More stories

  • in

    Quantifying thermal cues that initiate mass emigrations in juvenile white sharks

    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333(6045), 1024–1026. https://doi.org/10.1126/SCIENCE.1206432 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Newton, I. Migration within the annual cycle: Species, sex and age differences. J. Ornithol. 152, 169–185. https://doi.org/10.1007/S10336-011-0689-Y/TABLES/1 (2011).Article 

    Google Scholar 
    Dodson, S., Abrahms, B., Bograd, S. J., Fiechter, J. & Hazen, E. L. Disentangling the biotic and abiotic drivers of emergent migratory behavior using individual-based models. Ecol. Model. 432, 109225. https://doi.org/10.1016/J.ECOLMODEL.2020.109225 (2020).Article 

    Google Scholar 
    Lehikoinen, A. et al. Sex-specific timing of autumn migration in birds: the role of sexual size dimorphism, migration distance and differences in breeding investment. Ornis Fennica 94, 53–65 (2017).
    Google Scholar 
    Stewart, B. S. Ontogeny of differential migration and sexual segregation in northern elephant seals. J. Mammol. 78(4), 1101–1116 (1997).Somveille, M., Rodrigues, A. S. L. & Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 24(6), 664–674. https://doi.org/10.1111/geb.12298 (2015).Article 

    Google Scholar 
    Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate?. Mar. Mamm. Sci. 15(4), 1228–1245. https://doi.org/10.1111/J.1748-7692.1999.TB00887.X (1999).Article 

    Google Scholar 
    Mourier, J., Mills, S. C. & Planes, S. Population structure, spatial distribution and life-history traits of blacktip reef sharks Carcharhinus melanopterus. J. Fish Biol. 82(3), 979–993. https://doi.org/10.1111/JFB.12039 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Avgar, T., Mosser, A., Brown, G. S. & Fryxell, J. M. Environmental and individual drivers of animal movement patterns across a wide geographical gradient. J. Anim. Ecol. 82, 96–106. https://doi.org/10.1111/j.1365-2656.2012.02035.x (2013).Article 
    PubMed 

    Google Scholar 
    Crawshaw, L. I. Physiological and behavioral reactions of fishes to temperature change. J. Fish. Res. Board Can. 34(5), 730–734. https://doi.org/10.1139/f77-113 (1977).Article 

    Google Scholar 
    Heithaus, M., Dill, L., Marshall, G. J. & Buhleier, B. Habitat use and foraging behavior of tiger sharks (Galeocerdo cuvier) in a seagrass ecosystem. Mar. Biol. 140, 337–348. https://doi.org/10.1007/s00227-001-0711-7 (2002).Article 

    Google Scholar 
    Magnuson, J. J., Crowder, L. B. & Medvick, P. A. Temperature as an ecological resource. Integr. Comp. Biol. 19(1), 331–343. https://doi.org/10.1093/icb/19.1.331 (1979).Article 

    Google Scholar 
    Matern, S. A., Cech, J. J. & Hopkins, T. E. Diel movements of bat rays, Myliobatis californica, in Tomales Bay, California: Evidence for behavioral thermoregulation?. Environ. Biol. Fishes 58(2), 173–182. https://doi.org/10.1023/A:1007625212099 (2000).Article 

    Google Scholar 
    Speed, C. W., Meekan, M. G., Field, I. C., McMahon, C. R. & Bradshaw, C. J. A. Heat-seeking sharks: Support for behavioural thermoregulation in reef sharks. Mar. Ecol. Prog. Ser. 463, 231–244. https://doi.org/10.3354/meps09864 (2012).Article 
    ADS 

    Google Scholar 
    Dewar, H., Domeier, M. & Nasby-Lucas, N. Insights into young of the year white shark, Carcharodon carcharias, behavior in the Southern California Bight. Environ. Biol. Fishes https://doi.org/10.1023/B:EBFI.0000029343.54027.6a.pdf (2004).Article 

    Google Scholar 
    Hertz, P. E., Huey, R. & Stevenson, R. D. Evaluating temperature regulation by field-active ectotherms. Am. Nat. 142, 796–818 (1993).Article 
    CAS 
    PubMed 

    Google Scholar 
    Heupel, M. R., Simpfendorfer, C. A. & Hueter, R. E. Estimation of shark home ranges using passive monitoring techniques. Environ. Biol. Fishes 71(2), 135–142. https://doi.org/10.1023/b:ebfi.0000045710.18997.f7 (2004).Article 

    Google Scholar 
    Topping, D. T., Lowe, C. G. & Caselle, J. E. Site fidelity and seasonal movement patterns of adult California sheephead Semicossyphus pulcher (Labridae): An acoustic monitoring study. Mar. Ecol. Progr. Ser. 326, 257–267 (2006).Weng, K. C. et al. Movements, behavior and habitat preferences of juvenile white sharks Carcharodon carcharias in the eastern Pacific. Mar. Ecol. Prog. Ser. 338, 211–224. https://doi.org/10.3354/meps338211 (2007).Article 
    ADS 

    Google Scholar 
    Lyons, K. et al. The degree and result of gillnet fishery interactions with juvenile white sharks in southern California assessed by fishery-independent and -dependent methods. Fish. Res. 147, 370–380. https://doi.org/10.1016/J.FISHRES.2013.07.009 (2013).Article 
    ADS 

    Google Scholar 
    Papastamatiou, Y. P. et al. Drivers of daily routines in an ectothermic marine predator: Hunt warm, rest warmer?. PLoS ONE. https://doi.org/10.1371/journal.pone.0127807 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adolph, S. C. Influence of behavioral thermoregulation on microhabitat use by two sceloporus lizards. Ecology 71(1), 315–327. https://doi.org/10.2307/1940271 (1990).Article 

    Google Scholar 
    Heithaus, M. R. The biology of tiger sharks, Galeocerdo cuvier, in Shark Bay, Western Australia: sex ratio, size distribution, diet, and seasonal changes in catch rates. Environ. Biol. Fishes 61, 25–36 (2001).Article 

    Google Scholar 
    Vaudo, J. J. & Lowe, C. G. Movement patterns of the round stingray Urobatis halleri(Cooper) near a thermal outfall. J. Fish Biol. 68(6), 1756–1766. https://doi.org/10.1111/j.0022-1112.2006.01054.x (2006).Article 

    Google Scholar 
    Vaudo, J. J. & Heithaus, M. R. Microhabitat selection by marine mesoconsumers in a thermally heterogeneous habitat: Behavioral thermoregulation or avoiding predation risk?. PLoS ONE. 8(4), e61907. https://doi.org/10.1371/journal.pone.0061907 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weng, K. C. et al. Migration and habitat of white sharks (Carcharodon carcharias) in the eastern Pacific Ocean. Mar. Biol. 152(4), 877–894. https://doi.org/10.1007/s00227-007-0739-4 (2007).Article 

    Google Scholar 
    White, C. F. et al. Quantifying habitat selection and variability in habitat suitability for juvenile white sharks. PLoS ONE 14(5), e0214642. https://doi.org/10.1371/journal.pone.0214642 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Curtis, T. H. et al. First insights into the movements of young-of-the-year white sharks (Carcharodon carcharias) in the western North Atlantic Ocean. Sci. Rep. 8(1), 1–8. https://doi.org/10.1038/s41598-018-29180-5 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Bruce, B. D., Harasti, D., Lee, K., Gallen, C. & Bradford, R. Broad-scale movements of juvenile white sharks Carcharodon carcharias in eastern Australia from acoustic and satellite telemetry. Mar. Ecol. Prog. Ser. 619, 1–15. https://doi.org/10.3354/MEPS12969 (2019).Article 
    ADS 

    Google Scholar 
    Carey, F. G. et al. Temperature and activities of a white shark Carcharodon carcharias. Copeia 2, 254–260. https://doi.org/10.2307/1444603 (1982).Article 

    Google Scholar 
    Klimley, A. P., Beavers, S. C., Curtis, T. H. & Jorgensen, S. J. Movements and swimming behavior of three species of sharks in La Jolla Canyon, California. Environ. Biol. Fish. 63, 117–135. https://doi.org/10.1023/A:1014200301213.pdf (2002).Article 

    Google Scholar 
    Towner, A. V., Underhill, L. G., Jewell, O. J. D. & Smale, M. J. Environmental Influences on the abundance and sexual composition of white sharks Carcharodon carcharias in Gansbaai, South Africa. PLoS ONE. 8(8), e71197. https://doi.org/10.1371/journal.pone.0071197 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, J. M. et al. High-resolution acoustic telemetry reveals swim speeds and inferred field metabolic rates in juvenile white sharks (Carcharodon carcharias). PLoS ONE 17(6), e0268914. https://doi.org/10.1371/JOURNAL.PONE.0268914 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, J. M. et al. Interannual nearshore habitat use of young of the year white sharks off Southern California. Front. Mar. Sci. 8, 238. https://doi.org/10.3389/fmars.2021.645142 (2021).Article 

    Google Scholar 
    Domeier, M. L. & Nasby-Lucas, N. Two-year migration of adult female white sharks (Carcharodon carcharias) reveals widely separated nursery areas and conservation concerns. Anim. Biotelemet. 1(1), 1–10. https://doi.org/10.1186/2050-3385-1-2/FIGURES/3 (2013).Article 

    Google Scholar 
    Oñate-González, E. C. et al. Importance of Bahia Sebastian Vizcaino as a nursery area for white sharks (Carcharodon carcharias) in the Northeastern Pacific: A fishery dependent analysis. Fish. Res. 188, 125–137. https://doi.org/10.1016/J.FISHRES.2016.12.014 (2017).Article 

    Google Scholar 
    Lowe, C. G. et al. Historic fishery interactions with white sharks in the Southern California Bight. Glob. Perspect. Biol. Life Hist. White Shark 14, 169–190 (2012).
    Google Scholar 
    Anderson, J. M. et al. Non-random Co-occurrence of Juvenile White Sharks (Carcharodon carcharias) at Seasonal Aggregation Sites in Southern California. Front. Mar. Sci. 8, 1–14. https://doi.org/10.3389/fmars.2021.688505 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Benson, J. F. et al. Juvenile survival, competing risks, and spatial variation in mortality risk of a marine apex predator. J. Appl. Ecol. 55, 2888–2897. https://doi.org/10.1111/1365-2664.13158 (2018).Article 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R. (RStudio, PBC, 2020) http://www.rstudio.com/.Derrick, T., & Thomas, J. Time Series Analysis: The Cross-Correlation Function. Innovative Analyses of Human Movement, Chapter 7. https://lib.dr.iastate.edu/kin_pubs/46 (2004).Killick, R., Fearnhead, P. & Eckley, I. A. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107, 1590–1598. https://doi.org/10.1080/01621459.2012.737745 (2012).Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 
    Bakun, A. Coastal Upwelling Indices, West Coast of North America. US Department of Commerce. NOAA Technical Report, NMFS SSRF-671 (1973).Di Lorenzo, E. Seasonal dynamics of the surface circulation in the Southern California Current System. Deep-Sea Res. Part II 50(14–16), 2371–2388. https://doi.org/10.1016/S0967-0645(03)00125-5 (2003).Article 
    ADS 

    Google Scholar 
    Lynn, R. J. & Simpson, J. J. The California Current System: The seasonal variability of its physical characteristics. J. Geophys. Res. 92(C12), 12947. https://doi.org/10.1029/jc092ic12p12947 (1987).Article 
    ADS 

    Google Scholar 
    Sinnett, G. & Feddersen, F. The surf zone heat budget: The effect of wave heating. Geophys. Res. Lett. 41(20), 7217–7226. https://doi.org/10.1002/2014GL061398 (2014).Article 
    ADS 

    Google Scholar 
    Wei, X., Li, K.-Y., Kilpatrick, T., Wang, M. & Xie, S.-P. Large-scale conditions for the record-setting Southern California marine heatwave of August 2018. Geophys. Res. Lett. 48(7), e2020GL091803 (2021).Article 
    ADS 

    Google Scholar 
    Freedman, R. M., Brown, J. A., Caldow, C. & Caselle, J. E. Marine protected areas do not prevent marine heatwave-induced fish community structure changes in a temperate transition zone. Sci. Rep. 10(1), 1–8. https://doi.org/10.1038/s41598-020-77885-3 (2020).Article 
    CAS 

    Google Scholar 
    Heupel, M. R., Simpfendorfer, C. A. & Hueter, R. E. Running before the storm: blacktip sharks respond to falling barometric pressure associated with Tropical Storm Gabrielle. J. Fish Biol. 63(5), 1357–1363. https://doi.org/10.1046/J.1095-8649.2003.00250.X (2003).Article 

    Google Scholar 
    Guttridge, T. L. et al. Deep danger: Intra-specific predation risk influences habitat use and aggregation formation of juvenile lemon sharks Negaprion brevirostris. Mar. Ecol. Progr. Ser. 445, 279–291 (2012).Article 
    ADS 

    Google Scholar 
    Grainger, R. et al. Diet composition and nutritional niche breadth variability in juvenile white sharks (Carcharodon carcharias). Front. Mar. Sci. 7, 422 (2020).Article 

    Google Scholar 
    Hussey, N. E., Christiansen, H. M. & Dudley, S. F. J. Size-based analysis of diet and trophic position of the white shark, carcharodon carcharias, in South African waters. Glob. Perspect. Biol. Life Hist. White Shark 3, 27–49. https://doi.org/10.1201/b11532-5 (2012).Article 

    Google Scholar 
    Kim, S. L., Tinker, M. T., Estes, J. A. & Koch, P. L. Ontogenetic and among-individual variation in foraging strategies of northeast Pacific white sharks based on stable isotope analysis. PLoS ONE 7(9), e45068. https://doi.org/10.1371/JOURNAL.PONE.0045068 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tinker, M. T. et al. Dramatic increase in sea otter mortality from white sharks in California. Mar. Mamm. Sci. 32(1), 309–326. https://doi.org/10.1111/mms.12261 (2015).Article 

    Google Scholar  More

  • in

    Climate change will redefine taxonomic, functional, and phylogenetic diversity of Odonata in space and time

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).Article 
    PubMed 

    Google Scholar 
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diamond, S. E. Contemporary climate‐driven range shifts: putting evolution back on the table. Functional Ecol. 32, 1652–1665 (2018).Article 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 
    PubMed 

    Google Scholar 
    Nelson, E. J. et al. Climate change’s impact on key ecosystem services and the human well‐being they support in the US. Front. Ecol. Environ. 11, 483–893 (2013).Article 

    Google Scholar 
    Prather, C. M. et al. Invertebrates, ecosystem services and climate change. Biol. Rev. 88, 327–348 (2013).Article 
    PubMed 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. World scientists’ warning of a climate emergency 2021. BioScience 71, 894–898 (2021).Article 

    Google Scholar 
    Gallagher, R. V., Hughes, L. & Leishman, M. R. Species loss and gain in communities under future climate change: consequences for functional diversity. Ecography 36, 531–540 (2013).Article 

    Google Scholar 
    Saladin, B. et al. Rapid climate change results in long-lasting spatial homogenization of phylogenetic diversity. Nat. Commun. 11, 1–8 (2020).Article 

    Google Scholar 
    Stewart, P. S. et al. Global impacts of climate change on avian functional diversity. Ecol. Lett. 25, 673–685 (2022).Article 
    PubMed 

    Google Scholar 
    Mammola, S., Carmona, C. P., Guillerme, T. & Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869–1885 (2021).Article 
    CAS 

    Google Scholar 
    Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2017).Article 
    PubMed 

    Google Scholar 
    Pavoine, S. & Bonsall, M. B. Measuring biodiversity to explain community assembly: a unified approach. Biol. Rev. 86, 792–812 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).Article 

    Google Scholar 
    Wang, S. & Loreau, M. Ecosystem stability in space: α, β and γ variability. Ecol. Lett. 17, 891–901 (2014).Article 
    PubMed 

    Google Scholar 
    Cardoso, P. et al. Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. J. Biogeogr. 41, 749–761 (2014).Article 

    Google Scholar 
    Hassall, C. Odonata as candidate macroecological barometers for global climate change. Freshwater Sci. 34, 1040–1049 (2015).Article 

    Google Scholar 
    Grewe, Y., Hof, C., Dehling, D. M., Brandl, R. & Brändle, M. Recent range shifts of European dragonflies provide support for an inverse relationship between habitat predictability and dispersal. Global Ecol. Biogeogr. 22, 403–409 (2013).Article 

    Google Scholar 
    Moore, M. P. et al. Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proc. Natl Acad. Sci. 118, https://doi.org/10.1073/pnas.2101458118 (2021).Castillo-Pérez, E. U., Suárez-Tovar, C. M., González-Tokman, D., Schondube, J. E. & Córdoba-Aguilar, A. Insect thermal limits in warm and perturbed habitats: Dragonflies and damselflies as study cases. J. Thermal Biol. 103, 103164 (2022).Article 

    Google Scholar 
    May, M. L. Odonata: Who they are and what they have done for us lately: Classification and ecosystem services of dragonflies. Insects 10, 62 (2019).Article 
    PubMed Central 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Global Change biology 11, 502–506 (2005).Article 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biol. 12, 450–455 (2006).Heino, J., Virkkala, R. & Toivonen, H. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol. Rev. 84, 39–54 (2009).Article 
    PubMed 

    Google Scholar 
    Mustonen, K. R. et al. Thermal and hydrologic responses to climate change predict marked alterations in boreal stream invertebrate assemblages. Global Change Biol. 24, 2434–2446 (2018).Article 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Difficult decisions: strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128–133 (2018).Article 

    Google Scholar 
    Wong, J. S. et al. Comparing patterns of taxonomic, functional and phylogenetic diversity in reef coral communities. Coral Reefs 37, 737–750 (2018).Article 

    Google Scholar 
    Arnan, X., Cerdá, X. & Retana, J. Relationships among taxonomic, functional, and phylogenetic ant diversity across the biogeographic regions of Europe. Ecography 40, 448–457 (2017).Article 

    Google Scholar 
    Strecker, A. L., Olden, J. D., Whittier, J. B. & Paukert, C. P. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecol. Appl. 21, 3002–3013 (2011).Article 

    Google Scholar 
    Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10, 1–3 (2019).Article 

    Google Scholar 
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).Article 

    Google Scholar 
    Ovaskainen, O., Rybicki, J. & Abrego, N. What can observational data reveal about metacommunity processes? Ecography 42, 1877–1886 (2019).Article 

    Google Scholar 
    Thomas, C. D. The development of Anthropocene biotas. Philos. Trans. R. Soc. B 375, 20190113 (2020).Article 

    Google Scholar 
    Krosby, M. et al. Climate-induced range overlap among closely related species. Nat. Clim. Change 5, 883–886 (2015).Article 

    Google Scholar 
    Sánchez-Guillén, R. A., Wellenreuther, M., Cordero-Rivera, A. & Hansson, B. Introgression and rapid species turnover in sympatric damselflies. BMC Evol. Biol. 11, 1–17 (2011).Article 

    Google Scholar 
    Bybee, S. et al. Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. Front. Zool. 13, 1–20 (2016).Article 

    Google Scholar 
    Tobias, N. & Monika, W. Does taxonomic homogenization imply functional homogenization in temperate forest herb layer communities? Plant Ecol. 213, 431–443 (2012).Article 

    Google Scholar 
    Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946 (2013).Article 
    PubMed 

    Google Scholar 
    Ball-Damerow, J. E., M’Gonigle, L. K. & Resh, V. H. Changes in occurrence, richness, and biological traits of dragonflies and damselflies (Odonata) in California and Nevada over the past century. Biodiversity Conserv. 23, 2107–2126 (2014).Article 

    Google Scholar 
    McGoff, E., Solimini, A. G., Pusch, M. T., Jurca, T. & Sandin, L. Does lake habitat alteration and land-use pressure homogenize European littoral macroinvertebrate communities? J. Appl. Ecol. 50, 1010–1018 (2013).Article 

    Google Scholar 
    Vilenica, M., Kerovec, M., Pozojević, I. & Mihaljević, Z. Odonata assemblages in anthropogenically impacted lotic habitats. J. Limnol. 80, 1968 (2021).Mammola, S. et al. Challenges and opportunities of species distribution modelling of terrestrial arthropod predators. Diversity Distrib. 27, 2596–2614 (2021).Article 

    Google Scholar 
    Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecol. Biogeogr. 27, 245–256 (2018).Article 

    Google Scholar 
    Kalkman, V. J. et al. Diversity and conservation of European dragonflies and damselflies (Odonata). Hydrobiologia 811, 269–282 (2018). .Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).Article 

    Google Scholar 
    Miller, J. A. & Holloway, P. Incorporating movement in species distribution models. Progr. Phys. Geogr. 39, 837–849 (2015).Article 

    Google Scholar 
    Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. 115, 11982–11987 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Pinkert, S. et al. Evolutionary processes, dispersal limitation and climatic history shape current diversity patterns of European dragonflies. Ecography 41, 795–804 (2018).Article 

    Google Scholar 
    Comte, L., Murienne, J. & Grenouillet, G. Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nat. Commun. 5, 1–9 (2014).Article 

    Google Scholar 
    Buckley, L. B. & Kingsolver, J. G. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Ann. Rev. Ecol. Evol. Syst. 43, 205–226 (2012).Article 

    Google Scholar 
    Tikhonov, G. et al. Joint species distribution modelling with the R‐package Hmsc. Methods Ecol. Evol. 11, 442–447 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corbet, P. S. The life-history of the emperor dragonfly Anax imperator Leach (Odonata: Aeshnidae). J. Animal Ecol. 1–69. https://doi.org/10.2307/1781 (1957).Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8(9), 993–1009 (2005).Article 
    PubMed 

    Google Scholar 
    Peterson, A. T. et al. Ecological niches and geographic distributions (MPB-49) (Princeton University Press, 2011).Franklin, J. Mapping species distributions: spatial inference and prediction (Cambridge University Press, 2010).Ryo, M. et al. Explainable artificial intelligence enhances the ecological interpretability of black‐box species distribution models. Ecography 44(2), 199–205 (2021).Article 

    Google Scholar 
    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adams, M. P. et al. Prioritizing localized management actions for seagrass conservation and restoration using a species distribution model. Aquat. Conserv. Marine Freshwater Ecosyst. 26, 639–659 (2016).Ficetola, G. F., Thuiller, W. & Padoa‐Schioppa, E. From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle. Diversity Distrib. 15, 108–116 (2009).Article 

    Google Scholar 
    Wang, Y., Xie, B., Wan, F., Xiao, Q. & Dai, L. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Sci. 15, 365 (2007).Article 

    Google Scholar 
    Santini, L., Benítez‐López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. Assessing the reliability of species distribution projections in climate change research. Diversity Distrib. 27, 1035–1050 (2021).Article 

    Google Scholar 
    Guyennon, A. et al. Colonization and extinction dynamics and their link to the distribution of European trees at the continental scale. J. Biogeogr. 49, 117–129 (2022).Article 

    Google Scholar 
    Pritchard, G. & Leggott, M. A. Temperature, incubation rates and origins of dragonflies. Adv. Odonatol. 3, 121–126 (1987).
    Google Scholar 
    Clausnitzer, V. et al. Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biol. Conserv. 142, 1864–1869 (2009).Article 

    Google Scholar 
    Córdoba-Aguilar, A. (Ed.). Dragonflies and damselflies: model organisms for ecological and evolutionary research (OUP Oxford, 2008).Corbet, P. S. et al. Dragonflies: behaviour and ecology of Odonata (Harley books, 1999).Troast, D., Suhling, F., Jinguji, H., Sahlén, G. & Ware, J. A global population genetic study of Pantala flavescens. PloS One 11, e0148949 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harabiš, F. & Dolný, A. The effect of ecological determinants on the dispersal abilities of central European dragonflies (Odonata). Odonatologica 40, 17 (2011).
    Google Scholar 
    Boudot, J. P. & Kalkman, V. J. (eds) Atlas of the European dragonflies and damselflies (KNNV publishing, 2015).Dijkstra, K. D. & Schröter, A. Field guide to the dragonflies of Britain and Europe (Bloomsbury Publishing, 2020).Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PloS One 12, e0189577 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inf. 19, 10–15 (2014).Article 

    Google Scholar 
    Zizka, A. et al. No one-size-fits-all solution to clean GBIF. PeerJ 8, e9916 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burgman, M. A. & Fox, J. C. Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning, Animal Conservation Forum (6, No. 1, pp. 19–28 (Cambridge University Press, 2003). https://doi.org/10.1017/S1367943003003044Calenge, C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Hijmans, R. J. Raster: geographic data analysis and modeling. https://CRAN.R-project.org/package=raster (2020).Hijmans, R. J., Phillips S., Leathwick J. & Elith J. Dismo: species distribution modeling. https://CRAN.R-project.org/package=dismo (2020).Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).Article 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    Mukaka, M. M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 24, 69–71 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Hausfather, Z. & Peters, G. P. Emissions–the ‘business as usual’story is misleading https://doi.org/10.1038/d41586-020-00177-3 (2020)Mammola, S., Milano, F., Vignal, M., Andrieu, J. & Isaia, M. Associations between habitat quality, body size and reproductive fitness in the alpine endemic spider Vesubia jugorum. Global Ecol. Biogeogr. 28, 1325–1335 (2019).Article 

    Google Scholar 
    Mammola, S., Goodacre, S. L. & Isaia, M. Climate change may drive cave spiders to extinction. Ecography 41(1), 233–243 (2018).Article 

    Google Scholar 
    Hastie, T. J. & Tibshirani, R. J. Generalized additive models (Routledge, 2017).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3-4), 231–259 (2006).Article 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning (p. 83).https://doi.org/10.1145/1015330.1015412 (2004).Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Animal Ecol. 77, 802–813 (2008).Article 
    CAS 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).Article 
    PubMed 

    Google Scholar 
    Grenouillet, G., Buisson, L., Casajus, N. & Lek, S. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34, 9–17 (2011).Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data. Ecol. Appl. 19, 181–197 (2009).Article 
    PubMed 

    Google Scholar 
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).Article 

    Google Scholar 
    Zhang, Z. et al. Lineage‐level distribution models lead to more realistic climate change predictions for a threatened crayfish. Diversity Distrib. 27, 684–695 (2021).Article 

    Google Scholar 
    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).Article 

    Google Scholar 
    Martín‐Vélez, V. & Abellán, P. Effects of climate change on the distribution of threatened invertebrates in a Mediterranean hotspot. Insect Conserv. Divers. https://doi.org/10.1111/icad.12563 (2022).Qiao, H., Soberon, J. & Peterson, A. T. No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 6, 1126–1136 (2015).Article 

    Google Scholar 
    Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography 43, 1261–1277 (2020).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).Article 
    PubMed 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61(1), 1–10 (1992).Article 

    Google Scholar 
    Cadotte, M. W. et al. Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol. Lett. 13, 96–105 (2010).Article 
    PubMed 

    Google Scholar 
    Pollock, L. J. et al. Protecting biodiversity (in all its complexity): new models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).Article 
    PubMed 

    Google Scholar 
    Corbet, P. S. ‘Biology of Odonata’. Ann. Rev. Entomol. 25, 189–217 (1980).Article 

    Google Scholar 
    Mitchell. Dragonfly locomotion: Ecology, form and function. PhD thesis, (University of Leeds, 2018). https://etheses.whiterose.ac.uk/21211/.The GIMP Development Team. GIMP (version 2.10.12). https://www.gimp.org (2019).Weller, H. Colordistance: distance metrics for image color similarity. https://CRAN.R-project.org/package=colordistance (2020).R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020). https://www.R-project.org/.de Bello, F., Botta‐Dukát, Z., Lepš, J. & Fibich, P. Towards a more balanced combination of multiple traits when computing functional differences between species. Methods Ecol. Evol. 12, 443–448 (2021).Article 

    Google Scholar 
    Hassall, C. & Thompson, D. J. The effects of environmental warming on Odonata: a review. Int. J. Odonatol. 11, 131–153 (2008).Article 

    Google Scholar 
    Acquah‐Lamptey, D., Brändle, M., Brandl, R. & Pinkert, S. Temperature‐driven color lightness and body size variation scale to local assemblages of European Odonata but are modified by propensity for dispersal. Ecol. Evol. 10, 8936–8948 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Outomuro, D. & Johansson, F. Wing morphology and migration status, but not body size, habitat or Rapoport’s rule predict range size in North‐American dragonflies (Odonata: Libellulidae). Ecography 42, 309–320 (2019).Article 

    Google Scholar 
    Rundle, S. D., Bilton, D. T., Abbott, J. C. & Foggo, A. Range size in North American Enallagma damselflies correlates with wing size. Freshwater Biol. 52, 471–477 (2007).Article 

    Google Scholar 
    Finlayson, C. M. et al. The second warning to humanity–providing a context for wetland management and policy. Wetlands 39, 1–5 (2019).Article 

    Google Scholar 
    Okude, G. & Futahashi, R. Pigmentation and color pattern diversity in Odonata. Curr. Opin. Genet. Dev. 69, 14–20 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mani, M. S. Ecology and biogeography of high altitude insects, vol. 4. (Springer Science & Business Media, 2013).Suárez‐Tovar, C. M., Guillermo‐Ferreira, R., Cooper, I. A., Cezário, R. R. & Córdoba‐Aguilar, A. Dragon colors: the nature and function of Odonata (dragonfly and damselfly) coloration. J. Zool. https://doi.org/10.1111/jzo.12963 (2022).Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).Article 
    PubMed 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).CAS 
    PubMed 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardoso, P., Stefano, M., Francois, R. & Jose, C. C. BAT: biodiversity assessment tools. https://CRAN.R-project.org/package=BAT (2021).Robert J. H. geosphere: spherical trigonometry. R package version 1.5-14. https://CRAN.R-project.org/package=geosphere (2021).Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 217–223 https://doi.org/10.1111/j.2041-210X.2011.00169.x (2012).Joy, J. B., Liang, R. H., McCloskey, R. M., Nguyen, T. & Poon, A. F. Ancestral reconstruction. PLoS Comput. Biol. 12, e1004763 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Orme, D. et al. caper: comparative analyses of phylogenetics and evolution in R. R package version 1.0.1 (2018).Silva, L. F. et al. Functional responses of Odonata larvae to human disturbances in neotropical savanna headwater streams. Ecol. Indic. 133, 108367 (2021).Article 

    Google Scholar  More

  • in

    Health risk assessment and source apportionment of potentially toxic metal(loid)s in windowsill dust of a rapidly growing urban settlement, Iran

    PTM concentrationsIn Table 1, the descriptive statistics of PTMs in 50 dust samples from Qom city are described. The background values were used based on the concentrations of metals in the Upper Continental Crust. The mean concentration of As, Cd, Cu, Mo, Pb, Sb, and, Zn exceeded the background value. Also, Cd, Cu, Mo, Pb, Sb, and, Zn had a coefficient of variation (C.V.) greater than 50%, indicating a severe variability in PTMs concentrations in the atmospheric dust of the studied area2. Metals with C.V.  Pb  > Zn  > As  > Cd  > Cu  > Mo  > Cr  > Mn  > Ni = Co. Antimony (38.55) and Pb (35.13) had the highest average EF values, which means they were enriched very high in the windowsill dust. Also, they had a wide range of EF values in the 50 stations: from 4.0 to 227.0 for Sb, and from 8.3 to 140.8 for Pb which might reflect the existence of discrete multiple sources in the studied area. The degree of enrichment for Pb and Sb in the industrial sector was extreme and in the commercial sector was very high; also, the other sectors were significantly enriched. Zinc and As had a more homogenous enrichment in the area. In all the functional sectors, 95% and 84% of stations were significantly enriched by As and Zn, respectively. Copper, Cd, and Mo were moderately enriched in all functional sectors, but the greenspace sector had minimal enrichment by these elements. Some areas in the industrial sector had significant to very high enrichment of Cd. The EF value indicated Co, Cr, Mn, and Ni were minimally enriched in all the stations.Figure 2Box plot of the (a) enrichment factor (EF), and (b) geo accumulation index (Igeo) for the dust samples in the studied area.Full size imageThe highest average values of Igeo were obtained in the order of Pb  > Sb  > As  > Zn. PTMs included Co, Cr, Ni, Fe, and Mn were categorized as unpolluted and Cd, Cu, and Mo were in the category of unpolluted to moderately polluted. In the industrial zone, the windowsill dust was extremely polluted with Sb and Pb. The sequence of contamination intensity with Pb, Zn and Sb according to land use was: industrial  > commercial  > residential  > greenspace. The highest concentration of arsenic in the study area belongs to the industrial area.To evaluate the pollution level based on land use, PLI and mCd indices were utilized (Fig. 3). These cumulative indices showed that the dust in Qom city is considerably contaminated with PTMs. According to the PLI index, all the stations were categorized as polluted sites. The PLIzone values were in the order of industrial (3.77)  > commercial (2.05)  > residential (1.67)  > green space (1.38). This pattern was also repeated with the mCd index. The mCd for the industrial sector ranged from 6.98 (high contamination level) to 39.60 (ultra-high contamination level). In the commercial sector, fifty percent of dust samples were classified as having a high degree of contamination. All the greenspace stations were in the moderate pollution category. This shows the possible effect of tree density in diminishing the risk of dust pollution to the receptors.Figure 3Pollution level indexes (a) mCd and (b) PLI, based on four functional areas.Full size imageSpatial distribution of PTMsThe As, Cd, Cu, Sb, Pb, and Zn content in 100% of the dust samples exceeded the background value. Spatial distribution maps were generated for the hotspot PTMs (As, Sb, Pb, Cd, Cu, Mo and Zn) by applying the inverse distance weighted (IDW) interpolation method (ArcGIS 10.3). Figure 4 demonstrates that PTMs dispersions were slightly influenced by the prevailing wind direction (from the west), suggesting they came from the point- or area- sources. On the other hand, the K–S test showed that the overall distribution of PTMs was not normal in the studied region. This might signify the influence of industrial activities and the presence of multiple sources of dust.Figure 4Spatial distribution maps of seven PTMs in windowsill dusts of Qom, Iran. This map was constructed using ArcGIS version 10.3. (https://www.esri.com/en-us/arcgis/products/arcgisdesktop/overview).Full size imageThe highest pollution load of PTMs belonged to the industrial section. The level of pollution gradually decreased from Shokouhieh to Mahmoudabad industrial zones. The reason is related to more active industries, a closed environment, and more construction existing in Shokouhieh industrial town than in Mahmoudabad industrial town.There is a clear decreasing trend from the central part to southern (downtown area) and southwestern (suburb area) parts of the city. In fact, these parts are diffusely populated and the southwestern part is almost new with lots of barren lands. Copper, Mo, and Cd show high concentrations toward the central part of the city. Educational, cultural and commercial activities are mainly located in the central part of the city. Also, historical and religious districts in the city center are accompanied by a huge influx of tourists throughout the year. For this reason, the central part of the city has various public transportations such as bus stands and taxi stations, and is dominated by a high load of motorcycles.In the eastern part of the city, some hotspots can be observed (Fig. 4). This part includes an important transportation system (like highways and a complex interchange) where exhaust traffic emissions might be a probable source of As, Sb, Pb, and Zn. Unlike Pb and Zn, several peaks of As are scattered in the western part, suggesting an area source might exist in the region. It is noteworthy that the western area is densely populated with lots of residential buildings. Bisht et al. (2022)35 also observed hotspots of As in the residential area of Dehradun, India.PTM potential sourcesTo evaluate the relationship between PTMs in dust samples, the Spearman correlation and PCA were developed (Fig. 5) and more details are given in Table S7. Statistical analysis can help to identify the potential source of contamination in urban dust. The Spearman correlation was significant at p  residential ≈ greenspace. The five PTMs with the highest overall HI are ranked as follows: Pb  > As  > Cr  > Mn  > Sb (Fig. 7). The HI values in all the sections were lower than the permissible level (1.00), except for Pb. In the industrial section, Pb recorded the highest HI value for children (HI = 1.73) which exceeded the acceptable value. The HI values were 10 times higher for children than adults indicating they are more susceptible to PTMs in the dust.The dominant pathway for noncancerous risk was ingestion followed by dermal contact and inhalation. The trend is in line with previous research25,51,52. However, for Co and Mn, the descending order was different as follows ingestion  > inhalation  > dermal contact. The highest contribution of HQinh and HQderm to HI was measured for Co (34.0%) and Cd (29.0%), respectively.In this study, the carcinogenic risk from windowsill dust was estimated for the carcinogens including Cd, Co, Cr and Ni, Pb, and As through the possible routes (Fig. 8, Table S9). The contribution of PTMs to CR decreased in the order of Cr (3.24E−05)  > As (2.05E−05)  > Pb (2.52E−06)  > Co (6.91E−09)  > Ni (1.72E−09)  > Cd (2.58E−10). The average CR values for target PTMs through inhalation ranged from 7.9E−10 to 1.7E−07, which remained in the safety zone (CR  inhalation  > dermal (Fig. 8). While the contribution of Cr to carcinogenic risk was higher through inhalation than ingestion. The reports concluded that the primary exposure route of Cr is inhalation54. Considering the predominant forms of Cr in the environment, CrVI is more toxic than CrIII. Exposure to CrVI can cause immunological diseases, dental effects and carcinogenic effects (lung cancer, nose and nasal sinus cancer, suspected laryngeal and stomach cancers)54,55.The result of health risk from target PTMs in windowsills of Qom indicates significant chronic exposure to Pb can take place for children in the industrial zone. The ingestion route is the most probable pathway for children due to their hand–to–mouth behavior56. Lead can bio-accumulate in the body without any obvious symptoms of toxicity56. The total CR values for Pb, Cr and As in different land-use types were in the range of tolerable carcinogenic risk (1 × 10−4  More

  • in

    The role of individual variability on the predictive performance of machine learning applied to large bio-logging datasets

    Tsai, C.-W., Lai, C.-F., Chao, H.-C. & Vasilakos, A. V. Big data analytics: a survey. J. Big Data 2, 21 (2015).
    Google Scholar 
    Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).ADS 
    CAS 

    Google Scholar 
    Manzoni, C. et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 19, 286–302 (2018).CAS 

    Google Scholar 
    Lichtman, J. W., Pfister, H. & Shavit, N. The big data challenges of connectomics. Nat. Neurosci. 17, 1448–1454 (2014).CAS 

    Google Scholar 
    Altaf-Ul-Amin, M., Afendi, F. M., Kiboi, S. K. & Kanaya, S. Systems biology in the context of big data and networks. Biomed. Res. Int. 2014, 428570 (2014).
    Google Scholar 
    Xia, J., Wang, J. & Niu, S. Research challenges and opportunities for using big data in global change biology. Glob. Change Biol. 26, 6040–6061 (2020).ADS 

    Google Scholar 
    Hindell, M. A. et al. Tracking of marine predators to protect Southern Ocean ecosystems. Nature 580, 87–92 (2020).ADS 
    CAS 

    Google Scholar 
    Hussey, N. E. et al. Ecology. Aquatic animal telemetry: A panoramic window into the underwater world. Science 348, 1255642 (2015).
    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).
    Google Scholar 
    Sherub, S., Fiedler, W., Duriez, O. & Wikelski, M. Bio-logging, new technologies to study conservation physiology on the move: a case study on annual survival of Himalayan vultures. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 203, 531–542 (2017).
    Google Scholar 
    Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 375, eabg1780 (2022).CAS 

    Google Scholar 
    Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. J. Anim. Ecol. 89, 161–172 (2020).
    Google Scholar 
    Patterson, A., Gilchrist, H. G., Chivers, L., Hatch, S. & Elliott, K. A comparison of techniques for classifying behavior from accelerometers for two species of seabird. Ecol. Evol. 9, 3030–3045 (2019).
    Google Scholar 
    Masello, J. F. et al. How animals distribute themselves in space: energy landscapes of Antarctic avian predators. Mov. Ecol. 9, 24 (2021).
    Google Scholar 
    Shepard, E. L. C. et al. Energy landscapes shape animal movement ecology. Am. Nat. 182, 298–312 (2013).
    Google Scholar 
    Elliott, K. H., Le Vaillant, M., Kato, A., Speakman, J. R. & Ropert-Coudert, Y. Accelerometry predicts daily energy expenditure in a bird with high activity levels. Biol. Lett. 9, 20120919 (2013).
    Google Scholar 
    Nickel, B. A., Suraci, J. P., Nisi, A. C. & Wilmers, C. C. Energetics and fear of humans constrain the spatial ecology of pumas. Proc. Natl. Acad. Sci. USA 118, e2004592118 (2021).
    Eisaguirre, J. M., Booms, T. L., Barger, C. P., Lewis, S. B. & Breed, G. A. Novel step selection analyses on energy landscapes reveal how linear features alter migrations of soaring birds. J. Anim. Ecol. 89, 2567–2583 (2020).
    Google Scholar 
    Wittemyer, G., Northrup, J. M. & Bastille-Rousseau, G. Behavioural valuation of landscapes using movement data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180046 (2019).
    Google Scholar 
    Chimienti, M. et al. The use of an unsupervised learning approach for characterizing latent behaviors in accelerometer data. Ecol. Evol. 6, 727–741 (2016).
    Google Scholar 
    Hounslow, J. L. et al. Assessing the effects of sampling frequency on behavioural classification of accelerometer data. J. Exp. Mar. Bio. Ecol. 512, 22–30 (2019).
    Google Scholar 
    Glass, T. W., Breed, G. A., Robards, M. D., Williams, C. T. & Kielland, K. Accounting for unknown behaviors of free-living animals in accelerometer-based classification models: Demonstration on a wide-ranging mesopredator. Ecol. Inf. 60, 101152 (2020).
    Google Scholar 
    Wang, Y. et al. Movement, resting, and attack behaviors of wild pumas are revealed by tri-axial accelerometer measurements. Mov. Ecol. 3, 2 (2015).
    Google Scholar 
    Chakravarty, P., Cozzi, G., Ozgul, A. & Aminian, K. A novel biomechanical approach for animal behaviour recognition using accelerometers. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13172 (2019).Article 

    Google Scholar 
    Clarke, T. M. et al. Using tri-axial accelerometer loggers to identify spawning behaviours of large pelagic fish. Mov. Ecol. 9, 26 (2021).
    Google Scholar 
    Zhang, J., O’Reilly, K. M., Perry, G. L. W., Taylor, G. A. & Dennis, T. E. Extending the functionality of behavioural change-point analysis with k-Means clustering: a case study with the little penguin (Eudyptula minor). PLoS ONE 10, e0122811 (2015).
    Google Scholar 
    Korpela, J. et al. Machine learning enables improved runtime and precision for bio-loggers on seabirds. Commun. Biol. 3, 633 (2020).
    Google Scholar 
    Jeantet, L. et al. Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology. R. Soc. Open Sci. 7, 200139 (2020).ADS 

    Google Scholar 
    Wang, G. Machine learning for inferring animal behavior from location and movement data. Ecol. Inf. 49, 69–76 (2019).
    Google Scholar 
    Dunford, C. E. et al. Surviving in steep terrain: a lab-to-field assessment of locomotor costs for wild mountain lions (Puma concolor). Mov. Ecol. 8, 34 (2020).
    Google Scholar 
    Jeanniard-du-Dot, T., Guinet, C., Arnould, J. P. Y., Speakman, J. R. & Trites, A. W. Accelerometers can measure total and activity-specific energy expenditures in free-ranging marine mammals only if linked to time-activity budgets. Funct. Ecol. 31, 377–386 (2017).
    Google Scholar 
    Hicks, O. et al. Acceleration predicts energy expenditure in a fat, flightless, diving bird. Sci. Rep. 10, 21493 (2020).ADS 
    CAS 

    Google Scholar 
    Dentinger, J. E. et al. A probabilistic framework for behavioral identification from animal-borne accelerometers. Ecol. Model. 464, 109818 (2022).
    Google Scholar 
    Chakravarty, P., Maalberg, M., Cozzi, G., Ozgul, A. & Aminian, K. Behavioural compass: animal behaviour recognition using magnetometers. Mov. Ecol. 7, 28 (2019).
    Google Scholar 
    Hammond, T. T., Palme, R. & Lacey, E. A. Ecological specialization, variability in activity patterns and response to environmental change. Biol. Lett. 14, 20180115 (2018).
    Google Scholar 
    Lynch, H. J. & LaRue, M. A. First global census of the Adélie Penguin. Auk 131, 457–466 (2014).
    Google Scholar 
    Riaz, J., Bestley, S., Wotherspoon, S., Freyer, J. & Emmerson, L. From trips to bouts to dives: temporal patterns in the diving behaviour of chick-rearing Adélie penguins East Antarctica. Mar. Ecol. Prog. Ser. 654, 177–194 (2020).ADS 

    Google Scholar 
    Cherel, Y. Isotopic niches of emperor and Adélie penguins in Adélie Land, Antarctica. Mar. Biol. 154, 813–821 (2008).
    Google Scholar 
    Little Penguin (Eudyptula minor) – BirdLife species factsheet. at Carroll, G., Harcourt, R., Pitcher, B. J., Slip, D. & Jonsen, I. Recent prey capture experience and dynamic habitat quality mediate short-term foraging site fidelity in a seabird. Proc. Biol. Sci. 285, 20180788 (2018).
    Google Scholar 
    Meyer, X. et al. Oceanic thermal structure mediates dive sequences in a foraging seabird. Ecol. Evol. 10, 6610–6622 (2020).
    Google Scholar 
    Cavallo, C. et al. Quantifying prey availability using the foraging plasticity of a marine predator, the little penguin. Funct. Ecol. https://doi.org/10.1111/1365-2435.13605 (2020).Article 

    Google Scholar 
    Ropert-Coudert, Y., Chiaradia, A. & Kato, A. An exceptionally deep dive by a Little Penguin Eudyptula minor. Mar. Ornithol 34, 71–74 (2006).
    Google Scholar 
    Ropert-Coudert, Y., Kato, A., Wilson, R. P. & Cannell, B. Foraging strategies and prey encounter rate of free-ranging Little Penguins. Mar. Biol. 149, 139–148 (2006).
    Google Scholar 
    Rodríguez, A., Chiaradia, A., Wasiak, P., Renwick, L. & Dann, P. Waddling on the dark side: ambient light affects attendance behavior of little penguins. J. Biol. Rhythms 31, 194–204 (2016).
    Google Scholar 
    Ropert-Coudert, Y. et al. Happy feet in a hostile world? the future of penguins depends on proactive management of current and expected threats. Front. Mar. Sci. 6, 248 (2019).
    Google Scholar 
    Shuert, C. R., Pomeroy, P. P. & Twiss, S. D. Assessing the utility and limitations of accelerometers and machine learning approaches in classifying behaviour during lactation in a phocid seal. Anim. Biotelemetry 6, 14 (2018).
    Google Scholar 
    Dickinson, E. R. et al. Limitations of using surrogates for behaviour classification of accelerometer data: refining methods using random forest models in Caprids. Mov. Ecol. 9, 28 (2021).
    Google Scholar 
    Conway, A. M., Durbach, I. N., McInnes, A. & Harris, R. N. Frame-by-frame annotation of video recordings using deep neural networks. Ecosphere 12, e03384 (2021).
    Google Scholar 
    Ravindran, S. Five ways deep learning has transformed image analysis. Nature 609, 864–866 (2022).ADS 
    CAS 

    Google Scholar 
    Del Caño, M. et al. Fine-scale body and head movements allow to determine prey capture events in the Magellanic Penguin (Spheniscus magellanicus). Mar. Biol. 168, 84 (2021).
    Google Scholar 
    Johnson, J. M. & Khoshgoftaar, T. M. Survey on deep learning with class imbalance. J. Big Data 6, 27 (2019).
    Google Scholar 
    Hazen, E. L. et al. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17, 565–574 (2019).
    Google Scholar 
    Sánchez, S. et al. Within-colony spatial segregation leads to foraging behaviour variation in a seabird. Mar. Ecol. Prog. Ser. 606, 215–230 (2018).ADS 

    Google Scholar 
    Patrick, S. C., Martin, J. G. A., Ummenhofer, C. C., Corbeau, A. & Weimerskirch, H. Albatrosses respond adaptively to climate variability by changing variance in a foraging trait. Glob. Change Biol. https://doi.org/10.1111/gcb.15735 (2021).Article 

    Google Scholar 
    Bonar, M. et al. Geometry of the ideal free distribution: individual behavioural variation and annual reproductive success in aggregations of a social ungulate. Ecol. Lett. 23, 1360–1369 (2020).
    Google Scholar 
    Michelot, C., Kato, A., Raclot, T. & Ropert-Coudert, Y. Adélie penguins foraging consistency and site fidelity are conditioned by breeding status and environmental conditions. PLoS ONE 16, e0244298 (2021).CAS 

    Google Scholar 
    Mahoney, P. J. et al. Navigating snowscapes: scale-dependent responses of mountain sheep to snowpack properties. Ecol. Appl. 28, 1715–1729 (2018).
    Google Scholar 
    Watanabe, Y. Y., Ito, K., Kokubun, N. & Takahashi, A. Foraging behavior links sea ice to breeding success in Antarctic penguins. Sci. Adv. 6, eaba4828 (2020).ADS 

    Google Scholar 
    Lescroël, A. et al. Working less to gain more: when breeding quality relates to foraging efficiency. Ecology 91, 2044–2055 (2010).
    Google Scholar 
    Zimmer, I., Ropert-Coudert, Y., Kato, A., Ancel, A. & Chiaradia, A. Does foraging performance change with age in female little penguins (Eudyptula minor)?. PLoS ONE 6, e16098 (2011).ADS 
    CAS 

    Google Scholar 
    Hertel, A. G., Royauté, R., Zedrosser, A. & Mueller, T. Biologging reveals individual variation in behavioural predictability in the wild. J. Anim. Ecol. 90, 723–737 (2021).
    Google Scholar 
    Dickinson, E. R., Stephens, P. A., Marks, N. J., Wilson, R. P. & Scantlebury, D. M. Best practice for collar deployment of tri-axial accelerometers on a terrestrial quadruped to provide accurate measurement of body acceleration. Anim. Biotelemetry 8, 9 (2020).
    Google Scholar 
    Garde, B. et al. Ecological inference using data from accelerometers needs careful protocols. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13804 (2022).Article 

    Google Scholar 
    Watanabe, Y. Y., Ito, M. & Takahashi, A. Testing optimal foraging theory in a penguin-krill system. Proc. Biol. Sci. 281, 20132376 (2014).
    Google Scholar 
    Grémillet, D. et al. Energetic fitness: Field metabolic rates assessed via 3D accelerometry complement conventional fitness metrics. Funct. Ecol. 32, 1203–1213 (2018).
    Google Scholar 
    Chimienti, M. et al. Quantifying behavior and life-history events of an Arctic ungulate from year-long continuous accelerometer data. Ecosphere 12, e03565 (2021).
    Google Scholar 
    Sutton, G. J., Botha, J. A., Speakman, J. R. & Arnould, J. P. Y. Validating accelerometry-derived proxies of energy expenditure using the doubly-labelled water method in the smallest penguin species. Biol. Open 10, bio055475 (2021).
    Google Scholar 
    Pagano, A. M. & Williams, T. M. Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: A validation with doubly labeled water. Ecol. Evol. 9, 4210–4219 (2019).
    Google Scholar 
    Ballance, L. T., Ainley, D. G., Ballard, G. & Barton, K. An energetic correlate between colony size and foraging effort in seabirds, an example of the Adélie penguin Pygoscelis adeliae. J. Avian Biol. 40, 279–288 (2009).
    Google Scholar 
    Wilson, R. P. et al. Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildl. Soc. Bull. 25, 101–106 (1997).
    Google Scholar 
    Shepard, E. L. C. et al. Identification of animal movement patterns using tri-axial accelerometry. Endanger. Species Res. 10, 47–60 (2008).ADS 

    Google Scholar 
    Kato, A., Ropert-Coudert, Y., Grémillet, D. & Cannell, B. Locomotion and foraging strategy in foot-propelled and wing-propelled shallow-diving seabirds. Mar. Ecol. Prog. Ser. 308, 293–301 (2006).ADS 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://url.org/www.R-project.org/ (2021).
    Ainley, D. The Adélie Penguin: Bellwether of Climate Change (New York: Columbia University Press) (2006).Langrognet, F. et al. Rmixmod: Classification with Mixture Modelling. (2020).Bishop, C. M. Pattern Recognition and Machine Learning. Springer Science+Business Media, LLC, New
    York, NY. (2006).Amélineau, F. et al. Intra- and inter-individual changes in little penguin diving and isotopic composition over the breeding season. Mar. Biol. 168, 62 (2021).
    Google Scholar 
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
    Google Scholar 
    Kuhn, M. & Wickham, H. Tidymodels: a collection of packages for modeling and machine learning using tidyverse principles. https://www.tidymodels.org (2020).Wright, M. N. & Ziegler, A. Ranger : A fast implementation of random forests for high dimensional data in C++ andR. J. Stat. Softw. 77, 1–17 (2017).
    Google Scholar  More

  • in

    Author Correction: Climate change reshuffles northern species within their niches

    These authors contributed equally: Laura H. Antão, Benjamin Weigel.These authors jointly supervised this work: Tomas Roslin, Anna-Liisa Laine.Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, FinlandLaura H. Antão, Benjamin Weigel, Giovanni Strona, Maria Hällfors, Elina Kaarlejärvi, Otso Ovaskainen, Marjo Saastamoinen, Jarno Vanhatalo, Tomas Roslin & Anna-Liisa LaineDepartment of Biological Sciences, University of South Carolina, Columbia, SC, USATad DallasDepartment of Biology, Lund University, Lund, SwedenØystein H. OpedalFinnish Environment Institute (SYKE), Helsinki, FinlandJanne Heliölä, Mikko Kuussaari, Juha Pöyry & Kristiina VuorioNatural Resources Institute Finland (Luke), Helsinki, FinlandHeikki Henttonen, Otso Huitu, Andreas Lindén, Päivi Merilä, Maija Salemaa & Tiina TonteriSection of Ecology, Department of Biology, University of Turku, Turku, FinlandErkki KorpimäkiFinnish Museum of Natural History, University of Helsinki, Helsinki, FinlandAleksi LehikoinenKainuu Centre for Economic Development, Transport and the Environment, Kajaani, FinlandReima LeinonenUniversity of Helsinki, Helsinki, FinlandHannu PietiäinenDepartment of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FinlandOtso OvaskainenCentre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, NorwayOtso OvaskainenHelsinki Institute of Life Science, University of Helsinki, Helsinki, FinlandMarjo SaastamoinenDepartment of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, FinlandJarno VanhataloSpatial Foodweb Ecology Group, Department of Agricultural Sciences, University of Helsinki, Helsinki, FinlandTomas RoslinSpatial Foodweb Ecology Group, Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, SwedenTomas RoslinDepartment of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, SwitzerlandAnna-Liisa Laine More

  • in

    Factors underlying bird community assembly in anthropogenic habitats depend on the biome

    Hobbs, R. J. et al. Novel ecosystems: Theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 15, 1–7 (2006).
    Google Scholar 
    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
    Google Scholar 
    Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).
    Google Scholar 
    Zobel, M. The species pool concept as a framework for studying patterns of plant diversity. J. Veg. Sci. 27, 8–18 (2016).
    Google Scholar 
    Birkhofer, K. et al. Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities. J. Anim. Ecol. 86, 511–520 (2017).PubMed 

    Google Scholar 
    Temperton, V. M. Assembly Rules and Restoration Ecology: Bridging the Gap Between Theory and Practice (Island Press, 2004).
    Google Scholar 
    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).PubMed 

    Google Scholar 
    Gascon, C. et al. Matrix habitat and species richness in tropical forest remnants. Biol. Conserv. 91, 223–229 (1999).
    Google Scholar 
    Filloy, J., Zurita, G. A., Corbelli, J. M. & Bellocq, M. I. On the similarity among bird communities: Testing the influence of distance and land use. Acta Oecol. 36, 333–338 (2010).ADS 

    Google Scholar 
    Vaccaro, A., Filloy, J. & Bellocq, M. What land use better preserves the functional and taxonomic diversity of birds in a grassland biome?. Avian Conserv. Ecol. 14, 1 (2019).
    Google Scholar 
    Vaccaro, A. S. & Bellocq, M. I. Diversidad taxonómica y funcional de aves: Diferencias entre hábitats antrópicos en un bosque subtropical. Ecol. Austral 29, 391–404 (2019).
    Google Scholar 
    Sekercioglu, C. H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 153, 153–161 (2012).
    Google Scholar 
    Zurita, G. A. & Bellocq, M. I. Bird assemblages in anthropogenic habitats: Identifying a suitability gradient for native species in the Atlantic Forest. Biotropica 44, 412–419 (2012).
    Google Scholar 
    Azpiroz, A. B. et al. Ecology and conservation of grassland birds in southeastern South America: A review. J. Field Ornithol. 83, 217–246 (2012).
    Google Scholar 
    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).PubMed 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
    Google Scholar 
    Corbelli, J. M. et al. Integrating taxonomic, functional and phylogenetic beta diversities: Interactive effects with the biome and land use across taxa. PLoS ONE 10, 1–17 (2015).
    Google Scholar 
    Purschke, O. et al. Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: Insights into assembly processes. J. Ecol. 101, 857–866 (2013).
    Google Scholar 
    Srivastava, D. S., Cadotte, M. W., Macdonald, A. A. M., Marushia, R. G. & Mirotchnick, N. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648 (2012).PubMed 

    Google Scholar 
    Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).PubMed 

    Google Scholar 
    Mouquet, N. et al. Ecophylogenetics: Advances and perspectives. Biol. Rev. 87, 769–785 (2012).PubMed 

    Google Scholar 
    Ackerly, D. D., Schwilk, D. W. & Webb, C. O. Niche evolution and adaptive radiation: Testing the order of trait divergence. Ecology 87, S50–S61 (2006).CAS 
    PubMed 

    Google Scholar 
    Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843 (2004).CAS 
    PubMed 

    Google Scholar 
    Losos, J. B. et al. Niche lability in the evolution of a Caribbean lizard community. Nature 424, 542–545 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stevens, R. D., Gavilanez, M. M., Tello, J. S. & Ray, D. A. Phylogenetic structure illuminates the mechanistic role of environmental heterogeneity in community organization. J. Anim. Ecol. 81, 455–462 (2012).PubMed 

    Google Scholar 
    García-Navas, V. & Thuiller, W. Farmland bird assemblages exhibit higher functional and phylogenetic diversity than forest assemblages in France. J. Biogeogr. 47, 2392–2404 (2020).
    Google Scholar 
    Henwood, W. D. Toward a strategy for the conservation and protection of the world’s temperate grasslands. Univ. Neb. Press 20, 121–134 (2010).ADS 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Landi, M., Oesterheld, M. & Deregibus, V. A. Manual de especies forrajeras de los pastizales naturales de Entre Ríos (1987).Viglizzo, E. F. et al. Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agric. Ecosyst. Environ. 83, 65–81 (2001).
    Google Scholar 
    Galindo Leal, C. & de Gusmão Câmara, I. The Atlantic Forest of South America: Biodiversity Status, Threats and Outlook (Island Press, 2003).
    Google Scholar 
    Oliveira-Filho, A. T. & Fontes, M. A. L. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32, 793–810 (2000).
    Google Scholar 
    DeGraaf, R. M., Geis, A. D. & Healy, P. A. Bird population and habitat surveys in urban areas. Landsc. Urban Plan. 21, 181–188 (1991).
    Google Scholar 
    Ralph, C. J. et al. Manual de métodos de campo para el monitoreo de aves terrestres. Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, Albany, CA 46 http://www.srs.fs.usda.gov/pubs/31462. https://doi.org/10.3145/epi.2006.jan.15 (1996).Bibby, C., Jones, M. & Marsden, S. Expedition field techniques: Bird surveys. in (ed. Society, R. G.) (1998).Zurita, G. A. & Bellocq, M. I. Spatial patterns of bird community similarity: Bird responses to landscape composition and configuration in the Atlantic forest. Landsc. Ecol. 25, 147–158 (2010).
    Google Scholar 
    Koper, N. & Schmiegelow, F. K. K. A multi-scaled analysis of avian response to habitat amount and fragmentation in the Canadian dry mixed-grass prairie. Landsc. Ecol. 21, 1045 (2006).
    Google Scholar 
    Xeno-canto-Foundation. Xeno-canto website. https://www.xeno-canto.org (2018).Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).
    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org (2018).Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    PubMed 

    Google Scholar 
    Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100 (2008).CAS 
    PubMed 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Core Team. nlme: Linear and Nonlinear mixed effects models. R package version 3.1–117. (2014).Lenth, R. V. Least-Squares Means: The R Package lsmeans. J. Stat. Softw. https://doi.org/10.18637/jss.v069.i01 (2016).Article 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32, 429–437 (2017).PubMed 

    Google Scholar 
    Concepción, E. D. et al. Contrasting trait assembly patterns in plant and bird communities along environmental and human-induced land-use gradients. Ecography 40, 753–763 (2016).
    Google Scholar 
    Cerezo, A., Conde, M. C. & Poggio, S. L. Pasture area and landscape heterogeneity are key determinants of bird diversity in intensively managed farmland. Biodivers. Conserv. 20, 2649–2667 (2011).
    Google Scholar 
    Pretelli, M. G., Isacch, J. P. & Cardoni, D. A. Year-round abundance, richness and nesting of the bird assemblage of tall grasslands in the south-east Pampas region, Argentina. Ardeola 60, 327–343 (2013).
    Google Scholar 
    Molinari, R. L. Biografía de la Pampa: 4 siglos de historia del campo argentino (Fundación Colombina “V Centenario,” 1987).
    Google Scholar 
    Filloy, J. & Bellocq, M. I. Patterns of bird abundance along the agricultural gradient of the Pampean region. Agric. Ecosyst. Environ. 120, 291–298 (2007).
    Google Scholar 
    Le Viol, I. et al. More and more generalists: Two decades of changes in the European avifauna. Biol. Lett. 8, 780–782 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Concepción, E. D., Moretti, M., Altermatt, F., Nobis, M. P. & Obrist, M. K. Impacts of urbanisation on biodiversity: The role of species mobility, degree of specialisation and spatial scale. Oikos 124, 1571–1582 (2015).
    Google Scholar 
    Emerson, B. C. & Gillespie, R. G. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23, 619–630 (2008).PubMed 

    Google Scholar 
    Morse, N. B. et al. Novel ecosystems in the Anthropocene: A revision of the novel ecosystem concept for pragmatic applications. Ecol. Soc. 19, 12 (2014).
    Google Scholar 
    Loyn, R. H., McNabb, E. G., Macak, P. & Noble, P. Eucalypt plantations as habitat for birds on previously cleared farmland in south-eastern Australia. Biol. Conserv. 137, 533–548 (2007).
    Google Scholar 
    Marsden, S., Whiffin, M. & Galetti, M. Bird diversity and abundance in forest fragments and Eucalyptus plantations around an Atlantic forest reserve, Brazil. Biodivers. Conserv. 10, 737–751 (2001).
    Google Scholar 
    Zurita, G. A., Rey, N., Varela, D. M., Villagra, M. & Bellocq, M. I. Conversion of the Atlantic Forest into native and exotic tree plantations: Effects on bird communities from the local and regional perspectives. For. Ecol. Manag. 235, 164–173 (2006).
    Google Scholar 
    Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity ecosystem-function. Ecology 92, 1573–1581 (2011).PubMed 

    Google Scholar 
    Sol, D. et al. The worldwide impact of urbanisation on avian functional diversity. Ecol. Lett. 23, 962–972 (2020).PubMed 

    Google Scholar 
    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
    Google Scholar 
    Palacio, F. X., Ibañez, L. M., Maragliano, R. E. & Montalti, D. Urbanization as a driver of taxonomic, functional, and phylogenetic diversity losses in bird communities. Can. J. Zool. 96, 1114–1121 (2018).
    Google Scholar 
    Sol, D., Bartomeus, I., González-Lagos, C. & Pavoine, S. Urbanisation and the loss of phylogenetic diversity in birds. Ecol. Lett. 20, 721–729 (2017).PubMed 

    Google Scholar 
    Luck, G. W., Carter, A. & Smallbone, L. Changes in bird functional diversity across multiple land uses: Interpretations of functional redundancy depend on functional group identity. PLoS ONE 8, e63671 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coetzee, B. W. T. & Chown, S. L. Land-use change promotes avian diversity at the expense of species with unique traits. Ecol. Evol. 6, 7610–7622 (2016).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Senescence of the immune defences and reproductive trade-offs in females of the mealworm beetle, Tenebrio molitor

    Williams, G. C. Natural selection, the costs of reproduction, and a refinement of lack’s principle. Am. Nat. 100, 687–690 (1966).
    Google Scholar 
    Stearns, S. C. The evolution of life histories. (Oxford University Press, 1992).Kirkwood, T. B. L. Evolution of ageing. Nature 270, 301–304 (1977).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Partridge, L., Prowse, N. & Pignatelli, P. Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster. Proc. R. Soc. B. 266, 255–261 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Metcalfe, N. Growth versus lifespan: Perspectives from evolutionary ecology. Exp. Gerontol. 38, 935–940 (2003).PubMed 

    Google Scholar 
    Lee, W.-S., Monaghan, P. & Metcalfe, N. B. Experimental demonstration of the growth rate–lifespan trade-off. Proc. R. Soc. B. 280, 20122370 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Lemaître, J.-F. et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc. R. Soc. B. 282, 20150209 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Jehan, C., Sabarly, C., Rigaud, T. & Moret, Y. Late-life reproduction in an insect: Terminal investment, reproductive restraint or senescence. J. Anim. Ecol. 90, 282–297 (2021).PubMed 

    Google Scholar 
    Pawelec, G. Age and immunity: What is “immunosenescence”?. Exp. Gerontol. 105, 4–9 (2018).CAS 
    PubMed 

    Google Scholar 
    Schwenke, R. A., Lazzaro, B. P. & Wolfner, M. F. Reproduction–immunity trade-offs in insects. Annu. Rev. Entomol. 61, 239–256 (2016).CAS 
    PubMed 

    Google Scholar 
    Maklakov, A. A. & Chapman, T. Evolution of ageing as a tangle of trade-offs: Energy versus function. Proc. R. Soc. B. 286, 20191604 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamel, S. et al. Fitness costs of reproduction depend on life speed: empirical evidence from mammalian populations: Fitness costs of reproduction in mammals. Ecol. Lett. 13, 915–935 (2010).PubMed 

    Google Scholar 
    Graham, A. L., Allen, J. E. & Read, A. F. Evolutionary causes and consequences of immunopathology. Annu. Rev. Ecol. Evol. Syst. 36, 373–397 (2005).
    Google Scholar 
    Sorci, G. & Faivre, B. Inflammation and oxidative stress in vertebrate host–parasite systems. Phil. Trans. R. Soc. B. 364, 71–83 (2009).PubMed 

    Google Scholar 
    Ashley, N. T., Weil, Z. M. & Nelson, R. J. Inflammation: Mechanisms, costs, and natural variation. Annu. Rev. Ecol. Evol. Syst. 43, 385–406 (2012).
    Google Scholar 
    Babin, A., Moreau, J. & Moret, Y. Storage of carotenoids in crustaceans as an adaptation to modulate immunopathology and optimize immunological and life history strategies. BioEssays 41, 1800254 (2019).
    Google Scholar 
    Vasto, S. et al. Inflammatory networks in ageing, age-related diseases and longevity. Mech. Ageing Dev. 128, 83–91 (2007).CAS 
    PubMed 

    Google Scholar 
    Finch, C. E. & Crimmins, E. M. Inflammatory exposure and historical changes in human life-spans. Science 305, 1736–1739 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Licastro, F. et al. Innate immunity and inflammation in ageing: A key for understanding age-related diseases. Immun. Ageing 2, 8 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    Pawelec, G., Goldeck, D. & Derhovanessian, E. Inflammation, ageing and chronic disease. Curr. Opin. Immunol. 29, 23–28 (2014).CAS 
    PubMed 

    Google Scholar 
    Pursall, E. R. & Rolff, J. Immune responses accelerate ageing: Proof-of-principle in an insect model. PLoS ONE 6, e19972 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khan, I., Agashe, D. & Rolff, J. Early-life inflammation, immune response and ageing. Proc. R. Soc. B. 284, 20170125 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Vigneron, A., Jehan, C., Rigaud, T. & Moret, Y. Immune defenses of a beneficial pest: The mealworm beetle, Tenebrio molitor. Front. Physiol. 10, 138 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Jehan, C., Chogne, M., Rigaud, T. & Moret, Y. Sex-specific patterns of senescence in artificial insect populations varying in sex-ratio to manipulate reproductive effort. BMC Evol. Biol. 20, 18 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Jehan, C., Sabarly, C., Rigaud, T. & Moret, Y. Age-specific fecundity under pathogenic threat in an insect: Terminal investment versus reproductive restraint. J. Anim. Ecol. 91, 101–111 (2022).PubMed 

    Google Scholar 
    Chung, K.-H. & Moon, M.-J. Fine structure of the hemopoietic tissues in the mealworm beetle, Tenebrio molitor. Entomol. Res. 34, 131–138 (2004).
    Google Scholar 
    Urbański, A., Adamski, Z. & Rosiński, G. Developmental changes in haemocyte morphology in response to Staphylococcus aureus and latex beads in the beetle Tenebrio molitor L.. Micron 104, 8–20 (2018).PubMed 

    Google Scholar 
    Vommaro, M. L., Kurtz, J. & Giglio, A. Morphological characterisation of haemocytes in the mealworm beetle Tenebrio molitor (Coleoptera, Tenebrionidae). Insects 12, 423 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Söderhäll, K. & Cerenius, L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 10, 23–28 (1998).PubMed 

    Google Scholar 
    Siva-Jothy, M. T., Moret, Y. & Rolff, J. Insect immunity: an evolutionary ecology perspective. in Advances in Insect Physiology vol. 32 1–48 (Elsevier, 2005).Nappi, A. J. & Ottaviani, E. Cytotoxicity and cytotoxic molecules in invertebrates. BioEssays 22, 469–480 (2000).CAS 
    PubMed 

    Google Scholar 
    Sadd, B. M. & Siva-Jothy, M. T. Self-harm caused by an insect’s innate immunity. Proc. R. Soc. B. 273, 2571–2574 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Daukšte, J., Kivleniece, I., Krama, T., Rantala, M. J. & Krams, I. Senescence in immune priming and attractiveness in a beetle: Immunosenescence in a beetle. J. Evol. Biol. 25, 1298–1304 (2012).PubMed 

    Google Scholar 
    Krams, I. et al. Trade-off between cellular immunity and life span in mealworm beetles Tenebrio molitor. Curr. Zool. 59, 340–346 (2013).
    Google Scholar 
    Moon, H. J., Lee, S. Y., Kurata, S., Natori, S. & Lee, B. L. Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran, Tenebrio molitor. J. Biochem. 116, 53–58 (1994).CAS 
    PubMed 

    Google Scholar 
    Lee, Y. J. et al. Structure and expression of the tenecin 3 gene in Tenebrio molitor. Biochem. Biophys. Res. Comm. 218, 6–11 (1996).CAS 
    PubMed 

    Google Scholar 
    Kim, D. H. et al. Bacterial expression of tenecin 3, an insect antifungal protein isolated from Tenebrio molitor, and its efficient purification. Mol. Cells 8, 786–789 (1998).CAS 
    PubMed 

    Google Scholar 
    Roh, K.-B. et al. Proteolytic cascade for the activation of the insect toll pathway induced by the fungal cell wall component. J. Biol. Chem. 284, 19474–19481 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Park, J.-W. et al. Beetle Immunity. in Invertebrate Immunity (ed. Söderhäll, K.) vol. 708 163–180 (Springer US, 2010).Chae, J.-H. et al. Purification and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor. Dev. Comp. Immunol. 36, 540–546 (2012).CAS 
    PubMed 

    Google Scholar 
    Haine, E. R., Pollitt, L. C., Moret, Y., Siva-Jothy, M. T. & Rolff, J. Temporal patterns in immune responses to a range of microbial insults (Tenebrio molitor). J. Insect Physiol. 54, 1090–1097 (2008).CAS 
    PubMed 

    Google Scholar 
    Dhinaut, J., Chogne, M. & Moret, Y. Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect. J. Anim. Ecol. 87, 448–463 (2018).PubMed 

    Google Scholar 
    Hoffmann, J. A., Reichhart, J.-M. & Hetru, C. Innate immunity in higher insects. Curr. Opin. Immunol. 8, 8–13 (1996).CAS 
    PubMed 

    Google Scholar 
    Moret, Y. Explaining variable costs of the immune response: selection for specific versus non-specific immunity and facultative life history change. Oikos 102, 213–216 (2003).
    Google Scholar 
    Khan, I., Prakash, A. & Agashe, D. Immunosenescence and the ability to survive bacterial infection in the red flour beetle Tribolium castaneum. J. Anim. Ecol. 85, 291–301 (2016).PubMed 

    Google Scholar 
    Rolff, J. Effects of age and gender on immune function of dragonflies (Odonata, Lestidae) from a wild population. Can. J. Zool. 79, 2176–2180 (2001).
    Google Scholar 
    Doums, C., Moret, Y., Benelli, E. & Schmid-Hempel, P. Senescence of immune defence in Bombus workers. Ecol. Entomol. 27, 138–144 (2002).
    Google Scholar 
    Schmid, M. R., Brockmann, A., Pirk, C. W. W., Stanley, D. W. & Tautz, J. Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. J. Insect Physiol. 54, 439–444 (2008).CAS 
    PubMed 

    Google Scholar 
    Moret, Y. & Schmid-Hempel, P. Immune responses of bumblebee workers as a function of individual and colony age: senescence versus plastic adjustment of the immune function. Oikos 118, 371–378 (2009).
    Google Scholar 
    Armitage, S. A. O. & Boomsma, J. J. The effects of age and social interactions on innate immunity in a leaf-cutting ant. J. Insect Physiol. 56, 780–787 (2010).CAS 
    PubMed 

    Google Scholar 
    Korner, P. & Schmid-Hempel, P. In vivo dynamics of an immune response in the bumble bee Bombus terrestris. J. Invert. Pathol. 87, 59–66 (2004).CAS 

    Google Scholar 
    Li, T., Yan, D., Wang, X., Zhang, L. & Chen, P. Hemocyte changes during immune melanization in Bombyx Mori infected with Escherichia coli. Insects 10, 301 (2019).PubMed Central 

    Google Scholar 
    Chase, M. R., Raina, K., Bruno, J. & Sugumaran, M. Purification, characterization and molecular cloning of prophenoloxidases from Sarcophaga bullata. Insect Biochem. Mol. Biol. 30, 953–967 (2000).CAS 
    PubMed 

    Google Scholar 
    Kanost, M. R. & Gorman, M. J. Phenoloxidases in insect immunity. in Insect Immunology 69–96 (Elsevier, 2008).Sadd, B. M. et al. Modulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor L.): Evidence for terminal investment and dishonesty. J. Evol. Biol. 19, 321–325 (2006).CAS 
    PubMed 

    Google Scholar 
    Gálvez, D. & Chapuisat, M. Immune priming and pathogen resistance in ant queens. Ecol. Evol. 4, 1761–1767 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Armitage, S. A. O. & Siva-Jothy, M. T. Immune function responds to selection for cuticular colour in Tenebrio molitor. Heredity 94, 650–656 (2005).CAS 
    PubMed 

    Google Scholar 
    Armitage, S. A. O., Thompson, J. J. W., Rolff, J. & Siva-Jothy, M. T. Examining costs of induced and constitutive immune investment in Tenebrio molitor. J. Evol. Biol. 16, 1038–1044 (2003).CAS 
    PubMed 

    Google Scholar 
    Kokoza, V. A. et al. Transcriptional regulation of the mosquito vitellogenin gene via a blood meal-triggered cascade. Gene 274, 47–65 (2001).CAS 
    PubMed 

    Google Scholar 
    Isaac, P. G. & Bownes, M. Ovarian and fat-body vitellogenin synthesis in Drosophila melanogaster. Europ. J. Biochem. 123, 527–534 (2005).
    Google Scholar 
    Hoffmann, J. A. The immune response of Drosophila. Nature 426, 33–38 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737–748 (2000).CAS 
    PubMed 

    Google Scholar 
    Haine, E. R., Moret, Y., Siva-Jothy, M. T. & Rolff, J. Antimicrobial defense and persistent infection in insects. Science 322, 1257–1259 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Moret, Y. & Siva-Jothy, M. T. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proc. R. Soc. B. 270, 2475–2480 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Du Rand, N. & Laing, M. D. Determination of insecticidal toxicity of three species of entomopathogenic spore-forming bacterial isolates against Tenebrio molitor L. (Coleoptera: Tenebrionidae). Afr. J. Microbiol. Res. 5, 2222–2228 (2011).
    Google Scholar 
    Jurat-Fuentes, J. L. & Jackson, T. Bacterial entomopathogens. In Insect Pathology 2nd edn (eds Kaya, H. & Vera, F.) 265–349 (Elsevier Academic Press, Cambridge, Mass, 2012).
    Google Scholar 
    Dhinaut, J., Balourdet, A., Teixeira, M., Chogne, M. & Moret, Y. A dietary carotenoid reduces immunopathology and enhances longevity through an immune depressive effect in an insect model. Sci. Rep. 7, 12429 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moreau, J., Martinaud, G., Troussard, J.-P., Zanchi, C. & Moret, Y. Trans-generational immune priming is constrained by the maternal immune response in an insect. Oikos 121, 1828–1832 (2012).
    Google Scholar 
    Lee, H. S. et al. The pro-phenoloxidase of coleopteran insect, Tenebrio molitor, larvae was activated during cell clump/cell adhesion of insect cellular defense reactions. FEBS Lett. 444, 255–259 (1999).CAS 
    PubMed 

    Google Scholar 
    Zanchi, C., Troussard, J.-P., Martinaud, G., Moreau, J. & Moret, Y. Differential expression and costs between maternally and paternally derived immune priming for offspring in an insect. J. Anim. Ecol. 80, 1174–1183 (2011).PubMed 

    Google Scholar 
    Moret, Y. ‘Trans-generational immune priming’: Specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor. Proc. R. Soc. B. 273, 1399–1405 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dubuffet, A. et al. Trans-generational immune priming protects the eggs only against gram-positive bacteria in the mealworm beetle. PLoS Pathog. 11, e1005178 (2015).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The evolution of reproductive modes and life cycles in amphibians

    Phung, T. X., Nascimento, J. C. S., Novarro, A. J. & Wiens, J. J. Correlated and decoupled evolution of adult and larval body size in frogs. Proc. R. Soc. Lond. B 287, 20201474–10 (2020).
    Google Scholar 
    Hall, B. K. & Wake, M. H. The Origin and Evolution of Larval Forms (Gulf Professional Publishing, 1999).Hime, P. M. et al. Phylogenomics reveals ancient gene tree discordance in the amphibian tree of life. Syst. Biol. 70, 49–66 (2021).CAS 
    PubMed 

    Google Scholar 
    Duellman, W. E. & Trueb, L. Biology of Amphibians (Johns Hopkins University Press, 1994).Nunes-de-Almeida, C. H., Batista Haddad, C. F. & Toledo, L. F. A revised classification of the amphibian reproductive modes. Salamandra 57, 413–427 (2021).
    Google Scholar 
    Vences, M. & Köhler, J. Global diversity of amphibians (Amphibia) in freshwater. Hydrobiologia 595, 569–580 (2007).
    Google Scholar 
    Blackburn, D. G. Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis. J. Morphol. 276, 961–990 (2015).PubMed 

    Google Scholar 
    AmphibiaWeb. Electronic Database (University of California, Berkeley, CA, USA, 2019). https://amphibiaweb.org.Frost, D. R. Amphibian Species of the World: an Online Reference. Version 6.0 (date of access: 01.08.2019). Electronic Database (American Museum of Natural History, New York, USA, 2019). https://amphibiansoftheworld.amnh.org/.Bonett, R. M., Ledbetter, N. M., Hess, A. J., Herrboldt, M. A. & Denoël, M. Repeated ecological and life cycle transitions make salamanders an ideal model for evolution and development. Developmental Dynamics 251, 957–972 (2022).Salthe, S. N. Reproductive modes and the number and sizes of ova in the urodeles. Am. Midl. Naturalist 81, 467490 (1969).
    Google Scholar 
    Salthe, S. N. & Duellman, W. E. in Evolutionary Biology of the Anurans (ed. Vial, J. L.) 229–249 (University of Missouri Press Columbia, 1973).Haddad, C. & Prado, C. P. A. Reproductive modes in frogs and their unexpected diversity in the Atlantic Forest of Brazil. BioScience 55, 207–217 (2005).
    Google Scholar 
    Lutz, B. Ontogenetic evolution in frogs. Evolution 2, 29–39 (1948).CAS 
    PubMed 

    Google Scholar 
    Crump, M. L. Anuran reproductive modes: evolving perspectives. J. Herpetol. 49, 1–16 (2015).
    Google Scholar 
    Schoch, R. Evolution of life cycles in early amphibians. Annu. Rev. Earth Planet. Sci. 37, 135–162 (2009).ADS 
    CAS 

    Google Scholar 
    Meegaskumbura, M. et al. Patterns of reproductive-mode evolution in Old World tree frogs (Anura, Rhacophoridae). Zool. Scr. 44, 509–522 (2015).
    Google Scholar 
    Portik, D. M. & Blackburn, D. C. The evolution of reproductive diversity in Afrobatrachia: A phylogenetic comparative analysis of an extensive radiation of African frogs. Evolution 70, 2017–2032 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    San Mauro, D. et al. Life-history evolution and mitogenomic phylogeny of caecilian amphibians. Mol. Phylogenet. Evol. 73, 177–189 (2014).PubMed 

    Google Scholar 
    Pereira, E. B., Collevatti, R. G., de Carvalho Kokubum, M. N., de Oliveira Miranda, N. E. & Maciel, N. M. Ancestral reconstruction of reproductive traits shows no tendency toward terrestriality in leptodactyline frogs. BMC Evol. Biol. 15, 91 (2015).Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700 (2012).PubMed 

    Google Scholar 
    Wake, D. B. & Hanken, J. Direct development in the lungless salamanders: what are the consequences for developmental biology, evolution and phylogenesis? Int. J. Dev. Biol. 40, 859–869 (1996).CAS 
    PubMed 

    Google Scholar 
    Dubois, A. Developmental pathway, speciation and supraspecific taxonomy in amphibians: 1. Why are there so many frog species in Sri Lanka? Alytes 22, 19–37 (2004).
    Google Scholar 
    Hedges, S. B., Duellman, W. E. & Heinicke, M. P. New World direct-developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation. Zootaxa 1737, 1–182 (2008).
    Google Scholar 
    Dugo-Cota, Á., Vilà, C., Rodríguez, A. & Gonzalez-Voyer, A. Ecomorphological convergence in Eleutherodactylus frogs: a case of replicate radiations in the Caribbean. Ecol. Lett. 22, 884–893 (2019).PubMed 

    Google Scholar 
    Simpson, G. G. The Major Features of Evolution (Columbia University Press, 1953).Vági, B., Végvári, Z., Liker, A., Freckleton, R. P. & Szekely, T. Parental care and the evolution of terrestriality in frogs. Proc. R. Soc. Lond. B 286, 20182737–10 (2019).
    Google Scholar 
    Furness, A. I. & Capellini, I. The evolution of parental care diversity in amphibians. Nat. Commun. 10, 1–12 (2019).CAS 

    Google Scholar 
    Furness, A. I., Venditti, C. & Capellini, I. Terrestrial reproduction and parental care drive rapid evolution in the trade-off between offspring size and number across amphibians. PLoS Biol. 20, e3001495 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wollenberg, K. C., Vieites, D. R., Glaw, F. & Vences, M. Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs. BMC Evol. Biol. 11, 217 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Cayuela, H. et al. Determinants and consequences of dispersal in vertebrates with complex life cycles: a review of pond-breeding amphibians. Q. Rev. Biol. 95, 1–36 (2020).
    Google Scholar 
    Phillimore, A. B., Freckleton, R. P., Orme, C. D. L. & Owens, I. P. F. Ecology predicts large‐scale patterns of phylogenetic diversification in birds. Am. Nat. 168, 220–229 (2006).PubMed 

    Google Scholar 
    Chen, J.-M. et al. An integrative phylogenomic approach illuminates the evolutionary history of Old World tree frogs (Anura: Rhacophoridae). Mol. Phylogenet. Evol. 145, 106724 (2020).PubMed 

    Google Scholar 
    Zimkus, B. M., Lawson, L., Loader, S. P. & Hanken, J. Terrestrialization, miniaturization and rates of diversification in African Puddle Frogs (Anura: Phrynobatrachidae). PLoS ONE 7, e35118 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moen, D. S. Improving inference and avoiding over-interpretation of hidden-state diversification models: specialized plant breeding has no effect on diversification in frogs. Evolution 76, 373–384 (2022).PubMed 

    Google Scholar 
    Eastman, J. M. & Storfer, A. Correlations of life-history and distributional-range variation with salamander diversification rates: evidence for species selection. Syst. Biol. 60, 503–518 (2011).PubMed 

    Google Scholar 
    Bonett, R. M., Steffen, M. A., Lambert, S. M., Wiens, J. J. & Chippindale, P. T. Evolution of paedomorphosis in plethodontid salamanders: ecological correlates and re-evolution of metamorphosis. Evolution 68, 466–482 (2014).PubMed 

    Google Scholar 
    Akaike, H. A new look at the statistical-model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Wagenmakers, E.-J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196 (2004).PubMed 

    Google Scholar 
    Beaulieu, J. M., Oliver, J. C., O’Meara, B. & Boyko, J. R package ‘corHMM’: hidden markov models of character evolution. (2020).Pagel, M. & Meade, A. BayesTraits, version 4. University of Reading, Berkshire, UK. http://www.evolution.rdg.ac.uk (2022).Pagel, M. & Meade, A. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167, 808–825 (2006).PubMed 

    Google Scholar 
    Maddison, W., Midford, P. & Otto, S. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).PubMed 

    Google Scholar 
    FitzJohn, R. G., Maddison, W. P. & Otto, S. P. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 58, 595–611 (2009).PubMed 

    Google Scholar 
    Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).PubMed 

    Google Scholar 
    Herrera-Alsina, L., van Els, P. & Etienne, R. S. Detecting the dependence of diversification on multiple traits from phylogenetic trees and trait data. Syst. Biol. 68, 317–328 (2018).
    Google Scholar 
    Strathmann, R. R. Hypotheses on the origins of marine larvae. Annu. Rev. Ecol. Syst. 24, 89–117 (1993).
    Google Scholar 
    Wray, G. A. Evolution of larvae and developmental modes. In Ecology of Marine Invertebrate Larvae. (ed. McEdward, L.) 413–447 (CRC Press, 1995).Raff, R. A. Origins of the other metazoan body plans: the evolution of larval forms. Philos. T R. Soc. B 363, 1473–1479 (2008).
    Google Scholar 
    Collin, R. & Moran, A. in Evolutionary Ecology of Marine Invertebrate Larvae 50–66 (Oxford University Press, 2018).Collin, R. & Miglietta, M. P. Reversing opinions on Dollo’s Law. Trends Ecol. Evol. 23, 602–609 (2008).PubMed 

    Google Scholar 
    Wiens, J. J. Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo’s law. Evolution 65, 1283–1296 (2011).PubMed 

    Google Scholar 
    Wiens, J. J., Kuczynski, C. A., Duellman, W. E. & Reeder, T. W. Loss and re-evolution of complex life cycles in marsupial frogs: does ancestral trait reconstruction mislead? Evolution 61, 1886–1899 (2007).CAS 
    PubMed 

    Google Scholar 
    Chippindale, P. T., Bonett, R. M., Baldwin, A. S. & Wiens, J. J. Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. Evolution 58, 2809–2815 (2004).CAS 
    PubMed 

    Google Scholar 
    Castroviejo-Fisher, S. et al. Phylogenetic systematics of egg-brooding frogs (Anura: Hemiphractidae) and the evolution of direct development. Zootaxa 4004, 1–75 (2015).PubMed 

    Google Scholar 
    Naumann, B., Schweiger, S., Hammel, J. U. & Müller, H. Parallel evolution of direct development in frogs—skin and thyroid gland development in African Squeaker Frogs (Anura: Arthroleptidae: Arthroleptis). Dev. Dyn. 250, 584–600 (2021).PubMed 

    Google Scholar 
    Goldberg, J., Taucce, P. P. G., Quinzio, S. I., Haddad, C. F. B. & Candioti, F. V. Increasing our knowledge on direct-developing frogs: the ontogeny of Ischnocnema henselii (Anura: Brachycephalidae). Zool. Anz. 284, 78–87 (2020).
    Google Scholar 
    Wassersug, R. J. & Duellman, W. E. Oral structures and their development in egg-brooding hylid frog embryos and larvae: evolutionary and ecological implications. J. Morphol. 182, 1–37 (1984).PubMed 

    Google Scholar 
    Kerney, R. R., Blackburn, D. C., Müller, H. & Hanken, J. Do larval traits re-evolve? Evidence from the embryogenesis of a direct-developing salamander, Plethodon cinereus. Evolution 66, 252–262 (2011).PubMed 

    Google Scholar 
    Theska, T. Musculoskeletal development of the Central African caecilian Idiocranium russeli (Amphibia: Gymnophiona: Indotyphlidae) and its bearing on the re-evolution of larvae in caecilian amphibians. Zoomorphology 138, 137–158 (2019).
    Google Scholar 
    Laslo, M., Denver, R. J. & Hanken, J. Evolutionary conservation of thyroid hormone receptor and deiodinase expression dynamics in ovo in a direct-developing frog, Eleutherodactylus coqui. Front. Endocrinol. 10, 307 (2019).
    Google Scholar 
    Gao, W. et al. Genomic and transcriptomic investigations of the evolutionary transition from oviparity to viviparity. Proc. Natl Acad. Sci. USA 116, 3646–3655 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altig, R. & Crother, B. I. The evolution of three deviations from the biphasic anuran life cycle: alternatives to selection. Herpetol. Rev. 37, 321–356 (2006).
    Google Scholar 
    Venturelli, D. P., da Silva, W. R. & Giaretta, A. A. Tadpoles’ resistance to desiccation in species of Leptodactylus (Anura, Leptodactylidae). J. Herpetol. 55, 265–270 (2021).
    Google Scholar 
    Seymour, R. S. Respiration of aquatic and terrestrial amphibian embryos. American Zoologist 39, 261–270 (1999).Blackburn, D. G. Convergent evolution of viviparity, matrotrophy, and specializations for fetal nutrition in reptiles and other vertebrates. Am. Zool. 32, 313–321 (1992).
    Google Scholar 
    Buckley, D., Alcobendas, M., García-París, M. & Wake, M. H. Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra. Evol. Dev. 9, 105–115 (2007).PubMed 

    Google Scholar 
    Kusrini, M. D., Rowley, J. J. L., Khairunnisa, L. R., Shea, G. M. & Altig, R. The reproductive biology and larvae of the first tadpole-bearing frog, Limnonectes larvaepartus. PLoS ONE 10, e116154–e116159 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lanza, B. & Leo, P. Sul primo caso sicuro di riproduzione vivipara nel genere Speleomantes. 1–54 (2000).Lunghi, E. et al. Comparative reproductive biology of European cave salamanders (Genus Hydromantes): nesting selection and multiple annual breeding. Salamandra 54, 101–108 (2018).
    Google Scholar 
    Liedtke, H. C. et al. Terrestrial reproduction as an adaptation to steep terrain in African toads. Proc. R. Soc. Lond. B 284, 20162598–20162599 (2017).
    Google Scholar 
    Wake, M. H. The reproductive biology of Eleutherodactylus jasperi (Amphibia, Anura, Leptodactylidae), with comments on the evolution of live-bearing systems. J. Herpetol. 12, 121–133 (1978).
    Google Scholar 
    Jennings, D. H. & Hanken, J. Mechanistic basis of life history evolution in anuran amphibians: thyroid gland development in the direct-developing frog, Eleutherodactylus coqui. Gen. Comp. Endocr. 111, 225–232 (1998).CAS 
    PubMed 

    Google Scholar 
    Callery, E. M. & Elinson, R. P. Thyroid hormone-dependent metamorphosis in a direct developing frog. Proc. Natl Acad. Sci. USA 97, 2615–2620 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callery, E. M., Hung, F. & Elinson, R. P. Frogs without polliwogs: evolution of anuran direct development. BioEssays 23, 233–241 (2001).CAS 
    PubMed 

    Google Scholar 
    Buckley, L. B. & Jetz, W. Environmental and historical constraints on global patterns of amphibian richness. Proc. R. Soc. Lond. B 274, 1167–1173 (2007).
    Google Scholar 
    Pyron, R. A. & Wiens, J. J. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc. R. Soc. Lond. B 280, 20131622 (2013).
    Google Scholar 
    Gómez-Rodríguez, C., Baselga, A. & Wiens, J. J. Is diversification rate related to climatic niche width? Glob. Ecol. Biogeogr. 24, 383–395 (2015).
    Google Scholar 
    Moen, D. S. & Wiens, J. J. Microhabitat and climatic niche change explain patterns of diversification among frog families. Am. Nat. 190, 29–44 (2017).PubMed 

    Google Scholar 
    Kozak, K. H. & Wiens, J. J. Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol. Lett. 13, 1378–1389 (2010).PubMed 

    Google Scholar 
    Jaramillo, A. F. et al. Vastly underestimated species richness of Amazonian salamanders (Plethodontidae: Bolitoglossa) and implications about plethodontid diversification. Mol. Phylogenet. Evol. 149, 106841 (2020).PubMed 

    Google Scholar 
    Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).PubMed 

    Google Scholar 
    Bars-Closel, M., Kohlsdorf, T., Moen, D. S. & Wiens, J. J. Diversification rates are more strongly related to microhabitat than climate in squamate reptiles (lizards and snakes). Evolution 71, 2243–2261 (2017).PubMed 

    Google Scholar 
    Cyriac, V. P. & Kodandaramaiah, U. Digging their own macroevolutionary grave: fossoriality as an evolutionary dead end in snakes. J. Evolution. Biol. 31, 587–598 (2018).CAS 

    Google Scholar 
    Zamudio, K. R., Bell, R. C., Nali, R. C., Haddad, C. F. B. & Prado, C. P. A. Polyandry, predation, and the evolution of frog reproductive modes. Am. Nat. 188, S41–S61 (2016).PubMed 

    Google Scholar 
    Lion, M. B. et al. Global patterns of terrestriality in amphibian reproduction. Glob. Ecol. Biogeogr. 4, 679–13 (2019).
    Google Scholar 
    Müller, H. et al. Forests as promoters of terrestrial life-history strategies in East African amphibians. Biol. Lett. 9, 20121146–20121146 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Velo-Antón, G., García-París, M., Galán, P. & Cordero Rivera, A. The evolution of viviparity in Holocene islands: ecological adaptation versus phylogenetic descent along the transition from aquatic to terrestrial environments. J. Zool. Syst. Evol. Res. 45, 345–352 (2007).
    Google Scholar 
    Liedtke, H. C. AmphiNom: an amphibian systematics tool. Syst. Biodivers. 17, 1–6 (2019).
    Google Scholar 
    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020). http://www.R-project.org/.IUCN. IUCN 2020. The IUCN Red List of Threatened Species. Version 2020-2. https://www.iucnredlist.org (2019).AmphibiaChina. The database of Chinese amphibians. Electronic Database (Kunming Institute of Zoology (CAS), Kunming, Yunnan, China, 2019) http://www.amphibiachina.org/.Ron, S. R., Yanez-Muñoz, M. H., Merino-Viteri, A. & Ortiz, D. A. Anfibios del Ecuador. Version 2019.0 (Museo de Zoología, Pontificia Universidad Católica del Ecuador, 2019). https://bioweb.bio/faunaweb/amphibiaweb.Greven, H. In Reproductive Biology and Phylogeny of Urodela 447–475 (Taylor & Francis, 2003).Marks, S. B. & Collazo, A. Direct development in Desmognathus aeneus (Caudata: Plethodontidae): a staging table. Copeia 1998, 637–648 (1998).
    Google Scholar 
    Müller, H., Loader, S. P., Ngalason, W., Howell, K. M. & Gower, D. J. Reproduction in brevicipitid frogs (Amphibia: Anura: Brevicipitidae)—evidence from Probreviceps m. macrodactylus. Copeia 2007, 726–733 (2007).
    Google Scholar 
    Velo-Antón, G., Santos, X., Sanmartín-Villar, I., Cordero-Rivera, A. & Buckley, D. Intraspecific variation in clutch size and maternal investment in pueriparous and larviparous Salamandra salamandra females. Evol. Ecol. 29, 185–204 (2014).
    Google Scholar 
    Beaulieu, J. M., O’Meara, B. C. & Donoghue, M. J. Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. Systematic biology 62, 725–737 (2013).Pupko, T., Pe’er, I., Shamir, R. & Graur, D. A fast algorithm for joint reconstruction of ancestral amino acid sequences. Mol. Biol. Evol. 17, 890–896 (2000).CAS 
    PubMed 

    Google Scholar 
    Bollback, J. P. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinforma. 7, 88 (2006).
    Google Scholar 
    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R. News 6, 7–11 (2006).
    Google Scholar 
    Tuffley, C. & Steel, M. Modeling the covarion hypothesis of nucleotide substitution. Math. Biosci. 147, 63–91 (1998).MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M. H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011).PubMed 

    Google Scholar 
    Nakov, T., Beaulieu, J. M. & Alverson, A. J. Diatoms diversify and turn over faster in freshwater than marine environments. Evolution 73, 2497–2511 (2019).PubMed 

    Google Scholar 
    Etienne, R. S. et al. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proc. R. Soc. Lond. B 279, 1300–1309 (2011).
    Google Scholar  More