More stories

  • in

    The evolutionary process of invasion in the fall armyworm (Spodoptera frugiperda)

    Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398–1407 (2014).Article 

    Google Scholar 
    Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).Article 

    Google Scholar 
    McNeely, J. A. As the world gets smaller, the chances of invasion grow. Euphytica 148, 5–15 (2006).Article 

    Google Scholar 
    Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl. Acad. Sci. USA 115, E2264–E2273 (2018).Article 

    Google Scholar 
    Roques, A. et al. Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol. Invasions 18, 907–920 (2016).Article 

    Google Scholar 
    de Poorter, M. & Browne, M. The Global Invasive Species Database (GISD) and international information exchange: Using global expertise to help in the fight against invasive alien species. Plant Prot. Plant Health Eur. 9–11, 49–54 (2005).
    Google Scholar 
    Tay, W. T. & Gordon, K. H. J. Going global: Genomic insights into insect invasions. Curr. Opin. Insect Sci. 31, 123–130 (2019).Article 

    Google Scholar 
    Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 113, 7575–7579 (2016).Article 

    Google Scholar 
    Prentis, P. J., Wilson, J. R. U., Dormontt, E. E., Richardson, D. M. & Lowe, A. J. Adaptive evolution in invasive species. Trends Plant Sci. 13, 288–294 (2008).Article 

    Google Scholar 
    Bertelsmeier, C. Globalization and the anthropogenic spread of invasive social insects. Curr. Opin. Insect Sci. 46, 16–23 (2021).Article 

    Google Scholar 
    Crawley, M. J. et al. The population biology of invaders. Philos. Trans. R. Soc. Lond. B 314, 711–731 (1986).Article 

    Google Scholar 
    Petren, K. & Case, T. J. An experimental demonstration of exploitation competition in an ongoing invasion. Ecology 77, 118–132 (1996).Article 

    Google Scholar 
    Kowarik, I. Time lags in biological invasions with regard to the success and failure of alien species. Plant Invasions Gen. Asp. Spec. Probl. 1, 15–38 (1995).
    Google Scholar 
    Andrews, K. L. The whorlworm, Spodoptera frugiperda. Cent. Am. Neighb. Areas Fla. Entomol. 63, 456–467 (1980).Article 

    Google Scholar 
    Sparks, A. N. A review of the biology of the fall armyworm. Fla. Entomol. 1, 82–87 (1979).Article 

    Google Scholar 
    Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267 (2016).Article 

    Google Scholar 
    Gutiérrez-Moreno, R. et al. Field-evolved resistance of the Fall Armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J. Econ. Entomol. 112, 792–802 (2019).Article 

    Google Scholar 
    Blanco, C. A. et al. Susceptibility of isofamilies of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1Ac and Cry1Fa proteins of Bacillus thuringiensis. Southw. Entomol. 35, 409–416 (2010).Article 

    Google Scholar 
    Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038 (2010).Article 

    Google Scholar 
    Chandrasena, D. I. et al. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperda populations from Argentina. Pest Manag. Sci. 74, 746–754 (2018).Article 

    Google Scholar 
    Pashley, D. P. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): A sibling species complex?. Ann. Entomol. Soc. Am. 79, 898–904 (1986).Article 

    Google Scholar 
    Pashley, D. P. & Martin, J. A. Reproductive incompatibility between host strains of the Fall Armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 80, 731–733 (1987).Article 

    Google Scholar 
    Dumas, P. et al. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: Two host strains or two distinct species?. Genetica 143, 305–316 (2015).Article 

    Google Scholar 
    Lu, Y. J., Kochert, G. D., Isenhour, D. J. & Adang, M. J. Molecular characterization of a strain-specific repeated DNA sequence in the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Insect Mol. Biol. 3, 123–130 (1994).Article 

    Google Scholar 
    Pashley, D. P. Host-associated differentiation in armyworms (Lepidoptera: Noctuidae): An allozymic and mtDNA perspective. in Electrophoretic Studies on Agricultural Pests, vol. 39, 103–114 (Clarendon Press, 1989).Nagoshi, R. N. The fall armyworm Triosephosphate Isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103, 283–292 (2010).Article 

    Google Scholar 
    Dumas, P. et al. Phylogenetic molecular species delimitations unravel potential new species in the pest genus Spodoptera Guenée, 1852 (Lepidoptera, Noctuidae). PLoS ONE 10, e0122407 (2015).Article 

    Google Scholar 
    Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamò, M. First report of outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11, e0165632 (2016).Article 

    Google Scholar 
    Day, R. et al. Fall armyworm: impacts and implications for Africa. Outlooks Pest Manag. 28, 196–201 (2017).Article 

    Google Scholar 
    Nuss, E. T. & Tanumihardjo, S. A. Maize: A paramount staple crop in the context of global nutrition. Compr. Rev. Food Sci. Food Saf. 9, 417–436 (2010).Article 

    Google Scholar 
    Zhang, L. et al. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol. Ecol. Resour. 20, 1682–1696 (2020).Article 

    Google Scholar 
    Zhang, D. et al. Insecticide resistance monitoring for the invasive populations of fall armyworm, Spodoptera frugiperda in China. J. Integr. Agric. 20, 783–791 (2021).Article 

    Google Scholar 
    Gui, F. et al. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein Cell 1, 1–19 (2020).
    Google Scholar 
    Schlum, K. A. et al. Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genomics 22, 179 (2021).Article 

    Google Scholar 
    Stokstad, E. New crop pest takes Africa at lightning speed. Science 356, 473–474 (2017).Article 

    Google Scholar 
    Nagoshi, R. N. et al. The fall armyworm strain associated with most rice, millet, and pasture infestations in the Western Hemisphere is rare or absent in Ghana and Togo. PLoS ONE 16, e0253528 (2021).Article 

    Google Scholar 
    Caniço, A., Mexia, A. & Santos, L. Farmers’ knowledge, perception and management practices of fall armyworm (Spodoptera frugiperda Smith) in Manica province, Mozambique. NeoBiota 68, 127 (2021).Article 

    Google Scholar 
    Nagoshi, R. N. et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 12, e0181982 (2017).Article 

    Google Scholar 
    Nagoshi, R. N., Goergen, G., Plessis, H. D., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9, 8311 (2019).Article 

    Google Scholar 
    Create your own Custom Map. MapChart https://mapchart.net/index.html.Sharanabasappa, S. et al. First report of the Fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag. Hortic. Ecosyst. 24, 23–29 (2018).
    Google Scholar 
    Liu, H. et al. Chromosome level draft genomes of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), an alien invasive pest in China. BioRxiv https://doi.org/10.1101/671560 (2019).Article 

    Google Scholar 
    Gimenez, S. et al. Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Commun. Biol. 3, 664 (2020).Article 

    Google Scholar 
    Gouin, A. et al. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 7, 11816 (2017).Article 

    Google Scholar 
    Nam, K. et al. Positive selection alone is sufficient for whole genome differentiation at the early stage of speciation process in the fall armyworm. BMC Evol. Biol. 20, 152 (2020).Article 

    Google Scholar 
    Fiteni, E. et al. Host-plant adaptation as a driver of incipient speciation in the fall armyworm (Spodoptera frugiperda). BMC Ecol. Evol. 22, 133 (2022).Article 

    Google Scholar 
    Tay, W. T. et al. Global population genomic signature of Spodoptera frugiperda (fall armyworm) supports complex introduction events across the Old World. Commun. Biol. 5, 1–15 (2022).Article 

    Google Scholar 
    Guan, F. et al. Whole-genome sequencing to detect mutations associated with resistance to insecticides and Bt proteins in Spodoptera frugiperda. Insect Sci. https://doi.org/10.1111/1744-7917.12838 (2020).Article 

    Google Scholar 
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).Article 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).Article 

    Google Scholar 
    Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23, 3133–3157 (2014).Article 

    Google Scholar 
    Pavlidis, P., Živković, D., Stamatakis, A. & Alachiotis, N. SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Mol. Biol. Evol. 30, 2224–2234 (2013).Article 

    Google Scholar 
    Charlesworth, B., Morgan, M. T. & Charlesworth, D. The effect of deleterious mutations on neutral molecular variation. Genetics 134, 1289–1303 (1993).Article 

    Google Scholar 
    Aikio, S., Duncan, R. P. & Hulme, P. E. Lag-phases in alien plant invasions: separating the facts from the artefacts. Oikos 119, 370–378 (2010).Article 

    Google Scholar 
    Morimoto, N., Kiritani, K., Yamamura, K. & Yamanaka, T. Finding indications of lag time, saturation and trading inflow in the emergence record of exotic agricultural insect pests in Japan. Appl. Entomol. Zool. 54, 437–450 (2019).Article 

    Google Scholar 
    Aagaard, K. & Lockwood, J. Exotic birds show lags in population growth. Divers. Distrib. 20, 547–554 (2014).Article 

    Google Scholar 
    Azzurro, E., Maynou, F., Belmaker, J., Golani, D. & Crooks, J. A. Lag times in Lessepsian fish invasion. Biol. Invasions 18, 2761–2772 (2016).Article 

    Google Scholar 
    McDonnell, A. M. & Dang, C. H. Basic review of the cytochrome P450 system. J. Adv. Pract. Oncol. 4, 263–268 (2013).
    Google Scholar 
    Giraudo, M. et al. Cytochrome P450s from the fall armyworm (Spodoptera frugiperda): responses to plant allelochemicals and pesticides. Insect Mol. Biol. 24, 115–128 (2015).Article 

    Google Scholar 
    Cao, W. et al. Multi-faceted epigenetic dysregulation of gene expression promotes esophageal squamous cell carcinoma. Nat. Commun. 11, 3675 (2020).Article 

    Google Scholar 
    Yainna, S. et al. Geographic monitoring of insecticide resistance mutations in native and invasive populations of the Fall Armyworm. Insects 12, 468 (2021).Article 

    Google Scholar 
    Tapadia, M. G. & Lakhotia, S. C. Expression of mdr49 and mdr65 multidrug resistance genes in larval tissues of Drosophila melanogaster under normal and stress conditions. Cell Stress Chaperones 10, 7–11 (2005).Article 

    Google Scholar 
    Lin, H. et al. Characterization and expression profiling of serine protease inhibitors in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). BMC Genomics 18, 162 (2017).Article 

    Google Scholar 
    de Fouchier, A. et al. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nat. Commun. 8, 15709 (2017).Article 

    Google Scholar 
    Tataroglu, O. & Emery, P. The molecular ticks of the Drosophila circadian clock. Curr. Opin. Insect Sci. 7, 51–57 (2015).Article 

    Google Scholar 
    Hänniger, S. et al. Genetic basis of allochronic differentiation in the fall armyworm. BMC Evol. Biol. 17, 68 (2017).Article 

    Google Scholar 
    Schöfl, G., Heckel, D. G. & Groot, A. T. Time-shifted reproductive behaviours among fall armyworm (Noctuidae: Spodoptera frugiperda) host strains: Evidence for differing modes of inheritance. J. Evol. Biol. 22, 1447–1459 (2009).Article 

    Google Scholar 
    Haenniger, S. et al. Sexual communication of Spodoptera frugiperda from West Africa: Adaptation of an invasive species and implications for pest management. Sci. Rep. 10, 2892 (2020).Article 

    Google Scholar 
    Feder, J. L. et al. Genome-wide congealing and rapid transitions across the speciation continuum during speciation with gene flow. J. Hered. 105, 810–820 (2014).Article 

    Google Scholar 
    Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article 

    Google Scholar 
    McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).Article 

    Google Scholar 
    Lu, Y. & Adang, M. J. Distinguishing fall armyworm (Lepidoptera: Noctuidae) strains using a diagnostic mitochondrial DNA marker. Fla. Entomol. 1, 48–55 (1996).Article 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 

    Google Scholar 
    Meng, G., Li, Y., Yang, C. & Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 47, e63–e63 (2019).Article 

    Google Scholar 
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).Article 

    Google Scholar 
    Tamura, K. et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).Article 

    Google Scholar 
    Li, H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics 27, 718–719 (2011).Article 

    Google Scholar 
    Rentería, M. E., Cortes, A. & Medland, S. E. Using PLINK for genome-wide association studies (GWAS) and data analysis. Methods Mol. Biol. 1019, 193–213 (2013).Article 

    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 

    Google Scholar 
    Ernst, M. D. Permutation methods: a basis for exact inference. Stat. Sci. 4, 676–685 (2004).MathSciNet 
    MATH 

    Google Scholar 
    Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).Article 

    Google Scholar 
    Kergoat, G. J. et al. A novel reference dated phylogeny for the genus Spodoptera Guenée (Lepidoptera: Noctuidae: Noctuinae): New insights into the evolution of a pest-rich genus. Mol. Phylogenet. Evol. 161, 107161 (2021).Article 

    Google Scholar 
    Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798–2800 (2015).Article 

    Google Scholar 
    Plotree, D. & Plotgram, D. PHYLIP-phylogeny inference package (version 3.2). Cladistics 5, 163–166 (1989).
    Google Scholar 
    Nelson, D. R. The cytochrome p450 homepage. Hum. Genomics 4, 1–7 (2009).Article 

    Google Scholar  More

  • in

    Fungivorous mites enhance the survivorship and development of stingless bees even when exposed to pesticides

    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).Article 
    PubMed 

    Google Scholar 
    – Potts, S. G., et al. Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination, and food production (eds. Potts, S. G. et al.). 36 pages. (Bonn, Germany, 2016).Dolezal, A. G. et al. Interacting stressors matter: Diet quality and virus infection in honeybee health. R. Soc. Open Sci. 6, 181803 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Annoscia, D. et al. Neonicotinoid Clothianidin reduces honeybee immune response and contributes to Varroa mite proliferation. Nat. Commun. 11, 1–7 (2020).Article 

    Google Scholar 
    Macías-Macías, J. O. et al. Nosema ceranae causes cellular immunosuppression and interacts with thiamethoxam to increase mortality in the stingless bee Melipona colimana. Sci. Rep. 10, 1–8 (2020).Article 

    Google Scholar 
    Michener, C. D. Pot-honey. In Pot-Honey: A Legacy of Stingless Bees (eds Vit, P. et al.) 3–17 (Springer, 2013).Chapter 

    Google Scholar 
    Rosa, C. A. et al. Yeast communities associated with stingless bees. FEMS Yeast Res. 4, 271–275 (2003).Article 
    PubMed 

    Google Scholar 
    Menezes, C., Vollet-Neto, A. & Fonseca, V. L. I. An advance in the in vitro rearing of stingless bee queens. Apidologie 44, 491–500 (2013).Article 

    Google Scholar 
    Morais, P. B., Calaça, P. S. S. T. & Rosa, C. A. Microorganisms associated with stingless bees. In Pot-Honey Bees (eds Vit, P. et al.) 173–186 (Springer, 2013).Chapter 

    Google Scholar 
    Menegatti, C. et al. Paenibacillus polymyxa associated with the stingless bee Melipona scutellaris produces antimicrobial compounds against entomopathogens. J. Chem. Ecol. 44, 1158–1169 (2018).Article 
    PubMed 

    Google Scholar 
    Paludo, C. R. et al. Stingless bee larvae require fungal steroid to pupate. Sci. Rep. 8, 1122321 (2018).Article 

    Google Scholar 
    Paludo, C. R. et al. Microbial community modulates growth of symbiotic fungus required for stingless bee metamorphosis. PLoS ONE 14, e0219696 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamzah, S. A., Zawawi, N. & Sabri, S. A review on the association of bacteria with stingless bees. Sains Malays. 49, 1853–1863 (2020).Article 

    Google Scholar 
    de Paula, G. T., Menezes, C., Pupo, M. T. & Rosa, C. A. Stingless bees and microbial interactions. Curr. Opin. Insect Sci. 44, 41–47 (2020).Article 
    PubMed 

    Google Scholar 
    Menezes, C. et al. A Brazilian social bee must cultivate fungus to survive. Curr. Biol. 25, 2851–2855 (2015).Article 
    PubMed 

    Google Scholar 
    – Flechtmann, C. H. W. & de Camargo, C. A. Acari associated with stingless bees (Meliponidae, Hymenoptera) from Brazil. in Proceedings of the 4th International Congress of Acarology, Saalfelden (Austria)/edited by Edward Piffl (Budapest, Akademiai Kiado,1979).Dorigo, A. S. et al. In vitro larval rearing protocol for the stingless bee species Melipona scutellaris for toxicological studies. PLoS ONE 14, e0213109 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosa-Fontana, A., Dorigo, A. S., Galaschi-Teixeira, J. S., Nocelli, R. C. F. & Malaspina, O. What is the most suitable native bee species from the neotropical region to be proposed as model-organism for toxicity tests during the larval phase?. Environ. Pollut. 265, 114849 (2020).Article 
    PubMed 

    Google Scholar 
    Miotelo, L., Dos Reis, A. L. M., Malaquias, J. B., Malaspina, O. & Roat, T. C. Apis mellifera and Melipona scutellaris exhibit differential sensitivity to thiamethoxam. Environ. Pollut. 268, 115770 (2021).Article 
    PubMed 

    Google Scholar 
    Rosa, A. E., André, H. & Flechtmann, C. H. W. Acari domun meliponirarum brasiliensium habitantes. Proctotydaeus alvearii 45(1–2), 79–83 (1985).
    Google Scholar 
    Da-Costa, T., dos Santos, C. F., Rodighero, L. F., Ferla, N. J. & Blochtein, B. Mite diversity is determined by the stingless bee host species. Apidologie 52(5), 950–959. https://doi.org/10.1007/s13592-021-00878-2 (2021).Article 

    Google Scholar 
    de Rosa, A. S. et al. Consumption of the neonicotinoid thiamethoxam during the larval stage affects the survival and development of the stingless bee Scaptotrigona aff. depilis. Apidologie 47, 729–738 (2016).Article 

    Google Scholar 
    Wu, J. Y., Anelli, C. M. & Sheppard, W. S. Sub-lethal effects of pesticide residues in brood comb on worker honeybee (Apis mellifera) development and longevity. PLoS One 6, e14720 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tavares, D. A., Roat, T. C., Carvalho, S. M., Silva-Zacarin, E. C. M. & Malaspina, O. In vitro effects of thiamethoxam on larvae of Africanized honeybee Apis mellifera (Hymenoptera: Apidae). Chemosphere 135, 370–378 (2015).Article 
    PubMed 

    Google Scholar 
    Biani, N. B., Mueller, U. G. & Wcislo, W. T. Cleaner mites: sanitary mutualism in the miniature ecosystem of neotropical bee nests. Am. Nat. 173, 841–847 (2009).Article 
    PubMed 

    Google Scholar 
    Gilliam, M., Roubik, D. W. & Lorenz, B. J. Microorganisms associated with pollen, honey, and brood provisions in the nest of a stingless bee Melipona fasciata. Apidologie 21, 89–97 (1990).Article 

    Google Scholar 
    Rebelo, K. S., Ferreira, A. G. & Carvalho-Zilse, G. A. Physicochemical characteristics of pollen collected by Amazonian stingless bees. Ciência Rural 46, 927–932 (2016).Article 

    Google Scholar 
    Mohammad, S. M., Mahmud-Ab-Rashid, N.-K. & Zawawi, N. Stingless bee-collected pollen (bee bread): Chemical and microbiology properties and health benefits. Molecules 26, 957 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    da Cruz Landim, C. (2009). Abelhas. Unesp.Rosa, A. S. et al. Quantification of larval food and its pollen content in the diet of stingless bees: Subsidies for toxicity bioassays studies. Braz. J. Biol. 75(3), 771–772. https://doi.org/10.1590/1519-6984.22314 (2015).Article 
    PubMed 

    Google Scholar 
    Vollet-Neto, A., Maia-Silva, C., Menezes, C. & Imperatriz-Fonseca, V. L. Newly emerged workers of the stingless bee Scaptotrigona aff. depilis prefer stored pollen to fresh pollen. Apidologie 48, 204–210 (2017).Article 

    Google Scholar 
    Hartfelder, K. & Engels, W. The composition of larval food in stingless bees: evaluating nutritional balance by chemosystematic methods. Insect. Soc. 36, 1–14 (1989).Article 

    Google Scholar 
    Costa, R. A. C. & da Cruz-Landim, C. Distribution of acid phosphatases in the hypopharyngeal glands from workers, queens, and males of a Brazilian stingless bee Scaptotrigona postica Latreille: An ultrastructural cytochemical study. Histochem. J. 33, 653–662 (2001).Article 
    PubMed 

    Google Scholar 
    de Moraes, R. L. M. S., Brochetto-Braga, M. R. & Azevedo, A. Electrophoretical studies of proteins of the hypopharyngeal glands and of the larval food of Melipona quadrifasciata anthidioides Lep. (Hymenoptera, Meliponinae). Insect. Soc. 43, 183–188 (1996).Article 

    Google Scholar 
    Fernandes-da-Silva, P. G., Muccillo, G. & Zucoloto, F. S. Determination of minimum quantity of pollen and nutritive value of different carbohydrates for Scaptotrigona depilis Moure (Hymenoptera, Apidae). Apidologie 24, 73–79 (1993).Article 

    Google Scholar 
    Fernandes-da-Silva, P. G. & Serrão, J. E. Nutritive value and apparent digestibility of bee-collected and bee-stored pollen in the stingless bee, Scaptotrigona postica Latr. (Hymenoptera, Apidae, Meliponini). Apidologie 31, 39–45 (2000).Article 

    Google Scholar 
    Crailsheim, K. & Stolberg, E. Influence of diet, age and colony condition upon intestinal proteolytic activity and size of the hypopharyngeal glands in the honeybee (Apis mellifera L.). J. Insect Physiol. 35, 595–602 (1989).Article 

    Google Scholar 
    Oliveira, R. A., Roat, T. C., Carvalho, S. M. & Malaspina, O. Side-effects of thiamethoxam on the brain and midgut of the africanized honeybee Apis mellifera (Hymenopptera: Apidae). Environ. Toxicol. 29, 1122–1133 (2014).Article 
    PubMed 

    Google Scholar 
    Christen, V., Schirrmann, M., Frey, J. E. & Fent, K. Global transcriptomic effects of environmentally relevant concentrations of the neonicotinoids clothianidin, imidacloprid, and thiamethoxam in the brain of honeybees (Apis mellifera). Environ. Sci. Technol. 52, 7534–7544 (2018).Article 
    PubMed 

    Google Scholar 
    Moreira, D. R. et al. Toxicity and effects of the neonicotinoid thiamethoxam on Scaptotrigona bipunctata Lepeletier, 1836 (Hymenoptera: Apidae). Environ. Toxicol. 33, 463–475 (2018).Article 
    PubMed 

    Google Scholar 
    Tavares, D. A., Roat, T. C., Silva-Zacarin, E. C. M., Nocelli, R. C. F. & Malaspina, O. Exposure to thiamethoxam during the larval phase affects synapsin levels in the brain of the honeybee. Ecotoxicol. Environ. Saf. 169, 523–528 (2019).Article 
    PubMed 

    Google Scholar 
    Roat, T. C. et al. Using a toxicoproteomic approach to investigate the effects of thiamethoxam into the brain of Apis mellifera. Chemosphere 258, 127362 (2020).Article 
    PubMed 

    Google Scholar 
    Caesar, L. et al. The virome of an endangered stingless bee suffering from annual mortality in southern Brazil. J. Gen. Virol. 100, 1153–1164 (2019).Article 
    PubMed 

    Google Scholar 
    Guimarães-Cestaro, L. et al. Occurrence of virus, microsporidia, and pesticide residues in three species of stingless bees (Apidae: Meliponini) in the field. Sci. Nat. 107, 1–14 (2020).Article 

    Google Scholar 
    Teixeira, É. W. et al. European Foulbrood in stingless bees (Apidae: Meliponini) in Brazil: Old disease, renewed threat. J. Invertebr. Pathol. 172, 107357 (2020).Article 
    PubMed 

    Google Scholar 
    Alberoni, D., Gaggìa, F., Baffoni, L. & Di Gioia, D. Beneficial microorganisms for honeybees: problems and progresses. Appl. Microbiol. Biotechnol. 100, 9469–9482 (2016).Article 
    PubMed 

    Google Scholar 
    Manley, R., Boots, M. & Wilfert, L. Emerging viral disease risk to pollinating insects: ecological, evolutionary, and anthropogenic factors. J. Appl. Ecol. 52, 331–340 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Manley, R. et al. Knock- on community impacts of a novel vector: spillover of emerging DWV- B from Varroa- infested honeybees to wild bumblebees. Ecol. Lett. 22, 1306–1315 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Graystock, P., Blane, E. J., McFrederick, Q. S., Goulson, D. & Hughes, W. O. H. Do managed bees drive parasite spread and emergence in wild bees?. Int. J. Parasitol. Parasit. Wildl. 5, 64–75 (2016).Article 

    Google Scholar 
    Requier, F. et al. The conservation of native honeybees is crucial. Trends Ecol. Evol. 34, 789–798 (2019).Article 
    PubMed 

    Google Scholar 
    Test No. 237: Honey Bee (Apis Mellifera) Larval Toxicity Test, Single Exposure. (2013). OECD. https://doi.org/10.1787/9789264203723-enMoral, R. A., Hinde, J. & Demétrio, C. G. Half-normal plots and overdispersed models in R: the hnp package. J. Stat. Softw. 81(1), 1–23 (2017).
    Google Scholar 
    – Kassambara, A. Survminer. GitHub repository. https://github.com/kassambara/survminer (2020).- Therneau, T., Crowson, C., & Atkinson, E. Multi-state models and competing risks. CRAN-R https://cran.r-project.org/web/packages/survival/vignettes/compete (2020). More

  • in

    10 startling images of nature in crisis — and the struggle to save it

    Global statistics on declining biodiversity can give the impression that every population of every species is in a downward spiral. In fact, many populations are stable or growing, while a small number of species faces truly existential challenges. These photos capture some specific crises. They are images of threats unfolding, of desperate attempts at species defence and of the beautiful living world that is at stake.
    The 15th United Nations Biodiversity Conference, COP15, opens in Montreal, Canada, on 7 December. At the meeting, delegates will attempt to agree on goals for stabilizing species’ declines by 2030 and reverse them by mid-century. The current draft framework agreement promises nothing less than a “transformation in society’s relationship with biodiversity”.
    Help for the kelp. Tasmania’s forests of giant kelp (Macrocystis pyrifera) are dying as climate change shifts ocean currents, bringing warm water to the east coast of the temperate Australian island. The kelp forests host an entire ecosystem, including abalone and crayfish — both economically important species and part of local food culture. Now, researchers at the Institute for Marine and Antarctic Studies in Hobart are breeding kelp plants that can tolerate warmer conditions, and replanting them along the coast — a trial for what they hope will become a landscape-scale restoration. More

  • in

    Carbon turnover gets wet

    Whether land acts as a carbon sink or source depends largely on two opposite fluxes: carbon uptake through photosynthesis and carbon release through turnover. Turnover occurs through multiple processes, including but not limited to, leaf senescence, tree mortality, and respiration by plants, microbes, and animals. Each of these processes is sensitive to climate, and ecologists and climatologists have been working to figure out how temperature regulates biological activities and to what extent the carbon cycle responds to global warming. Previous theoretical and experimental studies have yielded conflicting relationships between temperature and carbon turnover, with large variations across ecosystems, climate and time-scale1,2,3,4. Writing in Nature Geoscience, Fan et al.5 find that hydrometeorological factors have an important influence on how the turnover time of land carbon responds to changes in temperature. More

  • in

    Reply to: Erroneous predictions of auxotrophies by CarveMe

    Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, M. Erroneous predictions of auxotrophies by CarveMe. https://doi.org/10.1038/s41559-022-01936-3 (2022).Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, M. N., Deutschbauer, A. M. & Arkin, A. P. GapMind: automated annotation of amino acid biosynthesis. mSystems 5, e00291-20 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. USA 111, E2149–E2156 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ponomarova, O. et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 5, 345–357.e6 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zengler, K. & Zaramela, L. S. The social network of microorganisms—how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giri, S. et al. Metabolic dissimilarity determines the establishment of cross-feeding interactions in bacteria. Curr. Biol. 31, 5547–5557.e6 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Morris, J. J., Lenski, R. E. & Zinser, E. R. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campbell, K. et al. Self-establishing communities enable cooperative metabolite exchange in a eukaryote. eLife 4, e09943 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    D’Souza, G. & Kost, C. Experimental evolution of metabolic dependency in bacteria. PLOS Genet. 12, e1006364 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ziesack, M. et al. Engineered interspecies amino acid cross-feeding increases population evenness in a synthetic bacterial consortium. mSystems 4, e00352-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryback, B., Bortfeld-Miller, M. & Vorholt, J. A. Metabolic adaptation to vitamin auxotrophy by leaf-associated bacteria. ISME J. https://doi.org/10.1038/s41396-022-01303-x (2022). More

  • in

    Phytoplankton in the middle

    Marine phytoplankton both follow and actively influence the environment they inhabit. Unpacking the complex ecological and biogeochemical roles of these tiny organisms can help reveal the workings of the Earth system.
    Phytoplankton are the workers of an ocean-spanning factory converting sunlight and raw nutrients into organic matter. These little organisms — the foundation of the marine ecosystem — feed into a myriad of biogeochemical cycles, the balance of which help control the distribution of carbon on the Earth surface and ultimately the overall climate state. As papers in this issue of Nature Geoscience show, phytoplankton are far from passive actors in the global web of biogeochemical cycles. The functioning of phytoplankton is not just a matter for biologists, but is also important for geoscientists seeking to understand the Earth system more broadly.Phytoplankton are concentrated where local nutrient and sea surface temperatures are optimal, factors which aren’t always static in time. Prominent temperature fluctuations, from seasonal to daily cycles, are reflected in phytoplankton biomass, with cascading effects on other parts of marine ecosystems, such as economically-important fisheries. In an Article in this issue, Keerthi et al., show that phytoplankton biomass, tracked by satellite measurements of chlorophyll for relatively small ( More

  • in

    Assessment of suitable habitat of mangrove species for prioritizing restoration in coastal ecosystem of Sundarban Biosphere Reserve, India

    Banerjee, A. K. et al. Setting the priorities straight-Species distribution models assist to prioritize conservation targets for the mangroves. Sci. Total Environ. 806, 150937 (2022).Article 
    CAS 

    Google Scholar 
    Duke, N. C. et al. A world without mangroves?. Science 317(5834), 41–42 (2007).Article 
    CAS 

    Google Scholar 
    Friess, D. A. Ecosystem services and disservices of mangrove forests: Insights from historical colonial observations. Forests 7(9), 183 (2016).Article 

    Google Scholar 
    Hu, W. et al. Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China. Sci. Total Environ. 748, 142321 (2020).Article 
    CAS 

    Google Scholar 
    Blankespoor, B., Dasgupta, S. & Lange, G. M. Mangroves as a protection from storm surges in a changing climate. Ambio 46(4), 478–491 (2017).Article 

    Google Scholar 
    FAO. TheWorld’s Mangroves 1980–2005. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/3/a1427e/a1427e00.htm. (2007).Abd-El Monsef, H., Hassan, M. A. & Shata, S. Using spatial data analysis for delineating existing mangroves stands and siting suitable locations for mangroves plantation. Comput. Electron. Agric. 141, 310–326 (2017).Article 

    Google Scholar 
    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123 (2011).Article 
    CAS 

    Google Scholar 
    Aheto, D. W. et al. Community-based mangrove forest management: Implications for local livelihoods and coastal resource conservation along the Volta estuary catchment area of Ghana. Ocean Coast. Manag. 127, 43–54 (2016).Article 

    Google Scholar 
    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).Article 

    Google Scholar 
    Stephanie, S. R. et al. Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manag. 154, 72–82. https://doi.org/10.1016/j.ocecoaman.2018.01.009 (2018).Article 

    Google Scholar 
    Friess, D. A. et al. Mangroves give cause for conservation optimism, for now. Curr. Biol. 30, R153–R154 (2020).Article 
    CAS 

    Google Scholar 
    Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: One of the world’s threatened major tropical environments: At least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. Bioscience 51, 807–815. https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2 (2001).Article 

    Google Scholar 
    Feller, I. C. et al. Biocomplexity in mangrove ecosystems. Ann. Rev. Mar. Sci. 2, 395–417 (2010).Article 
    CAS 

    Google Scholar 
    Polidoro, B. A. et al. The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).Article 

    Google Scholar 
    IUCN. Global Assessments of Mangrove Losses and Degradation, 2016; https://www.iucn.org/sites/dev/files/content/documents/mangroveloss-brief-4pp-19.10.low_.pdf.Sreelekshmi, S., Nandan, S. B., Kaimal, S. V., Radhakrishnan, C. K. & Suresh, V. R. Mangrove species diversity, stand structure and zonation pattern in relation to environmental factors—a case study at Sundarban delta, east coast of India. Reg. Stud. Mar. Sci. 35, 101111 (2020).
    Google Scholar 
    Sahana, M. et al. Assessing coastal island vulnerability in the Sundarban Biosphere Reserve, India, using geospatial technology. Environ. Earth Sci. 78(10), 1–22 (2019).Article 

    Google Scholar 
    FSI. India State of Forest Report. Forest Survey of India, Dehradun (2017).Ellison, A. M., Mukherjee, B. B. & Karim, A. Testing patterns of zonation in mangroves: Scale dependence and environmental correlates in the Sundarbans of Bangladesh. J. Ecol. 88(5), 813–824 (2000).Article 

    Google Scholar 
    Sahana, M., Rehman, S., Sajjad, H. & Hong, H. Exploring effectiveness of frequency ratio and support vector machine models in storm surge flood susceptibility assessment: A study of Sundarban Biosphere Reserve, India. CATENA 189, 104450 (2020).Article 

    Google Scholar 
    Sahana, M. & Sajjad, H. Vulnerability to storm surge flood using remote sensing and GIS techniques: A study on Sundarban Biosphere Reserve, India. Rem. Sens. Appl. Soc. Env. 13, 106–120 (2019).
    Google Scholar 
    Chowdhury, M. Q. et al. Nature and periodicity of growth rings in two Bangladeshi mangrove species. IAWA J. 29(3), 265–276 (2008).Article 

    Google Scholar 
    Sarker, S. K., Reeve, R., Thompson, J., Paul, N. K. & Matthiopoulos, J. Are we failing to protect threatened mangroves in the Sundarbans world heritage ecosystem?. Sci. Rep. 6(1), 1–12 (2016).Article 

    Google Scholar 
    Iftekhar, M. S. & Saenger, P. Vegetation dynamics in the Bangladesh Sundarbans mangroves: A review of forest inventories. Wetlands Ecol. Manage. 16(4), 291–312 (2008).Article 

    Google Scholar 
    Siddiqi, N. A. In Mangrove forestry in Bangladesh, Institute of Forestry and Environmental Sciences. University of Chittagong, Chittagong, Bangladesh 201 (2001).Lewis, R. R. III. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 24(4), 403–418 (2005).Article 

    Google Scholar 
    Peterson, T. A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography 30, 550–560. https://doi.org/10.1111/j.0906-7590.2007.05102.x (2007).Article 

    Google Scholar 
    Stockwell, D. & Peters, D. The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158. https://doi.org/10.1080/136588199241391 (1999).Article 

    Google Scholar 
    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x (2005).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Feng, Z. et al. Dynamics ofmangrove forests in Shenzhen Bay in response to natural and anthropogenic factors from 1988 to 2017. J. Hydrol. 591, 125271. https://doi.org/10.1016/j.jhydrol.2020.125271 (2020).Article 

    Google Scholar 
    Kaky, E. & Gilbert, F. Using species distribution models to assess the importance of Egypt’s protected areas for the conservation of medicinal plants. J. Arid Environ. 135, 140–146. https://doi.org/10.1016/j.jaridenv.2016.09.001 (2016).Article 

    Google Scholar 
    Pecchi, M. et al. Species distribution modelling to support forest management A literature review. Ecol. Model. 411, 108817 (2019).Article 

    Google Scholar 
    Spiers, J. A., Oatham, M. P., Rostant, L. V. & Farrell, A. D. Applying species distribution modelling to improving conservation-based decisions: A gap analysis of Trinidad and Tobago’s endemic vascular plants. Biodivers. Conserv. 27, 2931–2949 (2018).Article 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 (2009).Article 

    Google Scholar 
    Fois, M., Cuena-Lombraña, A., Fenu, G. & Bacchetta, G. Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecol. Model. 385, 124–132 (2018).Article 

    Google Scholar 
    Gilani, H., Goheer, M. A., Ahmad, H. & Hussain, K. Under predicted climate change: Distribution and ecological niche modelling of six native tree species in Gilgit-Baltistan, Pakistan. Ecol. Indic. 111, 106049 (2020).Article 

    Google Scholar 
    Ellison, A. M., Felson, A. J. & Friess, D. A. Mangrove rehabilitation and restoration as experimental adaptive management. Front. Mar. Sci. 7, 327. https://doi.org/10.3389/fmars.2020.00327 (2020).Article 

    Google Scholar 
    Ellison, A. M. Mangrove restoration: Do we know enough?. Restor. Ecol. 8(3), 219–229 (2000).Article 

    Google Scholar 
    Brown, B., Fadillah, R., Nurdin, Y., Soulsby, I., & Ahmad, R. CASE STUDY: Community Based Ecological Mangrove Rehabilitation (CBEMR) in Indonesia. In From small (12–33 ha) to medium scales (400 ha) with pathways for adoption at larger scales ( > 5000 ha). SAPI EN. S. Surveys and Perspectives Integrating Environment and Society 7.2 (2014).Rodríguez-Rodríguez, J. A., Mancera-Pineda, J. E. & Tavera, H. Mangrove restoration in Colombia: Trends and lessons learned. For. Ecol. Manage. 496, 119414 (2021).Article 

    Google Scholar 
    Romañach, S. S. et al. Conservation and restoration
    of mangroves: Global status, perspectives, and prognosis. Ocean Coast Manag. 154, 72–82. https://doi.org/10.1016/j.ocecoaman.2018.01.009 (2018).Article 

    Google Scholar 
    Sulochanan, B. et al. Water and sediment quality parameters of the restored mangrove ecosystem of Gurupura River and natural mangrove ecosystem of Shambhavi River in Dakshina Kannada, India. Marine Pollution Bulletin 176, 113450. https://doi.org/10.1016/j.marpolbul.2022.113450 (2022).Lovelock, C. E., Barbier, E. & Duarte, C. M. Tackling the mangrove restoration challenge. PLoS Biol. 20(10), e3001836 (2022).Article 
    CAS 

    Google Scholar 
    Lovelock, C. E. & Brown, B. M. Land tenure considerations are key to successful mangrove restoration. Nature Ecol. Evol. 3(8), 1135–1135 (2019).Article 

    Google Scholar 
    Su, J., Friess, D. A. & Gasparatos, A. A meta-analysis of the ecological and economic outcomes of mangrove restoration. Nat. Commun. 12(1), 1–13 (2021).Article 

    Google Scholar 
    Lee, S. Y., Hamilton, S., Barbier, E. B., Primavera, J. & Lewis, R. R. Better restoration policies are needed to conserve mangrove ecosystems. Nature Ecol. Evol. 3(6), 870–872 (2019).Article 

    Google Scholar 
    Chakraborty, S., Sahoo, S., Majumdar, D., Saha, S. & Roy, S. Future Mangrove suitability assessment of Andaman to strengthen sustainable development. J. Clean. Prod. 234, 597–614 (2019).Article 

    Google Scholar 
    Charrua, A. B., Bandeira, S. O., Catarino, S., Cabral, P. & Romeiras, M. M. Assessment of the vulnerability of coastal mangrove ecosystems in Mozambique. Ocean Coast. Manag. 189, 105145 (2020).Article 

    Google Scholar 
    Hu, W. et al. Predicting potential mangrove distributions at the global northern distribution margin using an ecological niche model: Determining conservation and reforestation involvement. For. Ecol. Manage. 478, 118517 (2020).Article 

    Google Scholar 
    Rodríguez-Medina, K., Yañez-Arenas, C., Peterson, A. T., Euán Ávila, J. & Herrera-Silveira, J. Evaluating the capacity of species distribution modeling to predict the geographic distribution of the mangrove community in Mexico. PLoS ONE 15(8), e0237701 (2020).Article 

    Google Scholar 
    Wang, Y. et al. Simulating spatial change of mangrove habitat under the impact of coastal land use: Coupling MaxEnt and Dyna-CLUE models. Sci. Total Environ. 788, 147914 (2021).Article 
    CAS 

    Google Scholar 
    Gopal, B. & Chauhan, M. Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat. Sci. 68(3), 338–354 (2006).Article 

    Google Scholar 
    Sahana, M., Rehman, S., Paul, A. K. & Sajjad, H. Assessing socio-economic vulnerability to climate change-induced disasters: Evidence from Sundarban Biosphere Reserve, India. Geol. Ecol. Landsc. 5(1), 40–52 (2021).Article 

    Google Scholar 
    Giri, C. et al. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 35(3), 519–528 (2008).Article 

    Google Scholar 
    Giri, C., Pengra, B., Zhu, Z., Singh, A. & Tieszen, L. L. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 73(1–2), 91–100 (2007).Article 

    Google Scholar 
    Islam, S. N. & Gnauck, A. Effects of salinity intrusion in mangrove wetlands ecosystems in the Sundarbans: An alternative approach for sustainable management. Wetlands Monitor. Modell. Manag. 2007, 315 (2007).
    Google Scholar 
    Hazra, S., Ghosh, T., DasGupta, R. & Sen, G. Sea level and associated changes in the Sundarbans. Sci. Cult. 68(9/12), 309–321 (2002).
    Google Scholar 
    Purkait, B. Coastal erosion in response to wave dynamics operative in Sagar Island, Sundarban delta, India. Front. Earth Sci. China 3(1), 21–33 (2009).Article 

    Google Scholar 
    World Bank (2014). Building resilience for sustainable development of the Sundarbans: Strategy report (No. 20116; World Bank Other Operational Studies). The World Bank Group. https://ideas.repec.org/p/wbk/wboper/20116.html.Das, M. A. H. U. A. Impact of commercial coastal fishing on the environment of Sundarbans for sustainable development. Asian Fish. Sci. 22(1), 157–167 (2009).
    Google Scholar 
    Hoq, M. E. An analysis of fisheries exploitation and management practices in Sundarbans mangrove ecosystem, Bangladesh. Ocean Coast. Manag. 50(5–6), 411–427 (2007).Article 

    Google Scholar 
    Census of India (2011). Primary census abstract, census of India. The government of India, Registrar General and Census Commissioner of India, Ministry of Home Affairs, New Delhi, India. https://censusindia.gov.in/nada/index.php/catalog/41021Chowdhury, A. & Maiti, S. K. Assessing the ecological health risk in a conserved mangrove ecosystem due to heavy metal pollution: A case study from Sundarbans Biosphere Reserve, India. Hum. Ecol. Risk Assess. Int. J. 22(7), 1519–1541 (2016).Article 
    CAS 

    Google Scholar 
    Hajra, R. et al. Unravelling the association between the impact of natural hazards and household poverty: Evidence from the Indian Sundarban delta. Sustain. Sci. 12(3), 453–464 (2017).Article 

    Google Scholar 
    Sahana, M. & Sajjad, H. Assessing Influence of Erosion and Accretion on Landscape Diversity in Sundarban Biosphere Reserve, Lower Ganga Basin: A Geospatial Approach. In Quaternary Geomorphology in India, (eds Das, B. et al.) (Springer, Cham, 2019). https://doi.org/10.1007/978-3-319-90427-6_10 (2018).Chaudhuri, A. B., Choudhury, A., Hussain, Z., & Acharya, G. Mangroves of the Sundarbans. Vol. I. India, The IUCN Wetlands Programme 247 (IUCN, 1994).GBIF.org. GBIF Occurrence Download, 2018. https://www.gbif.org/. Avicennia marina: https://doi.org/10.15468/dl.vmlooq and R. mucronata: https://doi.org/10.15468/dl.ewnqnm (accessed March 2019).Mandal, R. N. & Naskar, K. R. Diversity and classification of Indian mangroves: A review. Trop. Ecol. 49(2), 131–146 (2008).
    Google Scholar 
    Mandal, A. K., & Nandi, N. C. Fauna of Sundarban mangrove ecosystem, west Bengal, India, Vol. 3 (Zoological Survey of India, 1989).Mitra, A. & Pal, S. The Oscillating Mangrove Ecosystem and the Indian Sundarbans (WWF-India-WBSO, 2002).Naskar, K., & Guha Bakshi, D. N. Mangrove Swamps of the Sundarbans (Naya Prokash, 1987).Barik, J. & Chowdhury, S. True mangrove species of Sundarbans delta, West Bengal, eastern India. Check list 10(2), 329–334. https://doi.org/10.15560/10.2.329 (2014).IUCN 2018. The IUCN Red List of Threatened Species. Version 2018. 2018. Electronic database accessible, accessed 15 Nov 2018; http://www.iucnredlist.org.Guyon, I. & Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003).MATH 

    Google Scholar 
    Cavanaugh, K. C. et al. Climate-driven regime shifts in a mangrove–salt marsh ecotone over the past 250 years. Proc. Natl. Acad. Sci. 116(43), 21602–21608 (2019).Article 
    CAS 

    Google Scholar 
    Naskar, K. & Mandal, R. Ecology and Biodiversity of Indian Mangroves, Vol. 1 (Daya Books, 1999).Figueiredo, F. O. et al. Beyond climate control on species range: The importance of soil data to predict distribution of Amazonian plant species. J. Biogeogr. 45(1), 190–200 (2018).Article 

    Google Scholar 
    Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 20(1), 1–9 (2014).Article 

    Google Scholar 
    Asbridge, E., Lucas, R., Ticehurst, C. & Bunting, P. Mangrove response to environmental change in Australia’s Gulf of Carpentaria. Ecol. Evol. 6(11), 3523–3539 (2016).Article 

    Google Scholar 
    He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the Anthropocene. Curr. Biol. 29(19), R1021–R1035. https://doi.org/10.1016/j.cub.2019.08.042 (2019).Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186(2), 251–270 (2005).Article 

    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge University Press, 2017).Book 

    Google Scholar 
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).Article 

    Google Scholar 
    STR Annual Report. In Conservator of Forest & Field Director, Sundarban Tiger Reserve. Canning, West Bengal, India: Directorate of Forests, Government of West Bengal (2013–2014).Segurado, P. & Araujo, M. B. An evaluation of methods for modelling species distributions. J. biogeogr. 31(10), 1555–1568. https://doi.org/10.1111/j.1365-2699.2004.01076.x (2004).Kadmon, R., Farber, O. & Danin, A. A systematic analysis of factors affecting the performance of climatic envelope models. Ecol. Appl. 13(3), 853–867. https://doi.org/10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2 (2003).Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. distribut. 14(5), 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x (2008).Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12(1), 40–45 (2019).Article 
    CAS 

    Google Scholar 
    Hoguane, A. M., Hill, A. E., Simpson, J. H. & Bowers, D. G. Diurnal and tidal variation of temperature and salinity in the Ponta Rasa mangrove swamp, Mozambique. Estuar. Coast. Shelf S. 49(2), 251–264. https://doi.org/10.1006/ecss.1999.0499 (1999).  Article 
    CAS 

    Google Scholar 
    Sanders, C. J. et al. Are global mangrove carbon stocks driven by rainfall? J. Geophys. Res. Biogeosci. 121(10), 2600–2609. https://doi.org/10.1002/2016JG003510 (2016).Srivastava, J., Farooqui, A. & Seth, P. Pollen-vegetation relationship in surface sediments, Coringa mangrove ecosystem, India: palaeoecological applications. Palynology 43(3), 451–466. https://doi.org/10.1080/01916122.2018.1458755 (2019).Nandy, P., Das, S., Ghose, M. & Spooner-Hart, R. Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. Wetlands Ecol. Manage. 15(4), 347–357 (2007).Article 
    CAS 

    Google Scholar 
    Washington, W., Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40 (2001).
    Google Scholar 
    Blasco, F., Aizpuru, M. & Gers, C. Depletion of the mangroves of Continental Asia. Wetlands Ecol. Manage. 9(3), 255–266 (2001).Article 

    Google Scholar 
    Datta, D. & Deb, S. Forest structure and soil properties of mangrove ecosystems under management scenarios: Experiences from the intensely humanized landscape of Indian Sunderbans. Ocean Coast. Manag. 140, 22–33 (2017).Article 

    Google Scholar 
    Wahid, S. M., Babel, M. S. & Bhuiyan, A. R. Hydrologic monitoring and analysis in the Sundarbans mangrove ecosystem, Bangladesh. J. Hydrol. 332(3–4), 381–395 (2007).Article 

    Google Scholar 
    Iftekhar, M. S. & Islam, M. R. Degeneration of Bangladesh’s Sundarbans mangroves: A management issue. Int. For. Rev. 6(2), 123–135 (2004).
    Google Scholar 
    Saenger, P. Mangrove Ecology, Silviculture, and Conservation (Kluwer Academic Publishers, 2002).Book 

    Google Scholar 
    Feka, Z. N. Sustainable management of mangrove forests in West Africa: A new policy perspective?. Ocean Coast. Manag. 116, 341–352. https://doi.org/10.1016/j.ocecoaman.2015.08.006 (2015).Article 

    Google Scholar 
    Giri, S. et al. A study on abundance and distribution of mangrove species in Indian Sundarban using remote sensing technique. J. Coast Conserv. 18, 359–367. https://doi.org/10.1007/s11852-014-0322-3 (2014).Article 

    Google Scholar 
    Moschetto, F. A., Ribeiro, R. B. & De Freitasa, D. M. Urban expansion, regeneration and socioenvironmental vulnerability in a mangrove ecosystem at the southeast coastal of São Paulo, Brazil. Ocean Coast. Manag. 24, 105418. https://doi.org/10.1016/j.ocecoaman.2020.105418 (2020).Article 

    Google Scholar 
    Tuholskea, C., Tane, Z., López-Carra, D., Roberts, D. & Cassels, S. Thirty years of land use/cover change in the Caribbean: Assessing the relationship between urbanization and mangrove loss in Roatán, Honduras. Appl. Geogr. 88, 84–93. https://doi.org/10.1016/j.apgeog.2017.08.018 (2017).Article 

    Google Scholar 
    Kantharajan, G. et al. Vegetative structure and species composition of mangroves along the Mumbai coast, Maharashtra, India. Reg. Stud. Mar. Sci. 19, 1–8 (2018).
    Google Scholar 
    Marcinko, C. L. et al. The development of a framework for the integrated assessment of SDG trade-offs in the Sundarban Biosphere Reserve. Water 13(4), 528 (2021).Article 

    Google Scholar 
    Sahana, M. et al. Assessing Wetland ecosystem health in Sundarban Biosphere Reserve using pressure-state-response model and geospatial techniques. Remot. Sens. Appl. Soc. Environ. 26, 100754. https://doi.org/10.1016/j.rsase.2022.100754 (2022).Saha, S., & Choudhury, A. Vegetation Analysis of Restored And Natural Mangrove Forest In Sagar Island, Sundarbans, East Coast of India. Indian J. Mar. Sci. 24, 133–136. http://nopr.niscpr.res.in/bitstream/123456789/37297/1/IJMS%2024%283%29%20133-136.pdf (1995).Balke, T. & Friess, D. A. Geomorphic knowledge for mangrove restoration: A pantropical categorization. Earth Surf. Process. Landf. 41, 231–239. https://doi.org/10.1002/esp.3841 (2016).Article 

    Google Scholar 
    Alongi, D. M. Mangrove forests of timor-leste: Ecology, degradation and vulnerability to climate change. In Mangrove ecosystems of Asia 199–212 (Springer, 2014).Biswas, S. R., Mallik, A. U., Choudhury, J. K. & Nishat, A. A unified framework for the restoration of Southeast Asian mangroves—bridging ecology, society and economics. Wetlands Ecol. Manage. 17(4), 365–383 (2009).Article 

    Google Scholar 
    Dubey, S. K., Censkowsky, U., Roy, M., Chand, B. K., & Dey, A. Framework for rapid evaluation of a mangrove restoration site: A case study from Indian Sundarban. In Sabkha Ecosystems 363–378 (Springer, 2019).Islam, M. M. & Shamsuddoha, M. Coastal and marine conservation strategy for Bangladesh in the context of achieving blue growth and sustainable development goals (SDGs). Environ. Sci. Pol. 87, 45–54. https://doi.org/10.1016/j.envsci.2018.05.014 (2018).Article 

    Google Scholar 
    Bosire, J., Celliers, L., Groeneveld, J., Paula, J. & Schleyer, M.H. Regional State of the Coast Report-Western Indian Ocean. UNEP-Nairobi Convention and WIOMSA 546 (2015).Owuor, M. A., Mulwa, R., Otieno, R., Icely, J. & Newton, A. Valuing mangrove biodiversity and ecosystem services: A deliberative choice experiment in Mida Creek, Kenya. Ecosyst. Serv. 40, 101040. https://doi.org/10.1016/j.ecoser.2019.101040 (2019).Article 

    Google Scholar 
    Barwell, L. et al. (2018). Regional
    State of the Coast Report Western Indian Ocean. The United Nations Environment
    Programme/Nairobi Convention Secretariat. https://wedocs.unep.org/handle/20.500.11822/9700?show=fullde Jesús Arce-Mojica, T., Nehren, U., Sudmeier-Rieux, K., Miranda, P. J. & Anhuf, D. Nature-based solutions (NbS) for reducing the risk of shallow landslides: where do we stand? Int. J. disaster risk reduct. 41, 101293. https://doi.org/10.1016/j.ijdrr.2019.101293 (2019).Bardhan, M. An empirical study on mangrove restoration in Indian Sundarbans—a community-based environmental approach. In Modern Cartography Series, vol. 10 387–405 (Academic Press, 2021).Kumar, M. C., Bholanath, M. & Debashis, S. Study on utility and revival through community approach in sundarbans mangrove. Int. J. Soc. Sci. https://doi.org/10.5958/2321-5771.2014.00101.X (2014).Article 

    Google Scholar 
    Chakraborty, S. K., Giri, S., Chakravarty, G. & Bhattacharya, N. Impact of eco-restoration on the biodiversity of Sundarbans Mangrove Ecosystem, India. Water Air Soil Pollut. Focus 9(3), 303–320 (2009).Article 

    Google Scholar 
    Paulson Institute. Research report on mangrove protection and restoration strategy in China, 2020; https://paulsoninstitute.org.cn/wpcontent/uploads/2020/06/%E4%B8%AD%E5%9B%BD%E7%BA%A2%E6%A0%91%E6%9E%97%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%81%A2%E5%A4%8D%E6%88%98%E7%95%A5%E7%A0%94%E7%A9%B6%E6%8A%A5%E5%91%8A%E2%80%94%E6%91%98%E8%A6%81%E7%89%88.pdf.Fan, H. Q. & Wang, W. Q. Some thematic issues for mangrove conservation in China. J. Xiamen Univ. Nat. Sci 56, 323–330. https://doi.org/10.6043/j.issn.0438-0479.201612003 (2017).Article 

    Google Scholar 
    Wang, W., Fu, H., Lee, S. Y., Fan, H. & Wang, M. Can strict protection stop the decline of mangrove ecosystems in China? Fromrapid destruction to rampant degradation. Forests 11, 55. https://doi.org/10.3390/f11010055 (2020).Article 

    Google Scholar 
    Roy, A. K. D. & Alam, K. Participatory forest management for the sustainable management of the sundarbans mangrove forest. Am. J. Env. Sci. 8(5), 549–555. https://doi.org/10.3844/ajessp.2012.549.555 (2012).Article 

    Google Scholar 
    Selvam, V. et al. In Toolkit for establishing coastal bioshield. M. S. Swaminathan Research Foundation, Centre for Research on Sustainable Agriculture and Rural Development (2005).Raju, J. S. S. N. Xylocarpus (Meliaceae): A less-known mangrove taxon of the Godavari estuary, India. Curr. Sci. 84(7), 879–881. https://www.currentscience.ac.in/Volumes/84/07/0879.pdf (2003).
    Google Scholar 
    Siddiqui, A. H. & Khair, A. Infestation status of heart rot disease of pasur (Xylocarpus mekongensis), tree in the sundarbans. Indian For. 138(2), 165–168 (2012).
    Google Scholar 
    Iqbal, M. & Hossain, M. Tourists’ willingness to pay for restoration of Sundarbans Mangrove forest ecosystems: A contingent valuation modeling study. Env. Dev. Sustain. 2022, 1–22 (2022).
    Google Scholar 
    Ekka, A. & Pandit, A. Willingness to pay for restoration of natural ecosystem: A study of Sundarban mangroves by contingent valuation approach. Indian J. Agric. Econ. 67, 902 (2012).
    Google Scholar 
    Datta, D., Chattopadhyay, R. N. & Guha, P. Community based mangrove management: A review on status and sustainability. J. Env. Manag. 107, 84–95. https://doi.org/10.1016/j.jenvman.2012.04.013 (2012).Article 

    Google Scholar 
    Ghosh, A., Schmidt, S., Fickert, T. & Nusser, M. The Indian Sundarban mangrove forests: History, utilization, conservation strategies and local perception. Diversity 7(2), 149–169. https://doi.org/10.3390/d7020149 (2015).Article 
    CAS 

    Google Scholar 
    Ranjan, R. Optimal mangrove restoration through community engagement on coastal lands facing climatic risks: The case of Sundarbans region in India. Land Use Policy 81, 736–749 (2019).Article 

    Google Scholar 
    Dutta, M., Roy, S. & Nibirh, S. Joint forest management and forest protection committees: Negotiation systems and the design of incentives—a case study of West Bengal. Electron. J. https://doi.org/10.2139/ssrn.2245965 (2001).Article 

    Google Scholar 
    McKee, K. L., Rooth, J. E. & Feller, I. C. Mangrove recruitment after forest disturbance is facilitated by herbaceous species in the Caribbean. Ecol. Appl. 17(6), 1678–1693 (2007).Article 

    Google Scholar 
    Begam, M. et al. Native salt-tolerant grass species for habitat restoration, their acclimation and contribution to improving edaphic conditions: A study from a degraded mangrove in the Indian Sundarbans. Hydrobiologia 803(1), 373–387 (2017).Article 
    CAS 

    Google Scholar 
    Donnelly, M. & Walters, L. Trapping of Rhizophora mangle propagules by coexisting early successional species. Estuaries Coasts 37, 1562–1571 (2014).Article 

    Google Scholar 
    Ren, H. et al. Sonneratia apetala Buch. Ham in the mangrove ecosystems of China: An invasive species or restoration species?. Ecol. Eng. 35(8), 1243–1248 (2009).Article 

    Google Scholar 
    Cheong, S.-M. et al. Coastal adaptation with ecological engineering. Nature Clim. Change 3, 787–791. https://doi.org/10.1038/nclimate1854 (2013).Article 

    Google Scholar  More

  • in

    Rare and declining bird species benefit most from designating protected areas for conservation in the UK

    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 
    PubMed 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulze, K. et al. An assessment of threats to terrestrial protected areas. Conserv. Lett. 11, e12435 (2018).Article 

    Google Scholar 
    Bingham, H. C. et al. (eds). Protected Planet Report 2020 (UNEP-WCMC & IUCN, 2021); https://livereport.protectedplanet.net/Buchanan, G. M., Butchart, S. H., Chandler, G. & Gregory, R. D. Assessment of national-level progress towards elements of the Aichi Biodiversity Targets. Ecol. Indic. 116, 106497 (2020).Article 

    Google Scholar 
    Xu, H. et al. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 5, 411–418 (2021).Article 
    PubMed 

    Google Scholar 
    Report of the Open-ended Working Group on the Post-2020 Global Biodiversity Framework on Its Third Meeting (CBD Secretariat, 2022); https://www.cbd.int/conferences/post2020/wg2020-03/documentsRodrigues, A. S. & Cazalis, V. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11, 5147 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Starnes, T. et al. The extent and effectiveness of protected areas in the UK. Glob. Ecol. Conserv. 30, e01745 (2021).Article 

    Google Scholar 
    Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cazalis, V. et al. Mismatch between bird species sensitivity and the protection of intact habitats across the Americas. Ecol. Lett. 24, 2394–2405 (2021).Article 
    PubMed 

    Google Scholar 
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Gamero, A. et al. Tracking progress toward EU biodiversity strategy targets: EU policy effects in preserving its common farmland birds. Conserv. Lett. 10, 395–402 (2017).Article 

    Google Scholar 
    Pellissier, V. et al. Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data. Conserv. Biol. 34, 666–676 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Princé, K., Rouveyrol, P., Pellissier, V., Touroult, J. & Jiguet, F. Long-term effectiveness of Natura 2000 network to protect biodiversity: a hint of optimism for common birds. Biol. Conserv. 253, 108871 (2021).Article 

    Google Scholar 
    Cunningham, C. A., Thomas, C. D., Morecroft, M. D., Crick, H. Q. P. & Beale, C. M. The effectiveness of the protected area network of Great Britain. Biol. Conserv. 257, 109146 (2021).Article 

    Google Scholar 
    Duckworth, G. D. & Altwegg, R. Effectiveness of protected areas for bird conservation depends on guild. Divers. Distrib. 24, 1083–1091 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Rada, S. et al. Protected areas do not mitigate biodiversity declines: a case study on butterflies. Divers. Distrib. 25, 217–224 (2019).Article 

    Google Scholar 
    Terraube, J., Van Doninck, J., Helle, P., & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Lenoir, J. et al. Species better track the shifting isotherms in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 
    PubMed 

    Google Scholar 
    van Teeffelen, A., Meller, L., van Minnen, J., Vermaat, J. & Cabeza, M. How climate proof is the European Union’s biodiversity policy? Regional Environ. Change 15, 997–1010 (2015).Article 

    Google Scholar 
    Thomas, C. D. & Gillingham, P. K. The performance of protected areas for biodiversity under climate change. Biol. J. Linn. Soc. Lond. 115, 718–730 (2015).Article 

    Google Scholar 
    Gillingham, P. K. et al. The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biol. J. Linn. Soc. Lond. 115, 707–717 (2015).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Stokstad, E. Species? Climate? Cost? Ambitious goal means trade-offs. Science 371, 555 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brlík, V. et al. Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Sci. Data 8, 21 (2021).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Stanbury, A. et al. The status of bird populations: the fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723–747 (2021).
    Google Scholar 
    Dudley, N. (ed). Guidelines for Applying Protected Area Management Categories (IUCN, 2008).Deguignet, M. et al. Measuring the extent of overlaps in protected area designations. PLoS ONE 12, e0188681 (2017).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    JNCC. Common Standards Monitoring: Introduction to the Guidance Manual (JNCC Resource Hub, 2004).Hayhow, D. B. et al. State of Nature 2019 (RSPB, 2019).Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020); https://helda.helsinki.fi/handle/10138/326470Franks, S. E., Roodbergen, M., Teunissen, W., Carrington Cotton, A. & Pearce‐Higgins, J. W. Evaluating the effectiveness of conservation measures for European grassland‐breeding waders. Ecol. Evol. 8, 10555–10568 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Pearce-Higgins, J. W. et al. Site-based adaptation reduces the negative effects of weather upon a southern range margin Welsh black grouse Tetrao tetrix population that is vulnerable to climate change. Clim. Change 153, 253–265 (2019).Article 

    Google Scholar 
    Jellesmark, S. et al. A counterfactual approach to measure the impact of wet grassland conservation on U.K. breeding bird populations. Conserv. Biol. 35, 1575–1585 (2021).Article 
    PubMed 

    Google Scholar 
    Morrison, C. A. et al. Covariation in population trends and demography reveals targets for conservation action. Proc. Biol. Sci. 288, 20202955 (2021).PubMed Central 
    PubMed 

    Google Scholar 
    Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Martay, B. et al. Monitoring landscape-scale environmental changes with citizen scientists: Twenty years of land use change in Great Britain. J. Nat. Conserv. 44, 33–42 (2018).Article 

    Google Scholar 
    Sullivan, M. J. P., Newson, S. E. & Pearce‐Higgins, J. W. Changing densities of generalist species underlie apparent homogenization of UK bird communities. Ibis 158, 645–655 (2016).Article 

    Google Scholar 
    Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).Article 
    PubMed 

    Google Scholar 
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).Article 

    Google Scholar 
    Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change—evidence from large‐scale, long‐term abundance data. Glob. Change Biol. 25, 304–313 (2019).Article 

    Google Scholar 
    Gaüzère, P., Jiguet, F. & Devictor, V. Can protected areas mitigate the impacts of climate change on bird’s species and communities? Diversity Distrib. 22, 625–637 (2016).Article 

    Google Scholar 
    Neate‐Clegg, M. H. C., Jones, S. E. I., Burdekin, O., Jocque, M. & Şekercioğlu, Ç. H. Elevational changes in the avian community of a Mesoamerican cloud forest park. Biotropica 50, 805–815 (2018).Article 

    Google Scholar 
    Oliver, T. H. et al. Large extents of intensive land use limit community reorganization during climate warming. Glob. Change Biol. 23, 2272–2283 (2017).Article 

    Google Scholar 
    Hiley, J. R., Bradbury, R. B., Holling, M. & Thomas, C. D. Protected areas act as establishment centres for species colonizing the UK. Proc. Biol. Sci. 280, 20122310 (2013).PubMed Central 
    PubMed 

    Google Scholar 
    Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Grace, M. K. et al. Testing a global standard for quantifying species recovery and assessing conservation impact. Conserv. Biol. 35, 1833–1849 (2021).Article 
    PubMed 

    Google Scholar 
    Gibbons, D. W., Reid, J. B. & Chapman, R. A. The New Atlas of Breeding Birds in Britain & Ireland 1988–1991 (T. & A. D. Poyser, 1993).Balmer, D. E. et al. Bird Atlas 2007–11: the Breeding and Wintering Birds of Britain and Ireland (BTO, 2013).Gillings, S. et al. Breeding and wintering bird distributions in Britain and Ireland from citizen science bird atlases. Glob. Ecol. Biogeogr. 28, 866–874 (2019).Article 

    Google Scholar 
    Freeman, S. N., Noble, D. G., Newson, S. E. & Baillie, S. R. Modelling population changes using data from different surveys: the Common Birds Census and the Breeding Bird Survey. Bird Study 54, 61–72 (2007).Article 

    Google Scholar 
    Robinson, R. A., Julliard, R. & Saracco, J. F. Constant effort: studying avian population processes using standardised ringing. Ring. Migr. 24, 199–204 (2009).Article 

    Google Scholar 
    Cave, V. M., Freeman, S. N., Brooks, S. P., King, R. & Balmer, D. E. in Modeling Demographic Processes in Marked Populations, 949–963 (Springer, 2009).Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, GB) (eds Thomson, D. L. et al) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/7115bc48-3ab0-475d-84ae-fd3126c20984Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, N. Ireland) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/362feaea-0ccf-4a45-b11f-980c6b89a858ASTER Global Digital Elevation Model V003 (dataset). NASA EOSDIS Land Processes DAAC (NASA/METI/AIST/Japan Space Systems and U.S./Japan ASTER Science Team, 2019); https://doi.org/10.5067/ASTER/ASTGTM.003Schiavina, M., Freire, S. & MacManus, K. GHS-SMOD R2019A – GHS Settlement Layers, Updated and Refined REGIO Model 2014 in Application to GHS-BUILT R2018A and GHS-POP R2019A, Multitemporal (1975-1990-2000-2015) (European Commission Joint Research Centre, 2019); https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218Robinson, R. A. BirdFacts: Profiles of Birds Occurring in Britain & Ireland (BTO, 2005).Gibbons, D. W. et al. Bird species of conservation concern in the United Kingdom, Channel Islands and Isle of Man: revising the Red Data List. RSPB Conserv. Rev. 10, 7–18 (1996).
    Google Scholar 
    Stone, B. H. et al. Population estimates of birds in Britain and in the United Kingdom. Br. Birds 90, 1–22 (1997).
    Google Scholar 
    Woodward, I. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69–104 (2020).
    Google Scholar 
    R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Bull, J. W., Strange, N., Smith, R. J. & Gordon, A. Reconciling multiple counterfactuals when evaluating biodiversity conservation impact in social‐ecological systems. Conserv. Biol. 35, 510–521 (2020).Article 
    PubMed 

    Google Scholar 
    Jellesmark, S. et al. Assessing the global impact of targeted conservation actions on species abundance. Preprint at bioRxiv https://doi.org/10.1101/2022.01.14.476374 (2022).Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds but management helps. Nature 605, 103–107 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.4.4 (2021); https://CRAN.R-project.org/package=DHARMaJetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnston, A. et al. Species traits explain variation in detectability of UK birds. Bird Study 61, 340–350 (2014).Article 

    Google Scholar 
    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).Article 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Anal. 15, 199–236 (2007).Article 

    Google Scholar 
    Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).Article 
    PubMed 

    Google Scholar 
    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. Biol. Sci. 275, 2743–2748 (2008).PubMed Central 
    PubMed 

    Google Scholar  More