More stories

  • in

    A survey of vocal mimicry in companion parrots

    It is well known that parrots are excellent vocal learners; here we quantified that ability across a wide variety of species, using human mimicry as a proxy for vocal learning of natural repertoires. Results confirm that parrot vocal mimicry varies substantially both within and among species22. Parrot age, social interactions, and sex do not appear to be universal drivers of vocal learning ability within the order Psittaciformes, but all of these factors may have effects within individual species.Vocal learning variation by speciesWithin species, mimicry sound repertoires are extremely variable bird to bird; for example, our data indicate that a grey parrot may mimic anywhere from 0 to 600 different human words. Many other species showed smaller repertoires but similar variability. It is not entirely clear whether this range of variation would be present in natural sounds within wild parrot populations, but research has demonstrated intraspecific repertoire size variation in multiple species of parrots30,31.The vast majority of parrots presented a pattern in which their repertoire size was largest for words, intermediate for phrases (composed of the reported words), and smallest for non-linguistic sounds (Fig. 2). In the wild, parrots mimic the most socially relevant vocalizations, and presumably do so in captivity as well15. Thus, the spoken word and phrase interactions with their human “flock” likely reflect the most socially relevant cues. The interesting exceptions to this pattern were Fischer’s lovebirds, cockatiels, and Senegal parrots who all used more sounds than phrases. Cockatiels are well-known in the pet world to be excellent whistlers, and thus it was satisfying to see that our data support that informal information. We suspect that deviations from the typical patterns may represent acoustic learning preferences, templates, or limitations32.Although individual variation was substantial, we nevertheless saw strong evidence that overall vocal learning abilities differed by species. Pacific parrotlets and sun parakeets showed very limited human mimicry, while grey parrots, Amazona parrots, cockatoos, and macaws were generally very accomplished mimics. The patterns that we documented appeas to reflect natural vocal repertoire variation across species. The documented calls of wild parrots generally range from 5 to 15 calls25,33,34,35,36. Several species, however, present additional complexity: yellow-naped parrots (Amazona auropalliata), palm cockatoos (Probosciger aterrimus), and grey parrots all have natural repertoires of more than 25 discrete elements, with additional elements given in duets13,27,37 Members of these three groups, grey parrots, Amazona parrots and cockatoos also had relatively large repertoires in our study. In several of these species (particularly grey parrots) our measure of mimicked “words” (60) was higher than estimates of natural call “elements” (39) in the literature27. This discrepancy suggests that parrots are capable of learning vocalizations with more than 25 elements and, simultaneously, might reflect a sampling bias wherein survey-takers are more likely to report on individuals with high mimicry ability.Parrot species varied in their tendency to improvise new combinations of elements, although most species did rearrange words to some degree. Research shows that parrot vocalization length and structure carry signal content, so there may be selective pressures favoring this ability24,33. If so, then our data suggest that those pressures are strongest in some cockatoos and weakest in sun parakeets and green-cheeked parakeets. In general, species with larger repertoires also showed more vocal flexibility (Fig. 2, Appendix 6). Additionally, wild birds typically use particular vocalizations in set contexts, so the ability to do so is likely to be adaptive24. Previous studies of captive parrots have demonstrated contextual use of mimicked words, both in tutored lab settings and in home-raised birds28,38. In our sample, contextual use of learned sounds was supported across 89% of individuals and most species. Survey-taker responses on this topic are necessarily subjective, so we emphasize that this rate of contextual use should be interpreted as a general estimate. Nevertheless, the data indicated that parrots frequently associated mimicked human sounds with appropriate human contexts. This finding is particularly revealing because the relevant human contexts are, by their nature, outside the range of typical wild parrot experiences. Contextual vocalization use must, therefore, rely on extremely flexible vocal learning mechanisms.Vocal learning variation by ageOn average, birds aged with high confidence were younger than those aged with low or medium confidence. This pattern might indicate that people tend to overestimate the age of captive birds of uncertain age. This pattern might also reflect the facts that older birds are more likely to be wild-caught and that younger birds are more likely to have good hatch-date documentation. In either case, there are few ramifications of inaccurate age estimates relating to vocal behavior because our data gave no evidence that adult vocal mimicry repertoires varied with age. Our analyses of grey parrots confirmed that repertoires expanded through the juvenile phase, but did not show reliable expansion among adults. Studies of wild birds indicate that parrots can learn vocalizations throughout life; such open-ended learning is limited to a subset of vocal learning species, and can generate different outcomes as animals age15. In some species, animals can add new vocal features over the course of a lifetime, leading to repertoire expansion39,40. In other species, animals may replace parts of their repertoire with newly-learned vocalizations, leading to stable vocal production repertoire sizes across age groups39,41. Our data suggest that parrots fit the second pattern; although they are open-ended vocal learners, their adult repertoires change more by element replacement, than by expansion. This does not necessarily imply that vocalizations are “forgotten” through time, but merely that some sounds are no longer used as conditions change42. Many parrot vocalizations function in social coordination with flock-mates22. The fission–fusion nature of parrot flocks creates changing social conditions for each individual over its lifetime43. A vocal replacement model for repertoire learning would allow individuals to adjust their vocal signatures to match new social situations and stop producing vocalizations that are no longer socially relevant11,44.Vocal learning variation by sexOur analyses of the full data set confirmed the generally held understanding that males and females in most species of parrots have similar vocal learning abilities15. We did, however see sex differences in some species that merit future study. First, we found a substantial overrepresentation of males in our sample. This could be interpreted several ways; (1) there are legitimately more males in the parrot pet trade, (2) pet owners are giving us accurate data but are more likely to give us data on males or (3) some bias exists in which pet owners assume their talking parrots are males, rather than females. Possibilities 1 and 2 seem unlikely because after we eliminated all parrots sexed with low confidence, we were left with a nearly 1:1 ratio of males:females in the subset of parrots that were sexed with high confidence. That trend suggests that the male bias in our data comes (at least in part) from a human tendency to label their pet parrots as male when the sex is not clear. Among songbirds, there is a strong tendency to assume that singing birds are male, and a similar bias may hold true for parrots45. It is unclear whether parrots in this study were mislabeled as male because they vocalize or, more simply, because that is the default human tendency for any animal.Although we conclude that some of the male bias in our data is human error, we also saw patterns that suggest real sex differences in vocal learning some species. For example, Pacific parrotlets are a dimorphic species, and all of our sampled birds were sexed by plumage46. Thus, we expect sexing in this species to be fairly accurate. Our data set included 10 males and no females, a bias unlikely to result purely from sampling error. We saw a similar trend in cockatiels for which there was a large overabundance of males in the data set, even among the 17 birds sexed with high confidence. Humans may be more likely to report on parrots that are good mimics. Therefore, the results likely reflect a real-world tendency for male cockatiels to mimic more human sounds than females. Figure 3 suggests that the same might be true for galahs, sulphur-crested cockatoos, rose-ringed parakeets, Senegal parrots, and budgerigars. Existing research supports the idea that sex differences in vocal behavior are important in several of these species. Among galahs, male and female calls evoke different responses47, and patterns of call adjustment vary by sex among budgerigars20. We also note that several of these species (Pacific parrotlets, rose-ringed parakeets, budgerigars, and cockatiels; Appendix 2b) show sex-based differences in both plumage and vocal learning, raising questions about whether those traits co-evolve.In addition to sex-based differences in the tendency to mimic humans, several well-sampled species showed evidence of sex-based differences in repertoire sizes. Particularly interesting are the blue-and-yellow macaws, in which repertoire size was significantly male-biased. We had more females (15) than males (9) in the data set, but males used on average 3–4 times as many mimicry sounds, phrases and words as females did. Galahs and budgerigars showed a similar male-bias in repertoire sizes, matching the trend of males being overrepresented in our data set for those two species. Prior research on galahs and budgerigars has found that males can be more vocal and more flexible with their vocalizations; perhaps these abilities translate to learning more call types20,47. A similar, but weaker, male mimicry increase occurred in rose-ringed parakeets. In only one species, yellow-headed parrots, did females show a significantly larger mimicry repertoire than males in any category (Appendix 5). Interestingly, the tendency to mimic humans (measured as sampling in the data set) and repertoire sizes did not always show the same patterns. Among sulphur-crested cockatoos, cockatiels, and Senegal parrots, males were more likely to show human mimicry, but their repertoires were not larger than the repertoires of females. This suggests that in some species, females may be less likely to mimic vocalizations, but when they do so they have just as large a vocabulary as males.The reported sex differences in parrot vocal mimicry repertoires are intriguing, but also are tentative conclusions. In many species, including our best sampled species, grey parrots, we saw no evidence of sex-differences in repertoire size. The sex-biases that we did document lose statistical significance after controlling for the many comparisons that we conducted. Nevertheless, we expect that some of our data represent true biological differences, especially because studies of wild birds have shown similar trends47,48. Thus, we offer our data as a starting point for additional research. Taken together, the analyses by sex provide interesting points of comparison to other vocal learning animals. Our combined analyses suggest that sex differences in vocal learning are vastly smaller and less common among parrots than they are among oscine passerines and hummingbirds45,49,50. Sex-based patterns of vocal learning in parrots appear more similar to those of vocal learning mammals than to those of other vocal learning birds51. Overall, parrots and songbirds present excellent comparative study systems for all aspects of sex differences in song learning, from the mechanistic to the functional17,51.Vocal learning variation by social contextMany parrot vocalizations function in social organization for individuals within flocks, and the ability to learn from conspecifics is essential to parrot familial and social integration12,15,52. Although our study specifically examined vocal learning of human sounds, we thought it possible that the presence of other parrots would increase mimicry rates if parrots learned human vocalizations from their parrot companions. Anecdotal stories of parrots teaching words to other parrots abound53, and studies of grey parrot cognition show that vocal modeling by multiple tutors can lead to better learning of human words54. Most existing results, however, are based on human tutoring, with controlled studies of parrot-parrot word transmission lacking. Here we tested whether social interactions with other parrots correlated with more vocal learning of human sounds. Our data gave no evidence that parrot-parrot social interactions drive human vocal mimicry. This was true across the full sample (controlling for species identity), and for our best sampled species, grey parrots. Although companion parrots are known to learn from conspecifics, that learning does not appear to shape repertoire sizes53. Open questions remain about whether signal complexity, repertoire size, or aspects of vocal learning covary with social complexity at a larger scale among parrots55. Follow up studies should address these questions using phylogenetically-controlled methods56. More

  • in

    Carbon turnover gets wet

    Whether land acts as a carbon sink or source depends largely on two opposite fluxes: carbon uptake through photosynthesis and carbon release through turnover. Turnover occurs through multiple processes, including but not limited to, leaf senescence, tree mortality, and respiration by plants, microbes, and animals. Each of these processes is sensitive to climate, and ecologists and climatologists have been working to figure out how temperature regulates biological activities and to what extent the carbon cycle responds to global warming. Previous theoretical and experimental studies have yielded conflicting relationships between temperature and carbon turnover, with large variations across ecosystems, climate and time-scale1,2,3,4. Writing in Nature Geoscience, Fan et al.5 find that hydrometeorological factors have an important influence on how the turnover time of land carbon responds to changes in temperature. More

  • in

    Rare and declining bird species benefit most from designating protected areas for conservation in the UK

    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 
    PubMed 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulze, K. et al. An assessment of threats to terrestrial protected areas. Conserv. Lett. 11, e12435 (2018).Article 

    Google Scholar 
    Bingham, H. C. et al. (eds). Protected Planet Report 2020 (UNEP-WCMC & IUCN, 2021); https://livereport.protectedplanet.net/Buchanan, G. M., Butchart, S. H., Chandler, G. & Gregory, R. D. Assessment of national-level progress towards elements of the Aichi Biodiversity Targets. Ecol. Indic. 116, 106497 (2020).Article 

    Google Scholar 
    Xu, H. et al. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 5, 411–418 (2021).Article 
    PubMed 

    Google Scholar 
    Report of the Open-ended Working Group on the Post-2020 Global Biodiversity Framework on Its Third Meeting (CBD Secretariat, 2022); https://www.cbd.int/conferences/post2020/wg2020-03/documentsRodrigues, A. S. & Cazalis, V. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11, 5147 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Starnes, T. et al. The extent and effectiveness of protected areas in the UK. Glob. Ecol. Conserv. 30, e01745 (2021).Article 

    Google Scholar 
    Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cazalis, V. et al. Mismatch between bird species sensitivity and the protection of intact habitats across the Americas. Ecol. Lett. 24, 2394–2405 (2021).Article 
    PubMed 

    Google Scholar 
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Gamero, A. et al. Tracking progress toward EU biodiversity strategy targets: EU policy effects in preserving its common farmland birds. Conserv. Lett. 10, 395–402 (2017).Article 

    Google Scholar 
    Pellissier, V. et al. Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data. Conserv. Biol. 34, 666–676 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Princé, K., Rouveyrol, P., Pellissier, V., Touroult, J. & Jiguet, F. Long-term effectiveness of Natura 2000 network to protect biodiversity: a hint of optimism for common birds. Biol. Conserv. 253, 108871 (2021).Article 

    Google Scholar 
    Cunningham, C. A., Thomas, C. D., Morecroft, M. D., Crick, H. Q. P. & Beale, C. M. The effectiveness of the protected area network of Great Britain. Biol. Conserv. 257, 109146 (2021).Article 

    Google Scholar 
    Duckworth, G. D. & Altwegg, R. Effectiveness of protected areas for bird conservation depends on guild. Divers. Distrib. 24, 1083–1091 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Rada, S. et al. Protected areas do not mitigate biodiversity declines: a case study on butterflies. Divers. Distrib. 25, 217–224 (2019).Article 

    Google Scholar 
    Terraube, J., Van Doninck, J., Helle, P., & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Lenoir, J. et al. Species better track the shifting isotherms in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 
    PubMed 

    Google Scholar 
    van Teeffelen, A., Meller, L., van Minnen, J., Vermaat, J. & Cabeza, M. How climate proof is the European Union’s biodiversity policy? Regional Environ. Change 15, 997–1010 (2015).Article 

    Google Scholar 
    Thomas, C. D. & Gillingham, P. K. The performance of protected areas for biodiversity under climate change. Biol. J. Linn. Soc. Lond. 115, 718–730 (2015).Article 

    Google Scholar 
    Gillingham, P. K. et al. The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biol. J. Linn. Soc. Lond. 115, 707–717 (2015).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Stokstad, E. Species? Climate? Cost? Ambitious goal means trade-offs. Science 371, 555 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brlík, V. et al. Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Sci. Data 8, 21 (2021).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Stanbury, A. et al. The status of bird populations: the fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723–747 (2021).
    Google Scholar 
    Dudley, N. (ed). Guidelines for Applying Protected Area Management Categories (IUCN, 2008).Deguignet, M. et al. Measuring the extent of overlaps in protected area designations. PLoS ONE 12, e0188681 (2017).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    JNCC. Common Standards Monitoring: Introduction to the Guidance Manual (JNCC Resource Hub, 2004).Hayhow, D. B. et al. State of Nature 2019 (RSPB, 2019).Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020); https://helda.helsinki.fi/handle/10138/326470Franks, S. E., Roodbergen, M., Teunissen, W., Carrington Cotton, A. & Pearce‐Higgins, J. W. Evaluating the effectiveness of conservation measures for European grassland‐breeding waders. Ecol. Evol. 8, 10555–10568 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Pearce-Higgins, J. W. et al. Site-based adaptation reduces the negative effects of weather upon a southern range margin Welsh black grouse Tetrao tetrix population that is vulnerable to climate change. Clim. Change 153, 253–265 (2019).Article 

    Google Scholar 
    Jellesmark, S. et al. A counterfactual approach to measure the impact of wet grassland conservation on U.K. breeding bird populations. Conserv. Biol. 35, 1575–1585 (2021).Article 
    PubMed 

    Google Scholar 
    Morrison, C. A. et al. Covariation in population trends and demography reveals targets for conservation action. Proc. Biol. Sci. 288, 20202955 (2021).PubMed Central 
    PubMed 

    Google Scholar 
    Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Martay, B. et al. Monitoring landscape-scale environmental changes with citizen scientists: Twenty years of land use change in Great Britain. J. Nat. Conserv. 44, 33–42 (2018).Article 

    Google Scholar 
    Sullivan, M. J. P., Newson, S. E. & Pearce‐Higgins, J. W. Changing densities of generalist species underlie apparent homogenization of UK bird communities. Ibis 158, 645–655 (2016).Article 

    Google Scholar 
    Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).Article 
    PubMed 

    Google Scholar 
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).Article 

    Google Scholar 
    Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change—evidence from large‐scale, long‐term abundance data. Glob. Change Biol. 25, 304–313 (2019).Article 

    Google Scholar 
    Gaüzère, P., Jiguet, F. & Devictor, V. Can protected areas mitigate the impacts of climate change on bird’s species and communities? Diversity Distrib. 22, 625–637 (2016).Article 

    Google Scholar 
    Neate‐Clegg, M. H. C., Jones, S. E. I., Burdekin, O., Jocque, M. & Şekercioğlu, Ç. H. Elevational changes in the avian community of a Mesoamerican cloud forest park. Biotropica 50, 805–815 (2018).Article 

    Google Scholar 
    Oliver, T. H. et al. Large extents of intensive land use limit community reorganization during climate warming. Glob. Change Biol. 23, 2272–2283 (2017).Article 

    Google Scholar 
    Hiley, J. R., Bradbury, R. B., Holling, M. & Thomas, C. D. Protected areas act as establishment centres for species colonizing the UK. Proc. Biol. Sci. 280, 20122310 (2013).PubMed Central 
    PubMed 

    Google Scholar 
    Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Grace, M. K. et al. Testing a global standard for quantifying species recovery and assessing conservation impact. Conserv. Biol. 35, 1833–1849 (2021).Article 
    PubMed 

    Google Scholar 
    Gibbons, D. W., Reid, J. B. & Chapman, R. A. The New Atlas of Breeding Birds in Britain & Ireland 1988–1991 (T. & A. D. Poyser, 1993).Balmer, D. E. et al. Bird Atlas 2007–11: the Breeding and Wintering Birds of Britain and Ireland (BTO, 2013).Gillings, S. et al. Breeding and wintering bird distributions in Britain and Ireland from citizen science bird atlases. Glob. Ecol. Biogeogr. 28, 866–874 (2019).Article 

    Google Scholar 
    Freeman, S. N., Noble, D. G., Newson, S. E. & Baillie, S. R. Modelling population changes using data from different surveys: the Common Birds Census and the Breeding Bird Survey. Bird Study 54, 61–72 (2007).Article 

    Google Scholar 
    Robinson, R. A., Julliard, R. & Saracco, J. F. Constant effort: studying avian population processes using standardised ringing. Ring. Migr. 24, 199–204 (2009).Article 

    Google Scholar 
    Cave, V. M., Freeman, S. N., Brooks, S. P., King, R. & Balmer, D. E. in Modeling Demographic Processes in Marked Populations, 949–963 (Springer, 2009).Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, GB) (eds Thomson, D. L. et al) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/7115bc48-3ab0-475d-84ae-fd3126c20984Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, N. Ireland) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/362feaea-0ccf-4a45-b11f-980c6b89a858ASTER Global Digital Elevation Model V003 (dataset). NASA EOSDIS Land Processes DAAC (NASA/METI/AIST/Japan Space Systems and U.S./Japan ASTER Science Team, 2019); https://doi.org/10.5067/ASTER/ASTGTM.003Schiavina, M., Freire, S. & MacManus, K. GHS-SMOD R2019A – GHS Settlement Layers, Updated and Refined REGIO Model 2014 in Application to GHS-BUILT R2018A and GHS-POP R2019A, Multitemporal (1975-1990-2000-2015) (European Commission Joint Research Centre, 2019); https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218Robinson, R. A. BirdFacts: Profiles of Birds Occurring in Britain & Ireland (BTO, 2005).Gibbons, D. W. et al. Bird species of conservation concern in the United Kingdom, Channel Islands and Isle of Man: revising the Red Data List. RSPB Conserv. Rev. 10, 7–18 (1996).
    Google Scholar 
    Stone, B. H. et al. Population estimates of birds in Britain and in the United Kingdom. Br. Birds 90, 1–22 (1997).
    Google Scholar 
    Woodward, I. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69–104 (2020).
    Google Scholar 
    R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Bull, J. W., Strange, N., Smith, R. J. & Gordon, A. Reconciling multiple counterfactuals when evaluating biodiversity conservation impact in social‐ecological systems. Conserv. Biol. 35, 510–521 (2020).Article 
    PubMed 

    Google Scholar 
    Jellesmark, S. et al. Assessing the global impact of targeted conservation actions on species abundance. Preprint at bioRxiv https://doi.org/10.1101/2022.01.14.476374 (2022).Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds but management helps. Nature 605, 103–107 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.4.4 (2021); https://CRAN.R-project.org/package=DHARMaJetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnston, A. et al. Species traits explain variation in detectability of UK birds. Bird Study 61, 340–350 (2014).Article 

    Google Scholar 
    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).Article 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Anal. 15, 199–236 (2007).Article 

    Google Scholar 
    Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).Article 
    PubMed 

    Google Scholar 
    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. Biol. Sci. 275, 2743–2748 (2008).PubMed Central 
    PubMed 

    Google Scholar  More

  • in

    Sewage surveillance of antibiotic resistance holds both opportunities and challenges

    Huijbers, P. M. C., Flach, C.-F. & Larsson, D. G. J. A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ. Int. 130, 104880 (2019).Article 

    Google Scholar 
    Aarestrup, F. M. & Woolhouse, M. E. J. Using sewage for surveillance of antimicrobial resistance. Science 367, 630–632 (2020).Article 

    Google Scholar 
    European Commission. Proposal for a revised Urban Wastewater Treatment Directive. European Commission https://environment.ec.europa.eu/publications/proposal-revised-urban-wastewater-treatment-directive_en (2022).US Centres for Disease Control and Prevention. COVID-19 impacts on environment (e.g., water, soil) and sanitation: addressing antimicrobials and antimicrobial resistant threats in the environment. US Centres for Disease Control and Prevention https://www.cdc.gov/drugresistance/pdf/covid19/COVID19-Impacts-AR-Environment-Sanitation-508.pdf (2021).Flach, C.-F., Hutinel, M., Razavi, M., Åhrén, C. & Larsson, D. G. J. Monitoring of hospital sewage shows both promise and limitations as an early-warning system for carbapenemase-producing Enterobacterales in a low-prevalence setting. Water Res. 200, 117261 (2021).Article 

    Google Scholar 
    Larsson, D. G. J. & Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 20, 257–269 (2022).Article 

    Google Scholar 
    Newton, R. J. et al. Sewage reflects the microbiomes of human populations. mBio 6, e02574 (2015).Article 

    Google Scholar 
    Huijbers, P. M. C., Larsson, D. G. J. & Flach, C. F. Surveillance of antibiotic resistant Escherichia coli in human populations through urban wastewater in ten European countries. Environ. Pollut. 261, 114200 (2020).Article 

    Google Scholar 
    Laxminarayan, R. & Macauley, M. K. The Value of Infromation: Methodological Frontiers and New Applications in Environment and Health 1st edn (Springer Dordrecht, 2012).Munk, P. et al. Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance. Nat. Commun. 13, 7251 (2022).Article 

    Google Scholar  More

  • in

    Dominant phytoplankton groups as the major source of polyunsaturated fatty acids for hilsa (Tenualosa ilisha) in the Meghna estuary Bangladesh

    Valle-Levinson, A. Contemporary Issues in Estuarine Physics (Cambridge University Press, 2010).Book 

    Google Scholar 
    Singh, S. Analysis of plankton diversity and density with physico-chemical parameters of open pond in town Deeg (Bhratpur) Rajasthan, India. Int. Res. J. Biol. Sci 4, 61–69 (2015).
    Google Scholar 
    Roussel, M., Pontier, D., Cohen, J.-M., Lina, B. & Fouchet, D. Quantifying the role of weather on seasonal influenza. BMC Public Health 16, 1–14 (2016).Article 

    Google Scholar 
    Davies, O., Abowei, J. & Tawari, C. Phytoplankton community of Elechi creek, Niger Delta, Nigeria-a nutrient-polluted tropical creek. Am. J. Appl. Sci. 6, 1143–1152 (2009).Article 
    CAS 

    Google Scholar 
    Choudhury, S. & Panigrahy, R. Seasonal distribution and behavior of nutrients in the Greek and coastal waters of Gopalpur, East coast of India: Mahasagar. Bull. Natl. Inst. Oeanogr 24, 91–88 (1991).
    Google Scholar 
    Ratheesh, K., Krishnan, A., Das, R. & Vimexen, V. Seasonal phytoplankton succession in Netravathi-Gurupura estuary, Karnataka, India: Study on a three tier hydrographic platform. Estuar. Coast. Shelf Sci. 242, 106830 (2020).Article 

    Google Scholar 
    Deng, Y., Tang, X., Huang, B. & Ding, L. Effect of temperature and irradiance on the growth and reproduction of the green macroalga, Chaetomorpha valida (Cladophoraceae, Chlorophyta). J. Appl. Phycol. 24, 927–933 (2012).Article 
    CAS 

    Google Scholar 
    Gamier, J., Billen, G. & Coste, M. Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: Observation and modeling. Limnol. Oceanogr. 40, 750–765 (1995).Article 

    Google Scholar 
    Meng, F. et al. Phytoplankton alpha diversity indices response the trophic state variation in hydrologically connected aquatic habitats in the Harbin Section of the Songhua River. Sci. Rep. 10, 1–13 (2020).Article 

    Google Scholar 
    Köhler, J. Growth, production and losses of phytoplankton in the lowland River Spree. I. Population dynamics. J. Plankton Res. 15, 335–349 (1993).Article 

    Google Scholar 
    Murrell, M. C. & Caffrey, J. M. High cyanobacterial abundance in three northeastern Gulf of Mexico estuaries. Gulf Caribbean Res. 17, 95–106 (2005).Article 

    Google Scholar 
    Haldar, G., Rahman, M. & Haroon, A. Hilsa, Tenualosa ilisha (Ham.) fishery of the Feni River with reference to the impacts of the flood control structure. J. Zool. 7, 51–56 (1992).
    Google Scholar 
    Hossain, M. S., Sarker, S., Chowdhury, S. R. & Sharifuzzaman, S. Discovering spawning ground of Hilsa shad (Tenualosa ilisha) in the coastal waters of Bangladesh. Ecol. Model. 282, 59–68 (2014).Article 

    Google Scholar 
    Bhaumik, U. & Sharma, A. The fishery of Indian Shad (Tenualosa ilisha) in the Bhagirathi-Hooghly river system. Fishing Chimes 31, 21–27 (2011).
    Google Scholar 
    Mitra, G. & Devsundaram, M. P. On the hilsa of Chilka Lake with note on the Hilsa in Orissa. J. Asiatic Soc. Sci. 20, 33–40 (1954).
    Google Scholar 
    Abdul, W., Phillips, M. & Beveridge, M. (WorldFish (WF), 2020).Hasan, K. M. M., Wahab, M. A., Ahmed, Z. F. & Mohammed, E. Y. The biophysical assessments of the hilsa fish (Tenualosa ilisha) habitat in the lower Meghna, Bangladesh (International Institute for Environment and Development, 2015).Begum, M. et al. Fatty acid composition of Hilsa (Tenualosa ilisha) fish muscle from different locations in Bangladesh. Thai J. Agric. Sci. 52, 172–179 (2019).
    Google Scholar 
    Jónasdóttir, S. H. Fatty acid profiles and production in marine phytoplankton. Mar. Drugs 17, 151 (2019).Article 

    Google Scholar 
    Otero, P., Ruiz-Villarreal, M., Peliz, Á. & Cabanas, J. M. Climatology and reconstruction of runoff time series in northwest Iberia: Influence in the shelf buoyancy budget off Ría de Vigo. Sci. Mar. 74, 247–266 (2010).Article 

    Google Scholar 
    Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis (Wiley, 2009).
    Google Scholar 
    Parsons, T., Maita, Y. & Lalli, C. A manual of chemical and biological methods for seawater analysis. Pergamon, Oxford sized algae and natural seston size fractions. Mar. Ecol. Prog. Ser. 199, 43–53 (1984).
    Google Scholar 
    Scor-Unesco, W. Determination of photosynthetic pigments. Determination of Photosynthetic Pigments in Sea-water, 9–18 (1966).Snow, G., Bate, G. & Adams, J. The effects of a single freshwater release into the Kromme Estuary. 2: Microalgal response. Water SA-Pretoria 26, 301–310 (2000).CAS 

    Google Scholar 
    Ward, H. B. & Whipple, G. C. Freshwater Biology Vol. 2, 12–48 (Willey, London, 1959).
    Google Scholar 
    Prescott, G. W. Algae of the western Great Lakes area. (1962).Bellinger, E. G. A Key to Common Algae: Freshwater, Estuarine and Some Coastal Species (Institution of Water and Environmental Management London, 1992).
    Google Scholar 
    Kimmerer, W. J. & Slaughter, A. M. A new electivity index for diet studies that use count data. Limnol. Oceanogr. Methods 19, 552–565 (2021).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Development Core Team. nlme: Linear and nonlinear mixed effects models, 2012. http://CRAN.R-project.org/package=nlme. R package version, 3.1–103 (2020).Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).Article 

    Google Scholar 
    Galili, T., O’Callaghan, A., Sidi, J. & Sievert, C. heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 34, 1600–1602 (2018).Article 
    CAS 

    Google Scholar 
    Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. Create Elegant Data Visualisations Using the Grammar of Graphics. Version 2, 1–189 (2016).Peterson, B. G. et al. Package ‘PerformanceAnalytics’. R Team Cooperation (2018).Lewis, R. E. & Uncles, R. J. Factors affecting longitudinal dispersion in estuaries of different scale. Ocean Dyn. 53, 197–207 (2003).Article 

    Google Scholar 
    Shaha, D., Cho, Y.-K., Seo, G.-H., Kim, C.-S. & Jung, K. Using flushing rate to investigate spring-neap and spatial variations of gravitational circulation and tidal exchanges in an estuary. Hydrol. Earth Syst. Sci. 14, 1465–1476 (2010).Article 

    Google Scholar 
    Shaha, D. C., Cho, Y.-K., Kim, T.-W. & Valle-Levinson, A. Spatio-temporal variation of flushing time in the Sumjin River Estuary. Terrestr. Atmos. Ocean. Sci. 23, 119 (2012).Article 

    Google Scholar 
    Shivaprasad, A. et al. Seasonal stratification and property distributions in a tropical estuary (Cochin estuary, west coast, India). Hydrol. Earth Syst. Sci. 17, 187–199 (2013).Article 

    Google Scholar 
    Haralambidou, K., Sylaios, G. & Tsihrintzis, V. A. Salt-wedge propagation in a Mediterranean micro-tidal river mouth. Estuar. Coast. Shelf Sci. 90, 174–184 (2010).Article 
    CAS 

    Google Scholar 
    Dyer, K. R. Estuaries: A physical introduction (1973).Rahman, M. et al. Impact assessment of twenty-two days fishing ban in the major spawning grounds of Tenualosa ilisha (Hamilton, 1822) on its spawning success in Bangladesh. J. Aquac. Res. Dev. 8, 489 (2017).Article 

    Google Scholar 
    Alves, A. S. et al. Spatial distribution of subtidal meiobenthos along estuarine gradients in two southern European estuaries (Portugal). J. Mar. Biol. Assoc. U.K. 89, 1529–1540 (2009).Article 
    CAS 

    Google Scholar 
    Teixeira, H., Salas, F., Borja, A., Neto, J. & Marques, J. A benthic perspective in assessing the ecological status of estuaries: The case of the Mondego estuary (Portugal). Ecol. Ind. 8, 404–416 (2008).Article 

    Google Scholar 
    Garmendia, M. et al. Eutrophication assessment in Basque estuaries: Comparing a North American and a European method. Estuar. Coasts 35, 991–1006 (2012).Article 

    Google Scholar 
    Istvánovics, V. Eutrophication of Lakes and Reservoirs. Lake Ecosystem Ecology 47–55 (Elsevier, 2010).
    Google Scholar 
    Dodds, W. K. Eutrophication and trophic state in rivers and streams. Limnol. Oceanogr. 51, 671–680 (2006).Article 
    CAS 

    Google Scholar 
    Bricker, S., Ferreira, J. & Simas, T. An integrated methodology for assessment of estuarine trophic status. Ecol. Model. 169, 39–60 (2003).Article 
    CAS 

    Google Scholar 
    Vega, M., Pardo, R., Barrado, E. & Debán, L. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res. 32, 3581–3592 (1998).Article 
    CAS 

    Google Scholar 
    Huang, Y., Yang, C., Wen, C. & Wen, G. S-type dissolved oxygen distribution along water depth in a canyon-shaped and algae blooming water source reservoir: Reasons and control. Int. J. Environ. Res. Public Health 16, 987 (2019).Article 
    CAS 

    Google Scholar 
    Rahman, M. & Cowx, I. Lunar periodicity in growth increment formation in otoliths of hilsa shad (Tenualosa ilisha, Clupeidae) in Bangladesh waters. Fish. Res. 81, 342–344 (2006).Article 

    Google Scholar 
    Rahman, M. J. Population Biology and Management of hilsa shad (Tenualosa ilisha) in Bangladesh (University of Hull, 2001).Milton, D. A. & Chenery, S. R. Movement patterns of the tropical shad hilsa (Tenualosa ilisha) inferred from transects of 87Sr/86Sr isotope ratios in their otoliths. Can. J. Fish. Aquat. Sci. 60, 1376–1385 (2003).Article 

    Google Scholar 
    Rahman, S., Sarker, M. R. H. & Mia, M. Y. Spatial and temporal variation of soil and water salinity in the South-Western and South-Central Coastal Region of Bangladesh. Irrig. Drain. 66, 854–871 (2017).Article 

    Google Scholar 
    Kida, S. & Yamazaki, D. The mechanism of the freshwater outflow through the Ganges–Brahmaputra–Meghna delta. Water Resour. Res. 56, e2019WR026412 (2020).Article 

    Google Scholar 
    Sarma, V. et al. Intra-annual variability in nutrients in the Godavari estuary, India. Contin. Shelf Res. 30, 2005–2014 (2010).Article 

    Google Scholar 
    Burford, M. et al. Controls on phytoplankton productivity in a wet–dry tropical estuary. Estuar. Coast. Shelf Sci. 113, 141–151 (2012).Article 
    CAS 

    Google Scholar 
    Vitousek, P. M. et al. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57, 1–45 (2002).Article 

    Google Scholar 
    Galloway, J. N. & Cowling, E. B. Reactive nitrogen and the world: 200 years of change. Ambio 31, 64–71 (2002).Article 

    Google Scholar 
    Kennish, M. & De Jonge, V. in Human-Induced Problems (Uses and Abuses) 113–148 (Elsevier Inc., 2012).Alongi, D., Boto, K. & Robertson, A. Nitrogen and phosphorus cycles. Coastal and Estuarine Studies, 251–251 (1993).Wolanski, E., McLusky, D., Laane, R. & Middleburg, J. (Academic Press, 2011).Suthers, I., Rissik, D. & Richardson, A. Plankton: A Guide to Their Ecology and Monitoring for Water Quality (CSIRO Publishing, 2019).Book 

    Google Scholar 
    Mackay, D. W. & Fleming, G. Correlation of dissolved oxygen levels, fresh-water flows and temperatures in a polluted estuary. Water Res. 3, 121–128 (1969).Article 

    Google Scholar 
    Lomas, M. W. & Glibert, P. M. Temperature regulation of nitrate uptake: A novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnol. Oceanogr. 44, 556–572 (1999).Article 
    CAS 

    Google Scholar 
    Dortch, Q. The interaction between ammonium and nitrate uptake in phytoplankton. Mar. Ecol. Prog. Ser. Oldendorf 61, 183–201 (1990).Article 
    CAS 

    Google Scholar 
    Admiraal, W., Riaux-Gobin, C. & Laane, R. W. Interactions of ammonium, nitrate, and D-and L-amino acids in the nitrogen assimilation of two species of estuarine benthic diatoms. Mar. Ecol. Prog. Ser. 40, 267–273 (1987).Article 
    CAS 

    Google Scholar 
    Rabalais, N., Turner, R., Dortch, Q., Wiseman, W. Jr. & Sen Gupta, B. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19, 386 (1996).Article 
    CAS 

    Google Scholar 
    Gholizadeh, M. H., Melesse, A. M. & Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total Environ. 566, 1552–1567 (2016).Article 

    Google Scholar 
    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).Article 

    Google Scholar 
    Teichberg, M. et al. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: Nutrient enrichment experiments with Ulva spp. Glob. Change Biol. 16, 2624–2637 (2010).Article 

    Google Scholar 
    Valiela, I. & Bowen, J. Nitrogen sources to watersheds and estuaries: Role of land cover mosaics and losses within watersheds. Environ. Pollut. 118, 239–248 (2002).Article 
    CAS 

    Google Scholar 
    Woodland, R. J. et al. Nitrogen loads explain primary productivity in estuaries at the ecosystem scale. Limnol. Oceanogr. 60, 1751–1762 (2015).Article 

    Google Scholar 
    Howarth, R. et al. Coupled biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front. Ecol. Environ. 9, 18–26 (2011).Article 

    Google Scholar 
    Winder, J. A. & Cheng, D. M. Quantification of Factors Controlling the Development of Anabaena Circinalis Blooms (Urban Water Research Association of Australia, 1995).
    Google Scholar 
    Descy, J.-P. Phytoplankton composition and dynamics in the River Meuse (Belgium). Arch. Hydrobiol. Supplementband. Monographische Beiträge 78, 225–245 (1987).
    Google Scholar 
    Robarts, R. D. & Zohary, T. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. NZ J. Mar. Freshw. Res. 21, 391–399 (1987).Article 
    CAS 

    Google Scholar 
    Visser, P. M., Ibelings, B. W., Bormans, M. & Huisman, J. Artificial mixing to control cyanobacterial blooms: A review. Aquat. Ecol. 50, 423–441 (2016).Article 
    CAS 

    Google Scholar 
    Krishnan, A., Das, R. & Vimexen, V. Seasonal phytoplankton succession in Netravathi-Gurupura estuary, Karnataka, India: Study on a three tier hydrographic platform. Estuar. Coast. Shelf Sci. 242, 106830 (2020).Article 

    Google Scholar 
    Srinivas, L., Seeta, Y. & Reddy, M. Bacillariophyceae as ecological indicators of water quality in Manair Dam, Karimnagar, India. Int. J. Sci. Res. Sci. Tech 4, 468–474 (2018).
    Google Scholar 
    Mohanty, B. P. et al. Fatty acid profile of Indian shad Tenualosa ilisha oil and its dietary significance. Natl. Acad. Sci. Lett. 35, 263–269 (2012).Article 
    CAS 

    Google Scholar 
    De, D. et al. Nutritional profiling of hilsa (Tenualosa ilisha) of different size groups and sensory evaluation of their adults from different riverine systems. Sci. Rep. 9, 1–11 (2019).Article 
    CAS 

    Google Scholar 
    Hasan, K. M. M., Ahmed, Z. F., Wahab, M. A. & Mohammed, E. Y. Food and Feeding Ecology of hilsa (Tenualosa ilisha) in Bangladesh’s Meghna River Basin. (International Institute for Environment and Development, 2016). More

  • in

    Sap flow of sweet cherry reveals distinct effects of humidity and wind under rain covered and netted protected cropping systems

    Jensen, M. H. & Malter, A. J. Protected Agriculture—A Global Review. World Bank Technical Paper Number 253 (World Bank, 1995).
    Google Scholar 
    Meli, T., Riesen, W. & Widmer, A. Protection of sweet cherry hedgerows with polyethylene films. Acta Hortic. 155, 463–467 (1984).Article 

    Google Scholar 
    Janick, J. (ed.) Horticultural Reviews Vol. 30, 115–162 (Wiley, 2004).
    Google Scholar 
    Janke, R. R., Altamimi, M. E. & Khan, M. The use of high tunnels to produce fruit and vegetable crops in North America. Agric. Sci. 08, 692–715. https://doi.org/10.4236/as.2017.87052 (2017).Article 

    Google Scholar 
    Alarcon, J. J. et al. Sap flow as an indicator of transpiration and the water status of young apricot trees. Plant Soil 227, 77–85. https://doi.org/10.1023/A:1026520111166 (2000).Article 
    CAS 

    Google Scholar 
    Ferrara, G. & Flore, J. Comparison between different methods for measuring tranpiration in potted apple trees. Biol. Plant. 46, 41–47 (2003).Article 

    Google Scholar 
    Nicolás, E., Torrecillas, A., Amico, J. D. & Alarcón, J. J. Sap flow, gas exchange, and hydraulic conductance of young apricot trees growing under a shading net and different water supplies. J. Plant Physiol. 162, 439–447. https://doi.org/10.1016/j.jplph.2004.05.014 (2005).Article 
    CAS 

    Google Scholar 
    Green, S. & Romero, R. Can we improve heat-pulse to measure low and reverse flows. Acta Hortic. 951, 19–30 (2012).Article 

    Google Scholar 
    Noitsakis, B. & Nastis, A. S. Seasonal changes of water potential, stomatal conductance and transpiration in the leaf of cherry trees grown in shelter. CIHEAM 12, 267–270 (1995).
    Google Scholar 
    Lang, G. A. High tunnel tree fruit production: The final frontier. HortTechnology 19, 50–55 (2009).Article 

    Google Scholar 
    Lang, G. A. Tree fruit production in high tunnels: Current status and case study of sweet cherries. Acta Hortic. 987, 73–82 (2013).Article 

    Google Scholar 
    Meland, M., Frøynes, O. & Kaiser, C. High tunnel production systems improve yields and fruit size of sweet cherry. Acta Hortic. 1161, 117–124. https://doi.org/10.17660/ActaHortic.2017.1161.20 (2017).Article 

    Google Scholar 
    Cohen, S., Moreshet, S., Guillou, L. L., Simon, J.-C. & Cohen, M. Response of citrus trees to modified radiation regime in semi-arid conditions. J. Exp. Bot. 48, 35–44. https://doi.org/10.1093/jxb/48.1.35 (1997).Article 
    CAS 

    Google Scholar 
    Zeppel, M., Murray, B. R., Barton, C. & Eamus, D. Seasonal responses of xylem sap velocity to VPD and solar radiation during drought in a stand of native trees in temperate Australia. Funct. Plant Biol. 31, 461–470 (2004).Article 

    Google Scholar 
    Bonada, M., Buesa, I., Moran, M. A. & Sadras, V. O. Interactive effects of warming and water deficit on Shiraz vine transpiration in the Barossa Valley, Australia. OENO One 52, 189–202. https://doi.org/10.20870/oeno-one.2018.52.2.2141 (2018).Article 
    CAS 

    Google Scholar 
    Wang, K. Y., Kellomaki, S., Zha, T. & Peltola, H. Annual and seasonal variation of sap flow and conductance of pine trees grown in elevated carbon dioxide and temperature. J. Exp. Bot. 56, 155–165. https://doi.org/10.1093/jxb/eri013 (2005).Article 
    CAS 

    Google Scholar 
    Laplace, S., Chu, C. & Kume, S. Wind speed response of sap flow in five subtropical trees based on wind tunnel experiments. Br. J. Environ. Clim. Change 3, 160–171. https://doi.org/10.9734/BJECC/2013/3842 (2013).Article 

    Google Scholar 
    Kellomäki, S. & Wang, K. Y. Sap flow in Scots pine growing under conditions of year-round carbon dioxide enrichment and temperature elevation. Plant, Cell Environ. 21, 969–981. https://doi.org/10.1046/j.1365-3040.1998.00352.x (2002).Article 

    Google Scholar 
    Urban, J., Ingwers, M., McGuire, M. A. & Teskey, R. O. Stomatal conductance increases with rising temperature. Plant Signal. Behav. 12, 3–6. https://doi.org/10.1080/15592324.2017.1356534 (2017).Article 
    CAS 

    Google Scholar 
    Wu, J. et al. Nocturnal sap flow is mainly caused by stem refilling rather than nocturnal transpiration for Acer truncatum in urban environment. Urban For. Urban Green. 56, 126800. https://doi.org/10.1016/j.ufug.2020.126800 (2020).Article 

    Google Scholar 
    Chen, Y.-J. et al. Time lags between crown and basal sap flows in tropical lianas and co-occurring trees. Tree Physiol. 36, 736–747. https://doi.org/10.1093/treephys/tpv103 (2015).Article 

    Google Scholar 
    Marshall, D. C. Measurment of sap flow in conifers by heat transport. Plant Physiol. 33, 385–396 (1958).Article 
    CAS 

    Google Scholar 
    Swanson, R. H. & Whitfield, W. A. A numerical analysis of heat pulse velocity theory and practice. J. Exp. Bot. 32, 221–239 (1981).Article 

    Google Scholar 
    Green, S., Clothier, B. & Jardine, B. Theory and practical application of heat pulse to measure sap flow. Am. Soc. Agron. 95, 1371–1379 (2003).Article 

    Google Scholar 
    Goodwin, I., Cornwall, D. & Green, S. R. Pear transpiration and basal crop coefficients estimated by sap flow. Acta Hortic. 951, 183–190. https://doi.org/10.17660/ActaHortic.2012.951.22 (2012).Article 

    Google Scholar 
    Fernandez, J. E. et al. Heat-pulse measurements of sap flow in olives for automating irrigation, tests, root flow and diagnostics of water stress. Agric. Water Manag. 51, 99–123 (2001).Article 

    Google Scholar 
    Green, S. R. & Clothier, B. Water use of kiwifruit vines and apple trees by the heat-pulse technique. J. Exp. Bot. 39, 115–123 (1988).Article 

    Google Scholar 
    Green, S. R. et al. Measurement of sap flow in young apple trees using the average gradient heat-pulse method. Acta Hortic. 1222, 173–178. https://doi.org/10.17660/ActaHortic.2018.1222.35 (2018).Article 

    Google Scholar 
    Green, S., Clothier, B. & Perie, E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 846, 95–104 (2009).Article 

    Google Scholar 
    Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage Paper 56 300 (FAO, 1998).
    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2010).Hastie, T. & Tibshirani, R. Generalized Additive Models (Chapman and Hall/CRC, 1990).MATH 

    Google Scholar 
    Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723. https://doi.org/10.1109/TAC.1974.1100705 (1974).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Sams, C. E. & Flore, J. A. The influence of leaf age, leaf position on the shoot, and environmental variables on net photosynthetic rate of sour cherry (Prunus cerasus L. ’Montmorency’). J. Am. Soc. Hortic. Sci. 107, 339–344 (1982).Article 

    Google Scholar 
    Wallberg, B. N. & Sagredo, K. X. Vegetative and reproductive development of “Lapins” sweet cherry trees under rain protective cropping. Int. Soc. Hortic. Sci. 1058, 411–417 (2014).
    Google Scholar 
    Lang, G. A. Growing sweet cherries under plastic covers and tunnels: Physiological aspects and practical considerations. Acta Hortic. 1020, 303–312. https://doi.org/10.17660/ActaHortic.2014.1020.43 (2014).Article 

    Google Scholar 
    Goodwin, I., McClymont, L., Turpin, S. & Darbyshire, R. Effectiveness of netting in decreasing fruit surface temperature and sunburn damage of red-blushed pear. N. Z. J. Crop. Hortic. Sci. 46, 334–345. https://doi.org/10.1080/01140671.2018.1432492 (2018).Article 
    CAS 

    Google Scholar 
    Mika, A., Buler, Z., Wójcik, K. & Konopacka, D. Influence of the plastic cover on the protection of sweet cherry fruit against cracking, on the microclimate under cover and fruit quality. J. Hortic. Res. 27, 31–38. https://doi.org/10.2478/johr-2019-0018 (2019).Article 
    CAS 

    Google Scholar 
    Blanco, V., Zoffoli, J. P. & Ayala, M. High tunnel cultivation of sweet cherry (Prunus avium L.): Physiological and production variables. Sci. Hortic. 251, 108–117. https://doi.org/10.1016/j.scienta.2019.02.023 (2019).Article 

    Google Scholar 
    Sams, C. E. & Flore, J. A. Net photosynthetic rate of sour cherry (Prunus cerasus L. ‘Montmorency’) during the growing season with particular reference to fruiting. Photosynth. Res. 4, 307–316. https://doi.org/10.1007/BF00054139 (1983).Article 

    Google Scholar 
    Lange, O. L., Schulze, E. D., Evenari, M., Kappen, L. & Buschbom, U. The temperature-related photosynthesis capacity of plants under desert conditions. Oecologia 17, 97–110. https://doi.org/10.1007/BF00346273 (1974).Article 
    CAS 

    Google Scholar 
    Beckman, T. G., Perry, R. L. & Flore, J. A. Short-term flooding affects gas exchange characteristics of containerized sour cherry trees. HortScience 27, 1297. https://doi.org/10.21273/hortsci.27.12.1297 (1992).Article 

    Google Scholar 
    Lei, H., Zhi-Shan, Z. & Xin-Rong, L. Sap flow of Artemisia ordosica and the influence of environmental factors in a revegetated desert area: Tengger Desert, China. Hydrol. Processes 24, 1248–1253. https://doi.org/10.1002/hyp.7584 (2010).Article 

    Google Scholar 
    Juhász, A., Hrotko, K. & Tokei, L. Air and Water Components of the Environment, 76–82.Ravi, S. & D’Odorico, P. A field-scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophys. Res. Lett. 32, 023675. https://doi.org/10.1029/2005gl023675 (2005).Article 

    Google Scholar 
    Holmes, M. & Farrell, D. South African Avocado Growers Association Yearbook Vol. 16, 59–64 (1993).Jones, H. G. Plants and Microclimate: A quantitative Approach to Environmental Plant Physiology 3rd edn. (Cambridge University Press, 2014).
    Google Scholar 
    Juhász, Á., Sepsi, P., Nagy, Z., Tőkei, L. & Hrotkó, K. Water consumption of sweet cherry trees estimated by sap flow measurement. Sci. Hortic. 164, 41–49. https://doi.org/10.1016/j.scienta.2013.08.022 (2013).Article 

    Google Scholar 
    Gussakovsky, E. E., Salomon, E., Ratner, K., Shahak, Y. & Driesenaar, A. R. J. Photoinhibition (light stress) in citrus leaves. Acta Hortic. 349, 139–143 (1993).Article 

    Google Scholar 
    Grappadelli, L. C. & Lakso, A. N. Is maximizing orchard light interception always the best choice? Acta Hortic. 732, 507–518. https://doi.org/10.17660/ActaHortic.2007.732.77 (2007).Article 

    Google Scholar  More

  • in

    Reply to: Erroneous predictions of auxotrophies by CarveMe

    Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, M. Erroneous predictions of auxotrophies by CarveMe. https://doi.org/10.1038/s41559-022-01936-3 (2022).Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, M. N., Deutschbauer, A. M. & Arkin, A. P. GapMind: automated annotation of amino acid biosynthesis. mSystems 5, e00291-20 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. USA 111, E2149–E2156 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ponomarova, O. et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 5, 345–357.e6 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zengler, K. & Zaramela, L. S. The social network of microorganisms—how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giri, S. et al. Metabolic dissimilarity determines the establishment of cross-feeding interactions in bacteria. Curr. Biol. 31, 5547–5557.e6 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Morris, J. J., Lenski, R. E. & Zinser, E. R. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campbell, K. et al. Self-establishing communities enable cooperative metabolite exchange in a eukaryote. eLife 4, e09943 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    D’Souza, G. & Kost, C. Experimental evolution of metabolic dependency in bacteria. PLOS Genet. 12, e1006364 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ziesack, M. et al. Engineered interspecies amino acid cross-feeding increases population evenness in a synthetic bacterial consortium. mSystems 4, e00352-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryback, B., Bortfeld-Miller, M. & Vorholt, J. A. Metabolic adaptation to vitamin auxotrophy by leaf-associated bacteria. ISME J. https://doi.org/10.1038/s41396-022-01303-x (2022). More

  • in

    Comparison of the effects of litter decomposition process on soil erosion under simulated rainfall

    Study area descriptionYangtze River Basin is situated in central China (Fig. 1). Its geographical coordinates are between 30° 48′ 30″–31° 02′ 30″ N and 112° 48′ 45″–113° 03′ 45″ E. Taizishan is located in the transition zone between the north and south of China, with an altitude of 403–467.4 m. It belongs to the subtropical monsoon humid climate zone and has obvious karst landforms. The farm area is 7576 hectares, the forest coverage rate is 82.0%, and the vegetation is mainly Masson pine, fir, and various broad-leaved tree species. Increased forest coverage reduces sediment production30. The soil is mainly viscous yellow–brown soil and loess parent material. Rain is concentrated in summer, with an average annual rainfall of 1094.6 mm and an average annual temperature of 16.4 °C. Rainfall-related flood risk increased in the Yangtze River Delta in recent years31.The study was based in a Pinus massoniana forest in the Taizishan forest farm of Hubei Province. The Pinus massoniana (Masson pine) is a common species distributed in Central China.Figure 1Geographic location of the study area. Maps were generated using ArcGIS 10.8 for Desktop (http://www.esri.com/software/arcgis/arcgis-for-desktop).Full size imageExperiment designWe chose the Pinus massoniana forest with 47a in the study area as the research object. In the typical Pinus massoniana forest, the separate layers of litter (semi-decomposed and non-decomposed layers) were collected from several 1 m × 1 m quadrat and placed in grid bags. The litter of the semi-decomposed layer have no complete outline, and the color was brown. As the litter leaves of the completely decomposed layer are powdery and are combined with the soil layer, this layer is difficult to collect. Before testing, it was necessary to clean the soil off the pine needles and then allow the litter to dry naturally. The characteristics of the semi-decomposed and non-decomposed litter layers are shown in Table 1. The soil samples need to be dried and screened by 10 mm. When filling the soil trough, every 0.1 m of soil thickness was one layer, for a total of four layers (0.4 m). The characteristics by soil particle sizes are different (Fig. 2). The soil samples were dried naturally, crushed, and then sieved. The soil trough (2 m long, 0.5 m wide and 0.5 m deep) was filled to have a bulk density of 1.53 g·m−3. In this process, an appropriate amount of water was sprinkled on the surface of each soil layer to achieve a soil moisture content consistent with the surrounding, undisturbed, or natural, state. The simulation experiment was conducted in the Jiufeng rainfall laboratory at Beijing Forestry University, China. We used a rainfall simulation system (QYJY-503T, Qingyuan Measurement Technology, Xi’an, China) used a rotary downward spray nozzle. The system is able to simulate a wide range of rainfall intensities (10 to 300 mm h−1) using various water pressure and nozzle sizes controlled by a computer system.Table 1 Characteristics of the non-decomposed and semi-decomposed layers of Pinus massoniana litter.Full size tableFigure 2Soil particle composition of study area soil layers.Full size imageAccording to the results of the field forest investigation, the litter was covered with the experimental treatments shown in Table 2. The treatments mass coverage of non-decomposed litter layer was named as follows: N1 denoted litter mass coverage 0 g·m−2, N2 was ‘the non-decomposed litter mass coverage 100 g·m−2’, N3 was ‘the non-decomposed litter mass coverage 200 g·m−2’, and N4 was ‘the non-decomposed litter mass coverage 400 g·m−2’, N5 was ‘the semi-decomposed litter mass coverage 100 g·m−2’, N6 was ‘the non-decomposed litter mass coverage 100 g·m−2 and the semi-decomposed litter mass coverage 100 g·m−2’, N7 was ‘the non-decomposed litter mass coverage 200 g·m−2 and the semi-decomposed litter mass coverage 100 g·m−2’. N2, N3 and N4 were the undissolved state of litter layer, and N4 (non-decomposed state, ND), N7 (initial stage of litter decomposition, ID), N6 (middle stage of litter decomposition, MD) and N5 (final stage of litter decomposition, FD) respectively represent different stages of litter decomposition.Table 2 The experimental design of this study.Full size tableAccording to the rainfall in the Taizishan area of Hubei Province, erosive rainfall and extreme rainstorms were selected as the research conditions. Summer rainfall events occur mainly in the summer in this area, and a rainfall intensity of 60 mm·h−1 was the most common erosive rainfall intensity. Under extreme weather conditions, the rainfall intensity can reach up to 120 mm·h−1. Our experiments were conducted with 60 and 120 mm·h−1 rain intensities with a rainfall that lasted 1 h. According to the field investigation data of forest land, this area is a low mountain and hilly area with a slope mostly between 5° and 10°. Therefore, 5° and 10° were selected for the slope treatments in this study. The combination of slope and rainfall intensity was named as follows: T1 denoted ‘Slope 5° and rainfall intensity 60 mm·h−1’, T2 was ‘Slope 10° and rainfall intensity 60 mm·h−1’, T3 was ‘Slope 5° and rainfall intensity 120 mm·h−1’, and T4 was ‘Slope 10° and rainfall intensity 120 mm·h−1’. With two rainfall intensities, two slopes, seven litter coverage gradient and two repetitions combined, this study had a total of 56 rainfall events.Experimental procedureBefore the test, the soil samples were wetted for 10 h and then drained for 2 h to eliminate the effect of the initial soil moisture on the soil detachment measurement. When the simulated rainfall started, all the runoff and sediment produced from plot were collected every 5 min in the first 10 min, and then collected once every 10 min during the subsequent 50 min. At the same time, runoff velocity, depth and temperature were measured and vernier calliper (accuracy 0.02 mm) respectively.The overland flow velocity was measured using dying method (KMnO4 solution)32. After judging the flow pattern, we confirmed the correction coefficient K value (in laminar flow state, K = 0.67; transition flow state, K = 0.70; turbulent flow state, K = 0.8). The average velocity of overland flow was obtained by multiplying the correction coefficient K and the instantaneous velocity. Runoff depth was measured using vernier calliper (accuracy 0.02 mm). Runoff temperature was measured using thermometer. When the rainfall experiment finished, the collected runoff samples were measured volumetric cylinder and then settled for at least 12 h. The clear water was decanted, and the samples were put into an oven to dry for 24 h under 105 °C. The sediment sample was dried and weighed with an electronic scale.Calculation of hydrodynamic parametersOverland flow has the characteristics of a thin water layer, large fluctuations of the underlying surface, and unstable flow velocity. At present, most scholars use open-channel flow theory to study overland flow33,34. In open-channel flow theory, the Reynold’s number (Re), Froude constant (Fr), flow index (m), resistance coefficient (f), and soil separation rate (({D}_{r})) are the basic parameters of overland flow dynamics, through Reynold’s number (Re), Froude constant (Fr), flow index (m) can distinguish flow patterns. Re is calculated as:$$Re=Rcdot V/nu ,$$where Re is the Reynolds number of the water flow, which is dimensionless, and can be used to judge the flow state of overland flow. When Re ≤ 500, the flow pattern is laminar; when 500   5000, the flow pattern is turbulent. R is the hydraulic radius (m), which is generally replaced by flow depth as measured by a vernier calliper (accuracy 0.02 mm). (V) is the average velocity (m·s−1); (nu) is the kinematic viscosity coefficient (m2·s−1), and the calculation formula is (nu) = 0.01775·10−4·(1 + 0.0337 t + 0.00021 t2), where t is the test overland flow temperature35.Fr is the Froude constant, which is the ratio of the inertial force to gravity and can be used to distinguish overland flow as rapid flow, slow flow, or critical flow. When Fr  1, the fluid is rapid flow.Fr is calculated as:$$Fr=V/sqrt{gcdot R},$$where (Fr) is the Froude constant of the water flow, which is dimensionless; (V) is the average velocity (m·s−1); g is the acceleration of gravity and has a constant value of 9.8 m·s−2; R is a hydraulic radius (m), and is generally replaced by flow depth as measured by a vernier calliper (accuracy 0.02 mm).Regression fitting is made for runoff depth (h) and single width flow (Q). The runoff depth equation for slope is as follows:$$h=k{q}^{m},$$where q is the single width flow (L·m−1·s−1); h is the depth of water on the slope (m); and m is the flow index, which reflects the turbulent characteristics of the flow state. The larger m is, the more energy the flow consumes in the work of resistance. The comprehensive index (k) reflects the characteristics of the underlying surface and the water viscosity of the slope flow. The larger k is, the stronger the surface material of the slope works on the flow.The resistance of overland flow reflects the inhibition effect of different underlying surface conditions on the velocity of overland flow. The Darcy–Weisbach formula is widely used in research because of its two advantages: applicability and dimensionlessness under laminar and turbulent flow conditions36,37.The resistance coefficient (f) is calculated as follows:$$f=8cdot gcdot Rcdot J/{V}^{2},$$where the resistance coefficient f has no dimension; g is the acceleration of gravity and is always 9.8 m·s−2; R is a hydraulic radius (m), generally replaced by flow depth measured by a vernier calliper (accuracy 0.02 mm); (V) is the average velocity (m·s−1); and J is the hydraulic gradient, which can be converted by the gradient in a uniform flow state and is generally replaced by the sine value of the gradient.Shear stress ((tau)) is the main driving force that affects the stripping of soil particles from the surface soil38. Shear stress is calculated as:$$tau =rcdot gcdot Rcdot J,$$where (tau) is the shear force of runoff (Pa); and r is the density of water and sediment concentration flow (kg·m−3). This study used a muddy water mass and volume ratio in the unseparated state to calculate the density of water and sediment concentration flow.Flow power (W) is the runoff power per unit area of water and refers to the power consumed by the weight of water acting on the riverbed surface to transport runoff and sediment. W is calculated as:$$W=tau cdot V,$$where W is the flow power (N·m−1·s−1); and (tau) is the shear force of runoff (Pa).Soil separation rate (({D}_{r})) refers to the quality of soil in which soil particles are separated from the soil per unit time. The calculation formula is as follows:$${D}_{r}={W}_{d}-{W}_{w}/tcdot A,$$where ({D}_{r}) is the rate of soil separation (kg·m−2·s−1); ({W}_{w}) is the dry weight of soil before the test; ({W}_{d}) is the dry weight of soil after the test, measured by the drying method (kg); t is the scouring time (s); and A is the surface area of the soil sample (m2). More