More stories

  • in

    Biomechanical traits of salt marsh vegetation are insensitive to future climate scenarios

    Narayan, S. et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 11, e0154735 (2016).Article 

    Google Scholar 
    Schürch, M., Rapaglia, J., Liebetrau, V., Vafeidis, A. T. & Reise, K. Salt marsh accretion and storm tide variation: An example from a barrier island in the North Sea. ESCO 35, 486–500 (2012).
    Google Scholar 
    de Groot, A. V., Veeneklaas, R. M., Kuijper, D. P. & Bakker, J. P. Spatial patterns in accretion on barrier-island salt marshes. Geomorphology 134, 280–296 (2011).Article 
    ADS 

    Google Scholar 
    Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Barbier, E. B. et al. Coastal ecosystem: Based management with nonlinear ecologial functions and values. Science 319, 321–323 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Schoonees, T. et al. Hard structures for coastal protection, towards greener designs. Estuaries Coasts 21, 755 (2019).
    Google Scholar 
    IPCC. Summary for Policymakers. in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).Lenssen, G. M., Lamers, J., Stroetenga, M. & Rozema, J. CO2 and biosphere 379–390 (Kluwer Academic Publishers, 1993).Book 

    Google Scholar 
    Cherry, J. A., McKee, K. L. & Grace, J. B. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. J. Ecol. 97, 67–77 (2009).Article 

    Google Scholar 
    Arp, W. J., Drake, B. G., Pockman, W. T., Curtis, P. S. & Whigham, D. F. CO2 and Biosphere 133–143 (Kluwer Academic Publishers, 1993).Book 

    Google Scholar 
    Cao, H. et al. Wave effects on seedling establishment of three pioneer marsh species: survival, morphology and biomechanics. Ann. Bot. 125, 345–352 (2020).Article 

    Google Scholar 
    Puijalon, S. et al. Plant resistance to mechanical stress: Evidence of an avoidance-tolerance trade-off. New Phytol. 191, 1141–1149 (2011).Article 
    CAS 

    Google Scholar 
    Niklas, K. Plant Biomechanics: An Engineering Approach to Plant Form and Function (University of Chicago Press, 1992).
    Google Scholar 
    Silinski, A. et al. Effects of wind waves versus ship waves on tidal marsh plants: A flume study on different life stages of Scirpus maritimus. PLoS ONE 10, e0118687 (2015).Article 

    Google Scholar 
    Rupprecht, F., Möller, I., Evans, B. R., Spencer, T. & Jensen, K. Biophysical properties of salt marsh canopies: Quantifying plant stem flexibility and above ground biomass. Coast. Eng. 100, 48–57 (2015).Article 

    Google Scholar 
    Paul, M. & de los Santos, C. B. Variation in flexural, morphological, and biochemical leaf properties of eelgrass (Zostera marina) along the European Atlantic climate regions. Mar. Biol. 166, 2187 (2019).Article 

    Google Scholar 
    Carus, J., Paul, M. & Schröder, B. Vegetation as self-adaptive coastal protection: Reduction of current velocity and morphologic plasticity of a brackish marsh pioneer. Ecol. Evol. 6, 1579–1589 (2016).Article 

    Google Scholar 
    Callaghan, F. M. et al. A submersible device for measuring drag forces on aquatic plants and other organisms. NZ J. Mar. Freshw. Res. 41, 119–127 (2007).Article 

    Google Scholar 
    Paul, M., Bouma, T. J. & Amos, C. L. Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current. Mar. Ecol. Prog. Ser. 444, 31–41 (2012).Article 
    ADS 

    Google Scholar 
    Taphorn, M., Villanueva, R., Paul, M., Visscher, J. H. & Schlurmann, T. Flow field and wake structure characteristics imposed by single seagrass blade surrogates. J. Ecohydraul. 1, 1–13 (2021).
    Google Scholar 
    Lightbody, A. F. & Nepf, H. M. Prediction of velocity profiles and longitudinal dispersion in emergent salt marsh vegetation. Limnol. Oceangr 51, 218–228 (2006).Article 
    ADS 

    Google Scholar 
    Kobayashi, N., Raichle, A. W. & Asano, T. Wave attenuation by vegetation. J. Waterway Port Coastal Ocean Eng. 119, 30–48 (1993).Article 

    Google Scholar 
    Villanueva, R., Thom, M., Visscher, J. H., Paul, M. & Schlurmann, T. Wake length of an artificial seagrass meadow: A study of shelter and its feasibility for restoration. J. Ecohydraul. 1, 1–15 (2021).
    Google Scholar 
    Paul, M. & Amos, C. L. Spatial and seasonal variation in wave attenuation over Zostera noltii. J. Geophys. Res. 116, C08019 (2011).ADS 

    Google Scholar 
    Marjoribanks, T. I. & Paul, M. Modelling flow-induced reconfiguration of variable rigidity aquatic vegetation. J. Hydraul. Res. 1, 1–16 (2021).
    Google Scholar 
    Schulze, D., Rupprecht, F., Nolte, S. & Jensen, K. Seasonal and spatial within-marsh differences of biophysical plant properties: Implications for wave attenuation capacity of salt marshes. Aquat. Sci. 81, 82 (2019).Article 

    Google Scholar 
    Gillis, L. G. et al. Living on the edge: How traits of ecosystem engineers drive bio-physical interactions at coastal wetland edges. Adv. Water Resour. 166, 104257 (2022).Article 

    Google Scholar 
    Zhao, H. & Chen, Q. Modeling attenuation of storm surge over deformable vegetation: methodology and verification. J. Eng. Mech. 140, 4014090 (2014).
    Google Scholar 
    Möller, I. et al. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci 7, 727–731 (2014).Article 
    ADS 

    Google Scholar 
    Maza, M. et al. Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 2. Experimental analysis. Coast. Eng. 106, 73–86 (2015).Article 

    Google Scholar 
    Gray, A. J. & Mogg, R. J. Climate impacts on pioneer saltmarsh plants. Clim. Res. 18, 105–112 (2001).Article 

    Google Scholar 
    Novaes, E., Kirst, M., Chiang, V., Winter-Sederoff, H. & Sederoff, R. Lignin and biomass: A negative correlation for wood formation and lignin content in trees. Plant Physiol. 154, 555–561 (2010).Article 
    CAS 

    Google Scholar 
    Redfield, A. C. Development of a New England salt marsh. Ecol. Monogr. 42, 201–237 (1972).Article 

    Google Scholar 
    Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, 1–10 (2010).Article 

    Google Scholar 
    Idier, D., Dumas, F. & Muller, H. Tide-surge interaction in the English Channel. Nat. Hazards Earth Syst. Sci. 12, 3709–3718 (2012).Article 
    ADS 

    Google Scholar 
    Weisse, R., von Storch, H., Niemeyer, H. D. & Knaack, H. Changing North Sea storm surge climate: An increasing hazard?. Ocean Coast. Manag. 68, 58–68 (2012).Article 

    Google Scholar 
    Idier, D., Paris, F., Le Cozannet, G., Boulahya, F. & Dumas, F. Sea-level rise impacts on the tides of the European Shelf. Cont. Shelf Res. 137, 56–71 (2017).Article 
    ADS 

    Google Scholar 
    Marcos, M., Calafat, F. M., Berihuete, Á. & Dangendorf, S. Long-term variations in global sea level extremes. J. Geophys. Res. Oceans 120, 8115–8134 (2015).Article 
    ADS 

    Google Scholar 
    Dangendorf, S., Mudersbach, C., Jensen, J., Anette, G. & Heinrich, H. Seasonal to decadal forcing of high water level percentiles in the German Bight throughout the last century. Ocean Dyn. 46, 277 (2013).
    Google Scholar 
    de Winter, R. C., Sterl, A. & Ruessink, B. G. Wind extremes in the North Sea Basin under climate change: An ensemble study of 12 CMIP5 GCMs. J. Geophys. Res. Atmos. 118, 1601–1612 (2013).Article 
    ADS 

    Google Scholar 
    Arns, A. et al. Sea-level rise induced amplification of coastal protection design heights. Sci. Rep. 7, 40171 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Pansch, A., Winde, V., Asmus, R. & Asmus, H. Tidal benthic mesocosms simulating future climate change scenarios in the field of marine ecology. Limnol. Oceanogr. Methods 14, 257–267 (2016).Article 

    Google Scholar 
    Meehl, G. A. et al. Climate Change 2007: The Physical Science Basis: Summary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).
    Google Scholar 
    Miler, O., Albayrak, I., Nikora, V. I. & O’Hare, M. T. Biomechanical properties of aquatic plants and their effects on plant–flow interactions in streams and rivers. Aquat. Sci. 74, 31–44 (2012).Article 

    Google Scholar  More

  • in

    DNA reveals that mastodons roamed a forested Greenland two million years ago

    RESEARCH BRIEFINGS
    07 December 2022

    Ancient environmental DNA from northern Greenland opens a new chapter in genetic research, demonstrating that it is possible to track the ecology and evolution of biological communities two million years ago. The record shows an open boreal-forest ecosystem inhabited by large animals such as mastodons and reindeer. More

  • in

    The application of a CART model for forensic human geolocation using stable hydrogen and oxygen isotopes

    The isotopic spread for each study siteThe overall linear relationship between δ2H and δ18O values for hair (n = 81) and toenails (n = 39), respectively, were (Fig. 2):$$delta^{2} {text{H}}_{{text{hair(VSMOW)}}} = , 0.89 times delta^{18} {text{O}}_{{text{hair(VSMOW)}}} {-} , 86.16,;{text{R}}^{2} = , 0.19,;p , < , 0.01$$ (1) $$delta^{2} {text{H}}_{{text{toenail(VSMOW)}}} = , 0.15 times delta^{18} {text{O}}_{{text{toenail(VSMOW)}}} {-} , 91.69,;{text{R}}^{2} = , 0.00,;p , = , 0.69$$ (2) Figure 2δ2H and δ18O values (‰) of all samples for both hair (δ2H: n = 81, δ18O: n = 82) and toenails (δ2H and δ18O: n = 39). The solid black line represents the Global Meteoric Water Line (GMWL) [δ2H = 8 (times) δ18O + 10] and is included in the graph for comparison purposes. The regression lines between oxygen and hydrogen values for hair [δ2Hhair(VSMOW) = 0.89 × δ18Ohair(VSMOW) − 86.16, R2 = 0.19, p  − 82‰ were then split further where any samples with δ2Hhair values less than − 73‰ were initially classified as Site 2. These samples were then split again to either Site 2 (δ2Hhair ≥ 76‰) or Site 4 (δ2Hhair  − 73‰ were classified as Site 4. No samples could be classified as originating from Site 3. The second CART model was built for stable hydrogen and oxygen isotopes of toenails (Model 2) (Fig. 5b). The model included only two decision nodes in which the first predictor variable was δ2Htoenail value, where samples with values less than − 93‰ were predicted to be from Site 1. For toenail samples with hydrogen values greater than − 93‰, oxygen values were used to determine whether they could be classified as Site 2 or Site 4. Those samples with δ18Otoenail values less than 9.6‰ were classified as Site 2 and those with values greater than 9.6‰ were predicted as Site 4. No samples were predicted to be from Site 3 purely from stable hydrogen and oxygen isotopes in toenails. Finally, the third model consisted of stable hydrogen and oxygen isotope values in both hair and toenail samples (Model 3) (Fig. 5c). Model 3 selected toenails as the best attribute for classification, which indicates that toenail isotope values are the better predictor when both hair and toenail samples are present for analysis from Sites 1–4. The model was similar to that of Model 2.Figure 5Decision trees developed from both δ2H and δ18O values of (a) hair [Model 1, trained with n = 65], (b) toenails [Model 2, trained with n = 32] and (c) of both hair and toenails [Model 3, trained with n = 28]. The predicted study site numbers are shown on the first row within each bubble. The proportions of samples in each node are shown as decimals for Sites 1, 2, 3, 4, respectively. The percentages indicate the proportion of samples within each sub-partition.Full size imageConfusion matrices (Table 1) were constructed for all three models to evaluate the performance of the classification models. Of the three models, Model 3 proved to be the most accurate model with an overall accuracy of 71.4% (see Supplementary Fig S2. online). The performance evaluation summary, including measures for sensitivity, specificity, positive predictive value, and negative predictive value for all three models, is provided in (see Supplementary Table S3. online).Intra-individual differencesBoth hair and toenail samples were retrieved from 35 of the 86 individuals. The paired difference between δ2H values in hair and toenails of the same individual was tested using the Wilcoxon Signed Rank's test for non-normal data as the dataset failed the Shapiro–Wilk's normality test at the α = 0.05 significance level. Significant differences were found between δ2H values of hair (n = 35, mean = − 78.0‰, s.d. = 3.06) and toenails (n = 35, mean = − 90.9‰, s.d. = 3.27) from the same individual (p  0.05. Overall, the isotopic values of δ2H in hair were higher than those of toenail from the same individual by 13.0‰, on average, with a standard deviation of 8.4‰. For δ18O, the average was 1.5‰ with a standard deviation of 4.6‰ (Fig. 6).Figure 6(a) δ2H and (b) δ18O values in hair and toenails for all individuals that provided both tissue types (n = 35). Study site information are also shown by shapes. The standard deviations of each sample, ran in either duplicates or triplicates, are shown by error bars. Note that error bars cannot be seen for some samples due to small standard deviations. The average difference between the isotopic values of hair and toenail from the same individual were 13.0‰ with a standard deviation of 8.4‰ for δ2H and 1.5‰ with a standard deviation of 4.6‰ for δ18O.Full size imageThe linear relationships between δ2H in hair and toenails for all individuals were (see Supplementary Fig S3. online):$$delta^{2} {text{H}}_{{{text{hair}}}} = , 0.48 times delta^{2} {text{H}}_{{text{toenail }}} {-} , 34.72,;{text{R}}^{2} = , 0.16,;p , < , 0.05$$ (19) and for δ18O:$$delta^{18} {text{O}}_{{{text{hair}}}} = , 0.55 times delta^{18} {text{O}}_{{{text{toenail}}}} + , 5.16,;{text{R}}^{2} = , 0.13,;p , < 0.05$$ (20) Overall, both equations showed a weak relationship, as seen by the small R2 values. More

  • in

    The maternal effects of dietary restriction on Dnmt expression and reproduction in two clones of Daphnia pulex

    Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, McKnight R et al. (2008) Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol 41:91–102Article 
    CAS 

    Google Scholar 
    Alekseev V, Lampert W (2001) Maternal control of resting – egg production in Daphnia. Nature 414:899–901Article 
    CAS 

    Google Scholar 
    Anderson OS, Sant KE, Dolinoy DC (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutritional Biochem 23:853–859Article 
    CAS 

    Google Scholar 
    Agrawal AA, Laforsch C, Tollrian R (1999) Transgenerational induction of defenses in animals and plants. Nature 401:60–63Article 
    CAS 

    Google Scholar 
    Asselman J, De Coninck DIM, Vandegehuchte MB, Jansen M, Decaestecker E, De Meester L, Busshe JV, Vanhaecke L, Janssen CR, De Schamphelaere KAC (2015) Global cytosine methylation in Daphnia magna depends on genotype, environment, and their interaction. Environ Toxicol 34:5
    Google Scholar 
    Bernardo J (1996) Maternal effects in animal ecology. Am Zool 36:83–105Article 

    Google Scholar 
    Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412Article 
    CAS 

    Google Scholar 
    Bewick AJ, Vogel KJ, Moore AJ, Schmitz RJ (2017) Evolution of DNA methylation across insects. Mol Biol Evol 34:654–665CAS 

    Google Scholar 
    Bird A (2007) Perceptions of epigenetics. Nature 447:396–398Article 
    CAS 

    Google Scholar 
    Boersma M (1995) The allocation of resources to reproduction in Daphnia galeata: against the odds? Ecology 76(4):121–1261Article 

    Google Scholar 
    Boersma M (1997) Offspring size in Daphnia: does it pay to be overweight? Hydrobiologia 360:79–88Article 

    Google Scholar 
    Boycott AE, Diver C (1923) On the inheritance of the sinistrality in Limnea peregra. Proc R Soc Lond B 95:207–213Article 

    Google Scholar 
    Brett MT (1993) Resource quality effects on Daphnia longispina offspring fitness. J Plankton Res 15(4):403–412Article 

    Google Scholar 
    Burns CW (1995) Effects of crowding and different food levels on growth and reproductive investment of Daphnia. Oecologia 101:234–244Article 

    Google Scholar 
    Cameron NM, Shahrokh D, Del Corpo A, Dhir SK, Szyf M, Champagne FA, Meaney MJ (2008) Epigenetic programming of phenotypic variations in reproductive strategies in the rat through maternal care. J Neuroendocrinol 20:795–801Article 
    CAS 

    Google Scholar 
    Champagne FA (2012) Epigenetics and developmental plasticity across species. Dev Psychobiol 55:33–41Article 

    Google Scholar 
    Chan SY, Vasilopoulou E, Kilby MD (2009) The role of the placenta in thyroid hormone delivery to the fetus. Nat Clin Pract Endocrinol Metab 5:45–54Article 
    CAS 

    Google Scholar 
    Chong S, Whitelaw E (2004) Epigenetic germline inheritance. Curr Opin Genet Dev 14(6):692–696Article 
    CAS 

    Google Scholar 
    Clark J, Garbutt JS, McNally L, Little TJ (2017) Disease spread in age structured populations with maternal age effects. Ecol Lett 20:445–451Article 

    Google Scholar 
    Colbourne JK, Herbert PDN, Taylor DJ (1997) Evolutionary origins of phenotypic diversity. In: Givnish TJ, Systma KJ (eds) Daphnia in molecular evolution and adaptive radiation. Cambridge University Press. p 163–188Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH et al. (2011) The ecoresponsive genome of Daphnia pulex. Science 331(6017):555–561Article 
    CAS 

    Google Scholar 
    Desmarais KH (1997) Keeping Daphnia out of the surface film with cetyl alcohol. J Plankton Res 19(1):149–154Article 

    Google Scholar 
    Dorts J, Falisse E, Schoofs E, Flamion E, Kestermont P, Silvestre F (2016) DNA methyltransferases and stress-related genes expression in zebrafish larvae after exposure to heat and copper during reprogramming of DNA methylation. Sci Rep 6:34254Article 
    CAS 

    Google Scholar 
    Ducker GS, Rabinowitz JD (2016) One-carbon metabolism in health and disease. Cell Metab 25:27–42. https://doi.org/10.1016/j.cmet.2016.08Dudycha JL, Brandon CS, Deitz KC (2012) Population genomics of resource exploitation: insights from gene expression profiles of two Daphnia ecotypes fed alternate resources. Ecol Evol 2:329–340Dzialowski EM, Reed WL, Sotherland PR (2009) Effects of egg size on double-crested cormorant (Phalacrocorax auritus) egg composition and hatchling phenotype. Comp Biochem Physiol A Mol Integr Physiol 152:262–267Article 

    Google Scholar 
    Frost PC, Ebert D, Larson JH, Marcus MA, Wagner ND, Zalewski A (2010) Transgenerational effects of poor elemental food quality on Daphnia magna. Oecologia 162(4):865–872Article 

    Google Scholar 
    Gabsi F, Glazier DS, Hammers-Wirtz M, Ratte HT, Preuss TG (2014) How to interactive maternal traits and environmental factors determine offspring size in Daphnia magna?. Ann Limnol 50:9–18Article 

    Google Scholar 
    Garbutt JS, Little TJ (2016) Bigger is better: changes in body size explain a maternal effect of food on offspring disease resistance. Ecol Evolution 7:1403–1409Article 

    Google Scholar 
    Gibney ER, Nolan CM (2010) Epigenetics and gene expression. Heredity 105:4–13Article 
    CAS 

    Google Scholar 
    Gillis MK, Walsh MR (2019) Individual variation in plasticity dulls transgenerational responses to stress. Funct Ecol 33:1993–2002Glazier DS (1992) Effects of food, genotype, and maternal size and age on offspring investment in Daphnia magna. Ecology 73(3):910–926Article 

    Google Scholar 
    Gliwicz ZM, Guisande C (1992) Family planning in Daphnia: resistance to starvation in offspring born to mothers grown at different food levels. Oceologia 91:463–467Article 

    Google Scholar 
    Goos JM, Swain CJ, Munch SB, Walsh MR (2018) Maternal diet and age alter direct and indirect relationships between lifer-history traits across multiple generations. Funct Ecol 33:491–502Article 

    Google Scholar 
    Goulden CE, Horning LL (1980) Population oscillations and energy reserves in planktonic cladocera and their consequences to competition. Proc Natl Acad Sci USA 77:1716–1720Article 
    CAS 

    Google Scholar 
    Groothuis TG, Schwabl H (2008) Hormone-mediated maternal effects in birds: mechanisms matter but what do we know of them? Philos Trans R Soc Lond B Biol Sci 363:1647–1661Article 
    CAS 

    Google Scholar 
    Guisande C, Gliwicz ZM (1992) Egg size and clutch size in two Daphnia species at different food levels. J Plankton Res 14(7):997–1007Article 

    Google Scholar 
    Hearn J, Chow FW-N, Barton H, Tung M, Wilson P, Blaxter M et al. (2018) Daphnia magna microRNAs respond to nutritional stress and ageing but are not transgenerational. Mol Ecol 27:1402–1412Article 
    CAS 

    Google Scholar 
    Hearn J, Pearson M, Blaxter M, Wilson PJ, Little TJ (2019) Genome-wide methylation is modified by caloric restriction in Daphnia magna. BCM Genetics 20:197Hearn J, Plenderleith F, Little TJ (2021) DNA methylation differs extensively between strains of the same geographical origin and changes with age in Daphnia magna. Epigenetics Chromatin 14:4. https://doi.org/10.1186/s13072-020-00379-zHead JA (2014) Patterns of DNA methylation in animals: an ecotoxicological perspective. Integr Comp Biol 54:77–86Article 
    CAS 

    Google Scholar 
    Hebert PDN (1981) Obligate asexuality in Daphnia. Am Nate 117:784–789Article 

    Google Scholar 
    Herman JJ, Sultan SE (2016) DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc Biol Sci 283(1838):20160988. https://doi.org/10.1098/rspb.2016.0988Article 
    CAS 

    Google Scholar 
    Hiruta C, Nishida C, Tochinai S (2010) Abortive meiosis in the oogenesis of parthenogenetic Daphnia pulex. Chromosome Res 18:833–840Article 
    CAS 

    Google Scholar 
    Ho DH, Burggren WW (2010) Epigenetics and transgenerational transfer: a physiological perspective. J Exp Biol 213:3–16Article 
    CAS 

    Google Scholar 
    Ho DH (2008) Morphological and physiological developmental consequences of parental effects in the chicken embryo (Gallus gallus domesticus) and the zebrafish larva (Danio rerio). Diss: University of North TexasInnes DJ, Fox CJ, Winsor GL (2000) Avoiding the cost of males in obligately asexual Daphnia pulex (Leydig). Proc: Biol Sci 267(1447):991–997CAS 

    Google Scholar 
    Jeremias G, Barbosa J, Marques SM, De Schamphelaere KAC, Van Nieuwerburgh F, Deforce D, Gonçalves FJM, Pereira JL, Asselman J (2018) Transgenerational inheritance of dna hypomethylation in Daphnia magna in response to salinity stress. Environ Sci Technol 52(17):10114–10123Article 
    CAS 

    Google Scholar 
    Jian X, Yang W, Zhao S, Liang H, Zhao Y, Chen L et al. (2013) Maternal effects of inducible tolerance against the toxic cyanobacterium Microcystis aeruginosa in the grazer Daphnia carinata. Environ Pollut 178:142–146Article 

    Google Scholar 
    Keating KI (1985) The influence of vitamin-B12 deficiency on the reproduction of Daphnia-Pulex Leydig (Cladocera). J Crustacean Biol 5:30–136Article 

    Google Scholar 
    Kleiven OT, Larsson P, Hobaek A (1992) Sexual reproduction in Daphnia magna requires three stimulie. Oikos 65:197–206Article 

    Google Scholar 
    Kusari F, O’Doherty AM, Hodges NJ, Wojewodzic MW (2017) Bi-directional effects of vitamin B12 and methotrexate on Daphnia magna fitness and genomic methylation. Sci Rep 7:11872Article 

    Google Scholar 
    Kvist J, Athanasio CG, Solari OS, Brown JB, Colbourne JK, Pfrender ME, Mirbahai L (2018) Pattern of DNA methylation in Daphnia: evolutionary perspective. Genome Biol Evolution 10(8):1988–2007Article 
    CAS 

    Google Scholar 
    Lamka GF, Harder AM, Sundaram M, Schwartz TS, Christie MR, DeWoody JA, Willoughby JR (2022) Epigenetics in ecology, evolution, and conservation. Front Ecol Evol 10. https://doi.org/10.3389/fevo.2022.871791LaMontagne JM, McCauley E (2001) Maternal effects in Daphnia: what mothers are telling their offspring and do they listen. Ecol Lett 4:64–71Article 

    Google Scholar 
    Li Q, Jiang X (2014) Offspring tolerance to toxic Microcystis aeruginosa in Daphnia pulex shaped by maternal food availability and age. Fundam Appl Limnol 185:315–319Article 

    Google Scholar 
    Mastorci F, Vicentini M, Viltart O, Manghi M, Graiani G, Quaini Fet al. (2009) Long-term effects of prenatal stress: changes in adult cardiovascular regulation and sensitivity to stress. Neurosci Biobehav Rev 33:191–203Article 

    Google Scholar 
    Mkee D, Ebert D (1996) The interactive effects of temperature, food level and maternal phenotype on offspring size in Daphnia magna. Oecologia 107(2):189–196Article 

    Google Scholar 
    Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407Article 
    CAS 

    Google Scholar 
    Nguyen ND, Matsuura T, Kato Y, Watanabe H (2020) Caloric restriction upregulates the expression of DNMT3.1, lacking the conserved catalytic domain, in Daphnia magna. Genesis 58:12Article 

    Google Scholar 
    Nguyen ND, Matsuura T, Kato Y, Watanabe H (2021) DNMT3.1 controls trade-offs between growth, reproduction, and life span under starved conditions in Daphnia magna. Sci Rep 11:7326Article 
    CAS 

    Google Scholar 
    Nusslein-Volhard C, Frohnhofer HG, Lehmann R (1987) Determination of anteroposterior polarity in Drosophila. Science 238:1675–1681Article 
    CAS 

    Google Scholar 
    Pieters BJ, Liess M (2006) Maternal nutritional state determines the sensitivity of Daphnia magna offspring to short-term fenvalerate exposure. Aquat Toxicol 76:286–277Article 

    Google Scholar 
    R Core Team (2021) R: a language and environmental for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Richards EJ (2006) Inherited epigenetic variation – revisiting soft inheritance. Nat Rev Genet 7:395–401Article 
    CAS 

    Google Scholar 
    Stollewerk A (2010) The water flea Daphnia – a new model system for ecology and evolution? J Biol 9(2):21Article 

    Google Scholar 
    Sturtevant AH (1923) Inheritance of direction of coiling in Limnea. Science 58:269Article 
    CAS 

    Google Scholar 
    Suter MA, Chen A, Burdine MS, Choudhury M, Harris RA, Lane RH et al. (2012) A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates. FASEB J 26:5106–5114Article 
    CAS 

    Google Scholar 
    Tessier AJ, Consolatti NL (1989) Variation in offspring size in Daphnia and consequences for individual fitness. Oikos 56:269–276Article 

    Google Scholar 
    Tessier AJ, Consolatti NL (1991) Resource quantity and offspring quality in Daphnia. Ecology 72(2):468–478Article 

    Google Scholar 
    Trerotola M, Relli V, Simeone P, Alberti S (2015) Epigenetic inheritance and the missing heritability. Hum Genomics 9(1):17. https://doi.org/10.1186/s40246-015-0041-3Article 
    CAS 

    Google Scholar 
    Trijau M, Asselman J, Armant O, Adam-Guillermin C, De Schamphelaere KAC, Alonzo F (2018) Transgenerational DNA methylation changes in Daphnia magna exposed to chronic γ irradiation. Environ Sci Technol 52(7):4331–4339Article 
    CAS 

    Google Scholar 
    Urabe J, Sterner RW (2001) Contrasting effects of different types of resource depletion on life-history traits in Daphnia. Funct Ecol 15:165–174Article 

    Google Scholar 
    Vandegehuchte MB, Kyndt T, Vanholme B, Haegeman A, Gheysen G, Janssen CR (2009a) Occurrence of DNA methylation in Daphnia magna and influence of multigeneration Cd exposure. Environ Int 35(4):700–706Article 
    CAS 

    Google Scholar 
    Vandegehuchte MB, Lemiere F, Janssen CR (2009b) Quantitative DNA-methylation in Daphnia magna and effects of multigeneration Zn exposure. Comp Biochem Physiol C Toxicol Pharmacol 150:343–348Article 
    CAS 

    Google Scholar 
    Vandegehuchte MB, Janssen CR (2011) Epigenetics and its implications for ecotoxicology. Ecotoxicology 20:607–624Article 
    CAS 

    Google Scholar 
    Vandegehuchte MB, Janssen CR (2014) Epigenetics in an ecotoxicological context. Mutat Res Genet Toxicol Environ Mutagen 764–765:36–45Article 

    Google Scholar 
    Walsh MR, La Pierre KJ, Post DM (2014) Phytoplankton composition modifies predator-driven life history evolution in Daphnia. Evol Ecol 28:397–411Article 

    Google Scholar 
    Walsh MR, Cooley F, Biles K, Munch SB (2015) Predator-induced phenotypic plasticity within- and across generations: a challenge for theory? Proc R Soc B Biol Sci 282:20142205Article 

    Google Scholar 
    Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.orgWolf JB, Wade MJ (2009) What are maternal effects (and what are they not)? Philos Trans R Soc Lond B Biol Sci 364(1520):1107–1115Article 

    Google Scholar 
    Zaffagnini F (1987) Reproduction in Daphnia. Mem Ist Ital Idrobiol 45:245–284
    Google Scholar 
    Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12(8):1045–1062Article 

    Google Scholar  More

  • in

    Widespread herbivory cost in tropical nitrogen-fixing tree species

    Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Chang. 4, 471–476 (2014).Article 
    ADS 

    Google Scholar 
    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).Article 

    Google Scholar 
    Levy-Varon, J. H. et al. Tropical carbon sink accelerated by symbiotic dinitrogen fixation. Nat. Commun. 10, 5637 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).Article 
    ADS 

    Google Scholar 
    Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. The nitrogen paradox in tropical forest ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 613–635 (2009).Article 

    Google Scholar 
    Menge, D. N. L. et al. Patterns of nitrogen-fixing tree abundance in forests across Asia and America. J. Ecol. 107, 2598–2610 (2019).Article 
    CAS 

    Google Scholar 
    Matson, W. J.Jr Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119–161 (1980).Article 

    Google Scholar 
    Coley, P. D., Bateman, M. L. & Kusar, T. A. The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos 115, 219–228 (2006).Article 

    Google Scholar 
    Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Barron, A. R., Purves, D. W. & Hedin, L. O. Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165, 511–520 (2011).Article 
    ADS 

    Google Scholar 
    McCulloch, L. A. & Porder, S. Light fuels while nitrogen suppresses symbiotic nitrogen fixation hotspots in neotropical canopy gap seedlings. New Phytol. 231, 1734–1745 (2021).Article 
    CAS 

    Google Scholar 
    Brookshire, E. N. J. et al. Symbiotic N fixation is sufficient to support net aboveground biomass accumulation in a humid tropical forest. Sci Rep. 9, 7571 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Gei, M. et al. Legume abundance along successional and rainfall gradients in Neotropical forests. Nat. Ecol. Evol. 2, 1104–1111 (2018).Article 

    Google Scholar 
    Vance, C. P. in Nitrogen-fixing Leguminous Symbioses. Nitrogen Fixation: Origins, Applications, and Research Progress, Vol. 7 (eds Dilworth, M. J. et al.) (Springer, 2008).Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).Article 

    Google Scholar 
    Menge, D. N. L., Levin, S. A. & Hedin, L. O. Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation. Proc. Natl Acad. Sci. USA 105, 1573–1578 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Sheffer, E., Batterman, S. A., Levin, S. A. & Hedin, L. O. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. Nat. Plants 1, 15182 (2015).Article 
    CAS 

    Google Scholar 
    Vitousek, P. M. & Field, C. B. Ecosystem constraints to symbiotic nitrogen fixers: a simple model and its implications. Biogeochemistry 46, 179–202 (1999).Article 
    CAS 

    Google Scholar 
    Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).Article 

    Google Scholar 
    Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).Article 
    ADS 

    Google Scholar 
    Batterman, S. A. et al. Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees. Ecol. Lett. 21, 1486–1495 (2018).Article 

    Google Scholar 
    Menge, D. N. L., Wolf, A. A. & Funk, J. L. Diversity of nitrogen fixation strategies in Mediterranean legumes. Nat. Plants 1, 15064 (2015).Article 
    CAS 

    Google Scholar 
    Ritchie, M. E. & Tilman, D. Responses of legumes to herbivores and nutrients during succession on a nitrogen-poor soil. Ecol. Soc. Am. 76, 2648–2655 (1995).
    Google Scholar 
    Taylor, B. N. & Ostrowsky, L. R. Nitrogen-fixing and non-fixing trees differ in leaf chemistry and defence but not herbivory in a lowland Costa Rican rain forest. J. Trop. Ecol. 35, 270–279 (2019).Article 

    Google Scholar 
    Endara, M.-J. et al. Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. Proc. Natl Acad. Sci. USA 114, E7499–E7505 (2017).Article 
    CAS 

    Google Scholar 
    Kursar, T. A. & Coley, P. D. Convergence in defense syndromes of young leaves in tropical rainforests. Biochem. Syst. Ecol. 31, 929–949 (2003).Article 
    CAS 

    Google Scholar 
    Kursar, T. A. et al. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc. Natl Acad. Sci. USA 106, 18073–18078 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Taylor, B. N. & Menge, D. N. L. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nat. Plants 4, 655–661 (2018).Article 
    CAS 

    Google Scholar 
    Adams, M., Turnbull, T., Sprent, J. & Buchmann, N. Legumes are different: leaf nitrogen, photosynthesis, and water use efficiency. Proc. Natl Acad. Sci. USA 113, 4098–4103 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Coley, P. D. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74, 531–536 (1988).Article 
    ADS 
    CAS 

    Google Scholar 
    Batterman, S. A., Wurzburger, N. & Hedin, L. O. Nitrogen and phosphorus interact to control tropical symbiotic N2 fixation: a test in Inga punctata. J. Ecol. 101, 1400–1408 (2013).Article 
    CAS 

    Google Scholar 
    Eichhorn, M. P., Nilus, R., Compton, S. G., Hartley, S. E. & Burslem, D. F. R. P. Herbivory of tropical rain forest tree seedlings correlates with future mortality. Ecology 91, 1092–1101 (2010).Article 

    Google Scholar 
    Wink, M. Evolution of secondary metabolites in legumes (Fabaceae). South African J. Bot. 89, 164–175 (2013).Article 
    CAS 

    Google Scholar 
    Currano, E. D. & Jacobs, B. F. Bug-bitten leaves from the early Miocene of Ethiopia elucidate the impacts of plant nutrient concentrations and climate on insect herbivore communities. Glob. Planet. Change 207, 103655 (2021).Article 

    Google Scholar 
    Wieder, W. R., Cleveland, C. C., Lawrence, D. M. & Bonan, G. B. Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study. Environ. Res. Lett. 10, 044016 (2015).Article 
    ADS 

    Google Scholar 
    Sprent, J. I. Legume Nodulation: A Global Perspective (John Wiley, 2009).Leigh, E. G. Jr Tropical Forest Ecology: A View from Barro Colorado Island (Oxford Univ. Press, 1999).Comita, L. S., Muller-Landau, H. C., Aguilar, S. & Hubbell, S. P. Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329, 330–332 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Queenborough, S. A., Metz, M. R., Valencia, R. & Wright, S. J. Demographic consequences of chromatic leaf defence in tropical tree communities: do red young leaves increase growth and survival? Ann. Bot. 112, 677–684 (2013).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).Article 
    CAS 

    Google Scholar 
    Pasquini, S. C. & Santiago, L. S. Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. Oecologia 168, 311–319 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Collalti, A. & Prentice, I. C. Is NPP proportional to GPP? Waring’s hypothesis 20 years on. Tree Physiol. 39, 1473–1483 (2019).Article 
    CAS 

    Google Scholar 
    Westbrook, J. W. et al. What makes a leaf tough? Patterns of correlated evolution between leaf toughness traits and demographic rates among 197 shade-tolerant woody species in a Neotropical forest. Am. Nat. 177, 800–811 (2011).Article 

    Google Scholar 
    Wright, S. J. et al. Functional traits and the growth–mortality trade‐off in tropical trees. Ecology 91, 3664–3674 (2010).Article 

    Google Scholar 
    Kitajima, K. et al. How cellulose-based leaf toughness and lamina density contribute to long leaf lifespans of shade-tolerant species. New Phytol. 195, 640–652 (2012).Article 

    Google Scholar 
    Kitajima, K., Wright, S. J. & Westbrook, J. W. Leaf cellulose density as the key determinant of inter- and intra-specific variation in leaf fracture toughness in a species-rich tropical forest. Interface Focus https://doi.org/10.1098/rsfs.2015.0100 (2016).Sedio, B. E., Echeverri, J. C. R., Boya, C. A. & Wright, S. J. Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology 98, 616–623 (2017).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).Article 

    Google Scholar 
    Murphy, S. J., Xu, K. & Comita, L. S. Tree seedling richness, but not neighborhood composition, influences insect herbivory in a temperate deciduous forest community. Ecol. Evol. 6, 6310–6319 (2016).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Preprint at https://arxiv.org/abs/1406.5823 (2014).Moles, A. T. & Westoby, M. Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90, 517–524 (2000).Article 

    Google Scholar 
    Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. https://doi.org/10.18637/jss.v080.i01 (2017). More

  • in

    Aphid species specializing on milkweed harbor taxonomically similar bacterial communities that differ in richness and relative abundance of core symbionts

    Barbosa, P., Krischik, V. A. & Jones, C. G. Microbial mediation of plant-herbivore interactions (John Wiley & Sons, 1991).
    Google Scholar 
    Berenbaum, M. R. Allelochemicals in insect–microbe–plant interactions; agents provocateurs in the
    coevolutionary arms race. In Nov. Asp. Insect-Plant Interact. (eds Barbosa, P. & Letourneau, D. K.) 97–123 (1988).Mason, C. J., Jones, A. G. & Felton, G. W. Co-option of microbial associates by insects and their impact on plant–folivore interactions. Plant Cell Environ. 42, 1078–1086 (2019).Article 
    CAS 

    Google Scholar 
    Sugio, A., Dubreuil, G., Giron, D. & Simon, J.-C. Plant–insect interactions under bacterial influence: Ecological implications and underlying mechanisms. J. Exp. Bot. 66, 467–478 (2015).Article 
    CAS 

    Google Scholar 
    Hansen, A. K. & Moran, N. A. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol. Ecol. 23, 1473–1496 (2014).Article 

    Google Scholar 
    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).Article 
    CAS 

    Google Scholar 
    Pineda, A. et al. Helping plants to deal with insects: The role of beneficial soil-borne microbes. Trends Plant Sci. 15, 507–514 (2010).Article 
    CAS 

    Google Scholar 
    Hammer, T. J. & Bowers, M. D. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179, 1–14 (2015).Article 
    ADS 

    Google Scholar 
    Liu, H. et al. An ecological loop: Host microbiomes across multitrophic interactions. Trends Ecol. Evol. 34, 1118–1130 (2019).Article 

    Google Scholar 
    Grunseich, J. M., Thompson, M. N., Aguirre, N. M. & Helms, A. M. The role of plant-associated microbes in mediating host-plant selection by insect herbivores. Plants 9, 6 (2020).Article 
    CAS 

    Google Scholar 
    Ferrari, J. et al. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol. Entomol. 29, 60–65 (2004).Article 

    Google Scholar 
    McLean, A. H. et al. Insect symbionts in food webs. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150325 (2016).Article 

    Google Scholar 
    Giron, D., Dedeine, F., Dubreuil, G. et al. Influence of microbial symbionts on plant–insect interactions. In: Advances in botanical research. Elsevier, pp 225–257 (2017).Jones, A. G., Mason, C. J., Felton, G. W. & Hoover, K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci. Rep. 9, 1–11 (2019).Article 

    Google Scholar 
    Xu, T.-T., Jiang, L.-Y., Chen, J. & Qiao, G.-X. Host plants influence the symbiont diversity of Eriosomatinae (Hemiptera: Aphididae). Insects 11, 217. https://doi.org/10.3390/insects11040217 (2020).Article 

    Google Scholar 
    Qin, M. et al. Microbiota associated with Mollitrichosiphum aphids (Hemiptera: Aphididae: Greenideinae): Diversity, host species specificity and phylosymbiosis. Environ. Microbiol. 23(4), 2184–2198. https://doi.org/10.1111/1462-2920.15391 (2021).Article 
    CAS 

    Google Scholar 
    Douglas, A. E. Microbial brokers of insect-plant interactions revisited. J. Chem. Ecol. 39, 952–961 (2013).Article 
    CAS 

    Google Scholar 
    Engel, P. & Moran, N. A. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).Article 
    CAS 

    Google Scholar 
    Chung, S. H. et al. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Sci. Rep. 7, 1–13 (2017).
    Google Scholar 
    Holt, J. R. et al. Differences in microbiota between two multilocus lineages of the sugarcane aphid (Melanaphis sacchari) in the continental United States. Ann. Entomol. Soc. Am. 113(4), 257–265 (2020).Article 
    CAS 

    Google Scholar 
    McLean, A. H., Godfray, H. C. J., Ellers, J. & Henry, L. M. Host relatedness influences the composition of aphid microbiomes. Environ. Microbiol. Rep. 11, 808–816 (2019).Article 

    Google Scholar 
    Jones, R. T., Sanchez, L. G. & Fierer, N. A cross-taxon analysis of insect-associated bacterial diversity. PLoS ONE 8, e61218 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Najar-Rodríguez, A. J. et al. The microbial flora of Aphis gossypii: Patterns across host plants and geographical space. J. Invertebr. Pathol. 100, 123–126. https://doi.org/10.1016/j.jip.2008.10.005 (2009).Article 

    Google Scholar 
    Blankenchip, C. L., Michels, D. E., Braker, H. E. & Goffredi, S. K. Diet breadth and exploitation of exotic plants shift the core microbiome of tropical herbivorous beetles. PeerJ. Prepr. 6, e26692v1 (2018).
    Google Scholar 
    Gauthier, J.-P., Outreman, Y., Mieuzet, L. & Simon, J.-C. Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA. PLoS ONE 10, e0120664 (2015).Article 

    Google Scholar 
    Wagner, S. M. et al. Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct. Ecol. 29, 1402–1410 (2015).Article 

    Google Scholar 
    Guidolin, A. S. & Cônsoli, F. L. Symbiont diversity of Aphis (Toxoptera) citricidus (Hemiptera: Aphididae) as influenced by host plants. Microb. Ecol. 73, 201–210 (2017).Article 

    Google Scholar 
    Leonardo, T. E. & Muiru, G. T. Facultative symbionts are associated with host plant specialization in pea aphid populations. Proc. R. Soc. Lond. B Biol. Sci. 270, S209–S212 (2003).Article 

    Google Scholar 
    Xu, S., Jiang, L., Qiao, G. & Chen, J. The bacterial flora associated with the polyphagous aphid Aphis gossypii Glover (Hemiptera: Aphididae) is strongly affected by host plants. Microb. Ecol. 79, 971–984. https://doi.org/10.1007/s00248-019-01435-2 (2020).Article 
    CAS 

    Google Scholar 
    Ferrari, J., West, J. A., Via, S. & Godfray, H. C. J. Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution 66, 375–390. https://doi.org/10.1111/j.1558-5646.2011.01436.x (2012).Article 

    Google Scholar 
    Brady, C. M. et al. Worldwide populations of the aphid Aphis craccivora are infected with diverse facultative bacterial symbionts. Microb. Ecol. 67, 195–204. https://doi.org/10.1007/s00248-013-0314-0 (2014).Article 

    Google Scholar 
    Henry, L. M., Maiden, M. C., Ferrari, J. & Godfray, H. C. J. Insect life history and the evolution of bacterial mutualism. Ecol. Lett. 18, 516–525 (2015).Article 

    Google Scholar 
    Simon, J.-C. et al. Host–based divergence in populations of the pea aphid: Insights from nuclear markers and the prevalence of facultative symbionts. Proc. R. Soc. Lond. B Biol. Sci. 270, 1703–1712. https://doi.org/10.1098/rspb.2003.2430 (2003).Article 

    Google Scholar 
    Brady, C. M. & White, J. A. Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecol. Entomol. 38, 433–437. https://doi.org/10.1111/een.12020 (2013).Article 

    Google Scholar 
    Blackman, R. L. & Eastop, V. F. Aphids on the world’s herbaceous plants and shrubs, 2 Vol. set (John Wiley & Sons, 2008).
    Google Scholar 
    Züst, T. & Agrawal, A. A. Population growth and sequestration of plant toxins along a gradient of specialization in four aphid species on the common milkweed Asclepias syriaca. Funct. Ecol. 30, 547–556 (2016).Article 

    Google Scholar 
    Zytynska, S. E. & Weisser, W. W. The natural occurrence of secondary bacterial symbionts in aphids. Ecol. Entomol. 41, 13–26 (2016).Article 

    Google Scholar 
    Harrison, J. S. & Mondor, E. B. Evidence for an invasive aphid “Superclone”: Extremely low genetic diversity in Oleander aphid (Aphis nerii) populations in the Southern United States. PLoS ONE 6, e17524. https://doi.org/10.1371/journal.pone.0017524 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Mooney, K., Jones, P. & Agrawal, A. Coexisting congeners: Demography, competition, and interactions with cardenolides for two milkweed-feeding aphids. Oikos 117, 450–458 (2008).Article 
    CAS 

    Google Scholar 
    Groeters, F. R. Geographic and clonal variation in the milkweed-oleander aphid, Aphis nerii (Homoptera: Aphididae), for winged morph production, life history, and morphology in relation to host plant permanence. Evol. Ecol. 3, 327–341 (1989).Article 

    Google Scholar 
    Dolan, R. W., Moore, M. E. Indiana Plant Atlas. [S.M. Landry and K.N. Campbell (original application development), USF Water Institute. University of South Florida]. Butler University Friesner Herbarium, Indianapolis, Indiana (2022).McMartin, K. A., Malcolm, S. B. Defense expression in the aphid Myzocallis asclepiadis. Final Report. Pierce Cedar Creek Institute, Hastings, MI (2008).Zaya, D. N., Pearse, I. S. & Spyreas, G. Long-term trends in Midwestern Milkweed abundances and their relevance to monarch butterfly declines. Bioscience 67, 343–356. https://doi.org/10.1093/biosci/biw186 (2017).Article 

    Google Scholar 
    Binetruy, F., Dupraz, M., Buysse, M. & Duron, O. Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasit. Vectors 12, 268 (2019).Article 

    Google Scholar 
    Gohl, D. M. et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949 (2016).Article 
    CAS 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522. https://doi.org/10.1073/pnas.1000080107 (2011).Article 
    ADS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Jousselin, E. et al. Assessment of a 16S rRNA amplicon Illumina sequencing procedure for studying the microbiome of a symbiont-rich aphid genus. Mol. Ecol. Resour. 16, 628–640. https://doi.org/10.1111/1755-0998.12478 (2016).Article 
    CAS 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article 

    Google Scholar 
    Wright, E. S. Using DECIPHER v2. 0 to analyze big biological sequence data in R. R J. 8(1), 352 (2016).Article 

    Google Scholar 
    Schliep, K., Potts, A. A., Morrison, D. A. & Grimm, G. W. Intertwining phylogenetic trees and networks (No. e2054v1). PeerJ Preprints (2016).Hannula, S. E., Zhu, F., Heinen, R. & Bezemer, T. M. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10, 1–9 (2019).Article 
    CAS 

    Google Scholar 
    Gomes, S. I. et al. Microbiomes of a specialist caterpillar are consistent across different habitats but also resemble the local soil microbial communities. Anim. Microbiome 2, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    Malacrinò, A. Host species identity shapes the diversity and structure of insect microbiota. Mol. Ecol. 31, 723–735. https://doi.org/10.1111/mec.16285 (2022).Article 

    Google Scholar 
    Colman, D. R., Toolson, E. C. & Takacs-Vesbach, C. D. Do diet and taxonomy influence insect gut bacterial communities?. Mol. Ecol. 21, 5124–5137 (2012).Article 
    CAS 

    Google Scholar 
    Pons, I., Renoz, F., Noël, C. & Hance, T. Circulation of the cultivable symbiont Serratia symbiotica in aphids is mediated by plants. Front. Microbiol. 10, 764. https://doi.org/10.3389/fmicb.2019.00764 (2019).Article 

    Google Scholar 
    Li, Q. et al. Plant-mediated horizontal transmission of Hamiltonella defensa in the wheat aphid Sitobion miscanthi. J. Agric. Food Chem. 66, 13367–13377. https://doi.org/10.1021/acs.jafc.8b04828 (2018).Article 
    CAS 

    Google Scholar 
    Jousselin, E., Cø eur d’Acier, A., Vanlerberghe-Masutti, F. & Duron, O. Evolution and diversity of A rsenophonus endosymbionts in aphids. Mol. Ecol. 22, 260–270 (2013).Article 

    Google Scholar 
    Nováková, E., Hypša, V. & Moran, N. A. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 9, 143 (2009).Article 

    Google Scholar 
    Chong, R. A. & Moran, N. A. Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids. ISME J. 12, 898–908 (2018).Article 
    CAS 

    Google Scholar 
    Wulff, J. A. & White, J. A. The endosymbiont Arsenophonus provides a general benefit to soybean aphid (Hemiptera: Aphididae) regardless of host plant resistance (Rag). Environ. Entomol. 44, 574–581 (2015).Article 
    CAS 

    Google Scholar 
    Ivens, A. B., Gadau, A., Kiers, E. T. & Kronauer, D. J. Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists. Mol. Ecol. 27, 1898–1914 (2018).Article 

    Google Scholar 
    Fischer, C. Y. et al. Bacteria may enhance species association in an ant–aphid mutualistic relationship. Chemoecology 25, 223–232 (2015).Article 
    CAS 

    Google Scholar 
    Smith, R. A., Mooney, K. A. & Agrawal, A. A. Coexistence of three specialist aphids on common Milkweed, Asclepias syriaca. Ecology 89, 2187–2196 (2009).Article 

    Google Scholar 
    Katayama, N., Tsuchida, T., Hojo, M. K. & Ohgushi, T. aphid genotype determines intensity of ant attendance: Do endosymbionts and honeydew composition matter?. Ann. Entomol. Soc. Am. 106, 761–770 (2013).Article 
    CAS 

    Google Scholar 
    Hansen, T. E. & Enders, L. S. Host Plant species influences the composition of milkweed and Monarch microbiomes. Front. Microbiol. https://doi.org/10.3389/fmicb.2022.840078 (2022).Article 

    Google Scholar  More

  • in

    Herbivores drive scarcity of some nitrogen-fixing tropical trees

    Friedlingstein, P. et al. Earth Syst. Sci. Data 12, 3269–3340 (2020).Article 

    Google Scholar 
    LeBauer, D. S. & Treseder, K. K. Ecology 89, 371–379 (2008).Article 
    PubMed 

    Google Scholar 
    Vitousek, P. M. & Howarth, R. W. Biogeochemistry 13, 87–115 (1991).Article 

    Google Scholar 
    Barker, W. et al. Nature https://doi.org/10.1038/s41586-022-05502-6 (2022).Article 

    Google Scholar 
    Sprent, J. I. Legume Nodulation: A Global Perspective (Wiley-Blackwell, 2009).
    Google Scholar 
    Gei, M. et al. Nature Ecol. Evol. 2, 1104–1111 (2018).Article 
    PubMed 

    Google Scholar 
    Peng, J. et al. Glob. Biogeochem. Cycles 34, e2019GB006296 (2020).Article 

    Google Scholar 
    Batterman, S. A. et al. Nature 502, 224–227 (2013).Article 
    PubMed 

    Google Scholar 
    Taylor, B. N. & Menge, D. N. L. Nature Plants 4, 655–661 (2018).
    Google Scholar 
    McCulloch, L. A. & Porder, S. New Phytol. 231, 1734–1745 (2021).Article 
    PubMed 

    Google Scholar 
    Sheffer, E., Batterman, S. A., Levin, S. A. & Hedin, L. O. Nature Plants 1, 15182 (2015).Article 

    Google Scholar 
    Barron, A. R., Purves, D. W. & Hedin, L. O. Oecologia 165, 511–520 (2011).Article 
    PubMed 

    Google Scholar 
    Adams, M. A., Turnbull, T. L., Sprent, J. I. & Buchmann, N. Proc. Natl Acad. Sci. USA 113, 4098–4103 (2016).Article 
    PubMed 

    Google Scholar 
    Taylor, B. N. & Ostrowsky, L. R. J. Trop. Ecol. 35, 270–279 (2019).Article 

    Google Scholar 
    Sprent, J. I. New Phytol. 174, 11–25 (2007).Article 
    PubMed 

    Google Scholar  More

  • in

    Microbial predators form a new supergroup of eukaryotes

    Keeling, P. J. & Burki, F. Progress towards the tree of eukaryotes. Curr. Biol. 29, R808–R817 (2019).Article 
    CAS 

    Google Scholar 
    Gawryluk, R. M. R. et al. Non-photosynthetic predators are sister to red algae. Nature 572, 240–243 (2019).Article 
    CAS 

    Google Scholar 
    Janouškovec, J. et al. A new lineage of eukaryotes illuminates early mitochondrial genome reduction. Curr. Biol. 27, 3717–3724 (2017).Article 

    Google Scholar 
    Lax, G. et al. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature 564, 410–414 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Oren, A. Prokaryote diversity and taxonomy: current status and future challenges. Philos. Trans. R. Soc. Lond. B 359, 623–638 (2004).Article 
    CAS 

    Google Scholar 
    Shu, W. S. & Huang, L. N. Microbial diversity in extreme environments. Nat. Rev. Microbiol. 20, 219–235 (2022).Article 
    CAS 

    Google Scholar 
    Massana, R., del Campo, J., Sieracki, M. E., Audic, S. & Logares, R. Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME J. 8, 854–866 (2014).Article 

    Google Scholar 
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).Article 

    Google Scholar 
    Flegontova, O. et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060–3065 (2016).Article 
    CAS 

    Google Scholar 
    Ahlering, M. A. & Carrel, J. E. Predators are rare even when they are small. Oikos 95, 471–475 (2001).Article 

    Google Scholar 
    Hehenberger, E. et al. Novel predators reshape holozoan phylogeny and reveal the presence of a two-component signaling system in the ancestor of animals. Curr. Biol. 27, 2043–2050 (2017).Article 
    CAS 

    Google Scholar 
    Tikhonenkov, D. V. et al. Description of Colponema vietnamica sp. n. and Acavomonas peruviana n. gen. n. sp., two new alveolate phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes. PLoS ONE 9, e95467 (2014).Article 
    ADS 

    Google Scholar 
    Tikhonenkov, D. V. et al. New lineage of microbial predators adds complexity to reconstructing the evolutionary origin of animals. Curr. Biol. 30, 4500–4509 (2020).Article 
    CAS 

    Google Scholar 
    Mylnikov, A. P. & Tikhonenkov, D. V. The new alveolate carnivorous flagellate Colponema marisrubri sp. n. (Colponemida, Alveolata) from the Red Sea. Zool. Zh. 88, 1163–1169 (2009).
    Google Scholar 
    Strassert, J. F. H., Irisarri, I., Williams, T. A. & Burki, F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat. Commun. 12, 1879 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodriguez-Ezpeleta, N. et al. Detecting and overcoming systematic errors in genome-scale phylogenies. Syst. Biol. 56, 389–399 (2007).Article 
    CAS 

    Google Scholar 
    Strassert, J. F. H., Jamy, M., Mylnikov, A. P., Tikhonenkov, D. V. & Burki, F. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life. Mol. Biol. Evol. 36, 757–765 (2019).Article 
    CAS 

    Google Scholar 
    Lanfear, R., Kokko, H. & Eyre-Walker, A. Population size and the rate of evolution. Trends Ecol. Evol. 29, 33–41 (2014).Article 

    Google Scholar 
    Bahler, M. & Rhoads, A. Calmodulin signaling via the IQ motif. FEBS Lett. 513, 107–113 (2002).Article 
    CAS 

    Google Scholar 
    Schaffer, D. E., Iyer, L. M., Burroughs, A. M. & Aravind, L. Functional innovation in the evolution of the calcium-dependent system of the eukaryotic endoplasmic reticulum. Front. Genet. 11, 34 (2020).Article 

    Google Scholar 
    Morita-Yamamuro, C. et al. The Arabidopsis gene CAD1 controls programmed cell death in the plant immune system and encodes a protein containing a MACPF domain. Plant Cell Physiol. 46, 902–912 (2005).Article 
    CAS 

    Google Scholar 
    Rosado, C. J. et al. The MACPF/CDC family of pore-forming toxins. Cell. Microbiol. 10, 1765–1774 (2008).Article 
    CAS 

    Google Scholar 
    Ishino, T., Chinzei, Y. & Yuda, M. A Plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection. Cell. Microbiol. 7, 199–208 (2005).Article 
    CAS 

    Google Scholar 
    Satoh, H., Oshiro, N., Iwanaga, S., Namikoshi, M. & Nagai, H. Characterization of PsTX-60B, a new membrane-attack complex/perforin (MACPF) family toxin, from the venomous sea anemone Phyllodiscus semoni. Toxicon 49, 1208–1210 (2007).Article 
    CAS 

    Google Scholar 
    Tikhonenkov, D. V., Mazei, Y. A. & Embulaeva, E. A. Degradation succession of heterotrophic flagellate communities in microcosms. Zh. Obs. Biol. 69, 57–64 (2008).CAS 

    Google Scholar 
    Tikhonenkov, D. V. et al. On the origin of TSAR: morphology, diversity and phylogeny of Telonemia. Open Biol. 12, 210325 (2022).Article 
    CAS 

    Google Scholar 
    Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).Article 
    CAS 

    Google Scholar 
    Keeling, P. J., Poulson, N. & McFadden, G. I. Phylogenetic diversity of parabasalian symbionts from termites, including the phylogenetic position of Pseudotrypanosoma and Trichonympha. J. Eukaryot. Microbiol. 45, 643–650 (1998).Article 
    CAS 

    Google Scholar 
    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).Article 
    CAS 

    Google Scholar 
    Tikhonenkov, D. V., Janouškovec, J., Keeling, P. J. & Mylnikov, A. P. The morphology, ultrastructure and SSU rRNA gene sequence of a new freshwater flagellate, Neobodo borokensis n. sp. (Kinetoplastea, Excavata). J. Eukaryot. Microbiol. 63, 220–232 (2016).Article 
    CAS 

    Google Scholar 
    Andrews, S. FastQC: a quality control tool for high throughput sequence data (Babraham Bioinformatics, 2010); https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2013).Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 

    Google Scholar 
    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).Article 
    CAS 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article 
    CAS 

    Google Scholar 
    Laetsch, D. R. & Blaxter, M. L. BlobTools: interrogation of genome assemblies. F1000Research 6, 1287 (2017).Article 

    Google Scholar 
    Haas, B. J. et al. Denovo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).Article 
    CAS 

    Google Scholar 
    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).Article 
    CAS 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).Article 
    CAS 

    Google Scholar 
    Shen, W. & Ren, H. TaxonKit: a practical and efficient NCBI taxonomy toolkit. J. Genet. Genomics 48, 844–850 (2021).Richter, D. J. et al. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community Journal 2, e56 (2022).Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).Article 
    CAS 

    Google Scholar 
    Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551 (2021).Article 
    CAS 

    Google Scholar 
    Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C. & Kanehisa, M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–W185 (2007).Article 

    Google Scholar 
    Burki, F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb. Perspect. Biol. 6, a016147 (2014).Article 

    Google Scholar 
    Waskom, M. et al. mwaskom/Seaborn: v0.8.1 (September 2017). Zenodo https://doi.org/10.5281/zenodo.883859 (2017).Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 
    Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).Article 
    CAS 

    Google Scholar 
    Letunic, I. & Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 46, D493–D496 (2018).Article 
    CAS 

    Google Scholar 
    Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).Article 
    CAS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    CAS 

    Google Scholar 
    Burns, J. A., Pittis, A. A. & Kim, E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat. Ecol. Evol. 2, 697–704 (2018).Article 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).Article 

    Google Scholar 
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).Article 
    CAS 

    Google Scholar 
    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).Article 
    CAS 

    Google Scholar 
    Whelan, S., Irisarri, I. & Burki, F. PREQUAL: detecting non-homologous characters in sets of unaligned homologous sequences. Bioinformatics 34, 3929–3930 (2018).CAS 

    Google Scholar 
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).Article 
    CAS 

    Google Scholar 
    Roure, B., Rodriguez-Ezpeleta, N. & Philippe, H. SCaFoS: a tool for selection, concatenation and fusion of sequences for phylogenomics. BMC Evol. Biol. 7, S2 (2007).Article 

    Google Scholar 
    Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615 (2013).Article 
    CAS 

    Google Scholar 
    Dayhoff, M., Schwartz, R. & Orcutt, B. in Atlas of Protein Sequence and Structure (ed. Dayhoff, M.) 345–352 (National Biomedical Research Foundation, 1978).Susko, E. & Roger, A. J. On reduced amino acid alphabets for phylogenetic inference. Mol. Biol. Evol. 24, 2139–2150 (2007).Article 
    CAS 

    Google Scholar 
    Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109 (2004).Article 
    CAS 

    Google Scholar 
    Quang le, S., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24, 2317–2323 (2008).Article 

    Google Scholar 
    Wang, H. C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216–235 (2018).Article 
    CAS 

    Google Scholar 
    Kück, P. & Struck, T. H. BaCoCa—a heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. Mol. Phylogenet. Evol. 70, 94–98 (2014).Article 

    Google Scholar 
    Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).Article 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).Article 
    CAS 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).Article 
    MathSciNet 
    CAS 

    Google Scholar 
    Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45, e18 (2017).
    Google Scholar 
    Kuznetsov, A. & Bollin, C. J. in Multiple Sequence Alignment (ed. Katoh, K.) 261–295 (Springer, 2021).Lohse, M., Drechsel, O., Kahlau, S. & Bock, R. OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 41, W575–W581 (2013).Article 

    Google Scholar 
    Johnson, P. Z., Kasprzak, W. K., Shapiro, B. A. & Simon, A. E. RNA2Drawer: geometrically strict drawing of nucleic acid structures with graphical structure editing and highlighting of complementary subsequences. RNA Biol. 16, 1667–1671 (2019).Article 

    Google Scholar 
    Burger, G., Gray, M. W., Forget, L. & Lang, B. F. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol. Evol. 5, 418–438 (2013).Article 

    Google Scholar 
    Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).Article 

    Google Scholar 
    Zhang, D. et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348–355 (2020).Article 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).Article 
    CAS 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097 (2019).Article 
    CAS 

    Google Scholar 
    Massana, R. et al. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ. Microbiol. 17, 4035–4049 (2015).Article 
    CAS 

    Google Scholar 
    Gendron, E. M. S., Darcy, J. L., Hell, K. & Schmidt, S. K. Structure of bacterial and eukaryote communities reflect in situ controls on community assembly in a high-alpine lake. J. Microbiol. 57, 852–864 (2019).Article 
    CAS 

    Google Scholar 
    Minerovic, A. D. et al. 18S-V9 DNA metabarcoding detects the effect of water-quality impairment. Ecol. Indic. 113, 106225 (2020).Article 
    CAS 

    Google Scholar 
    Pearman, J. K. et al. Cross-shelf investigation of coral reef cryptic benthic organisms reveals diversity patterns of the hidden majority. Sci. Rep. 8, 8090 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodas, A. M. et al. Eukaryotic plankton communities across reef environments in Bocas del Toro Archipelago, Panamá. Coral Reefs 39, 1453–1467 (2020).Article 

    Google Scholar 
    Schoenle, A. et al. High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. Commun. Biol. 4, 501 (2021).Article 
    CAS 

    Google Scholar 
    Schulhof, M. A. et al. Sierra Nevada mountain lake microbial communities are structured by temperature, resources and geographic location. Mol. Ecol. 29, 2080–2093 (2020).Article 
    CAS 

    Google Scholar 
    Yi, Z. et al. High-throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations. FEMS Microbiol. Ecol. 93, fix073 (2017). More