More stories

  • in

    Multiple invasions, Wolbachia and human-aided transport drive the genetic variability of Aedes albopictus in the Iberian Peninsula

    Hawley, W. A. The biology of Aedes albopictus. J. Am. Mosq. Control Assoc. 1, 1–39 (1988).CAS 

    Google Scholar 
    Benedict, M. Q., Levine, R. S., Hawley, W. A. & Lounibos, L. P. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector-Borne Zoonotic Dis. 7, 76–85 (2007).Article 
    PubMed 

    Google Scholar 
    Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: From the darkness to the light. Microb. Infect. 11, 1177–1185 (2009).Article 
    CAS 

    Google Scholar 
    Delatte, H. et al. Blood-feeding behavior of Aedes albopictus, a vector of Chikungunya on La Réunion. Vector-Borne Zoonotic Dis. 10, 249–258 (2010).Article 
    PubMed 

    Google Scholar 
    Pereira-dos-Santos, T., Roiz, D., Lourenço-de-Oliveira, R. & Paupy, C. A systematic review: Is Aedes albopictus an efficient bridge vector for zoonotic arboviruses? Pathogens 9, 266 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gratz, N. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grard, G. et al. Zika virus in Gabon (Central Africa)—2007: A new threat from Aedes albopictus? PLoS Negl. Trop. Dis. 8, e2681 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lambrechts, L., Scott, T. W. & Gubler, D. J. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 4, e646 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lounibos, L. P. & Kramer, L. D. Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. J. Infect. Dis. 214, S453–S458 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    European Centre for Disease Prevention and Control (ECDC). Vector Control with a Focus on Aedes aegypti and Aedes albopictus Mosquitoes: Literature Review and Analysis of Information (ECDC, Stockholm, Sweden, 2017).Tatem, A. J., Hay, S. I. & Rogers, D. J. Global traffic and disease vector dispersal. PNAS 103, 6242–6247 (2006).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection From the Global Invasive Species Database, Vol. 12 (Invasive Species Specialist Group, 2000).Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Marini, F., Caputo, B., Pombi, M., Tarsitani, G. & Della-Torre, A. Study of Aedes albopictus dispersal in Rome, Italy, using sticky traps in mark–release–recapture experiments. Med. Vet. Entomol. 24, 361–368 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bonizzoni, M., Gasperi, G., Chen, X. & James, A. A. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 29, 460–468 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Collantes, F. et al. Review of ten-years presence of Aedes albopictus in Spain 2004–2014: Known distribution and public health concerns. Parasit Vectors 8, 1–11 (2015).Article 

    Google Scholar 
    Aranda, C., Eritja, R. & Roiz, D. First record and establishment of the mosquito Aedes albopictus in Spain. Med. Vet. Entomol. 20, 150–152 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Giménez, N. et al. Introduction of Aedes albopictus in Spain: A new challenge for public health. Gac. Sanit. 21, 25–28 (2007).Article 
    PubMed 

    Google Scholar 
    European Centre for Disease Prevention and Control and European Food Safety Authority. Mosquito maps [internet]. Stockholm: ECDC. https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps (2022).Shigesada, N. & Kawasaki, K. Biological Invasions: Theory and Practice (Oxford University Press, 1997).
    Google Scholar 
    Puth, L. M. & Post, D. M. Studying invasion: Have we missed the boat? Ecol. Lett. 8, 715–721 (2005).Article 

    Google Scholar 
    Leung, B. et al. An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proc. R Soc. Lond. Ser. B Biol. Sci. 269, 2407–2413 (2002).Article 

    Google Scholar 
    Lounibos, L. P. Invasions by insect vectors of human disease. Annu. Rev. Entomol. 47, 233–266 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Manni, M. et al. Genetic evidence for a worldwide chaotic dispersion pattern of the arbovirus vector, Aedes albopictus. PLoS Negl. Trop. Dis. 11, e0005332 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roiz, D. et al. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl. Trop. Dis. 12, e0006845 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lühken, R. et al. Microsatellite typing of Aedes albopictus (Diptera: Culicidae) populations from Germany suggests regular introductions. Infect. Genet. Evol. 81, 104237 (2020).Article 
    PubMed 

    Google Scholar 
    Battaglia, V. et al. The worldwide spread of the tiger mosquito as revealed by mitogenome haplogroup diversity. Front. Genet. 7, 208 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Medley, K. A., Jenkins, D. G. & Hoffman, E. A. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito. Mol. Ecol. 24, 284–295 (2015).Article 
    PubMed 

    Google Scholar 
    Eritja, R., Palmer, J. R., Roiz, D., Sanpera-Calbet, I. & Bartumeus, F. Direct evidence of adult Aedes albopictus dispersal by car. Sci. Rep. 7, 1–15 (2017).Article 
    CAS 

    Google Scholar 
    Sherpa, S. et al. Unravelling the invasion history of the Asian tiger mosquito in Europe. Mol. Ecol. 28, 2360–2377 (2019).Article 
    PubMed 

    Google Scholar 
    Swan, T. et al. A literature review of dispersal pathways of Aedes albopictus across different spatial scales: Implications for vector surveillance. Parasit Vectors 15, 1–13 (2022).Article 

    Google Scholar 
    Ballard, J. W. O. & Whitlock, M. C. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729–744. https://doi.org/10.1046/j.1365-294X.2003.02063.x (2004).Article 
    PubMed 

    Google Scholar 
    Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930. https://doi.org/10.1111/j.1365-294X.2012.05664.x (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hurst, G. D. & Jiggins, F. M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts. Proc. R. Soc. B: Biol. Sci. 272, 1525–1534 (2005).Article 
    CAS 

    Google Scholar 
    Cariou, M., Duret, L. & Charlat, S. The global impact of Wolbachia on mitochondrial diversity and evolution. J. Evol. Biol. 30, 2204–2210 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zug, R. & Hammerstein, P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 7, e38544 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z. & Welch, J. J. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. R. Soc. B: Biol. Sci. 282, 20150249 (2015).Article 

    Google Scholar 
    Goubert, C., Minard, G., Vieira, C. & Boulesteix, M. Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases. Heredity 117, 125–134 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Western, D. Human-modified ecosystems and future evolution. PNAS 98, 5458–5465 (2001).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pech-May, A. et al. Population genetics and ecological niche of invasive Aedes albopictus in Mexico. Acta Trop. 157, 30–41 (2016).Article 
    PubMed 

    Google Scholar 
    Vargo, E. L. et al. Hierarchical genetic analysis of German cockroach (Blattella germanica) populations from within buildings to across continents. PLoS ONE 9, e102321 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    von Beeren, C., Stoeckle, M. Y., Xia, J., Burke, G. & Kronauer, D. J. Interbreeding among deeply divergent mitochondrial lineages in the American cockroach (Periplaneta americana). Sci. Rep. 5, 1–7 (2015).
    Google Scholar 
    Tseng, S.-P. et al. Genetic diversity and Wolbachia infection patterns in a globally distributed invasive ant. Front. Genet. 10, 838 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wesson, D. M., Porter, C. H. & Collins, F. H. Sequence and secondary structure comparisons of ITS rDNA in mosquitoes (Diptera: Culicidae). Mol. Phylogen. Evol. 1, 253–269 (1992).Article 
    CAS 

    Google Scholar 
    Mishra, S., Sharma, G., Das, M. K., Pande, V. & Singh, O. P. Intragenomic sequence variations in the second internal transcribed spacer (ITS2) ribosomal DNA of the malaria vector Anopheles stephensi. PLoS ONE 16, e0253173 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Artigas, P. et al. Aedes albopictus diversity and relationships in south-western Europe and Brazil by rDNA/mtDNA and phenotypic analyses: ITS-2, a useful marker for spread studies. Parasit Vectors 14, 1–23 (2021).Article 

    Google Scholar 
    Armbruster, P. et al. Infection of New-and Old-World Aedes albopictus (Diptera: Culicidae) by the intracellular parasite Wolbachia: implications for host mitochondrial DNA evolution. J. Med. Entomol. 40, 356–360 (2003).Article 
    PubMed 

    Google Scholar 
    Maia, R., Scarpassa, V. M., Maciel-Litaiff, L. & Tadei, W. P. Reduced levels of genetic variation in Aedes albopictus (Diptera: Culicidae) from Manaus, Amazonas State, Brazil, based on analysis of the mitochondrial DNA ND5 gene. Gen. Mol. Res. 2000, 998–1007 (2009).Article 

    Google Scholar 
    Birungi, J. & Munstermann, L. E. Genetic structure of Aedes albopictus (Diptera: Culicidae) populations based on mitochondrial ND5 sequences: Evidence for an independent invasion into Brazil and United States. Ann. Entomol. Soc. Am. 95, 125–132 (2002).Article 
    CAS 

    Google Scholar 
    Kambhampati, S. & Rai, K. S. Mitochondrial DNA variation within and among populations of the mosquito Aedes albopictus. Genome 34, 288–292 (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wiwatanaratanabutr, I. Geographic distribution of wolbachial infections in mosquitoes from Thailand. J. Invertebr. Pathol. 114, 337–340 (2013).Article 
    PubMed 

    Google Scholar 
    Carvajal, T. M., Hashimoto, K., Harnandika, R. K., Amalin, D. M. & Watanabe, K. Detection of Wolbachia in field-collected Aedes aegypti mosquitoes in metropolitan Manila, Philippines. Parasit. Vectors 12, 1–9 (2019).Article 

    Google Scholar 
    Atyame, C. M., Delsuc, F., Pasteur, N., Weill, M. & Duron, O. Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. Mol. Biol. Evol. 28, 2761–2772 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Damiani, C. et al. Wolbachia in Aedes koreicus: Rare detections and possible implications. Insects 13, 216 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiggins, F. M. Male-killing Wolbachia and mitochondrial DNA: Selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164, 5–12 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schuler, H. et al. The hitchhiker’s guide to Europe: The infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi. Mol. Ecol. 25, 1595–1609 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ross, P. A., Ritchie, S. A., Axford, J. K. & Hoffmann, A. A. Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions. PLoS Negl. Trop. Dis. 13, e0007357 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avise, J. C. Phylogeography: The history and formation of species (Harvard University Press, 2000).Book 

    Google Scholar 
    Rokas, A., Atkinson, R. J., Brown, G. S., West, S. A. & Stone, G. N. Understanding patterns of genetic diversity in the oak gallwasp Biorhiza pallida: Demographic history or a Wolbachia selective sweep? Heredity 87, 294–304 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Porretta, D., Mastrantonio, V., Bellini, R., Somboon, P. & Urbanelli, S. Glacial history of a modern invader: Phylogeography and species distribution modelling of the Asian tiger mosquito Aedes albopictus. PLoS ONE 7, e44515. https://doi.org/10.1371/journal.pone.0044515 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Motoki, M. T. et al. Population genetics of Aedes albopictus (Diptera: Culicidae) in its native range in Lao People’s Democratic Republic. Parasit. Vectors 12, 1–12 (2019).Article 
    CAS 

    Google Scholar 
    Zhong, D. et al. Genetic analysis of invasive Aedes albopictus populations in Los Angeles County, California and its potential public health impact. PLoS ONE 8, e68586 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Usmani-Brown, S., Cohnstaedt, L. & Munstermann, L. E. Population genetics of Aedes albopictus (Diptera: Culicidae) invading populations, using mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 5 sequences. Ann. Entomol. Soc. Am. 102, 144–150 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mousson, L. et al. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations. Genet. Res. 86, 1–11 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bazin, E., Glémin, S. & Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570–572. https://doi.org/10.1126/science.1122033 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dowling, D. K., Friberg, U. & Lindell, J. Evolutionary implications of non-neutral mitochondrial genetic variation. Ecol. Evol. 23, 546–554 (2008).Article 

    Google Scholar 
    Montero-Pau, J., Gómez, A. & Muñoz, J. Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs. Limnol. Oceanogr. Methods 6, 218–222 (2008).Article 
    CAS 

    Google Scholar 
    Porter, C. H. & Collins, F. H. Species-diagnostic differences in a ribosomal DNA internal transcribed spacer from the sibling species Anopheles freeborni and Anopheles hermsi (Diptera: Culicidae). Am. J. Trop. Med. 45, 271–279 (1991).Article 
    CAS 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    Prosser, S., Martínez-Arce, A. & Elías-Gutiérrez, M. A new set of primers for COI amplification from freshwater microcrustaceans. Mol. Ecol. Resour. 13, 1151–1155 (2013).CAS 
    PubMed 

    Google Scholar 
    Ivanova, N. V., Zemlak, T. S., Hanner, R. H. & Hebert, P. D. Universal primer cocktails for fish DNA barcoding. Mol. Ecol. Notes 7, 544–548 (2007).Article 
    CAS 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, W., Rousset, F. & O’Neill, S. Phylogeny and PCR–based classification of Wolbachia strains using wsp gene sequences. Proc. R Soc. Lond. Ser. B Biol. Sci. 265, 509–515 (1998).Article 
    CAS 

    Google Scholar 
    Braig, H. R., Zhou, W., Dobson, S. L. & O’Neill, S. L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 180, 2373–2378 (1998).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hu, Y. et al. Identification and molecular characterization of Wolbachia strains in natural populations of Aedes albopictus in China. Parasit. Vectors 13, 1–14 (2020).
    Google Scholar 
    Heddi, A., Grenier, A.-M., Khatchadourian, C., Charles, H. & Nardon, P. Four intracellular genomes direct weevil biology: Nuclear, mitochondrial, principal endosymbiont, and Wolbachia. PNAS 96, 6814–6819 (1999).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Salzburger, W., Ewing, G. B. & Von Haeseler, A. The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol. Ecol. 20, 1952–1963 (2011).Article 
    PubMed 

    Google Scholar 
    Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gower, J. C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325–338 (1966).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/. (2021).Hijmans, R. J., Williams, E., Vennes, C. & Hijmans, M. R. J. Package ‘geosphere’. Spher. Trigon. 1, 5 (2017).
    Google Scholar 
    Palmer, J. R. et al. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat. Commun. 8, 1–13 (2017).Article 

    Google Scholar 
    Mantel, N. & Valand, R. S. A technique of nonparametric multivariate analysis. Biometrics 1970, 547–558 (1970).Article 

    Google Scholar 
    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).Article 

    Google Scholar 
    Stewart, C. Zero-inflated beta distribution for modeling the proportions in quantitative fatty acid signature analysis. J. Appl. Stat. 40, 985–992 (2013).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Figueroa-Zúñiga, J. I., Arellano-Valle, R. B. & Ferrari, S. L. Mixed beta regression: A Bayesian perspective. Comput. Stat. Data Anal. 61, 137–147 (2013).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Branscum, A. J., Johnson, W. O. & Thurmond, M. C. Bayesian beta regression: Applications to household expenditure data and genetic distance between foot-and-mouth disease viruses. Aust. N. Z. J. Stat. 49, 287–301 (2007).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Ospina, R. & Ferrari, S. L. Inflated beta distributions. Stat. Pap. 51, 111–126 (2010).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Chung, H. & Beretvas, S. N. The impact of ignoring multiple membership data structures in multilevel models. Br. J. Math. Stat. Psychol. 65, 185–200 (2012).Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar  More

  • in

    Reply to: When did mammoths go extinct?

    Department of Zoology, University of Cambridge, Cambridge, UKYucheng Wang, Bianca De Sanctis, Ruairidh Macleod, Daniel Money & Eske WillerslevLundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, DenmarkYucheng Wang, Ana Prohaska, Jialu Cao, Antonio Fernandez-Guerra, James Haile, Kurt H. Kjær, Thorfinn Sand Korneliussen, Nicolaj Krog Larsen, Ruairidh Macleod, Hugh McColl, Mikkel Winther Pedersen, Fernando Racimo, Alexandra Rouillard, Anthony H. Ruter, Lasse Vinner, David J. Meltzer & Eske WillerslevALPHA, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS), Beijing, ChinaYucheng WangKey Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Science, Lanzhou University, Lanzhou, ChinaHaoran DongGénomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, FranceAdriana Alberti, France Denoeud & Patrick WinckerInstitute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, FranceAdriana AlbertiThe Arctic University Museum of Norway, UiT—The Arctic University of Norway, Tromsø, NorwayInger Greve Alsos, Eric Coissac, Galina Gusarova, Youri Lammers & Marie Kristine Føreid MerkelDepartment of Geography and Environment, University of Hawaii, Honolulu, HI, USADavid W. BeilmanDepartment of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, DenmarkAnders A. BjørkInstitute of Earth Sciences, St Petersburg State University, St Petersburg, RussiaAnna A. Cherezova & Grigory B. FedorovArctic and Antarctic Research Institute, St Petersburg, RussiaAnna A. Cherezova & Grigory B. FedorovUniversité Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, FranceEric CoissacDepartment of Genetics, University of Cambridge, Cambridge, UKBianca De Sanctis & Richard DurbinCarlsberg Research Laboratory, Copenhagen V, DenmarkChristoph Dockter & Birgitte SkadhaugeSchool of Geography and Environmental Science, University of Southampton, Southampton, UKMary E. EdwardsAlaska Quaternary Center, University of Alaska Fairbanks, Fairbanks, AK, USAMary E. EdwardsSchool of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UKNeil R. Edwards & Philip B. HoldenCenter for the Environmental Management of Military Lands, Colorado State University, Fort Collins, CO, USAJulie EsdaleDepartment of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, CanadaDuane G. FroeseFaculty of Biology, St Petersburg State University, St Petersburg, RussiaGalina GusarovaDepartment of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen K, DenmarkKristian K. KjeldsenDepartment of Earth Science, University of Bergen, Bergen, NorwayJan Mangerud & John Inge SvendsenBjerknes Centre for Climate Research, Bergen, NorwayJan Mangerud & John Inge SvendsenDepartment of Geology, Quaternary Sciences, Lund University, Lund, SwedenPer MöllerCenter for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen Ø, DenmarkDavid Nogués-Bravo, Hannah Lois Owens & Carsten RahbekCentre d’Anthropobiologie et de Génomique de Toulouse, Faculté de Médecine Purpane, Université Paul Sabatier, Toulouse, FranceLudovic OrlandoCenter for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, DenmarkHannah Lois Owens & Carsten RahbekGates of the Arctic National Park and Preserve, US National Park Service, Fairbanks, AK, USAJeffrey T. RasicDepartment of Geosciences, UiT—The Arctic University of Norway, Tromsø, NorwayAlexandra RouillardZoological Institute, Russian academy of sciences, St Petersburg, RussiaAlexei TikhonovResource and Environmental Research Center, Chinese Academy of Fishery Sciences, Beijing, ChinaYingchun XingCollege of Plant Science, Jilin University, Changchun, Jilin, ChinaYubin ZhangDepartment of Anthropology, Southern Methodist University, Dallas, TX, USADavid J. MeltzerWellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UKEske WillerslevMARUM, University of Bremen, Bremen, GermanyEske WillerslevAll authors contributed to the conception of the presented ideas. Y.W. and H.D. analysed the data. Y.W., D.J.M., A.P. and E.W. wrote the paper with inputs from all authors. More

  • in

    The impact of natural fibers’ characteristics on mechanical properties of the cement composites

    The structure and microstructure of the fibresThe surfaces of the natural fibres are presented from Figs. 6, 7, 8, 9, 10 and of the synthetic fibres are presented in Figs. 11 and 12.Figure 6SEM of jute fibre [Fot.M.Kurpińska].Full size imageFigure 7SEM of bamboo fibre [Fot.M.Kurpińska].Full size imageFigure 8SEM of sisal fibre [Fot.M.Kurpińska].Full size imageFigure 9SEM of cotton fibre [Fot.M.Kurpińska].Full size imageFigure 10SEM of ramie fibre [Fot.M.Kurpińska].Full size imageFigure 11SEM of polymer fibre [Fot.M.Kurpińska].Full size imageFigure 12SEM of polypropylene (PP) fibre [Fot.M.Kurpińska].Full size imageThe basic components of natural fibres influencing their properties are cellulose, hemicellulose, lignin, waxes, oils, and pectin. Cellulose is mainly composed of three elements such as carbon, hydrogen, and oxygen, and it is the material basis that forms the cell wall natural fibre. Typically, cellulose remains in the form of micro-fibrils within the cell wall of a plant. Cellulose is the main factor affecting the tensile strength along natural fibre and the cellulose content is closely related to the plant’s age and content decreases with the increasing age of the plant6.Hemicellulose is an amorphous substance offering a low degree of polymerization and it exists between fibres. Hemicellulose is a complex polysaccharide with xylan as the predominant chain, and the branches mainly include 4-O-methyl-D-glucuronic acid, L-arabinose, and D-xylose. Lignin is a kind of polymer with complex structures and of many types. The basic units of lignin include: guaiacyl, syringyl monomers, and p-hydroxyphenyl monomers. The structural units in lignin are mainly connected by ether bonds and carbon–carbon single bonds. Usually, lignin is not evenly distributed in the plant fibre wall9.In addition to three main components, lignin often contains various sugars, fats, protein substances, and a small amount of ash elements. These chemical compositions affect not only the properties of natural fibres, but also the possibility of a specific application of fibre. The composition of individual natural fibres and their properties are presented in Table 1. Figure 6a–c shows longitudinal and cross-sectional views of the untreated jute fibre. Externally, the fibre is smooth and shiny. The presence of hemicellulose influences the high hygroscopicity of jute fibres. The structure of the jute fibre shows that the fibre swells when it absorbs water. Possible swelling of the fibre in the cross-section by approx. 30%. The microscope scans of indicate the succinylated regions. This is due to the chemical bonding of the succinic anhydride molecule with the hydroxyl group of the cellulose present in the fibre. The encircled region in the top side shows an unsuccinylated region with naturally waxy impurities16.Figure 7a shows the scanning electron micrograph (SEM) of the bamboo fibre. According to the SEM analysis, the microstructure of bamboo is anisotropic. At the Fig. 7b–c it can be recognized that the orientation of cellulose fibrils was placed almost along the fibre axis which may affect to maximize the modulus of elasticity. Factors affect the mechanical properties of bamboo fibres are the chemical composition and structure of bamboo fibres, moisture content, age of bamboo, etc. In addition, the age of the plant affects the chemical composition and structure of fibre. These factors and the natural humidity influence their change of mechanical properties. The hemicellulose content directly influences the tensile strength. This parameter increases with the decrease in the hemicellulose content in the bamboo fibre18.The cell structure of bamboo fibres is complex, and the middle layer of the cell wall has a multi-layer structure. The lignification of the thin and thick layers in the multilayer structure varies. The multi-layered cell wall structure leads to better fracture resistance and promotes internal sliding between the cell wall layers during tension. The angle of the microfiber alignment is also an important factor influencing the mechanical properties of the fibre. Typically, the tensile strength and modulus of elasticity of a fibre increase as the angle between the interposition of the microfibers decreases. Hence, the smaller microfibril angle is an important factor that contributes to the good mechanical properties of bamboo fibre. Large voids between bamboo fibre molecules can be seen, which impact good hygroscopicity19. The moisture content is an important factor affecting the mechanical properties of bamboo fibres. Figure 8a–c shows the morphology of the sisal fibre. The surface of the sisal fibre has higher roughness, and it increases the bonding area between the fibre and cement paste. This leads to increase the mechanical properties of the composites38.Figure 9a–c shows images of the cotton fibres. At the microscope image, a cotton fibre looks like a twisted ribbon or a collapsed and twisted tube. These twists are called convolutions: there are about 60 convolutions per centimetre. The weaves give the cotton an uneven surface of the fibres, which increases the friction between the fibres, but at the same time they can prevent fibres from evenly dispersing in the cement matrix. The outer layer, the cuticle is a thin film of mostly fats and waxes. Figure 9b shows the waxy layer surface with some smooth grooves. The waxy layer forms a thin sheet over the primary wall that forms grooves on the cotton surface19. The cotton fibre surface comprises non-cellulosic materials and amorphous cellulose in which the fibrils are arranged in a criss-cross pattern. Owing to the non-structured orientation of cellulose and non-cellulosic materials, the wall surface is unorganized and open. This gives flexibility to the fibre. The basic ingredients, responsible for the complicated interconnections in the primary wall, are cellulose, hemicelluloses, pectin, proteins, and ions. In the core of fibre, only the crystalline cellulose is present, what is highly ordered and has a compact structure with the cellulose fibrils lying parallel to one another18.SEM micrograph of the surface and cross section of the ramie fibre are shown at Fig. 10a–c. The surface of the ramie fibres is dense but porous. There are many micropores and continuous bubbles in the porous structure of a single bundle of a ramie fibre Fig. 10c. This structure has some effect for low absorption of water, moreover, it is also related to the fibre distribution in the cement composites. In case of the short ramie fibre, due to its random distribution in composites, the strength of the composite may be affected. Cellulose, lignin, and hemicellulose weight materials can form a dense layer on the surface of the ramie fibres, so the water absorptivity is low. This special structure of the fibre with a dense matrix, and at the same time, with a characteristic pore arrangement has an influence on the adhesion of the cement matrix and the strength of the cement composite18.The surface and cross section of multifilament macrofibre is demonstrated at Fig. 11a–c. From the chemical point of view, this type of fibres belongs to the polymers from the group of polyolefins, composed of units of the formula: –[CH2CH (CH3)]–. They are obtained by low-pressure polymerization of propylene. They are made of 100% pure co-polymer twisted bundles of multifilament fibres Fig. 11c. Polypropylene is one of two most commonly used plastics, in addition to polyethylene. Polypropylene is a hydrocarbon thermoplastic polymer2.Figure 12a–c shows the structure of a bundle of polypropylene (PP) fibres in the form of a 3D mesh. They are made of isotactic polypropylene, called propylene, CH2=CHCH3 obtained from crude oil. They are one of the finest polypropylene fibres. The surface of the fibres is smooth Fig. 12b 2.The consistency—fluidityThe results of fluidity are shown at Fig. 13. The fluidity of the composite not modified with fibres is 145 mm and is a reference to other test results. The use of bamboo fibres increased the composite fluidity and composite flow by 8.6% (157.5 mm). The use of polymer fibers and jute increased the consistency by about 7%, while the use of sisal fibres by 3%. The use of PP fibres (122.5 mm) had the greatest impact on the loss of consistency by 15.5%. The use of cotton and frame fibres resulted in a reduction of workability and consistency by 13.8% and 3.5%, respectively.Figure 13Results of fluidity test.Full size imageBased on the research results, it was found that in the case of using bamboo fibres characterizing a high absorption of 120–145%, the consistency of composite increased by 8.2% compared to the consistency of composite without fibres. In the case of a change in consistency, the chemical composition of natural fibres, their surface, and the total length in the volume of composite are significant, too. There is a noticeable regularity related to the cellulose content in natural fibres. If the higher cellulose content, it reduces the consistency of the composite. For example, the cellulose content in bamboo fibres is the lowest and amounts to 40–45%, while the cellulose content in cotton fibres is the highest, ranging from 80 to 94%. It can also be recognized that consistency and workability will be influenced by the hemicellulose content.The higher the hemicellulose content, it impacts the higher consistency of the composite. It is similar referring to the content of lignin. It was noticed that the higher the lignin content, the higher the composite consistency was found. Regarding the total length of the fibres, a regularity is apparent that the greater the total length of fibres, e.g., in the case of cotton fibres, the greater decrease in consistency is visible. In the case of polymer and polypropylene (PP) fibres, the consistency is influenced by the surface of the fibre, the number of fibres, and their total length in the volume of the composite. Increasing the total length of PP fibres by approx. 15% resulted in a reduction of the consistency of approx. 20%.Flexural and compressive strengthAssigning mechanical properties of fibre reinforced composite, particular emphasis was placed on the determination of the flexural strength of the composite. This parameter was appointed by the 3-point test. Figure 14. shows the flexural strength of plain composite and 7 groups of different fibre reinforced composites on the 2nd, 7th, 28th, and 56th days.Figure 14Flexural strength test results.Full size imageIt can be seen that the bending strength of composites with the addition of natural fibres, ramie, bamboo, jute, and sisal are similar. The bending strength of composites with PP and polymer fibres is lower. It should be noted that the strength of the cotton fibre-reinforced composite is much lower than that of all the others tested. The reason may be the low tensile strength of the cotton fibres used. When mixing the composites, a tendency to create conglomerates of cotton fibres was also noticed, which may affect the strength of the composites.The test results clearly show that the effectiveness of the added natural fibres depends on the chemical composition and mechanical properties, and above all, on their adhesion to the cement matrix. The adhesion of the natural fibre to the cement matrix has a significant influence on the mechanical properties of the cement composite, in particular on compression and bending strength. The highest bending strength was achieved by cement composites modified with ramie fibres. Ramie fibres are characterized by the highest tensile strength among the tested synthetic and natural fibres, ranging from 400 to 1000 MPa. The results of the compressive strength are shown in Fig. 15.Figure 15Compressive strength test results.Full size imageThe analysis of the test results shows that the use of dispersed fibres reduced the early compressive strength after 2 days from 8.5 to 33%. The exception is the ramie fibres, the use of which increased the early strength by 6.6%. Within 28 days, as in the case of early strength, the use of all types of synthetic and natural fibres resulted in a decrease in strength from 4.6 to 26.5%. The exception is the use of ramie fibres, which increased the compressive strength by 7.2% after 28 days. After 56 days, a decrease in strength was noticed in the case of using PP and polymer synthetic fibres as well as natural cotton and bamboo from 5.5 to 11.9%.On the other hand, the increase in compressive strength after 56 days from 5.8 to 16.4% was visible in the case of using fibres such as sisal, jute and ramie. The highest compressive strength was achieved by the composite with a ramie fibre. The fibre of the ramie is characterized by the highest modulus of elasticity ranging from 24.5 to 128 GPa and is over 100% higher than the Young’s modulus of the other fibres.Shrinkage testFigure 16A shows that the samples after demolding showed expansion for about 2 days, and from the third day after demolding, the length of the samples was shortened. The lowest degree of expansion in the first days was shown by samples without fibres and samples containing cotton fibres. In this case, the expansion did not exceed 0.02 mm/m. However, the same samples finally showed the highest shrinkage after 180 days, which was 0.06 mm/m.Figure 16Testing the change in length of samples.Full size imageThe highest expansion within 48 h after deformation was shown by samples containing sisal fibres, while these samples finally after 180 days showed the lowest deformation of the length of the samples, which was 0.001 mm/m. The samples containing the synthetic fibres showed an expansion of about 0.02–0.03 mm/m in 48 h and the final shrinkage after 180 days was 0.03 mm/m for both the polymer and PP fibre samples. The bamboo and ramie fibres initially showed an expansion of 0.04–0.06 mm/m while their final shrinkage was 0.02 mm/m. The samples with jute fibres showed an expansion of 0.04 mm/m and the final shrinkage of the samples was 0.04 mm/m. Figure 16a,b shows the results of testing the change in length of samples over time.After 180 days, the total deformation of the samples was determined. Samples containing sisal fibers showed a slight expansion of about 0.001 mm/m, while the highest deformation (shrinkage) was shown for composite samples without fibers and with cotton fibres, which was 0.06 mm/m. Samples with bamboo, jute, PP, polymer and ramie fibres showed a shrinkage from 0.02 to 0.04 mm/m. Only the samples containing the sisal fibre showed a slight expansion of 0.001 mm/m.Ultimately, the samples containing sisal fibres were characterized by the lowest deformability. This phenomenon is related to the fibre structure and the total length of the fibres in a sample with dimensions of 40 × 40 × 160mm. For example, in a sample containing sisal fibres, their total length is 5856.7 m. Otherwise, a sample containing jute fibres, their total length in the sample is only 7.4 m. Therefore it was found that the fibre structure, its diameter, the cellulose content and the total length of the fibres in the element are important factors of deformation as a result of shrinkage or expansion of the fibre reinforced composite.Water absorption of composite testHigher water absorption (8.5%) compared to the composite without fibres was noticed in the case of using both synthetic fibres and with the exception of the use of ramie fibres, which caused a slight reduction in water absorption to 8.2%. It can be recognized that the water absorption rate of the 8 groups of samples is slightly different, the highest is the polymer fibre-reinforced composite (9.2%); the lowest water absorption rate refers to ramie fibre-reinforced composite (8.2%). The difference in water absorption rates is presented at Fig. 17.Figure 17Water absorption of composite (%).Full size imageExcept for cotton fibre-reinforced composite, the water absorption rate of another plant fibre-reinforced composite is lower than that of synthetic fibre-reinforced composite. Probably because of the fact that ramie, sisal, and jute fibres all have good moisture absorption and release properties. It is commonly known that plant fibre-reinforced cement-based materials have reduced strength and initial properties due to their performance degradation in a humid environment, so their long-term durability could become problematic. Sisal fibres (with noticed absorption of 95–100%) have absorbed more cement slurry on their surface than jute fibres (absorption of fibre 7–12%). This phenomenon could be explained by the fact that the slurry became the impregnation of the fibre. The absorbability of the composite was tested after the composite had completely hardened. Probably a fibre that is characterized by high absorption—sisal is very well “embedded” in the matrix, therefore the bending strength results for composites with sisal fibre were higher by 8–10%. More

  • in

    Finding space for nature in cities: the considerable potential of redundant car parking

    Butt, N. et al. Opportunities for biodiversity conservation as cities adapt to climate change. Geo Geogr. Environ. 5, 52 (2018).
    Google Scholar 
    Norton, B. A. et al. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 134, 127–138 (2015).Article 

    Google Scholar 
    Ossola, A. et al. Small vegetated patches greatly reduce urban surface temperature during a summer heatwave in Adelaide, Australia. Landsc. Urban Plan. 209, 104046 (2021).Article 

    Google Scholar 
    Grey, V., Livesley, S. J., Fletcher, T. D. & Szota, C. Tree pits to help mitigate runoff in dense urban areas. J. Hydrol. 565, 400–410 (2018).Article 

    Google Scholar 
    Szota, C. et al. Street tree stormwater control measures can reduce runoff but may not benefit established trees. Landsc. Urban Plan. 182, 144–155 (2019).Article 

    Google Scholar 
    Liu, L. & Jensen, M. B. Green infrastructure for sustainable urban water management: Practices of five forerunner cities. Cities 74, 126–133 (2018).Article 

    Google Scholar 
    Astell-Burt, T. & Feng, X. Association of urban green space with mental health and general health among adults in Australia. JAMA Netw. Open 2, 198209 (2019).Article 

    Google Scholar 
    Astell Burt, T. et al. More green, less lonely? A longitudinal cohort study. Int. J. Epidemiol. 51, 99–110 (2022).Article 

    Google Scholar 
    Astell-Burt, T., Navakatikyan, M. A. & Feng, X. Urban green space, tree canopy and 11-year risk of dementia in a cohort of 109,688 Australians. Env. Int. 145, 106102 (2020).Article 

    Google Scholar 
    Feng, X. & Astell-Burt, T. Residential green space quantity and quality and child well-being: a longitudinal study. Am. J. Prev. Med. 53, 616–624 (2017).Article 

    Google Scholar 
    Knobel, P. et al. Quality of urban green spaces influences residents’ use of these spaces, physical activity, and overweight/obesity. Environ. Pollut. 271, 116393 (2021).Article 
    CAS 

    Google Scholar 
    Haaland, C. & van den Bosch, C. K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For.Urban Green 14, 760–771 (2015).Article 

    Google Scholar 
    Russo, A. & Cirella, G. T. Modern compact cities: How much greenery do we need? Int. J. Environ. Res. Public Health 15, 2180 (2018).Article 

    Google Scholar 
    Garrard, G. E., Williams, N. S. G., Mata, L., Thomas, J. & Bekessy, S. A. Biodiversity sensitive urban design. Conserv. Lett. 11, 1–10 (2018).Article 

    Google Scholar 
    Eaton, T. T. Approach and case-study of green infrastructure screening analysis for urban stormwater control. J. Environ. Manage. 209, 495–504 (2018).Article 

    Google Scholar 
    Maes, M. J. A., Jones, K. E., Toledano, M. B. & Milligan, B. Mapping synergies and trade-offs between urban ecosystems and the sustainable development goals. Environ. Sci. Policy 93, 181–188 (2019).Article 

    Google Scholar 
    Astell-Burt, T., Feng, X., Mavoa, S., Badland, H. M. & Giles-Corti, B. Do low-income neighbourhoods have the least green space? A cross-sectional study of Australia’s most populous cities. BMC Public Health 14, 19–21 (2014).Article 

    Google Scholar 
    Coutts, A. M., Tapper, N. J., Beringer, J., Loughnan, M. & Demuzere, M. Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context. Prog. Phys. Geogr. 37, 2–28 (2013).Article 

    Google Scholar 
    Intergovernmental Panel on Climate Change. Climate Change 2022: Impacts, Adaptation and Vulnerability | Climate Change 2022: Impacts, Adaptation and Vulnerability. IPCC Sixth Assessment Report https://www.ipcc.ch/report/ar6/wg2/ (2022).Davies, C. & Lafortezza, R. Urban green infrastructure in Europe: Is greenspace planning and policy compliant? Land Use Policy 69, 93–101 (2017).Article 

    Google Scholar 
    Faivre, N., Fritz, M., Freitas, T., de Boissezon, B. & Vandewoestijne, S. Nature-based solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Res. 159, 509–518 (2017).Article 
    CAS 

    Google Scholar 
    Meerow, S. & Newell, J. P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 159, 62–75 (2017).Article 

    Google Scholar 
    City of Los Angeles. L.A.’s Green New Deal: Sustainability Plan 2019. https://plan.lamayor.org/ (2019).City of Paris. Urban forests soon on four emblematic sites. https://www.paris.fr/pages/des-forets-urbaines-bientot-sur-quatre-sites-emblematiques-6899/ (2019).Brisbane City Council. Brisbane’s urban forest. https://www.brisbane.qld.gov.au/clean-and-green/natural-environment-and-water/plants-trees-and-gardens/brisbanes-trees/brisbanes-urban-forest (2019).Cortinovis, C., Olsson, P., Boke-Olén, N. & Hedlund, K. Scaling up nature-based solutions for climate-change adaptation: Potential and benefits in three European cities. Urban For. Urban Green. 67, 127450 (2022).Furchtlehner, J., Lehner, D. & Lička, L. Sustainable streetscapes: design approaches and examples of Viennese practice. Sustainability 14, 961 (2022).Schmidt, S., Guerrero, P. & Albert, C. Advancing sustainable development goals with localised nature-based solutions: Opportunity spaces in the Lahn river landscape, Germany. J. Environ. Manage. 309, 114696 (2022).Article 

    Google Scholar 
    Gómez Martín, E., Giordano, R., Pagano, A., van der Keur, P. & Máñez Costa, M. Using a system thinking approach to assess the contribution of nature based solutions to sustainable development goals. Sci. Total Environ. 738, 139693 (2020).Article 

    Google Scholar 
    Bush, J. & Doyon, A. Building urban resilience with nature-based solutions: How can urban planning contribute? Cities 95, 102483 (2019).Article 

    Google Scholar 
    Brink, E. et al. Cascades of green: A review of ecosystem-based adaptation in urban areas. Glob. Environ. Chang. 36, 111–123 (2016).Article 

    Google Scholar 
    Oke, C. et al. Cities should respond to the biodiversity extinction crisis. npj Urban Sustain. 1, 9–12 (2021).Article 

    Google Scholar 
    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    Spotswood, E. N. et al. Nature inequity and higher COVID-19 case rates in less-green neighbourhoods in the United States. Nat. Sustain. 4, 1092–1098 (2021).Article 

    Google Scholar 
    Moglia, M. et al. Accelerating a green recovery of cities: Lessons from a scoping review and a proposal for mission-oriented recovery towards post-pandemic urban resilience. Dev. Built Environ. 7, 100052 (2021).Article 

    Google Scholar 
    OECD. Focus on green recovery. https://www.oecd.org/coronavirus/en/themes/green-recovery (2021).European Commission. A European Green Deal. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (2021).UNEP. Smart, Sustainable and Resilient cities: the Power of Nature-based Solutions. https://www.unep.org/resources/report/smart-sustainable-and-resilient-cities-power-nature-based-solutions (2021).Croeser, T. et al. Diagnosing delivery capabilities on a large international nature-based solutions project. npj Urban Sustain. 1, 32 (2021).Article 

    Google Scholar 
    McPhillips, L. E. & Matsler, A. M. Temporal evolution of green stormwater infrastructure strategies in three us cities. Front. Built. Environ. 4, 1–14 (2018).Article 

    Google Scholar 
    Spahr, K. M., Bell, C. D., McCray, J. E. & Hogue, T. S. Greening up stormwater infrastructure: Measuring vegetation to establish context and promote cobenefits in a diverse set of US cities. Urban For. Urban Green 48, 126548 (2020).Article 

    Google Scholar 
    Hamel, P. & Tan, L. Blue–Green Infrastructure for Flood and Water Quality Management in Southeast Asia: Evidence and Knowledge Gaps. Environ. Manage. 69, 699–718 (2021)City of Melbourne. Elizabeth Street Integrated Water Cycle Management Plan. http://urbanwater.melbourne.vic.gov.au/industry/our-strategies/elizabeth-street-catchment-iwcm-plan/#:~:text =The Elizabeth Street Catchment Integrated,within the municipality of Melbourne. (2015).Phelan, K., Hurley, J. & Bush, J. Land-use planning’s role in urban forest strategies: recent local government approaches in Australia. Urban Policy Res 37, 215–226 (2019).Article 

    Google Scholar 
    Bradford, J. B. & D’Amato, A. W. Recognizing trade-offs in multi-objective land management. Front. Ecol. Environ. 10, 210–216 (2012).Article 

    Google Scholar 
    Kindler, J. Linking ecological and development objectives: Trade-offs and imperatives. Ecol. Appl. 8, 591–600 (1998).Article 

    Google Scholar 
    UN Habitat. Streets as Public Spaces and Drivers of Urban Prosperity. https://unhabitat.org/streets-as-public-spaces-and-drivers-of-urban-prosperity (2013).De Gruyter, C., Zahraee, S. M. & Young, W. Street space allocation and use in Melbourne’s activity centres: Working paper. https://apo.org.au/sites/default/files/resource-files/2021-09/apo-nid314604.pdf (2021).Shoup, D. C. The trouble with minimum parking requirements. Transp. Res. Part A Policy Pract. 33, 549–574 (1999).Article 

    Google Scholar 
    Barter, P. A. A parking policy typology for clearer thinking on parking reform. Int. J. Urb. Sci. 5934, 136–156 (2015).Taylor, E. J. Transport Strategy Refresh Background Paper: Parking. https://s3.ap-southeast-2.amazonaws.com/hdp.au.prod.app.com-participate.files/2615/2963/7455/Transport_Strategy_Refresh_-_Background_paper_-_Car_Parking.pdf (2018).Guo, Z. & Schloeter, L. Street standards as parking policy: rethinking the provision of residential street parking in American Suburbs. J. Plan. Educ. Res. 33, 456–470 (2013).Article 
    CAS 

    Google Scholar 
    Taylor, D. E. Free parking for free people: German road laws and rights as constraints on local car parking management. Transp. Policy 101, 23–33 (2021).Article 

    Google Scholar 
    Pierce, G., Willson, H. & Shoup, D. Optimizing the use of public garages: Pricing parking by demand. Transp. Policy 44, 89–95 (2015).Article 

    Google Scholar 
    Taylor, E. J. Parking policy: The politics and uneven use of residential parking space in Melbourne. Land Use Policy 91, 103706 (2020).Article 

    Google Scholar 
    Thigpen, C. G. & Volker, J. M. B. Repurposing the paving: The case of surplus residential parking in Davis, CA. Cities 70, 111–121 (2017).Article 

    Google Scholar 
    Volker, J. M. B. & Thigpen, C. G. Not enough parking, you say? A study of garage use and parking supply for single-family homes in Sacramento and implications for ADUs. J. Transp. Land Use 15, 183–206 (2022).Article 

    Google Scholar 
    Rosenblum, J., Hudson, A. W. & Ben-Joseph, E. Parking futures: An international review of trends and speculation. Land Use Policy 91, 104054 (2020).Article 

    Google Scholar 
    Gössling, S. Why cities need to take road space from cars – and how this could be done. J. Urban Des. 25, 443–448 (2020).Article 

    Google Scholar 
    Clements, R. Parking: an opportunity to deliver sustainable transport. in Handbook of Sustainable Transport 280–288 (Edward Elgar Publishing, 2020). https://doi.org/10.4337/9781789900477.00041.Barter, P. A. Off-street parking policy surprises in Asian cities. Cities 29, 23–31 (2012).Article 

    Google Scholar 
    Shao, C., Yang, H., Zhang, Y. & Ke, J. A simple reservation and allocation model of shared parking lots. Transp. Res. Part C Emerg. Technol. 71, 303–312 (2016).Article 

    Google Scholar 
    Pojani, D. et al. Setting the agenda for parking research in other cities. in Parking: An International Perspective 245–260 (Elsevier, 2019).Guo, Z. Home parking convenience, household car usage, and implications to residential parking policies. Transp. Policy 29, 97–106 (2013).Article 
    CAS 

    Google Scholar 
    Scheiner, J., Faust, N., Helmer, J., Straub, M. & Holz-Rau, C. What’s that garage for? Private parking and on-street parking in a high-density urban residential neighbourhood. J. Transp. Geogr. 85, 102714 (2020).Article 

    Google Scholar 
    Inci, E. Economics of Transportation A review of the economics of parking. Econ. Transp. 4, 50–63 (2015).Article 

    Google Scholar 
    Arnott, R. Spatial competition between parking garages and downtown parking policy. Transp. Policy 13, 458–469 (2006).Article 

    Google Scholar 
    Marsden, G. The evidence base for parking policies-a review. Transp. Policy 13, 447–457 (2006).Article 

    Google Scholar 
    Taylor, E. “Fight the towers! Or kiss your car park goodbye”: How often do residents assert car parking rights in Melbourne planning appeals? Plan. Theory Pract. 15, 328–348 (2014).Article 

    Google Scholar 
    Kimpton, A. et al. Contemporary parking policy, practice, and outcomes in three large Australian cities. Prog. Plann. 153, 100506 (2020).Article 

    Google Scholar 
    Taylor, E. J. Journey into an immense heart of car parking. Plan. Theory Pract. 20, 448–455 (2019).Article 

    Google Scholar 
    Van Ommeren, J. N., Wentink, D. & Rietveld, P. Empirical evidence on cruising for parking. Transp. Res. Part A Policy Pract. 46, 123–130 (2012).Article 

    Google Scholar 
    Croeser, T. et al. Patterns of tree removal and canopy change on public and private land in the City of Melbourne. Sustain. Cities Soc. 56, 102096 (2020).Article 

    Google Scholar 
    Hurley, J. et al. Urban vegetation cover change in Melbourne. https://cur.org.au/cms/wp-content/uploads/2019/07/urban-vegetation-cover-change.pdf (2019).Hartigan, M., Fitzsimons, J., Grenfell, M. & Kent, T. Developing a metropolitan-wide urban forest strategy for a large, expanding and densifying capital city: Lessons from Melbourne, Australia. Land 10, 809 (2021).Article 

    Google Scholar 
    Department of Environment Land Water and Planning. Port Phillip Bay Environmental Management Plan. https://www.marineandcoasts.vic.gov.au/coastal-programs/port-phillip-bay (2017).City of Melbourne. Urban Forest Strategy. https://www.melbourne.vic.gov.au/community/greening-the-city/urban-forest/Pages/urban-forest-strategy.aspx (2014).City of Melbourne. Total Watermark: City as a Catchment (2014 Update). (2014).City of Melbourne. Nature in the City Strategy. https://www.melbourne.vic.gov.au/community/greening-the-city/urban-nature/Pages/nature-in-the-city-strategy.aspx (2017).Li, F. & Guo, Z. Do parking standards matter? Evaluating the London parking reform with a matched-pair approach. Transp. Res. Part A Policy Pract 67, 352–365 (2014).Article 

    Google Scholar 
    Ríos Flores, R. A., Vicentini, V. L. & Acevedo-Daunas, R. M. Practical Guidebook: Parking and Travel Demand Management Policies in Latin America. https://publications.iadb.org/en/publication/17409/practical-guidebook-parking-and-travel-demand-management-policies-latin-america (2015).Mingardo, G., van Wee, B. & Rye, T. Urban parking policy in Europe: A conceptualization of past and possible future trends. Transp. Res. Part A Policy Pract. 74, 268–281 (2015).Article 

    Google Scholar 
    Barter, P. A. Parking requirements in some major Asian cities. Transp. Res. Rec. 2245, 79–86 (2011)Taylor, E. J. & van Bemmel-Misrachi, R. The elephant in the scheme: Planning for and around car parking in Melbourne, 1929–2016. Land use policy 60, 287–297 (2017).Article 

    Google Scholar 
    City of Melbourne. Transport Strategy 2030. https://www.melbourne.vic.gov.au/parking-and-transport/transport-planning-projects/Pages/transport-strategy.aspx (2020).City of Melbourne. Total Watermark. https://www.clearwatervic.com.au/user-data/resource-files/City-of-Melbourne-Total-Watermark-Strategy.pdf (2009).Roy, A. H. et al. Impediments and solutions to sustainable, watershed-scale urban stormwater management: Lessons from Australia and the United States. Environ. Manag. 42, 344–359 (2008).Article 

    Google Scholar 
    City of Melbourne. Annual Report 2020-2021. https://www.melbourne.vic.gov.au/SiteCollectionDocuments/annual-report-2020-21.pdf (2021).Sprei, F., Hult, Å., Hult, C. & Roth, A. Review of the effects of developments with low parking requirements. ECEEE Summer Study Proc. 2019-June, 1079–1086 (2019).
    Google Scholar 
    Langemeyer, J. et al. Creating urban green infrastructure where it is needed – A spatial ecosystem service-based decision analysis of green roofs in Barcelona. Sci. Total Environ. 707, 135487 (2019).Article 

    Google Scholar 
    Ossola, A. et al. Landscape and Urban Planning Small vegetated patches greatly reduce urban surface temperature during a summer heatwave in Adelaide, Australia. Landsc. Urban Plan. 209, 104046 (2021).Article 

    Google Scholar 
    Dhakal, K. P. & Chevalier, L. R. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application. J. Environ. Manage. 203, 171–181 (2017).Article 

    Google Scholar 
    Siqueira, F. F. et al. Small landscape elements double connectivity in highly fragmented areas of the Brazilian Atlantic Forest. Front. Ecol. Evol. 9, 1–14 (2021).Article 

    Google Scholar 
    Mimet, A., Kerbiriou, C., Simon, L., Julien, J. F. & Raymond, R. Contribution of private gardens to habitat availability, connectivity and conservation of the common pipistrelle in Paris. Landsc. Urban Plan. 193, 103671 (2020).Article 

    Google Scholar 
    Braschler, B., Dolt, C. & Baur, B. The function of a set-aside railway bridge in connecting urban habitats for animals: A case study. Sustain 12, 1194 (2020).Article 

    Google Scholar 
    Kirk, H., Threlfall, C. G., Soanes, K. & Parris, K. Linking Nature in the City Part Two: Applying the Connectivity Index. https://nespurban.edu.au/wp-content/uploads/2021/02/Linking-nature-in-the-city-Part-2.pdf (2020).Ossola, A., Locke, D., Lin, B. & Minor, E. Yards increase forest connectivity in urban landscapes. Landsc. Ecol. 34, 2935–2948 (2019).Article 

    Google Scholar 
    Lindenmayer, D. Small patches make critical contributions to biodiversity conservation. Proc. Natl. Acad. Sci. USA 116, 717–719 (2019).Article 
    CAS 

    Google Scholar 
    Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. USA 116, 909–914 (2019).Article 
    CAS 

    Google Scholar 
    Rolf, W., Peters, D., Lenz, R. & Pauleit, S. Farmland–an Elephant in the room of urban green infrastructure? Lessons learned from connectivity analysis in three German cities. Ecol. Indic. 94, 151–163 (2018).Article 

    Google Scholar 
    Marissa Matsler, A. Making ‘green’ fit in a ‘grey’ accounting system: The institutional knowledge system challenges of valuing urban nature as infrastructural assets. Environ. Sci. Policy 99, 160–168 (2019).Article 

    Google Scholar 
    Meerow, S. The politics of multifunctional green infrastructure planning in New York City. Cities 100, 102621 (2020).Article 

    Google Scholar 
    Wolf, K. L. & Robbins, A. S. T. Metro nature, environmental health, and economic value. Environ. Health Perspect. 123, 390–398 (2015).Article 

    Google Scholar 
    Bell, J. F., Wilson, J. S. & Liu, G. C. Neighborhood greenness and 2-year changes in body mass index of children and youth. Am. J. Prev. Med. 35, 547–553 (2008).Article 

    Google Scholar 
    Miller, S. M. & Montalto, F. A. Stakeholder perceptions of the ecosystem services provided by Green Infrastructure in New York City. Ecosyst. Serv. 37, 100928 (2019).Article 

    Google Scholar 
    Janhäll, S. Review on urban vegetation and particle air pollution – Deposition and dispersion. Atmos. Environ. 105, 130–137 (2015).Article 

    Google Scholar 
    Li, L., Uyttenhove, P. & Vaneetvelde, V. Planning green infrastructure to mitigate urban surface water flooding risk–A methodology to identify priority areas applied in the city of Ghent. Landsc. Urban Plan. 194, 103703 (2020).Article 

    Google Scholar 
    Haghighatafshar, S. et al. Efficiency of blue-green stormwater retrofits for flood mitigation–Conclusions drawn from a case study in Malmö, Sweden. J. Environ. Manage. 207, 60–69 (2018).Article 

    Google Scholar 
    Croeser, T., Garrard, G., Sharma, R., Ossola, A. & Bekessy, S. Choosing the right nature-based solutions to meet diverse urban challenges. Urban For. Urban Green 65, 127337 (2021).Article 

    Google Scholar 
    Hansen, R., Olafsson, A. S., van der Jagt, A. P. N., Rall, E. & Pauleit, S. Planning multifunctional green infrastructure for compact cities: What is the state of practice? Ecol. Indic. 96, 99–110 (2019).Article 

    Google Scholar 
    Roy Morgan. Return of Corporate Workforce. https://www.melbourne.vic.gov.au/SiteCollectionDocuments/roy-morgan-report-return-to-the-workplace.pdf (2020).Bloomberg CityLab. A Modest Proposal to Eliminate 11,000 Urban Parking Spots. https://www.bloomberg.com/news/articles/2019-03-29/amsterdam-s-plan-to-eliminate-11-000-parking-spots (2019).World Economic Forum. Paris halves street parking and asks residents what they want to do with the space. https://www.weforum.org/agenda/2020/12/paris-parking-spaces-greenery-cities/ (2020).Urry, J. The ‘System’ of automobility. Theory, Cult. Soc. 21, 25–39 (2004).Article 

    Google Scholar 
    Docherty, I., Marsden, G. & Anable, J. The governance of smart mobility. Transp. Res. Part A Policy Pract 115, 114–125 (2018).Article 

    Google Scholar 
    Burdett, R. & Rode, P. Shaping cities in an urban age. (Phaidon Press Inc, 2018).Egerer, M., Haase, D., Frantzeskaki, N. & Andersson, E. Urban change as an untapped opportunity for climate adaptation. npj Urban Sustain. https://doi.org/10.1038/s42949-021-00024-y (2021).Article 

    Google Scholar 
    New York City Department of Environmental Protection. NYC Green Infrastructure Annual Report. https://www1.nyc.gov/assets/dep/downloads/pdf/water/stormwater/green-infrastructure/gi-annual-report-2020.pdf (2020).Eggimann, S. The potential of implementing superblocks for multifunctional street use in cities. Nat. Sustain. (2022) https://doi.org/10.1038/s41893-022-00855-2.City of Melbourne. Open Data Platform. https://data.melbourne.vic.gov.au/ (2022).City of Melbourne. Off-street car parks with capacity and type. https://data.melbourne.vic.gov.au/Transport/Off-street-car-parks-with-capacity-and-type/krh5-hhjn (2020).Ding, C. & Cao, X. How does the built environment at residential and work locations a ff ect car ownership? An application of cross-classi fi ed multilevel model. J. Transp. Geogr. 75, 37–45 (2019).Article 

    Google Scholar 
    Scheiner, J., Faust, N., Helmer, J., Straub, M. & Holz-rau, C. What’ s that garage for? Private parking and on-street parking in a high- density urban residential neighbourhood. J. Transp. Geogr. 85, 102714 (2020).Article 

    Google Scholar 
    Arnold, J. E., Graesch, A. P., Ochs, E. & Ragazzini, E. Life at Home in the Twenty-First Century in Life at home in the twenty-first century: 32 families open their doors. (ISD LLC, 2012).Beck, M. J., Hensher, D. A. & Wei, E. Slowly coming out of COVID-19 restrictions in Australia: Implications for working from home and commuting trips by car and public transport. J. Transp. Geogr. 88, 102846 (2020).Article 

    Google Scholar 
    Hensher, D. A., Ho, C. Q. & Reck, D. J. Mobility as a service and private car use: Evidence from the Sydney MaaS trial. Transp. Res. Part A Policy Pract 145, 17–33 (2021).Article 

    Google Scholar 
    ESRI. ArcGIS Network Analyst Extension. https://www.esri.com/en-us/arcgis/products/arcgis-network-analyst/overview (2022).Daniels, R. & Mulley, C. Explaining walking distance to public transport: The dominance of public transport supply. J. Transp. Land Use 6, 5–20 (2013).Article 

    Google Scholar 
    Sanders, J., Grabosky, J. & Cowie, P. Establishing maximum size expectations for urban trees with regard to designed space. Arboric. Urban For. 39, 68–73 (2013).
    Google Scholar 
    Grey, V., Livesley, S. J., Fletcher, T. D. & Szota, C. Establishing street trees in stormwater control measures can double tree growth when extended waterlogging is avoided. Landsc. Urban Plan. 178, 122–129 (2018).Article 

    Google Scholar 
    Kirk, H. et al. Linking nature in the city: A framework for improving ecological connectivity across the City of Melbourne. https://nespurban.edu.au/wp-content/uploads/2019/03/Kirk_Ramalho_et_al_Linking_nature_in_the_city_03Jul18_lowres.pdf (2018).Jaeger, J. A. G. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol 15, 115–130 (2000).Article 

    Google Scholar 
    Spanowicz, A. G. & Jaeger, J. A. G. Measuring landscape connectivity: On the importance of within-patch connectivity. Landsc. Ecol. 34, 2261–2278 (2019).Article 

    Google Scholar 
    Casalegno, S., Anderson, K., Cox, D. T. C., Hancock, S. & Gaston, K. J. Ecological connectivity in the three-dimensional urban green volume using waveform airborne lidar. Sci. Rep. 7, 1–8 (2017).Article 

    Google Scholar 
    Garrard, G. E., McCarthy, M. A., Vesk, P. A., Radford, J. Q. & Bennett, A. F. A predictive model of avian natal dispersal distance provides prior information for investigating response to landscape change. J. Anim. Ecol 81, 14–23 (2012).Article 

    Google Scholar 
    Duncan, D. Pollination of Black-anther flax lily (Dianella revoluta) in fragmented New South Wales Mallee: A report to the Australian Flora Foundation. 12, http://aff.org.au/wpcontent/uploads/Duncan_Dianella_final.pdf (2003).Pebesma, E. Simple features for R: Standardized support for spatial vector. Data. R J. 10, 439–446 (2018).
    Google Scholar 
    Imteaz, M. A., Ahsan, A., Rahman, A. & Mekanik, F. Modelling stormwater treatment systems using MUSIC: Accuracy. Resour. Conserv. Recycl. 71, 15–21 (2013).Article 

    Google Scholar 
    Melbourne Water. Raingardens. https://www.melbournewater.com.au/building-and-works/stormwater-management/options-treating-stormwater/raingardens#:~:text=Designing a raingarden,2%25 of the catchment area. (2017). More

  • in

    Field research stations are key to global conservation targets

    A theme is emerging in this year’s United Nations conferences on biodiversity (COP15), climate change (COP27) and the international wildlife trade (COP19): countries are struggling to meet key conservation targets. We argue that field research stations are an effective — but imperilled and overlooked — tool that can help policy frameworks to meet those targets. We write on behalf of 149 experts from 47 countries.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Habitat types and megabenthos composition from three sponge-dominated high-Arctic seamounts

    Pitcher, T. J. et al. Seamounts: Ecology, Fisheries & Conservation (Blackwell Publishing, 2007).Book 

    Google Scholar 
    Harris, P. T., Macmillan-Lawler, M., Rupp, J. & Baker, E. K. Geomorphology of the oceans. Mar. Geol. 352, 4–24 (2014).Article 

    Google Scholar 
    Wessel, P., Sandwell, D. T. & Kim, S.-S. The global seamount census. Oceanography 23, 24–33 (2010).Article 

    Google Scholar 
    Etnoyer, P. J. et al. BOX 12|How large is the seamount biome?. Oceanography 23, 206–209 (2010).Article 

    Google Scholar 
    De Forges, B. R., Koslow, J. A. & Pooro, G. C. B. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405, 944–947 (2000).Article 
    PubMed 

    Google Scholar 
    Rowden, A. A., Dower, J. F., Schlacher, T. A., Consalvey, M. & Clark, M. R. Paradigms in seamount ecology: Fact, fiction and future. Mar. Ecol. 31, 226–241 (2010).Article 

    Google Scholar 
    Pinheiro, H. T. et al. Fish biodiversity of the Vitória-Trindade seamount chain, southwestern Atlantic: An updated database. PLoS ONE 10, 1–17 (2015).Article 

    Google Scholar 
    Morato, T., Hoyle, S. D., Allain, V. & Nicol, S. J. Seamounts are hotspots of pelagic biodiversity in the open ocean. PNAS 107, 9711 (2010).Article 

    Google Scholar 
    Rowden, A. A. et al. A test of the seamount oasis hypothesis: Seamounts support higher epibenthic megafaunal biomass than adjacent slopes. Mar. Ecol. 31, 95–106 (2010).Article 

    Google Scholar 
    Busch, K. et al. On giant shoulders: How a seamount affects the microbial community composition of seawater and sponges. Biogeosciences 17, 3471–3486 (2020).Article 
    CAS 

    Google Scholar 
    Zhao, Y. et al. Virioplankton distribution in the tropical western Pacific Ocean in the vicinity of a seamount. Microbiol Open 9, e1031 (2020).Article 

    Google Scholar 
    Arístegui, J. et al. Plankton metabolic balance at two North Atlantic seamounts. Deep-Sea Res. II 56, 2646–2655 (2009).Article 

    Google Scholar 
    Dower, J. F. & Mackast, D. L. “Seamount effects” in the zooplankton community near Cobb Seamount. Deep-Sea Res. I 43, 837–858 (1996).Article 

    Google Scholar 
    O’Hara, T. D., Rowden, A. A. & Bax, N. J. A Southern Hemisphere bathyal fauna is distributed in latitudinal bands. Curr. Biol. 21, 226–230 (2011).Article 
    PubMed 

    Google Scholar 
    Williams, A., Althaus, F., Clark, M. R. & Gowlett-Holmes, K. Composition and distribution of deep-sea benthic invertebrate megafauna on the Lord Howe Rise and Norfolk Ridge, southwest Pacific Ocean. Deep-Sea Res. II 58, 948–958 (2011).Article 
    CAS 

    Google Scholar 
    Bridges, A. E. H., Barnes, D. K. A., Bell, J. B., Ross, R. E. & Howell, K. L. Benthic assemblage composition of South Atlantic seamounts. Front. Mar. Sci. 8, 660648 (2021).Article 

    Google Scholar 
    Lapointe, A. E., Watling, L., France, S. C. & Auster, P. J. Megabenthic assemblages in the lower bathyal (700–3000 m) on the New England and corner rise seamounts Northwest Atlantic. Deep-Sea Res. I 165, 103366 (2020).Article 

    Google Scholar 
    Clark, M. R. & Bowden, D. A. Seamount biodiversity: High variability both within and between seamounts in the Ross Sea region of Antarctica. Hydrobiologia 761, 161–180 (2015).Article 
    CAS 

    Google Scholar 
    McClain, C. R., Lundsten, L., Barry, J. & DeVogelaere, A. Assemblage structure, but not diversity or density, change with depth on a northeast Pacific seamount. Mar. Ecol. 31, 14–25 (2010).Article 

    Google Scholar 
    Long, D. J. & Baco, A. R. Rapid change with depth in megabenthic structure-forming communities of the Makapu’u deep-sea coral bed. Deep-Sea Res. II 99, 158–168 (2014).Article 

    Google Scholar 
    Thresher, R. et al. Strong septh-related zonation of megabenthos on a rocky continental margin (∼ 700–4000 m) off southern Tasmania Australia. PLoS ONE 9, e85872 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Hara, T. D., Consalvey, M., Lavrado, H. P. & Stocks, K. I. Environmental predictors and turnover of biota along a seamount chain. Mar. Ecol. 31, 84–94 (2010).Article 

    Google Scholar 
    Boschen, R. E. et al. Megabenthic assemblage structure on three New Zealand seamounts: Implications for seafloor massive sulfide mining. Mar. Ecol. Prog. Ser. 523, 1–14 (2015).Article 

    Google Scholar 
    Caratori Tontini, F. et al. Crustal magnetization of brothers volcano, New Zealand, measured by autonomous underwater vehicles: Geophysical expression of a submarine hydrothermal system. Econ. Geol. 107, 1571–1581 (2012).Article 

    Google Scholar 
    Rex, M. A., Etter, R. J., Clain, A. J. & Hill, M. S. Bathymetric patterns of body size in deep-sea gastropods. Evolution (N Y) 53, 1298–1301 (1999).
    Google Scholar 
    O’Hara, T. D. Seamounts: Centres of endemism or species richness for ophiuroids?. Glob. Ecol. Biogeogr. 16, 720–732 (2007).Article 

    Google Scholar 
    Clark, M. R. et al. The ecology of seamounts: Structure, function, and human impacts. Ann. Rev. Mar. Sci. 2, 253–278 (2010).Article 
    PubMed 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).Article 
    PubMed 

    Google Scholar 
    Levin, L. A. & Thomas, C. L. The influence of hydrodynamic regime on infaunal assemblages inhabiting carbonate sediments on central Pacific seamounts. Deep Sea Res. A 36, 1897–1915 (1989).Article 

    Google Scholar 
    Puerta, P. et al. Variability of deep-sea megabenthic assemblages along the western pathway of the Mediterranean outflow water. Deep-Sea Res. I 185, 103791 (2022).Article 

    Google Scholar 
    Tapia-Guerra, J. M. et al. First description of deep benthic habitats and communities of oceanic islands and seamounts of the Nazca Desventuradas Marine Park Chile. Sci. Rep. 11, 6209 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morgan, N. B., Goode, S., Roark, E. B. & Baco, A. R. Fine scale assemblage structure of benthic invertebrate megafauna on the North Pacific seamount Mokumanamana. Front. Mar. Sci. 6, 715 (2019).Article 

    Google Scholar 
    Perez, J. A. A., Kitazato, H., Sumida, P. Y. G., Sant’Ana, R. & Mastella, A. M. Benthopelagic megafauna assemblages of the Rio Grande Rise (SW Atlantic). Deep-Sea Res. I 134, 1–11 (2018).Article 

    Google Scholar 
    Poore, G. C. B. et al. Invertebrate diversity of the unexplored marine western margin of Australia: Taxonomy and implications for global biodiversity. Mar. Biodivers. 45, 271–286 (2015).Article 

    Google Scholar 
    Henry, L. A., Moreno Navas, J. & Roberts, J. M. Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs. Biogeosciences 10, 2737–2746 (2013).Article 

    Google Scholar 
    Meyer, K. S. et al. Rocky islands in a sea of mud: Biotic and abiotic factors structuring deep-sea dropstone communities. Mar. Ecol. Prog. Ser. 556, 45–57 (2016).Article 

    Google Scholar 
    Stratmann, T., Soetaert, K., Kersken, D. & van Oevelen, D. Polymetallic nodules are essential for food-web integrity of a prospective deep-seabed mining area in Pacific abyssal plains. Sci. Rep. 11, 12238 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Genin, A., Dayton, P. K., Lonsdale, P. F. & Spiess, F. N. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322, 59–61 (1986).Article 

    Google Scholar 
    Roberts, J. M., Wheeler, A. J. & Freiwald, A. Reefs of the deep: The biology and geology of cold-water coral ecosystems. Science 1979(312), 543–547 (2006).Article 

    Google Scholar 
    Kutti, T., Bannister, R. J. & Fosså, J. H. Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA-Northern Norwegian continental shelf. Cont. Shelf Res. 69, 21–30 (2013).Article 

    Google Scholar 
    Beazley, L., Kenchington, E. L., Murillo, F. J. & Sacau, M. D. M. Deep-sea sponge grounds enhance diversity and abundance of epibenthic megafauna in the Northwest Atlantic. ICES J. Mar. Sci. 70, 1471–1490 (2013).Article 

    Google Scholar 
    Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50 (2010).Article 

    Google Scholar 
    Victorero, L., Robert, K., Robinson, L. F., Taylor, M. L. & Huvenne, V. A. I. Species replacement dominates megabenthos beta diversity in a remote seamount setting. Sci. Rep. 8, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    Yesson, C., Clark, M. R., Taylor, M. L. & Rogers, A. D. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep-Sea Res. I 58, 442–453 (2011).Article 

    Google Scholar 
    ICES. Report of the ICES-NAFO Working Group on Deep-Water Ecology (WGDEC), 9–13 March 2009, ICES CM2009ACOM:23. 2009.Cárdenas, P. & Rapp, H. T. Demosponges from the Northern mid-Atlantic ridge shed more light on the diversity and biogeography of North Atlantic deep-sea sponges. J. Mar. Biol. Assoc. U.K. 95, 1475–1516 (2015).Article 

    Google Scholar 
    Cárdenas, P. et al. Taxonomy, biogeography and DNA barcodes of Geodia species (Porifera, Demospongiae, Tetractinellida) in the Atlantic boreo-arctic region. Zool. J. Linn. Soc. 169, 251–311 (2013).Article 

    Google Scholar 
    Roberts, E. M. et al. Oceanographic setting and short-timescale environmental variability at an Arctic seamount sponge ground. Deep-Sea Res. I 138, 98–113 (2018).Article 

    Google Scholar 
    Roberts, E. et al. Water masses constrain the distribution of deep-sea sponges in the North Atlantic Ocean and Nordic seas. Mar. Ecol. Prog. Ser. 659, 75–96 (2021).Article 

    Google Scholar 
    Morganti, T. M. et al. Giant sponge grounds of central Arctic seamounts are associated with extinct seep life. Nat. Commun. 13, 638 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morganti, T. M. et al. In situ observation of sponge trails suggests common sponge locomotion in the deep central Arctic. Curr. Biol. 31, R368–R370 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Meyer, H. K., Roberts, E. M., Rapp, H. T. & Davies, A. J. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep-Sea Res. I 153, 103137 (2019).Article 

    Google Scholar 
    McIntyre, F. D., Drewery, J., Eerkes-Medrano, D. & Neat, F. C. Distribution and diversity of deep-sea sponge grounds on the Rosemary bank seamount NE Atlantic. Mar. Biol. 163, 143 (2016).Article 

    Google Scholar 
    Buhl-Mortensen, P. & Buhl-Mortensen, L. Diverse and vulnerable deep-water biotopes in the Hardangerfjord. Mar. Biol. Res. 10, 253–267 (2014).Article 

    Google Scholar 
    de Clippele, L. H. et al. The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef Norway. Coral Reefs 37, 253–266 (2018).Article 
    PubMed 

    Google Scholar 
    Dunlop, K., Harendza, A., Plassen, L. & Keeley, N. Epifaunal habitat Associations on mixed and hard bottom substrates in coastal waters of Northern Norway. Front. Mar. Sci. 7, 568802 (2020).Article 

    Google Scholar 
    Fiore, C. L. & Cox Jutte, P. Characterization of macrofaunal assemblages associated with sponges and tunicates collected off the southeastern United States. Biology 129, 105–120 (2010).
    Google Scholar 
    Murillo, F. J. et al. Deep-sea sponge grounds of the Flemish Cap, Flemish Pass and the Grand Banks of Newfoundland (Northwest Atlantic Ocean): Distribution and species composition. Mar. Biol. Res. 8, 842–854 (2012).Article 

    Google Scholar 
    Purser, A. et al. Local variation in the distribution of benthic megafauna species associated with cold-water coral reefs on the Norwegian margin. Cont. Shelf Res. 54, 37–51 (2013).Article 

    Google Scholar 
    Klitgaard, A. B. & Tendal, O. S. Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog. Oceanogr. 61, 57–98 (2004).Article 

    Google Scholar 
    Klitgaard, A. B. The fauna associated with outer shelf and upper slope sponges (porifera, demospongiae) at the faroe islands, northeastern Atlantic. Sarsia 80, 1–22 (1995).Article 

    Google Scholar 
    Cárdenas, P. & Moore, J. A. First records of Geodia demosponges from the New England seamounts, an opportunity to test the use of DNA mini-barcodes on museum specimens. Mar. Biodivers. 49, 163–174 (2019).Article 

    Google Scholar 
    Schejter, L., Chiesa, I. L., Doti, B. L. & Bremec, C. Mycale (Aegogropila) magellanica (Porifera: Demospongiae) in the southwestern Atlantic Ocean: Endobiotic fauna and new distributional information. Sci. Mar. 76, 753–761 (2012).
    Google Scholar 
    Beaulieu, S. E. Life on glass houses: Sponge stalk communities in the deep sea. Mar. Biol. 138, 803–817 (2001).Article 

    Google Scholar 
    Goren, L., Idan, T., Shefer, S. & Ilan, M. Macrofauna inhabiting massive demosponges from shallow and mesophotic habitats along the Israeli Mediterranean coast. Front. Mar. Sci. 7, 612779 (2021).Article 

    Google Scholar 
    Kersken, D. et al. The infauna of three widely distributed sponge species (Hexactinellida and Demospongiae) from the deep Ekström Shelf in the Weddell Sea Antarctica. Deep-Sea Res. II 108, 101–112 (2014).Article 

    Google Scholar 
    Meyer, H. K., Roberts, E. M., Rapp, H. T. & Davies, A. J. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep Sea Res. 1 Oceanogr. Res. Pap. 153, 103137 (2019).Article 

    Google Scholar 
    Bart, M. C., Hudspith, M., Rapp, H. T., Verdonschot, P. F. M. & de Goeij, J. M. A Deep-Sea Sponge Loop? Sponges transfer dissolved and particulate organic carbon and nitrogen to associated fauna. Front. Mar. Sci. 8, 604879 (2021).Article 

    Google Scholar 
    de Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 1979(342), 108–110 (2013).Article 

    Google Scholar 
    Pawlik, J. R. & Mcmurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. (2019) https://doi.org/10.1146/annurev-marine-010419Wassmann, P., Slagstad, D. & Ellingsen, I. Primary production and climatic variability in the European sector of the Arctic Ocean prior to 2007: Preliminary results. Polar Biol. 33, 1641–1650 (2010).Article 

    Google Scholar 
    Arrigo, K. R., van Dijken, G. & Pabi, S. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35, L19603 (2008).Article 

    Google Scholar 
    Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob. Biogeochem. Cycles 21, GB4006 (2007).Article 

    Google Scholar 
    Wei, C.-L. et al. Global patterns and predictions of seafloor biomass using random forests. PLoS ONE 5, e15323 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stratmann, T. et al. The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities. Sci. Data 7, 206 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McClain, C. R., Lundsten, L., Ream, M., Barry, J. & DeVogelaere, A. Endemicity, biogeography, composition, and community structure on a Northeast Pacific seamount. PLoS ONE 4, e4141 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walter, M., Köhler, J., Myriel, H., Steinmacher, B. & Wisotzki, A. Physical oceanography measured on water bottle samples during POLARSTERN cruise PS101 (ARK-XXX/3). PANGAEA https://doi.org/10.1594/PANGAEA.871927 (2017).van Appen, W.-J., Latarius, K. & Kanzow, T. Physical oceanography and current meter data from mooring F6–17. PANGAEA https://doi.org/10.1594/PANGAEA.870845 (2017).Ruhl, H. A. & Smith, K. L. Shifts in deep-sea community structure linked to climate and food supply. Science 1979(305), 513–515 (2004).Article 

    Google Scholar 
    Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 1979(339), 1430–1432 (2013).Article 

    Google Scholar 
    Rybakova, E., Kremenetskaia, A., Vedenin, A., Boetius, A. & Gebruk, A. Deep-sea megabenthos communities of the Eurasian Central Arctic are influenced by ice-cover and sea-ice algal falls. PLoS ONE 14, e0211009 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhulay, I., Bluhm, B. A., Renaud, P. E., Degen, R. & Iken, K. Functional pattern of benthic epifauna in the Chukchi borderland Arctic deep sea. Front. Mar. Sci. 8, 609956 (2021).Article 

    Google Scholar 
    Boetius, A. & Purser, A. The expedition PS101 of the research vessel Polarstern to the Arctic Ocean in 2016. Berichte zur Polar-und Meeresforschung = Rep Polar Mar Res https://doi.org/10.2312/BzPM_0706_2017 (2017).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone. Prog. Oceanogr. 187, 102405 (2020).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Preliminary observations of the abyssal megafauna of Kiribati. Front. Mar. Sci. 6, 1–13 (2019).Article 

    Google Scholar 
    Zhulay, I., Iken, K., Renaud, P. E. & Bluhm, B. A. Epifaunal communities across marine landscapes of the deep Chukchi Borderland (Pacific Arctic). Deep Sea Res. 1 Oceanogr. Res. Pap. 151, 103065 (2019).Article 

    Google Scholar 
    Åström, E. K. L., Sen, A., Carroll, M. L. & Carroll, J. L. Cold seeps in a warming Arctic: Insights for benthic ecology. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00244 (2020).Article 

    Google Scholar 
    Pedersen, R. B. et al. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat. Commun. 1, 1–6 (2010).Article 
    CAS 

    Google Scholar 
    Åström, E. K. L. et al. Methane cold seeps as biological oases in the high-Arctic deep sea. Limnol. Oceanogr. 63, S209–S231 (2018).Article 

    Google Scholar 
    Rybakova Goroslavskaya, E., Galkin, S., Bergmann, M., Soltwedel, T. & Gebruk, A. Density and distribution of megafauna at the Håkon Mosby mud volcano (the Barents Sea) based on image analysis. Biogeosciences 10, 3359–3374 (2013).Article 

    Google Scholar 
    Sweetman, A. K., Levin, L. A., Rapp, H. T. & Schander, C. Faunal trophic structure at hydrothermal vents on the southern mohn’s ridge, arctic ocean. Mar. Ecol. Prog. Ser. 473, 115–131 (2013).Article 

    Google Scholar 
    Decker, C. & Olu, K. Does macrofaunal nutrition vary among habitats at the Hakon Mosby mud volcano?. Cah. Biol. Mar. 51, 361–367 (2010).
    Google Scholar 
    Macdonald, I. R., Bluhm, B. A., Iken, K., Gagaev, S. & Strong, S. Benthic macrofauna and megafauna assemblages in the Arctic deep-sea Canada Basin. Deep-Sea Res. II 57, 136–152 (2010).Article 

    Google Scholar 
    Taylor, J., Krumpen, T., Soltwedel, T., Gutt, J. & Bergmann, M. Dynamic benthic megafaunal communities: Assessing temporal variations in structure, composition and diversity at the Arctic deep-sea observatory HAUSGARTEN between 2004 and 2015. Deep Sea Res. 1 Oceanogr. Res. Pap. 122, 81–94 (2017).Article 

    Google Scholar 
    Vedenin, A. A. et al. Uniform bathymetric zonation of marine benthos on a Pan-Arctic scale. Prog. Oceanogr. 202, 102764 (2022).Article 

    Google Scholar 
    Bart, M. C. et al. A deep-sea sponge loop? Sponges transfer dissolved and particulate organic carbon and nitrogen to associated fauna. Front. Mar. Sci. 8, 604879 (2021).Article 

    Google Scholar 
    Guihen, D., White, M. & Lundälv, T. Temperature shocks and ecological implications at a cold-water coral reef. ANZIAM J. https://doi.org/10.1017/S1755267212000413 (2014).Article 

    Google Scholar 
    Strand, R. et al. The response of a boreal deep-sea sponge holobiont to acute thermal stress. Sci. Rep. 7, 1660 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hanz, U. et al. The important role of sponges in carbon and nitrogen cycling in a deep-sea biological hotspot. Funct. Ecol. 36, 2188–2199 (2022).Article 
    CAS 

    Google Scholar 
    Maier, S. R. et al. Reef communities associated with ‘dead’ cold-water coral framework drive resource retention and recycling in the deep sea. Deep-Sea Res. I 175, 103574 (2021).Article 
    CAS 

    Google Scholar 
    Bart, M. C. et al. Dissolved organic carbon (DOC) is essential to balance the metabolic demands of four dominant North-Atlantic deep-sea sponges. Limnol. Oceanogr. https://doi.org/10.1002/lno.11652 (2020).Article 

    Google Scholar 
    Bart, M. C. et al. Differential processing of dissolved and particulate organic matter by deep-sea sponges and their microbial symbionts. Sci. Rep. 10, 1–13 (2020).Article 

    Google Scholar 
    Maier, S. R. et al. Recycling pathways in cold-water coral reefs: Use of dissolved organic matter and bacteria by key suspension feeding taxa. Sci. Rep. 10, 9942 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    International Hydrographic Bureau. 16th meeting of the GEBCO sub-committee on undersea feature names (SCUFN). Preprint at (2003).Torres-Valdés, S., Morische, A. & Wischnewski, L. Revision of nutrient data from Polarstern expedition PS101 (ARK-XXX/3). PANGAEA https://doi.org/10.1594/PANGAEA.908179 (2019).Purser, A. et al. Ocean floor observation and bathymetry system (OFOBS): A new towed camera/sonar system for deep-sea habitat surveys. IEEE J. Ocean. Eng. 44, 87–99 (2019).Article 

    Google Scholar 
    Marcon, Y. & Purser, A. PAPARA(ZZ)I : An open-source software interface for annotating photographs of the deep-sea. SoftwareX 6, 69–80 (2017).Article 

    Google Scholar 
    Greene, H. G., Bizzarro, J. J., O’Connell, V. M. & Brylinsky, C. K. Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application. Spec. Pap.: Geol. Assoc. Canada 47, 141–155 (2007).
    Google Scholar 
    Horton, T. et al. Recommendations for the standardisation of open taxonomic nomenclature for image-based identifications. Front. Mar. Sci. 8, 620702 (2021).Article 

    Google Scholar 
    Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Application (Cambridge University Press, 1997).Book 
    MATH 

    Google Scholar 
    Rodgers, J. L. The bootstrap, the jackknife, and the randomization test: A sampling taxonomy. Multivar. Behav. Res. 34, 441–456 (1999).Article 
    CAS 

    Google Scholar 
    Crowley, P. H. Resampling methods for computation-intensive data analysis in ecology and evolution. Annu. Rev. Ecol. Syst. 23, 405–447 (1992).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining. Limnol. Oceanogr. 64, 1883–1894 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article 

    Google Scholar 
    R-Core Team. R: A language and environment for statistical computing. Preprint at https://www.r-project.org/ (2017).Oksanen, J. et al. vegan: Community ecology package. Preprint at (2017).Veech, J. A. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22, 252–260 (2013).Article 

    Google Scholar 
    Griffith, D. M., Veech, J. A. & Marsh, C. J. Cooccur: Probabilistic species co-occurrence analysis in R. J. Stat. Softw. 69, 1–17 (2016).Article 

    Google Scholar 
    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).Article 
    CAS 
    PubMed 

    Google Scholar 
    de Kluijver, A. Fatty acid analysis sponges. protocols.io 1, 1–14. https://doi.org/10.17504/protocols.io.bhnpj5dn (2021).Article 

    Google Scholar 
    de Kluijver, A. et al. Bacterial precursors and unsaturated long-chain fatty acids are biomarkers of North-Atlantic deep-sea demosponges. PLoS ONE 16, e0241095 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    COP15 biodiversity plan risks being alarmingly diluted

    I was filled with hope when I read the first draft of the Global Biodiversity Framework (GBF) in mid-2021. It seemed that the parties to the United Nations Convention on Biodiversity had learnt from bitter experience — the failure of the Aichi Biodiversity Targets, set for the previous decade. Instead of vague aims, the draft framework incorporated most of the advice that the scientific community, myself included, had marshalled. It contained ambitious quantitative thresholds, such as those for the area of ecosystem to be protected, the percentage of genetic diversity to be maintained, and percentage reductions for overall extinction rates, pesticide use and subsidies harmful to biodiversity.Then came the square brackets. In the world of policy, these mark proposed amendments that the parties do not yet agree on. The square brackets proliferated at an alarming rate throughout the GBF text, enclosing, neutralizing and paralysing goals and targets. By July 2021, in a version about 10,200 words long, there were more than 900 pairs of square brackets.Brackets germinated with particular vigour in sections that could make the greatest difference for a better future because of their precision, ambition or conceptual novelty. Almost all quantitative thresholds had been bracketed or had disappeared.
    The United Nations must get its new biodiversity targets right
    I applaud the new prominence given to gender justice (with a new dedicated Target 22) and to financial resources and capacity building (Target 19). I wonder why other key aspects have not received the same treatment, and have instead been compressed almost beyond recognition. For example, the first draft highlighted that species, ecosystems, genetic diversity and nature’s contribution to people each needed their own specific, verifiable outcomes. Now they have coagulated into one vague yet verbose paragraph.This thicket of square brackets smothers the GBF and the hopes of those of us who see transformative change as the only way forward for life on Earth as we know it.In a titanic effort, a streamlined proposal from the Informal Group on the GBF has halved the brackets to be considered by the parties when they meet in Montreal, Canada, for the 15th Conference of the Parties (COP15) on 7–19 December.We need a text with teeth — and far fewer brackets. This much we have learnt in the 30 years since the foundational 1992 Rio Summit drew attention to the impact of human activities on the environment: a strong, precise, ambitious text does not in itself ensure successful implementation, but a weak, vague, toothless text almost guarantees failure.It was no surprise when the Convention on Biological Diversity officially declared the failure of its ten-year Aichi Targets. People involved at the international interface of biodiversity science and policy were already discussing how to do better in the next decade with the GBF.
    Crucial biodiversity summit will go ahead in Canada, not China: what scientists think
    The scientific community rose to the occasion. In just three years, we produced the first-ever intergovernmental appraisal of life on Earth and what it means to people: The Global Assessment Report on Biodiversity and Ecosystem Services from IPBES (the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services), which I co-chaired. It was ready in time for the original 2020 date for COP15, before the global disruption caused by COVID-19. It was the most comprehensive ever synthesis of published information on the topic, an inclusive conceptual framework involving various disciplines and knowledge systems, and unprecedented participation of Indigenous peoples.Then, in 2020, we assembled an interdisciplinary team of more than 60 biodiversity scientists across the world, and within a few months produced detailed suggestions for the goals of the GBF. Since then, we have made the best of the many pandemic postponements by issuing a stream of specific, evidence-based recommendations on targets, scenarios and implementation.The scientific advice is convergent. First, the GBF needs to explicitly address each facet of biodiversity; none is a good substitute or umbrella for the others. Second, the biodiversity goals must be more ambitious than ever, accompanied by equally ambitious targets for concrete action and sufficient resources to make them happen. Third, the targets need to be precise, traceable and coordinated.Fourth, formally protecting a proportion of the planet’s most pristine ecosystems will by itself fall far short. Nature must be mainstreamed, incorporated in decisions made for the landscapes in which we live and work every day, well beyond protected areas. Finally, and most crucially, targets must focus on the root causes of biodiversity loss: the ways in which we consume, trade and allocate subsidies, incentives and safeguards.From previous experience, I expected objections to certain sections— pesticides and subsidies, say — but they are everywhere. Only 2 of the 22 targets have no brackets. Ironing out objections takes precious time. Because the framework can be enshrined only by consensus, too many objections can lead to too much compromise.Now, to avert failure, we exhort the governments gathering in Montreal to be brave, long-sighted and open-hearted, and to produce a visionary, ambitious biodiversity framework, grounded in knowledge. The awareness and mobilization of their constituencies has never been greater, the evidence in their hands never clearer. If not now, when?

    Competing Interests
    The author declares no competing interests. More

  • in

    Lack of host phylogenetic structure in the gut bacterial communities of New Zealand cicadas and their interspecific hybrids

    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. 110, 3229–3236 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Archibald, J. M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moran, N. A. Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl. Acad. Sci. U.S.A. 104(Suppl 1), 8627–8633 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hurst, G. D. D. Extended genomes: Symbiosis and evolution. Interface Focus. https://doi.org/10.1098/rsfs.2017.0001 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect-microbe mutualism without vertical transmission: A stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 73, 4308–4316 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kikuchi, Y., Hosokawa, T. & Fukatsu, T. An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 5, 446–460 (2011).Article 
    PubMed 

    Google Scholar 
    Hu, Y. et al. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat. Commun. 9, 2440. https://doi.org/10.1038/s41467-018-03357-y (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salem, H. et al. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell 171, 1520–1531 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bennett, G. M. & Moran, N. A. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc. Natl. Acad. Sci. 112, 10169–10176 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campbell, M. A. et al. Changes in endosymbiont complexity drive host-level compensatory adaptations in cicadas. MBio 9, e02104-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchner, P. Symbiosis in animals which suck plant juices. In Endosymbiosis of Animals with Plant Microorganisms 210–432 (Interscience, 1965).
    Google Scholar 
    McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc. Natl. Acad. Sci. 106, 15394–15399 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Christensen, H. & Fogel, M. L. Feeding ecology and evidence for amino acid synthesis in the periodical cicada (Magicicada). J. Insect Physiol. 57, 211–219 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet. 5, e1000565 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campbell, M. A. et al. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia. Proc. Natl. Acad. Sci. 112, 10192–10199 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Müller, H. J. Neuere vorstellungen über verbreitung und phylogenie der endosymbiosen der zikaden. Z. Morphol. Oekol. Tiere 61, 190–210 (1962).Article 

    Google Scholar 
    Müller, H. J. Zur systematik und phylogenie der zikaden-endosymbiosen. Biol. Zent. 68, 343–368 (1949).
    Google Scholar 
    Matsuura, Y. et al. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc. Natl. Acad. Sci. 115, E5970–E5979 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, W. et al. Analysis of inter-individual bacterial variation in gut of cicada Meimuna mongolica (Hemiptera: Cicadidae). J. Insect Sci. 15, 1–6 (2015).Article 

    Google Scholar 
    Zheng, Z., Wang, D., He, H. & Wei, C. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae). PLoS One 12, 1–21 (2017).
    Google Scholar 
    Wang, D., Huang, Z., He, H. & Wei, C. Comparative analysis of microbial communities associated with bacteriomes, reproductive organs and eggs of the cicada Subpsaltria yangi. Arch. Microbiol. 200, 227–235 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dillon, R. J. & Dillon, V. M. The gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 49, 71–92 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ng, S. H., Stat, M., Bunce, M. & Simmons, L. W. The influence of diet and environment on the gut microbial community of field crickets. Ecol. Evol. 8, 4704–4720 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27, 1884–1897 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, A. E. & Werren, J. H. Holes in the hologenome: Why host–microbe symbioses are not holobionts. MBio 7, e02099 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grueneberg, J., Engelen, A. H., Costa, R. & Wichard, T. Macroalgal morphogenesis induced by waterborne compounds and bacteria in coastal seawater. PLoS One 11, e0146307 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, J. D., Lemay, M. A. & Parfrey, L. W. Diverse bacteria utilize alginate within the microbiome of the giant kelp Macrocystis pyrifera. Front. Microbiol. 9, 1914 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coon, K. L., Vogel, K. J., Brown, M. R. & Strand, M. R. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23, 2727–2739 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coon, K. L., Brown, M. R. & Strand, M. R. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 25, 5806–5826 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, 1–17 (2017).Article 

    Google Scholar 
    Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: Relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, 1–29 (2016).Article 

    Google Scholar 
    Kropáčková, L. et al. Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol. Ecol. 26, 5292–5304 (2017).Article 
    PubMed 

    Google Scholar 
    Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403. https://doi.org/10.3389/fmicb.2015.01403 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hu, Y., Lukasik, P., Moreau, C. S. & Russell, J. A. Correlates of gut community composition across an ant species (Cephalotes varians) elucidate causes and consequences of symbiotic variability. Mol. Ecol. 23, 1284–1300 (2014).Article 
    PubMed 

    Google Scholar 
    Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnz117 (2019).Article 
    PubMed 

    Google Scholar 
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. 114, 9641–9646 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).Article 
    PubMed 

    Google Scholar 
    Marshall, D. C. et al. Inflation of molecular clock rates and dates: Molecular phylogenetics, biogeography, and diversification of a global cicada radiation from Australasia (Hemiptera: Cicadidae: Cicadettini). Syst. Biol. 65, 16–34 (2016).Article 
    PubMed 

    Google Scholar 
    Lane, D. H. The recognition concept of speciation applied in an analysis of putative hybridization in New Zealand cicadas of the genus Kikihia (Insects: Hemiptera: Tibicinidae). Speciation and the Recognition Concept: Theory and Application (The Johns Hopkins Univ Press, 1995).
    Google Scholar 
    Cooley, J. R. & Marshall, D. C. Sexual signaling in periodical cicadas, Magicicada spp. (Hemiptera: Cicadidae). Behaviour 138, 827–855 (2001).Article 

    Google Scholar 
    Fleming, C. A. Adaptive Radiation in New Zealand Cicadas (American Philosophical Society, 1975).
    Google Scholar 
    Dugdale, J. S. & Fleming, C. A. New Zealand cicadas of the genus Maoricicada (Homoptera: Tibicinidae). N. Z. J. Zool. 5, 295–340 (1978).Article 

    Google Scholar 
    Marshall, D. C., Hill, K. B. R., Cooley, J. R. & Simon, C. Hybridization, mitochondrial DNA phylogeography, and prediction of the early stages of reproductive isolation: Lessons from New Zealand cicadas (genus Kikihia). Syst. Biol. 60, 482–502 (2011).Article 
    PubMed 

    Google Scholar 
    Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. Report No.: e27295v2. PeerJ https://doi.org/10.7287/peerj.preprints.27295v2 (2018).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, N. M., Proctor, D., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226. https://doi.org/10.1101/221499 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Simon, C. et al. Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas. Biol. J. Linn. Soc. Lond. https://doi.org/10.1093/biolinnean/blz120 (2019).Article 

    Google Scholar 
    Owen, C. L. et al. Detecting and removing sample contamination in phylogenomic data: An example and its implications for Cicadidae phylogeny (Insecta: Hemiptera). Syst. Biol. 71, 1504–1523 (2022).Article 
    PubMed 

    Google Scholar 
    Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. Report No.: LBNL-7065E. https://www.osti.gov/biblio/1241166-bbmap-fast-accurate-splice-aware-aligner (Lawrence Berkeley National Lab. (LBNL), 2014).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nurk, S. et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In Research in Computational Molecular Biology 158–170 (Springer, 2013).Chapter 

    Google Scholar 
    Łukasik, P. et al. One hundred mitochondrial genomes of cicadas. J. Hered. 110, 247–256 (2019).Article 
    PubMed 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. https://doi.org/10.1093/bib/bbx108 (2017).Article 
    PubMed Central 

    Google Scholar 
    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—A baiting and iterative mapping approach. Nucleic Acids Res. 41, e129 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, M. A., Pfeiffer, W., Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE) 1–8 (2010).Buckley, T. R., Cordeiro, M., Marshall, D. C. & Simon, C. Differentiating between hypotheses of lineage sorting and introgression in New Zealand alpine cicadas (Maoricicada Dugdale). Syst. Biol. 55, 411–425 (2006).Article 
    PubMed 

    Google Scholar 
    Marshall, D. C., Slon, K., Cooley, J. R., Hill, K. B. R. & Simon, C. Steady Plio-Pleistocene diversification and a 2-million-year sympatry threshold in a New Zealand cicada radiation. Mol. Phylogenet. Evol. 48, 1054–1066 (2008).Article 
    PubMed 

    Google Scholar 
    Bator, J., Marshall, D. C., Leston, A., Cooley, J. & Simon, C. Phylogeography of the endemic red-tailed cicadas of New Zealand (Hemiptera: Cicadidae: Rhodopsalta): Molecular, morphological and bioacoustical confirmation of the existence of Hudson’s Rhodopsalta microdora. Zool. J. Linn. Soc. 195, 1219–1244 (2022).Article 

    Google Scholar 
    Brumfield, K. D. et al. Gut microbiome insights from 16S rRNA analysis of 17-year periodical cicadas (Hemiptera: Magicicada spp.) Broods II, VI, and X. Sci. Rep. 12, 16967. https://doi.org/10.1038/s41598-022-20527-7 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rakitov, R. A. Structure and function of the Malpighian tubules, and related behaviors in juvenile cicadas: Evidence of homology with spittlebugs (Hemiptera: Cicadoidea & Cercopoidea). Zool. Anz. 241, 117–130 (2002).Article 

    Google Scholar 
    Andersen, P. C., Brodbeck, B. V. & Mizell, R. F. Feeding by the leafhopper, Homalodisca coagulata, in relation to xylem fluid chemistry and tension. J. Insect Physiol. 38, 611–622 (1992).Article 
    CAS 

    Google Scholar 
    Cheung, W. W. K. & Marshall, A. T. Water and ion regulation in cicadas in relation to xylem feeding. J. Insect Physiol. 19, 1801–1816 (1973).Article 
    CAS 

    Google Scholar 
    Williams, K. S. & Simon, C. The ecology, behavior, and evolution of periodical cicadas. Annu. Rev. Entomol. 40, 269–295 (1995).Article 
    CAS 

    Google Scholar 
    Logan, D. P., Rowe, C. A. & Maher, B. J. Life history of chorus cicada, an endemic pest of kiwifruit (Cicadidae: Homoptera). N. Z. Entomol. 37, 96–106 (2014).Article 

    Google Scholar 
    Buckley, T. R. & Simon, C. Evolutionary radiation of the cicada genus Maoricicada Dugdale (Hemiptera: Cicadoidea) and the origins of the New Zealand alpine biota. Biol. J. Linn. Soc. Lond. 91, 419–435 (2007).Article 

    Google Scholar 
    Banker, S. E., Wade, E. J. & Simon, C. The confounding effects of hybridization on phylogenetic estimation in the New Zealand cicada genus Kikihia. Mol. Phylogenet. Evol. 116, 172–181 (2017).Article 
    PubMed 

    Google Scholar 
    Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, 14319 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanders, J. G. et al. Stability and phylogenetic correlation in gut microbiota: Lessons from ants and apes. Mol. Ecol. 23, 1268–1283 (2014).Article 
    PubMed 

    Google Scholar 
    Wang, J. et al. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat. Commun. 6, 6440 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brucker, R. M. & Bordenstein, S. R. The hologenomic basis of speciation. Science 466, 667–669 (2013).Article 

    Google Scholar 
    Chandler, J. A. & Turelli, M. Comment on “The hologenomic basis of speciation: Gut bacteria cause hybrid lethality in the genus Nasonia”. Science 345, 1011 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Z. et al. Changes in the rumen microbiome and metabolites reveal the effect of host genetics on hybrid crosses. Environ. Microbiol. Rep. 8, 1016–1023 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Weintraub, P. G. & Beanland, L. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 51, 91–111 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hopkins, D. L. Xylella fastidiosa: Xylem-limited bacterial pathogen of plants. Annu. Rev. Phytopathol. 27, 271–290 (1989).Article 

    Google Scholar 
    Karban, R. Why cicadas (Hemiptera: Cicadidae) develop so slowly. Biol. J. Linn. Soc. Lond. 135, 291–298 (2021).Article 

    Google Scholar 
    Krell, R. K., Boyd, E. A., Nay, J. E., Park, Y.-L. & Perring, T. M. Mechanical and insect transmission of Xylella fastidiosa to Vitis vinifera. Am. J. Enol. Vitic. 58, 211–216 (2007).Article 
    CAS 

    Google Scholar 
    Paião, F., Meneguim, A. M., Casagrande, E. C., Lovato, L. & Leite, R. P. Levantamento de espécies de cigarras e transmissão de Xylella fastidiosa em cafeeiro. http://www.sbicafe.ufv.br/handle/123456789/1457 (2003).Elbeaino, T. et al. Identification of three potential insect vectors of Xylella fastidiosa in southern Italy. Phytopathol. Mediterr. 53, 328–332 (2014).
    Google Scholar  More