More stories

  • in

    Rare and declining bird species benefit most from designating protected areas for conservation in the UK

    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 
    PubMed 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulze, K. et al. An assessment of threats to terrestrial protected areas. Conserv. Lett. 11, e12435 (2018).Article 

    Google Scholar 
    Bingham, H. C. et al. (eds). Protected Planet Report 2020 (UNEP-WCMC & IUCN, 2021); https://livereport.protectedplanet.net/Buchanan, G. M., Butchart, S. H., Chandler, G. & Gregory, R. D. Assessment of national-level progress towards elements of the Aichi Biodiversity Targets. Ecol. Indic. 116, 106497 (2020).Article 

    Google Scholar 
    Xu, H. et al. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 5, 411–418 (2021).Article 
    PubMed 

    Google Scholar 
    Report of the Open-ended Working Group on the Post-2020 Global Biodiversity Framework on Its Third Meeting (CBD Secretariat, 2022); https://www.cbd.int/conferences/post2020/wg2020-03/documentsRodrigues, A. S. & Cazalis, V. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11, 5147 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Starnes, T. et al. The extent and effectiveness of protected areas in the UK. Glob. Ecol. Conserv. 30, e01745 (2021).Article 

    Google Scholar 
    Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cazalis, V. et al. Mismatch between bird species sensitivity and the protection of intact habitats across the Americas. Ecol. Lett. 24, 2394–2405 (2021).Article 
    PubMed 

    Google Scholar 
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Gamero, A. et al. Tracking progress toward EU biodiversity strategy targets: EU policy effects in preserving its common farmland birds. Conserv. Lett. 10, 395–402 (2017).Article 

    Google Scholar 
    Pellissier, V. et al. Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data. Conserv. Biol. 34, 666–676 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Princé, K., Rouveyrol, P., Pellissier, V., Touroult, J. & Jiguet, F. Long-term effectiveness of Natura 2000 network to protect biodiversity: a hint of optimism for common birds. Biol. Conserv. 253, 108871 (2021).Article 

    Google Scholar 
    Cunningham, C. A., Thomas, C. D., Morecroft, M. D., Crick, H. Q. P. & Beale, C. M. The effectiveness of the protected area network of Great Britain. Biol. Conserv. 257, 109146 (2021).Article 

    Google Scholar 
    Duckworth, G. D. & Altwegg, R. Effectiveness of protected areas for bird conservation depends on guild. Divers. Distrib. 24, 1083–1091 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Rada, S. et al. Protected areas do not mitigate biodiversity declines: a case study on butterflies. Divers. Distrib. 25, 217–224 (2019).Article 

    Google Scholar 
    Terraube, J., Van Doninck, J., Helle, P., & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Lenoir, J. et al. Species better track the shifting isotherms in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 
    PubMed 

    Google Scholar 
    van Teeffelen, A., Meller, L., van Minnen, J., Vermaat, J. & Cabeza, M. How climate proof is the European Union’s biodiversity policy? Regional Environ. Change 15, 997–1010 (2015).Article 

    Google Scholar 
    Thomas, C. D. & Gillingham, P. K. The performance of protected areas for biodiversity under climate change. Biol. J. Linn. Soc. Lond. 115, 718–730 (2015).Article 

    Google Scholar 
    Gillingham, P. K. et al. The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biol. J. Linn. Soc. Lond. 115, 707–717 (2015).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Stokstad, E. Species? Climate? Cost? Ambitious goal means trade-offs. Science 371, 555 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brlík, V. et al. Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Sci. Data 8, 21 (2021).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Stanbury, A. et al. The status of bird populations: the fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723–747 (2021).
    Google Scholar 
    Dudley, N. (ed). Guidelines for Applying Protected Area Management Categories (IUCN, 2008).Deguignet, M. et al. Measuring the extent of overlaps in protected area designations. PLoS ONE 12, e0188681 (2017).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    JNCC. Common Standards Monitoring: Introduction to the Guidance Manual (JNCC Resource Hub, 2004).Hayhow, D. B. et al. State of Nature 2019 (RSPB, 2019).Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020); https://helda.helsinki.fi/handle/10138/326470Franks, S. E., Roodbergen, M., Teunissen, W., Carrington Cotton, A. & Pearce‐Higgins, J. W. Evaluating the effectiveness of conservation measures for European grassland‐breeding waders. Ecol. Evol. 8, 10555–10568 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Pearce-Higgins, J. W. et al. Site-based adaptation reduces the negative effects of weather upon a southern range margin Welsh black grouse Tetrao tetrix population that is vulnerable to climate change. Clim. Change 153, 253–265 (2019).Article 

    Google Scholar 
    Jellesmark, S. et al. A counterfactual approach to measure the impact of wet grassland conservation on U.K. breeding bird populations. Conserv. Biol. 35, 1575–1585 (2021).Article 
    PubMed 

    Google Scholar 
    Morrison, C. A. et al. Covariation in population trends and demography reveals targets for conservation action. Proc. Biol. Sci. 288, 20202955 (2021).PubMed Central 
    PubMed 

    Google Scholar 
    Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Martay, B. et al. Monitoring landscape-scale environmental changes with citizen scientists: Twenty years of land use change in Great Britain. J. Nat. Conserv. 44, 33–42 (2018).Article 

    Google Scholar 
    Sullivan, M. J. P., Newson, S. E. & Pearce‐Higgins, J. W. Changing densities of generalist species underlie apparent homogenization of UK bird communities. Ibis 158, 645–655 (2016).Article 

    Google Scholar 
    Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).Article 
    PubMed 

    Google Scholar 
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).Article 

    Google Scholar 
    Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change—evidence from large‐scale, long‐term abundance data. Glob. Change Biol. 25, 304–313 (2019).Article 

    Google Scholar 
    Gaüzère, P., Jiguet, F. & Devictor, V. Can protected areas mitigate the impacts of climate change on bird’s species and communities? Diversity Distrib. 22, 625–637 (2016).Article 

    Google Scholar 
    Neate‐Clegg, M. H. C., Jones, S. E. I., Burdekin, O., Jocque, M. & Şekercioğlu, Ç. H. Elevational changes in the avian community of a Mesoamerican cloud forest park. Biotropica 50, 805–815 (2018).Article 

    Google Scholar 
    Oliver, T. H. et al. Large extents of intensive land use limit community reorganization during climate warming. Glob. Change Biol. 23, 2272–2283 (2017).Article 

    Google Scholar 
    Hiley, J. R., Bradbury, R. B., Holling, M. & Thomas, C. D. Protected areas act as establishment centres for species colonizing the UK. Proc. Biol. Sci. 280, 20122310 (2013).PubMed Central 
    PubMed 

    Google Scholar 
    Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Grace, M. K. et al. Testing a global standard for quantifying species recovery and assessing conservation impact. Conserv. Biol. 35, 1833–1849 (2021).Article 
    PubMed 

    Google Scholar 
    Gibbons, D. W., Reid, J. B. & Chapman, R. A. The New Atlas of Breeding Birds in Britain & Ireland 1988–1991 (T. & A. D. Poyser, 1993).Balmer, D. E. et al. Bird Atlas 2007–11: the Breeding and Wintering Birds of Britain and Ireland (BTO, 2013).Gillings, S. et al. Breeding and wintering bird distributions in Britain and Ireland from citizen science bird atlases. Glob. Ecol. Biogeogr. 28, 866–874 (2019).Article 

    Google Scholar 
    Freeman, S. N., Noble, D. G., Newson, S. E. & Baillie, S. R. Modelling population changes using data from different surveys: the Common Birds Census and the Breeding Bird Survey. Bird Study 54, 61–72 (2007).Article 

    Google Scholar 
    Robinson, R. A., Julliard, R. & Saracco, J. F. Constant effort: studying avian population processes using standardised ringing. Ring. Migr. 24, 199–204 (2009).Article 

    Google Scholar 
    Cave, V. M., Freeman, S. N., Brooks, S. P., King, R. & Balmer, D. E. in Modeling Demographic Processes in Marked Populations, 949–963 (Springer, 2009).Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, GB) (eds Thomson, D. L. et al) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/7115bc48-3ab0-475d-84ae-fd3126c20984Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, N. Ireland) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/362feaea-0ccf-4a45-b11f-980c6b89a858ASTER Global Digital Elevation Model V003 (dataset). NASA EOSDIS Land Processes DAAC (NASA/METI/AIST/Japan Space Systems and U.S./Japan ASTER Science Team, 2019); https://doi.org/10.5067/ASTER/ASTGTM.003Schiavina, M., Freire, S. & MacManus, K. GHS-SMOD R2019A – GHS Settlement Layers, Updated and Refined REGIO Model 2014 in Application to GHS-BUILT R2018A and GHS-POP R2019A, Multitemporal (1975-1990-2000-2015) (European Commission Joint Research Centre, 2019); https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218Robinson, R. A. BirdFacts: Profiles of Birds Occurring in Britain & Ireland (BTO, 2005).Gibbons, D. W. et al. Bird species of conservation concern in the United Kingdom, Channel Islands and Isle of Man: revising the Red Data List. RSPB Conserv. Rev. 10, 7–18 (1996).
    Google Scholar 
    Stone, B. H. et al. Population estimates of birds in Britain and in the United Kingdom. Br. Birds 90, 1–22 (1997).
    Google Scholar 
    Woodward, I. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69–104 (2020).
    Google Scholar 
    R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Bull, J. W., Strange, N., Smith, R. J. & Gordon, A. Reconciling multiple counterfactuals when evaluating biodiversity conservation impact in social‐ecological systems. Conserv. Biol. 35, 510–521 (2020).Article 
    PubMed 

    Google Scholar 
    Jellesmark, S. et al. Assessing the global impact of targeted conservation actions on species abundance. Preprint at bioRxiv https://doi.org/10.1101/2022.01.14.476374 (2022).Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds but management helps. Nature 605, 103–107 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.4.4 (2021); https://CRAN.R-project.org/package=DHARMaJetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnston, A. et al. Species traits explain variation in detectability of UK birds. Bird Study 61, 340–350 (2014).Article 

    Google Scholar 
    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).Article 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Anal. 15, 199–236 (2007).Article 

    Google Scholar 
    Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).Article 
    PubMed 

    Google Scholar 
    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. Biol. Sci. 275, 2743–2748 (2008).PubMed Central 
    PubMed 

    Google Scholar  More

  • in

    Assessment of suitable habitat of mangrove species for prioritizing restoration in coastal ecosystem of Sundarban Biosphere Reserve, India

    Banerjee, A. K. et al. Setting the priorities straight-Species distribution models assist to prioritize conservation targets for the mangroves. Sci. Total Environ. 806, 150937 (2022).Article 
    CAS 

    Google Scholar 
    Duke, N. C. et al. A world without mangroves?. Science 317(5834), 41–42 (2007).Article 
    CAS 

    Google Scholar 
    Friess, D. A. Ecosystem services and disservices of mangrove forests: Insights from historical colonial observations. Forests 7(9), 183 (2016).Article 

    Google Scholar 
    Hu, W. et al. Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China. Sci. Total Environ. 748, 142321 (2020).Article 
    CAS 

    Google Scholar 
    Blankespoor, B., Dasgupta, S. & Lange, G. M. Mangroves as a protection from storm surges in a changing climate. Ambio 46(4), 478–491 (2017).Article 

    Google Scholar 
    FAO. TheWorld’s Mangroves 1980–2005. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/3/a1427e/a1427e00.htm. (2007).Abd-El Monsef, H., Hassan, M. A. & Shata, S. Using spatial data analysis for delineating existing mangroves stands and siting suitable locations for mangroves plantation. Comput. Electron. Agric. 141, 310–326 (2017).Article 

    Google Scholar 
    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123 (2011).Article 
    CAS 

    Google Scholar 
    Aheto, D. W. et al. Community-based mangrove forest management: Implications for local livelihoods and coastal resource conservation along the Volta estuary catchment area of Ghana. Ocean Coast. Manag. 127, 43–54 (2016).Article 

    Google Scholar 
    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).Article 

    Google Scholar 
    Stephanie, S. R. et al. Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manag. 154, 72–82. https://doi.org/10.1016/j.ocecoaman.2018.01.009 (2018).Article 

    Google Scholar 
    Friess, D. A. et al. Mangroves give cause for conservation optimism, for now. Curr. Biol. 30, R153–R154 (2020).Article 
    CAS 

    Google Scholar 
    Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: One of the world’s threatened major tropical environments: At least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. Bioscience 51, 807–815. https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2 (2001).Article 

    Google Scholar 
    Feller, I. C. et al. Biocomplexity in mangrove ecosystems. Ann. Rev. Mar. Sci. 2, 395–417 (2010).Article 
    CAS 

    Google Scholar 
    Polidoro, B. A. et al. The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).Article 

    Google Scholar 
    IUCN. Global Assessments of Mangrove Losses and Degradation, 2016; https://www.iucn.org/sites/dev/files/content/documents/mangroveloss-brief-4pp-19.10.low_.pdf.Sreelekshmi, S., Nandan, S. B., Kaimal, S. V., Radhakrishnan, C. K. & Suresh, V. R. Mangrove species diversity, stand structure and zonation pattern in relation to environmental factors—a case study at Sundarban delta, east coast of India. Reg. Stud. Mar. Sci. 35, 101111 (2020).
    Google Scholar 
    Sahana, M. et al. Assessing coastal island vulnerability in the Sundarban Biosphere Reserve, India, using geospatial technology. Environ. Earth Sci. 78(10), 1–22 (2019).Article 

    Google Scholar 
    FSI. India State of Forest Report. Forest Survey of India, Dehradun (2017).Ellison, A. M., Mukherjee, B. B. & Karim, A. Testing patterns of zonation in mangroves: Scale dependence and environmental correlates in the Sundarbans of Bangladesh. J. Ecol. 88(5), 813–824 (2000).Article 

    Google Scholar 
    Sahana, M., Rehman, S., Sajjad, H. & Hong, H. Exploring effectiveness of frequency ratio and support vector machine models in storm surge flood susceptibility assessment: A study of Sundarban Biosphere Reserve, India. CATENA 189, 104450 (2020).Article 

    Google Scholar 
    Sahana, M. & Sajjad, H. Vulnerability to storm surge flood using remote sensing and GIS techniques: A study on Sundarban Biosphere Reserve, India. Rem. Sens. Appl. Soc. Env. 13, 106–120 (2019).
    Google Scholar 
    Chowdhury, M. Q. et al. Nature and periodicity of growth rings in two Bangladeshi mangrove species. IAWA J. 29(3), 265–276 (2008).Article 

    Google Scholar 
    Sarker, S. K., Reeve, R., Thompson, J., Paul, N. K. & Matthiopoulos, J. Are we failing to protect threatened mangroves in the Sundarbans world heritage ecosystem?. Sci. Rep. 6(1), 1–12 (2016).Article 

    Google Scholar 
    Iftekhar, M. S. & Saenger, P. Vegetation dynamics in the Bangladesh Sundarbans mangroves: A review of forest inventories. Wetlands Ecol. Manage. 16(4), 291–312 (2008).Article 

    Google Scholar 
    Siddiqi, N. A. In Mangrove forestry in Bangladesh, Institute of Forestry and Environmental Sciences. University of Chittagong, Chittagong, Bangladesh 201 (2001).Lewis, R. R. III. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 24(4), 403–418 (2005).Article 

    Google Scholar 
    Peterson, T. A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography 30, 550–560. https://doi.org/10.1111/j.0906-7590.2007.05102.x (2007).Article 

    Google Scholar 
    Stockwell, D. & Peters, D. The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158. https://doi.org/10.1080/136588199241391 (1999).Article 

    Google Scholar 
    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x (2005).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Feng, Z. et al. Dynamics ofmangrove forests in Shenzhen Bay in response to natural and anthropogenic factors from 1988 to 2017. J. Hydrol. 591, 125271. https://doi.org/10.1016/j.jhydrol.2020.125271 (2020).Article 

    Google Scholar 
    Kaky, E. & Gilbert, F. Using species distribution models to assess the importance of Egypt’s protected areas for the conservation of medicinal plants. J. Arid Environ. 135, 140–146. https://doi.org/10.1016/j.jaridenv.2016.09.001 (2016).Article 

    Google Scholar 
    Pecchi, M. et al. Species distribution modelling to support forest management A literature review. Ecol. Model. 411, 108817 (2019).Article 

    Google Scholar 
    Spiers, J. A., Oatham, M. P., Rostant, L. V. & Farrell, A. D. Applying species distribution modelling to improving conservation-based decisions: A gap analysis of Trinidad and Tobago’s endemic vascular plants. Biodivers. Conserv. 27, 2931–2949 (2018).Article 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 (2009).Article 

    Google Scholar 
    Fois, M., Cuena-Lombraña, A., Fenu, G. & Bacchetta, G. Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecol. Model. 385, 124–132 (2018).Article 

    Google Scholar 
    Gilani, H., Goheer, M. A., Ahmad, H. & Hussain, K. Under predicted climate change: Distribution and ecological niche modelling of six native tree species in Gilgit-Baltistan, Pakistan. Ecol. Indic. 111, 106049 (2020).Article 

    Google Scholar 
    Ellison, A. M., Felson, A. J. & Friess, D. A. Mangrove rehabilitation and restoration as experimental adaptive management. Front. Mar. Sci. 7, 327. https://doi.org/10.3389/fmars.2020.00327 (2020).Article 

    Google Scholar 
    Ellison, A. M. Mangrove restoration: Do we know enough?. Restor. Ecol. 8(3), 219–229 (2000).Article 

    Google Scholar 
    Brown, B., Fadillah, R., Nurdin, Y., Soulsby, I., & Ahmad, R. CASE STUDY: Community Based Ecological Mangrove Rehabilitation (CBEMR) in Indonesia. In From small (12–33 ha) to medium scales (400 ha) with pathways for adoption at larger scales ( > 5000 ha). SAPI EN. S. Surveys and Perspectives Integrating Environment and Society 7.2 (2014).Rodríguez-Rodríguez, J. A., Mancera-Pineda, J. E. & Tavera, H. Mangrove restoration in Colombia: Trends and lessons learned. For. Ecol. Manage. 496, 119414 (2021).Article 

    Google Scholar 
    Romañach, S. S. et al. Conservation and restoration
    of mangroves: Global status, perspectives, and prognosis. Ocean Coast Manag. 154, 72–82. https://doi.org/10.1016/j.ocecoaman.2018.01.009 (2018).Article 

    Google Scholar 
    Sulochanan, B. et al. Water and sediment quality parameters of the restored mangrove ecosystem of Gurupura River and natural mangrove ecosystem of Shambhavi River in Dakshina Kannada, India. Marine Pollution Bulletin 176, 113450. https://doi.org/10.1016/j.marpolbul.2022.113450 (2022).Lovelock, C. E., Barbier, E. & Duarte, C. M. Tackling the mangrove restoration challenge. PLoS Biol. 20(10), e3001836 (2022).Article 
    CAS 

    Google Scholar 
    Lovelock, C. E. & Brown, B. M. Land tenure considerations are key to successful mangrove restoration. Nature Ecol. Evol. 3(8), 1135–1135 (2019).Article 

    Google Scholar 
    Su, J., Friess, D. A. & Gasparatos, A. A meta-analysis of the ecological and economic outcomes of mangrove restoration. Nat. Commun. 12(1), 1–13 (2021).Article 

    Google Scholar 
    Lee, S. Y., Hamilton, S., Barbier, E. B., Primavera, J. & Lewis, R. R. Better restoration policies are needed to conserve mangrove ecosystems. Nature Ecol. Evol. 3(6), 870–872 (2019).Article 

    Google Scholar 
    Chakraborty, S., Sahoo, S., Majumdar, D., Saha, S. & Roy, S. Future Mangrove suitability assessment of Andaman to strengthen sustainable development. J. Clean. Prod. 234, 597–614 (2019).Article 

    Google Scholar 
    Charrua, A. B., Bandeira, S. O., Catarino, S., Cabral, P. & Romeiras, M. M. Assessment of the vulnerability of coastal mangrove ecosystems in Mozambique. Ocean Coast. Manag. 189, 105145 (2020).Article 

    Google Scholar 
    Hu, W. et al. Predicting potential mangrove distributions at the global northern distribution margin using an ecological niche model: Determining conservation and reforestation involvement. For. Ecol. Manage. 478, 118517 (2020).Article 

    Google Scholar 
    Rodríguez-Medina, K., Yañez-Arenas, C., Peterson, A. T., Euán Ávila, J. & Herrera-Silveira, J. Evaluating the capacity of species distribution modeling to predict the geographic distribution of the mangrove community in Mexico. PLoS ONE 15(8), e0237701 (2020).Article 

    Google Scholar 
    Wang, Y. et al. Simulating spatial change of mangrove habitat under the impact of coastal land use: Coupling MaxEnt and Dyna-CLUE models. Sci. Total Environ. 788, 147914 (2021).Article 
    CAS 

    Google Scholar 
    Gopal, B. & Chauhan, M. Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat. Sci. 68(3), 338–354 (2006).Article 

    Google Scholar 
    Sahana, M., Rehman, S., Paul, A. K. & Sajjad, H. Assessing socio-economic vulnerability to climate change-induced disasters: Evidence from Sundarban Biosphere Reserve, India. Geol. Ecol. Landsc. 5(1), 40–52 (2021).Article 

    Google Scholar 
    Giri, C. et al. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 35(3), 519–528 (2008).Article 

    Google Scholar 
    Giri, C., Pengra, B., Zhu, Z., Singh, A. & Tieszen, L. L. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 73(1–2), 91–100 (2007).Article 

    Google Scholar 
    Islam, S. N. & Gnauck, A. Effects of salinity intrusion in mangrove wetlands ecosystems in the Sundarbans: An alternative approach for sustainable management. Wetlands Monitor. Modell. Manag. 2007, 315 (2007).
    Google Scholar 
    Hazra, S., Ghosh, T., DasGupta, R. & Sen, G. Sea level and associated changes in the Sundarbans. Sci. Cult. 68(9/12), 309–321 (2002).
    Google Scholar 
    Purkait, B. Coastal erosion in response to wave dynamics operative in Sagar Island, Sundarban delta, India. Front. Earth Sci. China 3(1), 21–33 (2009).Article 

    Google Scholar 
    World Bank (2014). Building resilience for sustainable development of the Sundarbans: Strategy report (No. 20116; World Bank Other Operational Studies). The World Bank Group. https://ideas.repec.org/p/wbk/wboper/20116.html.Das, M. A. H. U. A. Impact of commercial coastal fishing on the environment of Sundarbans for sustainable development. Asian Fish. Sci. 22(1), 157–167 (2009).
    Google Scholar 
    Hoq, M. E. An analysis of fisheries exploitation and management practices in Sundarbans mangrove ecosystem, Bangladesh. Ocean Coast. Manag. 50(5–6), 411–427 (2007).Article 

    Google Scholar 
    Census of India (2011). Primary census abstract, census of India. The government of India, Registrar General and Census Commissioner of India, Ministry of Home Affairs, New Delhi, India. https://censusindia.gov.in/nada/index.php/catalog/41021Chowdhury, A. & Maiti, S. K. Assessing the ecological health risk in a conserved mangrove ecosystem due to heavy metal pollution: A case study from Sundarbans Biosphere Reserve, India. Hum. Ecol. Risk Assess. Int. J. 22(7), 1519–1541 (2016).Article 
    CAS 

    Google Scholar 
    Hajra, R. et al. Unravelling the association between the impact of natural hazards and household poverty: Evidence from the Indian Sundarban delta. Sustain. Sci. 12(3), 453–464 (2017).Article 

    Google Scholar 
    Sahana, M. & Sajjad, H. Assessing Influence of Erosion and Accretion on Landscape Diversity in Sundarban Biosphere Reserve, Lower Ganga Basin: A Geospatial Approach. In Quaternary Geomorphology in India, (eds Das, B. et al.) (Springer, Cham, 2019). https://doi.org/10.1007/978-3-319-90427-6_10 (2018).Chaudhuri, A. B., Choudhury, A., Hussain, Z., & Acharya, G. Mangroves of the Sundarbans. Vol. I. India, The IUCN Wetlands Programme 247 (IUCN, 1994).GBIF.org. GBIF Occurrence Download, 2018. https://www.gbif.org/. Avicennia marina: https://doi.org/10.15468/dl.vmlooq and R. mucronata: https://doi.org/10.15468/dl.ewnqnm (accessed March 2019).Mandal, R. N. & Naskar, K. R. Diversity and classification of Indian mangroves: A review. Trop. Ecol. 49(2), 131–146 (2008).
    Google Scholar 
    Mandal, A. K., & Nandi, N. C. Fauna of Sundarban mangrove ecosystem, west Bengal, India, Vol. 3 (Zoological Survey of India, 1989).Mitra, A. & Pal, S. The Oscillating Mangrove Ecosystem and the Indian Sundarbans (WWF-India-WBSO, 2002).Naskar, K., & Guha Bakshi, D. N. Mangrove Swamps of the Sundarbans (Naya Prokash, 1987).Barik, J. & Chowdhury, S. True mangrove species of Sundarbans delta, West Bengal, eastern India. Check list 10(2), 329–334. https://doi.org/10.15560/10.2.329 (2014).IUCN 2018. The IUCN Red List of Threatened Species. Version 2018. 2018. Electronic database accessible, accessed 15 Nov 2018; http://www.iucnredlist.org.Guyon, I. & Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003).MATH 

    Google Scholar 
    Cavanaugh, K. C. et al. Climate-driven regime shifts in a mangrove–salt marsh ecotone over the past 250 years. Proc. Natl. Acad. Sci. 116(43), 21602–21608 (2019).Article 
    CAS 

    Google Scholar 
    Naskar, K. & Mandal, R. Ecology and Biodiversity of Indian Mangroves, Vol. 1 (Daya Books, 1999).Figueiredo, F. O. et al. Beyond climate control on species range: The importance of soil data to predict distribution of Amazonian plant species. J. Biogeogr. 45(1), 190–200 (2018).Article 

    Google Scholar 
    Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 20(1), 1–9 (2014).Article 

    Google Scholar 
    Asbridge, E., Lucas, R., Ticehurst, C. & Bunting, P. Mangrove response to environmental change in Australia’s Gulf of Carpentaria. Ecol. Evol. 6(11), 3523–3539 (2016).Article 

    Google Scholar 
    He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the Anthropocene. Curr. Biol. 29(19), R1021–R1035. https://doi.org/10.1016/j.cub.2019.08.042 (2019).Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186(2), 251–270 (2005).Article 

    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge University Press, 2017).Book 

    Google Scholar 
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).Article 

    Google Scholar 
    STR Annual Report. In Conservator of Forest & Field Director, Sundarban Tiger Reserve. Canning, West Bengal, India: Directorate of Forests, Government of West Bengal (2013–2014).Segurado, P. & Araujo, M. B. An evaluation of methods for modelling species distributions. J. biogeogr. 31(10), 1555–1568. https://doi.org/10.1111/j.1365-2699.2004.01076.x (2004).Kadmon, R., Farber, O. & Danin, A. A systematic analysis of factors affecting the performance of climatic envelope models. Ecol. Appl. 13(3), 853–867. https://doi.org/10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2 (2003).Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. distribut. 14(5), 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x (2008).Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12(1), 40–45 (2019).Article 
    CAS 

    Google Scholar 
    Hoguane, A. M., Hill, A. E., Simpson, J. H. & Bowers, D. G. Diurnal and tidal variation of temperature and salinity in the Ponta Rasa mangrove swamp, Mozambique. Estuar. Coast. Shelf S. 49(2), 251–264. https://doi.org/10.1006/ecss.1999.0499 (1999).  Article 
    CAS 

    Google Scholar 
    Sanders, C. J. et al. Are global mangrove carbon stocks driven by rainfall? J. Geophys. Res. Biogeosci. 121(10), 2600–2609. https://doi.org/10.1002/2016JG003510 (2016).Srivastava, J., Farooqui, A. & Seth, P. Pollen-vegetation relationship in surface sediments, Coringa mangrove ecosystem, India: palaeoecological applications. Palynology 43(3), 451–466. https://doi.org/10.1080/01916122.2018.1458755 (2019).Nandy, P., Das, S., Ghose, M. & Spooner-Hart, R. Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. Wetlands Ecol. Manage. 15(4), 347–357 (2007).Article 
    CAS 

    Google Scholar 
    Washington, W., Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40 (2001).
    Google Scholar 
    Blasco, F., Aizpuru, M. & Gers, C. Depletion of the mangroves of Continental Asia. Wetlands Ecol. Manage. 9(3), 255–266 (2001).Article 

    Google Scholar 
    Datta, D. & Deb, S. Forest structure and soil properties of mangrove ecosystems under management scenarios: Experiences from the intensely humanized landscape of Indian Sunderbans. Ocean Coast. Manag. 140, 22–33 (2017).Article 

    Google Scholar 
    Wahid, S. M., Babel, M. S. & Bhuiyan, A. R. Hydrologic monitoring and analysis in the Sundarbans mangrove ecosystem, Bangladesh. J. Hydrol. 332(3–4), 381–395 (2007).Article 

    Google Scholar 
    Iftekhar, M. S. & Islam, M. R. Degeneration of Bangladesh’s Sundarbans mangroves: A management issue. Int. For. Rev. 6(2), 123–135 (2004).
    Google Scholar 
    Saenger, P. Mangrove Ecology, Silviculture, and Conservation (Kluwer Academic Publishers, 2002).Book 

    Google Scholar 
    Feka, Z. N. Sustainable management of mangrove forests in West Africa: A new policy perspective?. Ocean Coast. Manag. 116, 341–352. https://doi.org/10.1016/j.ocecoaman.2015.08.006 (2015).Article 

    Google Scholar 
    Giri, S. et al. A study on abundance and distribution of mangrove species in Indian Sundarban using remote sensing technique. J. Coast Conserv. 18, 359–367. https://doi.org/10.1007/s11852-014-0322-3 (2014).Article 

    Google Scholar 
    Moschetto, F. A., Ribeiro, R. B. & De Freitasa, D. M. Urban expansion, regeneration and socioenvironmental vulnerability in a mangrove ecosystem at the southeast coastal of São Paulo, Brazil. Ocean Coast. Manag. 24, 105418. https://doi.org/10.1016/j.ocecoaman.2020.105418 (2020).Article 

    Google Scholar 
    Tuholskea, C., Tane, Z., López-Carra, D., Roberts, D. & Cassels, S. Thirty years of land use/cover change in the Caribbean: Assessing the relationship between urbanization and mangrove loss in Roatán, Honduras. Appl. Geogr. 88, 84–93. https://doi.org/10.1016/j.apgeog.2017.08.018 (2017).Article 

    Google Scholar 
    Kantharajan, G. et al. Vegetative structure and species composition of mangroves along the Mumbai coast, Maharashtra, India. Reg. Stud. Mar. Sci. 19, 1–8 (2018).
    Google Scholar 
    Marcinko, C. L. et al. The development of a framework for the integrated assessment of SDG trade-offs in the Sundarban Biosphere Reserve. Water 13(4), 528 (2021).Article 

    Google Scholar 
    Sahana, M. et al. Assessing Wetland ecosystem health in Sundarban Biosphere Reserve using pressure-state-response model and geospatial techniques. Remot. Sens. Appl. Soc. Environ. 26, 100754. https://doi.org/10.1016/j.rsase.2022.100754 (2022).Saha, S., & Choudhury, A. Vegetation Analysis of Restored And Natural Mangrove Forest In Sagar Island, Sundarbans, East Coast of India. Indian J. Mar. Sci. 24, 133–136. http://nopr.niscpr.res.in/bitstream/123456789/37297/1/IJMS%2024%283%29%20133-136.pdf (1995).Balke, T. & Friess, D. A. Geomorphic knowledge for mangrove restoration: A pantropical categorization. Earth Surf. Process. Landf. 41, 231–239. https://doi.org/10.1002/esp.3841 (2016).Article 

    Google Scholar 
    Alongi, D. M. Mangrove forests of timor-leste: Ecology, degradation and vulnerability to climate change. In Mangrove ecosystems of Asia 199–212 (Springer, 2014).Biswas, S. R., Mallik, A. U., Choudhury, J. K. & Nishat, A. A unified framework for the restoration of Southeast Asian mangroves—bridging ecology, society and economics. Wetlands Ecol. Manage. 17(4), 365–383 (2009).Article 

    Google Scholar 
    Dubey, S. K., Censkowsky, U., Roy, M., Chand, B. K., & Dey, A. Framework for rapid evaluation of a mangrove restoration site: A case study from Indian Sundarban. In Sabkha Ecosystems 363–378 (Springer, 2019).Islam, M. M. & Shamsuddoha, M. Coastal and marine conservation strategy for Bangladesh in the context of achieving blue growth and sustainable development goals (SDGs). Environ. Sci. Pol. 87, 45–54. https://doi.org/10.1016/j.envsci.2018.05.014 (2018).Article 

    Google Scholar 
    Bosire, J., Celliers, L., Groeneveld, J., Paula, J. & Schleyer, M.H. Regional State of the Coast Report-Western Indian Ocean. UNEP-Nairobi Convention and WIOMSA 546 (2015).Owuor, M. A., Mulwa, R., Otieno, R., Icely, J. & Newton, A. Valuing mangrove biodiversity and ecosystem services: A deliberative choice experiment in Mida Creek, Kenya. Ecosyst. Serv. 40, 101040. https://doi.org/10.1016/j.ecoser.2019.101040 (2019).Article 

    Google Scholar 
    Barwell, L. et al. (2018). Regional
    State of the Coast Report Western Indian Ocean. The United Nations Environment
    Programme/Nairobi Convention Secretariat. https://wedocs.unep.org/handle/20.500.11822/9700?show=fullde Jesús Arce-Mojica, T., Nehren, U., Sudmeier-Rieux, K., Miranda, P. J. & Anhuf, D. Nature-based solutions (NbS) for reducing the risk of shallow landslides: where do we stand? Int. J. disaster risk reduct. 41, 101293. https://doi.org/10.1016/j.ijdrr.2019.101293 (2019).Bardhan, M. An empirical study on mangrove restoration in Indian Sundarbans—a community-based environmental approach. In Modern Cartography Series, vol. 10 387–405 (Academic Press, 2021).Kumar, M. C., Bholanath, M. & Debashis, S. Study on utility and revival through community approach in sundarbans mangrove. Int. J. Soc. Sci. https://doi.org/10.5958/2321-5771.2014.00101.X (2014).Article 

    Google Scholar 
    Chakraborty, S. K., Giri, S., Chakravarty, G. & Bhattacharya, N. Impact of eco-restoration on the biodiversity of Sundarbans Mangrove Ecosystem, India. Water Air Soil Pollut. Focus 9(3), 303–320 (2009).Article 

    Google Scholar 
    Paulson Institute. Research report on mangrove protection and restoration strategy in China, 2020; https://paulsoninstitute.org.cn/wpcontent/uploads/2020/06/%E4%B8%AD%E5%9B%BD%E7%BA%A2%E6%A0%91%E6%9E%97%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%81%A2%E5%A4%8D%E6%88%98%E7%95%A5%E7%A0%94%E7%A9%B6%E6%8A%A5%E5%91%8A%E2%80%94%E6%91%98%E8%A6%81%E7%89%88.pdf.Fan, H. Q. & Wang, W. Q. Some thematic issues for mangrove conservation in China. J. Xiamen Univ. Nat. Sci 56, 323–330. https://doi.org/10.6043/j.issn.0438-0479.201612003 (2017).Article 

    Google Scholar 
    Wang, W., Fu, H., Lee, S. Y., Fan, H. & Wang, M. Can strict protection stop the decline of mangrove ecosystems in China? Fromrapid destruction to rampant degradation. Forests 11, 55. https://doi.org/10.3390/f11010055 (2020).Article 

    Google Scholar 
    Roy, A. K. D. & Alam, K. Participatory forest management for the sustainable management of the sundarbans mangrove forest. Am. J. Env. Sci. 8(5), 549–555. https://doi.org/10.3844/ajessp.2012.549.555 (2012).Article 

    Google Scholar 
    Selvam, V. et al. In Toolkit for establishing coastal bioshield. M. S. Swaminathan Research Foundation, Centre for Research on Sustainable Agriculture and Rural Development (2005).Raju, J. S. S. N. Xylocarpus (Meliaceae): A less-known mangrove taxon of the Godavari estuary, India. Curr. Sci. 84(7), 879–881. https://www.currentscience.ac.in/Volumes/84/07/0879.pdf (2003).
    Google Scholar 
    Siddiqui, A. H. & Khair, A. Infestation status of heart rot disease of pasur (Xylocarpus mekongensis), tree in the sundarbans. Indian For. 138(2), 165–168 (2012).
    Google Scholar 
    Iqbal, M. & Hossain, M. Tourists’ willingness to pay for restoration of Sundarbans Mangrove forest ecosystems: A contingent valuation modeling study. Env. Dev. Sustain. 2022, 1–22 (2022).
    Google Scholar 
    Ekka, A. & Pandit, A. Willingness to pay for restoration of natural ecosystem: A study of Sundarban mangroves by contingent valuation approach. Indian J. Agric. Econ. 67, 902 (2012).
    Google Scholar 
    Datta, D., Chattopadhyay, R. N. & Guha, P. Community based mangrove management: A review on status and sustainability. J. Env. Manag. 107, 84–95. https://doi.org/10.1016/j.jenvman.2012.04.013 (2012).Article 

    Google Scholar 
    Ghosh, A., Schmidt, S., Fickert, T. & Nusser, M. The Indian Sundarban mangrove forests: History, utilization, conservation strategies and local perception. Diversity 7(2), 149–169. https://doi.org/10.3390/d7020149 (2015).Article 
    CAS 

    Google Scholar 
    Ranjan, R. Optimal mangrove restoration through community engagement on coastal lands facing climatic risks: The case of Sundarbans region in India. Land Use Policy 81, 736–749 (2019).Article 

    Google Scholar 
    Dutta, M., Roy, S. & Nibirh, S. Joint forest management and forest protection committees: Negotiation systems and the design of incentives—a case study of West Bengal. Electron. J. https://doi.org/10.2139/ssrn.2245965 (2001).Article 

    Google Scholar 
    McKee, K. L., Rooth, J. E. & Feller, I. C. Mangrove recruitment after forest disturbance is facilitated by herbaceous species in the Caribbean. Ecol. Appl. 17(6), 1678–1693 (2007).Article 

    Google Scholar 
    Begam, M. et al. Native salt-tolerant grass species for habitat restoration, their acclimation and contribution to improving edaphic conditions: A study from a degraded mangrove in the Indian Sundarbans. Hydrobiologia 803(1), 373–387 (2017).Article 
    CAS 

    Google Scholar 
    Donnelly, M. & Walters, L. Trapping of Rhizophora mangle propagules by coexisting early successional species. Estuaries Coasts 37, 1562–1571 (2014).Article 

    Google Scholar 
    Ren, H. et al. Sonneratia apetala Buch. Ham in the mangrove ecosystems of China: An invasive species or restoration species?. Ecol. Eng. 35(8), 1243–1248 (2009).Article 

    Google Scholar 
    Cheong, S.-M. et al. Coastal adaptation with ecological engineering. Nature Clim. Change 3, 787–791. https://doi.org/10.1038/nclimate1854 (2013).Article 

    Google Scholar  More

  • in

    Comparison of the effects of litter decomposition process on soil erosion under simulated rainfall

    Study area descriptionYangtze River Basin is situated in central China (Fig. 1). Its geographical coordinates are between 30° 48′ 30″–31° 02′ 30″ N and 112° 48′ 45″–113° 03′ 45″ E. Taizishan is located in the transition zone between the north and south of China, with an altitude of 403–467.4 m. It belongs to the subtropical monsoon humid climate zone and has obvious karst landforms. The farm area is 7576 hectares, the forest coverage rate is 82.0%, and the vegetation is mainly Masson pine, fir, and various broad-leaved tree species. Increased forest coverage reduces sediment production30. The soil is mainly viscous yellow–brown soil and loess parent material. Rain is concentrated in summer, with an average annual rainfall of 1094.6 mm and an average annual temperature of 16.4 °C. Rainfall-related flood risk increased in the Yangtze River Delta in recent years31.The study was based in a Pinus massoniana forest in the Taizishan forest farm of Hubei Province. The Pinus massoniana (Masson pine) is a common species distributed in Central China.Figure 1Geographic location of the study area. Maps were generated using ArcGIS 10.8 for Desktop (http://www.esri.com/software/arcgis/arcgis-for-desktop).Full size imageExperiment designWe chose the Pinus massoniana forest with 47a in the study area as the research object. In the typical Pinus massoniana forest, the separate layers of litter (semi-decomposed and non-decomposed layers) were collected from several 1 m × 1 m quadrat and placed in grid bags. The litter of the semi-decomposed layer have no complete outline, and the color was brown. As the litter leaves of the completely decomposed layer are powdery and are combined with the soil layer, this layer is difficult to collect. Before testing, it was necessary to clean the soil off the pine needles and then allow the litter to dry naturally. The characteristics of the semi-decomposed and non-decomposed litter layers are shown in Table 1. The soil samples need to be dried and screened by 10 mm. When filling the soil trough, every 0.1 m of soil thickness was one layer, for a total of four layers (0.4 m). The characteristics by soil particle sizes are different (Fig. 2). The soil samples were dried naturally, crushed, and then sieved. The soil trough (2 m long, 0.5 m wide and 0.5 m deep) was filled to have a bulk density of 1.53 g·m−3. In this process, an appropriate amount of water was sprinkled on the surface of each soil layer to achieve a soil moisture content consistent with the surrounding, undisturbed, or natural, state. The simulation experiment was conducted in the Jiufeng rainfall laboratory at Beijing Forestry University, China. We used a rainfall simulation system (QYJY-503T, Qingyuan Measurement Technology, Xi’an, China) used a rotary downward spray nozzle. The system is able to simulate a wide range of rainfall intensities (10 to 300 mm h−1) using various water pressure and nozzle sizes controlled by a computer system.Table 1 Characteristics of the non-decomposed and semi-decomposed layers of Pinus massoniana litter.Full size tableFigure 2Soil particle composition of study area soil layers.Full size imageAccording to the results of the field forest investigation, the litter was covered with the experimental treatments shown in Table 2. The treatments mass coverage of non-decomposed litter layer was named as follows: N1 denoted litter mass coverage 0 g·m−2, N2 was ‘the non-decomposed litter mass coverage 100 g·m−2’, N3 was ‘the non-decomposed litter mass coverage 200 g·m−2’, and N4 was ‘the non-decomposed litter mass coverage 400 g·m−2’, N5 was ‘the semi-decomposed litter mass coverage 100 g·m−2’, N6 was ‘the non-decomposed litter mass coverage 100 g·m−2 and the semi-decomposed litter mass coverage 100 g·m−2’, N7 was ‘the non-decomposed litter mass coverage 200 g·m−2 and the semi-decomposed litter mass coverage 100 g·m−2’. N2, N3 and N4 were the undissolved state of litter layer, and N4 (non-decomposed state, ND), N7 (initial stage of litter decomposition, ID), N6 (middle stage of litter decomposition, MD) and N5 (final stage of litter decomposition, FD) respectively represent different stages of litter decomposition.Table 2 The experimental design of this study.Full size tableAccording to the rainfall in the Taizishan area of Hubei Province, erosive rainfall and extreme rainstorms were selected as the research conditions. Summer rainfall events occur mainly in the summer in this area, and a rainfall intensity of 60 mm·h−1 was the most common erosive rainfall intensity. Under extreme weather conditions, the rainfall intensity can reach up to 120 mm·h−1. Our experiments were conducted with 60 and 120 mm·h−1 rain intensities with a rainfall that lasted 1 h. According to the field investigation data of forest land, this area is a low mountain and hilly area with a slope mostly between 5° and 10°. Therefore, 5° and 10° were selected for the slope treatments in this study. The combination of slope and rainfall intensity was named as follows: T1 denoted ‘Slope 5° and rainfall intensity 60 mm·h−1’, T2 was ‘Slope 10° and rainfall intensity 60 mm·h−1’, T3 was ‘Slope 5° and rainfall intensity 120 mm·h−1’, and T4 was ‘Slope 10° and rainfall intensity 120 mm·h−1’. With two rainfall intensities, two slopes, seven litter coverage gradient and two repetitions combined, this study had a total of 56 rainfall events.Experimental procedureBefore the test, the soil samples were wetted for 10 h and then drained for 2 h to eliminate the effect of the initial soil moisture on the soil detachment measurement. When the simulated rainfall started, all the runoff and sediment produced from plot were collected every 5 min in the first 10 min, and then collected once every 10 min during the subsequent 50 min. At the same time, runoff velocity, depth and temperature were measured and vernier calliper (accuracy 0.02 mm) respectively.The overland flow velocity was measured using dying method (KMnO4 solution)32. After judging the flow pattern, we confirmed the correction coefficient K value (in laminar flow state, K = 0.67; transition flow state, K = 0.70; turbulent flow state, K = 0.8). The average velocity of overland flow was obtained by multiplying the correction coefficient K and the instantaneous velocity. Runoff depth was measured using vernier calliper (accuracy 0.02 mm). Runoff temperature was measured using thermometer. When the rainfall experiment finished, the collected runoff samples were measured volumetric cylinder and then settled for at least 12 h. The clear water was decanted, and the samples were put into an oven to dry for 24 h under 105 °C. The sediment sample was dried and weighed with an electronic scale.Calculation of hydrodynamic parametersOverland flow has the characteristics of a thin water layer, large fluctuations of the underlying surface, and unstable flow velocity. At present, most scholars use open-channel flow theory to study overland flow33,34. In open-channel flow theory, the Reynold’s number (Re), Froude constant (Fr), flow index (m), resistance coefficient (f), and soil separation rate (({D}_{r})) are the basic parameters of overland flow dynamics, through Reynold’s number (Re), Froude constant (Fr), flow index (m) can distinguish flow patterns. Re is calculated as:$$Re=Rcdot V/nu ,$$where Re is the Reynolds number of the water flow, which is dimensionless, and can be used to judge the flow state of overland flow. When Re ≤ 500, the flow pattern is laminar; when 500   5000, the flow pattern is turbulent. R is the hydraulic radius (m), which is generally replaced by flow depth as measured by a vernier calliper (accuracy 0.02 mm). (V) is the average velocity (m·s−1); (nu) is the kinematic viscosity coefficient (m2·s−1), and the calculation formula is (nu) = 0.01775·10−4·(1 + 0.0337 t + 0.00021 t2), where t is the test overland flow temperature35.Fr is the Froude constant, which is the ratio of the inertial force to gravity and can be used to distinguish overland flow as rapid flow, slow flow, or critical flow. When Fr  1, the fluid is rapid flow.Fr is calculated as:$$Fr=V/sqrt{gcdot R},$$where (Fr) is the Froude constant of the water flow, which is dimensionless; (V) is the average velocity (m·s−1); g is the acceleration of gravity and has a constant value of 9.8 m·s−2; R is a hydraulic radius (m), and is generally replaced by flow depth as measured by a vernier calliper (accuracy 0.02 mm).Regression fitting is made for runoff depth (h) and single width flow (Q). The runoff depth equation for slope is as follows:$$h=k{q}^{m},$$where q is the single width flow (L·m−1·s−1); h is the depth of water on the slope (m); and m is the flow index, which reflects the turbulent characteristics of the flow state. The larger m is, the more energy the flow consumes in the work of resistance. The comprehensive index (k) reflects the characteristics of the underlying surface and the water viscosity of the slope flow. The larger k is, the stronger the surface material of the slope works on the flow.The resistance of overland flow reflects the inhibition effect of different underlying surface conditions on the velocity of overland flow. The Darcy–Weisbach formula is widely used in research because of its two advantages: applicability and dimensionlessness under laminar and turbulent flow conditions36,37.The resistance coefficient (f) is calculated as follows:$$f=8cdot gcdot Rcdot J/{V}^{2},$$where the resistance coefficient f has no dimension; g is the acceleration of gravity and is always 9.8 m·s−2; R is a hydraulic radius (m), generally replaced by flow depth measured by a vernier calliper (accuracy 0.02 mm); (V) is the average velocity (m·s−1); and J is the hydraulic gradient, which can be converted by the gradient in a uniform flow state and is generally replaced by the sine value of the gradient.Shear stress ((tau)) is the main driving force that affects the stripping of soil particles from the surface soil38. Shear stress is calculated as:$$tau =rcdot gcdot Rcdot J,$$where (tau) is the shear force of runoff (Pa); and r is the density of water and sediment concentration flow (kg·m−3). This study used a muddy water mass and volume ratio in the unseparated state to calculate the density of water and sediment concentration flow.Flow power (W) is the runoff power per unit area of water and refers to the power consumed by the weight of water acting on the riverbed surface to transport runoff and sediment. W is calculated as:$$W=tau cdot V,$$where W is the flow power (N·m−1·s−1); and (tau) is the shear force of runoff (Pa).Soil separation rate (({D}_{r})) refers to the quality of soil in which soil particles are separated from the soil per unit time. The calculation formula is as follows:$${D}_{r}={W}_{d}-{W}_{w}/tcdot A,$$where ({D}_{r}) is the rate of soil separation (kg·m−2·s−1); ({W}_{w}) is the dry weight of soil before the test; ({W}_{d}) is the dry weight of soil after the test, measured by the drying method (kg); t is the scouring time (s); and A is the surface area of the soil sample (m2). More

  • in

    Meiotic transmission patterns of additional genomic elements in Brachionus asplanchnoidis, a rotifer with intraspecific genome size variation

    Many eukaryotes display intraspecific genome size (GS) variation due to varying amounts of non-coding DNA1,2,3,4,5. Such GS variation can be mediated by additional genomic elements, which are physically represented either by extra (B-)chromosomes or by large heterozygous insertions into the regular chromosomes. On a DNA sequence level, non-coding DNA can be classified as highly repetitive, e.g. interspersedly repeated transposable elements or tandemly repeated satellite DNA, or as the result of previous duplications of the genome followed by pseudogenization6. The long-term gain and loss of such non-coding DNA sequences is thought to be governed by largely neutral evolutionary processes, and their excessive accumulation in some genomes can be explained by genetic drift7,8, even though selection might also sometimes play a role9,10.Non-coding DNA can affect organisms in different ways. A large number of studies document correlations between genome size and organismic traits such as cell size11,12, body size13,14, or developmental rates15, sometimes even at the within-population level13. Under some circumstances, differential amounts of non-coding DNA might even affect fitness16. Furthermore, DNA can have coding-independent effects that operate at lower levels, such as intragenomic selection. For example, (additional) genomic elements might increase their own fitness by increasing their transmission rates to offspring by meiotic drive, sometimes at the expense of their host’s fitness17,18,19. Meiotic drive in this classical sense occurs during the chromosome segregation during the meiotic divisions, even though later stages during gametogenesis can also be affected20. Recognizing and disentangling such effects is important for a better understanding of the evolution of eukaryotic genomes, in particular, the evolutionary causes of the large intraspecific genome size variation.Here we study meiotic transmission patterns of additional genomic elements in the monogonont rotifer Brachionus aplanchnoidis. Individuals of this species can differ by up to almost two-fold in genome size, which is mediated by several Megabase-sized independently segregating genomic elements (ISEs) consisting mainly of tandemly repeated satellite DNA21. The genomic data are consistent with a mixture of both B-chromosomes and large insertions to normal chromosomes21,22. Individual rotifers and their clonal offspring can be characterized by the number and size of their ISEs and their composition stays constant through hundreds of asexual (mitotic) generations22. Occasionally, monogonont rotifers engage in sexual reproduction (Fig. 1), producing sexual females, whose oocytes undergo classical meiosis with two polar bodies formed23. Unfertilized haploid eggs develop mitotically into males, and sperm production does not involve any meiotic maturation divisions24. By analyzing the genome size distributions of haploid males produced by different mother clones, it has been shown that ISEs segregate in a manner suggesting that they do not pair with each other, nor with any other part of the genome22. For instance, a clone containing three ISEs will produce males (and gametes) that might contain either zero, one, two, or three ISEs, corresponding to four different GS classes of the males in this clone. The frequencies of these different GS classes roughly approximated those expected by random segregation. However, previous studies in B. asplanchnoidis did not resolve different steps during meiotic transmission, so they were not designed to detect meiotic drive or subsequent changes in meiotic transmission, and they also did not test whether there were subtle deviations from completely independent segregation.Figure 1Schematics of rotifer life cycle. Monogonont rotifers are cyclical parthenogens, capable of both ameiotic parthenogenesis and sexual reproduction. The production of sexual females is triggered by quorum sensing chemicals, released by the animals themselves at high population density. In contrast to parthenogenetic females, sexual females produce oocytes by meiosis, and give rise to either haploid males or diploid resting eggs, depending on whether they get fertilized by a male24.Full size imageIn the present study, we test for meiotic transmission biases of ISEs. If meiotic transmission would be completely unbiased, the frequencies of haploid oocytes, or males, with different numbers of ISEs should be identical to those expected by random segregation. For example, a mother with two ISEs should produce males with zero, one, or two ISEs (hence, three male GS classes), which have relative frequencies of 0.25, 0.5, and 0.25, respectively. However, if ISEs avoid segregating into polar bodies due to meiotic drive17,20,25, one would expect to see an increase in the relative frequency of male GS classes with two ISEs, compared to those with no ISE . By contrast, if ISEs are preferentially sequestered into polar bodies due to meiotic drag 7,26, the GS class with two ISEs should be underrepresented. Our experimental approach for detecting meiotic transmission biases relies on measuring (by flow-cytometry) the observed relative frequencies of each male GS class and comparing these to their relative frequencies expected under unbiased transmission (Fig. 2). To allow for clear comparisons, the main output variable in these analyses is the observed/expected ratio (O/E-ratio), i.e., the observed frequency divided by the expected relative frequency for each GS class. If there were no transmission biases, O/E-ratios across all GS classes should equal one. In contrast, O/E-ratios larger than one indicate overrepresentation of a certain GS class, and if O/E ratios increase or decrease with genome size, this indicates drive or drag at a meiotic or postmeiotic stage (Fig. 2d,h).Figure 2Principle of inferring meiotic transmission patterns from the genome size distributions of haploid rotifer males. The first four panels (a–d) show a rotifer clone with one ISE (i.e., two corresponding male GS classes). The last four panels (e–h) show a clone with four ISEs (i.e., five corresponding male GS classes). a, e Example of flow cytometry data. b, f Conceptual model of ISE meiotic segregation. c, g Theoretically predicted GS distributions of males (relative to the female GS) under meiotic drive, meiotic drag, or in the absence of meiotic drive. d, h Theoretically predicted O/E ratios (observed vs. expected frequencies of different male GS classes) under drive, drag, or on absence of drive. O/E values of  > 1 indicate over-representation of a GS class (relative to the frequency expected from unbiased transmission).Full size imageWe implemented these ideas in a mathematical model that contains the two parameters, transmission bias and cosegregation bias. Values for transmission bias may range from − 1 to 1 in our model. For instance, a value of 0.1 denotes a 10% increase in probability that an ISE segregates towards the egg pole (this is equivalent to a transmission rate of 0.55 for this ISE, i.e. mild meiotic drive). Concerning the second parameter, cosegregation bias, a positive value means that pairs of ISEs have an increased probability of being sequestered towards the same pole (irrespective of whether this is the egg pole or polar body pole), while a negative bias favors migration towards opposite poles. Please note that a cosegregation bias value of − 1 (i.e., 100% probability that ISEs migrate towards opposite poles) resembles the default segregation pattern of regular chromosomes. By estimating the transmission bias and cosegregation bias parameter for each rotifer clone, we tried to infer and compare general meiotic transmission patterns across clones, even if they contained different numbers and types of ISEs.Transmission biases may not only arise during meiosis, as described above but also during later stages of male embryonic development. For instance, they might be caused by differences in the survival of embryos, or due to differences in the fitness of hatched males containing different numbers of ISEs. To address these potential sources of variation, we compared the transmission biases in relatively young, synchronized male eggs, older eggs accumulating in growing cultures, and hatched males. Finally, to address the question of whether a high number of ISEs affects male embryonic survival in general, we estimated and compared hatching rates of (haploid) male eggs and (diploid) female eggs in 19 rotifer clones of different genome sizes (which is highly correlated with the number and size of ISEs in the genome22).Our results suggested that the ISEs in B. asplanchnoidis exhibit diverse meiotic segregation patterns: In some rotifer clones, transmission bias was positive, while the ISEs of other clones showed negative transmission bias (indicative of drag). Furthermore, we obtained evidence for a negative cosegregation bias in some clones, i.e., pairs of ISEs showed an increased probability to segregate towards opposite poles. Overall, these transmission patterns seemed to be determined early in the haploid life cycle, probably at or shortly after meiosis, since early and late stages of male embryonic development showed very similar GS distributions. Finally, we found that very large genome size (i.e., a large numbers of ISEs) was associated with reduced male embryonic survival. More

  • in

    Human attachment site preferences of ticks parasitizing in New York

    The attachment site of ticks has been studied in the context of both animal and human tick preference. In Oklahoma, a study of horses indicated that A. americanum preferentially bites the inguinal area, while I. scapularis and D. albipictus, the moose-tick, primarily bite the chest and axillary region, with D. albipictus often being found on the back18. A survey of dogs and cats across the US identified a similar distribution of ticks on dogs, with the attachment being most common on the abdomen, axillary and inguinal regions. However, this was species-specific with D. variabilis preferring the head and neck specifically19. Cats were more successfully parasitized by I. scapularis which preferred the head and A. americanum, which preferred the tail and perianal region19. This is similar to a study of tick distribution on wild black bears (Ursus americanus) in Pennsylvania, indicating that the primary tick present was I. scapularis and that the greatest numbers were found in association with the ears and muzzle20. In these cases, the ability for ticks to attach to specific areas is most likely a result of the grooming habits and abilities of the animals in question.Studies of anatomical region preference in humans also reported tick bite-site specificity associated with particular tick species. For example, in Korea, H. longicornis was determined to prefer abdomen and lower extremities (33%) and the abdomen/inguinal area (26.4%)21, which is a behavior similar to that of A. americanum observed here. Although H. longicornis is present in New York1, insufficient numbers were detected to draw definitive conclusions about its biting preference here. Additionally, a study in England (I. ricinus) reported that tick bites were most common in the legs (50%) of adult humans, but in the head and necks of children (43%)22, a differentiation that our survey does not at this time include. A similar phenomenon was observed in Russia, where tick bites were most common on the head and neck of all individuals (39.2%), but were much more common in children (84.9%)23. This study determined that the bite-site of single tick bites that resulted in infection with the Tick-Borne Encephalitis virus (TBEV) were associated with lethal outcomes if the bites were located on the head, neck, arms or axilla, while less lethality was associated with bites to the lower limbs and groin. This is most directly analogous to the transmission of DTV by I. scapularis, suggesting that bite site may have a similar relationship to disease outcomes in the related North American pathogen/vector pair.Under normal circumstances, ticks exist in sylvatic cycles with specific host preferences based on the tick species and life stage, with spillover to humans occasionally occurring for species with generalist feeding habits. Therefore, the feeding behaviors of ticks are variable, and this influences the ways that the ticks interact with humans.Ixodes scapularis is less specific in host-site preferenceThe primary life stages of I. scapularis that bite humans include nymphs and adult females, although males may also be found on humans. The body segment preference of I. scapularis is less specific than for D. variabilis, which prefers the head, and A. americanum, which prefers the thighs and pelvic region. Ixodes scapularis is primarily found on the central trunk, including the groin/pelvic region, the abdomen, the thoracic region, and the head/neck. This varies between the life stages, with more adults found in the thoracic/abdominal region of the body and nymphs being more commonly found on the arms and legs. This is partly due to the substantial size difference between adult and nymph/larval I. scapularis, with larvae being almost imperceptible and nymphs having a total body length of two to four millimeters. This results in nymphs/larvae being much more difficult to see, allowing them to more readily attach to the most visible portions of the human body while adults are restricted mostly to areas covered by clothing and hair.The presence of ticks on the head and neck indicates that I. scapularis tends to climb, although not with the preference for hair observed with D. variabilis. They appear to spend substantial time moving on the host, a period where they can be removed easily without having had a chance to potentially transmit pathogens by biting. On deer, this corresponds to a preference to move toward the neck and ears where the ticks are more difficult to dislodge24,25. On humans, it results in wide distribution across the whole body with less location specificity than other ticks.In addition to body region and life stage identification, I. scapularis ticks were also screened for several pathogens to determine if infection status influences host site preference. Anaplasma phagocytophilum, B. microti, and other pathogens (DTV and B. miyamotoi) did not influence the body segment the ticks chose to feed. However, in ticks infected with B. burgdorferi, a statistically significant change in the distribution of tick bites marked by an increased report of tick bites in the midsection and a decreased tick bites in the arms, legs, and head. While this may suggest a change in tick behavior/fitness in response to infection, it may also relate to the differences in infection rates of adult and nymph/larval ticks. Larvae, having never fed, are not infected with B. burgdorferi, and the rate of infection in nymphs is lower than that of adults1. Nymphs are less likely to be infected and are more likely to attach to the arms and legs, which is a potential source of the observed difference in infection rates. However, it remains unclear why this is not observed for the other pathogens that follow the same trend of increased infection rate in adult versus nymph/larval ticks.Bacterial and protozoal agents transmitted by I. scapularis take several hours for an infectious dose to be transmitted26,27,28. Therefore, prompt detection and removal of ticks is important for preventing tick-borne disease. Furthermore, understanding where the ticks attach allows them to be more easily detected, and also assists in preparing protective clothing for individuals entering tick-endemic areas. Additionally, knowing the biting location of I. scapularis could aid in detecting potential erythema migrans, a skin condition that occurs at the point of B. burgdorferi infected tick exposure in about 80% of cases29, which is highly diagnostic for both Lyme disease and STARI, which is transmitted by A. americanum.
    Amblyomma americanum prefers the thighs and groin of subjectsAmblyomma americanum, the lone star tick, is present throughout the southern portion of New York and is particularly dominant on Long Island1. This species is relatively large, fast, and aggressive, feeding on various animals, including deer, medium-sized animals, and birds30. As a generalist feeder, both adult and nymph/larval A. americanum often bite humans in endemic areas. This experiment identified six larvae, 107 nymphs, and 48 adult A. americanum from human sources. The dominance of nymph submissions is likely due to the large size of the tick, making nymphs and adults easier to spot in more visible areas.In terms of body segment location, all life stages of A. americanum were most often found in the thigh/groin/pelvic region. Considering that most humans encounter ticks while walking through vegetation, the ticks most likely first adhere to the legs and move upward before biting. In this case, the ticks bite rapidly instead of ascending in large numbers to the torso or head. This area is also almost invariably covered in relatively tight-fitting clothing. The closeness of the fabric may also assist in inducing the ticks to feed by slowing their ascent and creating contact to induce biting.While it does not transmit the same range of pathogens as I. scapularis, A. americanum is still a medically significant species. This species can transmit Ehrlichia chaffeensis and E. ewingii31,32, which are at present rare in New York, but are likely to increase as more A. americanum becomes established. Amblyomma americanum is also associated with Southern Tick-Borne Rash Associated Illness (STARI)11, a disease of unknown etiology that has previously been observed in New York33 and with galactose-alpha-1,3-galactose (alpha-gal) allergy, a reaction to the tick’s saliva that can result in a long term, potentially serious allergic sensitivity to the consumption of red meat. While the attachment time required to transmit or induce these pathogens is still unclear, prompt detection and removal of the tick is still recommended. Knowing the approach of the tick and where it is likely to be found improves this process.Additionally, it is unclear if the results observed for A. americanum also apply to the related A. maculatum, the vector of Rickettsia parkeri, a cause of spotted fever. These ticks have been observed in the southernmost portions of New York with a high infection rate with R. parkeri34. Since early R. parkeri infection may result in a visible eschar, understanding where the eschar is most likely located can be critical for rapid diagnosis before the onset of severe disease symptoms. Considering the similarities in behavior between the two Amblyomma species, it may have similar preferences to A. americanum. Other escharotic diseases, such as F. tularensis, may also be present and linked to a tick with a highly dissimilar segment preference. The location of the escar itself, therefore, may be at least partially diagnostic for specific pathogens. However, at present, the sample size within this community engaged passive surveillance program is too small to assess its biting behavior in detail.
    Dermacentor variabilis exhibits preference for the human headIn this study, D. variabilis was almost exclusively encountered in its adult life stage. This indicates that while the adult ticks are generalist feeders that may bite humans, the nymph and larval stages are not and have much greater host specificity, either feeding exclusively on a specific type of animal or being restricted to the vicinity of animal burrows. The exact identity of the preferred larval and nymphal host of D. variabilis in New York could not be determined from these data, but is presumed to be one or several rodent species, lagomorph, or mesocarnivore with broad distribution across the eastern United States.Additionally, D. variabilis was unique among the three species of ticks studied here. It had a strong bias toward the head and neck of human hosts, as opposed to a higher preference for the midsection and pelvis/groin with I. scapularis and especially A. americanum. This is clear evidence of climbing behavior, tending upward, but is also indicative of a strong preference for dense hair. In contrast to I. scapularis and A. americanum, D. variabilis in its adult stage is less likely to feed on deer35,36, with a preference for canids36, hence its colloquial name as the “American dog tick”. Hair provides the ticks with the same benefits as feeding on canids. It protects them from being immediately detected and removed, obscuring them until they can feed extensively. This can be of potential medical consequence in the case of tick paralysis, a condition of flaccid paralysis associated with the bite of Dermacentor spp. ticks30. In such cases, prompt removal of the tick is critical for treatment. Therefore, understanding its most likely location can be useful for removal of the tick before the onset of the condition, diagnostically to confirm the presence of the tick, or during treatment to ensure its removal. Considering that the tick will most likely be adult, it should be relatively obvious with careful observation.Limitations of this studyThe data described in this manuscript derived from a set of ticks submitted by general public, with site location from a questionnaire completed upon tick submission. While speciation and pathogen testing were performed under laboratory conditions, the public completed the initial survey and is therefore subject to a level of inherent error and ambiguity. In the context of this study, this mainly concerns whether the body location submitted concerns an attachment or a tick that is still crawling over the potential host in preparation for biting. The term “attachment” may be colloquially interpreted as to contain both categories, or a person can potentially be mistaken about the state of the tick. While ticks filled with blood have fed, the situation is more indeterminate for short-duration attachments where the ticks have not yet begun to engorge. This may introduce some level of error from ticks found on a body segment that were not, at the time of collection, attached. However, the data are overall still useful for predicting the most likely location where ticks of specific species can be found on a person. Studies with test subjects and ticks under controlled conditions may assist in elucidating this matter further. Additionally, this data set was compiled without regard to gender and age group. This data was not collected with this version of the questionnaire; therefore, the tick attachment cannot be stratified by any demographic parameters of tick submitters. More

  • in

    Habitat selection by free-roaming domestic dogs in rabies endemic countries in rural and urban settings

    Study sites and study designThe study was performed in the frame of a dog ecology research project, with details on the study locations published elsewhere15,42,43. For the current study, five study sites located in Indonesia and Guatemala were included. Site selection was carried out by each country’s research team, taking into consideration rural and urban settings, as well as differing expected number of dogs present at each location. The Indonesian study sites were semi-urban Habi and rural Pogon, in the Sikka regency, at the eastern area of Flores Island (Supplementary Fig. 6). In Guatemala, the study sites were Poptún (urban setting), Sabaneta and La Romana (both rural settings), located in the Guatemalan department of Péten, in the northern part of the country (Supplementary Fig. 7). Data were collected during May to June 2018 in Guatemala and from July to September 2018 in Indonesia.In each location, a 1 km2 area was predefined using Google Earth within which the study took place. The 1 km2 area was chosen because of the research goals of another part of the project, investigating the contact network of the dogs15. Within these areas, the teams visited all dog-owning households. In each household, the study was presented to an adult of the family, who was then asked if they owned a dog and if they were willing to participate in the study. After the dog owner’s oral or written consent was granted, a questionnaire was answered, and the dogs collared. The handling of the dogs was performed by a trained veterinarian or a trained veterinary paramedic of the team.The questionnaire data was collected through interviews with the dog owners. Multiple dogs per household could be included as multiple entries in the questionnaire. The detailed questionnaire contains information on the household location, dog demographics (age, sex, reproductive status) and management (dog’s purpose, origin, confinement, vaccination status, feeding and human-mediated transportation within and outside the pre-determined area).All dogs of a household fulfilling the inclusion criteria were equipped with a geo-referenced contact sensor (GCS) developed by Bonsai Systems (https://www.bonsai-systems.com), containing a GPS module and an Ultra-High-Frequency (UHF) sensor for contact data recording43,44. GCS devices report a 5-m maximum accuracy, a run-time of up to 10 years, can store up to 4 million data points and carry a lithium-polymer-battery (LiPo). For this study, only GPS data were analysed. The GCS were set to record each dog’s geographical position at one-minute intervals. Dogs remained collared for 3 to 5 days with the duration of the data collection being limited by the device’s battery capacity, as batteries were not re-charged or changed during the study. Throughout the time of recording, date, hour, GPS coordinates and signal quality (HDOP) raw data were collected by the GPS module and amassed into the workable databases.Exclusion criteria were dogs of less than four months of age (since they were not big enough to carry a collar), sick dogs and pregnant bitches (to avoid any risk of stress-induced miscarriages). Reasons for non-participation of eligible dogs included dog owner’s absence, dog’s absence, inability to catch the dog, and refusal of participation by the dog owner. In addition, dogs foreseen for slaughtering within the following four days were excluded in Indonesia to ensure data collection for at least four to five days. All dogs included in this study were constantly free roaming or at least part-time (day only, night only and for some hours a day). Human and/or animal ethical approval were obtained depending on the country-specific regulations. All the procedures were carried out in accordance with relevant guidelines. Ethical clearance was granted in Guatemala by the UVG’s International Animal Care and Use Committee [Protocol No. I-2018(3)] and the Community Development Councils of the two rural sites, which included Maya Q’eqchi’ communities45. In Indonesia, the study was approved by the Animal Ethics Commission of the Faculty of Veterinary Medicine, Nusa Cendana University (Protocol KEH/FKH/NPEH/2019/009). In addition, dogs that participated in the study were vaccinated against rabies and/or dewormed to acknowledge the owners for their participation in the study.Data cleaningData were stored in an application developed by Bonsai Systems compatible with Apple operating system (iOS iPhone Operating Systems), downloaded as individual csv file for each unit, and further analysed in R (version 3.6.1)46.The GPS data were cleaned based on three automatised criteria. First, the speed was calculated between any two consecutive GPS fixes, and fixes with speed of  > 20 km/h were excluded, given the implausibility of a dog running at such speed over a one-minute timespan47. It is noteworthy that car travel causes speeds over 20 km/h. However, as we were interested in analysing the dog’s behaviour outside of car transports, removing these fixes was in line with our objectives. Second, the Horizontal Dilution of Precision (HDOP), which is a measure of accuracy48 and automatically recorded by the devices for each GPS fix, was used to exclude fixes with low precision. According to Lewis et al.49, GPS fixes with HDOP higher than five were excluded, which deleted 1.3% of data in Habi, 2.2% in Pogon, 3.3% in Poptún, 1.8% in La Romana and 2.1% in Sabaneta. Third, the angles built by three consecutive fixes were calculated for each dog. When studying animals’ trajectories as their measure of movement, acute inner angles are often connected to error GPS fixes50. The fixes having the 2.5% smallest angles were excluded, to target those fixes with highest risks of being errors, while balancing against the loss of GPS fixes due to the cleaning process. With the exclusion of the smallest angles, 2.6% of data were deleted in Habi, 3% in Pogon, 2.9% in Poptún, 2.6% in La Romana and 2.7% in Sabaneta. After the automatised cleaning was concluded, 18 obvious error GPS fixes (unachievable or inexplicable locations by dogs) still prevailed in the Habi dataset and were manually removed.Habitat resource identification and calculation of terrain slopeTo analyse habitat selection of the collared FRDD, resources were delimited by a 100% Minimum Convex Polygon (MCP) including all cleaned GPS fixes per study site, using QGIS51 (Fig. 1).Figure 1GPS fixes plotted over a Google satellite imagery layer with its respective outlined computed Minimum Convex Polygon (MCP) delimitating the habitat available for the study population in: (a) Habi; (b) Pogon; (c) Poptún; (d) La Romana and (e) Sabaneta. Source QGIS (version 3.4 Madeira, http://qgis.org), map data: Google Satellite.Full size imageResources were defined by taking into consideration the following criteria: resources are (i) likely to impact upon movement patterns of dogs, (ii) identifiable by landscape satellite topography, and (iii) chosen considering information on relevant gathering places for FRDD observed by the field teams. Three resources were disclosed in all study sites: buildings, roads and vegetation coverage. All habitat relevant resources were manually identified within the available area (MCP) in QGIS using satellite imagery. All building-like structures were identified using vector polygons and summed under the layer “buildings”. Roads were identified and manually traced using vector lines in all sites, except in Poptún where the roads were automatically traced using an OpenStreetMap road layer of the area (https://www.openstreetmap.org/export). A buffer vector polygon was generated to encompass the full potential width of the roads, with a 5 m width in Habi and Poptún (semi-urban and urban site) and a 2 m width in Pogon, La Romana and Sabaneta (rural sites). In Habi, a “beach” layer was defined by generating a five-meter buffer from the shoreline in both directions using a vector polygon. The layer “sea” was defined as the vector polygon resulting from the difference between the MCP sea outer limit and the beach buffer polygon. Vegetation coverage was distinct between study sites with sparse vegetation and bushes present in all sites except Pogon, and dense forest-like vegetation present in La Romana and Pogon. These two types of vegetation were defined as “low” and “high vegetation”, respectively. In Habi and La Romana, “low” and “high vegetation”, respectively, were manually identified using vector polygons and summarised under the respective layers. Finally, open field in Habi, high vegetation in Pogon and low vegetation in Poptún, La Romana and Sabaneta were the last vector layers to be established since they represented the difference between all other polygon vector layers and the MCP total area. After all resource vector polygons had been created, an encompassing vector layer was generated by merging all resource polygon vectors for final resource classification (Fig. 2). As part of the resource classification in Habi, the airport terminal and runaway as well as waterways enclosed in the MCP area were identified but excluded from the analysis.Figure 2(a) Habi, (b) Pogon, (c) Poptún, (d) La Romana and (e) Sabaneta Habitat classification vector layers. The different habitat resources, identifiable by colour, were merged to create the comprehensive Habitat classification vector. In the Indonesian sites (a, b) and Guatemalan sites (c–e) buildings are coloured red, vegetation low in Habi, Poptún, La Romana and Sabaneta is coloured light green, vegetation high in Pogon and La Romana dark green, roads black, beach yellow, sea dark blue, airport grey, waterways light blue and open field light orange. The airport area (gray) and waterways (light blue) in Habi were not classified as separate habitat layers and were excluded from further analysis. Source QGIS (version 3.4 Madeira, http://qgis.org), map data: Google Satellite.Full size imageAfter the construction of the habitat resource layers, all GPS fixes were assigned to the respective resource they were located, using the QGIS join attributes by location algorithm. Fixes located exactly on the MCP border in Indonesia were not classified automatically and had to be manually classified to the respective resource.In non-flat topographies (all locations expect Habi) we tested the hypothesis of whether the steepness would influence the dogs’ movement patterns. The degrees of slope were calculated using a 30-m raster-cell resolution (STRM 1-Arc Second Global, downloaded from the United States Geological Survey (USGS) Earth Explorer, https://earthexplorer.usgs.gov/). The slope was assigned by the QGIS join attributes by location algorithm to each GPS fix.Statistical analysisTo quantify habitat selection in each study site, we compared resources used by the dogs with the resources available, according to Freitas et al.52. Adapting the methodology applied by O’Neill et al.18, the observed number of GPS fixes for each dog was used to generate an equivalent number of locations that were randomly distributed within the MCP area using the Random points in layer bound vector tool from QGIS. For example, if dog “D300” had 100 recorded GPS fixes, 100 random points were generated within the MCP of the respective study site and assigned to “D300”. Random points were then assigned to the respective resources and slope of that location, as previously done with the observed GPS fixes. Using this approach, the habitat resources used by each dog could be compared to the available resources in the respective study site, using a regression model.Observation independence is a fundamental presupposition of any regression model. However, the spatial nature of the point-referenced data permits perception of spatial dependence. In our dataset, spatial autocorrelation was proven for all study sites using the Moran’s I test. Therefore, we applied a spatial regression model, which takes into consideration spatial autocorrelation while exploring the effects of the study variables. A mixed effects logistic regression model accounting for spatial autocorrelation was created to quantify the effect of variables on used (i.e. observed GPS fix) versus available (i.e. randomly generated GPS fixes) resources, using the fitme function in the spaMM package in R53,54. The model’s binary outcome variable was defined as either observed (1) or random (0) GPS fix, i.e. the dog being present or absent from a position. The explanatory variable was the resource classification with “buildings”, “roads”, “low vegetation”, “beach”, “sea” and “open field” as levels in Habi; “buildings”, “roads” and “high vegetation” in Pogon; “buildings”, “roads”, “low vegetation” in Poptún and Sabaneta; and “buildings”, “roads”, and “high” and “low vegetation” in La Romana. Different habitat resources were used interchangeably as reference level. In all study sites except Habi, the slope was included as an additional explanatory variable. As observations were not evenly distributed in time, with less observations recorded towards the end of the study, a variable ”hour” was added as an additional continuous fixed effect.Each observed GPS fix was assigned to the hour of its record, with the earliest timestamp registered in each study site being assigned the hour zero. The randomly generated points were randomly assigned to an hour within the determined time continuum of the observed GPS fixes. As our focus was investigating habitat selection at a population-level, we assumed there was no within-dog autocorrelation (space/time) and each dog was independent and exhibited no group behaviour38. Still, to partially account for spatial autocorrelation of each dog’s household, the random effects included in models were defined as each dog’s household geographical location recorded during fieldwork by a GPS device. The restricted maximum likelihood (REML) through Laplace approximations, which can be applied to models with non-Gaussian random effects55, and the Matérn correlation function were used to fit the spatial models with the Matérn family dispersion parameter ν, indicator of strength of decay in the spatial effect, was set at 0.554. More

  • in

    The formulation of irrigation and nitrogen application strategies under multi-dimensional soil fertility targets based on preference neural network

    Study areaFigure 2 shows the location of the study area on a map of China generated by ArcGIS software. This study’s field experiments were carried out in the Shuanghe Town agricultural comprehensive water-saving demonstration area (40°42′ N; 107°24′ E), which is located in the middle reaches of the Hetao Irrigation Area of Inner Mongolia. The duration of the experimental process ranged from April in 2018 to October in 2020. The experimental area was characterized by a mid-temperate semi-arid continental climate. The average annual precipitation was determined to be 138 mm and the average evaporation was approximately 2332 mm. The majority of the rainfall was concentrated during summer and autumn seasons, and the accumulation of salt in the surface soil was considered to be serious in the spring and winter months. The average rainfall during maize growth period was 75.3 mm. The 0 to 40 cm soil layers in the experimental area were categorized as silty loam soil, with an average bulk density ranging from 1.42 to 1.53 g cm−3. A maize straw layer with a thickness of 5 cm was buried at a depth of 40 cm, and then the land was leveled. Also, in addition to autumn watering and spring irrigation procedures, water from the Yellow River was used three times for irrigation during the entire growth period of the maize crops. The adopted irrigation method belonged to border irrigation. Urea (46% N) were used as the fertilizer types.Figure 2The location of the study area.Full size imageField trials design and data collectionWe carried out experiment 1 from 2018 to 2019, and the data obtained were used for model training and to determine the hyper-parameters. The experimental design is shown in Table 1. The PNN model trained from the data obtained in experiment 1 predicted the optimal range of irrigation amount and nitrogen application rate (N rate) for each growth period of maize. In these ranges, the soil organic matter and total nitrogen could be kept above 20 g/kg and 1.6 g/kg, respectively, the soil salt content was less than 2 g/kg, and the pH value was between 6.5 and 7.5. In order to verify the accuracy and feasibility of the range of irrigation and nitrogen application simulated by PNN, the field experiment 2 was set in 2020 based on the range simulated by PNN and to evaluate the fitting degree between measured and simulated values of soil indicators under the same amount of irrigation and nitrogen application. The experimental design is shown in Table 2.Table 1 Experimental 1 design scheme.Full size tableTable 2 Experimental 2 design scheme.Full size tableThe experimental design were repeated for three times. The plot area of each treatment measuring 8 × 9 = 72 m2. The surrounding area was separated using 1.2 m buried polyethylene plastic film, and 30 cm was left at the top to prevent fertilizer and water from flowing into each other. The field management process was consistent with that used by the local farmers. The film width of maize was 1.1 m, with each film covering two rows. The plant spacing was approximately 45 cm, and the row spacing was 35 cm. In addition, the planting density of the maize was 60,000 plants/hm2.During the entire growth period of the maize crops, soil samples were collected from the 0 to 20 cm, 20 to 40 cm, 40 to 60 cm, 60 to 80 cm, and 80 to 100 cm soil layers using a soil drill and a three-point method was adopted. The soil samples were stored at 4 °C for the determination of total nitrogen, organic matter, total salt content, and pH values. The total nitrogen, organic matter, total salt content, and pH were determined using a KDN-AA double tube azotometer, MWD-2 microwave universal digestion device, TU1810PC ultraviolet–visible spectrophotometer, and a TU18950 double beam ultraviolet–visible spectrophotometer, respectively.Soil parameters measured include organic matter (SOM), total nitrogen (TN), Salt and pH. The data set includes pre-irrigation and post-irrigation reports from 2018 to 2020. Statistical parameters regarding the soil data are shown in Table 3.Table 3 Various meteorological variables and their descriptive statistics.Full size tableThe dataset obtained in Experiment 1 in 2018 to 2019 was 2490 rows in size, the 80/20 principle was used to data into training, and testing sets were required for ML modeling; 80% of data were employed for model training, while the remaining 20% were used for testing. Specifically, the data corresponding to the treatments with the nitrogen application rate (N rate) of 75 kg/hm2 (N3) in all the treatments (W1N3, W2N3, W3N3) were used as the test set, and the data of the other treatments were used as the training set. The training set was used to initiate ML parameter training. Subsequently, The test set was employed to assess the model. The dataset size in 2020 was 1080 rows, which was used to verify ML modeling.Figure 3 shows the changes of soil indexes over time for each treatment in the field test (take the 0–40 cm soil in the main distribution area of maize roots as an example). There are differences under the influence of different irrigation amounts. When irrigation is 90 mm, soil SOM is 13.25% and 7.00% higher than 60 mm and 120 mm, and soil TN is 4.59% and 6.50% higher than 60 mm and 120 mm, respectively. The soil Salt was 23.30% lower than 60 mm, and the pH was 4.16% and 4.36% lower than that of 60 mm and 120 mm, respectively. It can be seen that irrigation of 90 mm is more favorable for increasing soil SOM and TN contents and reducing soil salinity and alkalinity. Soil SOM and TN contents were the highest at n 75 kg/hm2, which were 4.38% and 8.34% higher than those at N = 93.3 kg/hm2, respectively. Soil Salt was the lowest at N = 60 kg/hm2, which was 3.02% lower than those at N = 75 kg/hm2, with a small gap with other levels. In conclusion, nitrogen application of 75 kg/hm2 was beneficial to increase soil organic matter and nitrogen content, and nitrogen application of 60 kg/hm2 was beneficial to controlling soil salt content.Figure 3Changes in soil organic matter, total nitrogen, salinity, and pH under different treatments over time (a case study of 2019).Full size imageMachine learning (ML) models used for irrigation and nitrogen application strategiesFive ML frames were used to estimate the irrigation and N rate. These models are preference Neural Network (PNN), Support Vector Regression (SVR), Linear Regression (LR), Logistic Regression (LOR), and traditional BP Neural Networks (BPNN). Among them, the prediction effects of linear, Poly, and rbf kernel functions are respectively tried in SVR framework. The torch framework was used to train and test machine learning models in Python.Development of preference neural networkModel frameworkThe preference neural network (PNN) which was proposed for the first time in this study was a typical deep learning model. PNN can be regarded as an approximate natural function in order to describe the complete dependence of the soil fertility indexes, including the effects of soil total nitrogen, organic matter, total salt content, and pH values on irrigation and nitrogen applications. More specifically, PNN has the ability to optimize the function by constructing the mapping y = f (x, θ) and learning parameter θ.First, the input end of PNN model was defined as matrix X ∈ ℝn×d (in which n is the sample size, n = 2490; and d is the dimension of each input vector, d = 6), where {xi} i=1, …, n ∈ X represents the vectorized set of total nitrogen, organic matter, salt content, and pH used for measuring the soil fertility, as well as the nitrogen application and irrigation durations (expressed by days after sowing). At the same time, the output end of the model was defined as the matrix Y ∈ ℝn×2, which represented the levels of the irrigation and nitrogen fertilizer applications. The goal of the proposed PNN model was to learn the fixed mapping Y′ = f (X; θ) ⇒Y through the given input matrix X, where θ is the well optimized learnable parameters which can be obtained via PNN training. Meanwhile, the predicted value Y′ will infinitely approach the measured value Y. The structure and the algorithm of this study’s PNN model is shown in Fig. 4 and Table. 4.Figure 4Schematic diagram for the PNN structural connections. In the figure, it can be seen that when each input vector passed through each layer of the PNN, it is first multiplied by the Hadamard product of the weight matrix and preference value matrix for the purpose of obtaining a weight matrix with preference properties. After the matrix was activated by the Relu Function, Batch Normalization Module Methods and the Dropout Module were used for random suspension and normalization processing, and the input of the next layer was obtained.Full size imageTable 4 Algorithm of Preference neural network.Full size tableLayer-by-layer affine transformationA good definition of the affine transformation of the information flow between layers is considered to be the key to neural network model training. Generally speaking, the learnable parameter θ of each layer of a model includes the weight parameter w and the preference parameter b. The hidden representation hl of the l-th layer in PNN is defined as follows:$${h}_{l}({h}_{l-1};{W}_{l},{b}_{l})={h}_{l-1}^{mathrm{T}}{W}_{l}+{b}_{l}$$
    (1)

    where Wl and bl represent the learnable weight and bias variables of the l layer, respectively, and hl-1 is the hidden representation of the upper layer. Therefore, when l = 1, then h0 = X.In the present study, using the hierarchical update rules, a given input data stream was allowed to pass through each hidden layer with intermediate operations, and then finally reached the output end.Preference structureThe correlation between different production behavior factors (e.g., irrigation levels) and different natural factors (e.g., soil organic matter) differs in agricultural production. However, the traditional fully connected neural network has the characteristic that nodes of one layer are fully connected with all nodes of subsequent layers, resulting in the neurons between production behavior factors and natural factors with very weak correlation still all being connected. Conversely, connections between neurons corresponding to factors with solid correlations are not strengthened.Therefore, in this study the preference value module was specially developed. By first calculating the correlation and significance between different production behavior factors (irrigation amount, N rate) and different soil fertility factors (organic matter, total nitrogen, total salt and pH), the preference value between the above two types of variables was calculated, and the preference matrix was constructed. Then the Hadamard product of the weight matrix and preference matrix was used to realize the artificial intervention and guidance to the neural network’s learning process.In order to reduce the adverse impact of non-normality of data on correlation analysis as much as possible, this study rank-based inverse normal (RIN) transformations (i.e., conversion to rank score) methods were used to normally process the data28. The RIN transformation function used here is as follows:$$f(x)={Phi }^{-1}left(frac{{x}_{r}-frac{1}{2}}{n}right)$$
    (2)

    where Φ–1 is the inverse normal cumulative distribution function, and n is the sample size.The normal cumulative distribution function is represented as follows: for discrete variables, the sum of probabilities of all values less than or equal to a, and its formula is as shown below:$${F}_{X}(a)=P(Xle a)$$
    (3)
    The RIN normalized conversion values meet the requirements of normal distribution, Pearson correlation analysis and t-test can be directly performed, and the formula used was as follows:$$r(X,Y)=frac{mathrm{Cov}(X,Y)}{sqrt{left(mathrm{Var}left[Xright]mathrm{Var}left[mathrm{Y}right]right)}}$$
    (4)

    where r (X, Y) is the Pearson Correlation Coefficient, Var [X] is the variance of X, and Var [Y] is the variance of Y, Cov (X, Y) is the covariance of X and Y, which represents the overall error of the two variables. The t-test is performed on the normalized data after rank-based inverse normal (RIN) transformation method, and the formula is as follows:$$t=sqrt{frac{n-2}{1-{r}^{2}}}$$
    (5)

    where n is the number of samples, and r represents the Pearson Correlation Coefficient. Preference value is the concentrated embodiment of correlation and significance between variables, and the calculation formula is as follows:$${PV}_{ij}=frac{r({X}_{i},{Y}_{j})}{{P}_{ij}+e}$$
    (6)

    where PVij represents the preference values between the variables Xi and Yj, Xi represents the ith production behavior factor (e.g., irrigation amount), and Yj represents the jth soil fertility factor (e.g., soil organic matter content), ({P}_{ij}) is obtained by looking up the table based on the t, and e is a constant, taking 0.001 in order to prevent the denominator of the formula from being 0.In order to make the preference values of the various indicators in the same order of magnitude more stable, the preference values were normalized:$${PV}_{normal}=pm frac{left|{PV}_{i}-{PV}_{avg}right|}{sqrt{frac{sum_{i=1}^{N}{({PV}_{i}-{PV}_{avg})}^{2}}{N-1}}}$$
    (7)

    where N represents the number of variables related to the experimental treatments, PVi -PVavg takes the absolute value, while the positive or negative values of the PVnormal were determined by the positive or negative values of the correlation r.The PNN integrated the preference matrixes into the neural network structures by identifying the Hadamard products of the learnable weights between the preference matrixes and the input and output data. By referring to Eq. (1) in the hierarchical affine transformation, the preference constraint of PNN could be expressed as follows:$${h}_{l}({h}_{l-1};{W}_{l},{b}_{l})={h}_{l-1}^{T}{W}_{l}odot P+{b}_{l}$$
    (8)

    where P is the preference matrix calculated by Eq. (8), and ⊙ represents the Hadamard product of the corresponding elements of the matrix. The structure of preference neural network and preference value are shown in Figs. 5 and 6.Figure 5Schematic diagram of the preference connection structures of the preference neural networks. The depth of the network detailed in the figure only illustrates the preference connection structure (for a better demonstration), and does not indicate the depth of the PNN used in the experiment.Full size imageFigure 6PVnormal between production behavior factors and natural factors. Since soil depth, days, irrigation amount and N rate were all artificially set variables, and there was no objective correlation in the data set. Therefore, the preference values among these variables were default e = 0.001.Full size imageHyper-parameters of PNNWe conducted experiments on the datasets with varying the hyper-parameters (such as the number of PNN layers and hidden layers, the number of nodes in each layer, learning rate, dropout rate and batch size) to understand that how the Hyper-parameters impact on the performance of PNN.We select the activation function and learning rate by referring to the neural network structure commonly used in similar fields (1 hidden layer and 64 hidden nodes)29,30. It is found that ReLU has better performance than other activation functions (sigmoid, tanh). The performance is best when the learning rate is around 0.005. It is generally believed that neural networks with more hidden layers are able, with the same number of resources, to address more complex problems31, but excessively increasing network depth will easily lead to overfitting32. Since there is no direct method to select the optimal number of hidden layers and nodes33, this study first calculated the structure of one hidden layer and 64 nodes in each layer, and found that the combined effect was poor (R2 of irrigation and nitrogen application were 0.3971 and 0.4124, respectively). Therefore, the trial-and-error method is adopted. The number of hidden layers starts from 1 and is incremented by 1 to test the maximum number of 10 hidden layers. The number of nodes in each layer were tested with a maximum number of 100 hidden neurons, starting with 5 and increasing by 5.We found that when the number of hidden layers of PNN exceeds 6, and the number of nodes in each layer exceeds 65, the performance will drop significantly. The reason behind this phenomenon could be the current dataset size is insufficient for larger scale of the PNN model. In the consideration of that the size of new dataset we can obtain very year is similar to the current dataset size, we believe that current hyper-paramter settings of PNN is in a reasonable condition.After that, the number of layers was fixed as 6, and the number of nodes in each layer were tested 10 times with 60 as the starting point and 1 as the increment, we found that when the number of nodes was 64, the improvement of the fit degree was no longer noticeable. On this basis, we changed different activation functions and learning rate again, and found that PNN still has the best performance when the activation function is ReLU and the learning rate is 0.005. Then, different batch sizes and dropout rates were tried. The two parameters had weaker effects on the performance than the other parameters, and the performance was optimal at 256 and 0.1, respectively.The hyper-parameters include:

    1.

    number of PNN layers;

    2.

    number of hidden layers;

    3.

    types of activation function;

    4.

    percentage of dropout;

    5.

    learning rate;

    6.

    loss function;

    7.

    optimizer;

    8.

    batch size;

    9.

    number of epochs;

    10.

    number of workers.

    The ideal PNN structure for the study comprises these layers:

    1.

    number of PNN layers is 8;

    2.

    number of hidden layers is 6;

    3.

    Fully connected layers with 64 nodes and ReLU activation function

    4.

    dropout with 0.1.

    5.

    the learning rate is 0.005;

    6.

    loss function is Huber Loss Methods (HLM);

    7.

    optimizer: ADAM;

    8.

    epochs is 500;

    9.

    the batch size is 256;

    10.

    number of workers is 6.

    Hyper-parameters of other modelsLR algorithms and LOR do not have hyper-parameters that need to be adjusted. A part of the hyper-parameters of the SVR model was determined by referring to Guan Xiaoyan’s research34, and a part of the hyper-parameters of the BPNN model was determined by referring to Gu Jian’s research27. RMLP takes the same hyperparameters as PNN. The hyperparameters of SVR and BPNN models are shown in Table 5.Table 5 Hyper-parameters of other model.Full size tableModel performance evaluationThe proposed PNN model was trained and validated using the field measured data from 2020 and the performance achievements of PNN were evaluated by the root mean square errors, mean square errors, and mean absolute errors as follows:$$RMSE=sqrt{frac{{sum }_{i=1}^{n}{({y}_{ipre}-{y}_{imea})}^{2}}{n}}$$
    (9)
    $${R}^{2}=1-frac{{sum }_{i=1}^{n}{({y}_{ipre}-{y}_{imea})}^{2}}{{sum }_{i=1}^{n}{({y}_{ipre}-{y}_{iavg})}^{2}}$$
    (10)
    $$MAE=frac{{sum }_{i=1}^{n}left|{y}_{ipre}-{y}_{iavg}right|}{n}$$
    (11)
    Model multidimensional fertility targetsThe soil fertility grade classification of soil organic matter, soil total nitrogen content and salt content in this study was based on the soil fertility grade classification results by the Agriculture and Animal Husbandry Bureau of Bayannur City, along with the local standard Technical Specifications for the Assessment and Rating Criteria of Cultivated Land Quality (DB 15/T 1086, 2016), as the shown in Tables 6 and 7.Table 6 Soil organic matter and Soil total nitrogen degrees.Full size tableTable 7 Grading of the salinization degrees.Full size tableIn the evaluation system of soil fertility referencing the Technical Specifications for Assessment and Rating Criteria of Cultivated Land Quality (DB 15/T 1086, 2016), the pH was divided into four grades according to the membership degrees of the land productivity evaluations, as detailed in Table 8.Table 8 pH grading degrees of the cultivated land.Full size tableBased on the classification standard of soil fertility obtained by the Bureau of Agriculture and Animal Husbandry of Bayannur City, when the farmland soil is at the high fertility level, the soil organic matter and total nitrogen content should be more than 20 g/kg and 1.6 g/kg, respectively. Soil salt content was less than 2 g/kg. Meanwhile, the pH value is kept between 6.5 and 7.5. More

  • in

    Tree species composition mapping with dimension reduction and post-classification using very high-resolution hyperspectral imaging

    Vo, Q. T., Oppelt, N., Leinenkugel, P. & Kuenzer, C. Remote sensing in mapping mangrove ecosystems: An object-based approach. Remote Sens. 5, 183–201. https://doi.org/10.3390/rs5010183 (2013).Article 

    Google Scholar 
    Kertész, Á. & Křeček, J. Landscape degradation in the world and in Hungary. Hung. Geogr. Bull. 68, 201–221. https://doi.org/10.15201/hungeobull.68.3.1 (2019).Article 

    Google Scholar 
    Vorster, A. G., Evangelista, P. H., Stovall, A. E. L. & Ex, S. Variability and uncertainty in forest biomass estimates from the tree to landscape scale: The role of allometric equations. Carbon Balance Manag. 15, 8. https://doi.org/10.1186/s13021-020-00143-6 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blackman, A. Evaluating forest conservation policies in developing countries using remote sensing data: An introduction and practical guide. For. Policy Econ. 34, 1–16. https://doi.org/10.1016/j.forpol.2013.04.006 (2013).Article 

    Google Scholar 
    Wilfong, B. N., Gorchov, D. L. & Henry, M. C. Detecting an invasive shrub in deciduous forest understories using remote sensing. Weed Sci. 57, 512–520. https://doi.org/10.1614/WS-09-012.1 (2009).Article 
    CAS 

    Google Scholar 
    Dyderski, M. K. & Pawlik, Ł. Spatial distribution of tree species in mountain national parks depends on geomorphology and climate. For. Ecol. Manag. 474, 118366. https://doi.org/10.1016/j.foreco.2020.118366 (2020).Article 

    Google Scholar 
    Milosevic, D., Dunjić, J. & Stojanović, V. Investigating micrometeorological differences between saline steppe, forest-steppe and forest environments in northern Serbia during a clear and sunny autumn day. Geogr. Pannonica 24(3), 176–186. https://doi.org/10.5937/gp24-25885 (2020).Article 

    Google Scholar 
    Modzelewska, A., Fassnacht, F. E. & Stereńczak, K. Tree species identification within an extensive forest area with diverse management regimes using airborne hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 84, 101960. https://doi.org/10.1016/j.jag.2019.101960 (2020).Article 

    Google Scholar 
    Wulder, M. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Prog. Phys. Geogr. Earth Environ. 22, 449–476. https://doi.org/10.1177/030913339802200402 (1998).Article 

    Google Scholar 
    Tang, L., Shao, G. & Dai, L. Roles of digital technology in China’s sustainable forestry development. Int. J. Sustain. Dev. World Ecol. 16, 94–101. https://doi.org/10.1080/13504500902794000 (2009).Article 

    Google Scholar 
    Richter, R., Reu, B., Wirth, C., Doktor, D. & Vohland, M. The use of airborne hyperspectral data for tree species classification in a species-rich Central European forest area. Int. J. Appl. Earth Obs. Geoinform. 52, 464–474. https://doi.org/10.1016/j.jag.2016.07.018 (2016).Article 

    Google Scholar 
    Thenkabail, P., Gumma, M., Teluguntla, P. & Ahmed, M. I. Hyperspectral remote sensing of vegetation and agricultural crops. Photogramm. Eng. Remote Sens. 80, 695–723 (2014).
    Google Scholar 
    Fassnacht, F. E. et al. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 186, 64–87. https://doi.org/10.1016/j.rse.2016.08.013 (2016).Article 

    Google Scholar 
    Vangi, E. et al. The new hyperspectral satellite PRISMA: Imagery for forest types discrimination. Sensors 21, 1182. https://doi.org/10.3390/s21041182 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burai, P., Beko, L., Lenart, C., Tomor, T. & Kovacs, Z. Individual tree species classification using airborne hyperspectral imagery and lidar data. In 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS) 1–4. https://doi.org/10.1109/WHISPERS.2019.8921016 (2019).Kumar, B., Dikshit, O., Gupta, A. & Singh, M. K. Feature extraction for hyperspectral image classification: A review. Int. J. Remote Sens. 41, 6248–6287. https://doi.org/10.1080/01431161.2020.1736732 (2020).Article 

    Google Scholar 
    Li, X., Li, Z., Qiu, H., Hou, G. & Fan, P. An overview of hyperspectral image feature extraction, classification methods and the methods based on small samples. Appl. Spectrosc. Rev. https://doi.org/10.1080/05704928.2021.1999252 (2021).Article 

    Google Scholar 
    Wang, J. & Chang, C.-I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 44, 1586–1600. https://doi.org/10.1109/TGRS.2005.863297 (2006).Article 

    Google Scholar 
    Hamada, Y., Stow, D. A., Coulter, L. L., Jafolla, J. C. & Hendricks, L. W. Detecting Tamarisk species (Tamarix spp.) in riparian habitats of Southern California using high spatial resolution hyperspectral imagery. Remote Sens. Environ. 109, 237–248. https://doi.org/10.1016/j.rse.2007.01.003 (2007).Article 

    Google Scholar 
    Ibarrola-Ulzurrun, E., Marcello, J. & Gonzalo-Martin, C. Assessment of component selection strategies in hyperspectral imagery. Entropy 19, 666. https://doi.org/10.3390/e19120666 (2017).Article 
    MathSciNet 

    Google Scholar 
    Dabiri, Z. & Lang, S. Comparison of independent component analysis, principal component analysis, and minimum noise fraction transformation for tree species classification using APEX hyperspectral imagery. ISPRS Int. J. Geo-Inf. 7, 488. https://doi.org/10.3390/ijgi7120488 (2018).Article 

    Google Scholar 
    Priyadarshini, K. N., Sivashankari, V., Shekhar, S. & Balasubramani, K. Comparison and evaluation of dimensionality reduction techniques for hyperspectral data analysis. Proceedings 24, 6. https://doi.org/10.3390/IECG2019-06209 (2019).Article 

    Google Scholar 
    Arslan, O., Akyürek, Ö., Kaya, Ş & Şeker, D. Z. Dimension reduction methods applied to coastline extraction on hyperspectral imagery. Geocarto Int. 35, 376–390. https://doi.org/10.1080/10106049.2018.1520920 (2020).Article 

    Google Scholar 
    Kadavi, P. R., Lee, W.-J. & Lee, C.-W. Analysis of the pyroclastic flow deposits of mount sinabung and Merapi using landsat imagery and the artificial neural networks approach. Appl. Sci. 7, 935. https://doi.org/10.3390/app7090935 (2017).Article 

    Google Scholar 
    Schlosser, A. D. et al. Building extraction using orthophotos and dense point cloud derived from visual band aerial imagery based on machine learning and segmentation. Remote Sens. 12, 2397. https://doi.org/10.3390/rs12152397 (2020).Article 

    Google Scholar 
    Latifi, H., Fassnacht, F. & Koch, B. Forest structure modeling with combined airborne hyperspectral and LiDAR data. Remote Sens. Environ. 121, 10–25. https://doi.org/10.1016/j.rse.2012.01.015 (2012).Article 

    Google Scholar 
    Clark, M. L., Roberts, D. A. & Clark, D. B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 96, 375–398. https://doi.org/10.1016/j.rse.2005.03.009 (2005).Article 

    Google Scholar 
    Melgani, F. & Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42, 1778–1790. https://doi.org/10.1109/ICIECS.2009.5363456 (2004).Article 

    Google Scholar 
    Belgiu, M. & Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011 (2016).Article 

    Google Scholar 
    Manandhar, R., Odeh, I. O. A. & Ancev, T. Improving the accuracy of land use and land cover classification of landsat data using post-classification enhancement. Remote Sens. 1, 330–344. https://doi.org/10.3390/rs1030330 (2009).Article 

    Google Scholar 
    Thakkar, A. K., Desai, V. R., Patel, A. & Potdar, M. B. Post-classification corrections in improving the classification of Land Use/Land Cover of arid region using RS and GIS: The case of Arjuni watershed, Gujarat, India. Egypt. J. Remote Sens. Space Sci. 20, 79–89. https://doi.org/10.1016/j.ejrs.2016.11.006 (2017).Article 

    Google Scholar 
    El-Hattab, M. M. Applying post classification change detection technique to monitor an Egyptian coastal zone (Abu Qir Bay), Egypt. J. Remote Sens. Space Sci. 19, 23–36. https://doi.org/10.1016/j.ejrs.2016.02.002 (2016).Article 

    Google Scholar 
    Bhosale, N., Manza, R., Kale, K., Scholar, R. & Professor, A. Analysis of effect of gaussian, salt and pepper noise removal from noisy remote sensing images. Pceedings of teh Second International Conference on ERCICA 386–390. http://rameshmanza.in/Publication/Narayan_Bhosle/Analysis%20of%20Effect%20of%20Gaussian.pdf (2014).Schöll, K., Kiss, A., Dinka, M. & Berczik, Á. Flood-pulse effects on zooplankton assemblages in a river-floodplain system (Gemenc Floodplain of the Danube, Hungary). Int. Rev. Hydrobiol. 97, 41–54. https://doi.org/10.1002/iroh.201111427 (2012).Article 

    Google Scholar 
    Ágoston-Szabó, E., Schöll, K., Kiss, A. & Dinka, M. The effects of tree species richness and composition on leaf litter decomposition in a Danube oxbow lake (Gemenc, Hungary). Fundam. Appl. Limnol. https://doi.org/10.1127/fal/2017/0675 (2017).Article 

    Google Scholar 
    Guti, G. Water bodies in the Gemenc floodplain of the Danube, Hungary: (A theoretical basis for their typology). Opusc Zool. 33, 49–60 (2001).
    Google Scholar 
    Berczik, Á. & Dinka, M. Bibliography of hydrobiological research on the Gemenc and Béda: Karapancsa floodplains of the River Danube (1498–1436 rkm) including the publications of the Danube Research Institute of the Hungarian Academy of Sciences between 1968 and 2017. Opusc. Zool. 49, 191–197. https://doi.org/10.18348/opzool.2018.2.191 (2018).Article 

    Google Scholar 
    Ceulemans, R., McDonald, A. J. S. & Pereira, J. S. A comparison among eucalypt, poplar and willow characteristics with particular reference to a coppice, growth-modelling approach. Biomass Bioenergy 11, 215–231. https://doi.org/10.1016/0961-9534(96)00035-9 (1996).Article 

    Google Scholar 
    Haneca, K., Katarina, Č & Beeckman, H. Oaks, tree-rings and wooden cultural heritage: A review of the main characteristics and applications of oak dendrochronology in Europe. J. Archaeol. Sci. 36, 1–11. https://doi.org/10.1016/j.jas.2008.07.005 (2009).Article 

    Google Scholar 
    Jones, T. G., Coops, N. C. & Sharma, T. Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada. Remote Sens. Environ. 114, 2841–2852. https://doi.org/10.1016/j.rse.2010.07.002 (2010).Article 

    Google Scholar 
    Sothe, C. et al. Tree species classification in a highly diverse subtropical forest integrating UAV-based photogrammetric point cloud and hyperspectral data. Remote Sens. 11, 1338. https://doi.org/10.3390/rs11111338 (2019).Article 

    Google Scholar 
    Nambiar, E. K. S. & Sands, R. Competition for water and nutrients in forests. Can. J. For. Res. 23, 1955–1968. https://doi.org/10.1139/x93-247 (1993).Article 

    Google Scholar 
    Mayoral, C., Calama, R., Sánchez-González, M. & Pardos, M. Modelling the influence of light, water and temperature on photosynthesis in young trees of mixed Mediterranean forests. New For. 46, 485–506. https://doi.org/10.1007/s11056-015-9471-y (2015).Article 

    Google Scholar 
    Stojanović, D. B., Levanič, T., Matović, B. & Orlović, S. Growth decrease and mortality of oak floodplain forests as a response to change of water regime and climate. Eur. J. For. Res. 134, 555–567. https://doi.org/10.1007/s10342-015-0871-5 (2015).Article 

    Google Scholar 
    Dyderski, M. K. & Jagodziński, A. M. Impact of invasive tree species on natural regeneration species composition, diversity, and density. Forests 11, 456. https://doi.org/10.3390/f11040456 (2020).Article 

    Google Scholar 
    Jia, S., Ji, Z., Qian, Y. & Shen, L. Unsupervised band selection for hyperspectral imagery classification without manual band removal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5, 531–543. https://doi.org/10.1109/JSTARS.2012.2187434 (2012).Article 

    Google Scholar 
    Karpouzli, E. & Malthus, T. The empirical line method for the atmospheric correction of IKONOS imagery. Int. J. Remote Sens. 24, 1143–1150. https://doi.org/10.1080/0143116021000026779 (2003).Article 

    Google Scholar 
    Richards, J. A. Remote Sensing Digital Image Analysis (Springer, 2013). https://doi.org/10.1007/978-3-642-30062-2.Book 

    Google Scholar 
    Sharifi Hashjin, S. & Khazai, S. A new method to detect targets in hyperspectral images based on principal component analysis. Geocarto Int. 37, 2679–2697. https://doi.org/10.1080/10106049.2020.1831625 (2022).Article 

    Google Scholar 
    Kaiser, H. F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187–200 (1958).Article 
    MATH 

    Google Scholar 
    Shah, C. A., Arora, M. K. & Varshney, P. K. Unsupervised classification of hyperspectral data: An ICA mixture model based approach. Int. J. Remote Sens. 25, 481–487. https://doi.org/10.1080/01431160310001618040 (2004).Article 

    Google Scholar 
    Tharwat, A. Independent component analysis: An introduction. Appl. Comput. Inform. 17, 222–249. https://doi.org/10.1016/S1364-6613(00)01813-1 (2020).Article 

    Google Scholar 
    Villa, A., Chanussot, J., Jutten, C., Benediktsson, J. A. & Moussaoui, S. On the use of ICA for hyperspectral image analysis. In 2009 IEEE International Geoscience and Remote Sensing Symposium vol. 4 IV-97-IV–100. https://doi.org/10.1109/IGARSS.2009.5417363 (2009).Hyvärinen, A. & Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 13, 411–430. https://doi.org/10.1016/s0893-6080(00)00026-5 (2000).Article 
    PubMed 

    Google Scholar 
    Otukei, J. R. & Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 12, S27–S31. https://doi.org/10.1016/j.jag.2009.11.002 (2010).Article 

    Google Scholar 
    Murty, M. N. & Raghava, R. Kernel-based SVM. In Support Vector Machines and Perceptrons: Learning, Optimization, Classification, and Application to Social Networks (eds Murty, M. N. & Raghava, R.) 57–67 (Springer, 2016). https://doi.org/10.1007/978-3-319-41063-0_5.Chapter 
    MATH 

    Google Scholar 
    Seidl, D., Ružiak, I., Koštialová Jančíková, Z. & Koštial, P. Sensitivity analysis: A tool for tailoring environmentally friendly materials. Expert Syst. Appl. 208, 118039. https://doi.org/10.1016/j.eswa.2022.118039 (2022).Article 

    Google Scholar 
    Zhao, D., Pang, Y., Liu, L. & Li, Z. Individual tree classification using airborne LiDAR and hyperspectral data in a natural mixed forest of Northeast China. Forests 11, 303. https://doi.org/10.3390/f11030303 (2020).Article 

    Google Scholar 
    Aksoy, S. & Akcay, H. G. Multi-resolution segmentation and shape analysis for remote sensing image classification. In Proceedings of 2nd International Conference on Recent Advances in Space Technologies, 2005. RAST 2005. 599–604 (2005). https://doi.org/10.1109/RAST.2005.1512638.Dalponte, M., Ørka, H. O., Ene, L. T., Gobakken, T. & Næsset, E. Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sens. Environ. 140, 306–317. https://doi.org/10.1016/j.rse.2013.09.006 (2014).Article 

    Google Scholar 
    Amini, S., Homayouni, S., Safari, A. & Darvishsefat, A. A. Object-based classification of hyperspectral data using Random Forest algorithm. Geo-Spat. Inf. Sci. 21, 127–138. https://doi.org/10.1080/10095020.2017.1399674 (2018).Article 

    Google Scholar 
    Congalton, R. G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35–46. https://doi.org/10.1016/0034-4257(91)90048-B (1991).Article 

    Google Scholar 
    Foody, G. M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 80, 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4 (2002).Article 

    Google Scholar 
    Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 17, 168–192. https://doi.org/10.1016/j.aci.2018.08.003 (2020).Article 

    Google Scholar 
    Field, F. Discovering Statistics Using IBM SPSS Statistics. SAGE Publications Ltd https://uk.sagepub.com/en-gb/eur/discovering-statistics-using-ibm-spss-statistics/book257672 (2022).R Core Team. R: A language and environment for statistical computing. https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing (2022).Galucci, M. Generalized Mixed Models module. R package version 2.0.5. https://gamlj.github.io/gzlmmixed.html More