More stories

  • in

    Non-inversion conservation tillage as an underestimated driver of tillage erosion

    Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. 104, 13268–13272 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, D. L., Quinton, J. N., Davies, J. A. C., Zhao, J. & Govers, G. Soil lifespans and how they can be extended by land use and management change. Environ. Res. Lett. 15, 1. https://doi.org/10.1088/1748-9326/aba2fd (2020).Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—A global review. Geoderma 262, 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009 (2016).Article 
    CAS 

    Google Scholar 
    Gao, Y. et al. Effects of tillage methods on soil carbon and wind erosion. Land Degrad. Dev. 27, 583–591. https://doi.org/10.1002/ldr.2404 (2016).Article 

    Google Scholar 
    Klik, A. & Rosner, J. Long-term experience with conservation tillage practices in Austria: Impacts on soil erosion processes. Soil Till. Res. 203, 1. https://doi.org/10.1016/j.still.2020.104669 (2020).Seitz, S. et al. Conservation tillage and organic farming reduce soil erosion. Agron. Sustain. Dev. 39, 1. https://doi.org/10.1007/s13593-018-0545-z (2018).Lal, R., Reicosky, D. C. & Hanson, J. D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Till. Res. 93, 1–12. https://doi.org/10.1016/j.still.2006.11.004 (2007).Article 

    Google Scholar 
    Mal, P., Schmitz, M. & Hesse, J. W. Economic and environmental effects of conservation tillage with glyphosate use: A case study of Germany. Outlooks Pest Manag. 26, 24–27. https://doi.org/10.1564/v26_feb_07 (2015).Article 

    Google Scholar 
    Statistisches Bundesamt. Land- und Forstwirtschaft, Fischerei. Bodenbearbeitung, Bewässerung, Landschaftselemente. Erhebung über landwirtschaftliche Produktionsmethoden (ELPM). 2010. (2011).Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314. https://doi.org/10.1038/ngeo838 (2010).Article 
    CAS 

    Google Scholar 
    Öttl, L. K. et al. Tillage erosion as an important driver of in-field biomass patterns in an intensively used hummocky landscape. Land Degrad. Dev. 32, 3077–3091. https://doi.org/10.1002/ldr.3968 (2021).Article 

    Google Scholar 
    Wilken, F., Ketterer, M., Koszinski, S., Sommer, M. & Fiener, P. Understanding the role of water and tillage erosion from 239+240Pu tracer measurements using inverse modelling. SOIL 6, 549–564. https://doi.org/10.5194/soil-6-549-2020 (2020).Article 
    CAS 

    Google Scholar 
    Van Oost, K., Govers, G., De Alba, S. & Quine, T. A. Tillage erosion: A review of controlling factors and implications for soil quality. Prog. Phys. Geogr. 30, 443–466. https://doi.org/10.1191/0309133306pp487ra (2006).Article 

    Google Scholar 
    Winnige, B. Ergebnisse zur Bodenverlagerung durch Bearbeitungserosion in der Jungmoränenlandschaft Nordostdeutschlands—Investigations of soil movement by tillage as a type of soil erosion in the young moraine soil landscape of Northeast Germany. Arch. Agron. Soil Sci. 50, 319–327. https://doi.org/10.1080/03650340410001663864 (2004).Article 

    Google Scholar 
    Fiener, P., Wilken, F. & Auerswald, K. Filling the gap between plot and landscape scale—eight years of soil erosion monitoring in 14 adjacent watersheds under soil conservation at Scheyern, Southern Germany. Adv. Geosci. 48, 31–48. https://doi.org/10.5194/adgeo-48-31-2019 (2019).Article 

    Google Scholar 
    Fiener, P. et al. Uncertainties in assessing tillage erosion—How appropriate are our measuring techniques?. Geomorphology 304, 214–225. https://doi.org/10.1016/j.geomorph.2017.12.031 (2018).Article 

    Google Scholar 
    Kimaro, D. N., Deckers, J. A., Poesen, J., Kilasara, M. & Msanya, B. M. Short and medium term assessment of tillage erosion in the Uluguru Mountains Tanzania. Soil Till. Res. 81, 97–108. https://doi.org/10.1016/j.still.2004.05.006 (2005).Article 

    Google Scholar 
    Sadowski, H. & Sorge, B. Der Normalhöhenpunkt von 1912 – Datumspunkt des DHHN 2012? Vermessung Brandenburg (2005).Lobb, D. A., Kachanoski, R. G. & Miller, M. H. Tillage translocation and tillage erosion in the complex upland landscapes of southwestern Ontario Canada. Soil Till. Res. 51, 1. https://doi.org/10.1016/S0167-1987(99)00037-9 (1999).Article 

    Google Scholar 
    Zhang, J. H. & Li, F. C. An appraisal of two tracer methods for estimating tillage erosion rates under hoeing tillage. Proc. Environ. Sci. 11, 1227–1233. https://doi.org/10.1016/j.proenv.2011.12.184 (2011).Article 

    Google Scholar 
    Turkelboom, F. et al. Assessment of tillage erosion rates on steep slopes in northern Thailand. CATENA 29, 29–44 (1997).Article 
    CAS 

    Google Scholar 
    Van Muysen, W., Govers, G., Van Oost, K. & Van Rompaey, A. The effect of tillage depth, tillage speed, and soil condition on chisel tillage erosivity. J. Soil Water Conserv. 55, 355–364 (2000).
    Google Scholar 
    Quine, T. A., Desmet, P. J. J., Govers, G., Vandaele, K. & Walling, D. E. A comparison of the roles of tillage and water erosion in landform development and sediment export on agricultural land near Leuven, Belgium. IAHS Publ. 224, 77–86 (1994).CAS 

    Google Scholar 
    Heckrath, G. et al. Tillage erosion and its effect on soil properties and crop yield in Denmark. J. Environ. Qual. 34, 312–324. https://doi.org/10.2134/jeq2005.0312a (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Carter, M. R. Conservation tillage. Encyclop. Soils Environ. 1, 306–311. https://doi.org/10.1016/B0-12-348530-4/00270-8 (2005).Article 

    Google Scholar 
    Govers, G., Vandaele, K., Desmet, P., Poesen, J. & Bunte, K. The role of tillage in soil redistribution on hillslopes. Eur. J. Soil Sci. 45, 469–478. https://doi.org/10.1111/j.1365-2389.1994.tb00532.x (1994).Article 

    Google Scholar 
    Marques da Silva, J. R. & Alexandre, C. Soil carbonation processes as evidence of tillage-induced erosion. Soil Till. Res. 78, 217–224. https://doi.org/10.1016/j.still.2004.02.008 (2004).Mech, S. J. & Free, G. R. Movement of soil during tillage operations. Agric. Eng. 1, 379–382 (1942).
    Google Scholar 
    Tiessen, K. H. D., Mehuys, G. R., Lobb, D. A. & Rees, H. W. Tillage erosion within potato production systems in Atlantic Canada: I. Measurement of tillage translocation by implements used in seedbed preparation. Soil Till. Res. 95, 308–319. https://doi.org/10.1016/j.still.2007.02.003 (2007).Article 

    Google Scholar 
    Marques da Silva, J. R., Soares, J. M. C. N. & Karlen, D. L. Implement and soil condition effects on tillage-induced erosion. Soil Till. Res. 78, 207–216. https://doi.org/10.1016/j.still.2004.02.009 (2004).Article 

    Google Scholar 
    Kietzer, B. Aufklärung der Bodenverlagerung durch Bearbeitungserosion in Jungmoränenlandschaften—Elucidation of soil displacement by tillage erosion in young moraine landscapes PhD thesis, Technical University of Berlin, (2007).Lüthgens, C., Böse, M. & Preusser, F. Age of the Pomeranian ice-marginal position in northeastern Germany determined by Optically Stimulated Luminescence (OSL) dating of glaciofluvial sediments. Boreas 40, 598–615. https://doi.org/10.1111/j.1502-3885.2011.00211.x (2011).Article 

    Google Scholar 
    Deumlich, D., Schmidt, R. & Sommer, M. A multiscale soil-landform relationship in the glacial-drift area based on digital terrain analysis and soil attributes. J. Plant Nutr. Soil Sci. 173, 843–851. https://doi.org/10.1002/jpln.200900094 (2010).Article 
    CAS 

    Google Scholar 
    Koszinski, S., Gerke, H. H., Hierold, W. & Sommer, M. Geophysical-based modeling of a kettle hole catchment of the morainic soil landscape. Vadose Zone J. 12, 1. https://doi.org/10.2136/vzj2013.02.0044 (2013).Article 

    Google Scholar 
    Sommer, M., Gerke, H. H. & Deumlich, D. Modelling soil landscape genesis: A “time split” approach for hummocky agricultural landscapes. Geoderma 145, 480–493. https://doi.org/10.1016/j.geoderma.2008.01.012 (2008).Article 
    CAS 

    Google Scholar 
    DWD Climate Data Center (CDC). Historical hourly station observations of 2m air temperature and humidity for Germany, version v006. (2018).DWD Climate Data Center (CDC). Historical hourly station observations of precipitation for Germany, version v21.3. (2021).Zhang, H. et al. Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure- from-motion (SfM) photogrammetry and surface change detection. Earth Surf. Dyn. 7, 807–827. https://doi.org/10.5194/esurf-7-807-2019 (2019).Article 

    Google Scholar 
    Lindstrom, M. J., Nelson, W. W., Schumacher, T. E. & Lemme, G. D. Soil movement by tillage as affected by slope. Soil Till. Res. 17, 255–264. https://doi.org/10.1016/0167-1987(90)90040-K (1990).Article 

    Google Scholar 
    Crawley, M. J. The R book. 2nd edn, (Wiley, 2013).Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, 2016).Book 
    MATH 

    Google Scholar 
    R Core Team. A language and environment for statistical computing. (2021).De Alba, S. Modelling the effects of complex topography and patterns of tillage on soil translocation by tillage with mouldboard plough. J. Soil Water Conserv. 1, 335–345 (2001).
    Google Scholar 
    Gerontidis, D. V. S. et al. The effect of moldboard plow on tillage erosion along a hillslope. J. Soil Water Conserv. 56, 147–152 (2001).
    Google Scholar 
    Heckrath, G., Halekoh, U., Djurhuus, J. & Govers, G. The effect of tillage direction on soil redistribution by mouldboard ploughing on complex slopes. Soil Tillage Res. 88, 225–241. https://doi.org/10.1016/j.still.2005.06.001 (2006).Article 

    Google Scholar 
    Kosmas, C. et al. The effects of tillage displaced soil on soil properties and wheat biomass. Soil Till Res. 58, 31–44. https://doi.org/10.1016/S0167-1987(00)00175-6 (2001).Article 

    Google Scholar 
    Lindstrom, M. J., Nelson, W. W. & Schumacher, T. E. Quantifying tillage erosion rates due to moldboard plowing. Soil Till Res. 24, 243–255. https://doi.org/10.1016/0167-1987(92)90090-X (1992).Article 

    Google Scholar 
    Lobb, D. A., Kachanoski, R. G. & Miller, M. H. Tillage translocation and tillage erosion on shoulder slope landscape positions measured using 137Cs as a tracer. Can. J. Soil Sci. 75, 211–218. https://doi.org/10.4141/cjss95-029 (1995).Article 

    Google Scholar 
    Quine, T. A. & Zhang, Y. Re-defining tillage erosion: Quantifying intensity–direction relationships for complex terrain: 1. Derivation of an adirectional soil transport coefficient. Soil Use Manag. 20, 114–123. https://doi.org/10.1111/j.1475-2743.2004.tb00346.x (2004).Article 

    Google Scholar 
    Quine, T. A., Basher, L. R. & Nicholas, A. P. Tillage erosion intensity in the South Canterbury Downlands, New Zealand. Aust. J. Soil Res. 41, 789–807. https://doi.org/10.1071/SR02063 (2003).Article 

    Google Scholar 
    Revel, J. C. & Guiresse, M. Erosion due to cultivation of calcareous clay soils on the hillsides of south west France: I. Effect of former farming practices. Soil Till Res. 35, 147–155. https://doi.org/10.1016/0167-1987(95)00482-3 (1995).Article 

    Google Scholar 
    Van Muysen, W. & Govers, G. Soil displacement and tillage erosion during secondary tillage operations: The case of rotary harrow and seeding equipment. Soil Till Res. 65, 185–191. https://doi.org/10.1016/S0167-1987(01)00284-7 (2002).Article 

    Google Scholar 
    Van Muysen, W., Govers, G., Bergkamp, G., Roxo, M. & Poesen, J. Measurement and modelling of the effects of initial soil conditions and slope gradient on soil translocation by tillage. Soil Till Res. 51, 303–316. https://doi.org/10.1016/S0167-1987(99)00044-6 (1999).Article 

    Google Scholar 
    Poesen, J. et al. Patterns of rock fragment cover generated by tillage erosion. Geomorphology 18, 183–197. https://doi.org/10.1016/S0169-555X(96)00025-6 (1997).Article 

    Google Scholar 
    Quine, T. A. et al. Fine-earth translocation by tillage in stony soils in the Guadalentin, south-east Spain: An investigation using caesium-134. Soil Till Res. 51, 279–301. https://doi.org/10.1016/S0167-1987(99)00043-4 (1999).Article 
    MathSciNet 

    Google Scholar 
    Kemper, W. D. & Rosenau, R. C. Soil cohesion as affected by time and water content. Soil Sci. Soc. Am. J. 1, 1001–1006. https://doi.org/10.2136/sssaj1984.03615995004800050009x (1984).Article 

    Google Scholar 
    Reinermann, S., Gessner, U., Asam, S., Kuenzer, C. & Dech, S. The effect of droughts on vegetation condition in Germany: An analysis based on two decades of satellite earth observation time series and crop yield statistics. Rem. Sens. 11, 1. https://doi.org/10.3390/rs11151783 (2019).Article 

    Google Scholar 
    Lüttger, A. B. & Feike, T. Development of heat and drought related extreme weather events and their effect on winter wheat yields in Germany. Theor. Appl. Climatol. 1, 15–29. https://doi.org/10.1007/s00704-017-2076-y (2018).Article 

    Google Scholar 
    Madarász, B. et al. Conservation tillage vs. conventional tillage: Long-term effects on yields in continental, sub-humid Central Europe. Hungary. Int. J. Agric. Sustain. 14, 408–427. https://doi.org/10.1080/14735903.2016.1150022 (2016).Article 

    Google Scholar 
    Lowder, S. K., Skoet, J. & Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 87, 16–29. https://doi.org/10.1016/j.worlddev.2015.10.041 (2016).Article 

    Google Scholar 
    Napoli, M., Altobelli, F. & Orlandini, S. Effect of land set up systems on soil losses. Ital. J. Agron. 15, 306–314. https://doi.org/10.4081/ija.2020.1768 (2020).Article 

    Google Scholar 
    Dumanski, J., Peiretti, R., Benites, J. R., McGarry, D. & Pieri, C. The paradigm of conservation agriculture. In Proceedings of World Association of Soil and Water Conservation, 58–64 (2006). More

  • in

    Sexual dimorphism and reproductive biology of the Asian bockadam snake (Cerberus schneiderii) in West Java

    Stocks, G., Seales, L., Paniagua, F., Maehr, E. & Bruna, E. M. The geographical and institutional distribution of ecological research in the tropics. Biotropica 40, 397–404 (2008).Article 

    Google Scholar 
    Bernstein, J. M., Murphy, J. C., Voris, H. K., Brown, R. M. & Ruane, S. Phylogenetics of mud snakes (Squamata: Serpentes: Homalopsidae): A paradox of both undescribed diversity and taxonomic inflation. Mol. Phylogenet. Evol. 160, 107109 (2021).Article 
    PubMed 

    Google Scholar 
    Murphy, J. C., Voris, H. K. & Karns, D. R. The dog-faced water snakes, a revision of the genus Cerberus Cuvier, (Squamata, Serpentes, Homalopsidae), with the description of a new species. Zootaxa 3484, 1–34 (2012).Article 

    Google Scholar 
    Stuart, B. L. The harvest and trade of reptiles at U Minh Thuong National Park, southern Viet Nam. Traffic Bull. 20, 25–34 (2004).
    Google Scholar 
    Brooks, S. E., Allison, E. H. & Reynolds, J. D. Vulnerability of Cambodian water snakes: Initial assessment of the impact of hunting at Tonle Sap Lake. Biol. Conserv. 139, 401–414 (2007).Article 

    Google Scholar 
    Murphy, J. C. Homalopsid Snakes (Evolution in the Mud (Krieger Publishing, Malabar, 2007).
    Google Scholar 
    Karns, D. R., Murphy, J. C. & Voris, H. K. Semi-aquatic snake communities of the central plain region of Thailand. Trop. Nat. Hist. 10, 1–25 (2010).
    Google Scholar 
    Jayne, B. C., Voris, H. K. & Heang, K. B. Diet, feeding behavior, growth, and numbers of a population of Cerberus rynchops (Serpentes: Homalopsinae) in Malaysia: a contribution in celebration of the distinguished scholarship of Robert F. Inger on the occasion of his sixty-fifth birthday. Fieldiana Zoology, Series 50 (Field Museum of Natural History, Chicago, IL, 1988).Chim, C. K. & Diong, C. H. A mark-recapture study of a dog-faced water snake Cerberus schneiderii (Colubridae: Homalopsidae) population in Sungei Buloh Wetland Reserve Singapore. Raffles Bull. Zool. 61, 811–825 (2013).
    Google Scholar 
    Shine, R., Ambariyanto, Harlow, P. S. & Mumpuni. Ecological attributes of two commercially-harvested python species in northern Sumatra. J. Herpet. 33, 249–257 (1999).Natusch, D. J., Lyons, J. A., Riyanto, A., Khadiejah, S. & Shine, R. Detailed biological data are informative, but robust trends are needed for informing sustainability of wildlife harvesting: A case study of reptile offtake in Southeast Asia. Biol. Conserv. 233, 83–92 (2019).Article 

    Google Scholar 
    Natusch, D. J., Lyons, J. A., Riyanto, A. & Shine, R. Harvest effects on blood pythons in North Sumatra. J. Wildl. Manage. 84, 249–255 (2020).Article 

    Google Scholar 
    Shine, R., Harlow, P. S. & Keogh, J. S. The influence of sex and body size on food habits of a giant tropical snake, Python reticulatus. Funct. Ecol. 12, 248–258 (1988).Article 

    Google Scholar 
    Shine, R., Harlow, P. S. & Keogh, J. S. The allometry of life-history traits: Insights from a study of giant snakes (Python reticulatus). J. Zool. 244, 405–414 (1998).Article 

    Google Scholar 
    Shine, R. & Harlow, P. S. Reticulated pythons in Sumatra: biology, harvesting and sustainability. Biol. Conserv. 87, 349–357 (1999).Article 

    Google Scholar 
    Hoesel, J. K. P. Ophidia Javanica (Museum Zoologicum Bogoriense, Kebun Raya, Indonesia, 1959).Voris, H. K. & Murphy, J. C. The prey and predators of homalopsine snakes. J. Nat. Hist. 36, 1621–1632 (2002).Article 

    Google Scholar 
    Wall, F. A popular treatise on the common Indian Snakes. Part 26. J. Bombay Nat. Hist. Soc. 26, 89–97 (1918).Gorman, G. C., Licht, P. & McCollum, F. Annual reproductive patterns in three species of marine snakes from the central Philippines. J. Herpetol. 15, 335–354 (1981).Article 

    Google Scholar 
    Auffenberg, W. The herpetofauna of Komodo, with notes on adjacent areas. Bull. Florida State Mus. Biol. Sci. 25, 39–156 (1980).
    Google Scholar 
    Alcala, A. C. Guide to Philippine Flora and Fauna. Vol. X. Amphibians and Reptiles (Natural Resource Management Center, Ministry of Natural Resources and the University of the Philippines, Manila, Philippines, 1986).Harlow, P. S. & Taylor, J. E. Reproductive ecology of the jacky dragon (Amphibolurus muricatus): An agamid lizard with temperature-dependent sex determination. Austral. Ecol. 25, 640–652 (2000).Article 

    Google Scholar 
    Saint Girons, H. & Pfeffer, P. Notes sur l’ecologie des serpents du Cambodge. Zool. Mededelingen 47, 65–87 (1972).Kusrini, M. D. et al. Abundance, demography, and harvesting of water snakes from agricultural landscapes in West Java, Indonesia. Wildl. Res. In review (2022).Shine, R. Sexual differences in morphology and niche utilization in an aquatic snake Acrochordus arafurae. Oecologia 69, 260–267 (1986).Article 
    PubMed 

    Google Scholar 
    Houston, D. & Shine, R. Sexual dimorphism and niche divergence: Feeding habits of the Arafura filesnake. J. Anim. Ecol. 62, 737–748 (1993).Article 

    Google Scholar 
    Shine, R., Reed, R., Shetty, S. & Cogger, H. Relationships between sexual dimorphism and niche partitioning within a clade of sea-snakes (Laticaudinae). Oecologia 133, 45–53 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vincent, S. E., Herrel, A. & Irschick, D. J. Sexual dimorphism in head shape and diet in the cottonmouth snake (Agkistrodon piscivorus). J. Zool. 264, 53–59 (2004).Article 

    Google Scholar 
    Perkins, M. W., Cloyed, C. S. & Eason, P. K. Intraspecific dietary variation in niche partitioning within a community of ecologically similar snakes. Evol. Ecol. 34, 1017–1035 (2020).Article 

    Google Scholar 
    Shine, R. & Goiran, C. Sexual dimorphism in size and shape of the head in the sea snake Emydocephalus annulatus (Hydrophiinae, Elapidae). Sci. Rep. 11, 20026 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shine, R. Intersexual dietary divergence and the evolution of sexual dimorphism in snakes. Am. Nat. 138, 103–122 (1991).Article 

    Google Scholar 
    Bonnet, X., Shine, R., Naulleau, G. & Vacher-Vallas, M. Sexual dimorphism in snakes: Different reproductive roles favour different body plans. Proc. R. Soc. B 265, 179–183 (1998).Article 
    PubMed Central 

    Google Scholar 
    Shine, R., Olsson, M. M., Moore, I. T., LeMaster, M. P. & Mason, R. T. Why do male snakes have longer tails than females?. Proc. R. Soc. B 266, 2147–2151 (1999).Article 
    PubMed Central 

    Google Scholar  More

  • in

    Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance

    Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, DenmarkPatrick Munk, Christian Brinch, Frederik Duus Møller, Thomas N. Petersen, Rene S. Hendriksen, Anne Mette Seyfarth, Jette S. Kjeldgaard, Christina Aaby Svendsen & Frank M. AarestrupCentre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UKBram van Bunnik & Mark WoolhouseCentre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, SwedenFanny Berglund & D. G. Joakim LarssonDepartment of Viroscience, Erasmus MC, Rotterdam, The NetherlandsMarion KoopmansInstitute of Public Health, Tirana, AlbaniaArtan BegoUniversidad de Buenos Aires, Buenos Aires, ArgentinaPablo PowerMelbourne Water Corporation, Melbourne, AustraliaCatherine Rees & Kris CoventryCharles Darwin University, Darwin, AustraliaDionisia LambrinidisUniversity of Copenhagen, Frederiksberg C, DenmarkElizabeth Heather Jakobsen Neilson & Yaovi Mahuton Gildas HounmanouCharles Darwin University, Darwin Northern Territory, AustraliaKaren GibbCanberra Hospital, Canberra, AustraliaPeter CollignonALS Water, Scoresby, AustraliaSusan CassarAustrian Agency for Health and Food Safety (AGES), Vienna, AustriaFranz AllerbergerUniversity of Dhaka, Dhaka, BangladeshAnowara Begum & Zenat Zebin HossainEnvironmental Protection Department, Bridgetown, St. Michael, BarbadosCarlon WorrellLaboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Brussels, BelgiumOlivier VandenbergAQUAFIN NV, Aartselaar, BelgiumIlse PietersPolytechnic School of Abomey-Calavi, Abomey-Calavi, BeninDougnon Tamègnon VictorienUniversidad Catσlica Boliviana San Pablo, La Paz, BoliviaAngela Daniela Salazar Gutierrez & Freddy SoriaPublic Health Institute of the Republic of Srpska, Faculty of Medicine University of Banja Luka, Banja Luka, Bosnia and HerzegovinaVesna Rudić GrujićPublic Health Institute of the Republic of Srpska, Banja Luka, Bosnia and HerzegovinaNataša MazalicaBotswana International University of Science and Technology, Palapye, BotswanaTeddie O. RahubeUniversidade Federal de Minas Gerais, Belo Horizonte, BrazilCarlos Alberto Tagliati & Larissa Camila Ribeiro de SouzaOswaldo Cruz Institute, Rio de Janeiro, BrazilDalia RodriguesVale Institute of Technology, Belιm, PA, BrazilGuilherme OliveiraNational Center of Infectious and Parasitic Diseases, Sofia, BulgariaIvan IvanovUniversity of Ouagadougou, Ouagadougou, Burkina FasoBonkoungou Isidore Juste & Traoré OumarInstitut Pasteur du Cambodge, Phnom Penh, CambodiaThet Sopheak & Yith VuthyCentre Pasteur du Cameroun, Yaoundι, CameroonAntoinette Ngandijo, Ariane Nzouankeu & Ziem A. Abah Jacques OlivierUniversity of Regina, Regina, CanadaChristopher K. YostEau Terre Environnement Research Centre (INRS-ETE), Quebec City G1K 9A9, Canada and Indian Institute of Technology, Jammu, IndiaPratik KumarEau Terre Environnement Research Centre (INRS-ETE), Quebec City G1K 9A9, Canada and Lassonde School of Enginerring, York University, Toronto, CanadaSatinder Kaur BrarUniversity of N’Djamena, N’Djamena, ChadDjim-Adjim TaboEscuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, ChileAiko D. AdellInstitute of Public Health, Santiago, ChileEsteban Paredes-Osses & Maria Cristina MartinezCentro de Biotecnologνa de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Talca, ChileSara Cuadros-OrellanaGuangdong Provincial Center for Disease Control and Prevention, Guangzhou, ChinaChangwen Ke, Huanying Zheng & Li BaishengThe Hong Kong Polytechnic University, Hong Kong, ChinaLok Ting Lau & Teresa ChungShantou University Medical College, Shantou, ChinaXiaoyang JiaoNanjing University of Information Science and Technology, Nanjing, ChinaYongjie YuCenter for Disease Control and Prevention of Henan province, Zhengzhou, ChinaZhao JiaYongColombian Integrated Program for Antimicrobial Resistance Surveillance – Coipars, CI Tibaitatα, Corporaciσn Colombiana de Investigaciσn Agropecuaria (AGROSAVIA), Tibaitatα – Mosquera, Cundinamarca, ColombiaJohan F. Bernal Morales, Maria Fernanda Valencia & Pilar Donado-GodoyInstitut Pasteur de Côte d’Ivoire, Abidjan, Côte d’IvoireKalpy Julien CoulibalyUniversity of Zagreb, Zagreb, CroatiaJasna HrenovicAndrija Stampar Teaching Institute of Public Health, Zagreb, CroatiaMatijana JergovićVeterinary Research Institute, Brno, Czech RepublicRenáta KarpíškováCentre de Recherche en Sciences Naturelles de Lwiro (CRSN-LWIRO), Bukavu, Democratic Republic of CongoZozo Nyarukweba DeogratiasBIOFOS A/S, Copenhagen K, DenmarkBodil ElsborgTechnical University of Denmark, Kgs., Lyngby, DenmarkLisbeth Truelstrup Hansen & Pernille Erland JensenSuez Canal University, Ismailia, EgyptMohamed AbouelnagaUniversity of Sadat City, Sadat City, EgyptMohamed Fathy SalemMinistry of Health, Environmental Microbiology, Tallinn, EstoniaMarliin KoolmeisterAddis Ababa University, Addis Ababa, EthiopiaMengistu Legesse & Tadesse EgualeUniversity of Helsinki, Helsinki, FinlandAnnamari HeikinheimoFrench Institute Search Pour L’exploitation De La Mer (Ifremer), Nantes, FranceSoizick Le Guyader & Julien SchaefferInstituto Nacional de Investigaciσn en Salud Pϊblica-INSPI (CRNRAM), Galαpagos, Quito, EcuadorJose Eduardo VillacisNational Public Health Laboratories, Ministry of Health and Social Welfare, Kotu, GambiaBakary SannehNational Center for Disease Control and Public Health, Tbilisi, GeorgiaLile MalaniaRobert Koch Institute, Berlin, GermanyAndreas Nitsche & Annika BrinkmannTechnische Universitδt Dresden, Institute of Hydrobiology, Dresden, GermanySara Schubert, Sina Hesse & Thomas U. BerendonkUniversity for Development Studies, Tamale, GhanaCourage Kosi Setsoafia SabaUniversity of Ghana, Accra, GhanaJibril MohammedKwame Nkrumah University of Science and Technology, Kumasi, PMB, GhanaPatrick Kwame FegloCouncil for Scientific and Industrial Research Water Research Institute, Accra, GhanaRegina Ama BanuVeterinary Research Institute of Thessaloniki, Hellenic Agricultural Organisation-DEMETER, Thermi, GreeceCharalampos KotzamanidisAthens Water Supply and Sewerage Company (EYDAP S.A.), Athens, GreeceEfthymios LytrasUniversidad de San Carlos de Guatemala, Guatemala City, GuatemalaSergio A. LickesSemmelweis University, Institute of Medical Microbiology, Budapest, HungaryBela KocsisUniversity of Veterinary Medicine, Budapest, HungaryNorbert SolymosiUniversity of Iceland, Reykjavνk, IcelandThorunn R. ThorsteinsdottirCochin University of Science and Technology, Cochin, IndiaAbdulla Mohamed HathaKasturba Medical College, Manipal, IndiaMamatha BallalApollo Diagnostics, Mangalore, IndiaSohan Rodney BangeraShiraz University of Medical Sciences, Shiraz, IranFereshteh FaniShahid Beheshti University of Medical Sciences, Tehran, IranMasoud AlebouyehNational University of Ireland Galway, Galway, IrelandDearbhaile Morris, Louise O’Connor & Martin CormicanBen Gurion University of the Negev and Ministry of Health, Beer-Sheva, IsraelJacob Moran-GiladIstituto Zooprofilattico Sperimentale del Lazio e della Toscana, Rome, ItalyAntonio Battisti, Elena Lavinia Diaconu & Patricia AlbaCNR – Water Research Institute, Verbania, ItalyGianluca Corno & Andrea Di CesareNational Institute of Infectious Diseases, Tokyo, JapanJunzo Hisatsune, Liansheng Yu, Makoto Kuroda, Motoyuki Sugai & Shizuo KayamaNational Center of Expertise, Taldykorgan, KazakhstanZeinegul ShakenovaMount Kenya University, Thika, KenyaCiira KiiyukiaKenya Medical Research Institute, Nairobi, KenyaEric Ng’enoUniversity of Prishtina “Hasan Prishtina” & National Institute of Public Health of Kosovo, Pristina, KosovoLul RakaKuwait Institute for Scientific Research, Kuwait City, KuwaitKazi Jamil, Saja Adel Fakhraldeen & Tareq AlaatiInstitute of Food Safety, Riga, LatviaAivars Bērziņš, Jeļena Avsejenko, Kristina Kokina, Madara Streikisa & Vadims BartkevicsAmerican University of Beirut, Beirut, LebanonGhassan M. MatarCentral Michigan University & Michigan Health Clinics, Saginaw, MI, USAZiad DaoudNational Food and Veterinary Risk Assessment Institute, Vilnius, LithuaniaAsta Pereckienė & Ceslova Butrimaite-AmbrozevicieneLuxembourg Institute of Science and Technology, Belvaux, LuxembourgChristian PennyInstitut Pasteur de Madagascar, Antananarivo, MadagascarAlexandra Bastaraud & Jean-Marc CollardUniversity of Antananarivo, Centre d’Infectiologie Charles Mιrieux, Antananarivo, MadagascarTiavina Rasolofoarison, Luc Hervé Samison & Mala Rakoto AndrianariveloUniversity of Malawi, Blantyre, MalawiDaniel Lawadi BandaMalaysian Genomics Resource Centre Berhad, Kuala Lumpur, MalaysiaArshana AminAIMST University, COMBio, Kedah, MalaysiaHeraa Rajandas & Sivachandran ParimannanWater Services Corporation, Luqa, MaltaDavid SpiteriEnvironmental Health Directorate, St. Venera, MaltaMalcolm Vella HaberUniversity of Mauritius, Reduit, MauritiusSunita J. SantchurnInstitute for Public Health Montenegro, Podgorica, MontenegroAleksandar Vujacic & Dijana DjurovicInstitut Pasteur du Maroc, Casablanca, MoroccoBrahim Bouchrif & Bouchra KarraouanCentro de Investigaηγo em Saϊde de Manhiηa (CISM), Maputo, MozambiqueDelfino Carlos VubilAgriculture and Forestry University, Kathmandu, NepalPushkar PalNational Institute for Public, Health and the Environment (RIVM), Bilthoven, The NetherlandsHeike Schmitt & Mark van PasselUniversity of Otago, Dunedin, New ZealandGert-Jan Jeunen & Neil GemmellUniversity of Otago, Christchurch, New ZealandStephen T. ChambersUniversity of Central America, Managua, NicaraguaFania Perez Mendoza & Jorge Huete-PιrezUniversidad Nacional Autσnoma de Nicaragua-Leσn, Leσn, NicaraguaSamuel VilchezUniversity of Ilorin, Ilorin, NigeriaAkeem Olayiwola Ahmed, Ibrahim Raufu Adisa & Ismail Ayoade OdetokunUniversity of Ibadan, Ibadan, NigeriaKayode FashaeNorwegian Institute of Public Health, Oslo, NorwayAnne-Marie Sørgaard & Astrid Louise WesterVEAS, Slemmestad, NorwayPia Ryrfors & Rune HolmstadUniversity of Agriculture, Faisalabad, PakistanMashkoor MohsinAga Khan University, Karachi, PakistanRumina Hasan & Sadia ShakoorLaboratorio Central de Salud Publica, Asuncion, ParaguayNatalie Weiler Gustafson & Claudia Huber SchillInstituto Nacional de Salud, Lima, PeruMaria Luz Zamudio RojasUniversidad de Piura, Piura, PeruJorge Echevarria Velasquez & Felipe Campos YauceWHO Environmental and Occupational Health, Manila, PhilippinesBonifacio B. MagtibayMaynilad Water Services, Inc., Quezon City, PhilippinesKris Catangcatang & Ruby SibuloNational Veterinary Research Institute, Pulawy, PolandDariusz WasylUniversidade Catσlica Portuguesa, CBQF – Centro de Biotecnologia e Quνmica Fina – Laboratσrio Associado, Escola Superior de Biotecnologia, Porto, PortugalCelia Manaia & Jaqueline RochaAguas do Tejo Atlantico, Lisboa, PortugalJose Martins & Pedro ÁlvaroGwangju Institute of Science and Technology, Gwangju, Republic of KoreaDoris Di Yoong Wen, Hanseob Shin & Hor-Gil HurKorea Advanced Institute of Science and Technology, Daejeon, Republic of KoreaSukhwan YoonInstitute of Public Health of the Republic of North Macedonia, Skopje, Republic of North MacedoniaGolubinka Bosevska & Mihail KochubovskiState Medical and Pharmaceutical University, Chișinău, Republic of MoldovaRadu CojocaruNational Agency for Public Health, Chișinău, Republic of MoldovaOlga BurduniucKing Abdullah University of Science and Technology, Thuwal, Saudi ArabiaPei-Ying HongUniversity of Edinburgh, Edinburgh, Scotland, UKMeghan Rose PerryInstitut Pasteur de Dakar, Dakar, SenegalAmy GassamaInstitute of Veterinary Medicine of Serbia, Belgrade, SerbiaVladimir RadosavljevicNanyang Technological University, Singapore, SingaporeMoon Y. F. Tay, Rogelio Zuniga-Montanez & Stefan WuertzPublic Health Authority of the Slovak Republic, Bratislava, SlovakiaDagmar Gavačová, Katarína Pastuchová & Peter TruskaNational Laboratory of Health, Environment and Food, Ljubljana, SloveniaMarija TrkovIndependent consultant, Johannesburg, South AfricaKaren KeddyDaspoort Waste Water Treatment Works, Pretoria, South AfricaKerneels EsterhuyseKorea Advanced Institute of Science and Technology, Daejeon, South KoreaMin Joon SongSchool of Veterinary Sciences, Lugo, SpainMarcos Quintela-BalujaLabaqua, Santiago de Compostela, SpainMariano Gomez LopezIRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autonoma de Barcelona, Bellaterra, SpainMarta Cerdà-CuéllarUniversity of Kelaniya, Ragama, Sri LankaR. R. D. P. Perera, N. K. B. K. R. G. W. Bandara & H. I. PremasiriMedical Research Institute, Colombo, Sri LankaSujatha PathirageCaribbean Public Health Agency, Catries, Saint LuciaKareem CharlemagneThe Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenCarolin RutgerssonSwedish University of Agricultural Sciences, Uppsala, SwedenLeif Norrgren & Stefan ÖrnFederal Food Safety and Veterinary Office (FSVO), Bern, SwitzerlandRenate BossAra Region Bern AG, Herrenschwanden, SwitzerlandTanja Van der HeijdenCenters for Disease Control, Taipei, TaiwanYu-Ping HongKilimanjaro Clinical Research Institute, Moshi, TanzaniaHappiness Houka KumburuSokoine University of Agriculture, Morogoro, TanzaniaRobinson Hammerthon MdegelaFaculty of Science and Technology, Suratthani Rajabhat University, Surat Thani, ThailandKaknokrat ChonsinFaculty of Public Health, Mahidol University, Bangkok, ThailandOrasa SuthienkulFaculty of Medicine Siriraj Hospital, Bangkok, ThailandVisanu ThamlikitkulNational Institute for Public Health and the Environment (RIVM), Bilthoven, NetherlandsAna Maria de Roda HusmanNational Institute of Hygiene, Lomι, TogoBawimodom BidjadaAgence de Mιdecine Prιventive, Dapaong, TogoBerthe-Marie Njanpop-LafourcadeDivision of Integrated Surveillance of Health Emergencies and Response, Lomι, TogoSomtinda Christelle Nikiema-PessinabaPublic Health Institution of Turkey, Ankara, TurkeyBelkis LeventHatay Mustafa Kemal University, Hatay, TurkeyCemil KurekciMakerere University, Kampala, UgandaFrancis Ejobi & John Bosco KaluleAbu Dhabi Public Health Center, Abu Dhai, United Arab EmiratesJens ThomsenDubai municipality, WWTP Al Aweer, Dubai, UAEOuidiane ObaidiRashid Hospital, Dubai, UAELaila Mohamed JassimNorthumbrian Water, Northumbria House, Abbey Road, Pity Me, Durham, UKAndrew MooreUniversity of Exeter Medical School, Cornwall, UKAnne Leonard, Lihong Zhang & William H. GazeNewcastle University, Newcastle upon Tyne, UKDavid W. Graham & Joshua T. BunceBrightwater Treatment Plant, Woodinville, WA, USABrett LeforDepartment of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USADrew Capone & Joe BrownUniversity of North Carolina, Chapel Hill, USAEmanuele Sozzi & Mark D. SobseyUniversity of Washington, Seattle, WA, USAJohn Scott Meschke, Nicola Koren Beck, Pardi Sukapanpatharam & Phuong TruongBaylor University, Waco, USAMichael DavisColumbia Boulevard WWTP, Portland, USARonald LilienthalEastern Illinois University, Charleston, USASanghoon KangThe Ohio State University, Columbus Ohio, USAThomas E. WittumLaboratorio Tecnolσgico del Uruguay, Montevideo, UruguayNatalia Rigamonti & Patricia BaklayanInstitute of Public Health in Ho Chi Minh City, Ho Chi Minh, VietnamChinh Dang Van, Doan Minh Nguyen Tran & Nguyen Do PhucUniversity of Zambia, Lusaka, ZambiaGeoffrey KwendaF.M.A., M.K., and M.W. conceived the study and secured funding. R.S.H., A.M.S., C.A.A.S., and J.S.K. organized sample collection, material transfer, and logistics. F.D.M., P.M., and C.B. did quality control, sample selection, and outlier detection. P.M., C.B., F.D.M., T.N.P., and F.B. performed bioinformatics analyses. P.M. and C.B. carried out data and statistical analyses and visualization. P.M. and F.M.A. drafted the initial manuscript with input from C.B., B.v.B., D.G.J.L., M.W., and M.K. The Global Sewage Consortium authors carried out sewage sampling, filled in metadata and shipped the samples to DTU. All authors helped to review and improve the manuscript. More

  • in

    Vultures for climate

    Pablo Ignacio Plaza and Sergio Agustín Lambertucci from the National University of Comahue and the Argentine Research Council in Argentina quantified the contribution of vultures to reducing greenhouse gas emissions by developing two contrasting scenarios. The first assumes that all the dead animals that the vultures can consume are disposed of, whereas in the second scenario, the dead animals are left to decompose in the environment without scavengers. The results show that the current vulture population can reduce emissions by up to 60.7 teragrams CO2 equivalent per year. A decline in vulture populations decreases their mitigation capacity by 30%. The study highlights that vultures are essential to keep our climate cool. More

  • in

    Growth of alpine grassland will start and stop earlier under climate warming

    Körner, C. Alpine Plant Life: Functional plant ecology of high mountain ecosystems. (Springer, 2021). https://doi.org/10.1007/978-3-030-59538-8.Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).Article 

    Google Scholar 
    Pepin, N. C. et al. Climate changes and their elevational patterns in the mountains of the world. Rev. Geophys. 60, e2020RG000730 (2022).Stewart, I. T. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Process 23, 78–94 (2009).Article 

    Google Scholar 
    Vorkauf, M., Marty, C., Kahmen, A. & Hiltbrunner, E. Past and future snowmelt trends in the Swiss Alps: the role of temperature and snowpack. Clim. Change 165, 44–62 (2021).Article 

    Google Scholar 
    Inouye, D. W. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89, 353–362 (2008).Article 
    PubMed 

    Google Scholar 
    Vorkauf, M., Kahmen, A., Körner, C. & Hiltbrunner, E. Flowering phenology in alpine grassland strongly responds to shifts in snowmelt but weakly to summer drought. Alp. Bot. 131, 73–88 (2021).Article 

    Google Scholar 
    Wipf, S. & Rixen, C. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res. 29, 95–109 (2010).Article 

    Google Scholar 
    Collins, C. G. et al. Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nat. Commun. 12, 3442 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Choler, P. Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration. Biogeosciences 12, 3885–3897 (2015).Article 

    Google Scholar 
    Xie, J. et al. Land surface phenology and greenness in alpine grasslands driven by seasonal snow and meteorological factors. Sci. Total Environ. 725, 138380 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nord, E. A. & Lynch, J. P. Plant phenology: a critical controller of soil resource acquisition. J. Exp. Bot. 60, 1927–1937 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gallinat, A. S., Primack, R. B. & Wagner, D. L. Autumn, the neglected season in climate change research. Trends Ecol. Evol. 30, 169–176 (2015).Article 
    PubMed 

    Google Scholar 
    Rosa, R. K. et al. Plant phenological responses to a long‐term experimental extension of growing season and soil warming in the tussock tundra of Alaska. Glob. Change Biol. 21, 4520–4532 (2015).Article 

    Google Scholar 
    Livensperger, C. et al. Earlier snowmelt and warming lead to earlier but not necessarily more plant growth. AoB Plants 8, plw021 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Körner, C. & Hiltbrunner, E. Why is the alpine flora comparatively robust against climatic warming? Diversity 13, 383–397 (2021).Article 

    Google Scholar 
    Ma, H. et al. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 5, 1110–1122 (2021).Article 
    PubMed 

    Google Scholar 
    Iversen, C. M. et al. The unseen iceberg: plant roots in arctic tundra. N. Phytol. 205, 34–58 (2015).Article 

    Google Scholar 
    Abramoff, R. Z. & Finzi, A. C. Are above‐ and below‐ground phenology in sync? N. Phytol. 205, 1054–1061 (2015).Article 

    Google Scholar 
    Liu, H. et al. Phenological mismatches between above- and belowground plant responses to climate warming. Nat. Clim. Change 12, 97–102 (2022).Article 
    CAS 

    Google Scholar 
    Rixen, C. et al. Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arct. Sci. 1–37 (2022) https://doi.org/10.1139/as-2020-0058.Johnson, M. G., Tingey, D. T., Phillips, D. L. & Storm, M. J. Advancing fine root research with minirhizotrons. Environ. Exp. Bot. 45, 263–289 (2001).Article 
    PubMed 

    Google Scholar 
    Atkinson, J. A., Pound, M. P., Bennett, M. J. & Wells, D. M. Uncovering the hidden half of plants using new advances in root phenotyping. Curr. Opin. Biotech. 55, 1–8 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Radville, L., McCormack, M. L., Post, E. & Eissenstat, D. M. Root phenology in a changing climate. J. Exp. Bot. 67, 3617–3628 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Blume-Werry, G. The belowground growing season. Nat. Clim. Change 12, 11–12 (2022).Article 

    Google Scholar 
    Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim. Change 94, 105–121 (2009).Article 

    Google Scholar 
    Baptist, F., Flahaut, C., Streb, P. & Choler, P. No increase in alpine snowbed productivity in response to experimental lengthening of the growing season. Plant Biol. 12, 755–764 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vitasse, Y. et al. ‘Hearing’ alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology. Int J. Biometeorol. 61, 349–361 (2017).Article 
    PubMed 

    Google Scholar 
    Blume‐Werry, G., Jansson, R. & Milbau, A. Root phenology unresponsive to earlier snowmelt despite advanced above‐ground phenology in two subarctic plant communities. Funct. Ecol. 31, 1493–1502 (2017).Article 

    Google Scholar 
    Darrouzet‐Nardi, A. et al. Limited effects of early snowmelt on plants, decomposers, and soil nutrients in Arctic tundra soils. Ecol. Evol. 9, 1820–1844 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Change Biol. 20, 3256–3269 (2014).Article 

    Google Scholar 
    Keller, F. & Körner, C. The role of photoperiodism in alpine plant development. Arct. Antarct. Alp. Res 35, 361–368 (2003).Article 

    Google Scholar 
    Hiltbrunner, E., Arnaiz, J. & Körner, C. Biomass allocation and seasonal non-structural carbohydrate dynamics do not explain the success of tall forbs in short alpine grassland. Oecologia 1–15 (2021) https://doi.org/10.1007/s00442-021-04950-7.Inauen, N., Körner, C. & Hiltbrunner, E. No growth stimulation by CO2 enrichment in alpine glacier forefield plants. Glob. Change Biol. 18, 985–999 (2012).Article 

    Google Scholar 
    Möhl, P., Hiltbrunner, E. & Körner, C. Halving sunlight reveals no carbon limitation of aboveground biomass production in alpine grassland. Glob. Change Biol. 26, 1857–1872 (2020).Article 

    Google Scholar 
    Porter, J. R. & Gawith, M. Temperatures and the growth and development of wheat: a review. Eur. J. Agron. 10, 23–36 (1999).Article 

    Google Scholar 
    Parent, B., Turc, O., Gibon, Y., Stitt, M. & Tardieu, F. Modelling temperature-compensated physiological rates, based on the co-ordination of responses to temperature of developmental processes. J. Exp. Bot. 61, 2057–2069 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Körner, C. H. & Woodward, F. I. The dynamics of leaf extension in plants with diverse altitudinal ranges. Oecologia 72, 279–283 (1987).Article 
    PubMed 

    Google Scholar 
    Nagelmüller, S., Hiltbrunner, E. & Körner, C. Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants 9, plx054 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Starr, G., Oberbauer, S. F. & Pop, E. W. Effects of lengthened growing season and soil warming on the phenology and physiology of Polygonum bistorta. Glob. Change Biol. 6, 357–369 (2000).Article 

    Google Scholar 
    Yoshie, F. Vegetative phenology of alpine plants at Tateyama Murodo-daira in central Japan. J. Plant Res. 123, 675–688 (2010).Article 
    PubMed 

    Google Scholar 
    Jonas, T., Rixen, C., Sturm, M. & Stoeckli, V. How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res. 113, G03013 (2008).
    Google Scholar 
    Wang, H. et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701–710 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frei, E. R. & Henry, G. H. R. Long-term effects of snowmelt timing and climate warming on phenology, growth, and reproductive effort of Arctic tundra plant species. Arct. Sci. 1–22 (2021) https://doi.org/10.1139/as-2021-0028.Schäppi, B. & Körner, C. Growth responses of an alpine grassland to elevated CO2. Oecologia 105, 43–52 (1996).Article 
    PubMed 

    Google Scholar 
    Aloni, R. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation. Planta 238, 819–830 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sloan, V. L., Fletcher, B. J. & Phoenix, G. K. Contrasting synchrony in root and leaf phenology across multiple sub‐Arctic plant communities. J. Ecol. 104, 239–248 (2016).Article 
    CAS 

    Google Scholar 
    Nagelmüller, S., Hiltbrunner, E. & Körner, C. Critically low soil temperatures for root growth and root morphology in three alpine plant species. Alp. Bot. 126, 11–21 (2016).Article 

    Google Scholar 
    Woo, H. R., Kim, H. J., Lim, P. O. & Nam, H. G. Leaf senescence: systems and dynamics aspects. Annu. Rev. Plant Biol. 70, 1–30 (2019).Article 

    Google Scholar 
    Liu, Z., Marella, C. B. N., Hartmann, A., Hajirezaei, M. R. & Wirén, Nvon An age-dependent sequence of physiological processes defines developmental root senescence. Plant Physiol. 181, 993–1007 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryser, P., Puig, S., Müller, M. & Munné-Bosch, S. Abscisic acid responses match the different patterns of autumn senescence in roots and leaves of Iris versicolor and Sparganium emersum. Environ. Exp. Bot. 176, 104097 (2020).Article 
    CAS 

    Google Scholar 
    Budge, K., Leifeld, J., Hiltbrunner, E. & Fuhrer, J. Alpine grassland soils contain large proportion of labile carbon but indicate long turnover times. Biogeosciences 8, 1911–1923 (2011).Article 
    CAS 

    Google Scholar 
    Solly, E. F. et al. Unravelling the age of fine roots of temperate and boreal forests. Nat. Commun. 9, 3006 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trumbore, S. E., Sierra, C. A. & Pries, C. E. H. Radiocarbon and climate change, mechanisms, applications and laboratory techniques. 45–82 (2016) https://doi.org/10.1007/978-3-319-25643-6_3.Windmaißer, T. & Reisch, C. Long-term study of an alpine grassland: local constancy in times of global change. Alp. Bot. 123, 1–6 (2013).Article 

    Google Scholar 
    De Witte, L. C. D., Armbruster, G. F. J., Gielly, L., Taberlet, P. & Stöcklin, J. AFLP markers reveal high clonal diversity and extreme longevity in four key arctic‐alpine species. Mol. Ecol. 21, 1081–1097 (2012).Article 
    PubMed 

    Google Scholar 
    Landolt, E. Unsere Alpenflora. (SAC-Verlag, 2012).Puşcaş, M. & Choler, P. A biogeographic delineation of the European Alpine System based on a cluster analysis of Carex curvula-dominated grasslands. Flora – Morphol. Distrib. Funct. Ecol. Plants 207, 168–178 (2012).Article 

    Google Scholar 
    Grabherr, G., Mahr, E. & Reisigl, H. Nettoprimärproduktion und Reproduktion in einem Krummseggenrasen (Caricetum curvulae) der Otztaler Alpen, Tirol. Oecologia Plant. 13, 227–251 (1978).
    Google Scholar 
    Chiang, C., Bånkestad, D. & Hoch, G. Reaching natural growth: light quality effects on plant performance in indoor growth facilities. Plants 9, 1273 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chiang, C., Olsen, J. E., Basler, D., Bånkestad, D. & Hoch, G. Latitude and weather influences on sun light quality and the relationship to tree growth. Forests 10, 610–621 (2019).Article 

    Google Scholar 
    Richardson, A. D. et al. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 152, 323–334 (2007).Article 
    PubMed 

    Google Scholar 
    Jiang, Y. & Li, C. Convolutional neural networks for image-based high-throughput plant phenotyping: a review. Plant Phenomics 2020, 4152816 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Möller, B. et al. rhizoTrak: a flexible open source Fiji plugin for user-friendly manual annotation of time-series images from minirhizotrons. Plant Soil 444, 519–534 (2019).Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smith, A. G., Petersen, J., Selvan, R. & Rasmussen, C. R. Segmentation of roots in soil with U-Net. Plant Methods 16, 13–27 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seethepalli, A. et al. Rhizovision crown: an integrated hardware and software platform for root crown phenotyping. Plant Phenomics 2020, 3074916 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.2-1. (2021).Möhl P., von Büren R. S. & Hiltbrunner E. Data from: Growth of alpine grassland will start and stop earlier under climate warming figshare. https://doi.org/10.6084/m9.figshare.20440497 (2022). More

  • in

    Oscillating flower colour changes of Causonis japonica (Thunb.) Raf. (Vitaceae) linked to sexual phase changes

    Time-course observations on 43 flowers of Causonis japonica revealed changes in flower disc colour and sexual expression (Table 1). Temporal changes in floral features showed no difference between diploid (19 flowers) and triploid (24 flowers) individuals. For example, flowering onset times did not differ substantially between ploidy level (diploid: from 07:07 to 13:27, triploid: from 06:58 to 14:49). However, the flowering duration varied significantly from flower to flower, ranging from a minimum of one day to a maximum of six days. Regardless of the ploidy level, all flowers with damaged styles (14 flowers) exhibited brown stigmas after the male phase, then ceased floral development prior to the female phase.Table 1 Characteristics of 43 flowers of Causonis japonica.Full size tableFigure 1 shows the typical time-course changes of C. japonica flower features (flower ID 35 in Table 1) according to the RGB values (representing the activities of nectar secretion: see below). As in the other 42 examined cases shown in Table 1, the initial colour of this flower disc immediately after anthesis (male phase) was orange (Stage 1, Fig. 1a, RGB: 255, 88, 16), as reported earlier7. Immediately after the petals and stamens fell off, the flower disc colour changed to pink (Stage 2, Fig. 1b, RGB: 255, 82, 102). The styles were not yet elongated at this stage, and the flowers were asexual. In 12 cases with damaged styles and brown stigmas, the flower discs remained pink until the flowers fell off (shown as “O–P” in Table 1).Figure 1Colour change process of a flower disc in Causonis japonica (flower ID 35 in Table 1). Disc colour changed from orange (a, RGB: 255, 88, 16) to pink (b, RGB: 255, 82, 102) before recovering to orange (c, RGB: 255, 88, 16) again, then pink (d, RGB: 255, 120, 94) again. In the last stage, the flower disc turned brownish pink (e, RGB: 232, 162, 169) then fell off. The two orange colour stages were synchronised with flower sexual activity. (a) First orange stage shows stamen activity (male phase); (c) second orange stage indicates stigma maturation (female phase). Nectar secretion was active only in the orange stages and more active in the female phase; the same tendency was observed in the other cases shown in Table 1.Full size imageHowever, in the remaining 31 flowers with normally elongated styles, maturation of the styles (female phase) coincided with the flower discs again exhibiting a distinct orange colour (Stage 3, Fig. 1c, RGB: 255, 88, 16). After the female phase, the flower discs turned pink again (Stage 4, shown as “O–P–O–P” in Table 1), and brownish colouration appeared in the stigmas (Fig. 1d, RGB: 255, 120, 94). Finally, the flower discs turned to a faded pink (Fig. 1e, RGB: 232, 162, 169) just before the flowers fell off. Therefore, the above observations imply that colour-change has a strict correlation with sexual phase.The timings of the disc colour change to the second orange stage (female phase) varied depending on the onset time of each flower. Most flowers that opened before 10:00 reached the second orange stage (female phase) on the afternoon of the same day (except for two flowers, ID 1 and 2 in Table 1). Conversely, flowers that bloomed after 10:00 reached the second orange stage (female phase) at approximately noon the following day. These flowering processes were not fully synchronised in the same inflorescence; therefore, pink and orange discs often coexisted in the same inflorescence. Indeed, we can collect various stages of flowers at a time point from one population as shown in Fig. 2a.Figure 2Histology of floral discs of C. japonica. (a) Floral disc colour change observed in a triploid individual. Flowers were hand-sectioned along the longitudinal axis to show inside colouration of floral disc. Floral phase was judged from the stigma length and colour of the stigma tip; from left, initial stage with orange floral disc and short style, first pink stage with short style, second orange stage with elongated style with matured stigma, and second orange stage with elongated style. Unit of scale bar = 1 mm. (b–e) Longitudinal sections of floral discs in the initial orange stage (b, d) and pink stage (c, e). Scale bar = 500 µm. (b, c) Hand sections of living floral discs showing pigmentation of vacuoles in some scattered cells. (d, e) Resin-embedded sections of floral discs showing histology.Full size imageFigure 1 also shows the typical time-course changes of nectar activities (flower ID 35 in Table 1), which indicates active nectar secretions during both orange colour stages. That is, the flower discs secreted nectar in both male and female phases, with no visible nectar secretion in the pink stages. Moreover, nectar secretion in the female phase of this flower was higher than that in the male phase, a tendency that was also observed in other flowers; however, the total volume of nectar varied among the flowers shown in Table 1. During anthesis, we confirmed that bees, wasps, ants and other insects visited the flowers as previously described7 (Supplementary Fig. 1).Longitudinal sections of flowers in the pink-coloured and orange-coloured stages (Fig. 2a) revealed that pigmentation occurred only in a subset of parenchymatous cells in both cases (Fig. 2b, c). No structural or cytological changes were observed between the initial orange stage and the pink stages (Fig. 2d, e), suggesting that the observed oscillating colour change depends on the degradation and biosynthesis of orange pigments.To understand what pigments are involved in the dual colour change of the C. japonica flower disc, we extracted carotenoids and chlorophyll with Acetone. Anthocyanin was also extracted with Methanol-HCl. As a result, while anthocyanin content was not significantly altered throughout the stages examined, we found that carotenoid level strongly correlated with the colour change detected by naked eye. More specifically, in stages 1 and 3 the carotenoid content was high (63.8 and 65.3 µg/g dry weight, respectively), but significantly decreased in stages 2 and 4 (14.3 and 36.5 µg/g dry weight, respectively) (Table 2). Interestingly, an increase in chlorophyll content was confined to stage 4 (Table 2). Together, the observed dual colour change was ascribed to the decrease (stage 2) and the increase (stage 3) of carotenoid contents in the flower discs.Table 2 Chlorophyll and Carotenoid contents in the flower discs of C. japonica.Full size table More

  • in

    A non-avian dinosaur with a streamlined body exhibits potential adaptations for swimming

    Dinosauria Owen, 1842Theropoda Marsh, 1881Dromaeosauridae Matthew and Brown, 1922Halszkaraptorinae Cau et al., 2017Revised diagnosisSmall dromaeosaurids that possess dorsoventrally flattened premaxillae, premaxillary bodies perforated by many neurovascular foramina, enlarged and closely packed premaxillary teeth that utilized delayed replacement patterns, reduced anterior maxillary teeth, dorsolateral placement of retracted external nares, greatly elongated cervical vertebrae, anterior cervical vertebrae with round lobes formed by the postzygapophyses, horizontal zygapophyses, and pronounced zygapophyseal laminae in the anterior caudal vertebrae, mediolaterally compressed ulnae with sharp posterior margins, second and third metacarpals with similar thicknesses, shelf-like supratrochanteric processes on the ilia, elongated fossae that border posterolateral ridges on the posterodistal surfaces of the femoral shafts, and third metatarsals in which the proximal halves are unconstricted and anteriorly convex.Natovenator polydontus gen. et sp. nov.HolotypeMPC-D 102/114 (Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia) is a mostly articulated skeleton with a nearly complete skull (See Supplementary Table 1 for measurements).Locality and horizonBaruungoyot Formation (Upper Cretaceous), Hermiin Tsav, Omnogovi Province, Mongolia13 (Supplementary Fig. 5).EtymologyNatovenator, from the Latin nato (swim) and venator (hunter), in reference to the hypothesized swimming behaviour and piscivorous diet of the new taxon; polydontus, from the Greek polys (many) and odous (tooth) in reference to the unusually many teeth.DiagnosisA small halszkaraptorine dromaeosaurid with the following autapomorphies: wide groove delimited by a pair of ridges on the anterodorsal surface of the premaxilla, premaxilla with an elongated internarial process that overlies nasal and extends posterior to the external naris, 13 premaxillary teeth with large and incisiviform crowns, first three anteriormost maxillary teeth are greatly reduced and are clustered together with the following tooth without any separations by interdental septa, anteroposteriorly long external naris (about 30% of the preorbital skull length), paroccipital process with a anteroposteriorly broad dorsal surface, elongate maxillary process of the palatine that extends anteriorly beyond the middle of the antorbital fenestra, pterygoid with a deep fossa on the medial surface of the quadrate ramus, distinct posterolaterally oriented projection on the lateral surface of atlas, absence of pleurocoels in cervical vertebrae (not confirmed in the missing fifth cervical centrum), posterolaterally oriented and nearly horizontal proximal shafts in the dorsal ribs, hourglass-shaped metacarpal II with distinctly concave medial and lateral surfaces.DescriptionThe skull of Natovenator is nearly complete, although the preorbital region has been affected by compression and is slightly offset from the rest of the skull (Figs. 1c, d, 2a–d and Supplementary Figs. 1, 2). Near the tip of the snout, the premaxilla is marked by a broad groove. The body of the premaxilla is also dorsoventrally low and is perforated by numerous foramina that lead into a complex network of neurovascular chambers (Supplementary Fig. 1b) as in Halszkaraptor4. Similarly, the external naris is positioned posteriorly and is level with the premaxilla-maxilla contact (Fig. 2a, b), although it is marginally behind this position in Halszkaraptor4. It is also dorsally placed compared to those of other non-avian theropods and faces dorsolaterally. The exceptionally long external naris and accordingly elongated internarial process of Natovenator (Fig. 2c) are unique among dromaeosaurids but comparable to those in aquatic toothed birds14 as well as in therizinosaurs15,16. The frontal is similar to those of other halszkaraptorines4,17 in that it is vaulted to accommodate a large orbit and has little contribution to the supratemporal fossa. A sharp nuchal crest is formed by the parietal and the squamosal (Supplementary Fig. 2a–e). The latter also produces a shelf that extends over the quadrate head as in other dromaeosaurids18. The paroccipital process curves gently on the occiput and has a broad dorsal surface that tapers laterally (Fig. 2f and Supplementary Fig. 2b, e). Its ventrolateral orientation is reminiscent of Mahakala17 but is different from the more horizontal paroccipital process of Halszkaraptor4. The occipital condyle is long and constricted at its base. A shallow dorsal tympanic recess on the lateral wall of the braincase is different from the deep one of Mahakala17. The palatine is tetraradiate with a greatly elongated maxillary process, which extends anteriorly beyond the level of the mid-antorbital fenestra. The pterygoid is missing its anterior portion (Fig. 2g and Supplementary Fig. 2a–e). A deep fossa on the medial surface of the thin quadrate ramus is not seen in any other dromaeosaurids. The mandibles of Natovenator preserve most of the elements, especially those on the left side (Fig. 1a, b, d and Supplementary Figs. 1a, 2). Each jaw is characterized by a slender dentary with nearly parallel dorsal and ventral margins, a surangular partially fused with the articular, a distinctive surangular shelf, and a fan-shaped retroarticular process that protrudes dorsomedially. The upper dentition of Natovenator is heterodont as the premaxillary teeth are morphologically distinct from the maxillary teeth (Fig. 2a, b, e and Supplementary Fig. 1a, c). There are unusually numerous premaxillary teeth tightly packed without any separation of the alveoli by bony septa. The roots of the teeth are long, and the crowns are tall and incisiviform as in Halszkaraptor4. Moreover, the large replacement teeth in the premaxilla suggest that the replacement of the premaxillary teeth was delayed as in Halszkaraptor4. However, the number of teeth in each premaxilla is 13 in Natovenator, whereas it is only 11 in Halszkaraptor4. In the maxilla, the three most anterior maxillary teeth are markedly shorter than the premaxillary teeth and the more posterior maxillary teeth. This pattern is also observed in Halszkaraptor, although the number of shorter maxillary teeth differs as it has two reduced ones7. Both the maxillary and dentary teeth have sharp fang-like crowns that lack serrations. Although posteriormost parts are poorly preserved, there are at least 23 alveoli in each of the maxilla and dentary, which suggests high numbers of teeth in both elements.The neck of Natovenator, as preserved, is twisted and includes ten elongated cervical vertebrae, although most of the 5th cervical is missing (Figs. 1, 3a–d). This elongation of the cervicals results in a noticeably longer neck than those of most dromaeosaurids and is estimated to be longer than the dorsal series. It is, however, proportionately shorter than that of Halszkaraptor, which has a neck as long as its dorsal and sacral vertebra combined4. Another peculiarity in the neck of the Natovenator is a pronounced posterolaterally extending projection on the neurapophysis of the atlas (Fig. 3a and Supplementary Fig. 2b, c, e). The postzygapophyses of each anterior cervical are fused into a single lobe-like process as in Halszkaraptor4. Pleurocoels are absent in the cervical vertebrae. In contrast, Halszkaraptor has pleurocoels on its 7th–9th cervicals4. A total of 12 dorsal vertebrae are preserved (Figs. 1a, b, 3e, 4a and Supplementary Figs. 3a–d). They all lack pleurocoels, and their parapophyses on the anterior and mid-dorsals are placed high on the anterodorsal end of each centrum. Interestingly, the positions of the parapophyses are similar to those of hesperornithiforms19,20,21 rather than other dromaeosaurids such as Deinonychus22 or Velociraptor23. The preserved dorsal ribs, articulated with the second to seventh dorsals, are flattened and posteriorly oriented (Figs. 1, 3e, 4a–d). The proximal shafts are also nearly horizontal, which is indicative of a dorsoventrally compressed ribcage. Each proximal caudal vertebra has a long centrum and horizontal zygapophyses with expanded laminae (Fig. 3f and Supplementary Fig. 3e–i), all of which are characters shared with other halszkaraptorines4,17. The forelimb elements are partially exposed (Figs. 1a, b, 2a–d, 3e, g). The nearly complete right humerus is proportionately short and distally flattened like that of Halszkaraptor4. The shaft of the ulna is mediolaterally compressed to produce a sharp posterior margin as in Halszkaraptor4 and Mahakala17. Metacarpal III is robust and is only slightly longer than metacarpal II. Similarly, metacarpal III is almost as thick and long as other second metacarpals of other halszkaraptorines4,17. The femur has a long ridge on its posterior surface, which is another characteristic shared among halszkaraptorines4. Typically for a dromaeosaurid, metatarsals II and III have ginglymoid distal articular surfaces (Fig. 3h and Supplementary Fig. 4f, h). The ventral surface of metatarsal III is invaded by a ridge near the distal end, unlike other halszkaraptorines (Fig. 3h)4,5,17,24.Phylogenetic analysisThe phylogenetic analysis found more than 99,999 most parsimonious trees (CI = 0.23, RI = 0.55) with 6574 steps. Deinonychosaurian monophyly is not supported by the strict consensus tree (Supplementary Fig. 6). Instead, Dromaeosauridae was recovered as a sister clade to a monophyletic clade formed by Troodontidae and Avialae, which is consistent with the results of Cau et al.4 and Cau7. Halszkaraptorinae is positioned at the base of Dromaeosauridae as in Cau et al.4, although there are claims that dromaeosaurid affinities of halszkaraptorines are not well supported25. Nine (seven ambiguous and two unambiguous) synapomorphies support the inclusion of Halszkaraptorinae in Dromaeosauridae. The two unambiguous synapomorphies are the anterior tympanic recess at the same level as the basipterygoid process and the presence of a ventral flange on the paroccipital process. A total of 20 synapomorphies (including one unambiguous synapomorphy) unite the four halszkaraptorines, including Natovenator (Supplementary Fig. 7). In Halszkaraptorinae, Halszkaraptor is the earliest branching taxon, and the remaining three taxa form an unresolved clade supported by three ambiguous synapomorphies (characters 121/1, 569/0, and 1153/1). Two of these synapomorphies are related to the paroccipital process (characters 121 and 569), which is not preserved in Hulsanpes5,24. The other is the presence of an expansion on the medial margin of the distal half of metatarsal III, which is not entirely preserved in the Natovenator. When scored as 0 for this character, Natovenator branches off from the unresolved clade. It suggests that the medial expansion of the dorsal surface of metatarsal III could be a derived character among halszkaraptorines. More

  • in

    Heated beetles

    The long-term resilience of species to increasing temperature relies on both individual survival and successful reproduction. High temperatures have been shown to readily impair the production and function of gametes (particularly sperm), and species occurrence has been shown to map closely to sterilizing (rather than lethal) temperatures. However, the impacts of temperature on sexual selection — the competition for mating partners or their gametes — remains relatively unexplored. More