More stories

  • in

    Cryptic taxonomic diversity and high-latitude melanism in the glossiphoniid leech assemblage from the Eurasian Arctic

    Suborder Glossiphoniiformes Tessler & de Carle, 2018Family Glossiphoniidae Vaillant, 1890Comments. Our two-locus phylogeny reveals the presence of two large clades, corresponding to the subfamilies Glossiphoniinae and Haementeriinae (Fig. 1). The subfamily Theromyzinae Sawyer, 1986, delineated by some authors2,10,22, was not supported as a distant phylogenetic clade and their representatives are clustered within the monophyletic Glossiphoniinae. The same pattern was recovered by earlier phylogenetic reconstructions3,30,33,34. These data indicate that Theromyzinae may represent a synonym of the latter subfamily. However, a subfamily-level revision of the Glossiphoniidae is beyond the framework of the present study.Subfamily Glossiphoniinae Vaillant, 1890Genus Alboglossiphonia Lukin, 1976Type species: Alboglossiphonia heteroclita (Linnaeus, 1761) (= Hirudo heteroclita Linnaeus, 1761; by original designation).Arctic occurrences. Our results reveal that members of this genus are not common inhabitants of the Arctic but two species, A. heteroclita (Linnaeus, 1761) and A. sibirica sp. nov., cross the Arctic Circle on the Yamal Peninsula through the Ob and Taz rivers (Table 1). Previously, it was shown that A. heteroclita occurs in the lower Ob Basin, northern edge of Western Siberia23.Comments. This genus contains inconspicuous minute leeches and is characterized by a nearly global distribution1. It definitely requires an integrative taxonomic revision. Available genetic evidence (Fig. 1 and Supplementary Fig. S1) reveals that the North American populations of what was traditionally assigned to A. heteroclita should be considered a separate species, A. pallida (Verrill, 1872) (type locality: West River near New Haven, Connecticut, USA)35,36. Other species, which occurs in Siberia and the Far East, was tentatively assigned to Alboglossiphonia cf. papillosa (Braun, 1805) based on a darker pigmentation of its dorsum37,38 but it represents a separate North Asian species, which is described here.
    Alboglossiphonia sibirica Bolotov, Eliseeva, Klass & Kondakov sp. nov = Alboglossiphonia heteroclita Lukin (1957): 27339 (identification error). = Alboglossiphonia heteroclita papillosa Kaygorodova et al. (2014): 337; Kaygorodova (2015): 4140 (identification error). = Alboglossiphonia cf. papillosa Klass et al. (2018): 2638 (identification error).Figures 4a, 5a, 7a, Supplementary Figs. S2a, S3a, S4, Supplementary Table S2.LSID: https://zoobank.org/urn:lsid:zoobank.org:act:19B581C3-E912-487C-B9EC-8E50DDEFD380.Holotype. RMBH Hir_0542_2-H (non-sequenced), RUSSIA: Lake Torfyanka, 43.0761° N, 131.9620° E, Vladivostok, Primorye, August 12, 2021, Y. E. Chapurina leg.Paratypes (N = 13). RUSSIA: 1 specimen RMBH Hir_0542_2 (sequenced: COI sequence acc. No. ON873332), the type locality, the same date, and collector; 1 specimen RMBH Hir_0396 (non-sequenced), an oxbow lake of Taz River, near Tazovsky settlement, 67.5063° N, 78.6751° E, Yamal-Nenets Region, August 22, 2019, E. S. Babushkin leg.; 1 specimen RMBH Hir_0394 (DNA voucher; sequenced: COI sequence acc. No. ON548508), Vitim River, 57.2010° N, 116.4300° E, Lena River basin, Vitimsky Nature Reserve, Irkutsk Region, July 12, 2019, E. S. Babushkin leg.; 4 specimens RMBH Hir_0013 (3 sequenced with DNA vouchers and one placed on 36 permanent slides as a series of slices; COI sequence acc. No. MH286267, MH286268, and MH286269; 18S rRNA sequence acc. No. MH286273), between zooids of a bryozoan colony, small floodplain lake of the Lena River near Yakutsk, 62.3076° N, 129.8999° E, Yakutia Republic, August 20, 2017, I. N. Bolotov leg.; 1 specimen RMBH Hir_0417_2 (DNA voucher; sequenced: COI sequence acc. No. ON548511), Oron Lake, Gnilaya Kurya Bay, 57.1750° N, 116.4031° E, Lena River basin, Vitimsky Nature Reserve, Irkutsk Region, July 1, 2019, E. S. Babushkin leg.; 1 specimen RMBH Hir_0409_1 (sequenced: COI sequence acc. No. ON548509), a roadside ditch in Knevichi settlement, 43.3886° N, 132.1880° E, Primorye, September 10, 2020, O. V. Aksenova et al. leg.; 1 specimen RMBH Hir_0413 (sequenced: COI sequence acc. No. ON548510), a puddle near railway at Artem city, 43.3794° N, 132.2188° E, Primorye, September 10, 2020, O. V. Aksenova et al. leg.; 1 specimen RMBH Hir_0003_3 (DNA voucher; sequenced: COI sequence acc. No. MN393256), Tumnin River, 49.9451° N, 139.9181° E, Khabarovsk Region, July 14, 2014, I. N. Bolotov & I. V. Vikhrev leg.; 1 specimen RMBH Hir_0509_1 (sequenced: COI sequence acc. No. ON548516), a reservoir on the Bolshoy Alim River, near Tolstovka settlement, 50.1981° N, 127.9431° E, Amur Region, July 3, 2021, O. V. Aksenova et al. leg.; 1 specimen RMBH Hir_0510_1 (DNA voucher; sequenced: COI sequence acc. No. ON548517), an oxbow lake of Bureya River, near Novospassk, 49.6756° N, 129.7343° E, Amur Region, July 3, 2021, O. V. Aksenova et al. leg.Etymology. The name of this species reflects its broad distribution in Siberia.Differential diagnosis. Small leech, which could be distinguished from other congeners by a combination of the following characters: dorsum covered by numerous small, shallow, and indistinct papillae, light yellow, with multiple dark spots and short dashes arranged to 18–24 longitudinal rows; these spots and dashes merged into longitudinal lines in the anterior half of the body (the dark markings pattern often lost in ethanol-preserved animals). Externally, the new species is similar to A. heteroclita, A. hyalina (O. F. Müller, 1773), and A. striata (Apáthy, 1888). However, all these species do not have numerous dark spots and short dashes arranged to multiple longitudinal rows. Additionally, A. heteroclita differs from the new species by having a median row of segmentally arranged dark spots and a smooth dorsum without papillae. A. hyalina differs from A. sibirica sp. nov. by the general lack of dark pigmentation. A. striata differs from the new species by having a median row of segmentally arranged dark transverse stripes and a smooth dorsum without papillae.Molecular diagnosis. The new species represents a separate genetic lineage but is more closely related to A. heteroclita (mean pairwise COI p-distance = 5.1%; range 4.9–5.4%). The intraspecific pairwise COI p-distance ranges from 0.0 to 2.1% (mean ± s.e.m. = 1.31 ± 0.10%; N = 14 sequences and 91 pairwise distance values). The GenBank acc. numbers of reference DNA sequences (COI and 18S rRNA) are given in Supplementary Table S2 and Supplementary Datasets S1–S2.Description. Small leech (body length up to 11.9 mm). Measurements of the type series are given in Supplementary Table S2. Body broad, leaf-like, ovate. Dorsum with numerous small, shallow, and indistinct papillae. Posterior sucker small, circular (maximum diameter of 2.25 mm), ventrally directed. Proboscis pore in the center of anterior sucker. Coloration of living animals: body dirty yellow with multiple brown spots and dashes arranged to longitudinal rows; in the anterior half of the body, these spots and dashes merged into longitudinal lines. Coloration of ethanol-preserved animals: body light yellow; dorsum with multiple dark spots and short dashes arranged to 18–24 longitudinal rows; these spots and dashes merged into longitudinal lines in the anterior half of the body but the dark markings pattern often lost due to preservation. Three pairs of eyespots; the eyespots of the distal pair joined into a single spot; the eyespots of the next two pairs are spaced apart and fused together. Venter light yellow or whitish. Total number of annuli: 70. Somites I–IV joined to form a head region, somites V–XXIV triannulate, somites XXV–XXVII uniannulate. Gonopores joined and open in the furrow XIIa1/a2. Reproductive system: 6 pairs of large, bag-like testisacs inter-segmentally from XIII/XIV to XIX/XX; atrium small, spherical, the atrial cornua twisted anteriorly; paired ejaculatory ducts twisted, short; paired ovisacs narrow, very short. Digestive system: proboscis sheath massive, long, thick; salivary glands diffuse; crop with 6 pairs of crop caeca: 1st-5th uniform, bag-like, 6th pair (posterior caeca) with 3 blind processes; intestine with 4 pairs of rather short processes and an ovate extention after the last pair of processes.Distribution. North Asia: Western Siberia, Eastern Siberia, the Russian Far East, and Mongolia39.Habitats and ecology. This species is known to occur in a broad range of freshwater environments such as rivers, oxbow lakes, large to small natural lakes, reservoirs, road ditches, and even puddles (Supplementary Dataset S2). An unusual example of its association with a bryozoan species was described from Eastern Siberia38. Probably, the record of an Alboglossiphonia leech in the mantle cavity of an unidentified lymnaeid snail from the Altai Mountains, Russia41 could also be attributed to this species. The life cycle of the new species is unknown.Genus Glossiphonia Johnson, 1816Type species: Glossiphonia complanata (Linnaeus, 1758) (= Hirudo complanata Linnaeus, 1758; by subsequent designation).Arctic occurrences. Representatives of this genus are the most remarkable component of the Arctic Glossiphoniidae fauna. Altogether seven species were recorded north of the Arctic Circle, two of which are new to science and described here (Table 1).Comments. In general, sequenced representatives of the genus Glossiphonia could phylogenetically be delineated to three species groups (or subgenera): (1) the complanata-group (= subgenus Glossiphonia s. str.); (2) the verrucata-group (= subgenus Boreobdella Johansson, 1929; type species: Clepsine verrucata Müller, 1844); and (3) the concolor-group (= subgenus Paratorix Lukin & Epstein, 1960; type species: Torix baicalensis Stschegolew, 1922) (Table 1, Fig. 1 and Supplementary Fig. S1).
    Glossiphonia arctica Bolotov, Eliseeva, Klass & Kondakov sp. novFigures 4B, 5b,c, 7c, Supplementary Figs. S2b, S3b, S5, Supplementary Table S2.LSID: https://zoobank.org/urn:lsid:zoobank.org:act:FADF0993-A946-413A-9680-25BA0F9BE90D.Holotype. RMBH Hir_0457_2_1-H (sequenced: COI sequence acc. No. ON810735; 18S rRNA sequence acc. No. ON819028), RUSSIA: a large lake near Sob’ railway station, 67.0480°N, 65.6316°E, Polar Urals, June 23, 2021, A. V. Kondakov et al. leg.Paratypes (N = 18). 18 specimens RMBH Hir_0457 (two specimens sequenced: COI sequence acc. No. ON810736 and ON810737; 18S rRNA sequence acc. No. ON819029; one specimen placed on 18 permanent slides as a series of slices), the type locality, the same date, and collectors.Etymology. The name of the new species indicates that its type locality is situated in the Arctic Region.Differential diagnosis. Medium-sized leech, which could be distinguished from other congeners by a combination of the following characters: dorsum with four rows of ovate, broad but very shallow and indistinct papillae on annulus a2 (outer paramedian and inner paramarginal series); each papilla bears ovate light yellow or white spot; dorsal black markings pattern absent. Externally, the new species is similar to G. mollissima. However, the latter species differs from G. arctica sp. nov. by having larger papillae and a well-developed black markings pattern dorsally.Molecular diagnosis. The new species represents a separate genetic lineage belonging to the verrucata-group (Fig. 1). The pairwise COI p-distance of the new species from other congeners varies from 7.0 to 12.4%. The intraspecific pairwise COI p-distance ranges from 0.0 to 0.2% (mean ± s.e.m. = 0.10 ± 0.05%; N = 3 sequences and 3 pairwise distance values). The GenBank acc. numbers of reference DNA sequences (COI and 18S rRNA) are given in Supplementary Table S2 and Supplementary Datasets S1–S2.Description. Medium-sized leech (body length up to 13.3 mm). Measurements of the type series are given in Supplementary Table S2. Body broad, leaf-like, ovate. Dorsum with four rows of ovate, broad but very shallow and indistinct papillae on annulus a2 (outer paramedian and inner paramarginal series). Posterior sucker small, circular (maximum diameter of 1.9 mm), ventrally directed. Proboscis pore in the center of anterior sucker. Coloration of living animals: body almost transparent, light brown, with multiple yellowish pigment cells. Coloration of ethanol-preserved animals: dorsum beige to light brown, with darker broad inner paramedian lines and light yellowish areas laterally and anteriorly; ovate light yellow or white spots at each papillae on annulus a2 arranged into four longitudinal rows (outer paramedian and inner paramarginal), sometimes with a few white spots between them. Three pairs of ovate eyespots arranged to two parallel rows; in some specimens eyes on each side are joined to a single large spot. Venter whitish to light brown, sometimes with irregular brownish shading. Total number of annuli: 70. Somites I–III uniannulate, IV biannulate, V–XXIV triannulate, XXV biannulate, XXVII uniannulate. The male and female genital pores are separated by two annuli and are located in the furrows XIa3/XIIa1 and XIIa2/a3, respectively. Reproductive system: 6 pairs of spherical testisacs inter-segmentally from XIII/XIV to XVIII/XIX; atrium spherical, the atrial cornua large, twisted anteriorly; paired ejaculatory ducts very long, extending to XVIII; paired ovisacs massive, long, with multiple lobes, arranged as loops, extending to XVIII (pregnant specimen with eggs). Digestive system: proboscis sheath massive, thick, elongated; esophagus narrow; salivary glands diffuse; crop with 7 pairs of crop caeca: 1st-6th uniform, bag-like, 7th pair (posterior caeca) with 4 blind processes and several smaller lobes; intestine enlarged, with 4 pairs of large, long, bag-like processes, expanding distally, each with several short lobes; a large circular extension after the last pair of processes.Distribution. Polar Urals (not known beyond the type locality).Habitats and ecology. The type series of this species was collected from a natural mountain lake with stony bottom. The leeches were recorded beneath flat stones (Fig. 3b); their feeding behavior and life cycle remain unknown.
    Glossiphonia taymyrensis Bolotov, Eliseeva, Klass & Kondakov sp. novFigures 4E, 5d, 7b, Supplementary Figs. S2h, S3c, S6, Supplementary Table S2.LSID: https://zoobank.org/urn:lsid:zoobank.org:act:40269BF4-FE1C-4269-A7CC-41020789DC44.Holotype. RMBH Hir_0258_1-H (sequenced: COI sequence acc. No. ON810695), RUSSIA: small lake near Dudinka on Taymyr Peninsula, 69.4008°N, 86.3384°E, July 16, 2018, O. V. Aksenova et al. leg.Paratypes (N = 8). RUSSIA: 2 specimens RMBH Hir_0263_1 and RMBH Hir_0264_3 (sequenced: COI sequence acc. No. ON810701 and ON810705; 18S rRNA sequence acc. No. ON819017), the type locality, the same date, and collectors; 2 specimens RMBH Hir_0256_1 (one sequenced and one placed on 20 permanent slides as a series of slices; COI sequence acc. No. ON810693), small lake near Dudinka on Taymyr Peninsula, 69.3987° N, 86.3505° E, July 16, 2018, O. V. Aksenova et al. leg.; 1 specimen RMBH Hir_0261_2 (sequenced: COI sequence acc. No. ON810699; 18S rRNA sequence acc. No. ON819016), small lake near Dudinka on Taymyr Peninsula, 69.4014° N, 86.3250° E, July 16, 2018, O. V. Aksenova et al. leg.; 1 specimen RMBH Hir_0265_2 (sequenced: COI sequence acc. No. ON810706; 18S rRNA sequence acc. No. ON819021), Bolgokhtokh River near Dudinka, Taymyr Peninsula, 69.3780° N, 87.2215° E, July 21, 2018, O. V. Aksenova et al. leg.; 1 specimen RMBH Hir_0488 (sequenced: COI sequence acc. No. ON810755), a lake on Putorana Plateau, 68.7607° N, 91.9014° E, July, 2021, E. S. Chertoprud leg.; 1 specimen RMBH Hir_0449 (sequenced: COI sequence acc. No. ON810731), Pyzas River near Ust-Kabyrza settlement, 52.8277° N, 88.3973° E, Tashtagolsky District, Kemerovo Region, July 23, 2020, E. S. Babushkin & M. V. Vinarski leg.Etymology. The new species is named after the Taymyr Peninsula, where the majority of the type specimens were collected.Differential diagnosis. Small leech with broad, leaf-like, ovate body; three pairs of eyespots (distal pair joined; next two pairs separate); dorsal papillae absent; dorsal coloration with two inner paramedian rows of black spots, sometimes joining into unclear dashed lines; two annuli between the male (XIa3/XIIa1) and female (XIIa2/a3) genital pores. The new species largely resembles G. complanata but could be distinguished from it by having a smooth dorsum, without clear papillae. These taxa seem to have non-overlapping, allopatric ranges and, hence, could be separated on the basis of geographic criteria. However, the DNA approach seems to be the most appropriate way to distinguish these two species.Molecular diagnosis. The new species represents a separate genetic lineage belonging to the complanata-group (Fig. 1). The pairwise COI p-distance of the new species from other congeners varies from 6.0 to 12.2%. The intraspecific pairwise COI p-distance ranges from 0.0 to 1.1% (mean ± s.e.m. = 0.52 ± 0.07%; N = 8 sequences and 28 pairwise distance values). The GenBank acc. numbers of reference DNA sequences (COI and 18S rRNA) are given in Supplementary Table S2 and Supplementary Datasets S1–S2.Description. Small leech (body length up to 11.3 mm). Measurements of the type series are given in Supplementary Table S2. Body broad, leaf-like, ovate. Dorsum smooth, without clear papillae. Posterior sucker ovate (maximum diameter of 3.0 mm), ventrally directed. Proboscis pore in the center of anterior sucker. Coloration of living animals: not examined. Coloration of ethanol-preserved animals: (1) typical form having beige to light brown ground color without light spots but with darker brown coloration between inner paramedian lines; (2) melanic forms having dark brown ground color with four rows of large yellow spots (outer paramedian and marginal series) and yellow median stripe anteriorly (f. ‘maculosa’) or with strongly reduced yellow markings pattern. In all forms, there are two inner paramedian rows of black spots, sometimes joining into unclear dashed lines. Three pairs of ovate eyespots; the eyespots of the distal pair joined into a single spot; the eyespots of the next two pairs separate and are spaced apart. In the typical form, venter light yellow, with paired brown median and outer paramedian lines, which may be reduced to series of narrow brown longitudinal stripes. In melanic forms, ventral markings is more developed, with a series of brown longitudinal lines from median to inner paramarginal position and outer paramarginal brown spots. Posterior sucker with dense brown spots in melanic forms and with scarce brown spots in typical form. Total number of annuli: 68. Somites I–IV uniannulate, V–XXIV triannulate, XXV biannulate, XXVI–XXVII uniannulate. The male and female genital pores are separated by two annuli and are located in the furrows XIa3/XIIa1 and XIIa2/a3, respectively. Reproductive system: 6 pairs of spherical testisacs inter-segmentally from XII/XIII to XVIII/XIX; atrium ovate, the atrial cornua directed laterally; paired ejaculatory ducts twisted, short; paired ovisacs short, thick (undeveloped). Digestive system: salivary glands diffuse; proboscis sheath moderately thick; esophagus ovate; crop with 6 pairs of massive, bag-like, uniform crop caeca; intestine with 4 pairs of processes.Distribution. Western and Eastern Siberia.Habitats and ecology. The new species was recorded from natural lakes and rivers (Supplementary Dataset S2); its feeding behavior and life cycle are unknown.Genus Hyperboreomyzon Bolotov, Eliseeva, Klass & Kondakov gen. novLSID: https://zoobank.org/urn:lsid:zoobank.org:act:298FF41E-AF0D-4442-9F82-3022B8094A67.Type species: Hyperboreomyzon polaris gen. & sp. nov.Etymology. This name is compiled using two Greek words: ‘Hyperborea’ (meaning a mythical far northern land) and ‘myzon’ (meaning sucking).Diagnosis. Medium-sized, elongate, sub-fusiform glossiphoniid leeches; body and posterior sucker densely covered by shallow, ‘fish-scale’-like papillae; somite V biannulate; somites XII–XXIII secondarily sexannulate dorsally and ventrally due to the presence of very deep, prominent furrows separating each annulus to two semi-annuli; six rows of prominent dorsal tubercle-like papillae at a2 (inner paramedian, inner paramarginal, and marginal series) from V to XXVI; two pairs of circular eyespots on II and Va1 at inner paramedian position; gonopores at the furrows XIa3/XIIa1 (male) and XIIa2/a3 (female) and separated by two annuli; male atrium spherical; proboscis pore opens in a thick velar fold in the anterior half of oral sucker; one pair of compact, massive, elongated, incurved salivary glands, each gland with a bunch of a few short processes apically; 9 crop caeca pairs. Comparison of the new genus with other genera in the family based on morphological and anatomical features is presented in
    Supplementary Table S3. Sexannulate condition was also recorded in the genus Actinobdella Moore, 1901 from North America36, but it differs from Hyperboreomyzon gen. nov. by having one pair of eyespots, diffuse salivary glands, and an apical position of proboscis pore (Supplementary Table S3).Comments. This genus is established for a single species, which is described below.
    Hyperboreomyzon polaris Bolotov, Eliseeva, Klass & Kondakov gen. & sp. nov.Figures 4J, 5e, 6a-j, 7c, Supplementary Figs. S21, S8, S9, S10, S11, Supplementary Table S2.LSID: https://zoobank.org/urn:lsid:zoobank.org:act:503A9A26-CEDE-4747-952D-8416AE4EF4EB.Holotype. RMBH Hir_0486-H (sequenced: COI sequence acc. No. ON810753; 18S rRNA sequence acc. No. ON819030), RUSSIA: small alpine lake on Putorana Plateau, 68.9008°N, 94.1599°E, July, 2021, E. S. Chertoprud leg.Paratypes (N = 2). RUSSIA: 1 specimen RMBH Hir_0689 (dissected and placed on 60 permanent slides as a series of slices), small alpine lake on Putorana Plateau, 68.6659° N, 93.1365° E, August 11, 2021, E. S. Chertoprud leg.; 1 specimen RMBH Hir_0216 (sequenced and dissected; COI sequence acc. No. ON810677; 18S rRNA sequence acc. No. ON819005), water puddle on Kolguev Island, 68.9300° N, 49.0303° E, August 12, 2018, O. V. Travina & V. M. Spitsyn leg.Etymology. The name of the new species reflects its occurrences in polar (Arctic) areas of Eurasia.Differential diagnosis. As for the genus.Molecular diagnosis. None of congeneric species is known. Based on uncorrected pairwise COI p-distances between a haplotype of the new taxon and selected species-level haplotypes in each genus (Supplementary Table S1), Hyperboreomyzon seems to be more closely related to members of Hemiclepsis (mean distance ± s.e.m. = 11.62 ± 0.15%, range = 9.75–14.08%, N = 9) and Theromyzon (mean distance ± s.e.m. = 11.37 ± 0.07%, range = 10.47–12.64%, N = 9) without significant differences between distances from these two genera (Mann–Whitney test: p = 0.72). Other Glossiphoniidae genera are more distantly related, with a mean pairwise uncorrected COI p-distance of  > 13.0% (Mann–Whitney test: p  More

  • in

    Analysis toxicity by different methods and anxiolytic effect of the aqueous extract Lippia sidoides Cham.

    Singh, Y. D., Jena, B. & Ningthoujam, R. Potential bioactive molecules from natural products to combat against coronavirus. Adv. trad. Med. 1, 1–12. https://doi.org/10.1007/s13596-020-00496-w (2020).Article 
    CAS 

    Google Scholar 
    Badke, M. R. et al. Popular knowledge: The use of medicinal plants as therapeutic form in health care. Rev. Enferm. UFSM. 6, 225–234. https://doi.org/10.1590/S0104-07072012000200014 (2016).Article 

    Google Scholar 
    Macedo, J. G. F. et al. Analysis of the variability of therapeutic indications of medicinal species in the Northeast of Brazil: Comparative study. Evid. Based Complementary Altern. Med. 2018, 1–29. https://doi.org/10.1155/2018/6769193 (2018).Article 

    Google Scholar 
    Farias, J. C., Bomfim, B. L. S., Fonseca Filho, I. C., Silva, P. R. R. & Barros, R. F. M. Insecticides and repellents plants used in a rural community in northeast Brazilian. Revista Espacios. 37, 1–6 (2016).
    Google Scholar 
    Silva, M. G. V., Lima, D. R., Monteiro, J. A. & Magalhães, F. E. A. Anxiolytic-like effect of chrysophanol from Senna Cana Stem in Adult Zebrafish (Danio Rerio). Nat. Prod. Res. 22, 1–5. https://doi.org/10.1080/14786419.2021.1980788 (2021).Article 
    CAS 

    Google Scholar 
    Vincenzi, F., Borea, P. A. & Varani, K. Anxiolytic properties of A1 adenosine receptor PAMs. Oncotarget 8, 7216–7217. https://doi.org/10.18632/oncotarget.13802 (2017).Article 
    PubMed 

    Google Scholar 
    Silva, M. I. G., Gondim, A. P. S., Nunes, I. F. S. & Sousa, F. C. F. Utilização de fitoterápicos nas unidades básicas de atenção à saúde da família no município de Maracanaú (CE). Rev. Bras. Farmacog. 16, 455–462. https://doi.org/10.1590/S0102-695X2006000400003 (2006).Article 

    Google Scholar 
    Guimarães, L. G. L., Silva, M. L. M., Reis, P. C. J., Costa, M. T. R. & Alves, L. L. General characteristics, phytochemistry and pharmacognosy of Lippia sidoides. Nat. Prod. Commun. 10, 1861–1867. https://doi.org/10.1177/1934578X1501001116 (2015).Article 

    Google Scholar 
    Veras, H. L. H. et al. Synergistic antibiotic activity of volatile compounds from the essential oil of Lippia sidoides and thymol. Fitoterap. 83, 508–512. https://doi.org/10.1016/j.fitote.2011.12.024 (2012).Article 
    CAS 

    Google Scholar 
    Farias, E. M. F. G. et al. Antifungal activity of Lippia sidoides Cham. (Verbenaceae) against clinical isolates of Candida species. J. Herb. Med. 2, 63–67. https://doi.org/10.1016/j.hermed.2012.06.002 (2012).Article 

    Google Scholar 
    Cavalcanti, S. C. H. et al. Composition and acaricidal activity of Lippia sidoides essential oil Against two-spotted spider mite (Tetranychus urticae Koch). Bioresour. Technol. 101, 829–832. https://doi.org/10.1016/j.biortech.2009.08.053 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Monteiro, M. V. B., Leite, A. K. R. M., Bertini, L. M., Morais, S. M. & Nunes-Pinheiro, D. C. S. Topical anti-inflammatory, gastroprotective and antioxidant effects of the essential oil of Lippia sidoides Cham. Leaves. J. Ethnopharmacol. 111, 378–382. https://doi.org/10.1016/j.jep.2006.11.036 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Botelho, M. A. et al. Effect of a novel essential oil mouthrinse without alcohol on gingivitis: A double-blinded randomized controlled tria. J. Appl. Oral. Sci. 15, 175–180 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Botelho, M. A. et al. Comparative effect of an essential oil mouthrinse on plaque, gingivitis and salivary Streptococcus mutans levels: A double blind randomized study. Phytother. Res. 23, 1214–1219. https://doi.org/10.1002/ptr.2489 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Medeiros, M. G. F. et al. In vitro antileishmanial activity and cytotoxicity of essential oil from Lippia sidoides Cham. Parasitol. Inter. 60, 237–241. https://doi.org/10.1016/j.parint.2011.03.004 (2011).Article 
    CAS 

    Google Scholar 
    Gomide, M. S. et al. The effect of the essential oils from five different Lippia species on the viability of tumor cell lines. Rev. Bras. Farmacogn. 23, 895–902. https://doi.org/10.1590/S0102-695X2013000600006 (2013).Article 
    CAS 

    Google Scholar 
    Murade, V. et al. A plausible involvement of GABAA/benzodiazepine receptor in the anxiolytic-like effect of ethyl acetate fraction and quercetin isolated from Ricinus communis Linn. leaves in mice. Phytomed. Plus. 1, 100041. https://doi.org/10.1016/j.phyplu.2021.100041 (2021).Article 

    Google Scholar 
    Coleta, M., Campos, M. A., Cotrim, M. D., Lima, T. C. M. & Cunha, A. P. Assessment of luteolin (3′,4′,5,7-tetrahydroxyflavone) neuropharmacological activity. Behav. Brain Res. 189, 75–82. https://doi.org/10.1016/j.bbr.2007.12.010 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kosalec, I., Bakmaz, M., Pepeliniak, S. & Vladimir-Knezevic, S. Quantitative analysis of the flavonoids in raw propolis from northern Croatia. A Pharmaceut. 54, 65–72 (2004).CAS 

    Google Scholar 
    Cunha, F. A. B. et al. Eugenia uniflora leaves essential oil induces toxicity in Drosophila melanogaster: Involvement of oxidative stress mechanisms. Toxicol. Res. 4, 634–644. https://doi.org/10.1039/c4tx00162a (2015).Article 

    Google Scholar 
    Coulom, H. & Birman, S. Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J. Neurosci. 24, 10993–10998. https://doi.org/10.1523/JNEUROSCI.2993-04.2004 (2004).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barros, F. J. et al. Activity of essential oils of Piper aduncum anf and Cinnamomum zeylanicum by evaluating osmotic and morphologic fragility of erythrocytes. Eur. J. Integr. Med. 515, 1–8. https://doi.org/10.1016/j.eujim.2016.02.011 (2016).Article 

    Google Scholar 
    Meyer, B. N. et al. Brine Shrimp: A convenient general bioassay for active plant constituints. Planta Med. 45, 31–34. https://doi.org/10.1055/s-2007-971236 (1982).Article 
    CAS 
    PubMed 

    Google Scholar 
    de Magalhães, F. E. A. et al. Adult zebrafish: an alternative behavioral model of formalin-induced nociception. Zebrafish 4, 422–429. https://doi.org/10.1089/zeb.2017.1436 (2017).Article 
    CAS 

    Google Scholar 
    OECD guideline for testing acute toxicity in fishes, Test No. 1992. http://www.oecd.org/chemicalsafety/risk-assessment/1948241.pdf. (Acessado em 25 de octuber, 2021).Arellano-Aguilar, O. et al. Use of the zebrafish embryo toxicity test for use of the zebrafish embryo toxicity test for risk assessment purpose: Case study. J. Fish Sci. 4, 52–62 (2015).
    Google Scholar 
    Gonçalves, N. G. G. et al. Protein fraction from Artocarpus Altilis pulp exhibits antioxidant properties and reverses anxiety behavior in adult zebrafish via the serotoninergic system. J. Funct. Foods. 66, 103772. https://doi.org/10.1016/j.jff.2019.103772 (2020).Article 
    CAS 

    Google Scholar 
    Gebauer, D. L. et al. Effects of anxiolytics in zebrafish: Similarities and differences between benzodiazepines. Buspirone and Ethanol. Pharmacol. Biochem. Behav. 99, 480–486. https://doi.org/10.1016/j.pbb.2011.04.021 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Benneh, C. K. et al. Maerua Angolensis stem bark extract reverses anxiety and related behaviours in zebrafish—Involvement of GABAergic and 5-HT systems. J. Ethnopharmacol. 207, 129–145. https://doi.org/10.1016/j.jep.2017.06.012 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Santos, S. A., Vilela, C., Freire, C. S., Neto, C. P. & Silvestre, A. J. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. J. Chromatogr. B. 938, 65–74. https://doi.org/10.1016/j.jchromb.2013.08.034 (2013).Article 
    CAS 

    Google Scholar 
    Pereira, O. R., Peres, A. M., Silva, A. M. S., Domingues, M. R. M. & Cardoso, S. M. Simultaneous characterization and quantification of phenolic compounds in Thymus x citriodorus using a validated HPLC–UV and ESI–MS combined method. Food Res. Inter. 54, 1773–1780. https://doi.org/10.1016/j.foodres.2013.09.016.( (2013).Article 
    CAS 

    Google Scholar 
    Zhao, Y. et al. Characterization of phenolic constituents in Lithocarpus polystachyus. Royal Soc. Chem. https://doi.org/10.1039/c3ay41288a (2014).Article 

    Google Scholar 
    Petkovska, A., Gjamovski, V., Stanoeva, J. P. & Stefova, M. Characterization of the polyphenolic profiles of peel, flesh and leaves of malus domestica cultivars using UHPLC-DAD-HESI-MSn. Nat. Prod. Commun. https://doi.org/10.1177/1934578X1701200111 (2017).Article 
    PubMed 

    Google Scholar 
    Mena, P. et al. Rapid and comprehensive evaluation of (poly)phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn. Molecules 17, 14821–14840. https://doi.org/10.3390/molecules171214821 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ye, M., Han, J., Chen, H., Zheng, J. & Guo, D. Analysis of phenolic compounds in rhubarbs using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 82–91. https://doi.org/10.1016/j.jasms.2006.08.009 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kang, J., Price, W., Ashton, J., Tapsell, L. C. & Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chem. 211, 215–226. https://doi.org/10.1016/j.foodchem.2016.05.052 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schutz, K., Kammerer, D. R., Carle, R. & Schieber, A. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19, 179–186. https://doi.org/10.1002/rcm.1767.15593267 (2005).Article 
    PubMed 

    Google Scholar 
    Hassan, K. O., Bedgood, D. R. Jr., Prenzler, P. D. & Robards, K. Chemical screening of olive biophenol extracts by hyphenated liquid chromatography. Anal. Chim. Acta 603, 176–189. https://doi.org/10.1016/j.aca.2007.09.044 (2007).Article 
    CAS 

    Google Scholar 
    Brito, A., Ramirez, J. E., Areche, C., Sepúlveda, B. & Simirgiotis, M. J. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 19, 17400–17421. https://doi.org/10.3390/moléculas191117400 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McNab, H., Ferreira, E. S. B., Hulme, A. N. & Quye, A. Negative ion ESI–MS analysis of natural yellow dye flavonoids—An isotopic labelling study. Int. J. Mass Spectrometry. 284, 57–65. https://doi.org/10.1016/j.ijms.2008.05.039 (2009).Article 
    CAS 

    Google Scholar 
    Gouveia, S. & Castilho, P. C. Characterisation of phenolic acid derivatives and flavonoids from different morphological parts of Helichrysum obconicum by a RP-HPLC–DAD-()–ESI-MSn method. Food Chem. 129, 333–344. https://doi.org/10.1016/j.foodchem.2011.04.078 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Peter, S. R., Peru, K. M., Fahlman, B., McMartin, D. W. & Headley, J. V. The application of HPLC ESI MS in the investigation of the flavonoids and flavonoid glycosides of a Caribbean Lamiaceae plant with potential for bioaccumulation. J. Environ. Sci. Health B. 50, 819–826. https://doi.org/10.1080/03601234.2015.1058103 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rashid, N. A. A., Lau, B. F. & Kue, C. S. Differential toxicity and teratogenic effects of the hot water and cold water extracts of Lignosus rhinocerus (Cooke) Ryvarden sclerotium on zebrafish (Danio rerio) embryos. J. Ethnopharmacol. 285(114787), 2022. https://doi.org/10.1016/j.jep.2021.114787 (2022).Article 
    CAS 

    Google Scholar 
    Costa, S. M. O. et al. Chemical constituents from Lippia sidoides and cytotoxic activity. J. Nat. Prod. 64, 792–795. https://doi.org/10.1021/np0005917 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fabri, R. L., Nogueira, M. S., Moreira, J. R., Bouzada, M. L. M. & Scio, E. Identification of antioxidant and antimicrobial compounds of Lippia Species by bioautography. J. Med. Food. 14, 840–846. https://doi.org/10.1089/jmf.2010.0141 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Funari, C. S. et al. Chemical and antifungal investigations of six Lippia species (Verbenaceae) from Brazil. Food Chem. 135, 2086–2094. https://doi.org/10.1016/j.foodchem.2012.06.077 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Garmus, T. T., Paviani, L. C., Queiroga, C. L. & Cabral, F. A. Extraction of phenolic compounds from pepper-rosmarin (Lippia sidoides Cham.) leaves by sequential extraction in fixed bed extractorusing supercritical CO2, ethanol and water as solvents. J. Supercrit. Fluids. 99, 68–75. https://doi.org/10.1016/j.supflu.2015.01.016 (2015).Article 
    CAS 

    Google Scholar 
    Botelho, M. A. et al. Nanotechnology in phytotherapy: Antiinflammatory effect of a nanostructured thymol gel from Lippia sidoides in acute periodontitis in rats. Phytother. Res. 30, 152–159. https://doi.org/10.1002/ptr.5516 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Veras, H. N. et al. Atividade anti-inflamatória tópica do óleo essencial de Lippia sidoides cham: Possível mecanismo de ação. Phytother. Res. 27, 179–185. https://doi.org/10.1002/ptr.4695 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fernandes, L. M., Guterres, Z. R., Almeida, I. V. & Vicentini, V. E. P. Genotoxicity and antigenotoxicity assessments of the flavonoid vitexin by the Drosophila melanogaster somatic mutation and recombination test. J. Med. food. 20, 1–9. https://doi.org/10.1089/jmf.2016.0149 (2017).Article 
    CAS 

    Google Scholar 
    Sotibrán, A. N. C., Ordaz-Téllez, M. G. & Rodríguez-Arnaiz, R. Flavonoids and oxidative stress in Drosophila melanogaster. Mutation Res. 726(60–65), 2011. https://doi.org/10.1016/j.mrgentox.2011.08.005 (2011).Article 
    CAS 

    Google Scholar 
    Silva, L. V. F., Mourão, R. H. V., Manimala, J. & Lnenicka, G. A. The essential oil of Lippia alba and its components affect Drosophila behavior and synaptic physiology. J. Experim. Biol. 221, 1–10. https://doi.org/10.1242/jeb.176909 (2018).Article 

    Google Scholar 
    Poetini, M. R. et al. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson’s disease. Chem. Biol. Interact. 279, 177–186. https://doi.org/10.1016/j.cbi.2017.11.018 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xavier, A. L. et al. Chemical composition, antitumor activity, and toxicity of essential oil from the leaves of Lippia microphylla. Z. Naturforsch. 70, 129–137. https://doi.org/10.1515/znc-2014-4138 (2015).Article 
    CAS 

    Google Scholar 
    Freitas, M. V. et al. Influence of aqueous crude extracts of medicinal plants on the osmotic stability of human erythrocytes. Toxicol. In Vitro. 22, 219–224. https://doi.org/10.1016/j.tiv.2007.07.010 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Oyedapo, O. O., Akinpelu, B. A., Akinwunmi, K. F., Adeyinka, M. O. & Sipeolu, F. O. Red blood cell membrane stabilizing potentials of extracts of Lantana camara and its fractions. Plant Physiol. Biochem. 2, 46–51 (2010).
    Google Scholar 
    Bilto, Y. Y., Suboh, S., Aburjai, T. & Abdalla, S. Structure-activity relationships regarding the antioxidant effects of the flavonoids on human erythrocytes. Nat. Sci. 4, 740–747. https://doi.org/10.4236/ns.2012.4909 (2012).Article 

    Google Scholar 
    Ajaiyeoba, E. O. et al. In vitro cytotoxicity studies of 20 plants used in Nigerian antimalarial ethnomedicine. Phytomed. 13, 295–298 (2006).Article 
    CAS 

    Google Scholar 
    Vélez, E., Regnault, H. D., Jaramillo, C. J., Veléz, A. P. E. & Isitua, C. C. Fitoquímica de Lippia citriodora K cultivada en Ecuador y su actividad biológica. Rev. Cien. UNEMI. 12, 9–19 (2019).Article 

    Google Scholar 
    Costa, P. S. et al. Antifungal activity and synergistic effect of essential oil from Lippia alba against trichophyton rubrum and Candida spp. Rev. Virt. Quim. 12, 1–12. https://doi.org/10.21577/1984-6835.20200119 (2020).Article 
    CAS 

    Google Scholar 
    Gupta, P., Khobragade, S. B., Shingatgeri, V. M. & Rajaram, S. M. Assessment of locomotion behavior in adult Zebrafish after acute exposure to different pharmacological reference compounds. Drug Des. Devel. Ther. 5, 127–133. https://doi.org/10.4103/2394-2002.139626 (2014).Article 
    CAS 

    Google Scholar 
    Bezerra, P. et al. Composição química e atividade biológicade óleos essenciais de plantas do Nordeste—gênero Lippia. Cienc. Cult. 33, 1–14 (1981).CAS 

    Google Scholar 
    Pascual, M. E., Slowing, K., Carretero, E., Sánchez Mata, D. & Villar, A. Lippia: Traditional uses, chemistry and pharmacology: A review. J. Ethnopharmacol. 76, 201–214. https://doi.org/10.1016/s0378-8741(01)00234-3 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mamun-Or-Rashid, A. N. M., Sen, M. K., Jamal, M. A. H. M. & Nasrin, S. A comprehensive ethnopharmacological review on Lippia alba M. Int. J. Biomed. Mater. Res. 1, 14–20. https://doi.org/10.11648/j.ijbmr.20130101.13 (2013).Article 

    Google Scholar 
    Mácová, S. et al. Comparison of acute toxicity of 2-phenoxyethanol and clove oil to juvenile and embryonic stages of Danio rerio. Neuroendocrinol. Lett. 29, 680–684 (2008).PubMed 

    Google Scholar 
    Batista, F. L. A. et al. Antinociceptive effect of volatile oils from Ocimum basilicum flowers on Adult Zebrafish. Rev. Bras. Farmacog. 31, 282–289. https://doi.org/10.1007/s43450-021-00154-5 (2021).Article 
    CAS 

    Google Scholar 
    Horzmann, K. A. & Freeman, J. L. Making waves: New developments in toxicology with the Zebrafish. Toxicol. Sci. 163, 5–12. https://doi.org/10.1093/toxsci/kfy044 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferreira, M. K. A. et al. Anxiolytic-like effect of chalcone N-{(4′-[(E)-3-(4-fluorophenyl)-1-(phenyl) prop-2-en-1-one]} acetamide on adult zebrafish (Danio Rerio): Involvement of the GABAergic system. Behav. Brain Res. 374, 111871. https://doi.org/10.1016/j.bbr.2019.03.040 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Siqueira-Lima, P. S. et al. Central nervous system and analgesic profiles of Lippia Genus. Rev. Bras. Farmacogn. 29, 125–135. https://doi.org/10.1016/j.bjp.2018.11.006 (2019).Article 
    CAS 

    Google Scholar 
    Ferreira, M.K.A. da Silva, A.W. dos Santos Moura, A.L. Sales, K.V.B. Marinho, E.M. do Nascimento Martins Cardoso, J. Marinho, M.M. Bandeira, P.N. Magalhães, F.E.A. Marinho, E.S. et al. Chalcones reverse the anxiety and convulsive behavior of adult zebrafish. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2021.107881 (2021).Silva, A. W., Wlisses, A., Kueirislene, M., Ferreira, A. & Ramos, L. Combretum lanceolatum extract reverses anxiety and seizure behavior in adult zebrafish through GABAergic neurotransmis-Sion: An in vivo and in silico study. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2021.1935322 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Selmani, A. & Kovaˇcevi´, D., Bohinc, K.,. Nanoparticles: From synthesis to applications and beyond. Adv. Colloid Interface Sci. 303, 102640. https://doi.org/10.1016/j.cis.2022.102640 (2022).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Features of urban green spaces associated with positive emotions, mindfulness and relaxation

    Olszewska-Guizzo, A., Fogel, A., Benjumea, D. & Tahsin, N. Sustainable Policies and Practices in Energy, Environment and Health Research 223–243 (Springer, 2022).Book 

    Google Scholar 
    Gascon, M. et al. Mental health benefits of long-term exposure to residential green and blue spaces: A systematic review. Int. J. Environ. Res. Public Health 12, 4354–4379. https://doi.org/10.3390/ijerph120404354 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Houlden, V., Weich, S., Porto-de-Albuquerque, J., Jarvis, S. & Rees, K. The relationship between greenspace and the mental wellbeing of adults: A systematic review. PLoS ONE 13, 3000 (2018).Article 

    Google Scholar 
    Hung, S.-H. & Chang, C.-Y. Health benefits of evidence-based biophilic-designed environments: A review. J. People Plants Env. 24, 1–16 (2021).Article 

    Google Scholar 
    Berman, M. G., Jonides, J. & Kaplan, S. The cognitive benefits of interacting with nature. Psychol. Sci. 19, 1207–1212. https://doi.org/10.1111/j.1467-9280.2008.02225.x (2008).Article 
    PubMed 

    Google Scholar 
    Kaplan, S. Meditation, restoration, and the management of mental fatigue. Environ. Behav. 33, 480–506. https://doi.org/10.1177/00139160121973106 (2001).Article 

    Google Scholar 
    Ulrich, R. S. et al. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 11, 201–230 (1991).Article 

    Google Scholar 
    Kellert, S. R. & Wilson, E. O. The Biophilia Hypothesis (Island Press, 1993).
    Google Scholar 
    Stack, K. & Shultis, J. Implications of attention restoration theory for leisure planners and managers. Leisure/Loisir 37, 1–16 (2013).Article 

    Google Scholar 
    Steel, Z. et al. The global prevalence of common mental disorders: A systematic review and meta-analysis 1980–2013. Int. J. Epidemiol. 43, 476–493. https://doi.org/10.1093/ije/dyu038 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mueller, D. P. The current status of urban-rural differences in psychiatric disorder. An emerging trend for depression. J. Nerv. Ment. Dis. 169, 18–27 (1981).Article 
    CAS 
    PubMed 

    Google Scholar 
    Peen, J., Schoevers, R. A., Beekman, A. T. & Dekker, J. The current status of urban-rural differences in psychiatric disorders. Acta Psychiatr. Scand. 121, 84–93. https://doi.org/10.1111/j.1600-0447.2009.01438.x (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Taylor, L. & Hochuli, D. F. Defining greenspace: Multiple uses across multiple disciplines. Landsc. Urban Plan. 158, 25–38 (2017).Article 

    Google Scholar 
    en K Staats, H. Restorative Environments The Oxford Handbook of Environmental and Conservation Psychology 445th edn. (Oxford University Press, 2012).
    Google Scholar 
    Wood, L., Hooper, P., Foster, S. & Bull, F. Public green spaces and positive mental health–investigating the relationship between access, quantity and types of parks and mental wellbeing. Health Place 48, 63–71 (2017).Article 
    PubMed 

    Google Scholar 
    Tsunetsugu, Y. et al. Physiological and psychological effects of viewing urban forest landscapes assessed by multiple measurements. Landsc. Urban Plan. 113, 90–93 (2013).Article 

    Google Scholar 
    Gidlow, C. J. et al. Where to put your best foot forward: Psycho-physiological responses to walking in natural and urban environments. J. Environ. Psychol. 45, 22–29 (2016).Article 

    Google Scholar 
    Lee, J. Experimental study on the health benefits of garden landscape. Int. J. Environ. Res. Public Health 14, 829 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuller, R. A., Irvine, K. N., Devine-Wright, P., Warren, P. H. & Gaston, K. J. Psychological benefits of greenspace increase with biodiversity. Biol. Lett. 3, 390–394 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson, C. W., Aspinall, P. & Bell, S. Innovative Approaches to Researching Landscape and Health: Open Space: People Space 2 (Routledge, 2010).Book 

    Google Scholar 
    Tsutsumi, M., Nogaki, H., Shimizu, Y., Stone, T. E. & Kobayashi, T. Individual reactions to viewing preferred video representations of the natural environment: A comparison of mental and physical reactions. Jpn. J. Nurs. Sci. 14, 3–12 (2017).Article 
    PubMed 

    Google Scholar 
    Grazuleviciene, R. et al. Tracking restoration of park and urban street settings in coronary artery disease patients. Int. J. Environ. Res. Public Health 13, 550 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bostancı, S. H. In New Approaches to Spatial Planning and Design (ed Murat Özyavuz) Ch. 32, 435–451 (Peter Lang, 2019).Daniel, T. C. Measuring Landscape Esthetics: The Scenic Beauty Estimation Method, vol. 167 (Department of Agriculture, Forest Service, Rocky Mountain Forest and Range…, 1976).Bacon, W. R. In (eds Elsner G. H. et al) Technical Coordinators. Proceedings of our national landscape: A conference on applied techniques for analysis and management of the visual resource [Incline Village, Nev., April 23–25, 1979]. Gen. Tech. Rep. PSW-GTR-35. Berkeley, CA. Pacific Southwest Forest and Range Exp. Stn., Forest Service, US Department of Agriculture 660–665 (1979).Gavrilidis, A. A., Ciocănea, C. M., Niţă, M. R., Onose, D. A. & Năstase, I. I. Urban landscape quality index—planning tool for evaluating urban landscapes and improving the quality of life. Procedia Environ. Sci. 32, 155–167. https://doi.org/10.1016/j.proenv.2016.03.020 (2016).Article 

    Google Scholar 
    Knobel, P. et al. Development of the urban green space quality assessment tool (RECITAL). Urban For. Urban Green. 57, 126895 (2021).Article 

    Google Scholar 
    Bacon, W. R. & Dell, J. National Forest Landscape Management (Forest Service, US Department of Agriculture, 1973).Kaplan, R., Kaplan, S. & Ryan, R. With People in Mind: Design and Management of Everyday Nature (Island Press, 1998).
    Google Scholar 
    Smardon, R., Palmer, J. & Felleman, J. P. Foundations for Visual Project Analysis (Wiley, 1986).
    Google Scholar 
    Jung, C. G. Man and His Symbols Garden City (Doubleday and Co, 1964).
    Google Scholar 
    Olszewska, A., Marques, P. F., Ryan, R. L. & Barbosa, F. What makes a landscape contemplative?. Env. Plan. B Urban Anal. City Sci. 45, 7–25. https://doi.org/10.1177/0265813516660716 (2016).Article 

    Google Scholar 
    Tarkka, I. M. & Hallett, M. Cortical topography of premotor and motor potentials preceding self-paced, voluntary movement of dominant and non-dominant hands. Electroencephalogr. Clin. Neurophysiol. 75, 36–43 (1990).Article 
    CAS 
    PubMed 

    Google Scholar 
    Olszewska-Guizzo, A., Paiva, T. O. & Barbosa, F. Effects of 3D contemplative landscape videos on brain activity in a passive exposure EEG experiment. Front. Psychiatry 9, 317. https://doi.org/10.3389/fpsyt.2018.00317 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bradley, M. M. & Lang, P. J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59. https://doi.org/10.1016/0005-7916(94)90063-9 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Beck, A. T., Steer, R. A. & Brown, G. K. Beck depression inventory-II. San Antonio 78, 490–498 (1996).
    Google Scholar 
    Ferree, T. C., Luu, P., Russell, G. S. & Tucker, D. M. Scalp electrode impedance, infection risk, and EEG data quality. Clin. Neurophysiol. 112, 536–544. https://doi.org/10.1016/S1388-2457(00)00533-2 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stroganova, T. A. & Orekhova, E. V. EEG and infant states. Infant EEG Event-Relat. Potentials 251, 280 (2007).
    Google Scholar 
    Cacioppo, J. T., Tassinary, L. G. & Berntson, G. Handbook of Psychophysiology (Cambridge University Press, 2007).
    Google Scholar 
    Ulrich, R. S. Natural versus urban scenes: Some psychophysiological effects. Environ. Behav. 13, 523–556 (1981).Article 

    Google Scholar 
    Choi, Y., Kim, M. & Chun, C. Measurement of occupants’ stress based on electroencephalograms (EEG) in twelve combined environments. Build. Environ. 88, 65–72 (2015).Article 

    Google Scholar 
    Gorji, M. A. H., Davanloo, A. A. & Heidarigorji, A. M. The efficacy of relaxation training on stress, anxiety, and pain perception in hemodialysis patients. Indian J. Nephrol. 24, 356 (2014).Article 

    Google Scholar 
    Cahn, B. R. & Polich, J. Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol. Bull. 132, 180 (2006).Article 
    PubMed 

    Google Scholar 
    Gruzelier, J. A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration. Cogn. Process. 10, 101–109 (2009).Article 

    Google Scholar 
    Vecchiato, G. et al. Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments. Cogn. Process. 16, 425–429 (2015).Article 
    PubMed 

    Google Scholar 
    Lagopoulos, J. et al. Increased theta and alpha EEG activity during nondirective meditation. J. Altern. Complement. Med. 15, 1187–1192 (2009).Article 
    PubMed 

    Google Scholar 
    Wascher, E. et al. Frontal theta activity reflects distinct aspects of mental fatigue. Biol. Psychol. 96, 57–65 (2014).Article 
    PubMed 

    Google Scholar 
    Kabat-Zinn, J. Mindfulness. Mindfulness 6, 1481–1483 (2015).Article 

    Google Scholar 
    McGarrigle, T. & Walsh, C. A. Mindfulness, self-care, and wellness in social work: Effects of contemplative training. J. Relig. Spiritual. Soc. Work Soc. Thought 30, 212–233 (2011).
    Google Scholar 
    Grossman, P., Niemann, L., Schmidt, S. & Walach, H. Mindfulness-based stress reduction and health benefits: A meta-analysis. J. Psychosom. Res. 57, 35–43 (2004).Article 
    PubMed 

    Google Scholar 
    Bailey, A. W., Allen, G., Herndon, J. & Demastus, C. Cognitive benefits of walking in natural versus built environments. World Leisure J. 60, 293–305 (2018).Article 

    Google Scholar 
    Qin, J., Zhou, X., Sun, C., Leng, H. & Lian, Z. Influence of green spaces on environmental satisfaction and physiological status of urban residents. Urban For. Urban Green. 12, 490–497 (2013).Article 

    Google Scholar 
    Kolb, B. & Whishaw, I. Q. Fundamentals of Human Neuropsychology (Freeman, 1990).
    Google Scholar 
    Milner, B. Visual recognition and recall after right temporal-lobe excision in man. Neuropsychologia 6, 191–209 (1968).Article 

    Google Scholar 
    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215. https://doi.org/10.1038/nrn755 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chang, C.-Y. & Chen, P.-K. Human response to window views and indoor plants in the workplace. HortScience 40, 1354–1359 (2005).Article 

    Google Scholar 
    Herzog, T. R., Black, A. M., Fountaine, K. A. & Knotts, D. J. Reflection and attentional recovery as distinctive benefits of restorative environments. J. Environ. Psychol. 17, 165–170 (1997).Article 

    Google Scholar 
    Baehr, E., Rosenfeld, J. P. & Baehr, R. Clinical use of an alpha asymmetry neurofeedback protocol in the treatment of mood disorders: Follow-up study one to five years post therapy. J. Neurother. 4, 11–18 (2001).Article 

    Google Scholar 
    Sia, A. et al. Nature-based activities improve the well-being of older adults. Sci. Rep. 10, 1–8 (2020).Article 

    Google Scholar 
    Olszewska-Guizzo, A., Sia, A., Fogel, A. & Ho, R. Can exposure to certain urban green spaces trigger frontal alpha asymmetry in the brain?—Preliminary findings from a passive task EEG study. Int. J. Environ. Res. Public Health 17, 394 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olszewska-Guizzo, A. et al. Therapeutic garden with contemplative features induces desirable changes in mood and B rain activity in depressed adults. Front. Psychiatry https://doi.org/10.3389/fpsyt.2022.757056 (2021).Article 

    Google Scholar 
    Tan, S. B., Vignesh, L. N. & Donald, L. Public Housing in Singapore: Examining Fundamental Shifts (Lee Kuan Yew School of Public Policy, National University of Singapore, 2014).Tan, P. Y. Nature, Place & People: Forging Connections Through Neighbourhood Landscape Design (World Scientific Publishing Co., 2018).Book 

    Google Scholar 
    Peirce, J. et al. PsychoPy2: Experiments in behavior made easy. Behav. Res. Methods 51, 195–203. https://doi.org/10.3758/s13428-018-01193-y (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edwards, A. L. Balanced Latin-square designs in psychological research. Am. J. Psychol. 64, 598–603 (1951).Article 
    CAS 
    PubMed 

    Google Scholar 
    Korpela, K. M., Ylén, M., Tyrväinen, L. & Silvennoinen, H. Determinants of restorative experiences in everyday favorite places. Health Place 14, 636–652 (2008).Article 
    PubMed 

    Google Scholar 
    Ojala, A., Korpela, K., Tyrväinen, L., Tiittanen, P. & Lanki, T. Restorative effects of urban green environments and the role of urban-nature orientedness and noise sensitivity: A field experiment. Health Place 55, 59–70 (2019).Article 
    PubMed 

    Google Scholar 
    Tyrväinen, L. et al. The influence of urban green environments on stress relief measures: A field experiment. J. Environ. Psychol. 38, 1–9 (2014).Article 

    Google Scholar 
    Herzog, T. R. & Barnes, G. J. Tranquility and preference revisited. J. Environ. Psychol. 19, 171–181 (1999).Article 

    Google Scholar 
    Neale, C. et al. The impact of walking in different urban environments on brain activity in older people. Cities Health 4, 94–106. https://doi.org/10.1080/23748834.2019.1619893 (2020).Article 

    Google Scholar 
    Kaplan, R. & Kaplan, S. The Experience of Nature: A Psychological Perspective (CUP Archive, 1989).
    Google Scholar 
    Treib, M. In Contemporary Landscapes of Contemplation (ed Rebecca Krinke) 27–49 (Routledge, 2005).Appleton, J. The Experience of Landscape (Wiley Chichester, 1996).
    Google Scholar 
    Grahn, P., Ottosson, J. & Uvnäs-Moberg, K. The oxytocinergic system as a mediator of anti-stress and instorative effects induced by nature: The calm and connection theory. Front. Psychol. 2021, 12 (2021).
    Google Scholar 
    Hartig, T., Mang, M. & Evans, G. W. Restorative effects of natural environment experiences. Environ. Behav. 23, 3–26. https://doi.org/10.1177/0013916591231001 (1991).Article 

    Google Scholar 
    Stamps Iii, A. E. Use of photographs to simulate environments: A meta-analysis. Percept. Mot. Skills 71, 907–913 (1990).Article 

    Google Scholar 
    Menardo, E., Brondino, M., Hall, R. & Pasini, M. Restorativeness in natural and urban environments: A meta-analysis. Psychol. Rep. 124, 417–437 (2021).Article 
    PubMed 

    Google Scholar  More

  • in

    Effect of a temperature gradient on the behaviour of an endangered Mexican topminnow and an invasive freshwater fish

    Time using the rock as refugeTemperature had an effect in the refuge usage of both species when analysed together (lme.zig: F3,192 = 7.97, p = 0.0001; Fig. 1A). However, species behaved differently (lme.zig: F1,192 = 14.79, p = 0.0004; Fig. 1A). As hypothesised, there was an interaction between temperature and species (lme.zig: F3,192 = 11.90, p  0.14, Fig. 1B).Size had an effect in the time exploring the rock (lme: F1,192 = 6.91, p = 0.012, Fig. 3) when species were analysed together, but there was no interaction with temperatures (lme: F3,192 = 0.42, p = 0.74, Fig. 3). We found that the interaction between species and size was close to be significant (lme: F1,192 = 3.62, p = 0.064, Fig. 3), implying that possibly smaller fish spent more time exploring the rock than bigger fish. However, when analysed separately, we did not find an effect of size in the exploring behaviour neither for twoline skiffias (lme: F1,96 = 2.99, p = 0.099, Fig. 3) nor for guppies (lme: F1,96 = 0.33, p = 0.569, Fig. 3).Figure 3Proportion of the total time observed (600 s) fish of different sizes spent exploring the rock. Lines represent the areas where the density of data is higher.Full size imageTime spent swimmingTemperature had an effect in the time spent swimming for both species when analysed together (lme: F3,192 = 23.48, p  More

  • in

    Spatial and temporal changes in moth assemblages along an altitudinal gradient, Jeju-do island

    Thornton, I. Island Colonization: The Origin and Development of Island Communities (Cambridge University Press, 2007).Book 

    Google Scholar 
    Weigelt, P., Jetz, W. & Kreft, H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl Acad. Sci. 110, 15307–15312 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vitousek, P., Adsersen, H. & Loope, L. Introduction. In Islands: Biological Diversity and Ecosystem Function (eds Vitousek, P. et al.) 1–6 (Berlin, 1995).Chapter 

    Google Scholar 
    Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford University Press, 2007).
    Google Scholar 
    Lomolino, M., Brown, J. & Sax, D. Island biogeography theory. In The Theory of Island Biogeography Revisited (eds Losos, J. & Ricklefs, R.) 13–51 (Princeton University Press, 2010).
    Google Scholar 
    Colom, P., Carreras, D. & Stefanescu, C. Long-term monitoring of Menorcan butterfly populations reveals widespread insular biogeographical patterns and negative trends. Biodivers. Conserv. 28, 1837–1851 (2019).Article 

    Google Scholar 
    Preston, F. W. The canonical distribution of commonness and rarity, part II. Ecology 43, 410–432 (1962).Article 

    Google Scholar 
    Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge University Press, 1995).Book 

    Google Scholar 
    Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9(2), 215–227 (2006).Article 
    PubMed 

    Google Scholar 
    Field, R. et al. Spatial species-richness gradients across scales: A meta-analysis. J. Biogeogr. 36, 132–147 (2009).Article 

    Google Scholar 
    Brehm, G., Süssenbach, D. & Fiedler, K. Unique elevational diversity patterns of geometrid moths in an Andean montane rainforest. Ecography 26, 456–466 (2003).Article 

    Google Scholar 
    Brehm, G., Colwell, R. K. & Kluge, J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr. 16, 205–219 (2007).Article 

    Google Scholar 
    Beck, J. & Kitching, I. J. Drivers of moth species richness on tropical altitudinal gradients: A cross-regional comparison. Glob. Ecol. Biogeogr. 18, 361–371 (2009).Article 

    Google Scholar 
    Ashton, L. A. et al. Altitudinal patterns of moth diversity in tropical and subtropical A ustralian rainforests. Aust. Ecol. 41, 197–208 (2016).Article 

    Google Scholar 
    Maunsell, S. C. et al. Elevational turnover in the composition of leaf miners and their interactions with host plants in Australian subtropical rainforest. Aust. Ecol. 41, 238–247 (2016).Article 

    Google Scholar 
    McCain, C. M. Global analysis of reptile elevational diversity. Glob. Ecol. Biogeogr. 19, 541–553 (2010).
    Google Scholar 
    Yu, X. D., Lü, L., Luo, T. H. & Zhou, H. Z. Elevational gradient in species richness pattern of epigaeic beetles and underlying mechanisms at east slope of Balang Mountain in Southwestern China. PLoS ONE 8, e69177 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beck, J. et al. Elevational species richness gradients in a hyperdiverse insect taxon: A global meta-study on geometrid moths. Glob. Ecol. Biogeogr. 26, 412–424 (2017).Article 

    Google Scholar 
    Szewczyk, T. & McCain, C. M. A systematic review of global drivers of ant elevational diversity. PLoS ONE 11, e0155404 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rahbek, C. The elevational gradient of species richness: A uniform pattern?. Ecography 18, 200–205 (1995).Article 

    Google Scholar 
    Vitousek, P. M. Oceanic islands as model systems for ecological studies. J. Biogeogr. 29, 573–582 (2002).Article 

    Google Scholar 
    Kidane, Y. O., Steinbauer, M. J. & Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Global Ecol. Conserv. 19, e00670 (2019).Article 

    Google Scholar 
    Meyer, W. M. III. et al. Ground-dwelling arthropod communities of a sky island mountain range in Southeastern Arizona, USA: Obtaining a baseline for assessing the effects of climate change. PLoS ONE 10, e0135210 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kong, W. S. Biogeography of Korean plants 335 (Geobook, 2007) (in Korean).
    Google Scholar 
    Kitching, R. L. et al. Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest. J. Appl. Ecol. 37, 284–297 (2000).Article 

    Google Scholar 
    Froidevaux, J. S., Broyles, M. & Jones, G. Moth responses to sympathetic hedgerow management in temperate farmland. Agric. Ecosyst. Environ. 270, 55–64 (2019).Article 
    PubMed 

    Google Scholar 
    Fox, R. The decline of moths in Great Britain: A review of possible causes. Insect Conserv. Div. 6, 5–19 (2013).Article 

    Google Scholar 
    Keret, N. M., Mutanen, M. J., Orell, M. I., Itämies, J. H. & Välimäki, P. M. Climate change-driven elevational changes among boreal nocturnal moths. Oecologia 192, 1085–1098 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wenzel, M., Schmitt, T., Weitzel, M. & Seitz, A. The severe decline of butterflies on western German calcareous grasslands during the last 30 years: A conservation problem. Biol. Conserv. 128, 542–552 (2006).Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).Article 
    PubMed 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    Zenker, M. M. et al. Diversity and composition of Arctiinae moth assemblages along elevational and spatial dimensions in Brazilian Atlantic Forest. J. Insect Conserv. 19, 129–140 (2015).Article 

    Google Scholar 
    Brehm, G. & Fiedler, K. Faunal composition of geometrid moths changes with altitude in an Andean montane rain forest. J. Biogeogr. 30, 431–440 (2003).Article 

    Google Scholar 
    McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (Wiley, Chichester, 2010).
    Google Scholar 
    Heinrich, B. The Hot-Blooded Insects: Strategies and Mechanisms of Thermoregulation 601 (Harvard University Press, 1993).Book 

    Google Scholar 
    Heinrich, B. Thermoregulation in Endothermic Insects: Body temperature is closely attuned to activity and energy supplies. Science 185, 747–756 (1974).Article 
    PubMed 

    Google Scholar 
    May, M. L. Insect thermoregulation. Annu. Rev. Entomol. 24, 313–349 (1979).Article 

    Google Scholar 
    Heidrich, L. et al. Noctuid and geometrid moth assemblages show divergent elevational gradients in body size and color lightness. Ecography 44, 1169–1179 (2021).Article 
    MathSciNet 

    Google Scholar 
    Holloway, J. D. Macrolepidoptera diversity in the Indo-Australian tropics, geographic, biotopic and taxonomic variations. Biol. J. Linn. Soc. 30, 325–341 (1987).Article 

    Google Scholar 
    Axmacher, J. C. et al. Diversity of geometrid moths (Lepidoptera: Geometridae) along an Afrotropical elevational rainforest transect. Divers. Distrib. 10, 293–302 (2004).Article 

    Google Scholar 
    Heinrich, B. & Mommsen, T. P. Flight of winter moths near 0°C. Science 228, 177–179 (1985).Article 
    PubMed 

    Google Scholar 
    Rydell, J. & Lancaster, W. C. Flight and thermoregulation in moths were shaped by predation from bats. Oikos 88, 13–18 (2000).Article 

    Google Scholar 
    Skou, P. The geometroid moths of North Europe. Entomonograph, Vol. 6. Brill, Leiden. (1986).Zahiri, R. et al. Molecular phylogenetics of Erebidae (Lepidoptera, noctuoidea). Syst. Entomol. 37, 102–124 (2012).Article 

    Google Scholar 
    Fiedler, K., Brehm, G., Hilt, N., Sussenbach, D. & Hauser, C. L. Variation of diversity patterns across moth families along a tropical altitudinal gradient. Ecol. Stud. 198, 167–179 (2008).Article 

    Google Scholar 
    Longino, J. T. & Colwell, R. K. Density compensation, species composition, and richness of ants on a neotropical elevational gradient. Ecosphere 2, 1–20 (2011).Article 

    Google Scholar 
    Beck, J. & Chey, V. K. Explaining the elevational diversity pattern of geometrid moths from Borneo: A test of five hypotheses. J. Biogeogr. 35, 1452–1464 (2008).Article 

    Google Scholar 
    Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453, 216–219 (2008).Article 
    PubMed 

    Google Scholar 
    Kwon, T. S. Ants foraging on grasses in South Korea: High diversity in Jeju Island and negative correlation with aphids. J. Asia-Pac. Biodivers. 10, 465–471 (2017).Article 

    Google Scholar 
    Han, E. K. et al. A disjunctive marginal edge of evergreen broad-leaved oak (Quercus gilva) in East Asia: The high genetic distinctiveness and unusual diversity of Jeju island populations and insight into a massive, independent postglacial colonization. Genes 11, 1114 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chi, Y., Shi, H., Wang, Y., Guo, Z. & Wang, E. Evaluation on island ecological vulnerability and its spatial heterogeneity. Mar. Pollut. Bull. 125, 216–241 (2017).Article 
    PubMed 

    Google Scholar 
    Vehviläinen, H., Koricheva, J. & Ruohomäki, K. Tree species diversity influences herbivore abundance and damage: Meta-analysis of long-term forest experiments. Oecologia 152, 287–298 (2007).Article 
    PubMed 

    Google Scholar 
    Root, R. B. Organization of plant–arthropod association in simple and diverse habitats: The fauna of collards (I. Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).Article 

    Google Scholar 
    Otway, S. J., Hector, A. & Lawton, J. H. Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. J. Anim. Ecol. 74, 234–240 (2005).Article 

    Google Scholar 
    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).Article 

    Google Scholar 
    Qian, H. Environment–richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. Ecol. Res. 25, 629–637 (2010).Article 

    Google Scholar 
    Major, J. A climatic index to vascular plant activity. Ecology 44, 485–498 (1963).Article 

    Google Scholar 
    Latham, R. E. & Ricklefs, R. E. Global patterns of tree species richness in moist forests: Energy-diversity theory does not account for variation in species richness. Oikos 67, 325–333 (1993).Article 

    Google Scholar 
    Francis, A. P. & Currie, D. J. A globally consistent richness-climate relationship for angiosperms. Am. Nat. 161, 523–536 (2003).Article 
    PubMed 

    Google Scholar 
    Storch, D. et al. Energy, range dynamics and global species richness patterns: Reconciling mid-domain effects and environmental determinants of avian diversity. Ecol. Lett. 9, 1308–1320 (2006).Article 
    PubMed 

    Google Scholar 
    Intachat, J., Holloway, J. D. & Staines, H. Effects of weather and phenology on the abundance and diversity of geometroid moths in a natural Malaysian tropical rain forest. J. Trop. Ecol. 17, 411–429 (2001).Article 

    Google Scholar 
    Choi, S. W. Effects of weather factors on the abundance and diversity of moths in a temperate deciduous mixed forest of Korea. Zool. Sci. 25, 53–58 (2008).Article 

    Google Scholar 
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. 104, 5925–5930 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lennon, J. J., Koleff, P., Greenwood, J. J. D. & Gaston, K. J. The geographical structure of British bird distributions: Diversity, spatial turnover and scale. J. Anim. Ecol. 70, 966–979 (2001).Article 

    Google Scholar 
    Choi, S. W. A high mountain moth assemblage quickly recovers after fire. Ann. Entomol. Soc. Am. 111, 304–311 (2018).
    Google Scholar 
    van Swaay, C., Warren, M. & Loïs, G. Biotope use and trends of European butterflies. J. Insect Conserv. 10, 189–209 (2006).Article 

    Google Scholar 
    De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. 110, 18561–18565 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).Article 
    PubMed 

    Google Scholar 
    Conrad, K. F., Warren, M. S., Fox, R., Parsons, M. S. & Woiwod, I. P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 132, 279–291 (2006).Article 

    Google Scholar 
    White, E. R. Minimum time required to detect population trends: The need for long-term monitoring programs. Bioscience 69, 40–46 (2019).Article 

    Google Scholar 
    Forister, M. L., Pelton, E. M. & Black, S. H. Declines in insect abundance and diversity: We know enough to act now. Conserv. Sci. Pract. 1, e80 (2019).
    Google Scholar 
    Didham, R. K. et al. Interpreting insect declines: Seven challenges and a way forward. Insect Conserv. Div. 13, 103–114 (2020).Article 

    Google Scholar 
    Kim, J. W., Boo, K. O., Choi, J. T. & Byun, Y. H. Climate Change of 100 Years on the Korean Peninsula (National Institute of Meteorological Science, 2018).
    Google Scholar 
    Kim, S. S., Beljaev, E. A. & Oh, S. H. Illustrated Catalogue of Geometridae in Korea (Lepidoptera: Geometrinae, Ennominae) (Korea Research Institute of Bioscience and Biotechnology & Center for Insect Systematics, 2001).
    Google Scholar 
    Kononenko, V.S., Ahn, S.B. & Ronkay, L. Illustrated catalogue of Noctuidae in Korea (Lepidoptera). Insects of Korea 3. KRIBB & CIS, Junghaengsa (1998).Shin, Y.H. Coloured illustrations of the moths of Korea. Academybook (2001).Kim, S.S., Choi, S.W., Sohn, J.C., Kim, T. & Lee, B.W. The Geometrid moths of Korea (Lepidoptera: Geometridae). Junghaengsa (2016).Kim, C. G. & Kim, N. W. Altitudinal pattern of evapotranspiration and water need for upland crops in Jeju Island. J. Korea Water Resour. Assoc. 48, 915–923 (2015).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Magurran, A. E. Ecological Diversity and its Measurement (Princeton University Press, 1988).Book 

    Google Scholar 
    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    R Development Core Team. R 4.0.3. R: A language and environment for statistical computing. R Foundation for statistical computing Vienna. Austria. URL http://www.R-project.org. (2020).Pohlert, T. Non-parametric trend tests and change-point detection. R-package version 0.0.1. (2020).Hipel, K. W. & McLeod, A. I. Time Series Modelling of Water Resources and Environmental Systems (Elsevier, 1994).
    Google Scholar 
    Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T. J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62, 361–371 (2006).Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Colwell, R. K. Estiamtes, Version 91: Statistical Estimation of Species Richness and Shared Species from Samples (University of Connecticut, 2013).
    Google Scholar 
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232 (2012).Article 

    Google Scholar  More

  • in

    Lack of host phylogenetic structure in the gut bacterial communities of New Zealand cicadas and their interspecific hybrids

    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. 110, 3229–3236 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Archibald, J. M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moran, N. A. Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl. Acad. Sci. U.S.A. 104(Suppl 1), 8627–8633 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hurst, G. D. D. Extended genomes: Symbiosis and evolution. Interface Focus. https://doi.org/10.1098/rsfs.2017.0001 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect-microbe mutualism without vertical transmission: A stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 73, 4308–4316 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kikuchi, Y., Hosokawa, T. & Fukatsu, T. An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 5, 446–460 (2011).Article 
    PubMed 

    Google Scholar 
    Hu, Y. et al. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat. Commun. 9, 2440. https://doi.org/10.1038/s41467-018-03357-y (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salem, H. et al. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell 171, 1520–1531 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bennett, G. M. & Moran, N. A. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc. Natl. Acad. Sci. 112, 10169–10176 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campbell, M. A. et al. Changes in endosymbiont complexity drive host-level compensatory adaptations in cicadas. MBio 9, e02104-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchner, P. Symbiosis in animals which suck plant juices. In Endosymbiosis of Animals with Plant Microorganisms 210–432 (Interscience, 1965).
    Google Scholar 
    McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc. Natl. Acad. Sci. 106, 15394–15399 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Christensen, H. & Fogel, M. L. Feeding ecology and evidence for amino acid synthesis in the periodical cicada (Magicicada). J. Insect Physiol. 57, 211–219 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet. 5, e1000565 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campbell, M. A. et al. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia. Proc. Natl. Acad. Sci. 112, 10192–10199 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Müller, H. J. Neuere vorstellungen über verbreitung und phylogenie der endosymbiosen der zikaden. Z. Morphol. Oekol. Tiere 61, 190–210 (1962).Article 

    Google Scholar 
    Müller, H. J. Zur systematik und phylogenie der zikaden-endosymbiosen. Biol. Zent. 68, 343–368 (1949).
    Google Scholar 
    Matsuura, Y. et al. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc. Natl. Acad. Sci. 115, E5970–E5979 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, W. et al. Analysis of inter-individual bacterial variation in gut of cicada Meimuna mongolica (Hemiptera: Cicadidae). J. Insect Sci. 15, 1–6 (2015).Article 

    Google Scholar 
    Zheng, Z., Wang, D., He, H. & Wei, C. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae). PLoS One 12, 1–21 (2017).
    Google Scholar 
    Wang, D., Huang, Z., He, H. & Wei, C. Comparative analysis of microbial communities associated with bacteriomes, reproductive organs and eggs of the cicada Subpsaltria yangi. Arch. Microbiol. 200, 227–235 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dillon, R. J. & Dillon, V. M. The gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 49, 71–92 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ng, S. H., Stat, M., Bunce, M. & Simmons, L. W. The influence of diet and environment on the gut microbial community of field crickets. Ecol. Evol. 8, 4704–4720 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27, 1884–1897 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, A. E. & Werren, J. H. Holes in the hologenome: Why host–microbe symbioses are not holobionts. MBio 7, e02099 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grueneberg, J., Engelen, A. H., Costa, R. & Wichard, T. Macroalgal morphogenesis induced by waterborne compounds and bacteria in coastal seawater. PLoS One 11, e0146307 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, J. D., Lemay, M. A. & Parfrey, L. W. Diverse bacteria utilize alginate within the microbiome of the giant kelp Macrocystis pyrifera. Front. Microbiol. 9, 1914 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coon, K. L., Vogel, K. J., Brown, M. R. & Strand, M. R. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23, 2727–2739 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coon, K. L., Brown, M. R. & Strand, M. R. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 25, 5806–5826 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, 1–17 (2017).Article 

    Google Scholar 
    Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: Relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, 1–29 (2016).Article 

    Google Scholar 
    Kropáčková, L. et al. Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol. Ecol. 26, 5292–5304 (2017).Article 
    PubMed 

    Google Scholar 
    Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403. https://doi.org/10.3389/fmicb.2015.01403 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hu, Y., Lukasik, P., Moreau, C. S. & Russell, J. A. Correlates of gut community composition across an ant species (Cephalotes varians) elucidate causes and consequences of symbiotic variability. Mol. Ecol. 23, 1284–1300 (2014).Article 
    PubMed 

    Google Scholar 
    Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnz117 (2019).Article 
    PubMed 

    Google Scholar 
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. 114, 9641–9646 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).Article 
    PubMed 

    Google Scholar 
    Marshall, D. C. et al. Inflation of molecular clock rates and dates: Molecular phylogenetics, biogeography, and diversification of a global cicada radiation from Australasia (Hemiptera: Cicadidae: Cicadettini). Syst. Biol. 65, 16–34 (2016).Article 
    PubMed 

    Google Scholar 
    Lane, D. H. The recognition concept of speciation applied in an analysis of putative hybridization in New Zealand cicadas of the genus Kikihia (Insects: Hemiptera: Tibicinidae). Speciation and the Recognition Concept: Theory and Application (The Johns Hopkins Univ Press, 1995).
    Google Scholar 
    Cooley, J. R. & Marshall, D. C. Sexual signaling in periodical cicadas, Magicicada spp. (Hemiptera: Cicadidae). Behaviour 138, 827–855 (2001).Article 

    Google Scholar 
    Fleming, C. A. Adaptive Radiation in New Zealand Cicadas (American Philosophical Society, 1975).
    Google Scholar 
    Dugdale, J. S. & Fleming, C. A. New Zealand cicadas of the genus Maoricicada (Homoptera: Tibicinidae). N. Z. J. Zool. 5, 295–340 (1978).Article 

    Google Scholar 
    Marshall, D. C., Hill, K. B. R., Cooley, J. R. & Simon, C. Hybridization, mitochondrial DNA phylogeography, and prediction of the early stages of reproductive isolation: Lessons from New Zealand cicadas (genus Kikihia). Syst. Biol. 60, 482–502 (2011).Article 
    PubMed 

    Google Scholar 
    Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. Report No.: e27295v2. PeerJ https://doi.org/10.7287/peerj.preprints.27295v2 (2018).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, N. M., Proctor, D., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226. https://doi.org/10.1101/221499 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Simon, C. et al. Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas. Biol. J. Linn. Soc. Lond. https://doi.org/10.1093/biolinnean/blz120 (2019).Article 

    Google Scholar 
    Owen, C. L. et al. Detecting and removing sample contamination in phylogenomic data: An example and its implications for Cicadidae phylogeny (Insecta: Hemiptera). Syst. Biol. 71, 1504–1523 (2022).Article 
    PubMed 

    Google Scholar 
    Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. Report No.: LBNL-7065E. https://www.osti.gov/biblio/1241166-bbmap-fast-accurate-splice-aware-aligner (Lawrence Berkeley National Lab. (LBNL), 2014).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nurk, S. et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In Research in Computational Molecular Biology 158–170 (Springer, 2013).Chapter 

    Google Scholar 
    Łukasik, P. et al. One hundred mitochondrial genomes of cicadas. J. Hered. 110, 247–256 (2019).Article 
    PubMed 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. https://doi.org/10.1093/bib/bbx108 (2017).Article 
    PubMed Central 

    Google Scholar 
    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—A baiting and iterative mapping approach. Nucleic Acids Res. 41, e129 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, M. A., Pfeiffer, W., Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE) 1–8 (2010).Buckley, T. R., Cordeiro, M., Marshall, D. C. & Simon, C. Differentiating between hypotheses of lineage sorting and introgression in New Zealand alpine cicadas (Maoricicada Dugdale). Syst. Biol. 55, 411–425 (2006).Article 
    PubMed 

    Google Scholar 
    Marshall, D. C., Slon, K., Cooley, J. R., Hill, K. B. R. & Simon, C. Steady Plio-Pleistocene diversification and a 2-million-year sympatry threshold in a New Zealand cicada radiation. Mol. Phylogenet. Evol. 48, 1054–1066 (2008).Article 
    PubMed 

    Google Scholar 
    Bator, J., Marshall, D. C., Leston, A., Cooley, J. & Simon, C. Phylogeography of the endemic red-tailed cicadas of New Zealand (Hemiptera: Cicadidae: Rhodopsalta): Molecular, morphological and bioacoustical confirmation of the existence of Hudson’s Rhodopsalta microdora. Zool. J. Linn. Soc. 195, 1219–1244 (2022).Article 

    Google Scholar 
    Brumfield, K. D. et al. Gut microbiome insights from 16S rRNA analysis of 17-year periodical cicadas (Hemiptera: Magicicada spp.) Broods II, VI, and X. Sci. Rep. 12, 16967. https://doi.org/10.1038/s41598-022-20527-7 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rakitov, R. A. Structure and function of the Malpighian tubules, and related behaviors in juvenile cicadas: Evidence of homology with spittlebugs (Hemiptera: Cicadoidea & Cercopoidea). Zool. Anz. 241, 117–130 (2002).Article 

    Google Scholar 
    Andersen, P. C., Brodbeck, B. V. & Mizell, R. F. Feeding by the leafhopper, Homalodisca coagulata, in relation to xylem fluid chemistry and tension. J. Insect Physiol. 38, 611–622 (1992).Article 
    CAS 

    Google Scholar 
    Cheung, W. W. K. & Marshall, A. T. Water and ion regulation in cicadas in relation to xylem feeding. J. Insect Physiol. 19, 1801–1816 (1973).Article 
    CAS 

    Google Scholar 
    Williams, K. S. & Simon, C. The ecology, behavior, and evolution of periodical cicadas. Annu. Rev. Entomol. 40, 269–295 (1995).Article 
    CAS 

    Google Scholar 
    Logan, D. P., Rowe, C. A. & Maher, B. J. Life history of chorus cicada, an endemic pest of kiwifruit (Cicadidae: Homoptera). N. Z. Entomol. 37, 96–106 (2014).Article 

    Google Scholar 
    Buckley, T. R. & Simon, C. Evolutionary radiation of the cicada genus Maoricicada Dugdale (Hemiptera: Cicadoidea) and the origins of the New Zealand alpine biota. Biol. J. Linn. Soc. Lond. 91, 419–435 (2007).Article 

    Google Scholar 
    Banker, S. E., Wade, E. J. & Simon, C. The confounding effects of hybridization on phylogenetic estimation in the New Zealand cicada genus Kikihia. Mol. Phylogenet. Evol. 116, 172–181 (2017).Article 
    PubMed 

    Google Scholar 
    Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, 14319 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanders, J. G. et al. Stability and phylogenetic correlation in gut microbiota: Lessons from ants and apes. Mol. Ecol. 23, 1268–1283 (2014).Article 
    PubMed 

    Google Scholar 
    Wang, J. et al. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat. Commun. 6, 6440 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brucker, R. M. & Bordenstein, S. R. The hologenomic basis of speciation. Science 466, 667–669 (2013).Article 

    Google Scholar 
    Chandler, J. A. & Turelli, M. Comment on “The hologenomic basis of speciation: Gut bacteria cause hybrid lethality in the genus Nasonia”. Science 345, 1011 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Z. et al. Changes in the rumen microbiome and metabolites reveal the effect of host genetics on hybrid crosses. Environ. Microbiol. Rep. 8, 1016–1023 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Weintraub, P. G. & Beanland, L. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 51, 91–111 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hopkins, D. L. Xylella fastidiosa: Xylem-limited bacterial pathogen of plants. Annu. Rev. Phytopathol. 27, 271–290 (1989).Article 

    Google Scholar 
    Karban, R. Why cicadas (Hemiptera: Cicadidae) develop so slowly. Biol. J. Linn. Soc. Lond. 135, 291–298 (2021).Article 

    Google Scholar 
    Krell, R. K., Boyd, E. A., Nay, J. E., Park, Y.-L. & Perring, T. M. Mechanical and insect transmission of Xylella fastidiosa to Vitis vinifera. Am. J. Enol. Vitic. 58, 211–216 (2007).Article 
    CAS 

    Google Scholar 
    Paião, F., Meneguim, A. M., Casagrande, E. C., Lovato, L. & Leite, R. P. Levantamento de espécies de cigarras e transmissão de Xylella fastidiosa em cafeeiro. http://www.sbicafe.ufv.br/handle/123456789/1457 (2003).Elbeaino, T. et al. Identification of three potential insect vectors of Xylella fastidiosa in southern Italy. Phytopathol. Mediterr. 53, 328–332 (2014).
    Google Scholar  More

  • in

    Memory for own actions in parrots

    Zimmer, H. D. et al. Memory for Action: A Distinct Form of Episodic Memory? (Oxford University Press, 2001).
    Google Scholar 
    Goswami, U. The Wiley-Blackwell Handbook of Childhood Cognitive Development (Wiley, 2013).
    Google Scholar 
    Fujita, K., Morisaki, A., Takaoka, A., Maeda, T. & Hori, Y. Incidental memory in dogs (Canis familiaris): Adaptive behavioral solution at an unexpected memory test. Anim. Cogn. 15, 1055–1063 (2012).Article 
    PubMed 

    Google Scholar 
    Lind, J., Enquist, M. & Ghirlanda, S. Animal memory: A review of delayed matching-to-sample data. Behav. Processes 117, 52–58 (2015).Article 
    PubMed 

    Google Scholar 
    Kuczaj, S. A. II. & Eskelinen, H. C. (2014) The “creative dolphin” revisited: What do dolphins do when asked to vary their behavior. Anim. Behav. Cogn. 1, 66–77 (2014).Article 

    Google Scholar 
    Tulving, E. Episodic and semantic memory. Organ. Mem. 1, 381–403 (1972).
    Google Scholar 
    Tulving, E. How many memory systems are there?. Am. Psychol. 40, 385 (1985).Article 

    Google Scholar 
    Fugazza, C., Pongrácz, P., Pogány, Á., Lenkei, R. & Miklósi, Á. Mental representation and episodic-like memory of own actions in dogs. Sci. Rep. 10, 1–8 (2020).Article 

    Google Scholar 
    Hauser, M. D., Chomsky, N. & Fitch, W. T. The faculty of language: What is it, who has it, and how did it evolve?. Science 298, 1569–1579 (2002).Article 
    PubMed 

    Google Scholar 
    Conway, M. A. Memory and the self. J. Mem. Lang. 53, 594–628 (2005).Article 

    Google Scholar 
    Scagel, A. & Mercado, E. III. Do that again! Memory for self-performed actions in dogs (Canis familiaris). J. Comp. Psychol. 20, 25 (2022).
    Google Scholar 
    Mercado, E., Murray, S. O., Uyeyama, R. K., Pack, A. A. & Herman, L. M. Memory for recent actions in the bottlenosed dolphin (Tursiops truncatus): Repetition of arbitrary behaviors using an abstract rule. Learn. Behav. 26, 210–218 (1998).Article 

    Google Scholar 
    Paukner, A., Anderson, J. R., Donaldson, D. I. & Ferrari, P. F. Cued repetition of self-directed behaviors in macaques (Macaca nemestrina). J. Exp. Psychol. Anim. Behav. Process. 33, 139 (2007).Article 
    PubMed 

    Google Scholar 
    Smeele, S. Q. et al. Memory for own behaviour in pinnipeds. Anim. Cogn. 20, 1–12 (2019).
    Google Scholar 
    Clayton, N. S. Episodic-like memory and mental time travel in animals. (2017).Clayton, N. S., Griffiths, D. P. & Dickinson, A. Declarative and episodic-like memory in animals: Personal musings of a Scrub Jay (2000).Clayton, N. S. & Dickinson, A. Episodic-like memory during cache recovery by scrub jays. Nature 395, 272–274 (1998).Article 
    PubMed 

    Google Scholar 
    Tulving, E. Episodic memory and autonoesis: Uniquely human. Missing Link Cogn. Orig. Self-Reflect. Conscious 20, 3–56 (2005).
    Google Scholar 
    Suddendorf, T. & Corballis, M. C. Mental time travel and the evolution of the human mind. Genet. Soc. Gen. Psychol. Monogr. 123, 133–167 (1997).PubMed 

    Google Scholar 
    Suddendorf, T. & Corballis, M. C. The evolution of foresight: What is mental time travel, and is it unique to humans?. Behav. Brain Sci. 30, 299–313 (2007).Article 
    PubMed 

    Google Scholar 
    Crystal, J. D. Evaluating evidence from animal models of episodic memory. J. Exp. Psychol. Anim. Learn. Cogn. 47, 337 (2021).Article 
    PubMed 

    Google Scholar 
    Mercado, E. III., Uyeyama, R. K., Pack, A. A. & Herman, L. M. Memory for action events in the bottlenosed dolphin. Anim. Cogn. 2, 17–25 (1999).Article 

    Google Scholar 
    Zentall, T. R. Coding of stimuli by animals: Retrospection, prospection, episodic memory and future planning. Learn. Motiv. 41, 225–240 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fugazza, C., Pogány, Á. & Miklósi, Á. Recall of others’ actions after incidental encoding reveals episodic-like memory in dogs. Curr. Biol. 26, 3209–3213 (2016).Article 
    PubMed 

    Google Scholar 
    Lambert, M. L., Jacobs, I., Osvath, M. & von Bayern, A. M. Birds of a feather? Parrot and corvid cognition compared. Behaviour 156, 505–594 (2019).Article 

    Google Scholar 
    Emery, N. J. Cognitive ornithology: The evolution of avian intelligence. Philos. Trans. R. Soc. B Biol. Sci. 361, 23–43 (2006).Article 

    Google Scholar 
    Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl. Acad. Sci. 113, 7255–7260 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emery, N. J. & Clayton, N. S. Evolution of the avian brain and intelligence. Curr. Biol. 15, R946–R950 (2005).Article 
    PubMed 

    Google Scholar 
    Bradbury, J. W. & Balsby, T. J. The functions of vocal learning in parrots. Behav. Ecol. Sociobiol. 70, 293–312 (2016).Article 

    Google Scholar 
    Baciadonna, L., Cornero, F. M., Emery, N. J. & Clayton, N. S. Convergent evolution of complex cognition: Insights from the field of avian cognition into the study of self-awareness. Learn. Behav. 49, 9–22 (2021).Article 
    PubMed 

    Google Scholar 
    Osvath, M., Kabadayi, C. & Jacobs, I. Independent evolution of similar complex cognitive skills (2014).Zentall, T. R., Clement, T. S., Bhatt, R. S. & Allen, J. Episodic-like memory in pigeons. Psychon. Bull. Rev. 8, 685–690 (2001).Article 
    PubMed 

    Google Scholar 
    Zentall, T. R., Singer, R. A. & Stagner, J. P. Episodic-like memory: Pigeons can report location pecked when unexpectedly asked. Behav. Processes 79, 93–98 (2008).Article 
    PubMed 

    Google Scholar 
    Healy, S. D. & Hurly, T. A. Spatial learning and memory in birds. Brain. Behav. Evol. 63, 211–220 (2004).Article 
    PubMed 

    Google Scholar 
    Taylor, A. H. Corvid cognition. Wiley Interdiscip. Rev. Cogn. Sci. 5, 361–372 (2014).Article 
    PubMed 

    Google Scholar 
    Boeckle, M. & Bugnyar, T. Long-term memory for affiliates in ravens. Curr. Biol. 22, 801–806 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marzluff, J. M., Walls, J., Cornell, H. N., Withey, J. C. & Craig, D. P. Lasting recognition of threatening people by wild American crows. Anim. Behav. 79, 699–707 (2010).Article 

    Google Scholar 
    Pepperberg, I. M. & Pepperberg, I. M. The Alex Studies: Cognitive and Communicative Abilities of Grey Parrots (Harvard University Press, 2009).Book 

    Google Scholar 
    Emery, N. J. & Clayton, N. S. Effects of experience and social context on prospective caching strategies by scrub jays. Nature 414, 443–446 (2001).Article 
    PubMed 

    Google Scholar 
    Herzog, S. K. et al. First systematic sampling approach to estimating the global population size of the Critically Endangered Blue-throated Macaw Ara glaucogularis. Bird Conserv. Int. 31, 293–311 (2021).Article 

    Google Scholar 
    Auersperg, A. M. & von Bayern, A. M. Who’sa clever bird—now? A brief history of parrot cognition. Behaviour 156, 391–407 (2019).Article 

    Google Scholar 
    Tassin de Montaigu, C., Durdevic, K., Brucks, D., Krasheninnikova, A. & von Bayern, A. Blue-throated macaws (Ara glaucogularis) succeed in a cooperative task without coordinating their actions. Ethology 126, 267–277 (2020).Article 

    Google Scholar 
    Auersperg, A. M. et al. Social transmission of tool use and tool manufacture in Goffin cockatoos (Cacatua goffini). Proc. R. Soc. B Biol. Sci. 281, 20140972 (2014).Article 

    Google Scholar 
    Brucks, D. & von Bayern, A. M. Parrots voluntarily help each other to obtain food rewards. Curr. Biol. 30, 292–297 (2020).Article 
    PubMed 

    Google Scholar 
    Krasheninnikova, A., Höner, F., O’Neill, L., Penna, E. & von Bayern, A. M. Economic decision-making in parrots. Sci. Rep. 8, 1–10 (2018).Article 

    Google Scholar 
    Jarvis, E. D. et al. Avian brains and a new understanding of vertebrate brain evolution. Nat. Rev. Neurosci. 6, 151–159 (2005).Article 
    PubMed 

    Google Scholar 
    Gutiérrez-Ibáñez, C., Iwaniuk, A. N. & Wylie, D. R. Parrots have evolved a primate-like telencephalic-midbrain-cerebellar circuit. Sci. Rep. 8, 1–11 (2018).Article 

    Google Scholar 
    Smeele, S. Q. et al. Coevolution of relative brain size and life expectancy in parrots. Proc. R. Soc. B 289, 20212397 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirsch, J. A., Güntürkün, O. & Rose, J. Insight without cortex: Lessons from the avian brain. Conscious. Cogn. 17, 475–483 (2008).Article 
    PubMed 

    Google Scholar 
    Dunbar, R. I. & Shultz, S. Evolution in the social brain. Science 317, 1344–1347 (2007).Article 
    PubMed 

    Google Scholar 
    Wright, A. A. & Katz, J. S. Mechanisms of same/different concept learning in primates and avians. Behav. Processes 72, 234–254 (2006).Article 
    PubMed 

    Google Scholar 
    Smirnova, A. A., Obozova, T. A., Zorina, Z. A. & Wasserman, E. A. How do crows and parrots come to spontaneously perceive relations-between-relations?. Curr. Opin. Behav. Sci. 37, 109–117 (2021).Article 

    Google Scholar 
    Schusterman, R. J. & Kastak, D. A California sea lion (Zalophus californianus) is capable of forming equivalence relations. Psychol. Rec. 43, 823–839 (1993).Article 

    Google Scholar 
    Kastak, D. & Schusterman, R. J. Transfer of visual identity matching-to-sample in two California sea lions (Zalophus californianus). Anim. Learn. Behav. 22, 427–435 (1994).Article 

    Google Scholar 
    Zentall, T. R., Wasserman, E. A., Lazareva, O. F., Thompson, R. K. & Rattermann, M. J. Concept learning in animals. Comp. Cogn. Behav. Rev. 20, 25 (2008).
    Google Scholar 
    Marino, L. Convergence of complex cognitive abilities in cetaceans and primates. Brain. Behav. Evol. 59, 21–32 (2002).Article 
    PubMed 

    Google Scholar 
    Huber, L., Range, F. & Virányi, Z. Dog imitation and its possible origins. In Domestic dog Cognition and Behavior 79–100 (Springer, 2014).Chapter 

    Google Scholar 
    Schmidjell, T., Range, F., Huber, L. & Virányi, Z. Do owners have a Clever Hans effect on dogs? Results of a pointing study. Front. Psychol. 3, 558 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hare, B., Brown, M., Williamson, C. & Tomasello, M. The domestication of social cognition in dogs. Science 298, 1634–1636 (2002).Article 
    PubMed 

    Google Scholar 
    Lindqvist, C. & Jensen, P. Domestication and stress effects on contrafreeloading and spatial learning performance in red jungle fowl (Gallus gallus) and White Leghorn layers. Behav. Processes 81, 80–84 (2009).Article 
    PubMed 

    Google Scholar 
    Pack, A. A., Herman, L. M. & Roitblat, H. L. Generalization of visual matching and delayed matching by a California sea lion (Zalophus californianus). Anim. Learn. Behav. 19, 37–48 (1991).Article 

    Google Scholar 
    Bennett, M. S. Five breakthroughs: A first approximation of brain evolution from early bilaterians to humans. Front. Neuroanat. 15, 25 (2021).Article 

    Google Scholar 
    Cisek, P. Resynthesizing behavior through phylogenetic refinement. Atten. Percept. Psychophys. 81, 2265–2287 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Toft, C. A. & Wright, T. F. Parrots of the wild. Nat. Hist. World’s Most Captiv. Birds 20, 25 (2015).
    Google Scholar 
    Merkle, J. A., Sigaud, M. & Fortin, D. To follow or not? How animals in fusion–fission societies handle conflicting information during group decision-making. Ecol. Lett. 18, 799–806 (2015).Article 
    PubMed 

    Google Scholar 
    Stevens, J. R. & Gilby, I. C. A conceptual framework for nonkin food sharing: Timing and currency of benefits. Anim. Behav. 67, 603–614 (2004).Article 

    Google Scholar 
    Kamil, A. C. & Roitblat, H. L. The ecology of foraging behavior—Implications for animal learning and memory. Annu. Rev. Psychol. 36, 141–169 (1985).Article 
    PubMed 

    Google Scholar 
    Ortiz, S. T., Castro, A. C., Balsby, T. J. S. & Larsen, O. N. Problem-solving in a cooperative task in peach-fronted conures (Eupsittula aurea). Anim. Cogn. 23, 265–275 (2020).Article 

    Google Scholar 
    Krasheninnikova, A., Brucks, D., Blanc, S. & von Bayern, A. M. Assessing African grey parrots’ prosocial tendencies in a token choice paradigm. R. Soc. Open Sci. 6, 190696 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krasheninnikova, A. et al. Parrots do not show inequity aversion. Sci. Rep. 9, 1–12 (2019).Article 

    Google Scholar 
    Clayton, N. S., Griffiths, D. P., Emery, N. J. & Dickinson, A. Elements of episodic–like memory in animals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1483–1491 (2001).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall, 2020).Book 

    Google Scholar  More

  • in

    Habitat types and megabenthos composition from three sponge-dominated high-Arctic seamounts

    Pitcher, T. J. et al. Seamounts: Ecology, Fisheries & Conservation (Blackwell Publishing, 2007).Book 

    Google Scholar 
    Harris, P. T., Macmillan-Lawler, M., Rupp, J. & Baker, E. K. Geomorphology of the oceans. Mar. Geol. 352, 4–24 (2014).Article 

    Google Scholar 
    Wessel, P., Sandwell, D. T. & Kim, S.-S. The global seamount census. Oceanography 23, 24–33 (2010).Article 

    Google Scholar 
    Etnoyer, P. J. et al. BOX 12|How large is the seamount biome?. Oceanography 23, 206–209 (2010).Article 

    Google Scholar 
    De Forges, B. R., Koslow, J. A. & Pooro, G. C. B. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405, 944–947 (2000).Article 
    PubMed 

    Google Scholar 
    Rowden, A. A., Dower, J. F., Schlacher, T. A., Consalvey, M. & Clark, M. R. Paradigms in seamount ecology: Fact, fiction and future. Mar. Ecol. 31, 226–241 (2010).Article 

    Google Scholar 
    Pinheiro, H. T. et al. Fish biodiversity of the Vitória-Trindade seamount chain, southwestern Atlantic: An updated database. PLoS ONE 10, 1–17 (2015).Article 

    Google Scholar 
    Morato, T., Hoyle, S. D., Allain, V. & Nicol, S. J. Seamounts are hotspots of pelagic biodiversity in the open ocean. PNAS 107, 9711 (2010).Article 

    Google Scholar 
    Rowden, A. A. et al. A test of the seamount oasis hypothesis: Seamounts support higher epibenthic megafaunal biomass than adjacent slopes. Mar. Ecol. 31, 95–106 (2010).Article 

    Google Scholar 
    Busch, K. et al. On giant shoulders: How a seamount affects the microbial community composition of seawater and sponges. Biogeosciences 17, 3471–3486 (2020).Article 
    CAS 

    Google Scholar 
    Zhao, Y. et al. Virioplankton distribution in the tropical western Pacific Ocean in the vicinity of a seamount. Microbiol Open 9, e1031 (2020).Article 

    Google Scholar 
    Arístegui, J. et al. Plankton metabolic balance at two North Atlantic seamounts. Deep-Sea Res. II 56, 2646–2655 (2009).Article 

    Google Scholar 
    Dower, J. F. & Mackast, D. L. “Seamount effects” in the zooplankton community near Cobb Seamount. Deep-Sea Res. I 43, 837–858 (1996).Article 

    Google Scholar 
    O’Hara, T. D., Rowden, A. A. & Bax, N. J. A Southern Hemisphere bathyal fauna is distributed in latitudinal bands. Curr. Biol. 21, 226–230 (2011).Article 
    PubMed 

    Google Scholar 
    Williams, A., Althaus, F., Clark, M. R. & Gowlett-Holmes, K. Composition and distribution of deep-sea benthic invertebrate megafauna on the Lord Howe Rise and Norfolk Ridge, southwest Pacific Ocean. Deep-Sea Res. II 58, 948–958 (2011).Article 
    CAS 

    Google Scholar 
    Bridges, A. E. H., Barnes, D. K. A., Bell, J. B., Ross, R. E. & Howell, K. L. Benthic assemblage composition of South Atlantic seamounts. Front. Mar. Sci. 8, 660648 (2021).Article 

    Google Scholar 
    Lapointe, A. E., Watling, L., France, S. C. & Auster, P. J. Megabenthic assemblages in the lower bathyal (700–3000 m) on the New England and corner rise seamounts Northwest Atlantic. Deep-Sea Res. I 165, 103366 (2020).Article 

    Google Scholar 
    Clark, M. R. & Bowden, D. A. Seamount biodiversity: High variability both within and between seamounts in the Ross Sea region of Antarctica. Hydrobiologia 761, 161–180 (2015).Article 
    CAS 

    Google Scholar 
    McClain, C. R., Lundsten, L., Barry, J. & DeVogelaere, A. Assemblage structure, but not diversity or density, change with depth on a northeast Pacific seamount. Mar. Ecol. 31, 14–25 (2010).Article 

    Google Scholar 
    Long, D. J. & Baco, A. R. Rapid change with depth in megabenthic structure-forming communities of the Makapu’u deep-sea coral bed. Deep-Sea Res. II 99, 158–168 (2014).Article 

    Google Scholar 
    Thresher, R. et al. Strong septh-related zonation of megabenthos on a rocky continental margin (∼ 700–4000 m) off southern Tasmania Australia. PLoS ONE 9, e85872 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Hara, T. D., Consalvey, M., Lavrado, H. P. & Stocks, K. I. Environmental predictors and turnover of biota along a seamount chain. Mar. Ecol. 31, 84–94 (2010).Article 

    Google Scholar 
    Boschen, R. E. et al. Megabenthic assemblage structure on three New Zealand seamounts: Implications for seafloor massive sulfide mining. Mar. Ecol. Prog. Ser. 523, 1–14 (2015).Article 

    Google Scholar 
    Caratori Tontini, F. et al. Crustal magnetization of brothers volcano, New Zealand, measured by autonomous underwater vehicles: Geophysical expression of a submarine hydrothermal system. Econ. Geol. 107, 1571–1581 (2012).Article 

    Google Scholar 
    Rex, M. A., Etter, R. J., Clain, A. J. & Hill, M. S. Bathymetric patterns of body size in deep-sea gastropods. Evolution (N Y) 53, 1298–1301 (1999).
    Google Scholar 
    O’Hara, T. D. Seamounts: Centres of endemism or species richness for ophiuroids?. Glob. Ecol. Biogeogr. 16, 720–732 (2007).Article 

    Google Scholar 
    Clark, M. R. et al. The ecology of seamounts: Structure, function, and human impacts. Ann. Rev. Mar. Sci. 2, 253–278 (2010).Article 
    PubMed 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).Article 
    PubMed 

    Google Scholar 
    Levin, L. A. & Thomas, C. L. The influence of hydrodynamic regime on infaunal assemblages inhabiting carbonate sediments on central Pacific seamounts. Deep Sea Res. A 36, 1897–1915 (1989).Article 

    Google Scholar 
    Puerta, P. et al. Variability of deep-sea megabenthic assemblages along the western pathway of the Mediterranean outflow water. Deep-Sea Res. I 185, 103791 (2022).Article 

    Google Scholar 
    Tapia-Guerra, J. M. et al. First description of deep benthic habitats and communities of oceanic islands and seamounts of the Nazca Desventuradas Marine Park Chile. Sci. Rep. 11, 6209 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morgan, N. B., Goode, S., Roark, E. B. & Baco, A. R. Fine scale assemblage structure of benthic invertebrate megafauna on the North Pacific seamount Mokumanamana. Front. Mar. Sci. 6, 715 (2019).Article 

    Google Scholar 
    Perez, J. A. A., Kitazato, H., Sumida, P. Y. G., Sant’Ana, R. & Mastella, A. M. Benthopelagic megafauna assemblages of the Rio Grande Rise (SW Atlantic). Deep-Sea Res. I 134, 1–11 (2018).Article 

    Google Scholar 
    Poore, G. C. B. et al. Invertebrate diversity of the unexplored marine western margin of Australia: Taxonomy and implications for global biodiversity. Mar. Biodivers. 45, 271–286 (2015).Article 

    Google Scholar 
    Henry, L. A., Moreno Navas, J. & Roberts, J. M. Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs. Biogeosciences 10, 2737–2746 (2013).Article 

    Google Scholar 
    Meyer, K. S. et al. Rocky islands in a sea of mud: Biotic and abiotic factors structuring deep-sea dropstone communities. Mar. Ecol. Prog. Ser. 556, 45–57 (2016).Article 

    Google Scholar 
    Stratmann, T., Soetaert, K., Kersken, D. & van Oevelen, D. Polymetallic nodules are essential for food-web integrity of a prospective deep-seabed mining area in Pacific abyssal plains. Sci. Rep. 11, 12238 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Genin, A., Dayton, P. K., Lonsdale, P. F. & Spiess, F. N. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322, 59–61 (1986).Article 

    Google Scholar 
    Roberts, J. M., Wheeler, A. J. & Freiwald, A. Reefs of the deep: The biology and geology of cold-water coral ecosystems. Science 1979(312), 543–547 (2006).Article 

    Google Scholar 
    Kutti, T., Bannister, R. J. & Fosså, J. H. Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA-Northern Norwegian continental shelf. Cont. Shelf Res. 69, 21–30 (2013).Article 

    Google Scholar 
    Beazley, L., Kenchington, E. L., Murillo, F. J. & Sacau, M. D. M. Deep-sea sponge grounds enhance diversity and abundance of epibenthic megafauna in the Northwest Atlantic. ICES J. Mar. Sci. 70, 1471–1490 (2013).Article 

    Google Scholar 
    Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50 (2010).Article 

    Google Scholar 
    Victorero, L., Robert, K., Robinson, L. F., Taylor, M. L. & Huvenne, V. A. I. Species replacement dominates megabenthos beta diversity in a remote seamount setting. Sci. Rep. 8, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    Yesson, C., Clark, M. R., Taylor, M. L. & Rogers, A. D. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep-Sea Res. I 58, 442–453 (2011).Article 

    Google Scholar 
    ICES. Report of the ICES-NAFO Working Group on Deep-Water Ecology (WGDEC), 9–13 March 2009, ICES CM2009ACOM:23. 2009.Cárdenas, P. & Rapp, H. T. Demosponges from the Northern mid-Atlantic ridge shed more light on the diversity and biogeography of North Atlantic deep-sea sponges. J. Mar. Biol. Assoc. U.K. 95, 1475–1516 (2015).Article 

    Google Scholar 
    Cárdenas, P. et al. Taxonomy, biogeography and DNA barcodes of Geodia species (Porifera, Demospongiae, Tetractinellida) in the Atlantic boreo-arctic region. Zool. J. Linn. Soc. 169, 251–311 (2013).Article 

    Google Scholar 
    Roberts, E. M. et al. Oceanographic setting and short-timescale environmental variability at an Arctic seamount sponge ground. Deep-Sea Res. I 138, 98–113 (2018).Article 

    Google Scholar 
    Roberts, E. et al. Water masses constrain the distribution of deep-sea sponges in the North Atlantic Ocean and Nordic seas. Mar. Ecol. Prog. Ser. 659, 75–96 (2021).Article 

    Google Scholar 
    Morganti, T. M. et al. Giant sponge grounds of central Arctic seamounts are associated with extinct seep life. Nat. Commun. 13, 638 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morganti, T. M. et al. In situ observation of sponge trails suggests common sponge locomotion in the deep central Arctic. Curr. Biol. 31, R368–R370 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Meyer, H. K., Roberts, E. M., Rapp, H. T. & Davies, A. J. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep-Sea Res. I 153, 103137 (2019).Article 

    Google Scholar 
    McIntyre, F. D., Drewery, J., Eerkes-Medrano, D. & Neat, F. C. Distribution and diversity of deep-sea sponge grounds on the Rosemary bank seamount NE Atlantic. Mar. Biol. 163, 143 (2016).Article 

    Google Scholar 
    Buhl-Mortensen, P. & Buhl-Mortensen, L. Diverse and vulnerable deep-water biotopes in the Hardangerfjord. Mar. Biol. Res. 10, 253–267 (2014).Article 

    Google Scholar 
    de Clippele, L. H. et al. The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef Norway. Coral Reefs 37, 253–266 (2018).Article 
    PubMed 

    Google Scholar 
    Dunlop, K., Harendza, A., Plassen, L. & Keeley, N. Epifaunal habitat Associations on mixed and hard bottom substrates in coastal waters of Northern Norway. Front. Mar. Sci. 7, 568802 (2020).Article 

    Google Scholar 
    Fiore, C. L. & Cox Jutte, P. Characterization of macrofaunal assemblages associated with sponges and tunicates collected off the southeastern United States. Biology 129, 105–120 (2010).
    Google Scholar 
    Murillo, F. J. et al. Deep-sea sponge grounds of the Flemish Cap, Flemish Pass and the Grand Banks of Newfoundland (Northwest Atlantic Ocean): Distribution and species composition. Mar. Biol. Res. 8, 842–854 (2012).Article 

    Google Scholar 
    Purser, A. et al. Local variation in the distribution of benthic megafauna species associated with cold-water coral reefs on the Norwegian margin. Cont. Shelf Res. 54, 37–51 (2013).Article 

    Google Scholar 
    Klitgaard, A. B. & Tendal, O. S. Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog. Oceanogr. 61, 57–98 (2004).Article 

    Google Scholar 
    Klitgaard, A. B. The fauna associated with outer shelf and upper slope sponges (porifera, demospongiae) at the faroe islands, northeastern Atlantic. Sarsia 80, 1–22 (1995).Article 

    Google Scholar 
    Cárdenas, P. & Moore, J. A. First records of Geodia demosponges from the New England seamounts, an opportunity to test the use of DNA mini-barcodes on museum specimens. Mar. Biodivers. 49, 163–174 (2019).Article 

    Google Scholar 
    Schejter, L., Chiesa, I. L., Doti, B. L. & Bremec, C. Mycale (Aegogropila) magellanica (Porifera: Demospongiae) in the southwestern Atlantic Ocean: Endobiotic fauna and new distributional information. Sci. Mar. 76, 753–761 (2012).
    Google Scholar 
    Beaulieu, S. E. Life on glass houses: Sponge stalk communities in the deep sea. Mar. Biol. 138, 803–817 (2001).Article 

    Google Scholar 
    Goren, L., Idan, T., Shefer, S. & Ilan, M. Macrofauna inhabiting massive demosponges from shallow and mesophotic habitats along the Israeli Mediterranean coast. Front. Mar. Sci. 7, 612779 (2021).Article 

    Google Scholar 
    Kersken, D. et al. The infauna of three widely distributed sponge species (Hexactinellida and Demospongiae) from the deep Ekström Shelf in the Weddell Sea Antarctica. Deep-Sea Res. II 108, 101–112 (2014).Article 

    Google Scholar 
    Meyer, H. K., Roberts, E. M., Rapp, H. T. & Davies, A. J. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep Sea Res. 1 Oceanogr. Res. Pap. 153, 103137 (2019).Article 

    Google Scholar 
    Bart, M. C., Hudspith, M., Rapp, H. T., Verdonschot, P. F. M. & de Goeij, J. M. A Deep-Sea Sponge Loop? Sponges transfer dissolved and particulate organic carbon and nitrogen to associated fauna. Front. Mar. Sci. 8, 604879 (2021).Article 

    Google Scholar 
    de Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 1979(342), 108–110 (2013).Article 

    Google Scholar 
    Pawlik, J. R. & Mcmurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. (2019) https://doi.org/10.1146/annurev-marine-010419Wassmann, P., Slagstad, D. & Ellingsen, I. Primary production and climatic variability in the European sector of the Arctic Ocean prior to 2007: Preliminary results. Polar Biol. 33, 1641–1650 (2010).Article 

    Google Scholar 
    Arrigo, K. R., van Dijken, G. & Pabi, S. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35, L19603 (2008).Article 

    Google Scholar 
    Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob. Biogeochem. Cycles 21, GB4006 (2007).Article 

    Google Scholar 
    Wei, C.-L. et al. Global patterns and predictions of seafloor biomass using random forests. PLoS ONE 5, e15323 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stratmann, T. et al. The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities. Sci. Data 7, 206 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McClain, C. R., Lundsten, L., Ream, M., Barry, J. & DeVogelaere, A. Endemicity, biogeography, composition, and community structure on a Northeast Pacific seamount. PLoS ONE 4, e4141 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walter, M., Köhler, J., Myriel, H., Steinmacher, B. & Wisotzki, A. Physical oceanography measured on water bottle samples during POLARSTERN cruise PS101 (ARK-XXX/3). PANGAEA https://doi.org/10.1594/PANGAEA.871927 (2017).van Appen, W.-J., Latarius, K. & Kanzow, T. Physical oceanography and current meter data from mooring F6–17. PANGAEA https://doi.org/10.1594/PANGAEA.870845 (2017).Ruhl, H. A. & Smith, K. L. Shifts in deep-sea community structure linked to climate and food supply. Science 1979(305), 513–515 (2004).Article 

    Google Scholar 
    Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 1979(339), 1430–1432 (2013).Article 

    Google Scholar 
    Rybakova, E., Kremenetskaia, A., Vedenin, A., Boetius, A. & Gebruk, A. Deep-sea megabenthos communities of the Eurasian Central Arctic are influenced by ice-cover and sea-ice algal falls. PLoS ONE 14, e0211009 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhulay, I., Bluhm, B. A., Renaud, P. E., Degen, R. & Iken, K. Functional pattern of benthic epifauna in the Chukchi borderland Arctic deep sea. Front. Mar. Sci. 8, 609956 (2021).Article 

    Google Scholar 
    Boetius, A. & Purser, A. The expedition PS101 of the research vessel Polarstern to the Arctic Ocean in 2016. Berichte zur Polar-und Meeresforschung = Rep Polar Mar Res https://doi.org/10.2312/BzPM_0706_2017 (2017).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone. Prog. Oceanogr. 187, 102405 (2020).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Preliminary observations of the abyssal megafauna of Kiribati. Front. Mar. Sci. 6, 1–13 (2019).Article 

    Google Scholar 
    Zhulay, I., Iken, K., Renaud, P. E. & Bluhm, B. A. Epifaunal communities across marine landscapes of the deep Chukchi Borderland (Pacific Arctic). Deep Sea Res. 1 Oceanogr. Res. Pap. 151, 103065 (2019).Article 

    Google Scholar 
    Åström, E. K. L., Sen, A., Carroll, M. L. & Carroll, J. L. Cold seeps in a warming Arctic: Insights for benthic ecology. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00244 (2020).Article 

    Google Scholar 
    Pedersen, R. B. et al. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat. Commun. 1, 1–6 (2010).Article 
    CAS 

    Google Scholar 
    Åström, E. K. L. et al. Methane cold seeps as biological oases in the high-Arctic deep sea. Limnol. Oceanogr. 63, S209–S231 (2018).Article 

    Google Scholar 
    Rybakova Goroslavskaya, E., Galkin, S., Bergmann, M., Soltwedel, T. & Gebruk, A. Density and distribution of megafauna at the Håkon Mosby mud volcano (the Barents Sea) based on image analysis. Biogeosciences 10, 3359–3374 (2013).Article 

    Google Scholar 
    Sweetman, A. K., Levin, L. A., Rapp, H. T. & Schander, C. Faunal trophic structure at hydrothermal vents on the southern mohn’s ridge, arctic ocean. Mar. Ecol. Prog. Ser. 473, 115–131 (2013).Article 

    Google Scholar 
    Decker, C. & Olu, K. Does macrofaunal nutrition vary among habitats at the Hakon Mosby mud volcano?. Cah. Biol. Mar. 51, 361–367 (2010).
    Google Scholar 
    Macdonald, I. R., Bluhm, B. A., Iken, K., Gagaev, S. & Strong, S. Benthic macrofauna and megafauna assemblages in the Arctic deep-sea Canada Basin. Deep-Sea Res. II 57, 136–152 (2010).Article 

    Google Scholar 
    Taylor, J., Krumpen, T., Soltwedel, T., Gutt, J. & Bergmann, M. Dynamic benthic megafaunal communities: Assessing temporal variations in structure, composition and diversity at the Arctic deep-sea observatory HAUSGARTEN between 2004 and 2015. Deep Sea Res. 1 Oceanogr. Res. Pap. 122, 81–94 (2017).Article 

    Google Scholar 
    Vedenin, A. A. et al. Uniform bathymetric zonation of marine benthos on a Pan-Arctic scale. Prog. Oceanogr. 202, 102764 (2022).Article 

    Google Scholar 
    Bart, M. C. et al. A deep-sea sponge loop? Sponges transfer dissolved and particulate organic carbon and nitrogen to associated fauna. Front. Mar. Sci. 8, 604879 (2021).Article 

    Google Scholar 
    Guihen, D., White, M. & Lundälv, T. Temperature shocks and ecological implications at a cold-water coral reef. ANZIAM J. https://doi.org/10.1017/S1755267212000413 (2014).Article 

    Google Scholar 
    Strand, R. et al. The response of a boreal deep-sea sponge holobiont to acute thermal stress. Sci. Rep. 7, 1660 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hanz, U. et al. The important role of sponges in carbon and nitrogen cycling in a deep-sea biological hotspot. Funct. Ecol. 36, 2188–2199 (2022).Article 
    CAS 

    Google Scholar 
    Maier, S. R. et al. Reef communities associated with ‘dead’ cold-water coral framework drive resource retention and recycling in the deep sea. Deep-Sea Res. I 175, 103574 (2021).Article 
    CAS 

    Google Scholar 
    Bart, M. C. et al. Dissolved organic carbon (DOC) is essential to balance the metabolic demands of four dominant North-Atlantic deep-sea sponges. Limnol. Oceanogr. https://doi.org/10.1002/lno.11652 (2020).Article 

    Google Scholar 
    Bart, M. C. et al. Differential processing of dissolved and particulate organic matter by deep-sea sponges and their microbial symbionts. Sci. Rep. 10, 1–13 (2020).Article 

    Google Scholar 
    Maier, S. R. et al. Recycling pathways in cold-water coral reefs: Use of dissolved organic matter and bacteria by key suspension feeding taxa. Sci. Rep. 10, 9942 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    International Hydrographic Bureau. 16th meeting of the GEBCO sub-committee on undersea feature names (SCUFN). Preprint at (2003).Torres-Valdés, S., Morische, A. & Wischnewski, L. Revision of nutrient data from Polarstern expedition PS101 (ARK-XXX/3). PANGAEA https://doi.org/10.1594/PANGAEA.908179 (2019).Purser, A. et al. Ocean floor observation and bathymetry system (OFOBS): A new towed camera/sonar system for deep-sea habitat surveys. IEEE J. Ocean. Eng. 44, 87–99 (2019).Article 

    Google Scholar 
    Marcon, Y. & Purser, A. PAPARA(ZZ)I : An open-source software interface for annotating photographs of the deep-sea. SoftwareX 6, 69–80 (2017).Article 

    Google Scholar 
    Greene, H. G., Bizzarro, J. J., O’Connell, V. M. & Brylinsky, C. K. Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application. Spec. Pap.: Geol. Assoc. Canada 47, 141–155 (2007).
    Google Scholar 
    Horton, T. et al. Recommendations for the standardisation of open taxonomic nomenclature for image-based identifications. Front. Mar. Sci. 8, 620702 (2021).Article 

    Google Scholar 
    Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Application (Cambridge University Press, 1997).Book 
    MATH 

    Google Scholar 
    Rodgers, J. L. The bootstrap, the jackknife, and the randomization test: A sampling taxonomy. Multivar. Behav. Res. 34, 441–456 (1999).Article 
    CAS 

    Google Scholar 
    Crowley, P. H. Resampling methods for computation-intensive data analysis in ecology and evolution. Annu. Rev. Ecol. Syst. 23, 405–447 (1992).Article 

    Google Scholar 
    Simon-Lledó, E. et al. Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining. Limnol. Oceanogr. 64, 1883–1894 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article 

    Google Scholar 
    R-Core Team. R: A language and environment for statistical computing. Preprint at https://www.r-project.org/ (2017).Oksanen, J. et al. vegan: Community ecology package. Preprint at (2017).Veech, J. A. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22, 252–260 (2013).Article 

    Google Scholar 
    Griffith, D. M., Veech, J. A. & Marsh, C. J. Cooccur: Probabilistic species co-occurrence analysis in R. J. Stat. Softw. 69, 1–17 (2016).Article 

    Google Scholar 
    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).Article 
    CAS 
    PubMed 

    Google Scholar 
    de Kluijver, A. Fatty acid analysis sponges. protocols.io 1, 1–14. https://doi.org/10.17504/protocols.io.bhnpj5dn (2021).Article 

    Google Scholar 
    de Kluijver, A. et al. Bacterial precursors and unsaturated long-chain fatty acids are biomarkers of North-Atlantic deep-sea demosponges. PLoS ONE 16, e0241095 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More