Multiple invasions, Wolbachia and human-aided transport drive the genetic variability of Aedes albopictus in the Iberian Peninsula
Hawley, W. A. The biology of Aedes albopictus. J. Am. Mosq. Control Assoc. 1, 1–39 (1988).CAS
Google Scholar
Benedict, M. Q., Levine, R. S., Hawley, W. A. & Lounibos, L. P. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector-Borne Zoonotic Dis. 7, 76–85 (2007).Article
PubMed
Google Scholar
Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: From the darkness to the light. Microb. Infect. 11, 1177–1185 (2009).Article
CAS
Google Scholar
Delatte, H. et al. Blood-feeding behavior of Aedes albopictus, a vector of Chikungunya on La Réunion. Vector-Borne Zoonotic Dis. 10, 249–258 (2010).Article
PubMed
Google Scholar
Pereira-dos-Santos, T., Roiz, D., Lourenço-de-Oliveira, R. & Paupy, C. A systematic review: Is Aedes albopictus an efficient bridge vector for zoonotic arboviruses? Pathogens 9, 266 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Gratz, N. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227 (2004).Article
CAS
PubMed
Google Scholar
Grard, G. et al. Zika virus in Gabon (Central Africa)—2007: A new threat from Aedes albopictus? PLoS Negl. Trop. Dis. 8, e2681 (2014).Article
PubMed
PubMed Central
Google Scholar
Lambrechts, L., Scott, T. W. & Gubler, D. J. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 4, e646 (2010).Article
PubMed
PubMed Central
Google Scholar
Lounibos, L. P. & Kramer, L. D. Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. J. Infect. Dis. 214, S453–S458 (2016).Article
PubMed
PubMed Central
Google Scholar
European Centre for Disease Prevention and Control (ECDC). Vector Control with a Focus on Aedes aegypti and Aedes albopictus Mosquitoes: Literature Review and Analysis of Information (ECDC, Stockholm, Sweden, 2017).Tatem, A. J., Hay, S. I. & Rogers, D. J. Global traffic and disease vector dispersal. PNAS 103, 6242–6247 (2006).Article
CAS
PubMed
PubMed Central
Google Scholar
Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection From the Global Invasive Species Database, Vol. 12 (Invasive Species Specialist Group, 2000).Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).Article
CAS
PubMed
Google Scholar
Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article
Google Scholar
Marini, F., Caputo, B., Pombi, M., Tarsitani, G. & Della-Torre, A. Study of Aedes albopictus dispersal in Rome, Italy, using sticky traps in mark–release–recapture experiments. Med. Vet. Entomol. 24, 361–368 (2010).Article
CAS
PubMed
Google Scholar
Bonizzoni, M., Gasperi, G., Chen, X. & James, A. A. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 29, 460–468 (2013).Article
PubMed
PubMed Central
Google Scholar
Collantes, F. et al. Review of ten-years presence of Aedes albopictus in Spain 2004–2014: Known distribution and public health concerns. Parasit Vectors 8, 1–11 (2015).Article
Google Scholar
Aranda, C., Eritja, R. & Roiz, D. First record and establishment of the mosquito Aedes albopictus in Spain. Med. Vet. Entomol. 20, 150–152 (2006).Article
CAS
PubMed
Google Scholar
Giménez, N. et al. Introduction of Aedes albopictus in Spain: A new challenge for public health. Gac. Sanit. 21, 25–28 (2007).Article
PubMed
Google Scholar
European Centre for Disease Prevention and Control and European Food Safety Authority. Mosquito maps [internet]. Stockholm: ECDC. https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps (2022).Shigesada, N. & Kawasaki, K. Biological Invasions: Theory and Practice (Oxford University Press, 1997).
Google Scholar
Puth, L. M. & Post, D. M. Studying invasion: Have we missed the boat? Ecol. Lett. 8, 715–721 (2005).Article
Google Scholar
Leung, B. et al. An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proc. R Soc. Lond. Ser. B Biol. Sci. 269, 2407–2413 (2002).Article
Google Scholar
Lounibos, L. P. Invasions by insect vectors of human disease. Annu. Rev. Entomol. 47, 233–266 (2002).Article
CAS
PubMed
Google Scholar
Manni, M. et al. Genetic evidence for a worldwide chaotic dispersion pattern of the arbovirus vector, Aedes albopictus. PLoS Negl. Trop. Dis. 11, e0005332 (2017).Article
PubMed
PubMed Central
Google Scholar
Roiz, D. et al. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl. Trop. Dis. 12, e0006845 (2018).Article
PubMed
PubMed Central
Google Scholar
Lühken, R. et al. Microsatellite typing of Aedes albopictus (Diptera: Culicidae) populations from Germany suggests regular introductions. Infect. Genet. Evol. 81, 104237 (2020).Article
PubMed
Google Scholar
Battaglia, V. et al. The worldwide spread of the tiger mosquito as revealed by mitogenome haplogroup diversity. Front. Genet. 7, 208 (2016).Article
PubMed
PubMed Central
Google Scholar
Medley, K. A., Jenkins, D. G. & Hoffman, E. A. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito. Mol. Ecol. 24, 284–295 (2015).Article
PubMed
Google Scholar
Eritja, R., Palmer, J. R., Roiz, D., Sanpera-Calbet, I. & Bartumeus, F. Direct evidence of adult Aedes albopictus dispersal by car. Sci. Rep. 7, 1–15 (2017).Article
CAS
Google Scholar
Sherpa, S. et al. Unravelling the invasion history of the Asian tiger mosquito in Europe. Mol. Ecol. 28, 2360–2377 (2019).Article
PubMed
Google Scholar
Swan, T. et al. A literature review of dispersal pathways of Aedes albopictus across different spatial scales: Implications for vector surveillance. Parasit Vectors 15, 1–13 (2022).Article
Google Scholar
Ballard, J. W. O. & Whitlock, M. C. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729–744. https://doi.org/10.1046/j.1365-294X.2003.02063.x (2004).Article
PubMed
Google Scholar
Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930. https://doi.org/10.1111/j.1365-294X.2012.05664.x (2012).Article
CAS
PubMed
Google Scholar
Hurst, G. D. & Jiggins, F. M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts. Proc. R. Soc. B: Biol. Sci. 272, 1525–1534 (2005).Article
CAS
Google Scholar
Cariou, M., Duret, L. & Charlat, S. The global impact of Wolbachia on mitochondrial diversity and evolution. J. Evol. Biol. 30, 2204–2210 (2017).Article
CAS
PubMed
Google Scholar
Zug, R. & Hammerstein, P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 7, e38544 (2012).Article
CAS
PubMed
PubMed Central
Google Scholar
Weinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z. & Welch, J. J. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. R. Soc. B: Biol. Sci. 282, 20150249 (2015).Article
Google Scholar
Goubert, C., Minard, G., Vieira, C. & Boulesteix, M. Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases. Heredity 117, 125–134 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Western, D. Human-modified ecosystems and future evolution. PNAS 98, 5458–5465 (2001).Article
CAS
PubMed
PubMed Central
Google Scholar
Pech-May, A. et al. Population genetics and ecological niche of invasive Aedes albopictus in Mexico. Acta Trop. 157, 30–41 (2016).Article
PubMed
Google Scholar
Vargo, E. L. et al. Hierarchical genetic analysis of German cockroach (Blattella germanica) populations from within buildings to across continents. PLoS ONE 9, e102321 (2014).Article
PubMed
PubMed Central
Google Scholar
von Beeren, C., Stoeckle, M. Y., Xia, J., Burke, G. & Kronauer, D. J. Interbreeding among deeply divergent mitochondrial lineages in the American cockroach (Periplaneta americana). Sci. Rep. 5, 1–7 (2015).
Google Scholar
Tseng, S.-P. et al. Genetic diversity and Wolbachia infection patterns in a globally distributed invasive ant. Front. Genet. 10, 838 (2019).Article
CAS
PubMed
PubMed Central
Google Scholar
Wesson, D. M., Porter, C. H. & Collins, F. H. Sequence and secondary structure comparisons of ITS rDNA in mosquitoes (Diptera: Culicidae). Mol. Phylogen. Evol. 1, 253–269 (1992).Article
CAS
Google Scholar
Mishra, S., Sharma, G., Das, M. K., Pande, V. & Singh, O. P. Intragenomic sequence variations in the second internal transcribed spacer (ITS2) ribosomal DNA of the malaria vector Anopheles stephensi. PLoS ONE 16, e0253173 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Artigas, P. et al. Aedes albopictus diversity and relationships in south-western Europe and Brazil by rDNA/mtDNA and phenotypic analyses: ITS-2, a useful marker for spread studies. Parasit Vectors 14, 1–23 (2021).Article
Google Scholar
Armbruster, P. et al. Infection of New-and Old-World Aedes albopictus (Diptera: Culicidae) by the intracellular parasite Wolbachia: implications for host mitochondrial DNA evolution. J. Med. Entomol. 40, 356–360 (2003).Article
PubMed
Google Scholar
Maia, R., Scarpassa, V. M., Maciel-Litaiff, L. & Tadei, W. P. Reduced levels of genetic variation in Aedes albopictus (Diptera: Culicidae) from Manaus, Amazonas State, Brazil, based on analysis of the mitochondrial DNA ND5 gene. Gen. Mol. Res. 2000, 998–1007 (2009).Article
Google Scholar
Birungi, J. & Munstermann, L. E. Genetic structure of Aedes albopictus (Diptera: Culicidae) populations based on mitochondrial ND5 sequences: Evidence for an independent invasion into Brazil and United States. Ann. Entomol. Soc. Am. 95, 125–132 (2002).Article
CAS
Google Scholar
Kambhampati, S. & Rai, K. S. Mitochondrial DNA variation within and among populations of the mosquito Aedes albopictus. Genome 34, 288–292 (1991).Article
CAS
PubMed
Google Scholar
Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).Article
CAS
PubMed
Google Scholar
Wiwatanaratanabutr, I. Geographic distribution of wolbachial infections in mosquitoes from Thailand. J. Invertebr. Pathol. 114, 337–340 (2013).Article
PubMed
Google Scholar
Carvajal, T. M., Hashimoto, K., Harnandika, R. K., Amalin, D. M. & Watanabe, K. Detection of Wolbachia in field-collected Aedes aegypti mosquitoes in metropolitan Manila, Philippines. Parasit. Vectors 12, 1–9 (2019).Article
Google Scholar
Atyame, C. M., Delsuc, F., Pasteur, N., Weill, M. & Duron, O. Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. Mol. Biol. Evol. 28, 2761–2772 (2011).Article
CAS
PubMed
Google Scholar
Damiani, C. et al. Wolbachia in Aedes koreicus: Rare detections and possible implications. Insects 13, 216 (2022).Article
PubMed
PubMed Central
Google Scholar
Jiggins, F. M. Male-killing Wolbachia and mitochondrial DNA: Selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164, 5–12 (2003).Article
CAS
PubMed
PubMed Central
Google Scholar
Schuler, H. et al. The hitchhiker’s guide to Europe: The infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi. Mol. Ecol. 25, 1595–1609 (2016).Article
PubMed
PubMed Central
Google Scholar
Ross, P. A., Ritchie, S. A., Axford, J. K. & Hoffmann, A. A. Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions. PLoS Negl. Trop. Dis. 13, e0007357 (2019).Article
PubMed
PubMed Central
Google Scholar
Avise, J. C. Phylogeography: The history and formation of species (Harvard University Press, 2000).Book
Google Scholar
Rokas, A., Atkinson, R. J., Brown, G. S., West, S. A. & Stone, G. N. Understanding patterns of genetic diversity in the oak gallwasp Biorhiza pallida: Demographic history or a Wolbachia selective sweep? Heredity 87, 294–304 (2001).Article
CAS
PubMed
Google Scholar
Porretta, D., Mastrantonio, V., Bellini, R., Somboon, P. & Urbanelli, S. Glacial history of a modern invader: Phylogeography and species distribution modelling of the Asian tiger mosquito Aedes albopictus. PLoS ONE 7, e44515. https://doi.org/10.1371/journal.pone.0044515 (2012).Article
CAS
PubMed
PubMed Central
Google Scholar
Motoki, M. T. et al. Population genetics of Aedes albopictus (Diptera: Culicidae) in its native range in Lao People’s Democratic Republic. Parasit. Vectors 12, 1–12 (2019).Article
CAS
Google Scholar
Zhong, D. et al. Genetic analysis of invasive Aedes albopictus populations in Los Angeles County, California and its potential public health impact. PLoS ONE 8, e68586 (2013).Article
CAS
PubMed
PubMed Central
Google Scholar
Usmani-Brown, S., Cohnstaedt, L. & Munstermann, L. E. Population genetics of Aedes albopictus (Diptera: Culicidae) invading populations, using mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 5 sequences. Ann. Entomol. Soc. Am. 102, 144–150 (2009).Article
CAS
PubMed
Google Scholar
Mousson, L. et al. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations. Genet. Res. 86, 1–11 (2005).Article
CAS
PubMed
Google Scholar
Bazin, E., Glémin, S. & Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570–572. https://doi.org/10.1126/science.1122033 (2006).Article
CAS
PubMed
Google Scholar
Dowling, D. K., Friberg, U. & Lindell, J. Evolutionary implications of non-neutral mitochondrial genetic variation. Ecol. Evol. 23, 546–554 (2008).Article
Google Scholar
Montero-Pau, J., Gómez, A. & Muñoz, J. Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs. Limnol. Oceanogr. Methods 6, 218–222 (2008).Article
CAS
Google Scholar
Porter, C. H. & Collins, F. H. Species-diagnostic differences in a ribosomal DNA internal transcribed spacer from the sibling species Anopheles freeborni and Anopheles hermsi (Diptera: Culicidae). Am. J. Trop. Med. 45, 271–279 (1991).Article
CAS
Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS
PubMed
Google Scholar
Prosser, S., Martínez-Arce, A. & Elías-Gutiérrez, M. A new set of primers for COI amplification from freshwater microcrustaceans. Mol. Ecol. Resour. 13, 1151–1155 (2013).CAS
PubMed
Google Scholar
Ivanova, N. V., Zemlak, T. S., Hanner, R. H. & Hebert, P. D. Universal primer cocktails for fish DNA barcoding. Mol. Ecol. Notes 7, 544–548 (2007).Article
CAS
Google Scholar
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou, W., Rousset, F. & O’Neill, S. Phylogeny and PCR–based classification of Wolbachia strains using wsp gene sequences. Proc. R Soc. Lond. Ser. B Biol. Sci. 265, 509–515 (1998).Article
CAS
Google Scholar
Braig, H. R., Zhou, W., Dobson, S. L. & O’Neill, S. L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 180, 2373–2378 (1998).Article
CAS
PubMed
PubMed Central
Google Scholar
Hu, Y. et al. Identification and molecular characterization of Wolbachia strains in natural populations of Aedes albopictus in China. Parasit. Vectors 13, 1–14 (2020).
Google Scholar
Heddi, A., Grenier, A.-M., Khatchadourian, C., Charles, H. & Nardon, P. Four intracellular genomes direct weevil biology: Nuclear, mitochondrial, principal endosymbiont, and Wolbachia. PNAS 96, 6814–6819 (1999).Article
CAS
PubMed
PubMed Central
Google Scholar
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).Article
CAS
PubMed
Google Scholar
Salzburger, W., Ewing, G. B. & Von Haeseler, A. The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol. Ecol. 20, 1952–1963 (2011).Article
PubMed
Google Scholar
Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).Article
CAS
PubMed
Google Scholar
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).Article
CAS
PubMed
PubMed Central
Google Scholar
Gower, J. C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325–338 (1966).Article
MathSciNet
MATH
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/. (2021).Hijmans, R. J., Williams, E., Vennes, C. & Hijmans, M. R. J. Package ‘geosphere’. Spher. Trigon. 1, 5 (2017).
Google Scholar
Palmer, J. R. et al. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat. Commun. 8, 1–13 (2017).Article
Google Scholar
Mantel, N. & Valand, R. S. A technique of nonparametric multivariate analysis. Biometrics 1970, 547–558 (1970).Article
Google Scholar
Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).Article
Google Scholar
Stewart, C. Zero-inflated beta distribution for modeling the proportions in quantitative fatty acid signature analysis. J. Appl. Stat. 40, 985–992 (2013).Article
MathSciNet
MATH
Google Scholar
Figueroa-Zúñiga, J. I., Arellano-Valle, R. B. & Ferrari, S. L. Mixed beta regression: A Bayesian perspective. Comput. Stat. Data Anal. 61, 137–147 (2013).Article
MathSciNet
MATH
Google Scholar
Branscum, A. J., Johnson, W. O. & Thurmond, M. C. Bayesian beta regression: Applications to household expenditure data and genetic distance between foot-and-mouth disease viruses. Aust. N. Z. J. Stat. 49, 287–301 (2007).Article
MathSciNet
MATH
Google Scholar
Ospina, R. & Ferrari, S. L. Inflated beta distributions. Stat. Pap. 51, 111–126 (2010).Article
MathSciNet
MATH
Google Scholar
Chung, H. & Beretvas, S. N. The impact of ignoring multiple membership data structures in multilevel models. Br. J. Math. Stat. Psychol. 65, 185–200 (2012).Article
MathSciNet
PubMed
MATH
Google Scholar More