 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xu, P. et al. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. J. Adv. Res. 39, 49–60 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, M. & Cernava, T. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environ. Sci. Ecotechnol. 4, 100061 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hegazi, N., Hartmann, A. & Ruppel, S. The plant microbiome: exploration of plant–microbe interactions for improving agricultural productivity. J. Adv. Res. 19, 1–2 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mittelviefhaus, M., Muller, D. B., Zambelli, T. & Vorholt, J. A. A modular atomic force microscopy approach reveals a large range of hydrophobic adhesion forces among bacterial members of the leaf microbiota. ISME J. 13, 1878–1882 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sapkota, R., Knorr, K., Jorgensen, L. N., O’Hanlon, K. A. & Nicolaisen, M. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol. 207, 1134–1144 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. & Vorholt, J. A. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10, e1004283 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horton, M. W. et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 5, 5320 (2014).Article 
    PubMed 

    Google Scholar 
    Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shakir, S., Zaidi, S. S., de Vries, F. T. & Mansoor, S. Plant genetic networks shaping phyllosphere microbial community. Trends Genet. 37, 306–316 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xiong, C. et al. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 9, 171 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pang, Z. et al. Linking plant secondary metabolites and plant microbiomes: a review. Front. Plant Sci. 12, 621276 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pfeilmeier, S. et al. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat. Microbiol. 6, 852–864 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gupta, R. et al. Cytokinin drives assembly of the phyllosphere microbiome and promotes disease resistance through structural and chemical cues. ISME J. 16, 122–137 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Massoni, J. et al. Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J. 14, 245–258 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ren, G. et al. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 392, 27–44 (2015).Article 
    CAS 

    Google Scholar 
    Meyer, K.M. et al. Plant neighborhood shapes diversity and reduces interspecific variation of the phyllosphere microbiome. ISME J. 16, 1376–1387 (2022).Article 
    PubMed 

    Google Scholar 
    Qiu, Y. et al. Warming and elevated ozone induce tradeoffs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition. Sci. Adv. 7, eabe9256 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yu, H., Zhang, Y. & Tan, W. The “neighbor avoidance effect” of microplastics on bacterial and fungal diversity and communities in different soil horizons. Environ. Sci. Ecotechnol. 8, 100121 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Q. et al. Interactive effects of ozone exposure and nitrogen addition on the rhizosphere bacterial community of poplar saplings. Sci. Total Environ. 754, 142134 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, H., Jiang, Q., Wang, J., Li, K. & Wang, F. Analysis on the impact of two winter precipitation episodes on PM2.5 in Beijing. Environ. Sci. Ecotechnol. 5, 100080 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Feng, Z. et al. Ozone pollution threatens the production of major staple crops in East Asia. Nat. Food 3, 47–56 (2022).Article 
    CAS 

    Google Scholar 
    Zhu, Y. G. et al. Impacts of global change on the phyllosphere microbiome. New Phytol. 234, 1977–1986 (2021).Article 

    Google Scholar 
    Sawada, H. et al. Elevated ozone deteriorates grain quality of japonica rice cv. Koshihikari, even if it does not cause yield reduction. Rice 9, 7 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Agathokleous, E. et al. Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity. Sci. Adv. 6, eabc1176 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mieczan, T. & Bartkowska, A. The effect of experimentally simulated climate warming on the microbiome of carnivorous plants—a microcosm experiment. Glob. Ecol. Conserv. 34, e02040 (2022).Article 

    Google Scholar 
    Liu, H. et al. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens. New Phytol. 229, 2873–2885 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gao, M. et al. Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome 9, 187 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Snelders, N. C. et al. Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. Nat. Plants 6, 1365–1374 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Humphrey, P. T. & Whiteman, N. K. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 4, 221–229 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Tree leaf bacterial community structure and diversity differ along a gradient of urban intensity. mSystems 2, e00087–17 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Imperato, V. et al. Characterisation of the Carpinus betulus L. phyllomicrobiome in urban and forest areas. Front. Microbiol. 10, 1110 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perreault, R. & Laforest-Lapointe, I. Plant–microbe interactions in the phyllosphere: facing challenges of the anthropocene. ISME J. 16, 339–345 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jain, A., Ranjan, S., Dasgupta, N. & Ramalingam, C. Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit. Rev. Food Sci. Nutr. 58, 297–317 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sillen, W. M. A. et al. Nanoparticle treatment of maize analyzed through the metatranscriptome: compromised nitrogen cycling, possible phytopathogen selection, and plant hormesis. Microbiome 8, 127 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berg, G. & Cernava, T. The plant microbiota signature of the Anthropocene as a challenge for microbiome research. Microbiome 10, 54 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fan, X. et al. Microenvironmental interplay predominated by beneficial Aspergillus abates fungal pathogen incidence in paddy environment. Environ. Sci. Technol. 53, 13042–13052 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, Y. et al. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat. Commun. 9, 3429 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, M., Hashimoto, M. & Hashidoko, Y. Repression of tropolone production and induction of a Burkholderia plantarii pseudo-biofilm by carot-4-en-9,10-diol, a cell-to-cell signaling disrupter produced by Trichoderma virens. PLoS ONE 8, e78024 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bauermeister, A., Mannochio-Russo, H., Costa-Lotufo, L. V., Jarmusch, A. K. & Dorrestein, P. C. Mass spectrometry-based metabolomics in microbiome investigations. Nat. Rev. Microbiol. 20, 143–160 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Matsumoto, H. et al. Reprogramming of phytopathogen transcriptome by a non-bactericidal pesticide residue alleviates its virulence in rice. Fundam. Res. 2, 198–207 (2022).Article 
    CAS 

    Google Scholar 
    Hou, S. et al. A microbiota–root–shoot circuit favours Arabidopsis growth over defence under suboptimal light. Nat. Plants 7, 1078–1092 (2021).Mathur, M., Nair, A. & Kadoo, N. Plant–pathogen interactions: microRNA-mediated trans-kingdom gene regulation in fungi and their host plants. Genomics 112, 3021–3035 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kaur, C. et al. Microbial methylglyoxal metabolism contributes towards growth promotion and stress tolerance in plants. Environ. Microbiol. 24, 2817–2836 (2021).Article 
    PubMed 

    Google Scholar 
    Castrillo, G. et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513–518 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korenblum, E. et al. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc. Natl Acad. Sci. USA 117, 3874–3883 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chisholm, S. T., Coaker, G., Day, B. & Staskawicz, B. J. Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vogel, C., Bodenhausen, N., Gruissem, W. & Vorholt, J. A. The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. New Phytol. 212, 192–207 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 11, 539–548 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stringlis, I. A. et al. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J. 93, 166–180 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    He, J. et al. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Mol. Plant 12, 1561–1576 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bozsoki, Z. et al. Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Plant Sci. 369, 663–670 (2020).CAS 

    Google Scholar 
    Stringlis, I. A., Zhang, H., Pieterse, C. M. J., Bolton, M. D. & de Jonge, R. Microbial small molecules—weapons of plant subversion. Nat. Prod. Rep. 35, 410–433 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kong, H. G., Song, G. C., Sim, H. J. & Ryu, C. M. Achieving similar root microbiota composition in neighbouring plants through airborne signalling. ISME J. 15, 397–408 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vacher, C. et al. The phyllosphere: microbial jungle at the plant–climate interface. Annu. Rev. Ecol. Evol. Syst. 47, 1–24 (2016).Article 

    Google Scholar 
    Thapa, S. & Prasanna, R. Prospecting the characteristics and significance of the phyllosphere microbiome. Ann. Microbiol. 68, 229–245 (2018).Article 
    CAS 

    Google Scholar 
    Vorholt, J. A., Vogel, C., Carlstrom, C. I. & Muller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, X., Wicaksono, W. A., Berg, G. & Cernava, T. Bacterial communities in the plant phyllosphere harbour distinct responders to a broad-spectrum pesticide. Sci. Total Environ. 751, 141799 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liu, Y. X. et al. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 12, 315–330 (2021).Article 
    PubMed 

    Google Scholar 
    Hosokawa, M. et al. Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes. Biosens. Bioelectron. 67, 379–385 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. et al. High-throughput cultivation and identification of bacteria from the plant root microbiota. Nat. Protoc. 16, 988–1012 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grosskopf, T. & Soyer, O. S. Synthetic microbial communities. Curr. Opin. Microbiol. 18, 72–77 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vogel, C. M., Potthoff, D. B., Schafer, M., Barandun, N. & Vorholt, J. A. Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen. Nat. Microbiol. 6, 1537–1548 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Finkel, O. M. et al. A single bacterial genus maintains root growth in a complex microbiome. Nature 587, 103–108 (2020).Wagner, M. R. et al. Microbe-dependent heterosis in maize. Proc. Natl Acad. Sci. USA 118, e2021965118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schafer, M., Vogel, C. M., Bortfeld-Miller, M., Mittelviefhaus, M. & Vorholt, J. A. Mapping phyllosphere microbiota interactions in planta to establish genotype–phenotype relationships. Nat. Microbiol. 7, 856–867 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Han, B. & Huang, X. Sequencing-based genome-wide association study in rice. Curr. Opin. Plant Biol. 16, 133–138 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Roman-Reyna, V. et al. The rice leaf microbiome has a conserved community structure controlled by complex host-microbe interactions. Cell Host Microbe https://doi.org/10.2139/ssrn.3382544 (2019).Deng, S. et al. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME J. 15, 3181–3194 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, M. R., Busby, P. E. & Balint-Kurti, P. Analysis of leaf microbiome composition of near-isogenic maize lines differing in broad-spectrum disease resistance. New Phytol. 225, 2152–2165 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wagner, M. R., Roberts, J. H., Balint-Kurti, P. & Holland, J. B. Heterosis of leaf and rhizosphere microbiomes in field-grown maize. New Phytol. 228, 1055–1069 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nobori, T. et al. Transcriptome landscape of a bacterial pathogen under plant immunity. Proc. Natl Acad. Sci. USA 115, E3055–E3064 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, L. et al. Holo-omics for deciphering plant–microbiome interactions. Microbiome 9, 69 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    French, E., Kaplan, I., Iyer-Pascuzzi, A., Nakatsu, C. H. & Enders, L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).Article 
    PubMed 

    Google Scholar 
    Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4, 766–770 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kamilaris, A. & Prenafeta-Boldú, F. X. Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018).Article 

    Google Scholar 
    Zhou, L., Zhang, C., Liu, F., Qiu, Z. & He, Y. Application of deep learning in food: a review. Compr. Rev. Food Sci. Food Saf. 18, 1793–1811 (2019).Article 
    PubMed 

    Google Scholar 
    Moreno-Indias, I. et al. Statistical and machine learning techniques in human microbiome studies: contemporary challenges and solutions. Front. Microbiol. 12, 635781 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song, P., Wang, J., Guo, X., Yang, W. & Zhao, C. High-throughput phenotyping: breaking through the bottleneck in future crop breeding. Crop J. 9, 633–645 (2021).Article 

    Google Scholar  More

  • in

    Drivers of habitat quality for a reintroduced elk herd

    Ah-King, M. Flexible mate choice in Encyclopedia of Animal Behavior, 2nd edn Vol. 4 (ed Jae Chun Choe) 421–431 (Academic Press, 2019).Harestad, A. S. & Bunnell, F. L. Home range and body weight—A reevaluation. Ecology 60, 389–402 (1979).Article 

    Google Scholar 
    O’Neill, R. V., Milne, B. T., Turner, M. G. & Gardner, R. H. Resource utilization scales and landscape pattern. Landsc. Ecol. 2, 63–69 (1988).Article 

    Google Scholar 
    Tricas, T. C. Determinants of feeding territory size in the corallivorous butterflyfish, Chaetodon multicinctus. Anim. Behav. 37, 830–841. https://doi.org/10.1016/0003-3472(89)90067-5 (1989).Article 

    Google Scholar 
    Tremblay, I., Thomas, D., Blondel, J., Perret, P. & Lambrechts, M. M. The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican Blue Tits Parus caeruleus. Ibis 147, 17–24. https://doi.org/10.1111/j.1474-919x.2004.00312.x (2005).Article 

    Google Scholar 
    Watts, D. P. The influence of male mating tactics on habitat use in Mountain Gorillas (Gorilla gorilla beringei). Primates 35, 35–47. https://doi.org/10.1007/BF02381484 (1994).Article 

    Google Scholar 
    Lescroël, A. et al. Working less to gain more: when breeding quality relates to foraging efficiency. Ecology 91, 2044–2055. https://doi.org/10.1890/09-0766.1 (2010).Article 
    PubMed 

    Google Scholar 
    Tufto, J., Anderson, R. & Linnell, J. Habitat use and ecological correlates of home range size in a small cervid: the roe deer. J. Anim. Ecol. 65, 715–724. https://doi.org/10.2307/5670 (1996).Article 

    Google Scholar 
    Morellet, N. et al. Seasonality, weather and climate affect home range size in roe deer across a wide latitudinal gradient within Europe. J. Anim. Ecol. 82, 1326–1339. https://doi.org/10.1111/1365-2656.12105 (2013).Article 
    PubMed 

    Google Scholar 
    Anderson, D. P. et al. Scale-dependent summer resource selection by reintroduced elk in Wisconsin, USA. J. Wildl. Manag. 69, 298–310. https://doi.org/10.2193/0022-541X(2005)069%3c0298:SSRSBR%3e2.0.CO;2 (2005).Article 

    Google Scholar 
    Olsson, P. M. O. et al. Movement and activity patterns of translocated elk (Cervus elaphus nelsoni) on an active coal mine in Kentucky. Wildl. Biol. Pract. 3, 1–8. https://doi.org/10.2461/wbp.2007.3.1 (2007).Article 

    Google Scholar 
    Porter, W. P., Sabo, J. L., Tracy, C. R., Reichman, O. J. & Ramankutty, N. Physiology on a landscape scale: plant–animal interactions. Integr. Comp. Biol. 42, 431–453. https://doi.org/10.1093/icb/42.3.431 (2002).Article 
    PubMed 

    Google Scholar 
    Berg, J. E. et al. Mothers’ movements: shifts in calving area selection by partially migratory elk. J. Wildl. Manag. 85, 1476–1489. https://doi.org/10.1002/jwmg.22099 (2021).Article 

    Google Scholar 
    Lehman, C. P. et al. Elk resource selection at parturition sites, Black Hills, South Dakota. J. Wildl. Manag. 80, 465–478. https://doi.org/10.1002/jwmg.1017 (2016).Article 

    Google Scholar 
    Johnson, B. K., Kern, J. W., Wisdom, M. J., Findholt, S. L. & Kie, J. G. Resource selection and spatial separation of mule deer and elk during spring. J. Wildl. Manag. 64, 685–697. https://doi.org/10.2307/3802738 (2000).Article 

    Google Scholar 
    Grace, J. & Easterbee, N. The natural shelter for red deer (Cervus elaphus) in a Scottish glen. J. Appl. Ecol. 16, 37–48. https://doi.org/10.2307/2402726 (1979).Article 

    Google Scholar 
    Demarchi, M. W. & Bunnell, F. L. Estimating forest canopy effects on summer thermal cover for Cervidae (deer family). Can. J. For. Res. 23, 2419–2426. https://doi.org/10.1139/x93-299 (1993).Article 

    Google Scholar 
    Parker, K. L. & Gillingham, M. P. Estimates of critical thermal environments for mule deer. J. Range. Manag. 43, 73–81 (1990).Article 

    Google Scholar 
    Proffitt, K. M. et al. Changes in elk resource selection and distributions associated with a late-season elk hunt. J. Wildl. Manag. 74, 210–218. https://doi.org/10.2193/2008-593 (2010).Article 

    Google Scholar 
    Webb, S. L., Dzialak, M. R., Harju, S. M., Hayden-Wing, L. D. & Winstead, J. B. Influence of land development on home range use dynamics of female elk. Wildl. Res. 38, 163–167. https://doi.org/10.1071/WR10101 (2011).Article 

    Google Scholar 
    Rumble, M. A., Benkobi, L. & Gamo, R. S. Elk responses to humans in a densely roaded area. Intermt. J. Sci. 11, 10–24 (2005).
    Google Scholar 
    McCorquodale, S. M. Sex-specific movements and habitat use by elk in the Cascade Range of Washington. J. Wildl. Manag. 67, 729–741. https://doi.org/10.1890/15-1607.1 (2003).Article 

    Google Scholar 
    Saïd, S. & Servanty, S. The influence of landscape structure on female roe deer home-range size. Landsc. Ecol. 20, 1003–1012. https://doi.org/10.1007/s10980-005-7518-8 (2005).Article 

    Google Scholar 
    Seddon, P. J., Armstrong, D. P. & Maloney, R. F. Developing the science of reintroduction biology. Conserv. Biol. 21, 303–312. https://doi.org/10.1111/j.1523-1739.2006.00627.x (2007).Article 
    PubMed 

    Google Scholar 
    Hale, S. L. & Koprowski, J. L. Ecosystem-level effects of keystone species reintroduction: a literature review. Restor. Ecol. 26, 439–445. https://doi.org/10.1111/rec.12684 (2018).Article 

    Google Scholar 
    Cheyne, S. M. Wildlife reintroduction: considerations of habitat quality at the release site. BMC Ecol. 6, 5. https://doi.org/10.1186/1472-6785-6-5 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hegel, T. M., Gates, C. C. & Eslinger, D. The geography of conflict between elk and agricultural values in the Cypress Hills, Canada. J. Eniron. Manag. 90, 222–235. https://doi.org/10.1016/j.jenvman.2007.09.005 (2009).Article 

    Google Scholar 
    Walter, W. D. et al. Management of damage by elk (Cervus elaphus) in North America: a review. Wildl. Res. 37, 630–646. https://doi.org/10.1071/WR10021 (2010).Article 

    Google Scholar 
    Jung, T. S. Extralimital movements of reintroduced bison (Bison bison): implications for potential range expansion and human–wildlife conflict. Eur. J. Wildl. Res. 63, 35. https://doi.org/10.1007/s10344-017-1094-5 (2017).Article 

    Google Scholar 
    Buchholtz, E. K., Stronza, A., Songhurst, A., McCulloch, G. & Fitzgerald, L. A. Using landscape connectivity to predict human-wildlife conflict. Biol. Conserv. 248, 108677. https://doi.org/10.1016/j.biocon.2020.108677 (2020).Article 

    Google Scholar 
    Hodgson, J. A., Moilanen, A., Wintle, B. A. & Thomas, C. D. Habitat area, quality and connectivity: striking the balance for efficient conservation. J. Appl. Ecol. 48, 148–152. https://doi.org/10.1111/j.1365-2664.2010.01919.x (2011).Article 

    Google Scholar 
    Murie, O. The Elk of North America (Stackpole Co., 1951).
    Google Scholar 
    VDWR. Virginia elk management plan 2019–2028 (ed Virginia Department of Wildlife Resources) (Virginia Department of Wildlife Resources, 2019).Lituma, C. M. et al. Terrestrial wildlife in the post-mined Appalachian landscape: status and opportunities in Appalachia’s Coal-Mined Landscapes (eds Carl E. Zipper & Jeff Skousen) 135–166 (Springer, 2021).Lupardus, J. L., Muller, L. I. & Kindall, J. L. Seasonal forage availability and diet for reintroduced elk in the Cumberland Mountains, Tennessee. Southeast. Nat. 10, 53–74. https://doi.org/10.1656/058.010.0105 (2011).Article 

    Google Scholar 
    Schneider, J. et al. Food habits of reintroduced elk in southeastern Kentucky. Southeast. Nat. 5, 535–546. https://doi.org/10.1656/1528-7092(2006)5[535:Fhorei]2.0.Co;2 (2006).Article 

    Google Scholar 
    Smith, T. N., Keller, B. J., Chitwood, M. C., Hansen, L. P. & Millspaugh, J. J. Diet composition and selection of recently reintroduced elk in Missouri. Am. Midl. Nat. 180, 143–159. https://doi.org/10.1674/0003-0031-180.1.143 (2018).Article 

    Google Scholar 
    Franklin, J. A., Zipper, C. E., Burger, J. A., Skousen, J. G. & Jacobs, D. F. Influence of herbaceous ground cover on forest restoration of eastern US coal surface mines. New. For. 43, 905–924. https://doi.org/10.1007/s11056-012-9342-8 (2012).Article 

    Google Scholar 
    Popp, J. N., Toman, T., Mallory, F. F. & Hamr, J. A century of elk restoration in eastern North America. Restor. Ecol. 22, 723–730. https://doi.org/10.1111/rec.12150 (2014).Article 

    Google Scholar 
    Cook, J. G., Irwin, L. L., Bryant, L. D., Riggs, R. A. & Thomas, J. W. Relations of forest cover and condition of elk: a test of the thermal cover hypothesis in the summer and winter. Wildl. Monogr. 141, 3–61 (1998).
    Google Scholar 
    Parker, K. L. & Robbins, C. T. Thermoregulation in mule deer and elk. Can. J. Zool. 62, 1409–1422. https://doi.org/10.1139/z84-202 (1984).Article 

    Google Scholar 
    Mao, J. S. et al. Habitat selection by elk before and after wolf reintroduction in Yellowstone National Park. J. Wildl. Manag. 69, 1691–1707. https://doi.org/10.2193/0022-541X (2005).Article 

    Google Scholar 
    Wolff, J. O. & Van Horn, T. Vigilance and foraging patterns of American elk during the rut in habitats with and without predators. Can. J. Zool. 81, 266–271. https://doi.org/10.1139/z03-011 (2003).Article 

    Google Scholar 
    Beck, J. L. & Peek, J. M. Diet composition, forage selection, and potential for forage competition among elk, deer, and livestock on aspen–sagebrush summer range. Rangel. Ecol. Manag. 58, 135–147. https://doi.org/10.2111/03-13.1 (2005).Article 

    Google Scholar 
    Ford, W. M., Johnson, A. S. & Hale, P. E. Nutritional quality of deer browse in southern Appalachian clearcuts and mature forests. For. Ecol. Manag. 67, 149–157. https://doi.org/10.1016/0378-1127(94)90013-2 (1994).Article 

    Google Scholar 
    Sikes, R. S., Gannon, W. L. & The American Care and Use Committee of the American Society of Mammalogists. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253. https://doi.org/10.1644/10-mamm-f-355.1 (2011).Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Powell, J. W. Physiographic Regions of the United States. (American Book Company, 1895).Braun, E. L. Forests of the Cumberland Mountains. Ecol. Monogr. 12, 413–447. https://doi.org/10.2307/1943039 (1942).Article 

    Google Scholar 
    Clark, J. B. The Vascular Flora of Breaks Interstate Park, Pike County, Kentucky, and Dickenson County, Virginia Master of Science thesis, Eastern Kentucky University (2012).Pericak, A. A. et al. Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine. PLoS ONE 13, e0197758. https://doi.org/10.1371/journal.pone.0197758 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boettner, F. et al. An assessment of the natural assets in the Appalachian Region: forest resources (ed Appalachian Regional Commission Report) 97 (Washington, DC, 2014).NOAA. Summary of monthly normals Grundy, VA 1991 – 2020 data (National Oceanic and Atmospheric Administration (2022).U.S. Geological Survey (USGS) Gap Analysis Project (GAP). GAP/LANDFIRE national terrestrial ecosystems 2011: U.S. Geological Survey data release (2016).Clark, M. The Nature Conservancy Eastern Division & North Atlantic Landscape Conservation Cooperative. Terrestrial habitat, Northeast data (2017).ESRI. ArcGIS desktop version 10.8.1 (Environmental Systems Research Institute, 2020).Ford, W. M. et al. Influence of elevation and forest type on community assemblage and species distribution of shrews in the central and southern Appalachians in Advances in the Biology of the Shrews II Vol. 1(eds. J.F. Merritt, S. Churchfield, R. Hutterer and B.A. Sheftel) 303–315(Special Publication of the International Society of Shrew Biologists, 2006).Kniowski, A. B. & Ford, W. M. Predicting intensity of white-tailed deer herbivory in the Central Appalachian Mountains. J. For. Res. 29, 841–850. https://doi.org/10.1007/s11676-017-0476-6 (2018).Article 

    Google Scholar 
    Fleming, C. H. & Calabrese, J. M. ctmm: continuous-time movement modeling. R package version 0.6.0 (2021).R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).Fleming, C. H. et al. Estimating where and how animals travel: an optimal framework for path reconstruction from autocorrelated tracking data. Ecology 97, 576–582. https://doi.org/10.1890/15-1607.1 (2016).Article 
    PubMed 

    Google Scholar 
    Hijmans, R. J. raster: geographic data analysis and modeling. R package version 3.4-5 (2020).Becker, R. A., Chambers, J. M. & Wilks, A. R. The New S Language (Wadsworth and Brooks/Cole, 1988).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. B. H. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Use of the Information-Theoretic Approach (Springer, 1998).Turner, M. G., Wu, Y., Romme, W. H. & Wallace, L. L. A landscape simulation model of winter foraging by large ungulates. Ecol. Modell. 69, 163–184. https://doi.org/10.1016/0304-3800(93)90026-O (1993).Article 

    Google Scholar 
    Taper, M. L. & Gogan, P. J. P. The northern Yellowstone elk: density dependence and climatic conditions. J. Wildl. Manag. 66, 106–122. https://doi.org/10.2307/3802877 (2002).Article 

    Google Scholar 
    Green, R. A. & Bear, G. D. Seasonal cycles and daily activity patterns of Rocky Mountain elk. J. Wildl. Manag. 54, 272–279. https://doi.org/10.2307/3809041 (1990).Article 

    Google Scholar 
    Craighead, J. J., Craighead, F. C. J., Ruff, R. L. & O’Gara, B. W. Home ranges and activity patterns of nonmigratory elk of the Madison Drainage herd as determined by biotelemetry. Wildl. Monogr. 33, 3–50 (1973).
    Google Scholar 
    Gittleman, J. L. & Thompson, S. D. Energy allocation in mammalian reproduction. Am. Zool. 28, 863–875. https://doi.org/10.1093/icb/28.3.863 (1988).Article 

    Google Scholar 
    Beier, P. & McCullough, D. R. Factors influencing white-tailed deer activity patterns and habitat use. Wildl. Monogr. 109, 3–51 (1990).
    Google Scholar 
    Ciuti, S., Davini, S., Luccarini, S. & Apollonio, M. Variation in home range size of female fallow deer inhabiting a sub-Mediterranean habitat. Rev. Ecol. 58, 381–395 (2003).
    Google Scholar 
    Vore, J. M. & Schmidt, E. M. Movements of female elk during calving season in northwest Montana. Wildl. Soc. Bull. 29, 720–725 (2001).
    Google Scholar 
    Wickstrom, M. L., Robbins, C. T., Hanley, T. A., Spalinger, D. E. & Parish, S. M. Food intake and foraging energetics of elk and mule deer. J. Wildl. Manag. 48, 1285–1301. https://doi.org/10.2307/3801789 (1984).Article 

    Google Scholar 
    Van Soest, P. J. Allometry and ecology of feeding behavior and digestive capacity in herbivores: a review. Zoo. Biol. 15, 455–479 (1996). https://doi.org/10.1002/(SICI)1098-2361(1996)15:53.0.CO;2-AEsmaeili, S. et al. Body size and digestive system shape resource selection by ungulates: a cross-taxa test of the forage maturation hypothesis. Ecol. Lett. 24, 2178–2191. https://doi.org/10.1111/ele.13848 (2021).Article 
    PubMed 

    Google Scholar 
    Demment, M. W. & Van Soest, P. J. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 125, 641–672 (1985).Article 

    Google Scholar 
    Anderson, D. P. et al. Factors influencing female home range sizes in elk (Cervus elaphus) in North American landscapes. Landsc. Ecol. 20, 257–271. https://doi.org/10.1007/s10980-005-0062-8 (2005).Article 

    Google Scholar 
    Maigret, T. A., Cox, J. J. & Yang, J. Persistent geophysical effects of mining threaten ridgetop biota of Appalachian forests. Front. Ecol. Environ. 17, 85–91. https://doi.org/10.1002/fee.1992 (2019).Article 

    Google Scholar 
    Beier, P. Sex differences in quality of white-tailed deer diets. J. Mammal. 68, 323–329. https://doi.org/10.2307/1381471 (1987).Article 

    Google Scholar 
    Parker, K. L., Barboza, P. S. & Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 23, 57–69. https://doi.org/10.1111/j.1365-2435.2008.01528.x (2009).Article 

    Google Scholar 
    Wichrowski, M. W., Maehr, D. S., Larkin, J. L., Cox, J. J. & Olsson, M. P. O. Activity and movements of reintroduced elk in southeastern Kentucky. Southeast. Nat. 4, 365–374. https://doi.org/10.1656/1528-7092(2005)004[0365:Aamore]2.0.Co;2 (2005).Article 

    Google Scholar 
    Relyea, R. A., Lawrence, R. K. & Demarais, S. Home range of desert mule deer: testing the body-size and habitat-productivity hypotheses. J. Wildl. Manag. 64, 146–153. https://doi.org/10.2307/3802984 (2000).Article 

    Google Scholar  More

  • in

    10 startling images of nature in crisis — and the struggle to save it

    Global statistics on declining biodiversity can give the impression that every population of every species is in a downward spiral. In fact, many populations are stable or growing, while a small number of species faces truly existential challenges. These photos capture some specific crises. They are images of threats unfolding, of desperate attempts at species defence and of the beautiful living world that is at stake.
    The 15th United Nations Biodiversity Conference, COP15, opens in Montreal, Canada, on 7 December. At the meeting, delegates will attempt to agree on goals for stabilizing species’ declines by 2030 and reverse them by mid-century. The current draft framework agreement promises nothing less than a “transformation in society’s relationship with biodiversity”.
    Help for the kelp. Tasmania’s forests of giant kelp (Macrocystis pyrifera) are dying as climate change shifts ocean currents, bringing warm water to the east coast of the temperate Australian island. The kelp forests host an entire ecosystem, including abalone and crayfish — both economically important species and part of local food culture. Now, researchers at the Institute for Marine and Antarctic Studies in Hobart are breeding kelp plants that can tolerate warmer conditions, and replanting them along the coast — a trial for what they hope will become a landscape-scale restoration. More

  • in

    Sap flow of sweet cherry reveals distinct effects of humidity and wind under rain covered and netted protected cropping systems

    Jensen, M. H. & Malter, A. J. Protected Agriculture—A Global Review. World Bank Technical Paper Number 253 (World Bank, 1995).
    Google Scholar 
    Meli, T., Riesen, W. & Widmer, A. Protection of sweet cherry hedgerows with polyethylene films. Acta Hortic. 155, 463–467 (1984).Article 

    Google Scholar 
    Janick, J. (ed.) Horticultural Reviews Vol. 30, 115–162 (Wiley, 2004).
    Google Scholar 
    Janke, R. R., Altamimi, M. E. & Khan, M. The use of high tunnels to produce fruit and vegetable crops in North America. Agric. Sci. 08, 692–715. https://doi.org/10.4236/as.2017.87052 (2017).Article 

    Google Scholar 
    Alarcon, J. J. et al. Sap flow as an indicator of transpiration and the water status of young apricot trees. Plant Soil 227, 77–85. https://doi.org/10.1023/A:1026520111166 (2000).Article 
    CAS 

    Google Scholar 
    Ferrara, G. & Flore, J. Comparison between different methods for measuring tranpiration in potted apple trees. Biol. Plant. 46, 41–47 (2003).Article 

    Google Scholar 
    Nicolás, E., Torrecillas, A., Amico, J. D. & Alarcón, J. J. Sap flow, gas exchange, and hydraulic conductance of young apricot trees growing under a shading net and different water supplies. J. Plant Physiol. 162, 439–447. https://doi.org/10.1016/j.jplph.2004.05.014 (2005).Article 
    CAS 

    Google Scholar 
    Green, S. & Romero, R. Can we improve heat-pulse to measure low and reverse flows. Acta Hortic. 951, 19–30 (2012).Article 

    Google Scholar 
    Noitsakis, B. & Nastis, A. S. Seasonal changes of water potential, stomatal conductance and transpiration in the leaf of cherry trees grown in shelter. CIHEAM 12, 267–270 (1995).
    Google Scholar 
    Lang, G. A. High tunnel tree fruit production: The final frontier. HortTechnology 19, 50–55 (2009).Article 

    Google Scholar 
    Lang, G. A. Tree fruit production in high tunnels: Current status and case study of sweet cherries. Acta Hortic. 987, 73–82 (2013).Article 

    Google Scholar 
    Meland, M., Frøynes, O. & Kaiser, C. High tunnel production systems improve yields and fruit size of sweet cherry. Acta Hortic. 1161, 117–124. https://doi.org/10.17660/ActaHortic.2017.1161.20 (2017).Article 

    Google Scholar 
    Cohen, S., Moreshet, S., Guillou, L. L., Simon, J.-C. & Cohen, M. Response of citrus trees to modified radiation regime in semi-arid conditions. J. Exp. Bot. 48, 35–44. https://doi.org/10.1093/jxb/48.1.35 (1997).Article 
    CAS 

    Google Scholar 
    Zeppel, M., Murray, B. R., Barton, C. & Eamus, D. Seasonal responses of xylem sap velocity to VPD and solar radiation during drought in a stand of native trees in temperate Australia. Funct. Plant Biol. 31, 461–470 (2004).Article 

    Google Scholar 
    Bonada, M., Buesa, I., Moran, M. A. & Sadras, V. O. Interactive effects of warming and water deficit on Shiraz vine transpiration in the Barossa Valley, Australia. OENO One 52, 189–202. https://doi.org/10.20870/oeno-one.2018.52.2.2141 (2018).Article 
    CAS 

    Google Scholar 
    Wang, K. Y., Kellomaki, S., Zha, T. & Peltola, H. Annual and seasonal variation of sap flow and conductance of pine trees grown in elevated carbon dioxide and temperature. J. Exp. Bot. 56, 155–165. https://doi.org/10.1093/jxb/eri013 (2005).Article 
    CAS 

    Google Scholar 
    Laplace, S., Chu, C. & Kume, S. Wind speed response of sap flow in five subtropical trees based on wind tunnel experiments. Br. J. Environ. Clim. Change 3, 160–171. https://doi.org/10.9734/BJECC/2013/3842 (2013).Article 

    Google Scholar 
    Kellomäki, S. & Wang, K. Y. Sap flow in Scots pine growing under conditions of year-round carbon dioxide enrichment and temperature elevation. Plant, Cell Environ. 21, 969–981. https://doi.org/10.1046/j.1365-3040.1998.00352.x (2002).Article 

    Google Scholar 
    Urban, J., Ingwers, M., McGuire, M. A. & Teskey, R. O. Stomatal conductance increases with rising temperature. Plant Signal. Behav. 12, 3–6. https://doi.org/10.1080/15592324.2017.1356534 (2017).Article 
    CAS 

    Google Scholar 
    Wu, J. et al. Nocturnal sap flow is mainly caused by stem refilling rather than nocturnal transpiration for Acer truncatum in urban environment. Urban For. Urban Green. 56, 126800. https://doi.org/10.1016/j.ufug.2020.126800 (2020).Article 

    Google Scholar 
    Chen, Y.-J. et al. Time lags between crown and basal sap flows in tropical lianas and co-occurring trees. Tree Physiol. 36, 736–747. https://doi.org/10.1093/treephys/tpv103 (2015).Article 

    Google Scholar 
    Marshall, D. C. Measurment of sap flow in conifers by heat transport. Plant Physiol. 33, 385–396 (1958).Article 
    CAS 

    Google Scholar 
    Swanson, R. H. & Whitfield, W. A. A numerical analysis of heat pulse velocity theory and practice. J. Exp. Bot. 32, 221–239 (1981).Article 

    Google Scholar 
    Green, S., Clothier, B. & Jardine, B. Theory and practical application of heat pulse to measure sap flow. Am. Soc. Agron. 95, 1371–1379 (2003).Article 

    Google Scholar 
    Goodwin, I., Cornwall, D. & Green, S. R. Pear transpiration and basal crop coefficients estimated by sap flow. Acta Hortic. 951, 183–190. https://doi.org/10.17660/ActaHortic.2012.951.22 (2012).Article 

    Google Scholar 
    Fernandez, J. E. et al. Heat-pulse measurements of sap flow in olives for automating irrigation, tests, root flow and diagnostics of water stress. Agric. Water Manag. 51, 99–123 (2001).Article 

    Google Scholar 
    Green, S. R. & Clothier, B. Water use of kiwifruit vines and apple trees by the heat-pulse technique. J. Exp. Bot. 39, 115–123 (1988).Article 

    Google Scholar 
    Green, S. R. et al. Measurement of sap flow in young apple trees using the average gradient heat-pulse method. Acta Hortic. 1222, 173–178. https://doi.org/10.17660/ActaHortic.2018.1222.35 (2018).Article 

    Google Scholar 
    Green, S., Clothier, B. & Perie, E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 846, 95–104 (2009).Article 

    Google Scholar 
    Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage Paper 56 300 (FAO, 1998).
    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2010).Hastie, T. & Tibshirani, R. Generalized Additive Models (Chapman and Hall/CRC, 1990).MATH 

    Google Scholar 
    Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723. https://doi.org/10.1109/TAC.1974.1100705 (1974).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Sams, C. E. & Flore, J. A. The influence of leaf age, leaf position on the shoot, and environmental variables on net photosynthetic rate of sour cherry (Prunus cerasus L. ’Montmorency’). J. Am. Soc. Hortic. Sci. 107, 339–344 (1982).Article 

    Google Scholar 
    Wallberg, B. N. & Sagredo, K. X. Vegetative and reproductive development of “Lapins” sweet cherry trees under rain protective cropping. Int. Soc. Hortic. Sci. 1058, 411–417 (2014).
    Google Scholar 
    Lang, G. A. Growing sweet cherries under plastic covers and tunnels: Physiological aspects and practical considerations. Acta Hortic. 1020, 303–312. https://doi.org/10.17660/ActaHortic.2014.1020.43 (2014).Article 

    Google Scholar 
    Goodwin, I., McClymont, L., Turpin, S. & Darbyshire, R. Effectiveness of netting in decreasing fruit surface temperature and sunburn damage of red-blushed pear. N. Z. J. Crop. Hortic. Sci. 46, 334–345. https://doi.org/10.1080/01140671.2018.1432492 (2018).Article 
    CAS 

    Google Scholar 
    Mika, A., Buler, Z., Wójcik, K. & Konopacka, D. Influence of the plastic cover on the protection of sweet cherry fruit against cracking, on the microclimate under cover and fruit quality. J. Hortic. Res. 27, 31–38. https://doi.org/10.2478/johr-2019-0018 (2019).Article 
    CAS 

    Google Scholar 
    Blanco, V., Zoffoli, J. P. & Ayala, M. High tunnel cultivation of sweet cherry (Prunus avium L.): Physiological and production variables. Sci. Hortic. 251, 108–117. https://doi.org/10.1016/j.scienta.2019.02.023 (2019).Article 

    Google Scholar 
    Sams, C. E. & Flore, J. A. Net photosynthetic rate of sour cherry (Prunus cerasus L. ‘Montmorency’) during the growing season with particular reference to fruiting. Photosynth. Res. 4, 307–316. https://doi.org/10.1007/BF00054139 (1983).Article 

    Google Scholar 
    Lange, O. L., Schulze, E. D., Evenari, M., Kappen, L. & Buschbom, U. The temperature-related photosynthesis capacity of plants under desert conditions. Oecologia 17, 97–110. https://doi.org/10.1007/BF00346273 (1974).Article 
    CAS 

    Google Scholar 
    Beckman, T. G., Perry, R. L. & Flore, J. A. Short-term flooding affects gas exchange characteristics of containerized sour cherry trees. HortScience 27, 1297. https://doi.org/10.21273/hortsci.27.12.1297 (1992).Article 

    Google Scholar 
    Lei, H., Zhi-Shan, Z. & Xin-Rong, L. Sap flow of Artemisia ordosica and the influence of environmental factors in a revegetated desert area: Tengger Desert, China. Hydrol. Processes 24, 1248–1253. https://doi.org/10.1002/hyp.7584 (2010).Article 

    Google Scholar 
    Juhász, A., Hrotko, K. & Tokei, L. Air and Water Components of the Environment, 76–82.Ravi, S. & D’Odorico, P. A field-scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophys. Res. Lett. 32, 023675. https://doi.org/10.1029/2005gl023675 (2005).Article 

    Google Scholar 
    Holmes, M. & Farrell, D. South African Avocado Growers Association Yearbook Vol. 16, 59–64 (1993).Jones, H. G. Plants and Microclimate: A quantitative Approach to Environmental Plant Physiology 3rd edn. (Cambridge University Press, 2014).
    Google Scholar 
    Juhász, Á., Sepsi, P., Nagy, Z., Tőkei, L. & Hrotkó, K. Water consumption of sweet cherry trees estimated by sap flow measurement. Sci. Hortic. 164, 41–49. https://doi.org/10.1016/j.scienta.2013.08.022 (2013).Article 

    Google Scholar 
    Gussakovsky, E. E., Salomon, E., Ratner, K., Shahak, Y. & Driesenaar, A. R. J. Photoinhibition (light stress) in citrus leaves. Acta Hortic. 349, 139–143 (1993).Article 

    Google Scholar 
    Grappadelli, L. C. & Lakso, A. N. Is maximizing orchard light interception always the best choice? Acta Hortic. 732, 507–518. https://doi.org/10.17660/ActaHortic.2007.732.77 (2007).Article 

    Google Scholar  More

  • in

    Phytoplankton in the middle

    Marine phytoplankton both follow and actively influence the environment they inhabit. Unpacking the complex ecological and biogeochemical roles of these tiny organisms can help reveal the workings of the Earth system.
    Phytoplankton are the workers of an ocean-spanning factory converting sunlight and raw nutrients into organic matter. These little organisms — the foundation of the marine ecosystem — feed into a myriad of biogeochemical cycles, the balance of which help control the distribution of carbon on the Earth surface and ultimately the overall climate state. As papers in this issue of Nature Geoscience show, phytoplankton are far from passive actors in the global web of biogeochemical cycles. The functioning of phytoplankton is not just a matter for biologists, but is also important for geoscientists seeking to understand the Earth system more broadly.Phytoplankton are concentrated where local nutrient and sea surface temperatures are optimal, factors which aren’t always static in time. Prominent temperature fluctuations, from seasonal to daily cycles, are reflected in phytoplankton biomass, with cascading effects on other parts of marine ecosystems, such as economically-important fisheries. In an Article in this issue, Keerthi et al., show that phytoplankton biomass, tracked by satellite measurements of chlorophyll for relatively small ( More

  • in

    Sewage surveillance of antibiotic resistance holds both opportunities and challenges

    Huijbers, P. M. C., Flach, C.-F. & Larsson, D. G. J. A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ. Int. 130, 104880 (2019).Article 

    Google Scholar 
    Aarestrup, F. M. & Woolhouse, M. E. J. Using sewage for surveillance of antimicrobial resistance. Science 367, 630–632 (2020).Article 

    Google Scholar 
    European Commission. Proposal for a revised Urban Wastewater Treatment Directive. European Commission https://environment.ec.europa.eu/publications/proposal-revised-urban-wastewater-treatment-directive_en (2022).US Centres for Disease Control and Prevention. COVID-19 impacts on environment (e.g., water, soil) and sanitation: addressing antimicrobials and antimicrobial resistant threats in the environment. US Centres for Disease Control and Prevention https://www.cdc.gov/drugresistance/pdf/covid19/COVID19-Impacts-AR-Environment-Sanitation-508.pdf (2021).Flach, C.-F., Hutinel, M., Razavi, M., Åhrén, C. & Larsson, D. G. J. Monitoring of hospital sewage shows both promise and limitations as an early-warning system for carbapenemase-producing Enterobacterales in a low-prevalence setting. Water Res. 200, 117261 (2021).Article 

    Google Scholar 
    Larsson, D. G. J. & Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 20, 257–269 (2022).Article 

    Google Scholar 
    Newton, R. J. et al. Sewage reflects the microbiomes of human populations. mBio 6, e02574 (2015).Article 

    Google Scholar 
    Huijbers, P. M. C., Larsson, D. G. J. & Flach, C. F. Surveillance of antibiotic resistant Escherichia coli in human populations through urban wastewater in ten European countries. Environ. Pollut. 261, 114200 (2020).Article 

    Google Scholar 
    Laxminarayan, R. & Macauley, M. K. The Value of Infromation: Methodological Frontiers and New Applications in Environment and Health 1st edn (Springer Dordrecht, 2012).Munk, P. et al. Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance. Nat. Commun. 13, 7251 (2022).Article 

    Google Scholar  More

  • in

    Soil qualities and change rules of Eucalyptus grandis × Eucalyptus urophylla plantation with different slash disposals

    Jiao, N., Liu, J., Shi, T., Zhang, C. & Pan, D. Implement negative ocean carbon emissions and perform the carbon neutral strategy. Sci. Sinica 51, 632–643. https://doi.org/10.1360/SSTe-2020-0358 (2021).Article 

    Google Scholar 
    Arnold, R. J., Xie, Y. J., Luo, J. Z., Wang, H. & Midgley, S. J. A tale of two genera: Exotic Eucalyptus and Acacia species in China. 1. Domestication and research. Int. For. Rev. 22, 1–18. https://doi.org/10.1505/146554820828671571 (2020).Article 

    Google Scholar 
    Zhu, L., Wang, X., Chen, F., Li, C. & Wu, L. Effects of the successive planting of Eucalyptus urophylla on soil bacterial and fungal community structure, diversity, microbial biomass, and enzyme activity. Land Degrad. Dev. 30, 636–646. https://doi.org/10.1002/ldr.3249 (2019).Article 

    Google Scholar 
    Weixin, L. Eucalyptus robusta planting status and sustainable development countermeasrues based on ecological concept. For. Sci. Technol. Inform. 52, 23–25 (2020).
    Google Scholar 
    Masyagina, O. V. Carbon dioxide emissions and vegetation recovery in fire-affected forest ecosystems of Siberia: recent local estimations. Current Opinion in Environmental Science & Health 23, https://www.sciencedirect.com/science/article/abs/pii/S2468584421000556. Accessed 17 March 2021.xDajun, D. et al. Short-term effects of black carbon on soil extractable nutrient elements in a Pinus massoniana plantation subjected to slash burning. J. Soil Water Conserv. 33, 157–162 (2019).
    Google Scholar 
    Huanhuan, W. et al. Research and application of biochar in soil CO2 emission, fertility, and microorganisms: A sustainable solution to solve China’s agricultural straw burning problem. Sustainability 12, 1–17. https://doi.org/10.3390/su12051922 (2020).Article 

    Google Scholar 
    McIntosh, P. D., Laffan, M. D. & Hewitt, A. E. The role of fire and nutrient loss in the genesis of the forest soils of Tasmania and southern New Zealand. For. Ecol. Manage. 220, 185–215 (2005).Article 

    Google Scholar 
    Arocena, J. M. & Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 113, 1–16 (2003).Article 

    Google Scholar 
    Hart, S. C., DeLuca, T. H., Newman, G. S., MacKenzie, M. D. & Boyle, S. I. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For. Ecol. Manage. 220, 166–184 (2005).Article 

    Google Scholar 
    Long, S., Yuan, L., Binqing, Z., Fei, L. & Tongxin, H. Effects of moderate fire disturbance on soil respiration components and soil microbial biomass in secondary forest of Maoer mountains China. J. Northeast For. Univ. 47, 90–98. https://doi.org/10.13759/j.cnki.dlxb.2019.07.016 (2019).Article 

    Google Scholar 
    Suping, Z., Falin, L., Meifang, Z., Guangjun, W. & Xiaowei, C. Effects of fire disturbance intensities on soil physiochemical properties of pour subtropical forest types. Acta Ecol. Sin. 40, 233–246. https://doi.org/10.5846/stxb201812052665 (2020).Article 

    Google Scholar 
    Nan, W., Yuetai, W., Guang, Y., Xueying, D. & Xiankui, Q. Effects of fire disturbanceon soil microbial community of larix gmelinii forset. J. Northeast For. Univ. 48, 21–28 (2020).
    Google Scholar 
    Bushra, M. & Tom, L. Temporal variations in litterfall biomass input and nutrient return under long-term prescribed burning in a wet sclerophyll forest, Queensland, Australia. Sci. Total Environ. 706, 36–45. https://doi.org/10.1016/j.scitotenv.2019 (2019).Article 

    Google Scholar 
    Mengya, Z., Xinjie, W., Le, L., Peng, Z. & Yao, F. Effect of burning disposal method on undergrouwth vegetation diversity and soil properties of Cunningham ialanceolata. J. Northeast For. Univ. 45, 63–67+76. https://doi.org/10.13759/j.cnki.dlxb.2017.03.013 (2017).Article 

    Google Scholar 
    Hernández, J., Pino, A. D., Hitta, M. & Lorenzo, M. Management of forest harvest residues affects soil nutrient availability during reforestation of Eucalyptus grandis. Nutr. Cycl. Agroecosyst. 105, 1385–1314. https://doi.org/10.1007/s10705-016-9781-2 (2016).Article 

    Google Scholar 
    Jiang, L., Kou, L. & Li, S. Alterations of early-stage decomposition of leaves and absorptive roots by deposition of nitrogen and phosphorus have contrasting mechanisms. Soil Biol. Biochem. 127, 213–222. https://doi.org/10.1016/j.soilbio.2018.09.037 (2018).Article 

    Google Scholar 
    Ma, X. Temperature and Humidity Effects on Dendrolimus Superans Butler Grow and Develop (Northeast Forestry University, USA, 2017).
    Google Scholar 
    Weng, Y. Decomposition and Nutrient Release Characteristics of Harvest Residues in Eucalyptus Plantation (Central South University of Forestry and Technology, USA, 2019).
    Google Scholar 
    Huanyu, Y. et al. Effects of residue composting treatemt on soil quality of Larix principies-rupprechtii plantation. J. Cent. South Univ. For. Technol. 36, 22–27. https://doi.org/10.14067/j.cnki.1673-923x.2016.11.004 (2016).Article 

    Google Scholar 
    Qiyue, S. et al. Optimizing the process of logging residue of Larix principis-ruppechtii based on orthogonal experiment. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 48, 633–639 (2019).
    Google Scholar 
    Mengdi, C., Qibo, C., Jianqiang, L., Jiaxuan, L. & Ruizhang, W. Evaluation of the effects of litter input managements on the soil quality in Pinus yunnanensis forest. J. Yunnan Agric. Univ. (Nat. Sci.) 35, 149–155. https://doi.org/10.12101/j.issn.1004-390X(n).20180535 (2020).Article 

    Google Scholar 
    Kennard, D. K. & Gholz, H. L. Effects of high- and low-intensity fires on soil properties and plant growth in a Bolivian dry forest. Plant Soil 234, 119–129 (2001).Article 

    Google Scholar 
    Yangyang, Y. et al. Effects of ground clearance on the growth of Eucalyptus plantation. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 48, 41–47 (2019).
    Google Scholar 
    Changzhun, L. et al. Effects of litter treatment on soil organic carbon, total nitrogen and total phosphorus in different forset types. Sci. Soil Water Conserv. 18, 100–109 (2020).
    Google Scholar 
    Gude, A., Kandeler, E. & Gleixner, G. Input related microbial carbon dynamic of soil organic matter in particle size fractions. Soil Biol. Biochem. 47, 209–219. https://doi.org/10.1016/j.soilbio.2012.01.003 (2012).Article 

    Google Scholar 
    Kang, T., Biao, H., Zhe, X. & Wenyou, H. Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai China. Ecol. Indic. 72, 510–520. https://doi.org/10.1016/j.ecolind.2016.08.037 (2017).Article 

    Google Scholar 
    Vidal-Legaz, B., Souza, D. M. D., Teixeira, R. F., Anton, A. & Sala, S. Soil quality, properties, and functions in life cycle assessment: An evaluation of models. J. Clean. Prod. 140, 502–515. https://doi.org/10.1016/j.jclepro.2016.05.077 (2017).Article 

    Google Scholar 
    Emmet-Booth, J. P. et al. Grass VESS: A modification of the visual evaluation of soil structure method for grasslands. Soil Use Manag. 34, 37–47. https://doi.org/10.1111/sum.12396 (2018).Article 

    Google Scholar 
    Thoumazeau, A. et al. A new framework to assess the impact of land management on soil quality. Part A: Concept and validation of the set of indicators. Ecol. Indic. 97, 100–110. https://doi.org/10.1016/j.ecolind.2018.09.023 (2019).Article 

    Google Scholar 
    Santos-Francés, F., Martínez-Graña, A., Ávila-Zarza, C., Criado, M. & Sánchez, Y. Comparison of methods for evaluating soil quality of semiarid ecosystem and evaluation of the effects of physico-chemical properties and factor soil erodibility (Northern Plateau, Spain). Geoderma 354, 113872–113872. https://doi.org/10.1016/j.geoderma.2019.07.030 (2019).Article 

    Google Scholar 
    Jihong, P., Xiaojing, L. & Qinghua, H. A new quality evaluation system of soil and water conservation for sustainable agricultural development. Agric. Water Manag. 240, 106235. https://doi.org/10.1016/j.agwat.2020.106235 (2020).Article 

    Google Scholar 
    Kang, G. S., Beri, V., Sidhu, B. S. & Rupela, O. P. A new index to assess soil quality and sustainability of wheat-based cropping systems. Biol. Fertil. Soils 41, 389–398. https://doi.org/10.1007/s00374-005-0857-4 (2005).Article 

    Google Scholar 
    Gordillo-Rivero, Á. J., García-Moreno, J., Jordán, A., Zavala, L. M. & Granja-Martins, F. M. Fire severity and surface rock fragments cause patchy distribution of soil water repellency and infiltration rates after burning. Hydrol. Process. 28, 5832–5843. https://doi.org/10.1002/hyp.10072 (2014).Article 

    Google Scholar 
    Moody, J. A., Kinner, D. A. & Úbeda, X. Linking hydraulic properties of fire-affected soils to infiltration and water repellency. J. Hydrol. 379, 291–303. https://doi.org/10.1016/j.jhydrol.2009.10.015 (2009).Article 

    Google Scholar 
    Xiaoguang, W. et al. Litter water-holding capacity and soil physical properties of main afforestation tree species in sandstone area. J. Soil Water Conserv. 34, 137–144. https://doi.org/10.13870/j.cnki.stbcxb.2020.04.021 (2020).Article 

    Google Scholar 
    Guoshuang, G. Study on the determination of soil bulk density. Journal of Irrigation and Dranage Engineering. 4, 38–40 (1983).
    Google Scholar 
    Zhu, L., Wang, J., Weng, Y., Chen, X. & Wu, L. Soil characteristics of Eucalyptus urophylla × Eucalyptus grandis plantations under different management measures for harvest residues with soil depth gradient across time. Ecol. Ind. 117, 106530. https://doi.org/10.1016/j.ecolind.2020.106530 (2020).Article 

    Google Scholar 
    Xiao, K. Carbon and Nitrogen Mineralization and Alkalinity Release Following Application of Plant Materials to Acid Soils Differing in Initial pH (Zhejiang University, 2014).
    Google Scholar 
    Tu, J., Qiao, J., Zhu, Z., Li, P. & Wu, L. Soil bacterial community responses to long-term fertilizer treatments in Paulownia plantations in subtropical China. Appl. Soil. Ecol. 124, 317–326. https://doi.org/10.1016/j.apsoil.2017.09.036 (2018).Article 

    Google Scholar 
    Chuihua, K. Research on plant allelopathy in China for the recent 16 years. Chin. J. Appl. Ecol. 31, 2139–2140 (2020).
    Google Scholar 
    Ying, X., Yaru, L., Haiyan, Z. & Qizhi, L. Effect of polyphenols on camellia oil fatty acid and triglyceride under heating conditions. J. Cent. South Univ. For. Technol. 40, 127–134 (2020).
    Google Scholar 
    Xu, Y. et al. Effects of different rotation periods of Eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity. For. Ecol. Manage. 456, 148–153. https://doi.org/10.1016/j.foreco.2019.117683 (2020).Article 

    Google Scholar 
    Sollins, P. & Gregg, J. W. Soil organic matter accumulation in relation to changing soil volume, mass, and structure: Concepts and calculations. Geoderma 301, 60–71. https://doi.org/10.1016/j.geoderma.2017.04.013 (2017).Article 

    Google Scholar 
    Bobo, W. et al. Effects of logging residues on surface soil biochemical properties and enzymatic activity. Acta Ecol. Sin. 34, 1645–1653. https://doi.org/10.5846/stxb201310162495 (2014).Article 

    Google Scholar 
    Ruiyong, J. et al. Correlation bwtween soil enzyme activity and physicochemical characteristics in agricultural black soils in Northeast China. Res. Soil Water Conserv. 22, 132–137+142 (2015).
    Google Scholar 
    Bing, L. et al. Activity and influencing factors of soils CAT in different utilization types oflLand in Shenbei area. J. Shenyang Univ. (Nat. Sci.) 31, 465–473. https://doi.org/10.14108/j.cnki.1008-8873.2019.04.008 (2019).Article 

    Google Scholar 
    Song, Y. et al. Short-term response of the soil microbial abundances and enzyme activities to experimental warming in a boreal peatland in Northeast China. Sustainability 11, 1–16. https://doi.org/10.3390/su11030590 (2019).Article 

    Google Scholar 
    Giacomo, C. Fire as a soil-forming factor. Ambio 43, 191–195 (2014).Article 

    Google Scholar 
    Liu, J., Wu, L., Chen, D., Li, M. & Wei, C. Soil quality assessment of different Camellia oleifera stands in mid-subtropical China. Appl. Soil. Ecol. 113, 29–35. https://doi.org/10.1016/j.apsoil.2017.01.010 (2017).Article 

    Google Scholar 
    Zhili, Z., Liwei, Z., Qian, C., Xuehua, X. & Yuling, L. Water-holding capacity of three typical forest litter and soil in Mulan-weichang. J. Soil Water Conserv. 29, 207–213. https://doi.org/10.13870/j.cnki.stbcxb.2015.01.040 (2015).Article 

    Google Scholar 
    Zhao, J. Study on the Effect of Refining Treatment on Soil Properties and Growth of Eucalyptus Urophylla Plantation (Central South University of Forestry and Technology, 2019).
    Google Scholar 
    Moro, M. A. J. & Domingo, F. Litter decomposition in four woody species in a mediterranean climate: Weight loss, N and P dynamics. Ann. Bot. 86, 1065–1071. https://doi.org/10.1006/anbo.2000.1269 (2000).Article 

    Google Scholar 
    Sharma, B. D., Arora, H., Kumar, R. & Nayyar, V. K. Relationships between soil characteristics and total and DTPA-extractable micronutrients in inceptisols of Punjab. Commun. Soil Sci. Plant Anal. 35, 799–818. https://doi.org/10.1081/CSS-120030359 (2004).Article 

    Google Scholar 
    Yonghong, L. et al. Spatial variability and impacting factors of trace elements in hilly region of cropland in northwestern Zhejiang Province. J. Plant Nutr. Fertil. 22, 1710–1718 (2016).
    Google Scholar 
    Lipeng, W. et al. Seasonal variations of growth and photosynthetic characteristice of Eucalyptus plantation. Guangdong For. Sci. Technol. 27, 63–66. https://doi.org/10.3969/j.issn.1006-4427.2011.05.012 (2011).Article 

    Google Scholar 
    Xinmin, D., Zhonghong, W., Yongqin, Z. & Xuexia, P. Study on changes of soil salt and nutrient in greenhouse of different planting years. J. Soil Water Conserv. 21, 78–80 (2007).
    Google Scholar 
    Linying, M., Yuelan, L., Guojun, W. & Yun, L. Studies of relations between soil organic matter content and soil bulk density in different soil level in Donglan county. Hubei Agric. Sci. 53, 59–62. https://doi.org/10.3969/j.issn.0439-8114.2014.01.016 (2014).Article 

    Google Scholar 
    Mohammed, K., Lamb, D. T., Ray, C., Mallavarapu, M. & Ravi, N. Pore-water chemistry explains zinc phytotoxicity in soil. Ecotoxicol. Environ. Saf. 122, 252–259. https://doi.org/10.1016/j.ecoenv.2015.08.004 (2015).Article 

    Google Scholar 
    Tsiknia, M., Tzanakakis, V. A., Oikonomidis, D., Paranychianakis, N. V. & Nikolaidis, N. P. Effects of olive mill wastewater on soil carbon and nitrogen cycling. Appl. Microbiol. Biotechnol. 98, 2739–2749. https://doi.org/10.1007/s13762-013-0285-1 (2014).Article 

    Google Scholar 
    Ouyang, W., Wei, X. & Hao, F. Long-term soil nutrient dynamics comparison under smallholding land and farmland policy in northeast of China. Sci. Total Environ. 450–451, 129–139. https://doi.org/10.1016/j.scitotenv.2013.02.016 (2013).Article 

    Google Scholar 
    Daniels, M. B. et al. Soil phosphorus variability in pastures: implications for sampling and environmental management strategies. J. Environ. Qual. 30, 2157–2165. https://doi.org/10.1006/jema.2001.0501 (2001).Article 

    Google Scholar 
    Yanu, P. & Jakmunee, J. Flow injection with in-line reduction column and conductometric detection for determination of total inorganic nitrogen in soil. Talanta 144, 263–267. https://doi.org/10.1016/j.talanta.2015.06.002 (2015).Article 

    Google Scholar 
    Ryan, B. C., Maguire, R. O. & Havlin, J. L. Change in soluble phosphorus in soils following fertilization is dependent on initial Mehlich-3 phosphorus. J. Environ. Qual. 35, 1818–1824. https://doi.org/10.2134/jeq2005.0404 (2006).Article 

    Google Scholar 
    Guan, S. Y., Zhang, D. & Zhang, Z. Soil enzyme and its reserach methods. Agric. Beijing. 1, 274–297 (1986).

    Google Scholar 
    Bailey, M. J. A note on the use of dinitrosalicylic acid for determining the products of enzymatic reactions. Appl. Microbiol. Biotechnol. 29, 494–496. https://doi.org/10.1007/BF00269074 (1988).Article 

    Google Scholar 
    Murali, G., Alka, G., Arunachalam, V. & Magu, P. S. Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities. Biores. Technol. 98, 3154–3158. https://doi.org/10.1016/j.biortech.2006.10.010 (2007).Article 

    Google Scholar 
    Mahajan, G. et al. Soil quality assessment of coastal salt-affected acid soils of India. Environ. Sci. Pollut. Res. 27, 26221–26238. https://doi.org/10.1007/s11356-020-09010-w (2020).Article 

    Google Scholar 
    Guishun, X. Ji Chu Tu Rang Xue (China Agriculture Press Co., 2001).
    Google Scholar 
    Qiao, J., Zhu, Y., Jia, X., Huang, L. & Shao, M. A. Development of pedotransfer functions for soil hydraulic properties in the critical zone on the Loess Plateau, China. Hydrol. Process. 32, 2915–2921. https://doi.org/10.1002/hyp.13216 (2018).Article 

    Google Scholar 
    Liu, Y. et al. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol. Biochem. 118, 35–41. https://doi.org/10.1016/j.soilbio.2017.12.003 (2018).Article 

    Google Scholar  More