More stories

  • in

    Publisher Correction: Metagenome-assembled genome extraction and analysis from microbiomes using KBase

    Author notesMikayla M. ClarkPresent address: University of Tennessee, Knoxville, TN, USAMichael W. SneddonPresent address: Predicine, Inc., Hayward, CA, USARoman SutorminPresent address: Google, Inc., San Francisco, CA, USAAuthors and AffiliationsLawrence Berkeley National Laboratory, Berkeley, CA, USADylan Chivian, Sean P. Jungbluth, Paramvir S. Dehal, Elisha M. Wood-Charlson, Richard S. Canon, Gavin A. Price, William J. Riehl, Michael W. Sneddon, Roman Sutormin & Adam P. ArkinOak Ridge National Laboratory, Oak Ridge, TN, USABenjamin H. Allen, Mikayla M. Clark, Miriam L. Land & Robert W. CottinghamArgonne National Laboratory, Lemont, IL, USATianhao Gu, Qizhi Zhang & Chris S. HenryAuthorsDylan ChivianSean P. JungbluthParamvir S. DehalElisha M. Wood-CharlsonRichard S. CanonBenjamin H. AllenMikayla M. ClarkTianhao GuMiriam L. LandGavin A. PriceWilliam J. RiehlMichael W. SneddonRoman SutorminQizhi ZhangRobert W. CottinghamChris S. HenryAdam P. ArkinCorresponding authorsCorrespondence to
    Dylan Chivian or Adam P. Arkin. More

  • in

    Global distribution and climate sensitivity of the tropical montane forest nitrogen cycle

    von Humboldt, A., and A. Bonpland. Essai sur la geographiedes plantes. Chez Levrault, Schoell et Campagnie, Libraries, Paris.(1805).Malhi, Y. et al. Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Glob. Change Biol. 16, 3171–3175 (2010).Article 

    Google Scholar 
    Nottingham, A. T. et al. Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes. BioScience 65, 906–921 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Malhi, Y. et al. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. N. Phytologist 214, 1019–1032 (2017).Article 
    CAS 

    Google Scholar 
    Nottingham, A. T. et al. Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences 12, 6071–6083 (2015).Article 

    Google Scholar 
    Nottingham, A. T. et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology 99, 2455–2466 (2018).Article 
    PubMed 

    Google Scholar 
    Jenny, H., Bingham, F. & Padillasaravia, B. Nitrogen and organic matter contents of equatorial soils of Colombia, South-America. Soil Sci. 66, 173–186 (1948).Article 
    CAS 

    Google Scholar 
    Tanner, E., Vitousek, P. & Cuevas, E. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79, 10–22 (1998).Article 

    Google Scholar 
    Vitousek, P. M., Matson, P. A. & Turner, D. R. Elevational and age gradients in Hawaiian montane rainforest: foliar and soil nutrients. Oecologia 77, 565–570 (1988).Article 
    PubMed 

    Google Scholar 
    Vitousek, P. M. & Sanford, R. L. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17, 137–167 (1986).Article 

    Google Scholar 
    Krishnaswamy, J., John, R. & Joseph, S. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Change Biol. 20, 203–215 (2014).Article 

    Google Scholar 
    Duque, A. et al. Mature Andean forests as globally important carbon sinks and future carbon refuges. Nat. Commun. 12, 2138 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nottingham, A. T. et al. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 22, 1889–1899 (2019).Article 
    PubMed 

    Google Scholar 
    Marrs, R. H., Proctor, J., Heaney, A. & Mountford, M. D. Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J. Ecol. 76, 466–482 (1988).Grubb, P. J. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu. Rev. Ecol. Syst. 8, 83–107 (1977).Article 
    CAS 

    Google Scholar 
    Wolf, K., Veldkamp, E., Homeier, J. & Martinson, G. O. Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Glob. Biogeochem. Cycles 25, GB4009 (2011).Barthel, M. et al. Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nat. Commun. 13, 330 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brookshire, E. N. J., Hedin, L. O., Newbold, J. D., Sigman, D. M. & Jackson, J. K. Sustained losses of bioavailable nitrogen from montane tropical forests. Nat. Geosci. 5, 123–126 (2012).Article 
    CAS 

    Google Scholar 
    Rütting, T. et al. Leaky nitrogen cycle in pristine African montane rainforest soil. Glob. Biogeochem. Cycles 29, 1754–1762 (2015).Article 

    Google Scholar 
    Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47, 151–163 (1996).Article 
    CAS 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 7, 217–240 (2021).Article 
    CAS 

    Google Scholar 
    Bauters, M. et al. Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation. Biogeosciences 14, 5313–5321 (2017).Article 
    CAS 

    Google Scholar 
    Dalling, J. W., Heineman, K., González, G. & Ostertag, R. Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests. J. Tropical Ecol. 32, 368–383 (2016).Article 

    Google Scholar 
    Porder, S., Vitousek, P., Chadwick, O., Chamberlain, C. & Hilley, G. Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10, 158–170 (2007).Article 
    CAS 

    Google Scholar 
    Houlton, B. Z., Morford, S. L. & Dahlgren, R. A. Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment. Science 360, 58–62 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hilton, R. G., Galy, A., West, A. J., Hovius, N. & Roberts, G. G. Geomorphic control on the delta N-15 of mountain forests. Biogeosciences 10, 1693–1705 (2013).Article 
    CAS 

    Google Scholar 
    Vitousek, P. M., Van Cleve, K., Balakrishnan, N. & Mueller-Dombois, D. Soil development and nitrogen turnover in montane rainforest soils on Hawai’i. Biotropica 268–274 (1983).Taylor, P. G. et al. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol. Lett. 20, 779–788 (2017).Article 
    PubMed 

    Google Scholar 
    Houlton, B. & Bai, E. Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl Acad. Sci. USA 106, 21713–21716 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).Article 
    CAS 

    Google Scholar 
    Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil 396, 1–26 (2015).Högberg, P. Tansley Review No. 95. 15N Natural Abundance in Soil-Plant Systems. N. Phytologist 137, 179–203 (1997).Article 

    Google Scholar 
    Martinelli, L. et al. Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests. Biogeochemistry 46, 45–65 (1999).Article 
    CAS 

    Google Scholar 
    Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles 17, (2003).Craine, J. M. et al. Convergence of soil nitrogen isotopes across global climate gradients. Sci. Rep. 5, 8280 (2015).Mooshammer, M. et al. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat. Commun. 5, 3694 (2014).Camenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A. & Rillig, M. C. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 88, 4–21 (2018).Article 

    Google Scholar 
    Mariotti, A., Pierre, D., Vedy, J. C., Bruckert, S. & Guillemot, J. The abundance of natural nitrogen 15 in the organic matter of soils along an altitudinal gradient (Chablais, Haute Savoie, France). Catena 7, 293–300 (1980).Article 
    CAS 

    Google Scholar 
    Sena‐Souza, J. P., Houlton, B. Z., Martinelli, L. A. & Nardoto, G. B. Reconstructing continental-scale variation in soil δ15N: a machine learning approach in South America. Ecosphere 11, e03223 (2020).Article 

    Google Scholar 
    Nottingham, A. T., Bååth E., Reischke, S., Salinas, N. & Meir, P. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Glob. change Biol. 25, 827–838 (2019).Liu, Y. et al. A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms. Glob. Change Biol. 23, 455–464 (2017).Article 

    Google Scholar 
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zimmermann, M. & Bird, M. I. Temperature sensitivity of tropical forest soil respiration increase along an altitudinal gradient with ongoing decomposition. Geoderma 187–188, 8–15 (2012).Article 

    Google Scholar 
    Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011).Article 

    Google Scholar 
    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).Article 

    Google Scholar 
    Brookshire, E. N. J., Gerber, S., Menge, D. N. L. & Hedin, L. O. Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecol. Lett. 15, 9–16 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Corrales, A., Henkel, T. W. & Smith, M. E. Ectomycorrhizal associations in the tropics—biogeography, diversity patterns and ecosystem roles. N. Phytologist 220, 1076–1091 (2018).Article 

    Google Scholar 
    Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 1–7 https://doi.org/10.1038/s41561-020-00666-0 (2020).Nogués-Bravo, D., Araújo, M. B., Errea, M. P. & Martínez-Rica, J. P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change 17, 420–428 (2007).Article 

    Google Scholar 
    Weintraub, S. R., Cole, R. J., Schmitt, C. G. & All, J. D. Climatic controls on the isotopic composition and availability of soil nitrogen across mountainous tropical forest. Ecosphere 7, e01412 (2016).Article 

    Google Scholar 
    Brookshire, E. N. J. & Thomas, S. A. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest. PLoS ONE 8, e70491 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kitayama, K. & Iwamoto, K. Patterns of natural 15N abundance in the leaf-to-soil continuum of tropical rain forests differing in N availability on Mount Kinabalu, Borneo. Plant Soil 229, 203–212 (2001).Article 
    CAS 

    Google Scholar 
    Bauters, M. et al. Contrasting nitrogen fluxes in African tropical forests of the Congo Basin. Ecol. Monogr. 89, e01342 (2019).Article 

    Google Scholar 
    Proctor, J., Edwards, I. D., Payton, R. W. & Nagy, L. Zonation of forest vegetation and soils of Mount Cameroon, West Africa. Plant Ecol. 192, 251–269 (2007).Article 

    Google Scholar 
    Grubb, P. J. & Stevens, P. F. The Forests of the Fatima Basin and Mt Kerigomna, Papua New Guinea with a Review of Montane and Subalpine Rainforests in Papuasia (Department of Human Geography, Research School of Pacific Studies…, 2017).Dieleman, W. I. J., Venter, M., Ramachandra, A., Krockenberger, A. K. & Bird, M. I. Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage. Geoderma 204–205, 59–67 (2013).Article 

    Google Scholar 
    Kapos, V., Rhind, J., Edwards, M., Price, M. F. & Ravilious, C. in Forests in sustainable mountain development: a state of knowledge report for 2000. Task Force on Forests in Sustainable Mountain Development. 4–19 (CABI, 2000). https://doi.org/10.1079/9780851994468.0004.Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digital Earth 6, 427–448 (2013).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org (2022).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48, https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Bartoń K. MuMIn: Multi-Model Inference. R package version 1.43.17 (2020).Grömping, U. Relative Importance for Linear Regression in R: The Package Relaimpo. J. Stat. Softw. 17, 1–27 (2006).Article 

    Google Scholar 
    Baty, F. et al. A Toolbox for Nonlinear Regression in R: The Package nlstools. J. Stat. Softw. 66, 1–21 (2015).Article 

    Google Scholar  More

  • in

    Features of urban green spaces associated with positive emotions, mindfulness and relaxation

    Olszewska-Guizzo, A., Fogel, A., Benjumea, D. & Tahsin, N. Sustainable Policies and Practices in Energy, Environment and Health Research 223–243 (Springer, 2022).Book 

    Google Scholar 
    Gascon, M. et al. Mental health benefits of long-term exposure to residential green and blue spaces: A systematic review. Int. J. Environ. Res. Public Health 12, 4354–4379. https://doi.org/10.3390/ijerph120404354 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Houlden, V., Weich, S., Porto-de-Albuquerque, J., Jarvis, S. & Rees, K. The relationship between greenspace and the mental wellbeing of adults: A systematic review. PLoS ONE 13, 3000 (2018).Article 

    Google Scholar 
    Hung, S.-H. & Chang, C.-Y. Health benefits of evidence-based biophilic-designed environments: A review. J. People Plants Env. 24, 1–16 (2021).Article 

    Google Scholar 
    Berman, M. G., Jonides, J. & Kaplan, S. The cognitive benefits of interacting with nature. Psychol. Sci. 19, 1207–1212. https://doi.org/10.1111/j.1467-9280.2008.02225.x (2008).Article 
    PubMed 

    Google Scholar 
    Kaplan, S. Meditation, restoration, and the management of mental fatigue. Environ. Behav. 33, 480–506. https://doi.org/10.1177/00139160121973106 (2001).Article 

    Google Scholar 
    Ulrich, R. S. et al. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 11, 201–230 (1991).Article 

    Google Scholar 
    Kellert, S. R. & Wilson, E. O. The Biophilia Hypothesis (Island Press, 1993).
    Google Scholar 
    Stack, K. & Shultis, J. Implications of attention restoration theory for leisure planners and managers. Leisure/Loisir 37, 1–16 (2013).Article 

    Google Scholar 
    Steel, Z. et al. The global prevalence of common mental disorders: A systematic review and meta-analysis 1980–2013. Int. J. Epidemiol. 43, 476–493. https://doi.org/10.1093/ije/dyu038 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mueller, D. P. The current status of urban-rural differences in psychiatric disorder. An emerging trend for depression. J. Nerv. Ment. Dis. 169, 18–27 (1981).Article 
    CAS 
    PubMed 

    Google Scholar 
    Peen, J., Schoevers, R. A., Beekman, A. T. & Dekker, J. The current status of urban-rural differences in psychiatric disorders. Acta Psychiatr. Scand. 121, 84–93. https://doi.org/10.1111/j.1600-0447.2009.01438.x (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Taylor, L. & Hochuli, D. F. Defining greenspace: Multiple uses across multiple disciplines. Landsc. Urban Plan. 158, 25–38 (2017).Article 

    Google Scholar 
    en K Staats, H. Restorative Environments The Oxford Handbook of Environmental and Conservation Psychology 445th edn. (Oxford University Press, 2012).
    Google Scholar 
    Wood, L., Hooper, P., Foster, S. & Bull, F. Public green spaces and positive mental health–investigating the relationship between access, quantity and types of parks and mental wellbeing. Health Place 48, 63–71 (2017).Article 
    PubMed 

    Google Scholar 
    Tsunetsugu, Y. et al. Physiological and psychological effects of viewing urban forest landscapes assessed by multiple measurements. Landsc. Urban Plan. 113, 90–93 (2013).Article 

    Google Scholar 
    Gidlow, C. J. et al. Where to put your best foot forward: Psycho-physiological responses to walking in natural and urban environments. J. Environ. Psychol. 45, 22–29 (2016).Article 

    Google Scholar 
    Lee, J. Experimental study on the health benefits of garden landscape. Int. J. Environ. Res. Public Health 14, 829 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuller, R. A., Irvine, K. N., Devine-Wright, P., Warren, P. H. & Gaston, K. J. Psychological benefits of greenspace increase with biodiversity. Biol. Lett. 3, 390–394 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson, C. W., Aspinall, P. & Bell, S. Innovative Approaches to Researching Landscape and Health: Open Space: People Space 2 (Routledge, 2010).Book 

    Google Scholar 
    Tsutsumi, M., Nogaki, H., Shimizu, Y., Stone, T. E. & Kobayashi, T. Individual reactions to viewing preferred video representations of the natural environment: A comparison of mental and physical reactions. Jpn. J. Nurs. Sci. 14, 3–12 (2017).Article 
    PubMed 

    Google Scholar 
    Grazuleviciene, R. et al. Tracking restoration of park and urban street settings in coronary artery disease patients. Int. J. Environ. Res. Public Health 13, 550 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bostancı, S. H. In New Approaches to Spatial Planning and Design (ed Murat Özyavuz) Ch. 32, 435–451 (Peter Lang, 2019).Daniel, T. C. Measuring Landscape Esthetics: The Scenic Beauty Estimation Method, vol. 167 (Department of Agriculture, Forest Service, Rocky Mountain Forest and Range…, 1976).Bacon, W. R. In (eds Elsner G. H. et al) Technical Coordinators. Proceedings of our national landscape: A conference on applied techniques for analysis and management of the visual resource [Incline Village, Nev., April 23–25, 1979]. Gen. Tech. Rep. PSW-GTR-35. Berkeley, CA. Pacific Southwest Forest and Range Exp. Stn., Forest Service, US Department of Agriculture 660–665 (1979).Gavrilidis, A. A., Ciocănea, C. M., Niţă, M. R., Onose, D. A. & Năstase, I. I. Urban landscape quality index—planning tool for evaluating urban landscapes and improving the quality of life. Procedia Environ. Sci. 32, 155–167. https://doi.org/10.1016/j.proenv.2016.03.020 (2016).Article 

    Google Scholar 
    Knobel, P. et al. Development of the urban green space quality assessment tool (RECITAL). Urban For. Urban Green. 57, 126895 (2021).Article 

    Google Scholar 
    Bacon, W. R. & Dell, J. National Forest Landscape Management (Forest Service, US Department of Agriculture, 1973).Kaplan, R., Kaplan, S. & Ryan, R. With People in Mind: Design and Management of Everyday Nature (Island Press, 1998).
    Google Scholar 
    Smardon, R., Palmer, J. & Felleman, J. P. Foundations for Visual Project Analysis (Wiley, 1986).
    Google Scholar 
    Jung, C. G. Man and His Symbols Garden City (Doubleday and Co, 1964).
    Google Scholar 
    Olszewska, A., Marques, P. F., Ryan, R. L. & Barbosa, F. What makes a landscape contemplative?. Env. Plan. B Urban Anal. City Sci. 45, 7–25. https://doi.org/10.1177/0265813516660716 (2016).Article 

    Google Scholar 
    Tarkka, I. M. & Hallett, M. Cortical topography of premotor and motor potentials preceding self-paced, voluntary movement of dominant and non-dominant hands. Electroencephalogr. Clin. Neurophysiol. 75, 36–43 (1990).Article 
    CAS 
    PubMed 

    Google Scholar 
    Olszewska-Guizzo, A., Paiva, T. O. & Barbosa, F. Effects of 3D contemplative landscape videos on brain activity in a passive exposure EEG experiment. Front. Psychiatry 9, 317. https://doi.org/10.3389/fpsyt.2018.00317 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bradley, M. M. & Lang, P. J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59. https://doi.org/10.1016/0005-7916(94)90063-9 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Beck, A. T., Steer, R. A. & Brown, G. K. Beck depression inventory-II. San Antonio 78, 490–498 (1996).
    Google Scholar 
    Ferree, T. C., Luu, P., Russell, G. S. & Tucker, D. M. Scalp electrode impedance, infection risk, and EEG data quality. Clin. Neurophysiol. 112, 536–544. https://doi.org/10.1016/S1388-2457(00)00533-2 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stroganova, T. A. & Orekhova, E. V. EEG and infant states. Infant EEG Event-Relat. Potentials 251, 280 (2007).
    Google Scholar 
    Cacioppo, J. T., Tassinary, L. G. & Berntson, G. Handbook of Psychophysiology (Cambridge University Press, 2007).
    Google Scholar 
    Ulrich, R. S. Natural versus urban scenes: Some psychophysiological effects. Environ. Behav. 13, 523–556 (1981).Article 

    Google Scholar 
    Choi, Y., Kim, M. & Chun, C. Measurement of occupants’ stress based on electroencephalograms (EEG) in twelve combined environments. Build. Environ. 88, 65–72 (2015).Article 

    Google Scholar 
    Gorji, M. A. H., Davanloo, A. A. & Heidarigorji, A. M. The efficacy of relaxation training on stress, anxiety, and pain perception in hemodialysis patients. Indian J. Nephrol. 24, 356 (2014).Article 

    Google Scholar 
    Cahn, B. R. & Polich, J. Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol. Bull. 132, 180 (2006).Article 
    PubMed 

    Google Scholar 
    Gruzelier, J. A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration. Cogn. Process. 10, 101–109 (2009).Article 

    Google Scholar 
    Vecchiato, G. et al. Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments. Cogn. Process. 16, 425–429 (2015).Article 
    PubMed 

    Google Scholar 
    Lagopoulos, J. et al. Increased theta and alpha EEG activity during nondirective meditation. J. Altern. Complement. Med. 15, 1187–1192 (2009).Article 
    PubMed 

    Google Scholar 
    Wascher, E. et al. Frontal theta activity reflects distinct aspects of mental fatigue. Biol. Psychol. 96, 57–65 (2014).Article 
    PubMed 

    Google Scholar 
    Kabat-Zinn, J. Mindfulness. Mindfulness 6, 1481–1483 (2015).Article 

    Google Scholar 
    McGarrigle, T. & Walsh, C. A. Mindfulness, self-care, and wellness in social work: Effects of contemplative training. J. Relig. Spiritual. Soc. Work Soc. Thought 30, 212–233 (2011).
    Google Scholar 
    Grossman, P., Niemann, L., Schmidt, S. & Walach, H. Mindfulness-based stress reduction and health benefits: A meta-analysis. J. Psychosom. Res. 57, 35–43 (2004).Article 
    PubMed 

    Google Scholar 
    Bailey, A. W., Allen, G., Herndon, J. & Demastus, C. Cognitive benefits of walking in natural versus built environments. World Leisure J. 60, 293–305 (2018).Article 

    Google Scholar 
    Qin, J., Zhou, X., Sun, C., Leng, H. & Lian, Z. Influence of green spaces on environmental satisfaction and physiological status of urban residents. Urban For. Urban Green. 12, 490–497 (2013).Article 

    Google Scholar 
    Kolb, B. & Whishaw, I. Q. Fundamentals of Human Neuropsychology (Freeman, 1990).
    Google Scholar 
    Milner, B. Visual recognition and recall after right temporal-lobe excision in man. Neuropsychologia 6, 191–209 (1968).Article 

    Google Scholar 
    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215. https://doi.org/10.1038/nrn755 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chang, C.-Y. & Chen, P.-K. Human response to window views and indoor plants in the workplace. HortScience 40, 1354–1359 (2005).Article 

    Google Scholar 
    Herzog, T. R., Black, A. M., Fountaine, K. A. & Knotts, D. J. Reflection and attentional recovery as distinctive benefits of restorative environments. J. Environ. Psychol. 17, 165–170 (1997).Article 

    Google Scholar 
    Baehr, E., Rosenfeld, J. P. & Baehr, R. Clinical use of an alpha asymmetry neurofeedback protocol in the treatment of mood disorders: Follow-up study one to five years post therapy. J. Neurother. 4, 11–18 (2001).Article 

    Google Scholar 
    Sia, A. et al. Nature-based activities improve the well-being of older adults. Sci. Rep. 10, 1–8 (2020).Article 

    Google Scholar 
    Olszewska-Guizzo, A., Sia, A., Fogel, A. & Ho, R. Can exposure to certain urban green spaces trigger frontal alpha asymmetry in the brain?—Preliminary findings from a passive task EEG study. Int. J. Environ. Res. Public Health 17, 394 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olszewska-Guizzo, A. et al. Therapeutic garden with contemplative features induces desirable changes in mood and B rain activity in depressed adults. Front. Psychiatry https://doi.org/10.3389/fpsyt.2022.757056 (2021).Article 

    Google Scholar 
    Tan, S. B., Vignesh, L. N. & Donald, L. Public Housing in Singapore: Examining Fundamental Shifts (Lee Kuan Yew School of Public Policy, National University of Singapore, 2014).Tan, P. Y. Nature, Place & People: Forging Connections Through Neighbourhood Landscape Design (World Scientific Publishing Co., 2018).Book 

    Google Scholar 
    Peirce, J. et al. PsychoPy2: Experiments in behavior made easy. Behav. Res. Methods 51, 195–203. https://doi.org/10.3758/s13428-018-01193-y (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edwards, A. L. Balanced Latin-square designs in psychological research. Am. J. Psychol. 64, 598–603 (1951).Article 
    CAS 
    PubMed 

    Google Scholar 
    Korpela, K. M., Ylén, M., Tyrväinen, L. & Silvennoinen, H. Determinants of restorative experiences in everyday favorite places. Health Place 14, 636–652 (2008).Article 
    PubMed 

    Google Scholar 
    Ojala, A., Korpela, K., Tyrväinen, L., Tiittanen, P. & Lanki, T. Restorative effects of urban green environments and the role of urban-nature orientedness and noise sensitivity: A field experiment. Health Place 55, 59–70 (2019).Article 
    PubMed 

    Google Scholar 
    Tyrväinen, L. et al. The influence of urban green environments on stress relief measures: A field experiment. J. Environ. Psychol. 38, 1–9 (2014).Article 

    Google Scholar 
    Herzog, T. R. & Barnes, G. J. Tranquility and preference revisited. J. Environ. Psychol. 19, 171–181 (1999).Article 

    Google Scholar 
    Neale, C. et al. The impact of walking in different urban environments on brain activity in older people. Cities Health 4, 94–106. https://doi.org/10.1080/23748834.2019.1619893 (2020).Article 

    Google Scholar 
    Kaplan, R. & Kaplan, S. The Experience of Nature: A Psychological Perspective (CUP Archive, 1989).
    Google Scholar 
    Treib, M. In Contemporary Landscapes of Contemplation (ed Rebecca Krinke) 27–49 (Routledge, 2005).Appleton, J. The Experience of Landscape (Wiley Chichester, 1996).
    Google Scholar 
    Grahn, P., Ottosson, J. & Uvnäs-Moberg, K. The oxytocinergic system as a mediator of anti-stress and instorative effects induced by nature: The calm and connection theory. Front. Psychol. 2021, 12 (2021).
    Google Scholar 
    Hartig, T., Mang, M. & Evans, G. W. Restorative effects of natural environment experiences. Environ. Behav. 23, 3–26. https://doi.org/10.1177/0013916591231001 (1991).Article 

    Google Scholar 
    Stamps Iii, A. E. Use of photographs to simulate environments: A meta-analysis. Percept. Mot. Skills 71, 907–913 (1990).Article 

    Google Scholar 
    Menardo, E., Brondino, M., Hall, R. & Pasini, M. Restorativeness in natural and urban environments: A meta-analysis. Psychol. Rep. 124, 417–437 (2021).Article 
    PubMed 

    Google Scholar  More

  • in

    Multiple invasions, Wolbachia and human-aided transport drive the genetic variability of Aedes albopictus in the Iberian Peninsula

    Hawley, W. A. The biology of Aedes albopictus. J. Am. Mosq. Control Assoc. 1, 1–39 (1988).CAS 

    Google Scholar 
    Benedict, M. Q., Levine, R. S., Hawley, W. A. & Lounibos, L. P. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector-Borne Zoonotic Dis. 7, 76–85 (2007).Article 
    PubMed 

    Google Scholar 
    Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: From the darkness to the light. Microb. Infect. 11, 1177–1185 (2009).Article 
    CAS 

    Google Scholar 
    Delatte, H. et al. Blood-feeding behavior of Aedes albopictus, a vector of Chikungunya on La Réunion. Vector-Borne Zoonotic Dis. 10, 249–258 (2010).Article 
    PubMed 

    Google Scholar 
    Pereira-dos-Santos, T., Roiz, D., Lourenço-de-Oliveira, R. & Paupy, C. A systematic review: Is Aedes albopictus an efficient bridge vector for zoonotic arboviruses? Pathogens 9, 266 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gratz, N. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grard, G. et al. Zika virus in Gabon (Central Africa)—2007: A new threat from Aedes albopictus? PLoS Negl. Trop. Dis. 8, e2681 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lambrechts, L., Scott, T. W. & Gubler, D. J. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 4, e646 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lounibos, L. P. & Kramer, L. D. Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. J. Infect. Dis. 214, S453–S458 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    European Centre for Disease Prevention and Control (ECDC). Vector Control with a Focus on Aedes aegypti and Aedes albopictus Mosquitoes: Literature Review and Analysis of Information (ECDC, Stockholm, Sweden, 2017).Tatem, A. J., Hay, S. I. & Rogers, D. J. Global traffic and disease vector dispersal. PNAS 103, 6242–6247 (2006).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection From the Global Invasive Species Database, Vol. 12 (Invasive Species Specialist Group, 2000).Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Marini, F., Caputo, B., Pombi, M., Tarsitani, G. & Della-Torre, A. Study of Aedes albopictus dispersal in Rome, Italy, using sticky traps in mark–release–recapture experiments. Med. Vet. Entomol. 24, 361–368 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bonizzoni, M., Gasperi, G., Chen, X. & James, A. A. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 29, 460–468 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Collantes, F. et al. Review of ten-years presence of Aedes albopictus in Spain 2004–2014: Known distribution and public health concerns. Parasit Vectors 8, 1–11 (2015).Article 

    Google Scholar 
    Aranda, C., Eritja, R. & Roiz, D. First record and establishment of the mosquito Aedes albopictus in Spain. Med. Vet. Entomol. 20, 150–152 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Giménez, N. et al. Introduction of Aedes albopictus in Spain: A new challenge for public health. Gac. Sanit. 21, 25–28 (2007).Article 
    PubMed 

    Google Scholar 
    European Centre for Disease Prevention and Control and European Food Safety Authority. Mosquito maps [internet]. Stockholm: ECDC. https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps (2022).Shigesada, N. & Kawasaki, K. Biological Invasions: Theory and Practice (Oxford University Press, 1997).
    Google Scholar 
    Puth, L. M. & Post, D. M. Studying invasion: Have we missed the boat? Ecol. Lett. 8, 715–721 (2005).Article 

    Google Scholar 
    Leung, B. et al. An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proc. R Soc. Lond. Ser. B Biol. Sci. 269, 2407–2413 (2002).Article 

    Google Scholar 
    Lounibos, L. P. Invasions by insect vectors of human disease. Annu. Rev. Entomol. 47, 233–266 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Manni, M. et al. Genetic evidence for a worldwide chaotic dispersion pattern of the arbovirus vector, Aedes albopictus. PLoS Negl. Trop. Dis. 11, e0005332 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roiz, D. et al. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl. Trop. Dis. 12, e0006845 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lühken, R. et al. Microsatellite typing of Aedes albopictus (Diptera: Culicidae) populations from Germany suggests regular introductions. Infect. Genet. Evol. 81, 104237 (2020).Article 
    PubMed 

    Google Scholar 
    Battaglia, V. et al. The worldwide spread of the tiger mosquito as revealed by mitogenome haplogroup diversity. Front. Genet. 7, 208 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Medley, K. A., Jenkins, D. G. & Hoffman, E. A. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito. Mol. Ecol. 24, 284–295 (2015).Article 
    PubMed 

    Google Scholar 
    Eritja, R., Palmer, J. R., Roiz, D., Sanpera-Calbet, I. & Bartumeus, F. Direct evidence of adult Aedes albopictus dispersal by car. Sci. Rep. 7, 1–15 (2017).Article 
    CAS 

    Google Scholar 
    Sherpa, S. et al. Unravelling the invasion history of the Asian tiger mosquito in Europe. Mol. Ecol. 28, 2360–2377 (2019).Article 
    PubMed 

    Google Scholar 
    Swan, T. et al. A literature review of dispersal pathways of Aedes albopictus across different spatial scales: Implications for vector surveillance. Parasit Vectors 15, 1–13 (2022).Article 

    Google Scholar 
    Ballard, J. W. O. & Whitlock, M. C. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729–744. https://doi.org/10.1046/j.1365-294X.2003.02063.x (2004).Article 
    PubMed 

    Google Scholar 
    Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930. https://doi.org/10.1111/j.1365-294X.2012.05664.x (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hurst, G. D. & Jiggins, F. M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts. Proc. R. Soc. B: Biol. Sci. 272, 1525–1534 (2005).Article 
    CAS 

    Google Scholar 
    Cariou, M., Duret, L. & Charlat, S. The global impact of Wolbachia on mitochondrial diversity and evolution. J. Evol. Biol. 30, 2204–2210 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zug, R. & Hammerstein, P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 7, e38544 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z. & Welch, J. J. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. R. Soc. B: Biol. Sci. 282, 20150249 (2015).Article 

    Google Scholar 
    Goubert, C., Minard, G., Vieira, C. & Boulesteix, M. Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases. Heredity 117, 125–134 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Western, D. Human-modified ecosystems and future evolution. PNAS 98, 5458–5465 (2001).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pech-May, A. et al. Population genetics and ecological niche of invasive Aedes albopictus in Mexico. Acta Trop. 157, 30–41 (2016).Article 
    PubMed 

    Google Scholar 
    Vargo, E. L. et al. Hierarchical genetic analysis of German cockroach (Blattella germanica) populations from within buildings to across continents. PLoS ONE 9, e102321 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    von Beeren, C., Stoeckle, M. Y., Xia, J., Burke, G. & Kronauer, D. J. Interbreeding among deeply divergent mitochondrial lineages in the American cockroach (Periplaneta americana). Sci. Rep. 5, 1–7 (2015).
    Google Scholar 
    Tseng, S.-P. et al. Genetic diversity and Wolbachia infection patterns in a globally distributed invasive ant. Front. Genet. 10, 838 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wesson, D. M., Porter, C. H. & Collins, F. H. Sequence and secondary structure comparisons of ITS rDNA in mosquitoes (Diptera: Culicidae). Mol. Phylogen. Evol. 1, 253–269 (1992).Article 
    CAS 

    Google Scholar 
    Mishra, S., Sharma, G., Das, M. K., Pande, V. & Singh, O. P. Intragenomic sequence variations in the second internal transcribed spacer (ITS2) ribosomal DNA of the malaria vector Anopheles stephensi. PLoS ONE 16, e0253173 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Artigas, P. et al. Aedes albopictus diversity and relationships in south-western Europe and Brazil by rDNA/mtDNA and phenotypic analyses: ITS-2, a useful marker for spread studies. Parasit Vectors 14, 1–23 (2021).Article 

    Google Scholar 
    Armbruster, P. et al. Infection of New-and Old-World Aedes albopictus (Diptera: Culicidae) by the intracellular parasite Wolbachia: implications for host mitochondrial DNA evolution. J. Med. Entomol. 40, 356–360 (2003).Article 
    PubMed 

    Google Scholar 
    Maia, R., Scarpassa, V. M., Maciel-Litaiff, L. & Tadei, W. P. Reduced levels of genetic variation in Aedes albopictus (Diptera: Culicidae) from Manaus, Amazonas State, Brazil, based on analysis of the mitochondrial DNA ND5 gene. Gen. Mol. Res. 2000, 998–1007 (2009).Article 

    Google Scholar 
    Birungi, J. & Munstermann, L. E. Genetic structure of Aedes albopictus (Diptera: Culicidae) populations based on mitochondrial ND5 sequences: Evidence for an independent invasion into Brazil and United States. Ann. Entomol. Soc. Am. 95, 125–132 (2002).Article 
    CAS 

    Google Scholar 
    Kambhampati, S. & Rai, K. S. Mitochondrial DNA variation within and among populations of the mosquito Aedes albopictus. Genome 34, 288–292 (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wiwatanaratanabutr, I. Geographic distribution of wolbachial infections in mosquitoes from Thailand. J. Invertebr. Pathol. 114, 337–340 (2013).Article 
    PubMed 

    Google Scholar 
    Carvajal, T. M., Hashimoto, K., Harnandika, R. K., Amalin, D. M. & Watanabe, K. Detection of Wolbachia in field-collected Aedes aegypti mosquitoes in metropolitan Manila, Philippines. Parasit. Vectors 12, 1–9 (2019).Article 

    Google Scholar 
    Atyame, C. M., Delsuc, F., Pasteur, N., Weill, M. & Duron, O. Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. Mol. Biol. Evol. 28, 2761–2772 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Damiani, C. et al. Wolbachia in Aedes koreicus: Rare detections and possible implications. Insects 13, 216 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiggins, F. M. Male-killing Wolbachia and mitochondrial DNA: Selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164, 5–12 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schuler, H. et al. The hitchhiker’s guide to Europe: The infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi. Mol. Ecol. 25, 1595–1609 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ross, P. A., Ritchie, S. A., Axford, J. K. & Hoffmann, A. A. Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions. PLoS Negl. Trop. Dis. 13, e0007357 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avise, J. C. Phylogeography: The history and formation of species (Harvard University Press, 2000).Book 

    Google Scholar 
    Rokas, A., Atkinson, R. J., Brown, G. S., West, S. A. & Stone, G. N. Understanding patterns of genetic diversity in the oak gallwasp Biorhiza pallida: Demographic history or a Wolbachia selective sweep? Heredity 87, 294–304 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Porretta, D., Mastrantonio, V., Bellini, R., Somboon, P. & Urbanelli, S. Glacial history of a modern invader: Phylogeography and species distribution modelling of the Asian tiger mosquito Aedes albopictus. PLoS ONE 7, e44515. https://doi.org/10.1371/journal.pone.0044515 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Motoki, M. T. et al. Population genetics of Aedes albopictus (Diptera: Culicidae) in its native range in Lao People’s Democratic Republic. Parasit. Vectors 12, 1–12 (2019).Article 
    CAS 

    Google Scholar 
    Zhong, D. et al. Genetic analysis of invasive Aedes albopictus populations in Los Angeles County, California and its potential public health impact. PLoS ONE 8, e68586 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Usmani-Brown, S., Cohnstaedt, L. & Munstermann, L. E. Population genetics of Aedes albopictus (Diptera: Culicidae) invading populations, using mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 5 sequences. Ann. Entomol. Soc. Am. 102, 144–150 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mousson, L. et al. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations. Genet. Res. 86, 1–11 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bazin, E., Glémin, S. & Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570–572. https://doi.org/10.1126/science.1122033 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dowling, D. K., Friberg, U. & Lindell, J. Evolutionary implications of non-neutral mitochondrial genetic variation. Ecol. Evol. 23, 546–554 (2008).Article 

    Google Scholar 
    Montero-Pau, J., Gómez, A. & Muñoz, J. Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs. Limnol. Oceanogr. Methods 6, 218–222 (2008).Article 
    CAS 

    Google Scholar 
    Porter, C. H. & Collins, F. H. Species-diagnostic differences in a ribosomal DNA internal transcribed spacer from the sibling species Anopheles freeborni and Anopheles hermsi (Diptera: Culicidae). Am. J. Trop. Med. 45, 271–279 (1991).Article 
    CAS 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    Prosser, S., Martínez-Arce, A. & Elías-Gutiérrez, M. A new set of primers for COI amplification from freshwater microcrustaceans. Mol. Ecol. Resour. 13, 1151–1155 (2013).CAS 
    PubMed 

    Google Scholar 
    Ivanova, N. V., Zemlak, T. S., Hanner, R. H. & Hebert, P. D. Universal primer cocktails for fish DNA barcoding. Mol. Ecol. Notes 7, 544–548 (2007).Article 
    CAS 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, W., Rousset, F. & O’Neill, S. Phylogeny and PCR–based classification of Wolbachia strains using wsp gene sequences. Proc. R Soc. Lond. Ser. B Biol. Sci. 265, 509–515 (1998).Article 
    CAS 

    Google Scholar 
    Braig, H. R., Zhou, W., Dobson, S. L. & O’Neill, S. L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 180, 2373–2378 (1998).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hu, Y. et al. Identification and molecular characterization of Wolbachia strains in natural populations of Aedes albopictus in China. Parasit. Vectors 13, 1–14 (2020).
    Google Scholar 
    Heddi, A., Grenier, A.-M., Khatchadourian, C., Charles, H. & Nardon, P. Four intracellular genomes direct weevil biology: Nuclear, mitochondrial, principal endosymbiont, and Wolbachia. PNAS 96, 6814–6819 (1999).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Salzburger, W., Ewing, G. B. & Von Haeseler, A. The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol. Ecol. 20, 1952–1963 (2011).Article 
    PubMed 

    Google Scholar 
    Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gower, J. C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325–338 (1966).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/. (2021).Hijmans, R. J., Williams, E., Vennes, C. & Hijmans, M. R. J. Package ‘geosphere’. Spher. Trigon. 1, 5 (2017).
    Google Scholar 
    Palmer, J. R. et al. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat. Commun. 8, 1–13 (2017).Article 

    Google Scholar 
    Mantel, N. & Valand, R. S. A technique of nonparametric multivariate analysis. Biometrics 1970, 547–558 (1970).Article 

    Google Scholar 
    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).Article 

    Google Scholar 
    Stewart, C. Zero-inflated beta distribution for modeling the proportions in quantitative fatty acid signature analysis. J. Appl. Stat. 40, 985–992 (2013).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Figueroa-Zúñiga, J. I., Arellano-Valle, R. B. & Ferrari, S. L. Mixed beta regression: A Bayesian perspective. Comput. Stat. Data Anal. 61, 137–147 (2013).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Branscum, A. J., Johnson, W. O. & Thurmond, M. C. Bayesian beta regression: Applications to household expenditure data and genetic distance between foot-and-mouth disease viruses. Aust. N. Z. J. Stat. 49, 287–301 (2007).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Ospina, R. & Ferrari, S. L. Inflated beta distributions. Stat. Pap. 51, 111–126 (2010).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Chung, H. & Beretvas, S. N. The impact of ignoring multiple membership data structures in multilevel models. Br. J. Math. Stat. Psychol. 65, 185–200 (2012).Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar  More

  • in

    The spatial and temporal reconstruction of a medieval moat ecosystem

    Kirilova, E. P., Cremer, H., Heiri, O. & Lotter, A. F. Eutrophication of moderately deep Dutch lakes during the past century: Flaws in the expectations of water management? Hydrobiologia 637, 157–171 (2010).Article 
    CAS 

    Google Scholar 
    Scharf, B. & Viehberg, F. A. Living Ostracoda (Crustacea) from the town moat of Bremen, Germany. Crustaceana 87(8–9), 1124–1135 (2014).Article 

    Google Scholar 
    Rees, S. E. The historical and cultural importance of ponds and small lakes in Wales, UK. Aquat. Conserv. 7(2), 133–139 (1997).Article 

    Google Scholar 
    Brown, A. et al. The ecological impact of conquest and colonisation on a medieval frontier landscape: Combined palynological and geochemical analysis of lake sediments from Radzyń Chełmiński, northern Poland. Geoarchaeology 30, 511–527 (2015).Article 

    Google Scholar 
    Kittel, P. et al. The palaeoecological development of the Late Medieval moat—Multiproxy research at Rozprza Central Poland. Quat. Int. 482, 131–156 (2018).Article 

    Google Scholar 
    Hildebrandt-Radke, I. Geoarchaeological aspects in the studies of prehistoric and early historic settlement complexes. In Studia interdyscyplinarne nad środowiskiem i kulturą w Polsce. Tom 1. Środowisko-Człowiek-Cywilizacja (eds Makohonienko, M. et al.) 57–70 (Bogucki Wyd Naukowe, 2007).
    Google Scholar 
    Łyskowski, M. & Wardas-Lasoń, M. Georadar investigations and geochemical analysis in contemporary archaeological studies. Geol. Geophys. Environ. 38(3), 307–315 (2012).Article 

    Google Scholar 
    Korhola, A. & Rautio, M. Cladocera and other branchiopod crustaceans. In Tracking Environmental Change Using Lake Sediments, Vol. 4: Zoological Indicators (eds Smol, J. P. et al.) 5–41 (Kluwer Academic Publishers, 2001).Chapter 

    Google Scholar 
    Birks, H. H. Plant macrofossils. In Tracking Environmental Change Using Lake Sediments, 3: Terrestrial, Algal, and Siliceous Indicators (eds Smol, J. P. et al.) 49–74 (Kluwer Academic Publishers, 2001).
    Google Scholar 
    Battarbee, R. W. Diatom analysis. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 527–570 (Wiley, 1986).
    Google Scholar 
    Luoto, T. P., Nevalainen, L., Kultti, S. & Sarmaja-Korjonen, K. An evaluation of the influence of water depth and river inflow on quantitative Cladocera-based temperature and lake level inferences in a shallow boreal lake. Hydrobiologia 676, 143–154 (2011).Article 
    CAS 

    Google Scholar 
    Luoto, T. P. Intra-lake patterns of aquatic insect and mite remains. J. Paleolimnol. 47, 141–157 (2012).Article 

    Google Scholar 
    Hann, B. J. Methods in Quaternary ecology. Cladocera. Geosci. Canada 16, 17–26 (1989).
    Google Scholar 
    Dimbleby, G. W. The Palynology of Archaeological Sites (Academic Press. Inc., 1985).
    Google Scholar 
    Edwards, K. J. Using space in cultural palynology: The value of the off-site pollen record. In Modelling Ecological Change: Perspectives from Neoecology, Palaeoecology and Environmental Archaeology (eds Harris, D. R. & Thomas, K. D.) 61–74 (Routledge Taylor & Francis Group, 2016).
    Google Scholar 
    Kittel, P., Sikora, J. & Wroniecki, P. A Late Medieval motte-and-bailey settlement in a lowland river valley landscape of central Poland. Geoarchaeology 33(5), 558–578 (2018).Article 

    Google Scholar 
    Antczak-Orlewska, O. et al. The environmental history of the oxbow in the Luciąża River valley—Study on the specific microclimate during Allerød and Younger Dryas in central Poland. Quat. Int. https://doi.org/10.1016/j.quaint.2021.08.011 (2021).Article 

    Google Scholar 
    Dearing, J. A. Core correlation and total sediment influx. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 247–270 (Wiley, 1986).
    Google Scholar 
    O’Brien, C. et al. A sediment-based multiproxy palaeoecological approach to the environmental archaeology of lake dwellings (crannogs), central Ireland. Holocene 15, 707–719 (2005).Article 

    Google Scholar 
    Ruiz, Z., Brown, A. G. & Langdon, P. G. The potential of chironomid (Insecta: Diptera) larvae in archaeological investigations of floodplain and lake settlements. J. Archaeol. Sci. 33, 14–33 (2006).Article 

    Google Scholar 
    Kittel, P. et al. A multi-proxy reconstruction from Lutomiersk-Koziówki, Central Poland, in the context of early modern hemp and flax processing. J. Archaeol. Sci. 50, 318–337 (2014).Article 

    Google Scholar 
    Kittel, P. et al. On the border between land and water: the environmental conditions of the Neolithic occupation from 4.3 until 1.6 ka BC at Serteya, Western Russia. Geoarchaeology 36, 173–202 (2021).Article 

    Google Scholar 
    Makohonienko, M. et al. Environmental changes during Mesolithic-Neolithic transition in Kuyavia Lakeland, Central Poland. Quat. Int. https://doi.org/10.1016/j.quaint.2021.11.020 (2021).Article 

    Google Scholar 
    Porinchu, D. F. & MacDonald, G. M. The use and application of freshwater midges (Chironomidae: Insecta: Diptera) in geographical research. Prog. Phys. Geogr. 27, 378–422 (2003).Article 

    Google Scholar 
    Brooks, S. J., Langdon, P. G. & Heiri, O. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. QRA Technical guide no. 10 (Quaternary Research Association, 2007).Heiri, O., Birks, H. J. B., Brooks, S. J., Velle, G. & Willassen, E. Effects of within-lake variability of fossil assemblages on quantitative chironomid-inferred temperature reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 199, 95–106 (2003).Article 

    Google Scholar 
    Kittel, P., Sikora, J. & Wroniecki, P. The morphology of the Luciąża River valley floor in the vicinity of the Rozprza medieval ring-fort in light of geophysical survey. Bull. Geogr. Phys. Geogr. Ser. 8, 95–106 (2015).Article 

    Google Scholar 
    Hingham, R. & Barker, P. Timber Castles (University of Exeter Press, 2002).
    Google Scholar 
    Marciniak-Kajzer, A. Archaeology on Medieval Knights’ Manor Houses in Poland (Wyd. Uniwersytetu Łódzkiego, Wyd. Uniwersytetu Jagiellońskiego, 2016).Book 

    Google Scholar 
    Moller Pillot, H. K. M. Chironomidae Larvae of the Netherlands and Adjacent Lowlands. Biology and Ecology of the Aquatic Orthocladiinae, Prodiamesinae, Diamesinae, Buchonomyiinae, Podonominae, Telmatogetoninae (KNNV Publishing, 2013).Book 

    Google Scholar 
    Luoto, T. P. An assessment of lentic ceratopogonids, ephemeropterans, trichopterans and oribatid mites as indicators of past environmental change in Finland. Ann. Zool. Fenn. 46, 259–270 (2009).Article 

    Google Scholar 
    Cierniewski, J. Spatial complexity of the Cybina river valley organic soils against the background of physiographic conditions. Soil Sci. Annu. 32(4), 3–51 (1981).CAS 

    Google Scholar 
    Rydelek, P. Origin and composition of mineral constituents of fen peats from Eastern Poland. J. Plant Nutr. 36(6), 911–928 (2013).Article 
    CAS 

    Google Scholar 
    Wachecka-Kotkowska, L. Rozwój rzeźby obszaru między Piotrkowem Trybunalskim, Radomskiem a Przedborzem w czwartorzędzie (Wyd. Uniwersytetu Łódzkiego, 2015).Book 

    Google Scholar 
    Kittel, P. et al. Lacustrine, fluvial and slope deposits in the wetland shore area in Serteya, Western Russia. Acta Geogr. Lodz 110, 103–124 (2020).
    Google Scholar 
    Ciszewski, D. Pollution of Mała Panew River sediments by heavy metals: Part I. Effect of changes in river bed morphology. Pol. J. Environ. Stud. 13(6), 589–595 (2004).CAS 

    Google Scholar 
    Borówka, R. Late Vistulian and Holocene denudation magnitude in morainic plateaux: Case studies in the zone of maximum extent of the last ice sheet. Quat. Stud. Pol. 9, 5–31 (1990).
    Google Scholar 
    Prusinkiewicz, Z., Bednarek, R., Kośko, A. & Szmyt, M. Palaeopedological studies of the age and properties of illuvial bands at an archaeological site. Quat. Int. 51(52), 195–201 (1998).Article 

    Google Scholar 
    Kühtreiber, T. The medieval castle Lanzenkirchen in Lower Austria: reconstruction of economical and ecological development of an average-sized manor (12th–15th century). Archaeol. Pol. 37, 135–144 (1999).
    Google Scholar 
    Kočár, P., Čech, P., Kozáková, R. & Kočárová, R. Environment and economy of the early medieval settlement in Žatec. Interdiscip. Archaeol. 1, 45–60 (2010).
    Google Scholar 
    Brown, A. D. & Pluskowski, A. G. Detecting the environmental impact of the Baltic Crusades on a late medieval (13th-15th century) frontier landscape: Palynological analysis from Malbork Castle and hinterland, Northern Poland. J. Archaeol. Sci. 38, 1957–1966 (2011).Article 

    Google Scholar 
    Beneš, J. et al. Archaeobotany of the Old Prague Town defence system, Czech Republic: Archaeology, macro-remains, pollen, and diatoms. Veg. Hist. Archaeobot. 11(1/2), 107–119 (2002).Article 

    Google Scholar 
    Badura, M. & Latałowa, M. Szczątki makroskopowe roślin z obiektów archeologicznych Zespołu Przedbramia w Gdańsku. In Zespół Przedbramia ul. Długiej w Gdańsku. Studium archeologiczne (ed. Pudło, A.) 231–247 (Muzeum Historii Miasta Gdańska, 2016).
    Google Scholar 
    Dobrowolski, R. et al. Environmental conditions of settlement in the vicinity of the mediaeval capital of the Cherven Towns (Czermno site, Hrubieszów Basin, Eastern Poland). Quat. Int. 493, 258–273 (2018).Article 

    Google Scholar 
    Makohonienko, M. Środowisko przyrodnicze i gospodarka w otoczeniu średniowiecznego grodu w Łęczycy w świetle analizy palinologicznej. In Początki Łęczycy. Tom I—Archeologia środowiskowa średniowiecznej Łęczycy. Przyroda–Gospodarka–Społeczeństwo (eds Grygiel, R. & Jurek, T.) 95–190 (MAiE w Łodzi, 2014).
    Google Scholar 
    Koszałka, J. Źródła archeobotaniczne do rekonstrukcji uwarunkowań przyrodniczych oraz gospodarczych grodu w Łęczycy. In Początki Łęczycy. Tom I – Archeologia środowiskowa średniowiecznej Łęczycy. Przyroda–Gospodarka–Społeczeństwo (eds Grygiel, R. & Jurek, T.) 191–241 (MAiE w Łodzi, 2014).
    Google Scholar 
    Digerfeldt, G. Studies on past lake-level fluctuations. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 127–143 (Wiley, 1986).
    Google Scholar 
    Magny, M. Palaeoclimatology and archaeology in the wetlands. In The Oxford Handbook of Wetland Archaeology (eds Menotti, F. & O’Sullivan, A.) 585–597 (Oxford University Press, 2013).
    Google Scholar 
    Płóciennik, M. et al. Summer temperature drives the lake ecosystem during the Late Weichselian and Holocene in Eastern Europe: A case study from East European Plain. CATENA 214, 106206 (2022).Article 

    Google Scholar 
    Święta-Musznicka, J., Badura, M., Pędziszewska, A. & Latałowa, M. Environmental changes and plant use during the 5th–14th centuries in medieval Gdańsk, northern Poland. Veget. Hist. Archaeobot. 30, 363–381 (2021).Article 

    Google Scholar 
    Rackham, J. & Sidell, J. London’s landscapes: The changing environment. In The Archaeology of Greater London. An Assessment of Archaeological Evidence for Human Presence in the Area Now Covered by Greater London (ed. Kendall, M.) 12–27 (Museum of London, 2000).
    Google Scholar 
    Ledger, P., Edwards, K. & Schofield, J. A multiple profile approach to the palynological reconstruction of Norse landscapes in Greenland’s Eastern Settlement. Quat. Res. 82(1), 22–37 (2014).Article 

    Google Scholar 
    Albert, B. & Innes, J. Multi-profile fine-resolution palynological and micro-charcoal analyses at Esklets, North York Moors, UK, with special reference to the Mesolithic-Neolithic transition. Veget. Hist. Archaeobot. 24, 357–375 (2015).Article 

    Google Scholar 
    Sikora, J., Kittel, P. & Wroniecki, P. From a point on the map to a shape in the landscape. Non-invasive verification of medieval ring-forts in Central Poland: Rozprza case study. Archaeol. Pol. 53, 510–514 (2015).
    Google Scholar 
    Sikora, J. et al. A palaeoenvironmental reconstruction of the rampart construction of the medieval ring-fort in Rozprza, Central Poland. Archaeol. Anthropol. Sci. 11(8), 4187–4219 (2019).Article 

    Google Scholar 
    Tolksdorf, J. F., Turner, F., Nelle, O., Peters, S. & Bruckner, H. Environmental development and local human impact in the Jeetzel valley (N Germany) since 10 ka BP as detected by geoarchaeological analyses in a coupled aeolian and lacustrine sediment archive at Soven. E&G Quat. Sci. J. 64, 95–110 (2015).Article 

    Google Scholar 
    Oonk S., Slomp C. P. & Huisman D. J. Geochemistry as an aid in archaeological prospection and site interpretation: Current issues and research directions. Archaeol. Prospect. 16, 35–51 (2009).Article 

    Google Scholar 
    Zieliński, T. & Pisarska-Jamroży, M. Which features of deposits should be included in a code and which not? Przegl. Geol. 60, 387–397 (2012).
    Google Scholar 
    Clift, P. D. et al. Grain-size variability within a mega-scale point-bar system, False River, Louisiana. Sedimentology 66, 408–434 (2019).Article 

    Google Scholar 
    Blott, S. J. & Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 26, 1237–1248 (2001).Article 

    Google Scholar 
    Rolland, N. & Larocque, I. The efficiency of kerosene flotation for extraction of chironomid head capsules from lake sediments samples. J. Paleolimnol. 37, 565–572 (2007).Article 

    Google Scholar 
    Schmid, P. E. A Key to the Chironomidae and Their Instars from Austrian Danube Region Streams and Rivers. Part I. Diamesinae Prodiamesinae and Orthocladiinae (Federal Institute for Water Quality of the Ministry of Agriculture and Forestry, 1993).
    Google Scholar 
    Andersen, T., Cranston, P. S. & Epler, J. H. Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1. Larvae. Insect Systematics and Evolution. Supplement 66 (Scandinavian Entomology, 2013).
    Google Scholar 
    Walker, I. R. Midges: Chironomidae and related Diptera. In Tracking Environmental Change Using Lake Sediments, Volume 4: Zoological Indicators (eds Smol, J. P. et al.) 43–66 (Kluwer Academic Press, 2001).Chapter 

    Google Scholar 
    Vallenduuk, H. J. & Moller Pillot, H. K. M. Chironomidae Larvae of the Netherlands and Adjacent Lowlands. General Ecology and Tanypodinae (KNNV Publishing, 2007).
    Google Scholar 
    Moller Pillot, H. K. M. Chironomidae Larvae Biology and Ecology of the Chironomini (KNNV Publishing, 2009).Book 

    Google Scholar 
    Juggins, S. C2 Version 1.5 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation (Newcastle University, 2007).
    Google Scholar 
    Schweingruber, F. H. Tree Rings. Basics and Applications of Dendrochronology (Kluwer Academic Publishers, 1988).
    Google Scholar 
    Skripkin, V. V. & Kovaliukh, N. N. Recent developments in the procedures used at the SSCER Laboratory for the routine preparation of lithium carbide. Radiocarbon 40(1), 211–214 (1998).Article 
    CAS 

    Google Scholar 
    Krąpiec, M., Rakowski, A. Z., Huels, M., Wiktorowski, D. & Hamann, C. A new graphitization system for radiocarbon dating with AMS on the dendrochronological laboratory at AGH-UST Kraków. Radiocarbon 60(4), 1091–1100 (2018).Article 

    Google Scholar 
    Zoppi, U., Crye, J., Song, Q. & Arjomand, A. Performance evaluation of the new AMS system at Accium BioSciences. Radiocarbon 49, 173–182 (2007).Article 
    CAS 

    Google Scholar 
    Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4), 725–757 (2020).Article 
    CAS 

    Google Scholar 
    Bronk Ramsey, C. OxCal Version 4.4.2. Available at: https://c14.arch.ox.ac.uk (2020).Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1), 337–360 (2009).Article 

    Google Scholar 
    Bronk Ramsey, C. Deposition models for chronological records. Quat. Sci. Rev. 27(1–2), 42–60 (2008).Article 

    Google Scholar 
    Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Kohonen, T. Self-Organizing Maps (Springer, 2001).Book 
    MATH 

    Google Scholar 
    Park, Y.-S. et al. Application of a self-organizing map to select representative species in multivariate analysis: A case study determining diatom distribution patterns across France. Ecol. Inform. 1, 247–257 (2006).Article 

    Google Scholar 
    Zhang, Q. et al. Self-organizing feature map classification and ordination of Larix principis-rupprechtii forest in Pangquangou Nature Reserve. Acta Ecol. Sin. 31, 2990–2998 (2011).
    Google Scholar 
    Ney, J. J. Practical use of biological statistics. In Inland Fisheries Management in North America (eds Kohler, C. C. et al.) 137–158 (American Fisheries Society, 1993).
    Google Scholar 
    Płóciennik, M. et al. Fen ecosystem responses to water-level fluctuations during the early and middle Holocene in central Europe: A case study from Wilczków, Poland. Boreas 44(4), 721–740 (2015).Article 

    Google Scholar 
    Brosse, S., Giraudel, J. L. & Lek, S. Utilisation of non-supervised neural networks and principal component analysis to study fish assemblages. Ecol. Model. 146(1), 159–166 (2001).Article 

    Google Scholar 
    Lek, S., Scardi, M., Verdonschot, P. F. M., Descy, J. P. & Park, Y. S. Modelling Community Structure in Freshwater Ecosystems (Springer, 2005).Book 

    Google Scholar 
    Quinn, G. P. & Keough, M. Experimental Design and Data Analysis for Biologists (University of Cambridge, 2002).Book 

    Google Scholar 
    Płóciennik, M., Kruk, A., Michczyńska, D. J. & Birks, H. J. B. Kohonen artificial neural networks and the IndVal index as supplementary tools for the quantitative analysis of palaeoecological data. Geochronometria 42, 189–201 (2015).Article 

    Google Scholar 
    Vesanto, J. & Alhoniemi, E. Clustering of the self-organizing map. IEEE Trans. Neural Netw. 11, 586–600 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ward, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).Article 
    MathSciNet 

    Google Scholar 
    Alhoniemi, E., Hollmén, J., Simula, O. & Vesanto, J. Process monitoring and modeling using the self-organizing map. Integr. Comput. Aided Eng. 6(1), 3–14 (1999).Article 

    Google Scholar 
    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    McCune, B. & Mefford, M. S. PcOrd Multivariate Analysis of Ecological Data. Version 6.06 (MjM Software, 2011).
    Google Scholar 
    Hadfield, J. D., Krasnov, B. R., Poulin, R. & Nakagawa, S. A tale of two phylogenies: Comparative analyses of ecological interactions. Am. Nat. 183(2), 174–187 (2014).Article 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R Journal 9(2), 378–400 (2017).Article 

    Google Scholar 
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/Mixed) Regression Models. R Package Version 0.4.5. https://CRAN.R-project.org/package=DHARMa (2022).Bartoń, K. MuMIn: Multi-model Inference. R Package Version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).de Rosario-Martinez, H. phia: Post-Hoc Interaction Analysis. R Package Version 0.2-1. https://CRAN.R-project.org/package=phia (2015). More

  • in

    Recent and rapid ecogeographical rule reversals in Northern Treeshrews

    Millien, V. et al. Ecotypic variation in the context of global climate change: Revisiting the rules. Ecol. Lett. 9, 853–869 (2006).Article 
    PubMed 

    Google Scholar 
    Calder, W. A. Size, Function and Life History (Harvard University Press, 1984).
    Google Scholar 
    Bergmann, C. Über die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Göttinger Stud. 3, 595–708 (1847).
    Google Scholar 
    Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108 (1956).Article 

    Google Scholar 
    Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. PNAS 116, 21609–21615 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Foster, J. B. Evolution of mammals on islands. Nature 202, 234–235 (1964).Article 
    ADS 

    Google Scholar 
    Lomolino, M. V. Body size evolution in insular vertebrates: Generality of the island rule. J. Biogeogr. 32, 1683–1699 (2005).Article 

    Google Scholar 
    Benítez-López, A. et al. The island rule explains consistent patterns of body size evolution in terrestrial vertebrates. Nat. Ecol. Evol. 5, 768–786 (2021).Article 
    PubMed 

    Google Scholar 
    Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351 (2003).Article 

    Google Scholar 
    Meiri, S., Cooper, N. & Purvis, A. The island rule: Made to be broken?. Proc. R. Soc. B. 275, 141–148 (2008).Article 
    PubMed 

    Google Scholar 
    Millien, V. Relative effects of climate change, isolation and competition on body-size evolution in the Japanese field mouse, Apodemus argenteus. J. Biogeogr. 31, 1267–1276 (2004).Article 

    Google Scholar 
    Millien, V. & Damuth, J. Climate change and size evolution in an island rodent species: New perspectives on the island rule. Evolution 58, 1353–1360 (2004).Article 
    PubMed 

    Google Scholar 
    Lomolino, M. V., Sax, D. F., Riddle, B. R. & Brown, J. H. The island rule and a research agenda for studying ecogeographical patterns. J. Biogeogr. 33, 1503–1510 (2006).Article 

    Google Scholar 
    Sargis, E. J., Millien, V., Woodman, N. & Olson, L. E. Rule reversal: Ecogeographical patterns of body size variation in the common treeshrew (Mammalia, Scandentia). Ecol. Evol. 8, 1634–1645 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barnosky, A. D., Hadly, E. A. & Bell, C. J. Mammalian response to global warming on varied temporal scales. J. Mammal. 84, 354–368 (2003).Article 

    Google Scholar 
    Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).Article 
    ADS 

    Google Scholar 
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: A third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).Article 
    PubMed 

    Google Scholar 
    Teplitsky, C., Mills, J. A., Alho, J. S., Yarrall, J. W. & Merilä, J. Bergmann’s rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population. PNAS 105, 13492–13496 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Teplitsky, C. & Millien, V. Climate warming and Bergmann’s rule through time: Is there any evidence?. Evol. Appl. 7, 156–168 (2014).Article 
    PubMed 

    Google Scholar 
    James, F. C. Geographic size variation in birds and its relationship to climate. Ecology 51, 385–390 (1970).Article 

    Google Scholar 
    Wigginton, J. D. & Dobson, F. S. Environmental influences on geographic variation in body size of western bobcats. Can. J. Zool. 77, 802–813 (1999).Article 

    Google Scholar 
    Yom-Tov, Y. & Geffen, E. Geographic variation in body size: The effects of ambient temperature and precipitation. Oecologia 148, 213–218 (2006).Article 
    PubMed 
    ADS 

    Google Scholar 
    Wagner, J. A. Schreber’s saugthiere, supplementband, 2. Abtheilung 1841(37–44), 553 (1841).
    Google Scholar 
    Hawkins, M. T. Family Tupaiidae (treeshrews). In Handbook of the Mammals of the World, Volume 8 Insectivores, Sloths and Colugos (eds Wilson, D. E. & Mittermeier, R. A.) (Lynx Edicions, 2018).
    Google Scholar 
    Roberts, T. E., Lanier, H. C., Sargis, E. J. & Olson, L. E. Molecular phylogeny of treeshrews (Mammalia: Scandentia) and the timescale of diversification in Southeast Asia. Mol. Phylogenet. Evol. 60, 358–372 (2011).Article 
    PubMed 

    Google Scholar 
    Zhang, L., Yang, F., Wang, Z. K. & Zhu, W. L. Role of thermal physiology and bioenergetics on adaptation in tree shrew (Tupaia belangeri): The experiment test. Sci. Rep. 7, 41352 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Zhu, W., Zhang, H. & Wang, Z. Seasonal changes in body mass and thermogenesis in tree shrews (Tupaia belangeri): The roles of photoperiod and cold. J. Therm. Biol. 37, 479–484 (2012).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book 
    MATH 

    Google Scholar 
    South, A. rnaturalearth: World Map Data from Natural Earth. R package version 0.1.0 (2017).Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. R package version 1.1.4 (2020).R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2018).Helgen, K. M. Order Scandentia. In Mammal Species of the World: A Taxonomic and Geographic Reference 3rd edn (eds Wilson, D. E. & Reeder, D. M.) (Johns Hopkins University Press, 2005).
    Google Scholar 
    Collins, P. M. & Tsang, W. N. Growth and reproductive development in the male tree shrew (Tupaia belangeri) from birth to sexual maturity. Biol. Reprod. 37, 261–267 (1987).Article 
    CAS 
    PubMed 

    Google Scholar 
    Heaney, L. R. Island area and body size of insular mammals: Evidence from the tri-colored squirrel (Callosciurus prevosti) of Southeast Asia. Evolution 32, 29–44 (1978).PubMed 

    Google Scholar 
    Husson, L., Boucher, F. C., Sarr, A. C., Sepulchre, P. & Cahyarini, S. Y. Evidence of Sundaland’s subsidence requires revisiting its biogeography. J. Biogeogr. 47, 843–853 (2020).Article 

    Google Scholar 
    Juman, M. M., Woodman, N., Olson, L. E. & Sargis, E. J. Ecogeographic variation and taxonomic boundaries in Large Treeshrews (Scandentia, Tupaiidae: Tupaia tana Raffles, 1821) from Southeast Asia. J. Mammal. 102, 1054–1066 (2021).Article 

    Google Scholar 
    Hinckley, A. et al. Challenging ecogeographical rules: Phenotypic variation in the Mountain Treeshrew (Tupaia montana) along tropical elevational gradients. PLoS ONE 17, e0268213 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lomolino, M. V., Sax, D. F., Palombo, M. R. & van der Geer, A. A. Of mice and mammoths: evaluations of causal explanations for body size evolution in insular mammals. J. Biogeogr. 39, 842–854 (2011).Article 

    Google Scholar 
    Teta, P., de la Sancha, N. U., D’Elía, G. & Patterson, B. D. Andean rain shadow effect drives phenotypic variation in a widely distributed Austral rodent. J. Biogeogr. 49, 1767–1778 (2022).Article 

    Google Scholar 
    Yom-Tov, Y. & Yom-Tov, S. Climatic change and body size in two species of Japanese rodents. Biol. J. Linn. Soc. 82, 263–267 (2004).Article 

    Google Scholar 
    Yom-Tov, Y. & Yom-Tov, J. Global warming, Bergmann’s rule and body size in the masked shrew Sorex cinereus in Alaska. J. Anim. Ecol. 74, 803–808 (2005).Article 

    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105, 6668–6672 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).Article 
    PubMed 

    Google Scholar 
    Cronk, Q. C. B. Islands: stability, diversity, conservation. Biodivers. Conserv. 6, 477–493 (1997).Article 

    Google Scholar 
    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. PNAS 106, 9322–9327 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Yom-Tov, Y. & Geffen, E. Recent spatial and temporal changes in body size of terrestrial vertebrates: Probable causes and pitfalls. Biol. Rev. 86, 531–541 (2011).Article 
    PubMed 

    Google Scholar 
    Theriot, M. K., Lanier, H. C. & Olson, L. E. Harnessing natural history collections to detect trends in body-size change as a response to warming: A critique and review of best practices. Methods Ecol. Evol. (2022).Rohwer, V. G., Rohwer, Y. & Dillman, C. B. Declining growth of natural history collections fails future generations. PLoS Biol. 20, e3001613 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sargis, E. J., Woodman, N., Morningstar, N. C., Reese, A. T. & Olson, L. E. Morphological distinctiveness of Javan Tupaia hypochrysa (Scandentia, Tupaiidae). J. Mammal. 94, 938–947 (2013).Article 

    Google Scholar 
    Sargis, E. J., Woodman, N., Morningstar, N. C., Reese, A. T. & Olson, L. E. Island history affects faunal composition: The treeshrews (Mammalia: Scandentia: Tupaiidae) from the Mentawai and Batu Islands, Indonesia. Biol. J. Linn. Soc. 111, 290–304 (2014).Article 

    Google Scholar 
    Sargis, E. J., Campbell, K. K. & Olson, L. E. Taxonomic boundaries and craniometric variation in the treeshrews (Scandentia, Tupaiidae) from the Palawan faunal region. J. Mamm. Evol. 21, 111–123 (2014).Article 

    Google Scholar 
    Sargis, E. J., Woodman, N., Morningstar, N. C., Bell, T. N. & Olson, L. E. Skeletal variation and taxonomic boundaries among mainland and island populations of the common treeshrew (Mammalia: Scandentia: Tupaiidae). Biol. J. Linn. Soc. 120, 286–312 (2017).
    Google Scholar 
    Juman, M. M., Olson, L. E. & Sargis, E. J. Skeletal variation and taxonomic boundaries in the Pen-tailed Treeshrew (Scandentia, Ptilocercidae: Ptilocercus lowii Gray, 1848). J. Mamm. Evol. 28, 1193–1203 (2021).Article 

    Google Scholar 
    Juman, M. M., Woodman, N., Miller-Murthy, A., Olson, L. E. & Sargis, E. J. Taxonomic boundaries in Lesser Treeshrews (Scandentia, Tupaiidae: Tupaia minor Günther, 1876). J. Mammal. https://doi.org/10.1093/jmammal/gyac080 (2022).Article 

    Google Scholar 
    Woodman, N., Miller-Murthy, A., Olson, L. E. & Sargis, E. J. Coming of age: Morphometric variation in the hand skeletons of juvenile and adult Lesser Treeshrews (Scandentia: Tupaiidae: Tupaia minor Günther, 1876). J. Mammal. 101, 1151–1164 (2020).Article 

    Google Scholar 
    Chamberlain, S., Barve, V., Mcglinn, D., Oldoni, D., Desmet, P., Geffert, L. & Ram, K. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.7.2, https://CRAN.R-project.org/package=rgbif.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data. 7, 109 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meiyappan, P. & Jain, A. K. Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years. Front. Earth Sci. 6, 122–139 (2012).Article 
    ADS 

    Google Scholar 
    Ryan, W. B. F. et al. Global multi-resolution topography synthesis. Geochem. Geophys. 10, Q03014 (2009).
    Google Scholar 
    van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).Article 

    Google Scholar 
    Clavel, J., Merceron, G. & Escarguel, G. Missing data estimation in morphometrics: How much is too much? Syst. Biol. 63, 203–218 (2014).Article 
    PubMed 

    Google Scholar 
    Nally, R. M. & Walsh, C. J. Hierarchical partitioning public-domain software. Biodivers. Conserv. 13, 659–660 (2004).Article 

    Google Scholar 
    Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R 2nd edn. (Springer, 2013).Book 
    MATH 

    Google Scholar  More

  • in

    Effect of a temperature gradient on the behaviour of an endangered Mexican topminnow and an invasive freshwater fish

    Time using the rock as refugeTemperature had an effect in the refuge usage of both species when analysed together (lme.zig: F3,192 = 7.97, p = 0.0001; Fig. 1A). However, species behaved differently (lme.zig: F1,192 = 14.79, p = 0.0004; Fig. 1A). As hypothesised, there was an interaction between temperature and species (lme.zig: F3,192 = 11.90, p  0.14, Fig. 1B).Size had an effect in the time exploring the rock (lme: F1,192 = 6.91, p = 0.012, Fig. 3) when species were analysed together, but there was no interaction with temperatures (lme: F3,192 = 0.42, p = 0.74, Fig. 3). We found that the interaction between species and size was close to be significant (lme: F1,192 = 3.62, p = 0.064, Fig. 3), implying that possibly smaller fish spent more time exploring the rock than bigger fish. However, when analysed separately, we did not find an effect of size in the exploring behaviour neither for twoline skiffias (lme: F1,96 = 2.99, p = 0.099, Fig. 3) nor for guppies (lme: F1,96 = 0.33, p = 0.569, Fig. 3).Figure 3Proportion of the total time observed (600 s) fish of different sizes spent exploring the rock. Lines represent the areas where the density of data is higher.Full size imageTime spent swimmingTemperature had an effect in the time spent swimming for both species when analysed together (lme: F3,192 = 23.48, p  More

  • in

    Incorporating distance metrics and temporal trends to refine mixed stock analysis

    MacPherson, E. Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. J. Exp. Mar. Bio. Ecol. 220, 127–150 (1998).Article 

    Google Scholar 
    Freitas, C., Olsen, E. M., Knutsen, H., Albretsen, J. & Moland, E. Temperature-associated habitat selection in a cold-water marine fish. J. Anim. Ecol. 85, 628–637 (2016).Article 
    PubMed 

    Google Scholar 
    Michelot, C. et al. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet. Deep. Res. Part II Top. Stud. Oceanogr. 141, 224–236 (2017).Article 

    Google Scholar 
    Davoren, G. K., Montevecchi, W. A. & Anderson, J. T. Distributional patterns of a marine bird and its prey: Habitat selection based on prey and conspecific behaviour. Mar. Ecol. Prog. Ser. 256, 229–242 (2003).Article 

    Google Scholar 
    Chiarello, A. G. et al. A translocation experiment for the conservation of maned sloths, Bradypus torquatus (Xenarthra, Bradypodidae). Biol. Conserv. 118, 421–430 (2004).Article 

    Google Scholar 
    Fukuda, Y. et al. Environmental resistance and habitat quality influence dispersal of the saltwater crocodile. Mol. Ecol. 31, 1076–1092 (2022).Article 
    PubMed 

    Google Scholar 
    O’Leary, S. J., Dunton, K. J., King, T. L., Frisk, M. G. & Chapman, D. D. Genetic diversity and effective size of Atlantic sturgeon, Acipenser oxyrhinchus oxyrhinchus river spawning populations estimated from the microsatellite genotypes of marine-captured juveniles. Conserv. Genet. 15, 1173–1181 (2014).Article 

    Google Scholar 
    Brüniche-Olsen, A. et al. Genetic data reveal mixed-stock aggregations of gray whales in the North Pacific Ocean. Biol. Lett. 14, 1–4 (2018).Article 

    Google Scholar 
    Carroll, E. L. et al. Genetic diversity and connectivity of southern right whales (Eubalaena australis) found in the Brazil and Chile-Peru wintering grounds and the South Georgia (Islas Georgias Del Sur) feeding ground. J. Hered. 111, 263–276 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bowen, A. B. W. et al. Origin of hawksbill turtles in a Caribbean feeding area as indicated by genetic markers. Ecol. Appl. 6, 566–572 (1996).Article 

    Google Scholar 
    Paxton, K. L., Yau, M., Moore, F. R. & Irwin, D. E. Differential migratory timing of western populations of Wilson’s Warbler (Cardellina pusilla) revealed by mitochondrial DNA and stable isotopes. Auk 130, 689–698 (2013).Article 

    Google Scholar 
    Anderson, E. C., Waples, R. S. & Kalinowski, S. T. An improved method for predicting the accuracy of genetic stock identification. Can. J. Fish. Aquat. Sci. 65, 1475–1486 (2008).Article 

    Google Scholar 
    Debevec, E. M. SPAM (version 3.2): Statistics program for analyzing mixtures. J. Hered. 91, 509–511 (2000).Article 
    PubMed 

    Google Scholar 
    Bolker, B. M., Okuyama, T., Bjorndal, K. A. & Bolten, A. B. Incorporating multiple mixed stocks in mixed stock analysis: ‘Many-to-many’ analyses. Mol. Ecol. 16, 685–695 (2007).Article 
    PubMed 

    Google Scholar 
    Neaves, P. I., Wallace, C. G., Candy, J. R. & Beacham, T. D. CBayes: Computer Program for Mixed Stock Analysis of Allelic Data. Free Program Distributed by the Authors Over the Internet. at (2005).Pella, J. & Masuda, M. Bayesian methods for analysis of stock mixtures from genetic characters. Fish. Bull. 99, 151–167 (2001).
    Google Scholar 
    Bolker, B., Okuyama, T., Bjorndal, K. A. & Bolten, A. B. Sea turtle stock estimation using genetic markers: Accounting for sampling error of rare genotypes. Ecol. Appl. 13, 763–775 (2003).Article 

    Google Scholar 
    Okuyama, T. & Bolker, B. M. Combining genetic and ecological data to estimate sea turtle origins. Ecol. Appl. 15, 315–325 (2005).Article 

    Google Scholar 
    Nishizawa, H. et al. Composition of green turtle feeding aggregations along the Japanese archipelago: Implications for changes in composition with current flow. Mar. Biol. 160, 2671–2685 (2013).Article 

    Google Scholar 
    Naro-Maciel, E. et al. Predicting connectivity of green turtles at Palmyra Atoll, central Pacific: A focus on mtDNA and dispersal modelling. J. R. Soc. Interface 11, 20130888 (2014).Proietti, M. C. et al. Green turtle Chelonia mydas mixed stocks in the western South Atlantic, as revealed by mtDNA haplotypes and drifter trajectories. Mar. Ecol. Prog. Ser. 447, 195–209 (2012).Article 

    Google Scholar 
    van der Zee, J. P. et al. Population recovery changes population composition at a major southern Caribbean juvenile developmental habitat for the green turtle, Chelonia mydas. Sci. Rep. 9, 1–11 (2019).
    Google Scholar 
    Shamblin, B. M. et al. Mexican origins for the Texas green turtle foraging aggregation: A cautionary tale of incomplete baselines and poor marker resolution. J. Exp. Mar. Bio. Ecol. 488, 111–120 (2017).Article 

    Google Scholar 
    Seminoff, J. A. et al. Status Review of the Green Turtle (Chelonia mydas) Under the Endangered Species Act. (NOAA Technical Memorandum, NOAA-NMFS-SWFSC, 2015).Chaloupka, M. et al. Encouraging outlook for recovery of a once severely exploited marine megaherbivore. Glob. Ecol. Biogeogr. 17, 297–304 (2008).Article 

    Google Scholar 
    Bjorndal, K. A. & Bolten, A. B. Annual variation in source contributions to a mixed stock: Implications for quantifying connectivity. Mol. Ecol. 17, 2185–2193 (2008).Article 
    PubMed 

    Google Scholar 
    Roland, J., Keyghobadi, N. & Fownes, S. Alpine Parnassius butterfly dispersal: Effects of landscape and population size. Ecology 81, 1642–1653 (2000).Article 

    Google Scholar 
    Vanschoenwinkel, B., De Vries, C., Seaman, M. & Brendonck, L. The role of metacommunity processes in shaping invertebrate rock pool communities along a dispersal gradient. Oikos 116, 1255–1266 (2007).Article 

    Google Scholar 
    Shamblin, B. M. et al. Mitogenomic sequences better resolve stock structure of southern Greater Caribbean green turtle rookeries. Mol. Ecol. 21, 2330–2340 (2012).Article 
    PubMed 

    Google Scholar 
    Witherington, B., Hirama, S. & Hardy, R. Young sea turtles of the pelagic Sargassum-dominated drift community: Habitat use, population density, and threats. Mar. Ecol. Prog. Ser. 463, 1–22 (2012).Article 

    Google Scholar 
    Putman, N. F. & Mansfield, K. L. Direct evidence of swimming demonstrates active dispersal in the sea turtle ‘lost years’. Curr. Biol. 25, 1221–1227 (2015).Article 
    PubMed 

    Google Scholar 
    Mansfield, K. L., Wyneken, J. & Luo, J. First Atlantic satellite tracks of ‘lost years’ green turtles support the importance of the Sargasso Sea as a sea turtle nursery. Proc. R. Soc. B Biol. Sci. 288, 20210057 (2021).Putman, N. F. et al. Predicted distributions and abundances of the sea turtle ‘lost years’ in the western North Atlantic Ocean. Ecography (Cop.) 43, 506–517 (2020).Article 

    Google Scholar 
    Putman, N. F. & Naro-Maciel, E. Finding the ‘lost years’ in green turtles: Insights from ocean circulation models and genetic analysis. Proc. R. Soc. B Biol. Sci. 280, 20131468 (2013).Naro-Maciel, E., Hart, K. M., Cruciata, R. & Putman, N. F. DNA and dispersal models highlight constrained connectivity in a migratory marine megavertebrate. Ecography (Cop.) 40, 586–597 (2017).Article 

    Google Scholar 
    Ehrhart, L. M., Redfoot, W. E. & Bagley, D. A. Marine turtles of the central region of the Indian River Lagoon system, Florida. Florida Sci. 70, 415–434 (2007).
    Google Scholar 
    Redfoot, W. & Ehrhart, L. Trends in size class distribution, recaptures, and abundance of juvenile green turtles (Chelonia mydas) utilizing a rock riprap lined embayment at Port Canaveral, Florida, USA, as developmental habitat. Chelonian Conserv. Biol. 12, 252–261 (2013).Article 

    Google Scholar 
    Ehrhart, L., Redfoot, W., Bagley, D. & Mansfield, K. Long-term trends in loggerhead (Caretta caretta) nesting and reproductive success at an important western Atlantic rookery. Chelonian Conserv. Biol. 13, 173–181 (2014).Article 

    Google Scholar 
    Bolten, A. B. Techniques for measuring sea turtles. in Research and Management Techniques for the Conservation of Sea Turtles. (eds. Eckert, K. L., Bjorndal, K. A., Abreu-Grobois, F. A. & Donnelly, M.). 1–5 (1999).Bagley, D. A. Characterizing Juvenile Green Turtles, (Chelonia mydas), from Three East Central Florida Developmental Habitats. (University of Central Florida, 2003).Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faircloth, B. & Glenn, T. Preparation of an AMPure XP Substitute. AKA Serapure https://doi.org/10.6079/J9MW2F26 (2016).Article 

    Google Scholar 
    Abreu-Grobois, F. A. et al. New mtDNA Dloop primers which work for a variety of marine turtle species may increase the resolution of mixed stock analyses. in Proceedings of the 26th Annual Symposium on Sea Turtle Biology. 179 (International Sea Turtle Society, 2006).Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).Article 
    PubMed 

    Google Scholar 
    Wright, S. Evolution and the Genetics of Populations. Vol. 4. Variability Within and Among Natural Populations. (University of Chicago Press, 1978).Hays, G. C. Ocean currents and marine life. Curr. Biol. 27, R470–R473 (2017).Article 
    PubMed 

    Google Scholar 
    Engstrom, T. N., Meylan, P. A. & Meylan, A. B. Origin of juvenile loggerhead turtles (Caretta caretta) in a tropical developmental habitat in Caribbean Panamá. Anim. Conserv. 5, 125–133 (2002).Article 

    Google Scholar 
    Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, F. W. C. F. W. R. I. Index Nesting Beach Survey (INBS). (2021).Cuevas Flores, E. A., Guzmán Hernández, V., Guerra Santos, J. J. & Rivas Hernández, G. A. El uso del Conocimiento de las Tortugas Marinas Como Herramienta para la Restauración de sus Poblaciones y Hábitats Asociados. (Universidad Autónoma del Carmen, 2019).Pineda, O. G. & Rocha, A. R. B. Las Tortugas Marinas en México: Logros y Perspectivas para su Conservación. (CONANP, 2016).Varela, R. G., Quílez, G. Z. & Harrison, E. Report on the 2014 Green Turtle Program at Tortuguero, Costa Rica. (2015).Azanza Ricardo, J. et al. Nesting ecology of Chelonia mydas (Testudines: Cheloniidae) on the Guanahacabibes Peninsula. Cuba. Rev. Biol. Trop. 61, 1935–1945 (2013).PubMed 

    Google Scholar 
    Nalovic, M. A. et al. Sea Turtles in the North Atlantic & Wider Caribbean Region. (2020).Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).Article 

    Google Scholar 
    Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan. https://doi.org/10.1016/B978-0-12-405888-0.09999-2 (Academic Press, 2015).Ruiz-Urquiola, A. et al. Population genetic structure of greater Caribbean green turtles (Chelonia mydas) based on mitochondrial DNA sequences, with an emphasis on rookeries from southwestern Cuba. Rev. Investig. Mar. 31, 33–52 (2010).
    Google Scholar 
    Long, C. A. et al. Incongruent long-term trends of a marine consumer and primary producers in a habitat affected by nutrient pollution. Ecosphere 12, e03553 (2021).Article 

    Google Scholar 
    Phillips, K. F., Stahelin, G. D., Chabot, R. M. & Mansfield, K. L. Long-term trends in marine turtle size at maturity at an important Atlantic rookery. Ecosphere 12, 7 (2021).Article 

    Google Scholar 
    Bjorndal, K. A., Bolten, A. B. & Chaloupka, M. Y. Evaluating trends in abundance of immature green turtles, Chelonia mydas, in the Greater Caribbean. Ecol. Appl. 15, 304–314 (2005).Article 

    Google Scholar 
    Naro-Maciel, E. et al. The interplay of homing and dispersal in green turtles: A focus on the southwestern atlantic. J. Hered. 103, 792–805 (2012).Article 
    PubMed 

    Google Scholar 
    Monzón-Argüello, C. et al. Evidence from genetic and Lagrangian drifter data for transatlantic transport of small juvenile green turtles. J. Biogeogr. 37, 1752–1766 (2010).Article 

    Google Scholar 
    Luke, K., Horrocks, J. A., LeRoux, R. A. & Dutton, P. H. Origins of green turtle (Chelonia mydas) feeding aggregations around Barbados, West Indies. Mar. Biol. 144, 799–805 (2004).Article 

    Google Scholar 
    Bass, A. L., Epperly, S. P. & Braun-McNeill, J. Green turtle (Chelonia mydas) foraging and nesting aggregations in the Caribbean and Atlantic: Impact of currents and behavior on dispersal. J. Hered. 97, 346–354 (2006).Article 
    PubMed 

    Google Scholar 
    Lahanas, P. N. et al. Genetic composition of a green turtle (Chelonia mydas) feeding ground population: Evidence for multiple origins. Mar. Biol. 130, 345–352 (1998).Article 

    Google Scholar 
    Foley, A. M. et al. Characteristics of a green turtle (Chelonia mydas) assemblage in northwestern Florida determined during a hypothermic stunning event. Gulf Mex. Sci. 25, 131–143 (2007).
    Google Scholar 
    Bass, A. L., Lagueux, C. J. & Bowen, B. W. Origin of green turtles, Chelonia mydas, at ‘Sleeping Rocks’ off the Northeast coast of Nicaragua. Copeia 1998, 1064 (1998).Article 

    Google Scholar 
    Bass, A. L. & Witzell, W. N. Demographic composition of immature green turtles (Chelonia mydas) from the East Central Florida Coast: Evidence from mtDNA markers. Herpetologica 56, 357–367 (2000).
    Google Scholar 
    Bjorndal, K. A., Parsons, J., Mustin, W. & Bolten, A. B. Threshold to maturity in a long-lived reptile: Interactions of age, size, and growth. Mar. Biol. 160, 607–616 (2013).Article 

    Google Scholar 
    Perrault, J. R. et al. Maternal health status correlates with nest success of leatherback sea turtles (Dermochelys coriacea) from Florida. PLoS ONE 7, e31841 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montero, N. et al. Warmer and wetter conditions will reduce offspring production of hawksbill turtles in Brazil under climate change. PLoS ONE 13, 1–16 (2018).Article 

    Google Scholar 
    Shamblin, B. M. et al. Geographic patterns of genetic variation in a broadly distributed marine vertebrate: New insights into loggerhead turtle stock structure from expanded mitochondrial DNA sequences. PLoS ONE 9, 85956 (2014).Article 

    Google Scholar 
    Anderson, J. D., Shaver, D. J. & Karel, W. J. Genetic Diversity and Natal Origins of Green Turtles (Chelonia mydas) in the Western Gulf of Mexico. J. Herpetol. 47, 251–257 (2013).Article 

    Google Scholar  More