More stories

  • in

    When did mammoths go extinct?

    arising from Y. Wang et al. Nature https://doi.org/10.1038/s41586-021-04016-x (2021)A unique challenge for environmental DNA (eDNA)-based palaeoecological reconstructions and extinction estimates is that organisms can contribute DNA to sediments long after their death. Recently, Wang et al.1 discovered mammoth eDNA in sediments that are between approximately 4.6 and 7 thousand years (kyr) younger than the most recent mammoth fossils in North America and Eurasia, which they interpreted as mammoths surviving on both continents into the Middle Holocene epoch. Here we present an alternative explanation for these offsets: the slow decomposition of mammoth tissues on cold Arctic landscapes is responsible for the release of DNA into sediments for thousands of years after mammoths went extinct. eDNA records are important palaeobiological archives, but the mixing of undatable DNA from long-dead organisms into younger sediments complicates the interpretation of eDNA, particularly from cold and high-latitude systems.All animal tissues, including faeces, contribute DNA to eDNA records2, but the durations across which tissues can contribute genetic information must vary depending on tissue type and local rates of destruction and decomposition. On high-latitude landscapes, soft tissues and skeletal remains of large mammals may persist, unburied, for millennia3,4,5. For example, unburied antlers of caribou (Rangifer tarandus) from Svalbard (Norway) and Ellesmere Island (Canada) have been dated3,4 to between 1 and 2 cal kyr bp (calibrated kyr before present). Elephant seal (Mirounga leonina) remains near the Antarctic coastline5,6 can persist for more than 5,000 years. This is in contrast to bones in warmer settings, which persist for only centuries or decades7,8. Because bones are particularly resistant to decay, quantifying how their persistence changes across environments enables us to constrain the durations that dead individuals generally contribute to eDNA archives. To do this, we consolidated data on the oldest radiocarbon-dated surface-collected bones from different ecosystems. We included bones that we are reasonably confident persisted without being completely buried (‘never buried’), and bones for which exhumation cannot be confidently excluded (‘potentially never buried’). Pairing bone persistence with mean annual temperatures (MAT) from their sample localities, we find a strong link between the local temperature and the logged duration of bone persistence (Fig. 1, never buried bones: R2 = 0.94, P  More

  • in

    The pupal moulting fluid has evolved social functions in ants

    Rearing O. biroi pupae in social isolation and collecting pupal fluidIn O. biroi colonies, larvae and pupae develop in discrete and synchronized cohorts26. Ten days after the first larvae had entered pupation in a large stock colony, the entire colony was anaesthetized using a CO2 pad, and white pupae were separated using a paintbrush. Pupae were individually placed in 0.2 ml PCR tubes with open lid. These tubes were then placed inside 1.5 ml Eppendorf tubes with 5 µl sterile water at the bottom to provide 100% relative humidity. The outer tubes were closed and kept in a climate room at 25 °C. The inner tube in this design prevents the pupa from drowning in the water reservoir. The outer tubes were kept closed throughout the experiment, except for once a day when the tubes were opened to remove pupal social fluid. Pulled glass capillaries were prepared as described elsewhere29, and used to remove and/or collect secretion droplets. We were careful to leave no remains of the secretion behind on the pupae or the inside of the tubes. To ensure that all secretion had been removed, pupae were taken out of the tube after fluid collection and briefly placed on a tissue paper to absorb any excess liquid. The inner tubes were replaced if needed—for example, if fluid traces were visible on the old tube after collection. Each pupa was checked daily for secretion (absent or present), onset of melanization and eclosion, and whether the pupa was alive (responding to touch). Control groups of 30 pupae and 30 adult ants from the same stock colony and cohort as the isolated pupae were placed in Petri dishes with a plaster of Paris floor, and the same parameters as for the isolated pupae were scored daily. Experiments ended when all pupae had either eclosed or died. Newly eclosed (callow) workers moved freely inside the tube and showed no abnormalities when put in a colony. A pupa was declared dead if it did not shed its pupal skin and did not respond to touch three days after all pupae in the control group had eclosed.To calculate the average secretion volume per secreting pupa (Fig. 1d), the total volume collected daily from a group of isolated pupae (142–166 pupae) was divided by the number of pupae from which fluid had been collected that day. The total volume was determined by multiplying the height of the fluid’s meniscus in the capillary by πr², where r is the inner radius of the capillary (0.29 mm). While pupae were secreting, pupal whole-body wash samples were collected daily. The pupae were removed from colonies with adults and washed promptly with 1500 µl LC–MS grade water. Whole-body wash samples were lyophilized and reconstituted in 15 µl LC–MS grade water.Collecting additional ant species and honeybees, rearing pupae in social isolation, and collecting pupal fluidsColonies of the ants N. flavipes, T. sessile, P. pennsylvanica and Lasius neoniger were collected in NY state, USA (Central Park, Manhattan; Pelham Bay Park, Bronx; Prospect Park, Brooklyn; and Woodstock). Solenopsis invicta colonies were collected in Athens, GA, USA. M. mexicanus colonies were collected in Piñon Hills, CA, USA. Colonies comprised of queens, workers and brood were maintained in the laboratory in airtight acrylic boxes with plaster of Paris floors. Colonies were fed a diet of insects (flies, crickets and mealworms). White pupae were socially isolated, cocoons were removed in the case of P. pennsylvanica, and secretion droplets were collected from melanized pupae as described for O. biroi. A. mellifera pupae of unknown age were socially isolated from hive fragments (A&Z Apiaries, USA) and reared as described for O biroi, except that the rearing temperature was set to 32 °C. Relative humidity was set to either 100% to replicate conditions used for the different ant species, or to 75% as recommended in the literature30.Injecting dye and tracking pupal fluidInjection needles were prepared as in previous studies31. Injections were performed using an Eppendorf Femtojet with a Narishige micromanipulator. The Femtojet was set to Pi 1000 hPa and Pc 60 hPa. Needles were broken by gently touching the capillary tip to the side of a glass slide. To inject, melanized pupae were placed on ‘Sticky note’ tape (Post-it), with the abdomen tip forward and the ventral side upward. Pupae were injected with blue food colouring (McCormick) into the exuvium for 1–2 s by gently piercing the pupal case at the abdominal tip with the needle. During successful injections, no fluid was discharged from the pupa when the needle was removed, and the moulting fluid inside the exuvium was immediately stained. Pupae were washed in water three times to remove any excess dye. Following injections, 10 pupae were reared in social isolation to confirm the secretion of dyed droplets. For experiments, injected pupae were transferred to colonies with adult ants (Figs. 1f and  4c) or to colonies with adult ants and larvae (Figs. 3b and  4c) to track the distribution of the pupal social fluid.After spending 24 h with dye-injected pupae, adults were taken out of the colony, briefly immersed in 95% ethanol, and transferred to PBS. Digestive systems were dissected in cold PBS and mounted in DAKO mounting medium. Crop and stomach images (Fig. 1f, inset and Fig. 4c, inset) were acquired with a Revolve microscope (Echo). Larvae are translucent, and the presence of dye in the digestive system can be assayed without dissection. Whole-body images of larvae were acquired with a Leica Z16 APO microscope equipped with a Leica DFC450 camera and Leica Application Suite version 4.12.0 (Leica Microsystems). In the experiment on larval growth (Fig. 3c), larval length was measured from images using ImageJ32.Occluding pupaeTen pupae were placed on double-sided tape on a glass coverslip with the ventral side up. The area between the pupae was covered with laser-cut filter paper to prevent adults from sticking to the tape. The pupae were then placed in a 5 cm diameter Petri dish with a moist plaster of Paris floor. To block pupal secretion, the tip of the gaster was occluded with a drop of oil-paint (Uni Paint Markers PX-20), which has no discernible toxic effect7. Secreting pupae received a drop of the same paint on their head to control for putative differences resulting from the paint. Pupae were left in isolation for one day before adults were added to the assay chamber.Behavioural tracking of adult preference assayVideos were recorded using BFS-U3-50S5C-C: 5.0 MP, 35 FPS, Sony IMX264, Colour cameras (FLIR) and the Motif Video Recording System (Loopbio). To assess adult preference (Fig. 1g), physical contact of adults with pupae was manually annotated for the first 10 min after the first adult had encountered (physically contacted) a pupa.Protein profilingWe extracted 30 µl of pupal social fluid and whole-body wash samples with 75:25:0.2 acetonitrile: methanol: formic acid. Extracts were vortexed for 10 min, centrifuged at 16,000g and 4 °C for 10 min, dried in a SpeedVac, and stored at −80 °C until they were analysed by LC–MS/MS.Protein pellets were dissolved in 8 M urea, 50 mM ammonium bicarbonate, and 10 mM dithiothreitol, and disulfide bonds were reduced for 1 h at room temperature. Alkylation was performed by adding iodoacetamide to a final concentration of 20 mM and incubating for 1 h at room temperature in the dark. Samples were diluted using 50 mM ammonium bicarbonate until the concentration of urea had reached 3.5 M, and proteins were digested with endopeptidase LysC overnight at room temperature. Samples were further diluted to bring the urea concentration to 1.5 M before sequencing-grade modified trypsin was added. Digestion proceeded for 6 h at room temperature before being halted by acidification with TFA and samples were purified using in-house constructed C18 micropurification tips.LC–MS/MS analysis was performed using a Dionex3000 nanoflow HPLC and a Q-Exactive HF mass spectrometer (both Thermo Scientific). Solvent A was 0.1% formic acid in water and solvent B was 80% acetonitrile, 0.1% formic acid in water. Peptides were separated on a 90-minute linear gradient at 300 nl min−1 across a 75 µm × 100 mm fused-silica column packed with 3 µm Reprosil C18 material (Dr. Maisch). The mass spectrometer operated in positive ion Top20 DDA mode at resolution 60 k/30 k (MS1/MS2) and AGC targets were 3 × 106/2 × 105 (MS1/MS2).Raw files were searched through Proteome Discoverer v.1.4 (Thermo Scientific) and spectra were queried against the O. biroi proteome using MASCOT with a 1% FDR applied. Oxidation of M and acetylation of protein N termini were applied as a variable modification and carbamidomethylation of C was applied as a static modification. The average area of the three most abundant peptides for a matched protein33 was used to gauge protein amounts within and between samples.Functional annotation and gene ontology enrichmentTo supplement the current functional annotation of the O. biroi genome34, the full proteome for canonical transcripts was retrieved from UniProtKB (UniProt release 2020_04) in FASTA format. We then applied the EggNog-Mapper tool35,36 (http://eggnog-mapper.embl.de, emapper version 1.0.3-35-g63c274b, EggNogDB version 2) using standard parameters (m diamond -d none –tax_scope auto –go_evidence non-electronic –target_orthologs all –seed_ortholog_evalue 0.001 –seed_ortholog_score 60 –query-cover 20 –subject-cover 0) to produce an expanded annotation for all GO trees (Molecular Function, Biological Process, Cellular Components). The list of proteins identified in the pupal fluid was evaluated for functional enrichment in these GO terms, P-values were adjusted with an FDR cut-off of 0.05, and the network plots were visualized using the clusterProfiler package37.Metabolite profilingFor bulk polar metabolite profiling, we used 10 µl aliquots of pupal social fluid and whole-body wash (pooled samples). For the time-series metabolite profiling, 1 µl of pupal social fluid and whole-body wash was used. Samples were extracted in 180 µl cold LC–MS grade methanol containing 1 μM of uniformly labelled 15N- and 13C-amino acid internal standards (MSK-A2-1.2, Cambridge Isotope Laboratories) and consecutive addition of 390 µl LC–MS grade chloroform followed by 120 µl of LC–MS grade water.The samples were vortexed vigorously for 10 min followed by centrifugation (10 min at 16,000g and 4 °C). The upper polar metabolite-containing layer was collected, flash frozen and SpeedVac-dried. Dried extracts were stored at −80 °C until LC–MS analysis.LC–MS was conducted on a Q-Exactive benchtop Orbitrap mass spectrometer equipped with an Ion Max source and a HESI II probe, which was coupled to a Vanquish UPLC system (Thermo Fisher Scientific). External mass calibration was performed using the standard calibration mixture every three days.Dried polar samples were resuspended in 60 µl 50% acetonitrile, and 5 µl were injected into a ZIC-pHILIC 150 × 2.1 mm (5 µm particle size) column (EMD Millipore). Chromatographic separation was achieved using the following conditions: buffer A was 20 mM ammonium carbonate, 0.1% (v/v) ammonium hydroxide (adjusted to pH 9.3); buffer B was acetonitrile. The column oven and autosampler tray were held at 40 °C and 4 °C, respectively. The chromatographic gradient was run at a flow rate of 0.150 ml min−1 as follows: 0–22 min: linear gradient from 90% to 40% B; 22–24 min: held at 40% B; 24–24.1 min: returned to 90% B; 24.1 −30 min: held at 90% B. The mass spectrometer was operated in full-scan, polarity switching mode with the spray voltage set to 3.0 kV, the heated capillary held at 275 °C, and the HESI probe held at 250 °C. The sheath gas flow was set to 40 units, the auxiliary gas flow was set to 15 units. The MS data acquisition was performed in a range of 55–825 m/z, with the resolution set at 70,000, the AGC target at 10 × 106, and the maximum injection time at 80 ms. Relative quantification of metabolite abundances was performed using Skyline Daily v 20.1 (MacCoss Lab) with a 2 ppm mass tolerance and a pooled library of metabolite standards to confirm metabolite identity (via data-dependent acquisition). Metabolite levels were normalized by the mean signal of 8 heavy 13C,15N-labelled amino acid internal standards (technical normalization).The raw data were searched for a targeted list of ~230 polar metabolites and the corresponding peaks were integrated manually using Skyline Daily software. We were able to assign peaks to 107 compounds based on high mass accuracy ( More

  • in

    Analysis toxicity by different methods and anxiolytic effect of the aqueous extract Lippia sidoides Cham.

    Singh, Y. D., Jena, B. & Ningthoujam, R. Potential bioactive molecules from natural products to combat against coronavirus. Adv. trad. Med. 1, 1–12. https://doi.org/10.1007/s13596-020-00496-w (2020).Article 
    CAS 

    Google Scholar 
    Badke, M. R. et al. Popular knowledge: The use of medicinal plants as therapeutic form in health care. Rev. Enferm. UFSM. 6, 225–234. https://doi.org/10.1590/S0104-07072012000200014 (2016).Article 

    Google Scholar 
    Macedo, J. G. F. et al. Analysis of the variability of therapeutic indications of medicinal species in the Northeast of Brazil: Comparative study. Evid. Based Complementary Altern. Med. 2018, 1–29. https://doi.org/10.1155/2018/6769193 (2018).Article 

    Google Scholar 
    Farias, J. C., Bomfim, B. L. S., Fonseca Filho, I. C., Silva, P. R. R. & Barros, R. F. M. Insecticides and repellents plants used in a rural community in northeast Brazilian. Revista Espacios. 37, 1–6 (2016).
    Google Scholar 
    Silva, M. G. V., Lima, D. R., Monteiro, J. A. & Magalhães, F. E. A. Anxiolytic-like effect of chrysophanol from Senna Cana Stem in Adult Zebrafish (Danio Rerio). Nat. Prod. Res. 22, 1–5. https://doi.org/10.1080/14786419.2021.1980788 (2021).Article 
    CAS 

    Google Scholar 
    Vincenzi, F., Borea, P. A. & Varani, K. Anxiolytic properties of A1 adenosine receptor PAMs. Oncotarget 8, 7216–7217. https://doi.org/10.18632/oncotarget.13802 (2017).Article 
    PubMed 

    Google Scholar 
    Silva, M. I. G., Gondim, A. P. S., Nunes, I. F. S. & Sousa, F. C. F. Utilização de fitoterápicos nas unidades básicas de atenção à saúde da família no município de Maracanaú (CE). Rev. Bras. Farmacog. 16, 455–462. https://doi.org/10.1590/S0102-695X2006000400003 (2006).Article 

    Google Scholar 
    Guimarães, L. G. L., Silva, M. L. M., Reis, P. C. J., Costa, M. T. R. & Alves, L. L. General characteristics, phytochemistry and pharmacognosy of Lippia sidoides. Nat. Prod. Commun. 10, 1861–1867. https://doi.org/10.1177/1934578X1501001116 (2015).Article 

    Google Scholar 
    Veras, H. L. H. et al. Synergistic antibiotic activity of volatile compounds from the essential oil of Lippia sidoides and thymol. Fitoterap. 83, 508–512. https://doi.org/10.1016/j.fitote.2011.12.024 (2012).Article 
    CAS 

    Google Scholar 
    Farias, E. M. F. G. et al. Antifungal activity of Lippia sidoides Cham. (Verbenaceae) against clinical isolates of Candida species. J. Herb. Med. 2, 63–67. https://doi.org/10.1016/j.hermed.2012.06.002 (2012).Article 

    Google Scholar 
    Cavalcanti, S. C. H. et al. Composition and acaricidal activity of Lippia sidoides essential oil Against two-spotted spider mite (Tetranychus urticae Koch). Bioresour. Technol. 101, 829–832. https://doi.org/10.1016/j.biortech.2009.08.053 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Monteiro, M. V. B., Leite, A. K. R. M., Bertini, L. M., Morais, S. M. & Nunes-Pinheiro, D. C. S. Topical anti-inflammatory, gastroprotective and antioxidant effects of the essential oil of Lippia sidoides Cham. Leaves. J. Ethnopharmacol. 111, 378–382. https://doi.org/10.1016/j.jep.2006.11.036 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Botelho, M. A. et al. Effect of a novel essential oil mouthrinse without alcohol on gingivitis: A double-blinded randomized controlled tria. J. Appl. Oral. Sci. 15, 175–180 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Botelho, M. A. et al. Comparative effect of an essential oil mouthrinse on plaque, gingivitis and salivary Streptococcus mutans levels: A double blind randomized study. Phytother. Res. 23, 1214–1219. https://doi.org/10.1002/ptr.2489 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Medeiros, M. G. F. et al. In vitro antileishmanial activity and cytotoxicity of essential oil from Lippia sidoides Cham. Parasitol. Inter. 60, 237–241. https://doi.org/10.1016/j.parint.2011.03.004 (2011).Article 
    CAS 

    Google Scholar 
    Gomide, M. S. et al. The effect of the essential oils from five different Lippia species on the viability of tumor cell lines. Rev. Bras. Farmacogn. 23, 895–902. https://doi.org/10.1590/S0102-695X2013000600006 (2013).Article 
    CAS 

    Google Scholar 
    Murade, V. et al. A plausible involvement of GABAA/benzodiazepine receptor in the anxiolytic-like effect of ethyl acetate fraction and quercetin isolated from Ricinus communis Linn. leaves in mice. Phytomed. Plus. 1, 100041. https://doi.org/10.1016/j.phyplu.2021.100041 (2021).Article 

    Google Scholar 
    Coleta, M., Campos, M. A., Cotrim, M. D., Lima, T. C. M. & Cunha, A. P. Assessment of luteolin (3′,4′,5,7-tetrahydroxyflavone) neuropharmacological activity. Behav. Brain Res. 189, 75–82. https://doi.org/10.1016/j.bbr.2007.12.010 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kosalec, I., Bakmaz, M., Pepeliniak, S. & Vladimir-Knezevic, S. Quantitative analysis of the flavonoids in raw propolis from northern Croatia. A Pharmaceut. 54, 65–72 (2004).CAS 

    Google Scholar 
    Cunha, F. A. B. et al. Eugenia uniflora leaves essential oil induces toxicity in Drosophila melanogaster: Involvement of oxidative stress mechanisms. Toxicol. Res. 4, 634–644. https://doi.org/10.1039/c4tx00162a (2015).Article 

    Google Scholar 
    Coulom, H. & Birman, S. Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J. Neurosci. 24, 10993–10998. https://doi.org/10.1523/JNEUROSCI.2993-04.2004 (2004).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barros, F. J. et al. Activity of essential oils of Piper aduncum anf and Cinnamomum zeylanicum by evaluating osmotic and morphologic fragility of erythrocytes. Eur. J. Integr. Med. 515, 1–8. https://doi.org/10.1016/j.eujim.2016.02.011 (2016).Article 

    Google Scholar 
    Meyer, B. N. et al. Brine Shrimp: A convenient general bioassay for active plant constituints. Planta Med. 45, 31–34. https://doi.org/10.1055/s-2007-971236 (1982).Article 
    CAS 
    PubMed 

    Google Scholar 
    de Magalhães, F. E. A. et al. Adult zebrafish: an alternative behavioral model of formalin-induced nociception. Zebrafish 4, 422–429. https://doi.org/10.1089/zeb.2017.1436 (2017).Article 
    CAS 

    Google Scholar 
    OECD guideline for testing acute toxicity in fishes, Test No. 1992. http://www.oecd.org/chemicalsafety/risk-assessment/1948241.pdf. (Acessado em 25 de octuber, 2021).Arellano-Aguilar, O. et al. Use of the zebrafish embryo toxicity test for use of the zebrafish embryo toxicity test for risk assessment purpose: Case study. J. Fish Sci. 4, 52–62 (2015).
    Google Scholar 
    Gonçalves, N. G. G. et al. Protein fraction from Artocarpus Altilis pulp exhibits antioxidant properties and reverses anxiety behavior in adult zebrafish via the serotoninergic system. J. Funct. Foods. 66, 103772. https://doi.org/10.1016/j.jff.2019.103772 (2020).Article 
    CAS 

    Google Scholar 
    Gebauer, D. L. et al. Effects of anxiolytics in zebrafish: Similarities and differences between benzodiazepines. Buspirone and Ethanol. Pharmacol. Biochem. Behav. 99, 480–486. https://doi.org/10.1016/j.pbb.2011.04.021 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Benneh, C. K. et al. Maerua Angolensis stem bark extract reverses anxiety and related behaviours in zebrafish—Involvement of GABAergic and 5-HT systems. J. Ethnopharmacol. 207, 129–145. https://doi.org/10.1016/j.jep.2017.06.012 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Santos, S. A., Vilela, C., Freire, C. S., Neto, C. P. & Silvestre, A. J. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. J. Chromatogr. B. 938, 65–74. https://doi.org/10.1016/j.jchromb.2013.08.034 (2013).Article 
    CAS 

    Google Scholar 
    Pereira, O. R., Peres, A. M., Silva, A. M. S., Domingues, M. R. M. & Cardoso, S. M. Simultaneous characterization and quantification of phenolic compounds in Thymus x citriodorus using a validated HPLC–UV and ESI–MS combined method. Food Res. Inter. 54, 1773–1780. https://doi.org/10.1016/j.foodres.2013.09.016.( (2013).Article 
    CAS 

    Google Scholar 
    Zhao, Y. et al. Characterization of phenolic constituents in Lithocarpus polystachyus. Royal Soc. Chem. https://doi.org/10.1039/c3ay41288a (2014).Article 

    Google Scholar 
    Petkovska, A., Gjamovski, V., Stanoeva, J. P. & Stefova, M. Characterization of the polyphenolic profiles of peel, flesh and leaves of malus domestica cultivars using UHPLC-DAD-HESI-MSn. Nat. Prod. Commun. https://doi.org/10.1177/1934578X1701200111 (2017).Article 
    PubMed 

    Google Scholar 
    Mena, P. et al. Rapid and comprehensive evaluation of (poly)phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn. Molecules 17, 14821–14840. https://doi.org/10.3390/molecules171214821 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ye, M., Han, J., Chen, H., Zheng, J. & Guo, D. Analysis of phenolic compounds in rhubarbs using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 82–91. https://doi.org/10.1016/j.jasms.2006.08.009 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kang, J., Price, W., Ashton, J., Tapsell, L. C. & Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chem. 211, 215–226. https://doi.org/10.1016/j.foodchem.2016.05.052 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schutz, K., Kammerer, D. R., Carle, R. & Schieber, A. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19, 179–186. https://doi.org/10.1002/rcm.1767.15593267 (2005).Article 
    PubMed 

    Google Scholar 
    Hassan, K. O., Bedgood, D. R. Jr., Prenzler, P. D. & Robards, K. Chemical screening of olive biophenol extracts by hyphenated liquid chromatography. Anal. Chim. Acta 603, 176–189. https://doi.org/10.1016/j.aca.2007.09.044 (2007).Article 
    CAS 

    Google Scholar 
    Brito, A., Ramirez, J. E., Areche, C., Sepúlveda, B. & Simirgiotis, M. J. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 19, 17400–17421. https://doi.org/10.3390/moléculas191117400 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McNab, H., Ferreira, E. S. B., Hulme, A. N. & Quye, A. Negative ion ESI–MS analysis of natural yellow dye flavonoids—An isotopic labelling study. Int. J. Mass Spectrometry. 284, 57–65. https://doi.org/10.1016/j.ijms.2008.05.039 (2009).Article 
    CAS 

    Google Scholar 
    Gouveia, S. & Castilho, P. C. Characterisation of phenolic acid derivatives and flavonoids from different morphological parts of Helichrysum obconicum by a RP-HPLC–DAD-()–ESI-MSn method. Food Chem. 129, 333–344. https://doi.org/10.1016/j.foodchem.2011.04.078 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Peter, S. R., Peru, K. M., Fahlman, B., McMartin, D. W. & Headley, J. V. The application of HPLC ESI MS in the investigation of the flavonoids and flavonoid glycosides of a Caribbean Lamiaceae plant with potential for bioaccumulation. J. Environ. Sci. Health B. 50, 819–826. https://doi.org/10.1080/03601234.2015.1058103 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rashid, N. A. A., Lau, B. F. & Kue, C. S. Differential toxicity and teratogenic effects of the hot water and cold water extracts of Lignosus rhinocerus (Cooke) Ryvarden sclerotium on zebrafish (Danio rerio) embryos. J. Ethnopharmacol. 285(114787), 2022. https://doi.org/10.1016/j.jep.2021.114787 (2022).Article 
    CAS 

    Google Scholar 
    Costa, S. M. O. et al. Chemical constituents from Lippia sidoides and cytotoxic activity. J. Nat. Prod. 64, 792–795. https://doi.org/10.1021/np0005917 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fabri, R. L., Nogueira, M. S., Moreira, J. R., Bouzada, M. L. M. & Scio, E. Identification of antioxidant and antimicrobial compounds of Lippia Species by bioautography. J. Med. Food. 14, 840–846. https://doi.org/10.1089/jmf.2010.0141 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Funari, C. S. et al. Chemical and antifungal investigations of six Lippia species (Verbenaceae) from Brazil. Food Chem. 135, 2086–2094. https://doi.org/10.1016/j.foodchem.2012.06.077 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Garmus, T. T., Paviani, L. C., Queiroga, C. L. & Cabral, F. A. Extraction of phenolic compounds from pepper-rosmarin (Lippia sidoides Cham.) leaves by sequential extraction in fixed bed extractorusing supercritical CO2, ethanol and water as solvents. J. Supercrit. Fluids. 99, 68–75. https://doi.org/10.1016/j.supflu.2015.01.016 (2015).Article 
    CAS 

    Google Scholar 
    Botelho, M. A. et al. Nanotechnology in phytotherapy: Antiinflammatory effect of a nanostructured thymol gel from Lippia sidoides in acute periodontitis in rats. Phytother. Res. 30, 152–159. https://doi.org/10.1002/ptr.5516 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Veras, H. N. et al. Atividade anti-inflamatória tópica do óleo essencial de Lippia sidoides cham: Possível mecanismo de ação. Phytother. Res. 27, 179–185. https://doi.org/10.1002/ptr.4695 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fernandes, L. M., Guterres, Z. R., Almeida, I. V. & Vicentini, V. E. P. Genotoxicity and antigenotoxicity assessments of the flavonoid vitexin by the Drosophila melanogaster somatic mutation and recombination test. J. Med. food. 20, 1–9. https://doi.org/10.1089/jmf.2016.0149 (2017).Article 
    CAS 

    Google Scholar 
    Sotibrán, A. N. C., Ordaz-Téllez, M. G. & Rodríguez-Arnaiz, R. Flavonoids and oxidative stress in Drosophila melanogaster. Mutation Res. 726(60–65), 2011. https://doi.org/10.1016/j.mrgentox.2011.08.005 (2011).Article 
    CAS 

    Google Scholar 
    Silva, L. V. F., Mourão, R. H. V., Manimala, J. & Lnenicka, G. A. The essential oil of Lippia alba and its components affect Drosophila behavior and synaptic physiology. J. Experim. Biol. 221, 1–10. https://doi.org/10.1242/jeb.176909 (2018).Article 

    Google Scholar 
    Poetini, M. R. et al. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson’s disease. Chem. Biol. Interact. 279, 177–186. https://doi.org/10.1016/j.cbi.2017.11.018 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xavier, A. L. et al. Chemical composition, antitumor activity, and toxicity of essential oil from the leaves of Lippia microphylla. Z. Naturforsch. 70, 129–137. https://doi.org/10.1515/znc-2014-4138 (2015).Article 
    CAS 

    Google Scholar 
    Freitas, M. V. et al. Influence of aqueous crude extracts of medicinal plants on the osmotic stability of human erythrocytes. Toxicol. In Vitro. 22, 219–224. https://doi.org/10.1016/j.tiv.2007.07.010 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Oyedapo, O. O., Akinpelu, B. A., Akinwunmi, K. F., Adeyinka, M. O. & Sipeolu, F. O. Red blood cell membrane stabilizing potentials of extracts of Lantana camara and its fractions. Plant Physiol. Biochem. 2, 46–51 (2010).
    Google Scholar 
    Bilto, Y. Y., Suboh, S., Aburjai, T. & Abdalla, S. Structure-activity relationships regarding the antioxidant effects of the flavonoids on human erythrocytes. Nat. Sci. 4, 740–747. https://doi.org/10.4236/ns.2012.4909 (2012).Article 

    Google Scholar 
    Ajaiyeoba, E. O. et al. In vitro cytotoxicity studies of 20 plants used in Nigerian antimalarial ethnomedicine. Phytomed. 13, 295–298 (2006).Article 
    CAS 

    Google Scholar 
    Vélez, E., Regnault, H. D., Jaramillo, C. J., Veléz, A. P. E. & Isitua, C. C. Fitoquímica de Lippia citriodora K cultivada en Ecuador y su actividad biológica. Rev. Cien. UNEMI. 12, 9–19 (2019).Article 

    Google Scholar 
    Costa, P. S. et al. Antifungal activity and synergistic effect of essential oil from Lippia alba against trichophyton rubrum and Candida spp. Rev. Virt. Quim. 12, 1–12. https://doi.org/10.21577/1984-6835.20200119 (2020).Article 
    CAS 

    Google Scholar 
    Gupta, P., Khobragade, S. B., Shingatgeri, V. M. & Rajaram, S. M. Assessment of locomotion behavior in adult Zebrafish after acute exposure to different pharmacological reference compounds. Drug Des. Devel. Ther. 5, 127–133. https://doi.org/10.4103/2394-2002.139626 (2014).Article 
    CAS 

    Google Scholar 
    Bezerra, P. et al. Composição química e atividade biológicade óleos essenciais de plantas do Nordeste—gênero Lippia. Cienc. Cult. 33, 1–14 (1981).CAS 

    Google Scholar 
    Pascual, M. E., Slowing, K., Carretero, E., Sánchez Mata, D. & Villar, A. Lippia: Traditional uses, chemistry and pharmacology: A review. J. Ethnopharmacol. 76, 201–214. https://doi.org/10.1016/s0378-8741(01)00234-3 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mamun-Or-Rashid, A. N. M., Sen, M. K., Jamal, M. A. H. M. & Nasrin, S. A comprehensive ethnopharmacological review on Lippia alba M. Int. J. Biomed. Mater. Res. 1, 14–20. https://doi.org/10.11648/j.ijbmr.20130101.13 (2013).Article 

    Google Scholar 
    Mácová, S. et al. Comparison of acute toxicity of 2-phenoxyethanol and clove oil to juvenile and embryonic stages of Danio rerio. Neuroendocrinol. Lett. 29, 680–684 (2008).PubMed 

    Google Scholar 
    Batista, F. L. A. et al. Antinociceptive effect of volatile oils from Ocimum basilicum flowers on Adult Zebrafish. Rev. Bras. Farmacog. 31, 282–289. https://doi.org/10.1007/s43450-021-00154-5 (2021).Article 
    CAS 

    Google Scholar 
    Horzmann, K. A. & Freeman, J. L. Making waves: New developments in toxicology with the Zebrafish. Toxicol. Sci. 163, 5–12. https://doi.org/10.1093/toxsci/kfy044 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferreira, M. K. A. et al. Anxiolytic-like effect of chalcone N-{(4′-[(E)-3-(4-fluorophenyl)-1-(phenyl) prop-2-en-1-one]} acetamide on adult zebrafish (Danio Rerio): Involvement of the GABAergic system. Behav. Brain Res. 374, 111871. https://doi.org/10.1016/j.bbr.2019.03.040 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Siqueira-Lima, P. S. et al. Central nervous system and analgesic profiles of Lippia Genus. Rev. Bras. Farmacogn. 29, 125–135. https://doi.org/10.1016/j.bjp.2018.11.006 (2019).Article 
    CAS 

    Google Scholar 
    Ferreira, M.K.A. da Silva, A.W. dos Santos Moura, A.L. Sales, K.V.B. Marinho, E.M. do Nascimento Martins Cardoso, J. Marinho, M.M. Bandeira, P.N. Magalhães, F.E.A. Marinho, E.S. et al. Chalcones reverse the anxiety and convulsive behavior of adult zebrafish. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2021.107881 (2021).Silva, A. W., Wlisses, A., Kueirislene, M., Ferreira, A. & Ramos, L. Combretum lanceolatum extract reverses anxiety and seizure behavior in adult zebrafish through GABAergic neurotransmis-Sion: An in vivo and in silico study. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2021.1935322 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Selmani, A. & Kovaˇcevi´, D., Bohinc, K.,. Nanoparticles: From synthesis to applications and beyond. Adv. Colloid Interface Sci. 303, 102640. https://doi.org/10.1016/j.cis.2022.102640 (2022).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    The spatial and temporal reconstruction of a medieval moat ecosystem

    Kirilova, E. P., Cremer, H., Heiri, O. & Lotter, A. F. Eutrophication of moderately deep Dutch lakes during the past century: Flaws in the expectations of water management? Hydrobiologia 637, 157–171 (2010).Article 
    CAS 

    Google Scholar 
    Scharf, B. & Viehberg, F. A. Living Ostracoda (Crustacea) from the town moat of Bremen, Germany. Crustaceana 87(8–9), 1124–1135 (2014).Article 

    Google Scholar 
    Rees, S. E. The historical and cultural importance of ponds and small lakes in Wales, UK. Aquat. Conserv. 7(2), 133–139 (1997).Article 

    Google Scholar 
    Brown, A. et al. The ecological impact of conquest and colonisation on a medieval frontier landscape: Combined palynological and geochemical analysis of lake sediments from Radzyń Chełmiński, northern Poland. Geoarchaeology 30, 511–527 (2015).Article 

    Google Scholar 
    Kittel, P. et al. The palaeoecological development of the Late Medieval moat—Multiproxy research at Rozprza Central Poland. Quat. Int. 482, 131–156 (2018).Article 

    Google Scholar 
    Hildebrandt-Radke, I. Geoarchaeological aspects in the studies of prehistoric and early historic settlement complexes. In Studia interdyscyplinarne nad środowiskiem i kulturą w Polsce. Tom 1. Środowisko-Człowiek-Cywilizacja (eds Makohonienko, M. et al.) 57–70 (Bogucki Wyd Naukowe, 2007).
    Google Scholar 
    Łyskowski, M. & Wardas-Lasoń, M. Georadar investigations and geochemical analysis in contemporary archaeological studies. Geol. Geophys. Environ. 38(3), 307–315 (2012).Article 

    Google Scholar 
    Korhola, A. & Rautio, M. Cladocera and other branchiopod crustaceans. In Tracking Environmental Change Using Lake Sediments, Vol. 4: Zoological Indicators (eds Smol, J. P. et al.) 5–41 (Kluwer Academic Publishers, 2001).Chapter 

    Google Scholar 
    Birks, H. H. Plant macrofossils. In Tracking Environmental Change Using Lake Sediments, 3: Terrestrial, Algal, and Siliceous Indicators (eds Smol, J. P. et al.) 49–74 (Kluwer Academic Publishers, 2001).
    Google Scholar 
    Battarbee, R. W. Diatom analysis. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 527–570 (Wiley, 1986).
    Google Scholar 
    Luoto, T. P., Nevalainen, L., Kultti, S. & Sarmaja-Korjonen, K. An evaluation of the influence of water depth and river inflow on quantitative Cladocera-based temperature and lake level inferences in a shallow boreal lake. Hydrobiologia 676, 143–154 (2011).Article 
    CAS 

    Google Scholar 
    Luoto, T. P. Intra-lake patterns of aquatic insect and mite remains. J. Paleolimnol. 47, 141–157 (2012).Article 

    Google Scholar 
    Hann, B. J. Methods in Quaternary ecology. Cladocera. Geosci. Canada 16, 17–26 (1989).
    Google Scholar 
    Dimbleby, G. W. The Palynology of Archaeological Sites (Academic Press. Inc., 1985).
    Google Scholar 
    Edwards, K. J. Using space in cultural palynology: The value of the off-site pollen record. In Modelling Ecological Change: Perspectives from Neoecology, Palaeoecology and Environmental Archaeology (eds Harris, D. R. & Thomas, K. D.) 61–74 (Routledge Taylor & Francis Group, 2016).
    Google Scholar 
    Kittel, P., Sikora, J. & Wroniecki, P. A Late Medieval motte-and-bailey settlement in a lowland river valley landscape of central Poland. Geoarchaeology 33(5), 558–578 (2018).Article 

    Google Scholar 
    Antczak-Orlewska, O. et al. The environmental history of the oxbow in the Luciąża River valley—Study on the specific microclimate during Allerød and Younger Dryas in central Poland. Quat. Int. https://doi.org/10.1016/j.quaint.2021.08.011 (2021).Article 

    Google Scholar 
    Dearing, J. A. Core correlation and total sediment influx. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 247–270 (Wiley, 1986).
    Google Scholar 
    O’Brien, C. et al. A sediment-based multiproxy palaeoecological approach to the environmental archaeology of lake dwellings (crannogs), central Ireland. Holocene 15, 707–719 (2005).Article 

    Google Scholar 
    Ruiz, Z., Brown, A. G. & Langdon, P. G. The potential of chironomid (Insecta: Diptera) larvae in archaeological investigations of floodplain and lake settlements. J. Archaeol. Sci. 33, 14–33 (2006).Article 

    Google Scholar 
    Kittel, P. et al. A multi-proxy reconstruction from Lutomiersk-Koziówki, Central Poland, in the context of early modern hemp and flax processing. J. Archaeol. Sci. 50, 318–337 (2014).Article 

    Google Scholar 
    Kittel, P. et al. On the border between land and water: the environmental conditions of the Neolithic occupation from 4.3 until 1.6 ka BC at Serteya, Western Russia. Geoarchaeology 36, 173–202 (2021).Article 

    Google Scholar 
    Makohonienko, M. et al. Environmental changes during Mesolithic-Neolithic transition in Kuyavia Lakeland, Central Poland. Quat. Int. https://doi.org/10.1016/j.quaint.2021.11.020 (2021).Article 

    Google Scholar 
    Porinchu, D. F. & MacDonald, G. M. The use and application of freshwater midges (Chironomidae: Insecta: Diptera) in geographical research. Prog. Phys. Geogr. 27, 378–422 (2003).Article 

    Google Scholar 
    Brooks, S. J., Langdon, P. G. & Heiri, O. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. QRA Technical guide no. 10 (Quaternary Research Association, 2007).Heiri, O., Birks, H. J. B., Brooks, S. J., Velle, G. & Willassen, E. Effects of within-lake variability of fossil assemblages on quantitative chironomid-inferred temperature reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 199, 95–106 (2003).Article 

    Google Scholar 
    Kittel, P., Sikora, J. & Wroniecki, P. The morphology of the Luciąża River valley floor in the vicinity of the Rozprza medieval ring-fort in light of geophysical survey. Bull. Geogr. Phys. Geogr. Ser. 8, 95–106 (2015).Article 

    Google Scholar 
    Hingham, R. & Barker, P. Timber Castles (University of Exeter Press, 2002).
    Google Scholar 
    Marciniak-Kajzer, A. Archaeology on Medieval Knights’ Manor Houses in Poland (Wyd. Uniwersytetu Łódzkiego, Wyd. Uniwersytetu Jagiellońskiego, 2016).Book 

    Google Scholar 
    Moller Pillot, H. K. M. Chironomidae Larvae of the Netherlands and Adjacent Lowlands. Biology and Ecology of the Aquatic Orthocladiinae, Prodiamesinae, Diamesinae, Buchonomyiinae, Podonominae, Telmatogetoninae (KNNV Publishing, 2013).Book 

    Google Scholar 
    Luoto, T. P. An assessment of lentic ceratopogonids, ephemeropterans, trichopterans and oribatid mites as indicators of past environmental change in Finland. Ann. Zool. Fenn. 46, 259–270 (2009).Article 

    Google Scholar 
    Cierniewski, J. Spatial complexity of the Cybina river valley organic soils against the background of physiographic conditions. Soil Sci. Annu. 32(4), 3–51 (1981).CAS 

    Google Scholar 
    Rydelek, P. Origin and composition of mineral constituents of fen peats from Eastern Poland. J. Plant Nutr. 36(6), 911–928 (2013).Article 
    CAS 

    Google Scholar 
    Wachecka-Kotkowska, L. Rozwój rzeźby obszaru między Piotrkowem Trybunalskim, Radomskiem a Przedborzem w czwartorzędzie (Wyd. Uniwersytetu Łódzkiego, 2015).Book 

    Google Scholar 
    Kittel, P. et al. Lacustrine, fluvial and slope deposits in the wetland shore area in Serteya, Western Russia. Acta Geogr. Lodz 110, 103–124 (2020).
    Google Scholar 
    Ciszewski, D. Pollution of Mała Panew River sediments by heavy metals: Part I. Effect of changes in river bed morphology. Pol. J. Environ. Stud. 13(6), 589–595 (2004).CAS 

    Google Scholar 
    Borówka, R. Late Vistulian and Holocene denudation magnitude in morainic plateaux: Case studies in the zone of maximum extent of the last ice sheet. Quat. Stud. Pol. 9, 5–31 (1990).
    Google Scholar 
    Prusinkiewicz, Z., Bednarek, R., Kośko, A. & Szmyt, M. Palaeopedological studies of the age and properties of illuvial bands at an archaeological site. Quat. Int. 51(52), 195–201 (1998).Article 

    Google Scholar 
    Kühtreiber, T. The medieval castle Lanzenkirchen in Lower Austria: reconstruction of economical and ecological development of an average-sized manor (12th–15th century). Archaeol. Pol. 37, 135–144 (1999).
    Google Scholar 
    Kočár, P., Čech, P., Kozáková, R. & Kočárová, R. Environment and economy of the early medieval settlement in Žatec. Interdiscip. Archaeol. 1, 45–60 (2010).
    Google Scholar 
    Brown, A. D. & Pluskowski, A. G. Detecting the environmental impact of the Baltic Crusades on a late medieval (13th-15th century) frontier landscape: Palynological analysis from Malbork Castle and hinterland, Northern Poland. J. Archaeol. Sci. 38, 1957–1966 (2011).Article 

    Google Scholar 
    Beneš, J. et al. Archaeobotany of the Old Prague Town defence system, Czech Republic: Archaeology, macro-remains, pollen, and diatoms. Veg. Hist. Archaeobot. 11(1/2), 107–119 (2002).Article 

    Google Scholar 
    Badura, M. & Latałowa, M. Szczątki makroskopowe roślin z obiektów archeologicznych Zespołu Przedbramia w Gdańsku. In Zespół Przedbramia ul. Długiej w Gdańsku. Studium archeologiczne (ed. Pudło, A.) 231–247 (Muzeum Historii Miasta Gdańska, 2016).
    Google Scholar 
    Dobrowolski, R. et al. Environmental conditions of settlement in the vicinity of the mediaeval capital of the Cherven Towns (Czermno site, Hrubieszów Basin, Eastern Poland). Quat. Int. 493, 258–273 (2018).Article 

    Google Scholar 
    Makohonienko, M. Środowisko przyrodnicze i gospodarka w otoczeniu średniowiecznego grodu w Łęczycy w świetle analizy palinologicznej. In Początki Łęczycy. Tom I—Archeologia środowiskowa średniowiecznej Łęczycy. Przyroda–Gospodarka–Społeczeństwo (eds Grygiel, R. & Jurek, T.) 95–190 (MAiE w Łodzi, 2014).
    Google Scholar 
    Koszałka, J. Źródła archeobotaniczne do rekonstrukcji uwarunkowań przyrodniczych oraz gospodarczych grodu w Łęczycy. In Początki Łęczycy. Tom I – Archeologia środowiskowa średniowiecznej Łęczycy. Przyroda–Gospodarka–Społeczeństwo (eds Grygiel, R. & Jurek, T.) 191–241 (MAiE w Łodzi, 2014).
    Google Scholar 
    Digerfeldt, G. Studies on past lake-level fluctuations. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 127–143 (Wiley, 1986).
    Google Scholar 
    Magny, M. Palaeoclimatology and archaeology in the wetlands. In The Oxford Handbook of Wetland Archaeology (eds Menotti, F. & O’Sullivan, A.) 585–597 (Oxford University Press, 2013).
    Google Scholar 
    Płóciennik, M. et al. Summer temperature drives the lake ecosystem during the Late Weichselian and Holocene in Eastern Europe: A case study from East European Plain. CATENA 214, 106206 (2022).Article 

    Google Scholar 
    Święta-Musznicka, J., Badura, M., Pędziszewska, A. & Latałowa, M. Environmental changes and plant use during the 5th–14th centuries in medieval Gdańsk, northern Poland. Veget. Hist. Archaeobot. 30, 363–381 (2021).Article 

    Google Scholar 
    Rackham, J. & Sidell, J. London’s landscapes: The changing environment. In The Archaeology of Greater London. An Assessment of Archaeological Evidence for Human Presence in the Area Now Covered by Greater London (ed. Kendall, M.) 12–27 (Museum of London, 2000).
    Google Scholar 
    Ledger, P., Edwards, K. & Schofield, J. A multiple profile approach to the palynological reconstruction of Norse landscapes in Greenland’s Eastern Settlement. Quat. Res. 82(1), 22–37 (2014).Article 

    Google Scholar 
    Albert, B. & Innes, J. Multi-profile fine-resolution palynological and micro-charcoal analyses at Esklets, North York Moors, UK, with special reference to the Mesolithic-Neolithic transition. Veget. Hist. Archaeobot. 24, 357–375 (2015).Article 

    Google Scholar 
    Sikora, J., Kittel, P. & Wroniecki, P. From a point on the map to a shape in the landscape. Non-invasive verification of medieval ring-forts in Central Poland: Rozprza case study. Archaeol. Pol. 53, 510–514 (2015).
    Google Scholar 
    Sikora, J. et al. A palaeoenvironmental reconstruction of the rampart construction of the medieval ring-fort in Rozprza, Central Poland. Archaeol. Anthropol. Sci. 11(8), 4187–4219 (2019).Article 

    Google Scholar 
    Tolksdorf, J. F., Turner, F., Nelle, O., Peters, S. & Bruckner, H. Environmental development and local human impact in the Jeetzel valley (N Germany) since 10 ka BP as detected by geoarchaeological analyses in a coupled aeolian and lacustrine sediment archive at Soven. E&G Quat. Sci. J. 64, 95–110 (2015).Article 

    Google Scholar 
    Oonk S., Slomp C. P. & Huisman D. J. Geochemistry as an aid in archaeological prospection and site interpretation: Current issues and research directions. Archaeol. Prospect. 16, 35–51 (2009).Article 

    Google Scholar 
    Zieliński, T. & Pisarska-Jamroży, M. Which features of deposits should be included in a code and which not? Przegl. Geol. 60, 387–397 (2012).
    Google Scholar 
    Clift, P. D. et al. Grain-size variability within a mega-scale point-bar system, False River, Louisiana. Sedimentology 66, 408–434 (2019).Article 

    Google Scholar 
    Blott, S. J. & Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 26, 1237–1248 (2001).Article 

    Google Scholar 
    Rolland, N. & Larocque, I. The efficiency of kerosene flotation for extraction of chironomid head capsules from lake sediments samples. J. Paleolimnol. 37, 565–572 (2007).Article 

    Google Scholar 
    Schmid, P. E. A Key to the Chironomidae and Their Instars from Austrian Danube Region Streams and Rivers. Part I. Diamesinae Prodiamesinae and Orthocladiinae (Federal Institute for Water Quality of the Ministry of Agriculture and Forestry, 1993).
    Google Scholar 
    Andersen, T., Cranston, P. S. & Epler, J. H. Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1. Larvae. Insect Systematics and Evolution. Supplement 66 (Scandinavian Entomology, 2013).
    Google Scholar 
    Walker, I. R. Midges: Chironomidae and related Diptera. In Tracking Environmental Change Using Lake Sediments, Volume 4: Zoological Indicators (eds Smol, J. P. et al.) 43–66 (Kluwer Academic Press, 2001).Chapter 

    Google Scholar 
    Vallenduuk, H. J. & Moller Pillot, H. K. M. Chironomidae Larvae of the Netherlands and Adjacent Lowlands. General Ecology and Tanypodinae (KNNV Publishing, 2007).
    Google Scholar 
    Moller Pillot, H. K. M. Chironomidae Larvae Biology and Ecology of the Chironomini (KNNV Publishing, 2009).Book 

    Google Scholar 
    Juggins, S. C2 Version 1.5 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation (Newcastle University, 2007).
    Google Scholar 
    Schweingruber, F. H. Tree Rings. Basics and Applications of Dendrochronology (Kluwer Academic Publishers, 1988).
    Google Scholar 
    Skripkin, V. V. & Kovaliukh, N. N. Recent developments in the procedures used at the SSCER Laboratory for the routine preparation of lithium carbide. Radiocarbon 40(1), 211–214 (1998).Article 
    CAS 

    Google Scholar 
    Krąpiec, M., Rakowski, A. Z., Huels, M., Wiktorowski, D. & Hamann, C. A new graphitization system for radiocarbon dating with AMS on the dendrochronological laboratory at AGH-UST Kraków. Radiocarbon 60(4), 1091–1100 (2018).Article 

    Google Scholar 
    Zoppi, U., Crye, J., Song, Q. & Arjomand, A. Performance evaluation of the new AMS system at Accium BioSciences. Radiocarbon 49, 173–182 (2007).Article 
    CAS 

    Google Scholar 
    Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4), 725–757 (2020).Article 
    CAS 

    Google Scholar 
    Bronk Ramsey, C. OxCal Version 4.4.2. Available at: https://c14.arch.ox.ac.uk (2020).Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1), 337–360 (2009).Article 

    Google Scholar 
    Bronk Ramsey, C. Deposition models for chronological records. Quat. Sci. Rev. 27(1–2), 42–60 (2008).Article 

    Google Scholar 
    Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Kohonen, T. Self-Organizing Maps (Springer, 2001).Book 
    MATH 

    Google Scholar 
    Park, Y.-S. et al. Application of a self-organizing map to select representative species in multivariate analysis: A case study determining diatom distribution patterns across France. Ecol. Inform. 1, 247–257 (2006).Article 

    Google Scholar 
    Zhang, Q. et al. Self-organizing feature map classification and ordination of Larix principis-rupprechtii forest in Pangquangou Nature Reserve. Acta Ecol. Sin. 31, 2990–2998 (2011).
    Google Scholar 
    Ney, J. J. Practical use of biological statistics. In Inland Fisheries Management in North America (eds Kohler, C. C. et al.) 137–158 (American Fisheries Society, 1993).
    Google Scholar 
    Płóciennik, M. et al. Fen ecosystem responses to water-level fluctuations during the early and middle Holocene in central Europe: A case study from Wilczków, Poland. Boreas 44(4), 721–740 (2015).Article 

    Google Scholar 
    Brosse, S., Giraudel, J. L. & Lek, S. Utilisation of non-supervised neural networks and principal component analysis to study fish assemblages. Ecol. Model. 146(1), 159–166 (2001).Article 

    Google Scholar 
    Lek, S., Scardi, M., Verdonschot, P. F. M., Descy, J. P. & Park, Y. S. Modelling Community Structure in Freshwater Ecosystems (Springer, 2005).Book 

    Google Scholar 
    Quinn, G. P. & Keough, M. Experimental Design and Data Analysis for Biologists (University of Cambridge, 2002).Book 

    Google Scholar 
    Płóciennik, M., Kruk, A., Michczyńska, D. J. & Birks, H. J. B. Kohonen artificial neural networks and the IndVal index as supplementary tools for the quantitative analysis of palaeoecological data. Geochronometria 42, 189–201 (2015).Article 

    Google Scholar 
    Vesanto, J. & Alhoniemi, E. Clustering of the self-organizing map. IEEE Trans. Neural Netw. 11, 586–600 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ward, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).Article 
    MathSciNet 

    Google Scholar 
    Alhoniemi, E., Hollmén, J., Simula, O. & Vesanto, J. Process monitoring and modeling using the self-organizing map. Integr. Comput. Aided Eng. 6(1), 3–14 (1999).Article 

    Google Scholar 
    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    McCune, B. & Mefford, M. S. PcOrd Multivariate Analysis of Ecological Data. Version 6.06 (MjM Software, 2011).
    Google Scholar 
    Hadfield, J. D., Krasnov, B. R., Poulin, R. & Nakagawa, S. A tale of two phylogenies: Comparative analyses of ecological interactions. Am. Nat. 183(2), 174–187 (2014).Article 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R Journal 9(2), 378–400 (2017).Article 

    Google Scholar 
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/Mixed) Regression Models. R Package Version 0.4.5. https://CRAN.R-project.org/package=DHARMa (2022).Bartoń, K. MuMIn: Multi-model Inference. R Package Version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).de Rosario-Martinez, H. phia: Post-Hoc Interaction Analysis. R Package Version 0.2-1. https://CRAN.R-project.org/package=phia (2015). More

  • in

    Features of urban green spaces associated with positive emotions, mindfulness and relaxation

    Olszewska-Guizzo, A., Fogel, A., Benjumea, D. & Tahsin, N. Sustainable Policies and Practices in Energy, Environment and Health Research 223–243 (Springer, 2022).Book 

    Google Scholar 
    Gascon, M. et al. Mental health benefits of long-term exposure to residential green and blue spaces: A systematic review. Int. J. Environ. Res. Public Health 12, 4354–4379. https://doi.org/10.3390/ijerph120404354 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Houlden, V., Weich, S., Porto-de-Albuquerque, J., Jarvis, S. & Rees, K. The relationship between greenspace and the mental wellbeing of adults: A systematic review. PLoS ONE 13, 3000 (2018).Article 

    Google Scholar 
    Hung, S.-H. & Chang, C.-Y. Health benefits of evidence-based biophilic-designed environments: A review. J. People Plants Env. 24, 1–16 (2021).Article 

    Google Scholar 
    Berman, M. G., Jonides, J. & Kaplan, S. The cognitive benefits of interacting with nature. Psychol. Sci. 19, 1207–1212. https://doi.org/10.1111/j.1467-9280.2008.02225.x (2008).Article 
    PubMed 

    Google Scholar 
    Kaplan, S. Meditation, restoration, and the management of mental fatigue. Environ. Behav. 33, 480–506. https://doi.org/10.1177/00139160121973106 (2001).Article 

    Google Scholar 
    Ulrich, R. S. et al. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 11, 201–230 (1991).Article 

    Google Scholar 
    Kellert, S. R. & Wilson, E. O. The Biophilia Hypothesis (Island Press, 1993).
    Google Scholar 
    Stack, K. & Shultis, J. Implications of attention restoration theory for leisure planners and managers. Leisure/Loisir 37, 1–16 (2013).Article 

    Google Scholar 
    Steel, Z. et al. The global prevalence of common mental disorders: A systematic review and meta-analysis 1980–2013. Int. J. Epidemiol. 43, 476–493. https://doi.org/10.1093/ije/dyu038 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mueller, D. P. The current status of urban-rural differences in psychiatric disorder. An emerging trend for depression. J. Nerv. Ment. Dis. 169, 18–27 (1981).Article 
    CAS 
    PubMed 

    Google Scholar 
    Peen, J., Schoevers, R. A., Beekman, A. T. & Dekker, J. The current status of urban-rural differences in psychiatric disorders. Acta Psychiatr. Scand. 121, 84–93. https://doi.org/10.1111/j.1600-0447.2009.01438.x (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Taylor, L. & Hochuli, D. F. Defining greenspace: Multiple uses across multiple disciplines. Landsc. Urban Plan. 158, 25–38 (2017).Article 

    Google Scholar 
    en K Staats, H. Restorative Environments The Oxford Handbook of Environmental and Conservation Psychology 445th edn. (Oxford University Press, 2012).
    Google Scholar 
    Wood, L., Hooper, P., Foster, S. & Bull, F. Public green spaces and positive mental health–investigating the relationship between access, quantity and types of parks and mental wellbeing. Health Place 48, 63–71 (2017).Article 
    PubMed 

    Google Scholar 
    Tsunetsugu, Y. et al. Physiological and psychological effects of viewing urban forest landscapes assessed by multiple measurements. Landsc. Urban Plan. 113, 90–93 (2013).Article 

    Google Scholar 
    Gidlow, C. J. et al. Where to put your best foot forward: Psycho-physiological responses to walking in natural and urban environments. J. Environ. Psychol. 45, 22–29 (2016).Article 

    Google Scholar 
    Lee, J. Experimental study on the health benefits of garden landscape. Int. J. Environ. Res. Public Health 14, 829 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuller, R. A., Irvine, K. N., Devine-Wright, P., Warren, P. H. & Gaston, K. J. Psychological benefits of greenspace increase with biodiversity. Biol. Lett. 3, 390–394 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson, C. W., Aspinall, P. & Bell, S. Innovative Approaches to Researching Landscape and Health: Open Space: People Space 2 (Routledge, 2010).Book 

    Google Scholar 
    Tsutsumi, M., Nogaki, H., Shimizu, Y., Stone, T. E. & Kobayashi, T. Individual reactions to viewing preferred video representations of the natural environment: A comparison of mental and physical reactions. Jpn. J. Nurs. Sci. 14, 3–12 (2017).Article 
    PubMed 

    Google Scholar 
    Grazuleviciene, R. et al. Tracking restoration of park and urban street settings in coronary artery disease patients. Int. J. Environ. Res. Public Health 13, 550 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bostancı, S. H. In New Approaches to Spatial Planning and Design (ed Murat Özyavuz) Ch. 32, 435–451 (Peter Lang, 2019).Daniel, T. C. Measuring Landscape Esthetics: The Scenic Beauty Estimation Method, vol. 167 (Department of Agriculture, Forest Service, Rocky Mountain Forest and Range…, 1976).Bacon, W. R. In (eds Elsner G. H. et al) Technical Coordinators. Proceedings of our national landscape: A conference on applied techniques for analysis and management of the visual resource [Incline Village, Nev., April 23–25, 1979]. Gen. Tech. Rep. PSW-GTR-35. Berkeley, CA. Pacific Southwest Forest and Range Exp. Stn., Forest Service, US Department of Agriculture 660–665 (1979).Gavrilidis, A. A., Ciocănea, C. M., Niţă, M. R., Onose, D. A. & Năstase, I. I. Urban landscape quality index—planning tool for evaluating urban landscapes and improving the quality of life. Procedia Environ. Sci. 32, 155–167. https://doi.org/10.1016/j.proenv.2016.03.020 (2016).Article 

    Google Scholar 
    Knobel, P. et al. Development of the urban green space quality assessment tool (RECITAL). Urban For. Urban Green. 57, 126895 (2021).Article 

    Google Scholar 
    Bacon, W. R. & Dell, J. National Forest Landscape Management (Forest Service, US Department of Agriculture, 1973).Kaplan, R., Kaplan, S. & Ryan, R. With People in Mind: Design and Management of Everyday Nature (Island Press, 1998).
    Google Scholar 
    Smardon, R., Palmer, J. & Felleman, J. P. Foundations for Visual Project Analysis (Wiley, 1986).
    Google Scholar 
    Jung, C. G. Man and His Symbols Garden City (Doubleday and Co, 1964).
    Google Scholar 
    Olszewska, A., Marques, P. F., Ryan, R. L. & Barbosa, F. What makes a landscape contemplative?. Env. Plan. B Urban Anal. City Sci. 45, 7–25. https://doi.org/10.1177/0265813516660716 (2016).Article 

    Google Scholar 
    Tarkka, I. M. & Hallett, M. Cortical topography of premotor and motor potentials preceding self-paced, voluntary movement of dominant and non-dominant hands. Electroencephalogr. Clin. Neurophysiol. 75, 36–43 (1990).Article 
    CAS 
    PubMed 

    Google Scholar 
    Olszewska-Guizzo, A., Paiva, T. O. & Barbosa, F. Effects of 3D contemplative landscape videos on brain activity in a passive exposure EEG experiment. Front. Psychiatry 9, 317. https://doi.org/10.3389/fpsyt.2018.00317 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bradley, M. M. & Lang, P. J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59. https://doi.org/10.1016/0005-7916(94)90063-9 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Beck, A. T., Steer, R. A. & Brown, G. K. Beck depression inventory-II. San Antonio 78, 490–498 (1996).
    Google Scholar 
    Ferree, T. C., Luu, P., Russell, G. S. & Tucker, D. M. Scalp electrode impedance, infection risk, and EEG data quality. Clin. Neurophysiol. 112, 536–544. https://doi.org/10.1016/S1388-2457(00)00533-2 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stroganova, T. A. & Orekhova, E. V. EEG and infant states. Infant EEG Event-Relat. Potentials 251, 280 (2007).
    Google Scholar 
    Cacioppo, J. T., Tassinary, L. G. & Berntson, G. Handbook of Psychophysiology (Cambridge University Press, 2007).
    Google Scholar 
    Ulrich, R. S. Natural versus urban scenes: Some psychophysiological effects. Environ. Behav. 13, 523–556 (1981).Article 

    Google Scholar 
    Choi, Y., Kim, M. & Chun, C. Measurement of occupants’ stress based on electroencephalograms (EEG) in twelve combined environments. Build. Environ. 88, 65–72 (2015).Article 

    Google Scholar 
    Gorji, M. A. H., Davanloo, A. A. & Heidarigorji, A. M. The efficacy of relaxation training on stress, anxiety, and pain perception in hemodialysis patients. Indian J. Nephrol. 24, 356 (2014).Article 

    Google Scholar 
    Cahn, B. R. & Polich, J. Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol. Bull. 132, 180 (2006).Article 
    PubMed 

    Google Scholar 
    Gruzelier, J. A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration. Cogn. Process. 10, 101–109 (2009).Article 

    Google Scholar 
    Vecchiato, G. et al. Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments. Cogn. Process. 16, 425–429 (2015).Article 
    PubMed 

    Google Scholar 
    Lagopoulos, J. et al. Increased theta and alpha EEG activity during nondirective meditation. J. Altern. Complement. Med. 15, 1187–1192 (2009).Article 
    PubMed 

    Google Scholar 
    Wascher, E. et al. Frontal theta activity reflects distinct aspects of mental fatigue. Biol. Psychol. 96, 57–65 (2014).Article 
    PubMed 

    Google Scholar 
    Kabat-Zinn, J. Mindfulness. Mindfulness 6, 1481–1483 (2015).Article 

    Google Scholar 
    McGarrigle, T. & Walsh, C. A. Mindfulness, self-care, and wellness in social work: Effects of contemplative training. J. Relig. Spiritual. Soc. Work Soc. Thought 30, 212–233 (2011).
    Google Scholar 
    Grossman, P., Niemann, L., Schmidt, S. & Walach, H. Mindfulness-based stress reduction and health benefits: A meta-analysis. J. Psychosom. Res. 57, 35–43 (2004).Article 
    PubMed 

    Google Scholar 
    Bailey, A. W., Allen, G., Herndon, J. & Demastus, C. Cognitive benefits of walking in natural versus built environments. World Leisure J. 60, 293–305 (2018).Article 

    Google Scholar 
    Qin, J., Zhou, X., Sun, C., Leng, H. & Lian, Z. Influence of green spaces on environmental satisfaction and physiological status of urban residents. Urban For. Urban Green. 12, 490–497 (2013).Article 

    Google Scholar 
    Kolb, B. & Whishaw, I. Q. Fundamentals of Human Neuropsychology (Freeman, 1990).
    Google Scholar 
    Milner, B. Visual recognition and recall after right temporal-lobe excision in man. Neuropsychologia 6, 191–209 (1968).Article 

    Google Scholar 
    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215. https://doi.org/10.1038/nrn755 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chang, C.-Y. & Chen, P.-K. Human response to window views and indoor plants in the workplace. HortScience 40, 1354–1359 (2005).Article 

    Google Scholar 
    Herzog, T. R., Black, A. M., Fountaine, K. A. & Knotts, D. J. Reflection and attentional recovery as distinctive benefits of restorative environments. J. Environ. Psychol. 17, 165–170 (1997).Article 

    Google Scholar 
    Baehr, E., Rosenfeld, J. P. & Baehr, R. Clinical use of an alpha asymmetry neurofeedback protocol in the treatment of mood disorders: Follow-up study one to five years post therapy. J. Neurother. 4, 11–18 (2001).Article 

    Google Scholar 
    Sia, A. et al. Nature-based activities improve the well-being of older adults. Sci. Rep. 10, 1–8 (2020).Article 

    Google Scholar 
    Olszewska-Guizzo, A., Sia, A., Fogel, A. & Ho, R. Can exposure to certain urban green spaces trigger frontal alpha asymmetry in the brain?—Preliminary findings from a passive task EEG study. Int. J. Environ. Res. Public Health 17, 394 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olszewska-Guizzo, A. et al. Therapeutic garden with contemplative features induces desirable changes in mood and B rain activity in depressed adults. Front. Psychiatry https://doi.org/10.3389/fpsyt.2022.757056 (2021).Article 

    Google Scholar 
    Tan, S. B., Vignesh, L. N. & Donald, L. Public Housing in Singapore: Examining Fundamental Shifts (Lee Kuan Yew School of Public Policy, National University of Singapore, 2014).Tan, P. Y. Nature, Place & People: Forging Connections Through Neighbourhood Landscape Design (World Scientific Publishing Co., 2018).Book 

    Google Scholar 
    Peirce, J. et al. PsychoPy2: Experiments in behavior made easy. Behav. Res. Methods 51, 195–203. https://doi.org/10.3758/s13428-018-01193-y (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edwards, A. L. Balanced Latin-square designs in psychological research. Am. J. Psychol. 64, 598–603 (1951).Article 
    CAS 
    PubMed 

    Google Scholar 
    Korpela, K. M., Ylén, M., Tyrväinen, L. & Silvennoinen, H. Determinants of restorative experiences in everyday favorite places. Health Place 14, 636–652 (2008).Article 
    PubMed 

    Google Scholar 
    Ojala, A., Korpela, K., Tyrväinen, L., Tiittanen, P. & Lanki, T. Restorative effects of urban green environments and the role of urban-nature orientedness and noise sensitivity: A field experiment. Health Place 55, 59–70 (2019).Article 
    PubMed 

    Google Scholar 
    Tyrväinen, L. et al. The influence of urban green environments on stress relief measures: A field experiment. J. Environ. Psychol. 38, 1–9 (2014).Article 

    Google Scholar 
    Herzog, T. R. & Barnes, G. J. Tranquility and preference revisited. J. Environ. Psychol. 19, 171–181 (1999).Article 

    Google Scholar 
    Neale, C. et al. The impact of walking in different urban environments on brain activity in older people. Cities Health 4, 94–106. https://doi.org/10.1080/23748834.2019.1619893 (2020).Article 

    Google Scholar 
    Kaplan, R. & Kaplan, S. The Experience of Nature: A Psychological Perspective (CUP Archive, 1989).
    Google Scholar 
    Treib, M. In Contemporary Landscapes of Contemplation (ed Rebecca Krinke) 27–49 (Routledge, 2005).Appleton, J. The Experience of Landscape (Wiley Chichester, 1996).
    Google Scholar 
    Grahn, P., Ottosson, J. & Uvnäs-Moberg, K. The oxytocinergic system as a mediator of anti-stress and instorative effects induced by nature: The calm and connection theory. Front. Psychol. 2021, 12 (2021).
    Google Scholar 
    Hartig, T., Mang, M. & Evans, G. W. Restorative effects of natural environment experiences. Environ. Behav. 23, 3–26. https://doi.org/10.1177/0013916591231001 (1991).Article 

    Google Scholar 
    Stamps Iii, A. E. Use of photographs to simulate environments: A meta-analysis. Percept. Mot. Skills 71, 907–913 (1990).Article 

    Google Scholar 
    Menardo, E., Brondino, M., Hall, R. & Pasini, M. Restorativeness in natural and urban environments: A meta-analysis. Psychol. Rep. 124, 417–437 (2021).Article 
    PubMed 

    Google Scholar  More

  • in

    Memory for own actions in parrots

    Zimmer, H. D. et al. Memory for Action: A Distinct Form of Episodic Memory? (Oxford University Press, 2001).
    Google Scholar 
    Goswami, U. The Wiley-Blackwell Handbook of Childhood Cognitive Development (Wiley, 2013).
    Google Scholar 
    Fujita, K., Morisaki, A., Takaoka, A., Maeda, T. & Hori, Y. Incidental memory in dogs (Canis familiaris): Adaptive behavioral solution at an unexpected memory test. Anim. Cogn. 15, 1055–1063 (2012).Article 
    PubMed 

    Google Scholar 
    Lind, J., Enquist, M. & Ghirlanda, S. Animal memory: A review of delayed matching-to-sample data. Behav. Processes 117, 52–58 (2015).Article 
    PubMed 

    Google Scholar 
    Kuczaj, S. A. II. & Eskelinen, H. C. (2014) The “creative dolphin” revisited: What do dolphins do when asked to vary their behavior. Anim. Behav. Cogn. 1, 66–77 (2014).Article 

    Google Scholar 
    Tulving, E. Episodic and semantic memory. Organ. Mem. 1, 381–403 (1972).
    Google Scholar 
    Tulving, E. How many memory systems are there?. Am. Psychol. 40, 385 (1985).Article 

    Google Scholar 
    Fugazza, C., Pongrácz, P., Pogány, Á., Lenkei, R. & Miklósi, Á. Mental representation and episodic-like memory of own actions in dogs. Sci. Rep. 10, 1–8 (2020).Article 

    Google Scholar 
    Hauser, M. D., Chomsky, N. & Fitch, W. T. The faculty of language: What is it, who has it, and how did it evolve?. Science 298, 1569–1579 (2002).Article 
    PubMed 

    Google Scholar 
    Conway, M. A. Memory and the self. J. Mem. Lang. 53, 594–628 (2005).Article 

    Google Scholar 
    Scagel, A. & Mercado, E. III. Do that again! Memory for self-performed actions in dogs (Canis familiaris). J. Comp. Psychol. 20, 25 (2022).
    Google Scholar 
    Mercado, E., Murray, S. O., Uyeyama, R. K., Pack, A. A. & Herman, L. M. Memory for recent actions in the bottlenosed dolphin (Tursiops truncatus): Repetition of arbitrary behaviors using an abstract rule. Learn. Behav. 26, 210–218 (1998).Article 

    Google Scholar 
    Paukner, A., Anderson, J. R., Donaldson, D. I. & Ferrari, P. F. Cued repetition of self-directed behaviors in macaques (Macaca nemestrina). J. Exp. Psychol. Anim. Behav. Process. 33, 139 (2007).Article 
    PubMed 

    Google Scholar 
    Smeele, S. Q. et al. Memory for own behaviour in pinnipeds. Anim. Cogn. 20, 1–12 (2019).
    Google Scholar 
    Clayton, N. S. Episodic-like memory and mental time travel in animals. (2017).Clayton, N. S., Griffiths, D. P. & Dickinson, A. Declarative and episodic-like memory in animals: Personal musings of a Scrub Jay (2000).Clayton, N. S. & Dickinson, A. Episodic-like memory during cache recovery by scrub jays. Nature 395, 272–274 (1998).Article 
    PubMed 

    Google Scholar 
    Tulving, E. Episodic memory and autonoesis: Uniquely human. Missing Link Cogn. Orig. Self-Reflect. Conscious 20, 3–56 (2005).
    Google Scholar 
    Suddendorf, T. & Corballis, M. C. Mental time travel and the evolution of the human mind. Genet. Soc. Gen. Psychol. Monogr. 123, 133–167 (1997).PubMed 

    Google Scholar 
    Suddendorf, T. & Corballis, M. C. The evolution of foresight: What is mental time travel, and is it unique to humans?. Behav. Brain Sci. 30, 299–313 (2007).Article 
    PubMed 

    Google Scholar 
    Crystal, J. D. Evaluating evidence from animal models of episodic memory. J. Exp. Psychol. Anim. Learn. Cogn. 47, 337 (2021).Article 
    PubMed 

    Google Scholar 
    Mercado, E. III., Uyeyama, R. K., Pack, A. A. & Herman, L. M. Memory for action events in the bottlenosed dolphin. Anim. Cogn. 2, 17–25 (1999).Article 

    Google Scholar 
    Zentall, T. R. Coding of stimuli by animals: Retrospection, prospection, episodic memory and future planning. Learn. Motiv. 41, 225–240 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fugazza, C., Pogány, Á. & Miklósi, Á. Recall of others’ actions after incidental encoding reveals episodic-like memory in dogs. Curr. Biol. 26, 3209–3213 (2016).Article 
    PubMed 

    Google Scholar 
    Lambert, M. L., Jacobs, I., Osvath, M. & von Bayern, A. M. Birds of a feather? Parrot and corvid cognition compared. Behaviour 156, 505–594 (2019).Article 

    Google Scholar 
    Emery, N. J. Cognitive ornithology: The evolution of avian intelligence. Philos. Trans. R. Soc. B Biol. Sci. 361, 23–43 (2006).Article 

    Google Scholar 
    Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl. Acad. Sci. 113, 7255–7260 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emery, N. J. & Clayton, N. S. Evolution of the avian brain and intelligence. Curr. Biol. 15, R946–R950 (2005).Article 
    PubMed 

    Google Scholar 
    Bradbury, J. W. & Balsby, T. J. The functions of vocal learning in parrots. Behav. Ecol. Sociobiol. 70, 293–312 (2016).Article 

    Google Scholar 
    Baciadonna, L., Cornero, F. M., Emery, N. J. & Clayton, N. S. Convergent evolution of complex cognition: Insights from the field of avian cognition into the study of self-awareness. Learn. Behav. 49, 9–22 (2021).Article 
    PubMed 

    Google Scholar 
    Osvath, M., Kabadayi, C. & Jacobs, I. Independent evolution of similar complex cognitive skills (2014).Zentall, T. R., Clement, T. S., Bhatt, R. S. & Allen, J. Episodic-like memory in pigeons. Psychon. Bull. Rev. 8, 685–690 (2001).Article 
    PubMed 

    Google Scholar 
    Zentall, T. R., Singer, R. A. & Stagner, J. P. Episodic-like memory: Pigeons can report location pecked when unexpectedly asked. Behav. Processes 79, 93–98 (2008).Article 
    PubMed 

    Google Scholar 
    Healy, S. D. & Hurly, T. A. Spatial learning and memory in birds. Brain. Behav. Evol. 63, 211–220 (2004).Article 
    PubMed 

    Google Scholar 
    Taylor, A. H. Corvid cognition. Wiley Interdiscip. Rev. Cogn. Sci. 5, 361–372 (2014).Article 
    PubMed 

    Google Scholar 
    Boeckle, M. & Bugnyar, T. Long-term memory for affiliates in ravens. Curr. Biol. 22, 801–806 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marzluff, J. M., Walls, J., Cornell, H. N., Withey, J. C. & Craig, D. P. Lasting recognition of threatening people by wild American crows. Anim. Behav. 79, 699–707 (2010).Article 

    Google Scholar 
    Pepperberg, I. M. & Pepperberg, I. M. The Alex Studies: Cognitive and Communicative Abilities of Grey Parrots (Harvard University Press, 2009).Book 

    Google Scholar 
    Emery, N. J. & Clayton, N. S. Effects of experience and social context on prospective caching strategies by scrub jays. Nature 414, 443–446 (2001).Article 
    PubMed 

    Google Scholar 
    Herzog, S. K. et al. First systematic sampling approach to estimating the global population size of the Critically Endangered Blue-throated Macaw Ara glaucogularis. Bird Conserv. Int. 31, 293–311 (2021).Article 

    Google Scholar 
    Auersperg, A. M. & von Bayern, A. M. Who’sa clever bird—now? A brief history of parrot cognition. Behaviour 156, 391–407 (2019).Article 

    Google Scholar 
    Tassin de Montaigu, C., Durdevic, K., Brucks, D., Krasheninnikova, A. & von Bayern, A. Blue-throated macaws (Ara glaucogularis) succeed in a cooperative task without coordinating their actions. Ethology 126, 267–277 (2020).Article 

    Google Scholar 
    Auersperg, A. M. et al. Social transmission of tool use and tool manufacture in Goffin cockatoos (Cacatua goffini). Proc. R. Soc. B Biol. Sci. 281, 20140972 (2014).Article 

    Google Scholar 
    Brucks, D. & von Bayern, A. M. Parrots voluntarily help each other to obtain food rewards. Curr. Biol. 30, 292–297 (2020).Article 
    PubMed 

    Google Scholar 
    Krasheninnikova, A., Höner, F., O’Neill, L., Penna, E. & von Bayern, A. M. Economic decision-making in parrots. Sci. Rep. 8, 1–10 (2018).Article 

    Google Scholar 
    Jarvis, E. D. et al. Avian brains and a new understanding of vertebrate brain evolution. Nat. Rev. Neurosci. 6, 151–159 (2005).Article 
    PubMed 

    Google Scholar 
    Gutiérrez-Ibáñez, C., Iwaniuk, A. N. & Wylie, D. R. Parrots have evolved a primate-like telencephalic-midbrain-cerebellar circuit. Sci. Rep. 8, 1–11 (2018).Article 

    Google Scholar 
    Smeele, S. Q. et al. Coevolution of relative brain size and life expectancy in parrots. Proc. R. Soc. B 289, 20212397 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirsch, J. A., Güntürkün, O. & Rose, J. Insight without cortex: Lessons from the avian brain. Conscious. Cogn. 17, 475–483 (2008).Article 
    PubMed 

    Google Scholar 
    Dunbar, R. I. & Shultz, S. Evolution in the social brain. Science 317, 1344–1347 (2007).Article 
    PubMed 

    Google Scholar 
    Wright, A. A. & Katz, J. S. Mechanisms of same/different concept learning in primates and avians. Behav. Processes 72, 234–254 (2006).Article 
    PubMed 

    Google Scholar 
    Smirnova, A. A., Obozova, T. A., Zorina, Z. A. & Wasserman, E. A. How do crows and parrots come to spontaneously perceive relations-between-relations?. Curr. Opin. Behav. Sci. 37, 109–117 (2021).Article 

    Google Scholar 
    Schusterman, R. J. & Kastak, D. A California sea lion (Zalophus californianus) is capable of forming equivalence relations. Psychol. Rec. 43, 823–839 (1993).Article 

    Google Scholar 
    Kastak, D. & Schusterman, R. J. Transfer of visual identity matching-to-sample in two California sea lions (Zalophus californianus). Anim. Learn. Behav. 22, 427–435 (1994).Article 

    Google Scholar 
    Zentall, T. R., Wasserman, E. A., Lazareva, O. F., Thompson, R. K. & Rattermann, M. J. Concept learning in animals. Comp. Cogn. Behav. Rev. 20, 25 (2008).
    Google Scholar 
    Marino, L. Convergence of complex cognitive abilities in cetaceans and primates. Brain. Behav. Evol. 59, 21–32 (2002).Article 
    PubMed 

    Google Scholar 
    Huber, L., Range, F. & Virányi, Z. Dog imitation and its possible origins. In Domestic dog Cognition and Behavior 79–100 (Springer, 2014).Chapter 

    Google Scholar 
    Schmidjell, T., Range, F., Huber, L. & Virányi, Z. Do owners have a Clever Hans effect on dogs? Results of a pointing study. Front. Psychol. 3, 558 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hare, B., Brown, M., Williamson, C. & Tomasello, M. The domestication of social cognition in dogs. Science 298, 1634–1636 (2002).Article 
    PubMed 

    Google Scholar 
    Lindqvist, C. & Jensen, P. Domestication and stress effects on contrafreeloading and spatial learning performance in red jungle fowl (Gallus gallus) and White Leghorn layers. Behav. Processes 81, 80–84 (2009).Article 
    PubMed 

    Google Scholar 
    Pack, A. A., Herman, L. M. & Roitblat, H. L. Generalization of visual matching and delayed matching by a California sea lion (Zalophus californianus). Anim. Learn. Behav. 19, 37–48 (1991).Article 

    Google Scholar 
    Bennett, M. S. Five breakthroughs: A first approximation of brain evolution from early bilaterians to humans. Front. Neuroanat. 15, 25 (2021).Article 

    Google Scholar 
    Cisek, P. Resynthesizing behavior through phylogenetic refinement. Atten. Percept. Psychophys. 81, 2265–2287 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Toft, C. A. & Wright, T. F. Parrots of the wild. Nat. Hist. World’s Most Captiv. Birds 20, 25 (2015).
    Google Scholar 
    Merkle, J. A., Sigaud, M. & Fortin, D. To follow or not? How animals in fusion–fission societies handle conflicting information during group decision-making. Ecol. Lett. 18, 799–806 (2015).Article 
    PubMed 

    Google Scholar 
    Stevens, J. R. & Gilby, I. C. A conceptual framework for nonkin food sharing: Timing and currency of benefits. Anim. Behav. 67, 603–614 (2004).Article 

    Google Scholar 
    Kamil, A. C. & Roitblat, H. L. The ecology of foraging behavior—Implications for animal learning and memory. Annu. Rev. Psychol. 36, 141–169 (1985).Article 
    PubMed 

    Google Scholar 
    Ortiz, S. T., Castro, A. C., Balsby, T. J. S. & Larsen, O. N. Problem-solving in a cooperative task in peach-fronted conures (Eupsittula aurea). Anim. Cogn. 23, 265–275 (2020).Article 

    Google Scholar 
    Krasheninnikova, A., Brucks, D., Blanc, S. & von Bayern, A. M. Assessing African grey parrots’ prosocial tendencies in a token choice paradigm. R. Soc. Open Sci. 6, 190696 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krasheninnikova, A. et al. Parrots do not show inequity aversion. Sci. Rep. 9, 1–12 (2019).Article 

    Google Scholar 
    Clayton, N. S., Griffiths, D. P., Emery, N. J. & Dickinson, A. Elements of episodic–like memory in animals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1483–1491 (2001).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall, 2020).Book 

    Google Scholar  More

  • in

    Biodiversity loss and climate extremes — study the feedbacks

    As humans warm the planet, biodiversity is plummeting. These two global crises are connected in multiple ways. But the details of the intricate feedback loops between biodiversity decline and climate change are astonishingly under-studied.It is well known that climate extremes such as droughts and heatwaves can have devastating impacts on ecosystems and, in turn, that degraded ecosystems have a reduced capacity to protect humanity against the social and physical impacts of such events. Yet only a few such relationships have been probed in detail. Even less well known is whether biodiversity-depleted ecosystems will also have a negative effect on climate, provoking or exacerbating weather extremes.For us, a group of researchers living and working mainly in Central Europe, the wake-up call was the sequence of heatwaves of 2018, 2019 and 2022. It felt unreal to watch a floodplain forest suffer drought stress in Leipzig, Germany. Across Germany, more than 380,000 hectares of trees have now been damaged (see go.nature.com/3etrrnp; in German), and the forestry sector is struggling with how to plan restoration activities over the coming decades1. What could have protected these ecosystems against such extremes? And how will the resultant damage further impact our climate?
    Nature-based solutions can help cool the planet — if we act now
    In June 2021, the Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) published their first joint report2, acknowledging the need for more collaborative work between these two domains. And some good policy moves are afoot: the new EU Forest Strategy for 2030, released in July 2021, and other high-level policy initiatives by the European Commission, formally recognize the multifunctional value of forests, including their role in regulating atmospheric processes and climate. But much more remains to be done.To thoroughly quantify the risk that lies ahead, ecologists, climate scientists, remote-sensing experts, modellers and data scientists need to work together. The upcoming meeting of the United Nations Convention on Biological Diversity in Montreal, Canada, in December is a good opportunity to catalyse such collaboration.Buffers and responsesWhen lamenting the decline in biodiversity, most people think first about the tragedy of species driven to extinction. There are more subtle changes under way, too.For instance, a study across Germany showed that over the past century, most plant species have declined in cover, with only a few increasing in abundance3. Also affected is species functionality4 — genetic diversity, and the diversity of form and structure that can make communities more or less efficient at taking up nutrients, resisting heat or surviving pathogen attacks.When entire ecosystems are transformed, their functionality is often degraded. They are left with less capacity to absorb pollution, store carbon dioxide, soak up water, regulate temperature and support vital functions for other organisms, including humans5. Conversely, higher levels of functional biodiversity increase the odds of an ecosystem coping with unexpected events, including climate extremes. This is known as the insurance effect6.The effect is well documented in field experiments and modelling studies. And there is mounting evidence of it in ecosystem responses to natural events. A global synthesis of various drought conditions showed, for instance, that forests were more resilient when trees with a greater diversity of strategies for using and transporting water lived together7.

    Dead trees near Iserlohn, Germany, in April 2020 (left) and after felling in June 2021 (right).Credit: Ina Fassbender/AFP via Getty

    However, biodiversity cannot protect all ecosystems against all kinds of impacts. In a study this year across plots in the United States and Canada, for example, mortality was shown to be higher in diverse forest ecosystems8. The proposed explanation for this unexpected result was that greater biodiversity could also foster more competition for resources. When extreme events induce stress, resources can become scarce in areas with high biomass and competition can suddenly drive mortality, overwhelming the benefits of cohabitation. Whether or not higher biodiversity protects an ecosystem from an extreme is highly site-specific.Some plants respond to drought by reducing photosynthesis and transpiration immediately; others can maintain business as usual for much longer, stabilizing the response of the ecosystem as a whole. So the exact response of ecosystems to extremes depends on interactions between the type of event, plant strategies, vegetation composition and structure.Which plant strategies will prevail is hard to predict and highly dependent on the duration and severity of the climatic extreme, and on previous extremes9. Researchers cannot fully explain why some forests, tree species or individual plants survive in certain regions hit by extreme climate conditions, whereas entire stands disappear elsewhere10. One study of beech trees in Germany showed that survival chances had a genomic basis11, yet it is not clear whether the genetic variability present in forests will be sufficient to cope with future conditions.And it can take years for ecosystem impacts to play out. The effects of the two consecutive hot drought years, 2018 and 2019, were an eye-opener for many of us. In Leipzig, tree growth declined, pathogens proliferated and ash and maple trees died. The double blow, interrupted by a mild winter, on top of the long-term loss of soil moisture, led to trees dying at 4–20 times the usual rate throughout Germany, depending on the species (see go.nature.com/3etrrnp; in German). The devastation peaked in 2020.Ecosystem changes can also affect atmospheric conditions and climate. Notably, land-use change can alter the brightness (albedo) of the planet’s surface and its capacity for heat exchange. But there are more-complex mechanisms of influence.Vegetation can be a source or sink for atmospheric substances. A study published in 2020 showed that vegetation under stress is less capable of removing ozone than are unstressed plants, leading to higher levels of air pollution12. Pollen and other biogenic particles emitted from certain plants can induce the freezing of supercooled cloud droplets, allowing ice in clouds to form at much warmer temperatures13, with consequences for rainfall14. Changes to species composition and stress can alter the dynamics of these particle emissions. Plant stress also modifies the emission of biogenic volatile organic gases, which can form secondary particles. Wildfires — enhanced by drought and monocultures — affect clouds, weather and climate through the emission of greenhouse gases and smoke particles. Satellite data show that afforestation can boost the formation of low-level, cooling cloud cover15 by enhancing the supply of water to the atmosphere.Research prioritiesAn important question is whether there is a feedback loop: will more intense, and more frequent, extremes accelerate the degradation and homogenization of ecosystems, which then, in turn, promote further climate extremes? So far, we don’t know.One reason for this lack of knowledge is that research has so far been selective: most studies have focused on the impacts of droughts and heatwaves on ecosystems. Relatively little is known about the impacts of other kinds of extremes, such as a ‘false spring’ caused by an early-season bout of warm weather, a late spring frost, heavy rainfall events, ozone maxima, or exposure to high levels of solar radiation during dry, cloudless weather.Researchers have no overview, much less a global catalogue, of how each dimension of biodiversity interacts with the full breadth of climate extremes in different combinations and at multiple scales. In an ideal world, scientists would know, for example, how the variation in canopy density, vegetation age, and species diversity protects against storm damage; and whether and how the diversity of canopy structures controls atmospheric processes such as cloud formation in the wake of extremes. Researchers need to link spatiotemporal patterns of biodiversity with the responses of ecosystem processes to climate extremes.
    Biodiversity needs every tool in the box: use OECMs
    Creating such a catalogue is a huge challenge, particularly given the more frequent occurrence of extremes with little or no precedent16. Scientists will also need to account for the increasing likelihood of pile-ups of climate stressors. The ways in which ecosystems respond to compound events17 could be quite different. Researchers will have to study which facets of biodiversity (genetic, physiological, structural) are required to stabilize ecosystems and their functions against these onslaughts.There is at least one piece of good news: tools for data collection and analysis are improving fast, with huge advances over the past decade in satellite-based observations for both climate and biodiversity monitoring. The European Copernicus Earth-observation programme, for example — which includes the Sentinel 1 and 2 satellite fleet, and other recently launched missions that cover the most important wavelengths of the electromagnetic spectrum — offer metre-scale resolution observations of the biochemical status of plants and canopy structure. Atmospheric states are recorded in unprecedented detail, vertically and in time.Scientists must now make these data interoperable and integrate them with in situ observations. The latter is challenging. On the ground, a new generation of data are being collected by researchers and by citizen scientists18. For example, unique insights into plant responses to stress are coming from time-lapse photography of leaf orientation; accelerometer measures of movement patterns of stems have been shown to provide proxies for the drought stress of trees19.High-quality models are needed to turn these data into predictions. The development of functional ‘digital twins’ of the climate system is now in reach. These models replicate hydrometeorological processes at the metre scale, and are fast enough to allow for rapid scenario development and testing20. The analogous models for ecosystems are still in a more conceptual phase. Artificial-intelligence methods will be key here, to study links between climate extremes and biodiversity.Researchers can no longer afford to track global transformations of the Earth system in disciplinary silos. Instead, ecologists and climate scientists need to establish a joint agenda, so that humanity is properly forewarned: of the risks of removing biodiversity buffers against climate extremes, and of the risk of thereby amplifying these extremes. More

  • in

    Eddy covariance-based differences in net ecosystem productivity values and spatial patterns between naturally regenerating forests and planted forests in China

    Differences in environmental factorsEnvironmental factors showed value differences between forest types, while the significance of differences differed among variables, which were both found with corrected values and original measurements (Fig. 1).Figure 1The differences in environmental factors between naturally regenerating forests (NF) and planted forests (PF) in China. The environmental factors include three annual climatic factors (a–c), three seasonal temperature factors (d–f), three seasonal precipitation factors (g–i), three biotic factors (j–l), and two soil factors (m,n). Three annual climatic factors include mean annual air temperature (MAT, a), mean annual precipitation (MAP, b), and aridity index (AI, c) defined as the ratio of MAP to annual potential evapotranspiration. Three seasonal temperature factors include the temperature of the warmest month (Tw, d), the temperature of the coldest month (Tc, e), temperature annual range (TR, f). Three seasonal precipitation factors include precipitation of the wettest month (Pw, g), precipitation of the driest month (Pd, h), and precipitation seasonality (Ps, i) defined as the standard deviation of monthly precipitation during the measuring year. Three biological factors include the mean annual leaf area index (LAI, j), the maximum leaf area index (MLAI, k), and stand age (SA, l). Two soil factors include soil organic carbon content (SOC, m) and soil total nitrogen content (STN, n). The differences are tested for each variable with one-way analysis of variance (ANOVA), where * and ** indicate significant differences between forest types at significance levels of α = 0.05 and α = 0.01, respectively. The corrected values are mean values during 2003–2019 after correcting the original measurements with the interannual trend (See methods), which are listed in each panel, while original measurements are mean values during the measuring period of each ecosystem, which are not shown in each panel.Full size imageFor annual climatic factors, the significant difference between NF and PF only appeared in MAT (Fig. 1a). The mean MAT of NF was 10.50 ± 7.81 °C, which was significantly lower than that of PF (15.65 ± 6.23 °C) (p  0.05) (Fig. 2c). Even considering the significant effects of MAT on ER, ANCOVA results obtained by fixing MAT as a covariant also suggested that ER values did not significantly differ between forest types (F = 0.01, p  > 0.05). Fixing other variables as a covariant also drew a similar result.Therefore, NF showed a lower NEP resulting from the lower GPP than PF, while their differences were not statistically significant (Fig. 2).Differences in NEP latitudinal patternsCarbon fluxes showed divergent latitudinal patterns between NF and PF, while their latitudinal patterns varied among carbon fluxes, which were both found with corrected values and original measurements (Fig. 3).Figure 3The latitudinal patterns of carbon fluxes over Chinese naturally regenerating forests (NF) and planted forests (PF). The carbon fluxes include net ecosystem productivity (NEP, a,b), gross primary productivity (GPP, c,d), and ecosystem respiration (ER, e,f). Each panel is drawn with the corrected values (blue points) and original measurements (grey points), respectively. The blue and black lines represent the regression lines calculated from the corrected values and original measurements, respectively, with their regression statistics listed in blue and black letters. Only the regression slope (Sl) and R2 of each regression are listed. The grey lines represent the regressions between carbon fluxes added by random errors and latitude. Only significant (p  0.05).The ER of NF showed a significant decreasing latitudinal pattern (Fig. 3e), while that of PF exhibited no significant latitudinal pattern (Fig. 3f). The increasing latitude caused the ER of NF to significantly decrease. Each unit increase in latitude led to a 28.71 gC m−2 year−1 decrease in ER, with an R2 of 0.31. However, the increasing latitude contributed little to the ER spatial variation of PF (p  > 0.05).In addition, the latitudinal patterns of carbon fluxes and their differences between forest types were also obtained with the original measurements (Fig. 3, grey points). The latitudinal patterns of random error adding carbon fluxes were comparable to those of our corrected carbon fluxes (Fig. 3), which confirmed that the latitudinal patterns of carbon fluxes and their differences between forest types would not be affected by the uncertainties in generating the corrected carbon fluxes.Therefore, among NFs, the similar decreasing latitudinal patterns of GPP and ER meant that NEP showed no significant latitudinal pattern, while the significant decreasing latitudinal pattern of GPP and no significant latitudinal pattern of ER caused NEP to show a decreasing latitudinal pattern among PFs.Differences in the environmental effects on NEP spatial variationsEnvironmental factors, including the annual climatic factors, seasonal temperature factors, seasonal precipitation factors, biological factors, and soil factors, exerted divergent effects on the spatial variations of NEP and its components, which also differed between forest types (Table 1). No factor was found to affect that the spatial variation of NEP among NFs, while most annual and seasonal climatic factors were found to affect that among PFs. The spatial variations of GPP and ER among NFs were both affected by most annual and seasonal climatic factors and LAI, while those among PFs were primarily shaped by most annual and seasonal climatic factors. Though LAI showed no significant effect on GPP and ER spatial variations among PFs, SA exerted a significant negative effect. In addition, the spatial variations of soil variables contributed little to the spatial variations of carbon fluxes. Therefore, among NFs, most annual and seasonal climatic factors and LAI were found to affect GPP and ER spatial variations, while no factor was found to significantly influent the NEP spatial variation. However, among PFs, most annual and seasonal climatic factors were found to affect the spatial variations of NEP and its components, while LAI showed no significant effect. Using the original measurements also generated the similar correlation coefficients (Supplementary Table S1).Table 1 Correlation coefficients between carbon fluxes and environmental factors in naturally regenerating forests (NF) and planted forests (PF).Full size tableGiven the high correlations among annual climatic factors and seasonal climatic factors (Supplementary Table S2), the partial correlation analysis was applied to determine which factors should be employed to reveal the mechanisms underlying the spatial variations of NEP. Partial correlation analysis showed that MAT and MAP exerted the most important roles in spatial variations of NEP and its components (Table 2). After controlling MAT (or MAP), other factors seldom showed significant correlation with carbon fluxes, especially fixing MAT (Table 2). In addition, MAT and MAP exerted similar effects on the spatial variations of NEP and its components (Table 1). Using the original measurements also generated the similar partial correlation coefficients (Supplementary Table S3). Therefore, we only presented the effects of MAT on carbon flux spatial variations and their differences between forest types in detail.Table 2 Partial correlation coefficients between carbon fluxes and environmental factors in naturally regenerating forests (NF) and planted forests (PF) with fixing mean annual air temperature (MAT) or mean annual precipitation (MAP).Full size tableThe increasing MAT increased carbon fluxes, while the increasing rates differed between forest types (Fig. 4). The increasing MAT contributed little to the NEP spatial variation of NF but raised the NEP of PF (Fig. 4a,b). Each unit increase in MAT caused the NEP of PF to increase at a rate of 27.77 gC m−2 year−1, with an R2 of 0.31 (Fig. 4b). The increasing MAT significantly raised GPP in NF and PF (Fig. 4c,d). For NF, each unit increase in MAT increased GPP at a rate of 43.76 gC m−2 year−1, with an R2 of 0.49 (Fig. 4c), while each unit increase in MAT increased the GPP of PF at a rate of 69.18 gC m−2 year−1, with an R2 of 0.57 (Fig. 4d). The GPP increasing rates did not significantly differ between NF and PF (F = 1.52, p  > 0.05). The increasing MAT also raised ER in both NF and PF (Fig. 4e,f), whose increasing rates were 38.97 gC m−2 year−1 (Fig. 4e) and 36.79 gC m−2 year−1 (Fig. 4f), respectively, while their differences were not statistically significant (F = 0.01, p  > 0.05). In addition, using the original measurements also generated the similar spatial variations and their differences between forest types (Fig. 4). Furthermore, the random error adding carbon fluxes responded similarly to those of our correcting carbon fluxes (Fig. 4), indicating that the effects of MAT on carbon fluxes would not be affected by the uncertainties in our correcting carbon fluxes. Therefore, the similar responses of GPP and ER to MAT made MAT contribute little to NEP spatial variations among NFs, while GPP and ER showed divergent response rates to MAT, which made NEP increase with MAT among PFs.Figure 4The effects of mean annual air temperature (MAT) on the spatial variations of carbon fluxes over Chinese naturally regenerating forests (NF) and planted forests (PF). The carbon fluxes include net ecosystem productivity (NEP, a,b), gross primary productivity (GPP, c,d), and ecosystem respiration (ER, e,f). Each panel is drawn with the corrected values (blue points) and original measurements (grey points), respectively. The blue and black lines represent the regression lines calculated from the corrected values and original measurements, respectively, with their regression statistics listed in blue and black letters. Only the regression slope (Sl) and R2 of each regression are listed. The grey lines represent the regressions between carbon fluxes added by random errors and latitude. Only significant (p  More