More stories

  • in

    Phytoplankton in the middle

    Marine phytoplankton both follow and actively influence the environment they inhabit. Unpacking the complex ecological and biogeochemical roles of these tiny organisms can help reveal the workings of the Earth system.
    Phytoplankton are the workers of an ocean-spanning factory converting sunlight and raw nutrients into organic matter. These little organisms — the foundation of the marine ecosystem — feed into a myriad of biogeochemical cycles, the balance of which help control the distribution of carbon on the Earth surface and ultimately the overall climate state. As papers in this issue of Nature Geoscience show, phytoplankton are far from passive actors in the global web of biogeochemical cycles. The functioning of phytoplankton is not just a matter for biologists, but is also important for geoscientists seeking to understand the Earth system more broadly.Phytoplankton are concentrated where local nutrient and sea surface temperatures are optimal, factors which aren’t always static in time. Prominent temperature fluctuations, from seasonal to daily cycles, are reflected in phytoplankton biomass, with cascading effects on other parts of marine ecosystems, such as economically-important fisheries. In an Article in this issue, Keerthi et al., show that phytoplankton biomass, tracked by satellite measurements of chlorophyll for relatively small ( More

  • in

    Pathways to engineering the phyllosphere microbiome for sustainable crop production

    Koskella, B. The phyllosphere. Curr. Biol. 30, R1143–R1146 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lu, N. et al. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods 15, 17 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arye, G. C. & Harel, A. in Microbial Genomics in Sustainable Agroecosystems (eds Tripathi, V. et al.) 39–65 (Springer, 2020).Universal plant healthcare. Nat. Plants 6, 47 (2020).Fones, H. N. et al. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1, 332–342 (2020).Article 

    Google Scholar 
    Li, W., Deng, Y., Ning, Y., He, Z. & Wang, G. L. Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu. Rev. Plant Biol. 71, 575–603 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Matsumoto, H. et al. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 7, 60–72 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Thomazella, D. P. T. et al. Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proc. Natl Acad. Sci. USA 118, e2026152118 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guo, Y. Molecular design for rice breeding. Nat. Food 2, 849–849 (2021).Article 

    Google Scholar 
    Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).Article 
    PubMed 

    Google Scholar 
    Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carrion, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chialva, M., Lanfranco, L. & Bonfante, P. The plant microbiota: composition, functions, and engineering. Curr. Opin. Biotechnol. 73, 135–142 (2021).Article 
    PubMed 

    Google Scholar 
    Liu, H., Brettell, L. E. & Singh, B. Linking the phyllosphere microbiome to plant health. Trends Plant Sci. 25, 841–844 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liu, H., Brettell, L. E., Qiu, Z. & Singh, B. K. Microbiome-mediated stress resistance in plants. Trends Plant Sci. 25, 733–743 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xu, P. et al. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. J. Adv. Res. 39, 49–60 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, M. & Cernava, T. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environ. Sci. Ecotechnol. 4, 100061 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hegazi, N., Hartmann, A. & Ruppel, S. The plant microbiome: exploration of plant–microbe interactions for improving agricultural productivity. J. Adv. Res. 19, 1–2 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mittelviefhaus, M., Muller, D. B., Zambelli, T. & Vorholt, J. A. A modular atomic force microscopy approach reveals a large range of hydrophobic adhesion forces among bacterial members of the leaf microbiota. ISME J. 13, 1878–1882 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sapkota, R., Knorr, K., Jorgensen, L. N., O’Hanlon, K. A. & Nicolaisen, M. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol. 207, 1134–1144 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. & Vorholt, J. A. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10, e1004283 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horton, M. W. et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 5, 5320 (2014).Article 
    PubMed 

    Google Scholar 
    Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shakir, S., Zaidi, S. S., de Vries, F. T. & Mansoor, S. Plant genetic networks shaping phyllosphere microbial community. Trends Genet. 37, 306–316 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xiong, C. et al. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 9, 171 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pang, Z. et al. Linking plant secondary metabolites and plant microbiomes: a review. Front. Plant Sci. 12, 621276 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pfeilmeier, S. et al. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat. Microbiol. 6, 852–864 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gupta, R. et al. Cytokinin drives assembly of the phyllosphere microbiome and promotes disease resistance through structural and chemical cues. ISME J. 16, 122–137 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Massoni, J. et al. Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J. 14, 245–258 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ren, G. et al. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 392, 27–44 (2015).Article 
    CAS 

    Google Scholar 
    Meyer, K.M. et al. Plant neighborhood shapes diversity and reduces interspecific variation of the phyllosphere microbiome. ISME J. 16, 1376–1387 (2022).Article 
    PubMed 

    Google Scholar 
    Qiu, Y. et al. Warming and elevated ozone induce tradeoffs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition. Sci. Adv. 7, eabe9256 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yu, H., Zhang, Y. & Tan, W. The “neighbor avoidance effect” of microplastics on bacterial and fungal diversity and communities in different soil horizons. Environ. Sci. Ecotechnol. 8, 100121 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Q. et al. Interactive effects of ozone exposure and nitrogen addition on the rhizosphere bacterial community of poplar saplings. Sci. Total Environ. 754, 142134 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, H., Jiang, Q., Wang, J., Li, K. & Wang, F. Analysis on the impact of two winter precipitation episodes on PM2.5 in Beijing. Environ. Sci. Ecotechnol. 5, 100080 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Feng, Z. et al. Ozone pollution threatens the production of major staple crops in East Asia. Nat. Food 3, 47–56 (2022).Article 
    CAS 

    Google Scholar 
    Zhu, Y. G. et al. Impacts of global change on the phyllosphere microbiome. New Phytol. 234, 1977–1986 (2021).Article 

    Google Scholar 
    Sawada, H. et al. Elevated ozone deteriorates grain quality of japonica rice cv. Koshihikari, even if it does not cause yield reduction. Rice 9, 7 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Agathokleous, E. et al. Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity. Sci. Adv. 6, eabc1176 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mieczan, T. & Bartkowska, A. The effect of experimentally simulated climate warming on the microbiome of carnivorous plants—a microcosm experiment. Glob. Ecol. Conserv. 34, e02040 (2022).Article 

    Google Scholar 
    Liu, H. et al. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens. New Phytol. 229, 2873–2885 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gao, M. et al. Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome 9, 187 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Snelders, N. C. et al. Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. Nat. Plants 6, 1365–1374 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Humphrey, P. T. & Whiteman, N. K. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 4, 221–229 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Tree leaf bacterial community structure and diversity differ along a gradient of urban intensity. mSystems 2, e00087–17 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Imperato, V. et al. Characterisation of the Carpinus betulus L. phyllomicrobiome in urban and forest areas. Front. Microbiol. 10, 1110 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perreault, R. & Laforest-Lapointe, I. Plant–microbe interactions in the phyllosphere: facing challenges of the anthropocene. ISME J. 16, 339–345 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jain, A., Ranjan, S., Dasgupta, N. & Ramalingam, C. Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit. Rev. Food Sci. Nutr. 58, 297–317 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sillen, W. M. A. et al. Nanoparticle treatment of maize analyzed through the metatranscriptome: compromised nitrogen cycling, possible phytopathogen selection, and plant hormesis. Microbiome 8, 127 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berg, G. & Cernava, T. The plant microbiota signature of the Anthropocene as a challenge for microbiome research. Microbiome 10, 54 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fan, X. et al. Microenvironmental interplay predominated by beneficial Aspergillus abates fungal pathogen incidence in paddy environment. Environ. Sci. Technol. 53, 13042–13052 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, Y. et al. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat. Commun. 9, 3429 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, M., Hashimoto, M. & Hashidoko, Y. Repression of tropolone production and induction of a Burkholderia plantarii pseudo-biofilm by carot-4-en-9,10-diol, a cell-to-cell signaling disrupter produced by Trichoderma virens. PLoS ONE 8, e78024 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bauermeister, A., Mannochio-Russo, H., Costa-Lotufo, L. V., Jarmusch, A. K. & Dorrestein, P. C. Mass spectrometry-based metabolomics in microbiome investigations. Nat. Rev. Microbiol. 20, 143–160 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Matsumoto, H. et al. Reprogramming of phytopathogen transcriptome by a non-bactericidal pesticide residue alleviates its virulence in rice. Fundam. Res. 2, 198–207 (2022).Article 
    CAS 

    Google Scholar 
    Hou, S. et al. A microbiota–root–shoot circuit favours Arabidopsis growth over defence under suboptimal light. Nat. Plants 7, 1078–1092 (2021).Mathur, M., Nair, A. & Kadoo, N. Plant–pathogen interactions: microRNA-mediated trans-kingdom gene regulation in fungi and their host plants. Genomics 112, 3021–3035 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kaur, C. et al. Microbial methylglyoxal metabolism contributes towards growth promotion and stress tolerance in plants. Environ. Microbiol. 24, 2817–2836 (2021).Article 
    PubMed 

    Google Scholar 
    Castrillo, G. et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513–518 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korenblum, E. et al. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc. Natl Acad. Sci. USA 117, 3874–3883 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chisholm, S. T., Coaker, G., Day, B. & Staskawicz, B. J. Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vogel, C., Bodenhausen, N., Gruissem, W. & Vorholt, J. A. The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. New Phytol. 212, 192–207 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 11, 539–548 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stringlis, I. A. et al. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J. 93, 166–180 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    He, J. et al. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Mol. Plant 12, 1561–1576 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bozsoki, Z. et al. Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Plant Sci. 369, 663–670 (2020).CAS 

    Google Scholar 
    Stringlis, I. A., Zhang, H., Pieterse, C. M. J., Bolton, M. D. & de Jonge, R. Microbial small molecules—weapons of plant subversion. Nat. Prod. Rep. 35, 410–433 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kong, H. G., Song, G. C., Sim, H. J. & Ryu, C. M. Achieving similar root microbiota composition in neighbouring plants through airborne signalling. ISME J. 15, 397–408 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vacher, C. et al. The phyllosphere: microbial jungle at the plant–climate interface. Annu. Rev. Ecol. Evol. Syst. 47, 1–24 (2016).Article 

    Google Scholar 
    Thapa, S. & Prasanna, R. Prospecting the characteristics and significance of the phyllosphere microbiome. Ann. Microbiol. 68, 229–245 (2018).Article 
    CAS 

    Google Scholar 
    Vorholt, J. A., Vogel, C., Carlstrom, C. I. & Muller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, X., Wicaksono, W. A., Berg, G. & Cernava, T. Bacterial communities in the plant phyllosphere harbour distinct responders to a broad-spectrum pesticide. Sci. Total Environ. 751, 141799 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liu, Y. X. et al. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 12, 315–330 (2021).Article 
    PubMed 

    Google Scholar 
    Hosokawa, M. et al. Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes. Biosens. Bioelectron. 67, 379–385 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. et al. High-throughput cultivation and identification of bacteria from the plant root microbiota. Nat. Protoc. 16, 988–1012 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grosskopf, T. & Soyer, O. S. Synthetic microbial communities. Curr. Opin. Microbiol. 18, 72–77 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vogel, C. M., Potthoff, D. B., Schafer, M., Barandun, N. & Vorholt, J. A. Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen. Nat. Microbiol. 6, 1537–1548 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Finkel, O. M. et al. A single bacterial genus maintains root growth in a complex microbiome. Nature 587, 103–108 (2020).Wagner, M. R. et al. Microbe-dependent heterosis in maize. Proc. Natl Acad. Sci. USA 118, e2021965118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schafer, M., Vogel, C. M., Bortfeld-Miller, M., Mittelviefhaus, M. & Vorholt, J. A. Mapping phyllosphere microbiota interactions in planta to establish genotype–phenotype relationships. Nat. Microbiol. 7, 856–867 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Han, B. & Huang, X. Sequencing-based genome-wide association study in rice. Curr. Opin. Plant Biol. 16, 133–138 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Roman-Reyna, V. et al. The rice leaf microbiome has a conserved community structure controlled by complex host-microbe interactions. Cell Host Microbe https://doi.org/10.2139/ssrn.3382544 (2019).Deng, S. et al. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME J. 15, 3181–3194 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, M. R., Busby, P. E. & Balint-Kurti, P. Analysis of leaf microbiome composition of near-isogenic maize lines differing in broad-spectrum disease resistance. New Phytol. 225, 2152–2165 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wagner, M. R., Roberts, J. H., Balint-Kurti, P. & Holland, J. B. Heterosis of leaf and rhizosphere microbiomes in field-grown maize. New Phytol. 228, 1055–1069 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nobori, T. et al. Transcriptome landscape of a bacterial pathogen under plant immunity. Proc. Natl Acad. Sci. USA 115, E3055–E3064 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, L. et al. Holo-omics for deciphering plant–microbiome interactions. Microbiome 9, 69 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    French, E., Kaplan, I., Iyer-Pascuzzi, A., Nakatsu, C. H. & Enders, L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).Article 
    PubMed 

    Google Scholar 
    Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4, 766–770 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kamilaris, A. & Prenafeta-Boldú, F. X. Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018).Article 

    Google Scholar 
    Zhou, L., Zhang, C., Liu, F., Qiu, Z. & He, Y. Application of deep learning in food: a review. Compr. Rev. Food Sci. Food Saf. 18, 1793–1811 (2019).Article 
    PubMed 

    Google Scholar 
    Moreno-Indias, I. et al. Statistical and machine learning techniques in human microbiome studies: contemporary challenges and solutions. Front. Microbiol. 12, 635781 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song, P., Wang, J., Guo, X., Yang, W. & Zhao, C. High-throughput phenotyping: breaking through the bottleneck in future crop breeding. Crop J. 9, 633–645 (2021).Article 

    Google Scholar  More

  • in

    An iterative and interdisciplinary categorisation process towards FAIRer digital resources for sensitive life-sciences data

    The categorisation system was developed through an iterative procedure including a careful evaluation at each stage. This was necessary because each of three rounds yielded substantial feedback from the expert taggers, identifying issues to be resolved and proposing improvements to the system. This process led to a much clearer understanding of the structure of sensitive data resources and a wider agreement on definitions to be applied in the tagging process. In addition, the allocation of exactly one tag per category improved during the development for many categories, indicating that the selection process was straightforward for most resources and categories. As a result, the categorisation system could be simplified and the structure improved, appropriately representing a trans-disciplinary effort. This may also be important from the user perspective. At the end of the day, the system should be so intuitive that the users searching for terms would have the same logic as the experts entered the tags.To be beneficial for the domain of LS, the categorisation system and the toolbox requires broad community approval38,39. In the project, we began the approval process with nominated experts from 6 LS RIs, embedded in a larger working group of the H2020-funded project EOSC-Life, covering 13 LS RIs. Though this can be seen as a useful starting point, the toolbox obviously needs community approval at a much larger scale. As the categorisation system is specifying a part of essential metadata for resources about sensitive data, it will be relevant to the FAIR Digital Objects (FDO) Forum for a « resources in the life sciences » FDO. The categorisation system can be used to derive FDO attributes and values for such FDOs. FDOs for the sensitive data itself, when levels of sensitivity and specific access protocols need to be specified is an interesting possible extension, and the categorisation system could support as a backbone information for access governance and technical choices. FDOs are to be “machine actionable”, so desirable mappings between different categorisation systems will be operationalisable. New European projects such as FAIRCORE4EOSC (https://faircore4eosc.eu/), FAIR-IMPACT (https://fair-impact.eu/) and other projects working on pragmatic semantic improvements for FAIR appliance will provide possibilities for registering metadata schemas and mappings that should reuse interdisciplinary approaches in the heterogeneous field of life sciences.The RDA has established and is maintaining a Metadata Standards Catalogue (MSC) (https://rdamsc.bath.ac.uk/mapping-index,5). An appropriate goal for the categorisation system would be to be included in this catalogue, after further refinement and alignment with other vocabularies addressing sensitive data in the life sciences. In any case, the work on the categorisation system can contribute to discussions on methodologies for aligning metadata schemas across scientific domains, while the categorisation system itself can be seen as an important contribution to the process of developing the most useful and appropriate cross-disciplinary terms and categories for describing sensitive data. We keep in mind that similar approaches have been applied via long and iterative processes in other scientific domains, such as understanding and predicting the evolution of climate (essential climate variables, https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables) and essential biodiversity variables for mapping and monitoring species populations40. There are biases and gaps in the existing system that need to be tackled in the future. The initial content of the toolbox demonstrator, consisting of 110 resources related to sensitive data, has been primarily selected by four RIs with a focus on clinical and biomedical research (BBMRI, EATRIS, ECRIN, Euro-Bioimaging). Other areas and sensitive data types, such as environmental, classified, and proprietary data are under-represented, as are some disciplines, such as zoology, ecology, plant and mycological sciences, and microbiology. This indicates a need for a broader coverage of resources linked to sensitive data in the future work. Another question that needs to be investigated is how interoperable the categorisation system is with other domains outside the LS that systematically deal with sensitive data, for example, the Social Science and Humanities41). In addition, systematic data on the usability/user-friendliness of the toolbox from a broad sample of potential users from the life sciences are needed. Initial and informal evaluation of these aspects by the experts involved so far has been very positive but is clearly limited in scale and needs to be supplemented by more evidence.There are major challenges to the sharing of sensitive data, including interoperability, accessibility, and governance. The primary objective of the toolbox is to improve discoverability of resources and digital objects linked to the sharing and re-use of sensitive data (F in FAIR)4. The systematic application of a standardised typology for resources about sensitive data, as defined by the categorisation system, helps to better structure, and organise the issues and results in metadata enrichment (F4, R1.3 of the FAIR principles in Supplementary, Table S1). The toolbox alone will not be enough for the ‘I’ of the FAIR principles, but it may become a useful backbone for building more interoperable classification systems for sensitive data resources.It is perhaps more common to base findability on a tagging system using keywords (plus title text). That is, for example, how PubMed works—it does not categorise resources, it adds MESH terms to them (https://pubmed.ncbi.nlm.nih.gov/). Another option would have been to try to derive keywords from text or title. In our case, a categorisation system with pre-defined dimensions and pre-listed tags was preferred by the expert group. Keywords, in isolation, suffer from several disadvantages:

    (a)

    A range of equivalent terms may be used to mean the same thing – making searching for that concept difficult, requiring multiple ‘Or’ statements.

    (b)

    They may have multiple meanings (polysemy) especially if “drawn from”, or “applied to”, a wide range of scientific disciplines.

    (c)

    The different aspects of the resource covered by keywords, i.e., the types or dimensions of keyword applied, may be inconsistent and / or incomplete.

    The categorisation system, on the other hand, guarantees that all 7 validated dimensions required are used in the tagging process and that the tags selected are standardised and defined. The toolbox categories also aid browsing of results by enabling sequential filtering using the categories and tags.In addition, there is a useful link between developing community approved categories for metadata, in this case for characterising resources dealing with sensitive data, and community understood (but implicit) ontologies used in the same area. Categories and ontologies can complement each other—without a common underlying ontology, metadata terms can be interpreted inconsistently, and without defining metadata categories, ontologies may remain implicit and inconsistent. We found, for example, that discussions on the best categorisation to use for scientific disciplines, or data types, exposed the implicit (and different) ontologies being used by different people and is based on the personal views of those in the group. Those would have been obviously rooted in and / or influenced by the language and working assumptions of their discipline(s), and their roles and experiences, (current and previous). That will be more and more the case with interdisciplinary research development and development in research careers. Developing categories in metadata can therefore play an important role in describing, understanding and, ultimately, harmonising the implicit ontologies scientists use in thinking about the area of sensitive data.In the development of the categorisation system, existing ontologies, classifications, and terminologies were taken into consideration (Table 2). However, many more have relationships to the categorisation system. An example is the Subject Resource Application Ontology (SRAO), an application ontology describing subject areas/academic disciplines used within FAIRsharing records by curators and the user community42. A first crosswalk has demonstrated considerable agreement between the toolbox category “research field” and subsections of SRAO42 and EDAM15. The toolbox has been registered as a resource (database) at FAIRsharing, a curated, informative, and educational resource on data and metadata standards, inter-related to databases and data policies (https://fairsharing.org/3577). It is planned to create a collection group of resources (standards, databases, policies) in FAIRsharing linked to the toolbox and the underlying categorisation system. This will also cover relationships to ontologies and classifications.There is a need to explore the applicability of the toolbox to specific domains. One example could be the European Joint Programme on Rare Diseases (EJP RD), where resources are made progressively FAIR at the record level to support innovative basic, translational and clinical research (https://www.ejprarediseases.org/coordinated-access-data-services/fairification-support/). The goal is to identify, refine and expose core standards for dataset interoperability, asset (data, sample, subject) discovery, and responsible data sharing, concentrating on data level rather than resource level information. Knowledge exchange between EJP RD and the toolbox could be of benefit in exploring the complementary of both approaches in adequately characterising resources linked to sensitive data and thus improving data discoverability.The first pilot study demonstrated major variation in tagging of resources if independent taggers are assessing the same resource (inter-observer variation). The example of BBMRI has shown that this variation can be considerably reduced if adequate training is performed; which in return is resource intense. Thus, to arrive at a valid and reliable tagging process, there is a necessity for adequate training and support to reduce inter-observer variation. Specific training sets and training programs as well as intercalibration tools need to be developed and implemented and approved by the community.Another option to be explored should be AI—or ML-algorithms to support automatic (or at least semi-automatic) tagging of resources. It is not easy to use AI/ML in this field due to the multilingualism and the misinterpretation of terms. Often there are different meanings between scientific disciplines and a common backbone for the application of AI/ML is difficult to achieve. It is necessary to come to a common understanding between people involved in the assessment of resources related to sensitive data in all life sciences. Nevertheless, the toolbox can become of major importance for research and application of AI/ML techniques in this field. It may serve as a resource for AI/ML to better find resources in the field by serving as a kind of gold standard to compare with. Another promising approach would be to consider a knowledge graph as an intelligent representation. For the categorisation system the approach could be used to interlink categories to a resource (e.g., “source related to sensitive data” has “geographical scope”) and to link individual tags between categories if possible (e.g., “clinical research data” result from “clinical research”). This would give a richer representation of the knowledge behind the categorisation system and the option to be integrated in existing approaches (e.g., OpenAIRE, https://www.openaire.eu/). Therefore, we will consider knowledge graphs as an intelligent knowledge representation of the categorisation system in the future.A major challenge will be the transition of the toolbox demonstrator to a mature toolbox and ultimately its maintenance, extension, and sustainability. Development of the toolbox demonstrator has been financed by EOSC-Life, but this project will end in 2023. Discussion on sustainability has been initiated with several life-science infrastructures (e.g., BBMRI, EATRIS, ECRIN and ELIXIR, another European Life-Science Infrastructure). Key aspects of sustainability that need to be considered are maintenance of the toolbox portal and tagging tool and of the toolbox content including expert time for tagging as well as human resources to maintain the system. Different approaches are under evaluation: an organization considering the resource core to its operations and taking full responsibility, or a joint ownership across multiple organisations (e.g., multiple RIs) or a community taking responsibility, either funded by future grants or through in-kind contributions from motivated research parties/individuals. Further costs to be covered will include system maintenance, input from a toolbox manager, tagging of resources by experts, as well as advertisement to the envisioned user groups, hardware costs and costs for debugging and major extension of functionality if needed. More

  • in

    Reply to: Erroneous predictions of auxotrophies by CarveMe

    Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, M. Erroneous predictions of auxotrophies by CarveMe. https://doi.org/10.1038/s41559-022-01936-3 (2022).Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, M. N., Deutschbauer, A. M. & Arkin, A. P. GapMind: automated annotation of amino acid biosynthesis. mSystems 5, e00291-20 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. USA 111, E2149–E2156 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ponomarova, O. et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 5, 345–357.e6 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zengler, K. & Zaramela, L. S. The social network of microorganisms—how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giri, S. et al. Metabolic dissimilarity determines the establishment of cross-feeding interactions in bacteria. Curr. Biol. 31, 5547–5557.e6 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Morris, J. J., Lenski, R. E. & Zinser, E. R. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campbell, K. et al. Self-establishing communities enable cooperative metabolite exchange in a eukaryote. eLife 4, e09943 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    D’Souza, G. & Kost, C. Experimental evolution of metabolic dependency in bacteria. PLOS Genet. 12, e1006364 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ziesack, M. et al. Engineered interspecies amino acid cross-feeding increases population evenness in a synthetic bacterial consortium. mSystems 4, e00352-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryback, B., Bortfeld-Miller, M. & Vorholt, J. A. Metabolic adaptation to vitamin auxotrophy by leaf-associated bacteria. ISME J. https://doi.org/10.1038/s41396-022-01303-x (2022). More

  • in

    Soil qualities and change rules of Eucalyptus grandis × Eucalyptus urophylla plantation with different slash disposals

    Jiao, N., Liu, J., Shi, T., Zhang, C. & Pan, D. Implement negative ocean carbon emissions and perform the carbon neutral strategy. Sci. Sinica 51, 632–643. https://doi.org/10.1360/SSTe-2020-0358 (2021).Article 

    Google Scholar 
    Arnold, R. J., Xie, Y. J., Luo, J. Z., Wang, H. & Midgley, S. J. A tale of two genera: Exotic Eucalyptus and Acacia species in China. 1. Domestication and research. Int. For. Rev. 22, 1–18. https://doi.org/10.1505/146554820828671571 (2020).Article 

    Google Scholar 
    Zhu, L., Wang, X., Chen, F., Li, C. & Wu, L. Effects of the successive planting of Eucalyptus urophylla on soil bacterial and fungal community structure, diversity, microbial biomass, and enzyme activity. Land Degrad. Dev. 30, 636–646. https://doi.org/10.1002/ldr.3249 (2019).Article 

    Google Scholar 
    Weixin, L. Eucalyptus robusta planting status and sustainable development countermeasrues based on ecological concept. For. Sci. Technol. Inform. 52, 23–25 (2020).
    Google Scholar 
    Masyagina, O. V. Carbon dioxide emissions and vegetation recovery in fire-affected forest ecosystems of Siberia: recent local estimations. Current Opinion in Environmental Science & Health 23, https://www.sciencedirect.com/science/article/abs/pii/S2468584421000556. Accessed 17 March 2021.xDajun, D. et al. Short-term effects of black carbon on soil extractable nutrient elements in a Pinus massoniana plantation subjected to slash burning. J. Soil Water Conserv. 33, 157–162 (2019).
    Google Scholar 
    Huanhuan, W. et al. Research and application of biochar in soil CO2 emission, fertility, and microorganisms: A sustainable solution to solve China’s agricultural straw burning problem. Sustainability 12, 1–17. https://doi.org/10.3390/su12051922 (2020).Article 

    Google Scholar 
    McIntosh, P. D., Laffan, M. D. & Hewitt, A. E. The role of fire and nutrient loss in the genesis of the forest soils of Tasmania and southern New Zealand. For. Ecol. Manage. 220, 185–215 (2005).Article 

    Google Scholar 
    Arocena, J. M. & Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 113, 1–16 (2003).Article 

    Google Scholar 
    Hart, S. C., DeLuca, T. H., Newman, G. S., MacKenzie, M. D. & Boyle, S. I. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For. Ecol. Manage. 220, 166–184 (2005).Article 

    Google Scholar 
    Long, S., Yuan, L., Binqing, Z., Fei, L. & Tongxin, H. Effects of moderate fire disturbance on soil respiration components and soil microbial biomass in secondary forest of Maoer mountains China. J. Northeast For. Univ. 47, 90–98. https://doi.org/10.13759/j.cnki.dlxb.2019.07.016 (2019).Article 

    Google Scholar 
    Suping, Z., Falin, L., Meifang, Z., Guangjun, W. & Xiaowei, C. Effects of fire disturbance intensities on soil physiochemical properties of pour subtropical forest types. Acta Ecol. Sin. 40, 233–246. https://doi.org/10.5846/stxb201812052665 (2020).Article 

    Google Scholar 
    Nan, W., Yuetai, W., Guang, Y., Xueying, D. & Xiankui, Q. Effects of fire disturbanceon soil microbial community of larix gmelinii forset. J. Northeast For. Univ. 48, 21–28 (2020).
    Google Scholar 
    Bushra, M. & Tom, L. Temporal variations in litterfall biomass input and nutrient return under long-term prescribed burning in a wet sclerophyll forest, Queensland, Australia. Sci. Total Environ. 706, 36–45. https://doi.org/10.1016/j.scitotenv.2019 (2019).Article 

    Google Scholar 
    Mengya, Z., Xinjie, W., Le, L., Peng, Z. & Yao, F. Effect of burning disposal method on undergrouwth vegetation diversity and soil properties of Cunningham ialanceolata. J. Northeast For. Univ. 45, 63–67+76. https://doi.org/10.13759/j.cnki.dlxb.2017.03.013 (2017).Article 

    Google Scholar 
    Hernández, J., Pino, A. D., Hitta, M. & Lorenzo, M. Management of forest harvest residues affects soil nutrient availability during reforestation of Eucalyptus grandis. Nutr. Cycl. Agroecosyst. 105, 1385–1314. https://doi.org/10.1007/s10705-016-9781-2 (2016).Article 

    Google Scholar 
    Jiang, L., Kou, L. & Li, S. Alterations of early-stage decomposition of leaves and absorptive roots by deposition of nitrogen and phosphorus have contrasting mechanisms. Soil Biol. Biochem. 127, 213–222. https://doi.org/10.1016/j.soilbio.2018.09.037 (2018).Article 

    Google Scholar 
    Ma, X. Temperature and Humidity Effects on Dendrolimus Superans Butler Grow and Develop (Northeast Forestry University, USA, 2017).
    Google Scholar 
    Weng, Y. Decomposition and Nutrient Release Characteristics of Harvest Residues in Eucalyptus Plantation (Central South University of Forestry and Technology, USA, 2019).
    Google Scholar 
    Huanyu, Y. et al. Effects of residue composting treatemt on soil quality of Larix principies-rupprechtii plantation. J. Cent. South Univ. For. Technol. 36, 22–27. https://doi.org/10.14067/j.cnki.1673-923x.2016.11.004 (2016).Article 

    Google Scholar 
    Qiyue, S. et al. Optimizing the process of logging residue of Larix principis-ruppechtii based on orthogonal experiment. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 48, 633–639 (2019).
    Google Scholar 
    Mengdi, C., Qibo, C., Jianqiang, L., Jiaxuan, L. & Ruizhang, W. Evaluation of the effects of litter input managements on the soil quality in Pinus yunnanensis forest. J. Yunnan Agric. Univ. (Nat. Sci.) 35, 149–155. https://doi.org/10.12101/j.issn.1004-390X(n).20180535 (2020).Article 

    Google Scholar 
    Kennard, D. K. & Gholz, H. L. Effects of high- and low-intensity fires on soil properties and plant growth in a Bolivian dry forest. Plant Soil 234, 119–129 (2001).Article 

    Google Scholar 
    Yangyang, Y. et al. Effects of ground clearance on the growth of Eucalyptus plantation. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 48, 41–47 (2019).
    Google Scholar 
    Changzhun, L. et al. Effects of litter treatment on soil organic carbon, total nitrogen and total phosphorus in different forset types. Sci. Soil Water Conserv. 18, 100–109 (2020).
    Google Scholar 
    Gude, A., Kandeler, E. & Gleixner, G. Input related microbial carbon dynamic of soil organic matter in particle size fractions. Soil Biol. Biochem. 47, 209–219. https://doi.org/10.1016/j.soilbio.2012.01.003 (2012).Article 

    Google Scholar 
    Kang, T., Biao, H., Zhe, X. & Wenyou, H. Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai China. Ecol. Indic. 72, 510–520. https://doi.org/10.1016/j.ecolind.2016.08.037 (2017).Article 

    Google Scholar 
    Vidal-Legaz, B., Souza, D. M. D., Teixeira, R. F., Anton, A. & Sala, S. Soil quality, properties, and functions in life cycle assessment: An evaluation of models. J. Clean. Prod. 140, 502–515. https://doi.org/10.1016/j.jclepro.2016.05.077 (2017).Article 

    Google Scholar 
    Emmet-Booth, J. P. et al. Grass VESS: A modification of the visual evaluation of soil structure method for grasslands. Soil Use Manag. 34, 37–47. https://doi.org/10.1111/sum.12396 (2018).Article 

    Google Scholar 
    Thoumazeau, A. et al. A new framework to assess the impact of land management on soil quality. Part A: Concept and validation of the set of indicators. Ecol. Indic. 97, 100–110. https://doi.org/10.1016/j.ecolind.2018.09.023 (2019).Article 

    Google Scholar 
    Santos-Francés, F., Martínez-Graña, A., Ávila-Zarza, C., Criado, M. & Sánchez, Y. Comparison of methods for evaluating soil quality of semiarid ecosystem and evaluation of the effects of physico-chemical properties and factor soil erodibility (Northern Plateau, Spain). Geoderma 354, 113872–113872. https://doi.org/10.1016/j.geoderma.2019.07.030 (2019).Article 

    Google Scholar 
    Jihong, P., Xiaojing, L. & Qinghua, H. A new quality evaluation system of soil and water conservation for sustainable agricultural development. Agric. Water Manag. 240, 106235. https://doi.org/10.1016/j.agwat.2020.106235 (2020).Article 

    Google Scholar 
    Kang, G. S., Beri, V., Sidhu, B. S. & Rupela, O. P. A new index to assess soil quality and sustainability of wheat-based cropping systems. Biol. Fertil. Soils 41, 389–398. https://doi.org/10.1007/s00374-005-0857-4 (2005).Article 

    Google Scholar 
    Gordillo-Rivero, Á. J., García-Moreno, J., Jordán, A., Zavala, L. M. & Granja-Martins, F. M. Fire severity and surface rock fragments cause patchy distribution of soil water repellency and infiltration rates after burning. Hydrol. Process. 28, 5832–5843. https://doi.org/10.1002/hyp.10072 (2014).Article 

    Google Scholar 
    Moody, J. A., Kinner, D. A. & Úbeda, X. Linking hydraulic properties of fire-affected soils to infiltration and water repellency. J. Hydrol. 379, 291–303. https://doi.org/10.1016/j.jhydrol.2009.10.015 (2009).Article 

    Google Scholar 
    Xiaoguang, W. et al. Litter water-holding capacity and soil physical properties of main afforestation tree species in sandstone area. J. Soil Water Conserv. 34, 137–144. https://doi.org/10.13870/j.cnki.stbcxb.2020.04.021 (2020).Article 

    Google Scholar 
    Guoshuang, G. Study on the determination of soil bulk density. Journal of Irrigation and Dranage Engineering. 4, 38–40 (1983).
    Google Scholar 
    Zhu, L., Wang, J., Weng, Y., Chen, X. & Wu, L. Soil characteristics of Eucalyptus urophylla × Eucalyptus grandis plantations under different management measures for harvest residues with soil depth gradient across time. Ecol. Ind. 117, 106530. https://doi.org/10.1016/j.ecolind.2020.106530 (2020).Article 

    Google Scholar 
    Xiao, K. Carbon and Nitrogen Mineralization and Alkalinity Release Following Application of Plant Materials to Acid Soils Differing in Initial pH (Zhejiang University, 2014).
    Google Scholar 
    Tu, J., Qiao, J., Zhu, Z., Li, P. & Wu, L. Soil bacterial community responses to long-term fertilizer treatments in Paulownia plantations in subtropical China. Appl. Soil. Ecol. 124, 317–326. https://doi.org/10.1016/j.apsoil.2017.09.036 (2018).Article 

    Google Scholar 
    Chuihua, K. Research on plant allelopathy in China for the recent 16 years. Chin. J. Appl. Ecol. 31, 2139–2140 (2020).
    Google Scholar 
    Ying, X., Yaru, L., Haiyan, Z. & Qizhi, L. Effect of polyphenols on camellia oil fatty acid and triglyceride under heating conditions. J. Cent. South Univ. For. Technol. 40, 127–134 (2020).
    Google Scholar 
    Xu, Y. et al. Effects of different rotation periods of Eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity. For. Ecol. Manage. 456, 148–153. https://doi.org/10.1016/j.foreco.2019.117683 (2020).Article 

    Google Scholar 
    Sollins, P. & Gregg, J. W. Soil organic matter accumulation in relation to changing soil volume, mass, and structure: Concepts and calculations. Geoderma 301, 60–71. https://doi.org/10.1016/j.geoderma.2017.04.013 (2017).Article 

    Google Scholar 
    Bobo, W. et al. Effects of logging residues on surface soil biochemical properties and enzymatic activity. Acta Ecol. Sin. 34, 1645–1653. https://doi.org/10.5846/stxb201310162495 (2014).Article 

    Google Scholar 
    Ruiyong, J. et al. Correlation bwtween soil enzyme activity and physicochemical characteristics in agricultural black soils in Northeast China. Res. Soil Water Conserv. 22, 132–137+142 (2015).
    Google Scholar 
    Bing, L. et al. Activity and influencing factors of soils CAT in different utilization types oflLand in Shenbei area. J. Shenyang Univ. (Nat. Sci.) 31, 465–473. https://doi.org/10.14108/j.cnki.1008-8873.2019.04.008 (2019).Article 

    Google Scholar 
    Song, Y. et al. Short-term response of the soil microbial abundances and enzyme activities to experimental warming in a boreal peatland in Northeast China. Sustainability 11, 1–16. https://doi.org/10.3390/su11030590 (2019).Article 

    Google Scholar 
    Giacomo, C. Fire as a soil-forming factor. Ambio 43, 191–195 (2014).Article 

    Google Scholar 
    Liu, J., Wu, L., Chen, D., Li, M. & Wei, C. Soil quality assessment of different Camellia oleifera stands in mid-subtropical China. Appl. Soil. Ecol. 113, 29–35. https://doi.org/10.1016/j.apsoil.2017.01.010 (2017).Article 

    Google Scholar 
    Zhili, Z., Liwei, Z., Qian, C., Xuehua, X. & Yuling, L. Water-holding capacity of three typical forest litter and soil in Mulan-weichang. J. Soil Water Conserv. 29, 207–213. https://doi.org/10.13870/j.cnki.stbcxb.2015.01.040 (2015).Article 

    Google Scholar 
    Zhao, J. Study on the Effect of Refining Treatment on Soil Properties and Growth of Eucalyptus Urophylla Plantation (Central South University of Forestry and Technology, 2019).
    Google Scholar 
    Moro, M. A. J. & Domingo, F. Litter decomposition in four woody species in a mediterranean climate: Weight loss, N and P dynamics. Ann. Bot. 86, 1065–1071. https://doi.org/10.1006/anbo.2000.1269 (2000).Article 

    Google Scholar 
    Sharma, B. D., Arora, H., Kumar, R. & Nayyar, V. K. Relationships between soil characteristics and total and DTPA-extractable micronutrients in inceptisols of Punjab. Commun. Soil Sci. Plant Anal. 35, 799–818. https://doi.org/10.1081/CSS-120030359 (2004).Article 

    Google Scholar 
    Yonghong, L. et al. Spatial variability and impacting factors of trace elements in hilly region of cropland in northwestern Zhejiang Province. J. Plant Nutr. Fertil. 22, 1710–1718 (2016).
    Google Scholar 
    Lipeng, W. et al. Seasonal variations of growth and photosynthetic characteristice of Eucalyptus plantation. Guangdong For. Sci. Technol. 27, 63–66. https://doi.org/10.3969/j.issn.1006-4427.2011.05.012 (2011).Article 

    Google Scholar 
    Xinmin, D., Zhonghong, W., Yongqin, Z. & Xuexia, P. Study on changes of soil salt and nutrient in greenhouse of different planting years. J. Soil Water Conserv. 21, 78–80 (2007).
    Google Scholar 
    Linying, M., Yuelan, L., Guojun, W. & Yun, L. Studies of relations between soil organic matter content and soil bulk density in different soil level in Donglan county. Hubei Agric. Sci. 53, 59–62. https://doi.org/10.3969/j.issn.0439-8114.2014.01.016 (2014).Article 

    Google Scholar 
    Mohammed, K., Lamb, D. T., Ray, C., Mallavarapu, M. & Ravi, N. Pore-water chemistry explains zinc phytotoxicity in soil. Ecotoxicol. Environ. Saf. 122, 252–259. https://doi.org/10.1016/j.ecoenv.2015.08.004 (2015).Article 

    Google Scholar 
    Tsiknia, M., Tzanakakis, V. A., Oikonomidis, D., Paranychianakis, N. V. & Nikolaidis, N. P. Effects of olive mill wastewater on soil carbon and nitrogen cycling. Appl. Microbiol. Biotechnol. 98, 2739–2749. https://doi.org/10.1007/s13762-013-0285-1 (2014).Article 

    Google Scholar 
    Ouyang, W., Wei, X. & Hao, F. Long-term soil nutrient dynamics comparison under smallholding land and farmland policy in northeast of China. Sci. Total Environ. 450–451, 129–139. https://doi.org/10.1016/j.scitotenv.2013.02.016 (2013).Article 

    Google Scholar 
    Daniels, M. B. et al. Soil phosphorus variability in pastures: implications for sampling and environmental management strategies. J. Environ. Qual. 30, 2157–2165. https://doi.org/10.1006/jema.2001.0501 (2001).Article 

    Google Scholar 
    Yanu, P. & Jakmunee, J. Flow injection with in-line reduction column and conductometric detection for determination of total inorganic nitrogen in soil. Talanta 144, 263–267. https://doi.org/10.1016/j.talanta.2015.06.002 (2015).Article 

    Google Scholar 
    Ryan, B. C., Maguire, R. O. & Havlin, J. L. Change in soluble phosphorus in soils following fertilization is dependent on initial Mehlich-3 phosphorus. J. Environ. Qual. 35, 1818–1824. https://doi.org/10.2134/jeq2005.0404 (2006).Article 

    Google Scholar 
    Guan, S. Y., Zhang, D. & Zhang, Z. Soil enzyme and its reserach methods. Agric. Beijing. 1, 274–297 (1986).

    Google Scholar 
    Bailey, M. J. A note on the use of dinitrosalicylic acid for determining the products of enzymatic reactions. Appl. Microbiol. Biotechnol. 29, 494–496. https://doi.org/10.1007/BF00269074 (1988).Article 

    Google Scholar 
    Murali, G., Alka, G., Arunachalam, V. & Magu, P. S. Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities. Biores. Technol. 98, 3154–3158. https://doi.org/10.1016/j.biortech.2006.10.010 (2007).Article 

    Google Scholar 
    Mahajan, G. et al. Soil quality assessment of coastal salt-affected acid soils of India. Environ. Sci. Pollut. Res. 27, 26221–26238. https://doi.org/10.1007/s11356-020-09010-w (2020).Article 

    Google Scholar 
    Guishun, X. Ji Chu Tu Rang Xue (China Agriculture Press Co., 2001).
    Google Scholar 
    Qiao, J., Zhu, Y., Jia, X., Huang, L. & Shao, M. A. Development of pedotransfer functions for soil hydraulic properties in the critical zone on the Loess Plateau, China. Hydrol. Process. 32, 2915–2921. https://doi.org/10.1002/hyp.13216 (2018).Article 

    Google Scholar 
    Liu, Y. et al. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol. Biochem. 118, 35–41. https://doi.org/10.1016/j.soilbio.2017.12.003 (2018).Article 

    Google Scholar  More

  • in

    Rare and declining bird species benefit most from designating protected areas for conservation in the UK

    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 
    PubMed 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulze, K. et al. An assessment of threats to terrestrial protected areas. Conserv. Lett. 11, e12435 (2018).Article 

    Google Scholar 
    Bingham, H. C. et al. (eds). Protected Planet Report 2020 (UNEP-WCMC & IUCN, 2021); https://livereport.protectedplanet.net/Buchanan, G. M., Butchart, S. H., Chandler, G. & Gregory, R. D. Assessment of national-level progress towards elements of the Aichi Biodiversity Targets. Ecol. Indic. 116, 106497 (2020).Article 

    Google Scholar 
    Xu, H. et al. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 5, 411–418 (2021).Article 
    PubMed 

    Google Scholar 
    Report of the Open-ended Working Group on the Post-2020 Global Biodiversity Framework on Its Third Meeting (CBD Secretariat, 2022); https://www.cbd.int/conferences/post2020/wg2020-03/documentsRodrigues, A. S. & Cazalis, V. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11, 5147 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Starnes, T. et al. The extent and effectiveness of protected areas in the UK. Glob. Ecol. Conserv. 30, e01745 (2021).Article 

    Google Scholar 
    Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cazalis, V. et al. Mismatch between bird species sensitivity and the protection of intact habitats across the Americas. Ecol. Lett. 24, 2394–2405 (2021).Article 
    PubMed 

    Google Scholar 
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Gamero, A. et al. Tracking progress toward EU biodiversity strategy targets: EU policy effects in preserving its common farmland birds. Conserv. Lett. 10, 395–402 (2017).Article 

    Google Scholar 
    Pellissier, V. et al. Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data. Conserv. Biol. 34, 666–676 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Princé, K., Rouveyrol, P., Pellissier, V., Touroult, J. & Jiguet, F. Long-term effectiveness of Natura 2000 network to protect biodiversity: a hint of optimism for common birds. Biol. Conserv. 253, 108871 (2021).Article 

    Google Scholar 
    Cunningham, C. A., Thomas, C. D., Morecroft, M. D., Crick, H. Q. P. & Beale, C. M. The effectiveness of the protected area network of Great Britain. Biol. Conserv. 257, 109146 (2021).Article 

    Google Scholar 
    Duckworth, G. D. & Altwegg, R. Effectiveness of protected areas for bird conservation depends on guild. Divers. Distrib. 24, 1083–1091 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Rada, S. et al. Protected areas do not mitigate biodiversity declines: a case study on butterflies. Divers. Distrib. 25, 217–224 (2019).Article 

    Google Scholar 
    Terraube, J., Van Doninck, J., Helle, P., & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957 (2020).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Lenoir, J. et al. Species better track the shifting isotherms in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 
    PubMed 

    Google Scholar 
    van Teeffelen, A., Meller, L., van Minnen, J., Vermaat, J. & Cabeza, M. How climate proof is the European Union’s biodiversity policy? Regional Environ. Change 15, 997–1010 (2015).Article 

    Google Scholar 
    Thomas, C. D. & Gillingham, P. K. The performance of protected areas for biodiversity under climate change. Biol. J. Linn. Soc. Lond. 115, 718–730 (2015).Article 

    Google Scholar 
    Gillingham, P. K. et al. The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biol. J. Linn. Soc. Lond. 115, 707–717 (2015).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Stokstad, E. Species? Climate? Cost? Ambitious goal means trade-offs. Science 371, 555 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brlík, V. et al. Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Sci. Data 8, 21 (2021).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Stanbury, A. et al. The status of bird populations: the fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723–747 (2021).
    Google Scholar 
    Dudley, N. (ed). Guidelines for Applying Protected Area Management Categories (IUCN, 2008).Deguignet, M. et al. Measuring the extent of overlaps in protected area designations. PLoS ONE 12, e0188681 (2017).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    JNCC. Common Standards Monitoring: Introduction to the Guidance Manual (JNCC Resource Hub, 2004).Hayhow, D. B. et al. State of Nature 2019 (RSPB, 2019).Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020); https://helda.helsinki.fi/handle/10138/326470Franks, S. E., Roodbergen, M., Teunissen, W., Carrington Cotton, A. & Pearce‐Higgins, J. W. Evaluating the effectiveness of conservation measures for European grassland‐breeding waders. Ecol. Evol. 8, 10555–10568 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Pearce-Higgins, J. W. et al. Site-based adaptation reduces the negative effects of weather upon a southern range margin Welsh black grouse Tetrao tetrix population that is vulnerable to climate change. Clim. Change 153, 253–265 (2019).Article 

    Google Scholar 
    Jellesmark, S. et al. A counterfactual approach to measure the impact of wet grassland conservation on U.K. breeding bird populations. Conserv. Biol. 35, 1575–1585 (2021).Article 
    PubMed 

    Google Scholar 
    Morrison, C. A. et al. Covariation in population trends and demography reveals targets for conservation action. Proc. Biol. Sci. 288, 20202955 (2021).PubMed Central 
    PubMed 

    Google Scholar 
    Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Martay, B. et al. Monitoring landscape-scale environmental changes with citizen scientists: Twenty years of land use change in Great Britain. J. Nat. Conserv. 44, 33–42 (2018).Article 

    Google Scholar 
    Sullivan, M. J. P., Newson, S. E. & Pearce‐Higgins, J. W. Changing densities of generalist species underlie apparent homogenization of UK bird communities. Ibis 158, 645–655 (2016).Article 

    Google Scholar 
    Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).Article 
    PubMed 

    Google Scholar 
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).Article 

    Google Scholar 
    Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change—evidence from large‐scale, long‐term abundance data. Glob. Change Biol. 25, 304–313 (2019).Article 

    Google Scholar 
    Gaüzère, P., Jiguet, F. & Devictor, V. Can protected areas mitigate the impacts of climate change on bird’s species and communities? Diversity Distrib. 22, 625–637 (2016).Article 

    Google Scholar 
    Neate‐Clegg, M. H. C., Jones, S. E. I., Burdekin, O., Jocque, M. & Şekercioğlu, Ç. H. Elevational changes in the avian community of a Mesoamerican cloud forest park. Biotropica 50, 805–815 (2018).Article 

    Google Scholar 
    Oliver, T. H. et al. Large extents of intensive land use limit community reorganization during climate warming. Glob. Change Biol. 23, 2272–2283 (2017).Article 

    Google Scholar 
    Hiley, J. R., Bradbury, R. B., Holling, M. & Thomas, C. D. Protected areas act as establishment centres for species colonizing the UK. Proc. Biol. Sci. 280, 20122310 (2013).PubMed Central 
    PubMed 

    Google Scholar 
    Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar 
    Grace, M. K. et al. Testing a global standard for quantifying species recovery and assessing conservation impact. Conserv. Biol. 35, 1833–1849 (2021).Article 
    PubMed 

    Google Scholar 
    Gibbons, D. W., Reid, J. B. & Chapman, R. A. The New Atlas of Breeding Birds in Britain & Ireland 1988–1991 (T. & A. D. Poyser, 1993).Balmer, D. E. et al. Bird Atlas 2007–11: the Breeding and Wintering Birds of Britain and Ireland (BTO, 2013).Gillings, S. et al. Breeding and wintering bird distributions in Britain and Ireland from citizen science bird atlases. Glob. Ecol. Biogeogr. 28, 866–874 (2019).Article 

    Google Scholar 
    Freeman, S. N., Noble, D. G., Newson, S. E. & Baillie, S. R. Modelling population changes using data from different surveys: the Common Birds Census and the Breeding Bird Survey. Bird Study 54, 61–72 (2007).Article 

    Google Scholar 
    Robinson, R. A., Julliard, R. & Saracco, J. F. Constant effort: studying avian population processes using standardised ringing. Ring. Migr. 24, 199–204 (2009).Article 

    Google Scholar 
    Cave, V. M., Freeman, S. N., Brooks, S. P., King, R. & Balmer, D. E. in Modeling Demographic Processes in Marked Populations, 949–963 (Springer, 2009).Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, GB) (eds Thomson, D. L. et al) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/7115bc48-3ab0-475d-84ae-fd3126c20984Rowland, C. S. et al. Land Cover Map 2015 (1km Percentage Aggregate Class, N. Ireland) (Environmental Information Data Centre, 2017); https://doi.org/10.5285/362feaea-0ccf-4a45-b11f-980c6b89a858ASTER Global Digital Elevation Model V003 (dataset). NASA EOSDIS Land Processes DAAC (NASA/METI/AIST/Japan Space Systems and U.S./Japan ASTER Science Team, 2019); https://doi.org/10.5067/ASTER/ASTGTM.003Schiavina, M., Freire, S. & MacManus, K. GHS-SMOD R2019A – GHS Settlement Layers, Updated and Refined REGIO Model 2014 in Application to GHS-BUILT R2018A and GHS-POP R2019A, Multitemporal (1975-1990-2000-2015) (European Commission Joint Research Centre, 2019); https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218Robinson, R. A. BirdFacts: Profiles of Birds Occurring in Britain & Ireland (BTO, 2005).Gibbons, D. W. et al. Bird species of conservation concern in the United Kingdom, Channel Islands and Isle of Man: revising the Red Data List. RSPB Conserv. Rev. 10, 7–18 (1996).
    Google Scholar 
    Stone, B. H. et al. Population estimates of birds in Britain and in the United Kingdom. Br. Birds 90, 1–22 (1997).
    Google Scholar 
    Woodward, I. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69–104 (2020).
    Google Scholar 
    R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    Bull, J. W., Strange, N., Smith, R. J. & Gordon, A. Reconciling multiple counterfactuals when evaluating biodiversity conservation impact in social‐ecological systems. Conserv. Biol. 35, 510–521 (2020).Article 
    PubMed 

    Google Scholar 
    Jellesmark, S. et al. Assessing the global impact of targeted conservation actions on species abundance. Preprint at bioRxiv https://doi.org/10.1101/2022.01.14.476374 (2022).Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds but management helps. Nature 605, 103–107 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.4.4 (2021); https://CRAN.R-project.org/package=DHARMaJetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnston, A. et al. Species traits explain variation in detectability of UK birds. Bird Study 61, 340–350 (2014).Article 

    Google Scholar 
    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).Article 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Anal. 15, 199–236 (2007).Article 

    Google Scholar 
    Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).Article 
    PubMed 

    Google Scholar 
    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. Biol. Sci. 275, 2743–2748 (2008).PubMed Central 
    PubMed 

    Google Scholar  More

  • in

    Fungivorous mites enhance the survivorship and development of stingless bees even when exposed to pesticides

    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).Article 
    PubMed 

    Google Scholar 
    – Potts, S. G., et al. Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination, and food production (eds. Potts, S. G. et al.). 36 pages. (Bonn, Germany, 2016).Dolezal, A. G. et al. Interacting stressors matter: Diet quality and virus infection in honeybee health. R. Soc. Open Sci. 6, 181803 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Annoscia, D. et al. Neonicotinoid Clothianidin reduces honeybee immune response and contributes to Varroa mite proliferation. Nat. Commun. 11, 1–7 (2020).Article 

    Google Scholar 
    Macías-Macías, J. O. et al. Nosema ceranae causes cellular immunosuppression and interacts with thiamethoxam to increase mortality in the stingless bee Melipona colimana. Sci. Rep. 10, 1–8 (2020).Article 

    Google Scholar 
    Michener, C. D. Pot-honey. In Pot-Honey: A Legacy of Stingless Bees (eds Vit, P. et al.) 3–17 (Springer, 2013).Chapter 

    Google Scholar 
    Rosa, C. A. et al. Yeast communities associated with stingless bees. FEMS Yeast Res. 4, 271–275 (2003).Article 
    PubMed 

    Google Scholar 
    Menezes, C., Vollet-Neto, A. & Fonseca, V. L. I. An advance in the in vitro rearing of stingless bee queens. Apidologie 44, 491–500 (2013).Article 

    Google Scholar 
    Morais, P. B., Calaça, P. S. S. T. & Rosa, C. A. Microorganisms associated with stingless bees. In Pot-Honey Bees (eds Vit, P. et al.) 173–186 (Springer, 2013).Chapter 

    Google Scholar 
    Menegatti, C. et al. Paenibacillus polymyxa associated with the stingless bee Melipona scutellaris produces antimicrobial compounds against entomopathogens. J. Chem. Ecol. 44, 1158–1169 (2018).Article 
    PubMed 

    Google Scholar 
    Paludo, C. R. et al. Stingless bee larvae require fungal steroid to pupate. Sci. Rep. 8, 1122321 (2018).Article 

    Google Scholar 
    Paludo, C. R. et al. Microbial community modulates growth of symbiotic fungus required for stingless bee metamorphosis. PLoS ONE 14, e0219696 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamzah, S. A., Zawawi, N. & Sabri, S. A review on the association of bacteria with stingless bees. Sains Malays. 49, 1853–1863 (2020).Article 

    Google Scholar 
    de Paula, G. T., Menezes, C., Pupo, M. T. & Rosa, C. A. Stingless bees and microbial interactions. Curr. Opin. Insect Sci. 44, 41–47 (2020).Article 
    PubMed 

    Google Scholar 
    Menezes, C. et al. A Brazilian social bee must cultivate fungus to survive. Curr. Biol. 25, 2851–2855 (2015).Article 
    PubMed 

    Google Scholar 
    – Flechtmann, C. H. W. & de Camargo, C. A. Acari associated with stingless bees (Meliponidae, Hymenoptera) from Brazil. in Proceedings of the 4th International Congress of Acarology, Saalfelden (Austria)/edited by Edward Piffl (Budapest, Akademiai Kiado,1979).Dorigo, A. S. et al. In vitro larval rearing protocol for the stingless bee species Melipona scutellaris for toxicological studies. PLoS ONE 14, e0213109 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosa-Fontana, A., Dorigo, A. S., Galaschi-Teixeira, J. S., Nocelli, R. C. F. & Malaspina, O. What is the most suitable native bee species from the neotropical region to be proposed as model-organism for toxicity tests during the larval phase?. Environ. Pollut. 265, 114849 (2020).Article 
    PubMed 

    Google Scholar 
    Miotelo, L., Dos Reis, A. L. M., Malaquias, J. B., Malaspina, O. & Roat, T. C. Apis mellifera and Melipona scutellaris exhibit differential sensitivity to thiamethoxam. Environ. Pollut. 268, 115770 (2021).Article 
    PubMed 

    Google Scholar 
    Rosa, A. E., André, H. & Flechtmann, C. H. W. Acari domun meliponirarum brasiliensium habitantes. Proctotydaeus alvearii 45(1–2), 79–83 (1985).
    Google Scholar 
    Da-Costa, T., dos Santos, C. F., Rodighero, L. F., Ferla, N. J. & Blochtein, B. Mite diversity is determined by the stingless bee host species. Apidologie 52(5), 950–959. https://doi.org/10.1007/s13592-021-00878-2 (2021).Article 

    Google Scholar 
    de Rosa, A. S. et al. Consumption of the neonicotinoid thiamethoxam during the larval stage affects the survival and development of the stingless bee Scaptotrigona aff. depilis. Apidologie 47, 729–738 (2016).Article 

    Google Scholar 
    Wu, J. Y., Anelli, C. M. & Sheppard, W. S. Sub-lethal effects of pesticide residues in brood comb on worker honeybee (Apis mellifera) development and longevity. PLoS One 6, e14720 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tavares, D. A., Roat, T. C., Carvalho, S. M., Silva-Zacarin, E. C. M. & Malaspina, O. In vitro effects of thiamethoxam on larvae of Africanized honeybee Apis mellifera (Hymenoptera: Apidae). Chemosphere 135, 370–378 (2015).Article 
    PubMed 

    Google Scholar 
    Biani, N. B., Mueller, U. G. & Wcislo, W. T. Cleaner mites: sanitary mutualism in the miniature ecosystem of neotropical bee nests. Am. Nat. 173, 841–847 (2009).Article 
    PubMed 

    Google Scholar 
    Gilliam, M., Roubik, D. W. & Lorenz, B. J. Microorganisms associated with pollen, honey, and brood provisions in the nest of a stingless bee Melipona fasciata. Apidologie 21, 89–97 (1990).Article 

    Google Scholar 
    Rebelo, K. S., Ferreira, A. G. & Carvalho-Zilse, G. A. Physicochemical characteristics of pollen collected by Amazonian stingless bees. Ciência Rural 46, 927–932 (2016).Article 

    Google Scholar 
    Mohammad, S. M., Mahmud-Ab-Rashid, N.-K. & Zawawi, N. Stingless bee-collected pollen (bee bread): Chemical and microbiology properties and health benefits. Molecules 26, 957 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    da Cruz Landim, C. (2009). Abelhas. Unesp.Rosa, A. S. et al. Quantification of larval food and its pollen content in the diet of stingless bees: Subsidies for toxicity bioassays studies. Braz. J. Biol. 75(3), 771–772. https://doi.org/10.1590/1519-6984.22314 (2015).Article 
    PubMed 

    Google Scholar 
    Vollet-Neto, A., Maia-Silva, C., Menezes, C. & Imperatriz-Fonseca, V. L. Newly emerged workers of the stingless bee Scaptotrigona aff. depilis prefer stored pollen to fresh pollen. Apidologie 48, 204–210 (2017).Article 

    Google Scholar 
    Hartfelder, K. & Engels, W. The composition of larval food in stingless bees: evaluating nutritional balance by chemosystematic methods. Insect. Soc. 36, 1–14 (1989).Article 

    Google Scholar 
    Costa, R. A. C. & da Cruz-Landim, C. Distribution of acid phosphatases in the hypopharyngeal glands from workers, queens, and males of a Brazilian stingless bee Scaptotrigona postica Latreille: An ultrastructural cytochemical study. Histochem. J. 33, 653–662 (2001).Article 
    PubMed 

    Google Scholar 
    de Moraes, R. L. M. S., Brochetto-Braga, M. R. & Azevedo, A. Electrophoretical studies of proteins of the hypopharyngeal glands and of the larval food of Melipona quadrifasciata anthidioides Lep. (Hymenoptera, Meliponinae). Insect. Soc. 43, 183–188 (1996).Article 

    Google Scholar 
    Fernandes-da-Silva, P. G., Muccillo, G. & Zucoloto, F. S. Determination of minimum quantity of pollen and nutritive value of different carbohydrates for Scaptotrigona depilis Moure (Hymenoptera, Apidae). Apidologie 24, 73–79 (1993).Article 

    Google Scholar 
    Fernandes-da-Silva, P. G. & Serrão, J. E. Nutritive value and apparent digestibility of bee-collected and bee-stored pollen in the stingless bee, Scaptotrigona postica Latr. (Hymenoptera, Apidae, Meliponini). Apidologie 31, 39–45 (2000).Article 

    Google Scholar 
    Crailsheim, K. & Stolberg, E. Influence of diet, age and colony condition upon intestinal proteolytic activity and size of the hypopharyngeal glands in the honeybee (Apis mellifera L.). J. Insect Physiol. 35, 595–602 (1989).Article 

    Google Scholar 
    Oliveira, R. A., Roat, T. C., Carvalho, S. M. & Malaspina, O. Side-effects of thiamethoxam on the brain and midgut of the africanized honeybee Apis mellifera (Hymenopptera: Apidae). Environ. Toxicol. 29, 1122–1133 (2014).Article 
    PubMed 

    Google Scholar 
    Christen, V., Schirrmann, M., Frey, J. E. & Fent, K. Global transcriptomic effects of environmentally relevant concentrations of the neonicotinoids clothianidin, imidacloprid, and thiamethoxam in the brain of honeybees (Apis mellifera). Environ. Sci. Technol. 52, 7534–7544 (2018).Article 
    PubMed 

    Google Scholar 
    Moreira, D. R. et al. Toxicity and effects of the neonicotinoid thiamethoxam on Scaptotrigona bipunctata Lepeletier, 1836 (Hymenoptera: Apidae). Environ. Toxicol. 33, 463–475 (2018).Article 
    PubMed 

    Google Scholar 
    Tavares, D. A., Roat, T. C., Silva-Zacarin, E. C. M., Nocelli, R. C. F. & Malaspina, O. Exposure to thiamethoxam during the larval phase affects synapsin levels in the brain of the honeybee. Ecotoxicol. Environ. Saf. 169, 523–528 (2019).Article 
    PubMed 

    Google Scholar 
    Roat, T. C. et al. Using a toxicoproteomic approach to investigate the effects of thiamethoxam into the brain of Apis mellifera. Chemosphere 258, 127362 (2020).Article 
    PubMed 

    Google Scholar 
    Caesar, L. et al. The virome of an endangered stingless bee suffering from annual mortality in southern Brazil. J. Gen. Virol. 100, 1153–1164 (2019).Article 
    PubMed 

    Google Scholar 
    Guimarães-Cestaro, L. et al. Occurrence of virus, microsporidia, and pesticide residues in three species of stingless bees (Apidae: Meliponini) in the field. Sci. Nat. 107, 1–14 (2020).Article 

    Google Scholar 
    Teixeira, É. W. et al. European Foulbrood in stingless bees (Apidae: Meliponini) in Brazil: Old disease, renewed threat. J. Invertebr. Pathol. 172, 107357 (2020).Article 
    PubMed 

    Google Scholar 
    Alberoni, D., Gaggìa, F., Baffoni, L. & Di Gioia, D. Beneficial microorganisms for honeybees: problems and progresses. Appl. Microbiol. Biotechnol. 100, 9469–9482 (2016).Article 
    PubMed 

    Google Scholar 
    Manley, R., Boots, M. & Wilfert, L. Emerging viral disease risk to pollinating insects: ecological, evolutionary, and anthropogenic factors. J. Appl. Ecol. 52, 331–340 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Manley, R. et al. Knock- on community impacts of a novel vector: spillover of emerging DWV- B from Varroa- infested honeybees to wild bumblebees. Ecol. Lett. 22, 1306–1315 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Graystock, P., Blane, E. J., McFrederick, Q. S., Goulson, D. & Hughes, W. O. H. Do managed bees drive parasite spread and emergence in wild bees?. Int. J. Parasitol. Parasit. Wildl. 5, 64–75 (2016).Article 

    Google Scholar 
    Requier, F. et al. The conservation of native honeybees is crucial. Trends Ecol. Evol. 34, 789–798 (2019).Article 
    PubMed 

    Google Scholar 
    Test No. 237: Honey Bee (Apis Mellifera) Larval Toxicity Test, Single Exposure. (2013). OECD. https://doi.org/10.1787/9789264203723-enMoral, R. A., Hinde, J. & Demétrio, C. G. Half-normal plots and overdispersed models in R: the hnp package. J. Stat. Softw. 81(1), 1–23 (2017).
    Google Scholar 
    – Kassambara, A. Survminer. GitHub repository. https://github.com/kassambara/survminer (2020).- Therneau, T., Crowson, C., & Atkinson, E. Multi-state models and competing risks. CRAN-R https://cran.r-project.org/web/packages/survival/vignettes/compete (2020). More

  • in

    Meiotic transmission patterns of additional genomic elements in Brachionus asplanchnoidis, a rotifer with intraspecific genome size variation

    Many eukaryotes display intraspecific genome size (GS) variation due to varying amounts of non-coding DNA1,2,3,4,5. Such GS variation can be mediated by additional genomic elements, which are physically represented either by extra (B-)chromosomes or by large heterozygous insertions into the regular chromosomes. On a DNA sequence level, non-coding DNA can be classified as highly repetitive, e.g. interspersedly repeated transposable elements or tandemly repeated satellite DNA, or as the result of previous duplications of the genome followed by pseudogenization6. The long-term gain and loss of such non-coding DNA sequences is thought to be governed by largely neutral evolutionary processes, and their excessive accumulation in some genomes can be explained by genetic drift7,8, even though selection might also sometimes play a role9,10.Non-coding DNA can affect organisms in different ways. A large number of studies document correlations between genome size and organismic traits such as cell size11,12, body size13,14, or developmental rates15, sometimes even at the within-population level13. Under some circumstances, differential amounts of non-coding DNA might even affect fitness16. Furthermore, DNA can have coding-independent effects that operate at lower levels, such as intragenomic selection. For example, (additional) genomic elements might increase their own fitness by increasing their transmission rates to offspring by meiotic drive, sometimes at the expense of their host’s fitness17,18,19. Meiotic drive in this classical sense occurs during the chromosome segregation during the meiotic divisions, even though later stages during gametogenesis can also be affected20. Recognizing and disentangling such effects is important for a better understanding of the evolution of eukaryotic genomes, in particular, the evolutionary causes of the large intraspecific genome size variation.Here we study meiotic transmission patterns of additional genomic elements in the monogonont rotifer Brachionus aplanchnoidis. Individuals of this species can differ by up to almost two-fold in genome size, which is mediated by several Megabase-sized independently segregating genomic elements (ISEs) consisting mainly of tandemly repeated satellite DNA21. The genomic data are consistent with a mixture of both B-chromosomes and large insertions to normal chromosomes21,22. Individual rotifers and their clonal offspring can be characterized by the number and size of their ISEs and their composition stays constant through hundreds of asexual (mitotic) generations22. Occasionally, monogonont rotifers engage in sexual reproduction (Fig. 1), producing sexual females, whose oocytes undergo classical meiosis with two polar bodies formed23. Unfertilized haploid eggs develop mitotically into males, and sperm production does not involve any meiotic maturation divisions24. By analyzing the genome size distributions of haploid males produced by different mother clones, it has been shown that ISEs segregate in a manner suggesting that they do not pair with each other, nor with any other part of the genome22. For instance, a clone containing three ISEs will produce males (and gametes) that might contain either zero, one, two, or three ISEs, corresponding to four different GS classes of the males in this clone. The frequencies of these different GS classes roughly approximated those expected by random segregation. However, previous studies in B. asplanchnoidis did not resolve different steps during meiotic transmission, so they were not designed to detect meiotic drive or subsequent changes in meiotic transmission, and they also did not test whether there were subtle deviations from completely independent segregation.Figure 1Schematics of rotifer life cycle. Monogonont rotifers are cyclical parthenogens, capable of both ameiotic parthenogenesis and sexual reproduction. The production of sexual females is triggered by quorum sensing chemicals, released by the animals themselves at high population density. In contrast to parthenogenetic females, sexual females produce oocytes by meiosis, and give rise to either haploid males or diploid resting eggs, depending on whether they get fertilized by a male24.Full size imageIn the present study, we test for meiotic transmission biases of ISEs. If meiotic transmission would be completely unbiased, the frequencies of haploid oocytes, or males, with different numbers of ISEs should be identical to those expected by random segregation. For example, a mother with two ISEs should produce males with zero, one, or two ISEs (hence, three male GS classes), which have relative frequencies of 0.25, 0.5, and 0.25, respectively. However, if ISEs avoid segregating into polar bodies due to meiotic drive17,20,25, one would expect to see an increase in the relative frequency of male GS classes with two ISEs, compared to those with no ISE . By contrast, if ISEs are preferentially sequestered into polar bodies due to meiotic drag 7,26, the GS class with two ISEs should be underrepresented. Our experimental approach for detecting meiotic transmission biases relies on measuring (by flow-cytometry) the observed relative frequencies of each male GS class and comparing these to their relative frequencies expected under unbiased transmission (Fig. 2). To allow for clear comparisons, the main output variable in these analyses is the observed/expected ratio (O/E-ratio), i.e., the observed frequency divided by the expected relative frequency for each GS class. If there were no transmission biases, O/E-ratios across all GS classes should equal one. In contrast, O/E-ratios larger than one indicate overrepresentation of a certain GS class, and if O/E ratios increase or decrease with genome size, this indicates drive or drag at a meiotic or postmeiotic stage (Fig. 2d,h).Figure 2Principle of inferring meiotic transmission patterns from the genome size distributions of haploid rotifer males. The first four panels (a–d) show a rotifer clone with one ISE (i.e., two corresponding male GS classes). The last four panels (e–h) show a clone with four ISEs (i.e., five corresponding male GS classes). a, e Example of flow cytometry data. b, f Conceptual model of ISE meiotic segregation. c, g Theoretically predicted GS distributions of males (relative to the female GS) under meiotic drive, meiotic drag, or in the absence of meiotic drive. d, h Theoretically predicted O/E ratios (observed vs. expected frequencies of different male GS classes) under drive, drag, or on absence of drive. O/E values of  > 1 indicate over-representation of a GS class (relative to the frequency expected from unbiased transmission).Full size imageWe implemented these ideas in a mathematical model that contains the two parameters, transmission bias and cosegregation bias. Values for transmission bias may range from − 1 to 1 in our model. For instance, a value of 0.1 denotes a 10% increase in probability that an ISE segregates towards the egg pole (this is equivalent to a transmission rate of 0.55 for this ISE, i.e. mild meiotic drive). Concerning the second parameter, cosegregation bias, a positive value means that pairs of ISEs have an increased probability of being sequestered towards the same pole (irrespective of whether this is the egg pole or polar body pole), while a negative bias favors migration towards opposite poles. Please note that a cosegregation bias value of − 1 (i.e., 100% probability that ISEs migrate towards opposite poles) resembles the default segregation pattern of regular chromosomes. By estimating the transmission bias and cosegregation bias parameter for each rotifer clone, we tried to infer and compare general meiotic transmission patterns across clones, even if they contained different numbers and types of ISEs.Transmission biases may not only arise during meiosis, as described above but also during later stages of male embryonic development. For instance, they might be caused by differences in the survival of embryos, or due to differences in the fitness of hatched males containing different numbers of ISEs. To address these potential sources of variation, we compared the transmission biases in relatively young, synchronized male eggs, older eggs accumulating in growing cultures, and hatched males. Finally, to address the question of whether a high number of ISEs affects male embryonic survival in general, we estimated and compared hatching rates of (haploid) male eggs and (diploid) female eggs in 19 rotifer clones of different genome sizes (which is highly correlated with the number and size of ISEs in the genome22).Our results suggested that the ISEs in B. asplanchnoidis exhibit diverse meiotic segregation patterns: In some rotifer clones, transmission bias was positive, while the ISEs of other clones showed negative transmission bias (indicative of drag). Furthermore, we obtained evidence for a negative cosegregation bias in some clones, i.e., pairs of ISEs showed an increased probability to segregate towards opposite poles. Overall, these transmission patterns seemed to be determined early in the haploid life cycle, probably at or shortly after meiosis, since early and late stages of male embryonic development showed very similar GS distributions. Finally, we found that very large genome size (i.e., a large numbers of ISEs) was associated with reduced male embryonic survival. More