More stories

  • in

    The control of malaria vectors in rice fields: a systematic review and meta-analysis

    We investigated whether ricefield mosquito larval control and/or rice cultivation practices are associated with malaria vector densities through a systematic review and meta-analysis. Forty-seven experimental studies were eligible for inclusion in the qualitative analysis and thirty-three studies were eligible for the meta-analysis. It was demonstrated that the use of fish, chemical and biological larvicides in rice fields were effective in controlling larval malaria vector densities at all developmental stages. Intermittent irrigation, however, could only significantly reduce late-stage larvae. Based on a limited number of studies, meta-analyses on other forms of larval control such as monomolecular surface films (MSFs), neem, copepods and Azolla failed to demonstrate any consistent reduction in anopheline numbers. Similarly, rice cultivation practices such as plant variety and density, type of levelling and pesticide application were not generally associated with reduced malaria vectors. Nonetheless, in one study, minimal tillage was observed to reduce average numbers of larvae throughout a cropping season. In another study, herbicide application increased larval abundance over a 4-week period, as did one-time drainage in a third study.
    Despite their different modes of action, the use of chemical and bacterial larvicides and MSFs were all relatively effective measures of larval control in rice fields, varying between a 57% to 76% reduction in vector abundance compared to no larviciding. Their effects were highest (often reaching 100% reduction) only shortly following application but did not persist for longer than two weeks. These larvicides mostly had short residual half-lives because they were applied to paddy water which was naturally not completely stagnant: there was a small but constant process of water loss (through drainage, evapotranspiration and percolation) and replacement through irrigation. Hence, even with a residual formulation, weekly re-application would be needed for sustained control47,40,41,50. This would be very labour- and cost-intensive to scale-up, to ensure that larvicides are evenly distributed across vast areas (even at plot/sub-plot level) throughout at least one 5-month long rice-growing season per year42,51. Aerial application (including unmanned aerial vehicles), although widely used in the US and Europe, is unlikely to be a feasible delivery system for smallholders in SSA, even in large irrigation schemes26,27,48,49. Furthermore, if synthetic organic chemicals were to be considered for riceland malaria vector control, their management in the current landscape of insecticide resistance across Africa must be considered.Biological control using fish was found to be, in general, slightly more effective than (chemical, bacterial and MSF) larviciding. The degree of effectiveness was dependent on the fish species and their feeding preferences: surface-feeding, larvivorous species provided better anopheline control than bottom-feeding selective feeders4,43. Selecting the most suitable fish for local rice fields is not straightforward; many criteria need to be considered4,52,53. Generally, fish were well-received by rice farmers, perceived to contribute to increased yield by reducing weeds and pests and providing fertiliser through excrement43,44. This was reportedly also observed in Guangxi, China, where a certain proportion of the field had to be deepened into a side-trench where the fish could take shelter when the fields were drained. Even with this reduction in rice production area, carp rearing still increased yields by 10% and farmer’s income per hectare by 70%53. Unfortunately, none of the eligible studies in this review had included yield or water use as an outcome. Future entomological studies need to measure these critical agronomic variables so that studies of vector control in rice can be understood by, and transferred to, agronomists. In SSA, irrigated rice-fish farming can be scaled up provided that an inventory of fish species suitable for specific locations is available and that water is consistently available in fields (an important limiting factor in African irrigation schemes)54. Lessons can be learnt from successful large-scale rice-fish systems in Asia, where they have served as win–win solutions for sustainable food production and malaria control16,55.Overall, there was only limited evidence that intermittent irrigation is effective at reducing late-instar anopheline larvae in rice fields. This finding contrasts with prior reviews, which found mixed results (regardless of larval stage) but emphasised that success was site-specific4,17,56. This contrast is presumably due to the inclusion criteria of our systematic review. These reviews excluded studies in various geographical settings and some older studies that reported successful anopheline control with intermittent irrigation but lacked either a contemporaneous control arm, adequate replication or adequate differentiation between culicines and anophelines16,57,50,51,52,61. It seems, from our review, that intermittent irrigation does not prevent the recruitment of early instars (and in one case, may have encouraged oviposition31) but tends to prevent their development into late-stage immatures. This important conclusion is, however, based only on four studies; more evidence is urgently needed where future trials should consider the basic principles of modern trials with adequate replication, controls and differentiation between larval instars and species.Generally, it is observed that drainage, passive or active, did not reliably reduce overall numbers of mosquito immatures. In India and Kenya, closer inspection revealed that soils were not drying sufficiently, so any stranded larvae were not killed31,46. Highlighted by van der Hoek et al.29 and Keiser et al.17, water management in rice fields is very dependent on the physical characteristics of the soil and the climate and is most suited to places that not only favour rapid drying, but also have a good control of water supply17,56. Moreover, repeated drainage, although directed against mosquitoes, can also kill their aquatic predators62. Since mosquitoes can re-establish themselves in a newly flooded rice field more quickly than their predators, intermittent irrigation with more than a week between successive drying periods can permit repeated cycles of mosquito breeding without any predation pressure. Its efficacy against malaria vectors is therefore highly reliant on the timing of the wetting and drying periods. Further site-specific research on timing, especially with regards to predator–prey interactions within the rice agroecosystem, is required to find the perfect balance.Another limitation in intermittent irrigation is that it cannot be applied during the first two to three weeks following transplanting, because rice plants must remain flooded to recover from transplanting shock. Unfortunately, this time coincides with peak vector breeding. Thus, other methods of larval control would be required to fill this gap. To agronomists, intermittent irrigation provides benefits to farmers, as it does not penalise yield but significantly reduces water consumption. Nonetheless, farmer compliance seems to be variable, especially in areas where water availability is inconsistent and intermittent irrigation would potentially require more labour31,32,39. Importantly, rice farmers doubted their ability to coordinate water distribution evenly amongst themselves, suggesting that there may be sharing issues, as in the “tragedy of the commons”63. Instead, they said that they preferred to have an agreed authority to regulate water46.No general conclusions could be made on the effect on malaria vectors of other rice cultivation practices (apart from water management) because only one study was eligible for each practice. Nevertheless, these experiments on pesticide application, tillage and weed control, as well as another study on plant spacing (not eligible since glass rods were used to simulate rice plants), do illustrate that small changes in agronomic inputs and conditions can have considerable effects on mosquito densities, not just rice yield36,38,64. Moreover, in partially- or shallowly-flooded plots, the larvae are often concentrated in depressions (usually footprints), suggesting that rice operations which leave or remove footprints (e.g. hand-weeding, drum seeders, levelling) will influence vector breeding4.Our study has some important limitations. First, in most trials, the units of intervention were replicate plots of rice, and success was measured as a reduction in larval densities within treated plots. This design focuses on the identification of effective and easy-to-implement ways of growing rice without growing mosquitoes, on the assumption that higher vector densities are harmful. However, from a public health perspective, the need for epidemiological outcomes is often, and reasonably, stressed22,65. Nonetheless, from a farmers’ perspective, it is also important to consider whether the vectors emerging from their rice fields significantly contribute to the local burden of malaria and to determine how this contribution can be minimised. There is evidence that riceland vectors do increase malaria transmission, since human biting rates are much higher in communities living next to rice schemes than their non-rice counterparts66 and that additional riceland vectors may intensify transmission and malaria prevalence in rice communities15. Hence, when investigating how rice-attributed malaria risk can be minimised, mosquito abundance as measured in the experimental rice trials is a useful indicator of potential impact on epidemiological outcomes.Second, larval density was not always separated into larval developmental stages. This can be misleading because some interventions work by reducing larval survival (but not by preventing oviposition) and development to late instars and pupae. Therefore, an intervention could completely eliminate late-stage larvae and pupae but have little effect on the total number of immatures. This was illustrated in our meta-analyses of intermittent irrigation in Table 3 and Supplementary Table 5, and could have been the case for some studies that failed to demonstrate consistent reductions in overall anopheline numbers but did not differentiate between larval instars34,45,67,60,69. We infer that when monitoring mosquito immatures in rice trials, it is important to distinguish between larval instars and pupae. Pupae should always be counted separately since its abundance is the most direct indicator of adult productivity70.Third, experimental trials rarely reported the timing of intervention application or accounted for different rice-growing phases, or “days after transplantation”, in the outcome. Both aspects are important to consider since an intervention may be suited to control larvae during certain growth phases but not others. This is illustrated by Djegbe et al.38, where, compared to deep tillage, minimal tillage could significantly reduce larvae during the early stages of rice cultivation but not during tillering and maturation38. In contrast, other interventions, such as Azolla and predatory copepods, took time to grow and accumulate, and were more effective during the later stages of a rice season45,67,71. This differentiation is important because it can identify components that could potentially form a complementary set of interventions against riceland malaria vectors, each component being effective at different parts of the season. Since rice fields, and hence the dynamics of riceland mosquito populations, vary from place to place, this set of interventions must also be robust. Special attention must be paid to the early stages of rice cultivation, particularly the first few weeks after transplanting (or sowing), since, with many vector species, a large proportion of adult mosquitoes are produced during this time.Fourth, the analysis of entomological counts is often inadequate. Many studies failed to provide the standard deviation (or any other measure of error) for larval counts and could not be included in the quantitative analysis. Often, due to the extreme (and not unexpected) variability of larval numbers, sample sizes were insufficient to calculate statistically significant differences between treatments. Fifth, a high risk of bias was found across both CTS and CITS studies, including high heterogeneity and some publication bias. Study quality was, in general, a shortcoming and limited the number of eligible studies for certain interventions, including intermittent irrigation. Moreover, there are conspicuous a priori reasons for bias in such experimental trials: trial locations are frequently chosen to maximise the probability of success.Finally, few studies were conducted in African countries, where the relationship between rice and malaria is most important because of the efficiency, and the “rice-philic” nature, of the vector An. gambiae s.l.15. In particular, there was a lack of studies on the effectiveness and scalability of biological control and rice cultivation practices. There is also very little information (particularly social science studies) on the views and perspectives of African rice farmers on mosquitoes in rice and interventions to control them72,73.In the future, as malaria declines (particularly across SSA), the contribution of rice production to increased malaria transmission is likely to become more conspicuous15. Unless this problem is addressed, rice growing will probably become an obstacle to malaria elimination. Current default methods of rice production provide near-perfect conditions for the larvae of African malaria vectors. Therefore, we need to develop modified rice-growing methods that are unfavourable to mosquitoes but still favourable for the rice. Although larviciding and biological control may be appropriate, their unsustainable costs remain the biggest barrier to uptake amongst smallholder farmers. Future investigations into riceland vector control should pay more attention to interventions that may be useful to farmers.Supported by medical entomologists, agronomists should lead the research task of identifying cultivation methods that achieve high rice productivity whilst suppressing vector productivity. Rice fields are a major global source of greenhouse gases, and agronomists have responded by successfully developing novel cultivation methods that minimise these emissions while maintaining yield. We need the same kind of response from agronomists, to achieve malaria control co-benefits within rice cultivation. At present, only a few aspects of rice cultivation have been investigated for their effects on mosquitoes, and the potential of many other practices for reducing anopheline numbers are awaiting study. Due to the spatial and temporal heterogeneity of rice agroecosystems, it is likely that no single control method can reduce mosquito numbers throughout an entire cropping season and in all soil types and irrigation methods. Thus, effective overall control is likely to come from a combination of local, site-specific set of complementary methods, each of which is active and effective during a different phase of the rice-growing season. More

  • in

    In vitro study of the modulatory effects of heat-killed bacterial biomass on aquaculture bacterioplankton communities

    Ringø, E. et al. Probiotics, lactic acid bacteria and bacilli: Interesting supplementation for aquaculture. J. Appl. Microbiol. 129, 116–136 (2020).PubMed 

    Google Scholar 
    Borges, N. et al. Bacteriome structure, function, and probiotics in fish larviculture: The good, the bad, and the gaps. Annu. Rev. Anim. Biosci. 9, 423–452 (2021).CAS 
    PubMed 

    Google Scholar 
    Aguilar-Toalá, J. E. et al. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 75, 105–114 (2018).
    Google Scholar 
    Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Dash, G. et al. Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish Shellf. Immunol. 43, 167–174 (2015).CAS 

    Google Scholar 
    Dawood, M. A. O., Koshio, S., Ishikawa, M. & Yokoyama, S. Effects of partial substitution of fish meal by soybean meal with or without heat-killed Lactobacillus plantarum (LP20) on growth performance, digestibility, and immune response of Amberjack, Seriola dumerili Juveniles. Biomed. Res. Int. 2015, 514196 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Dawood, M. A. O., Koshio, S., Ishikawa, M. & Yokoyama, S. Immune responses and stress resistance in red sea bream, Pagrus major, after oral administration of heat-killed Lactobacillus plantarum and vitamin C. Fish Shellf. Immunol. 54, 266–275 (2016).CAS 

    Google Scholar 
    Dawood, M. A. O., Koshio, S., Ishikawa, M. & Yokoyama, S. Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish Shellf. Immunol. 45, 33–42 (2015).CAS 

    Google Scholar 
    Tung, H. T. et al. Effects of heat-killed Lactobacillus plantarum supplemental diets on growth performance, stress resistance and immune response of juvenile Kuruma shrimp Marsupenaeus japonicus bate. Aquac. Sci. 57, 175–184 (2009).CAS 

    Google Scholar 
    Van Nguyen, N. et al. Evaluation of dietary heat-killed Lactobacillus plantarum strain L-137 supplementation on growth performance, immunity and stress resistance of Nile tilapia (Oreochromis niloticus). Aquaculture 498, 371–379 (2019).
    Google Scholar 
    Yang, H. et al. Effects of dietary heat-killed Lactobacillus plantarum L-137 (HK L-137) on the growth performance, digestive enzymes and selected non-specific immune responses in sea cucumber, Apostichopus japonicus Selenka. Aquac. Res. 47, 2814–2824 (2016).CAS 

    Google Scholar 
    Singh, S. T., Kamilya, D., Kheti, B., Bordoloi, B. & Parhi, J. Paraprobiotic preparation from Bacillus amyloliquefaciens FPTB16 modulates immune response and immune relevant gene expression in Catla catla (Hamilton, 1822). Fish Shelf. Immunol. 66, 35–42 (2017).CAS 

    Google Scholar 
    Kamilya, D., Baruah, A., Sangma, T., Chowdhury, S. & Pal, P. Inactivated probiotic bacteria stimulate cellular immune responses of catla, Catla catla (Hamilton) in vitro. Probiot. Antimicrob. Proteins 7, 101–106 (2015).CAS 

    Google Scholar 
    Wang, J. et al. Supplementation of heat-inactivated Bacillus clausii DE 5 in diets for grouper, Epinephelus coioides, improves feed utilization, intestinal and systemic immune responses and not growth performance. Aquac. Nutr. 24, 821–831 (2018).CAS 

    Google Scholar 
    Giri, S. S. et al. Effects of dietary heat-killed Pseudomonas aeruginosa strain VSG2 on immune functions, antioxidant efficacy, and disease resistance in Cyprinus carpio. Aquaculture 514, 734489 (2020).CAS 

    Google Scholar 
    Shabanzadeh, S. et al. Growth performance, intestinal histology, and biochemical parameters of rainbow trout (Oncorhynchus mykiss) in response to dietary inclusion of heat-killed Gordonia bronchialis. Fish Physiol. Biochem. 42, 65–71 (2016).CAS 
    PubMed 

    Google Scholar 
    Wu, X. et al. Use of a paraprobiotic and postbiotic feed supplement (HWF™) improves the growth performance, composition and function of gut microbiota in hybrid sturgeon (Acipenser baerii × Acipenser schrenckii). Fish Shelf. Immunol. 104, 36–45 (2020).CAS 

    Google Scholar 
    Mora-Sánchez, B., Balcázar, J. L. & Pérez-Sánchez, T. Effect of a novel postbiotic containing lactic acid bacteria on the intestinal microbiota and disease resistance of rainbow trout (Oncorhynchus mykiss). Biotechnol. Lett. 42, 1957–1962 (2020).PubMed 

    Google Scholar 
    Xiong, J. et al. The temporal scaling of bacterioplankton composition: High turnover and predictability during shrimp cultivation. Microb. Ecol. 67, 256–264 (2014).PubMed 

    Google Scholar 
    Martins, P. et al. Seasonal patterns of bacterioplankton composition in a semi-intensive European seabass (Dicentrarchus labrax) aquaculture system. Aquaculture 490, 240–250 (2018).
    Google Scholar 
    Offret, C. et al. Protective efficacy of a Pseudoalteromonas strain in European abalone, Haliotis tuberculata, infected with Vibrio harveyi ORM4. Probiot. Antimicrob. Proteins 11, 239–247 (2019).
    Google Scholar 
    Richards, G. P. et al. Mechanisms for Pseudoalteromonas piscicida-induced killing of vibrios and other bacterial pathogens. Appl. Environ. Microbiol. 83, e00175-e217 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, S.-R., Chen, Y.-H., Tseng, F.-J. & Weng, C.-F. The production and bioactivity of prodigiosin: Quo vadis?. Drug Discov. Today 25, 828–836 (2020).CAS 
    PubMed 

    Google Scholar 
    Vynne, N. G., Månsson, M., Nielsen, K. F. & Gram, L. Bioactivity, chemical profiling, and 16S rRNA-based phylogeny of Pseudoalteromonas strains collected on a global research cruise. Mar. Biotechnol. 13, 1062–1073 (2011).CAS 

    Google Scholar 
    Lovejoy, C., Bowman, J. P. & Hallegraeff, G. M. Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl. Environ. Microbiol. 64, 2806–2813 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Franks, A. et al. Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization. Appl. Environ. Microbiol. 72, 6079–6087 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hjelm, M. et al. Selection and identification of autochthonous potential probiotic bacteria from turbot larvae (Scophthalmus maximus) rearing units. Syst. Appl. Microbiol. 27, 360–371 (2004).PubMed 

    Google Scholar 
    Sorieul, L. et al. Survival improvement conferred by the Pseudoalteromonas sp. NC201 probiotic in Litopenaeus stylirostris exposed to Vibrio nigripulchritudo infection and salinity stress. Aquaculture 495, 888–898 (2018).
    Google Scholar 
    Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, D501–D504 (2005).CAS 
    PubMed 

    Google Scholar 
    Yan, Y.-Y., Xia, H.-Q., Yang, H.-L., Hoseinifar, S. H. & Sun, Y.-Z. Effects of dietary live or heat-inactivated autochthonous Bacillus pumilus SE5 on growth performance, immune responses and immune gene expression in grouper Epinephelus coioides. Aquac. Nutr. 22, 698–707 (2016).CAS 

    Google Scholar 
    Louvado, A. et al. Humic substances modulate fish bacterial communities in a marine recirculating aquaculture system. Aquaculture 544, 737121 (2021).CAS 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 1, 5 (2019).
    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. 2019. (2020).R. Core Team. R: A Language and Environment for Statistical Computing (Version 2120) (R Foundation for Statistical Computing, 2012).
    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wemheuer, F. et al. Tax4Fun2: Prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ. Microbiome 15, 11 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Setiyono, E. et al. An Indonesian marine bacterium, Pseudoalteromonas rubra, produces antimicrobial prodiginine pigments. ACS Omega 5, 4626–4635 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).CAS 
    PubMed 

    Google Scholar 
    Bakenhus, I. et al. Composition of total and cell-proliferating bacterioplankton community in early summer in the North Sea—roseobacters are the most active component. Front. Microbiol. 8, 1771 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Sieber, C. M. K. et al. Unusual metabolism and hypervariation in the genome of a gracilibacterium (BD1-5) from an oil-degrading community. MBio 10, e02128-e2219 (2022).
    Google Scholar 
    Jaffe, A. L., Castelle, C. J., Matheus Carnevali, P. B., Gribaldo, S. & Banfield, J. F. The rise of diversity in metabolic platforms across the Candidate Phyla Radiation. BMC Biol. 18, 69 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, H. N. & Piñeiro, S. Ecology of the predatory Bdellovibrio and like organisms. In Predatory Prokaryotes 213–248 (Springer, 2006).
    Google Scholar 
    Johnke, J. et al. Multiple micro-predators controlling bacterial communities in the environment. Curr. Opin. Biotechnol. 27, 185–190 (2014).CAS 
    PubMed 

    Google Scholar 
    Rice, T. D., Williams, H. N. & Turng, B.-F. Susceptibility of bacteria in estuarine environments to autochthonous bdellovibrios. Microb. Ecol. 35, 256–264 (1998).CAS 
    PubMed 

    Google Scholar 
    Feng, S. et al. Predation by Bdellovibrio bacteriovorus significantly reduces viability and alters the microbial community composition of activated sludge flocs and granules. FEMS Microbiol. Ecol. 93, fix020 (2017).
    Google Scholar 
    Duarte, L. N. et al. Bacterial and microeukaryotic plankton communities in a semi-intensive aquaculture system of sea bass (Dicentrarchus labrax): A seasonal survey. Aquaculture 503, 59–69 (2019).
    Google Scholar 
    Hu, L. et al. Reclassification of the taxonomic framework of orders cellvibrionales, oceanospirillales, pseudomonadales, and alteromonadales in class gammaproteobacteria through phylogenomic tree analysis. mSystems 5, e00543-e620 (2021).
    Google Scholar 
    Garrity, G. M., Bell, J. A. & Lilburn, T. Oceanospirillalesord. Nov. in Bergey’s Manual® of Systematic Bacteriology 270–323 (Springer, 2005).
    Google Scholar 
    Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M. & Michel, G. Environmental and gut bacteroidetes: The food connection. Front. Microbiol. 2, 93 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Rajilić-Stojanović, M. & De Vos, W. M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38, 996–1047 (2014).PubMed 

    Google Scholar 
    Rosenberg, E. The family Chitinophagaceae. In The Prokaryotes: Other Major Lineages of Bacteria and The Archaea (eds Rosenberg, E. et al.) (Springer, 2014).
    Google Scholar 
    Beckmann, A., Hüttel, S., Schmitt, V., Müller, R. & Stadler, M. Optimization of the biotechnological production of a novel class of anti-MRSA antibiotics from Chitinophaga sancti. Microb. Cell Fact. 16, 1–10 (2017).
    Google Scholar 
    Loudon, A. H. et al. Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front. Microbiol. 5, 441 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Taylor, J. D. & Cunliffe, M. Coastal bacterioplankton community response to diatom-derived polysaccharide microgels. Environ. Microbiol. Rep. 9, 151–157 (2017).CAS 
    PubMed 

    Google Scholar 
    González, J. M. & Whitman, W. B. Oceanospirillum and related genera. In The Prokaryotes: A Handbook on the Biology of Bacteria Volume 6: Proteobacteria: Gamma Subclass (eds Dworkin, M. et al.) 887–915 (Springer, 2006).
    Google Scholar 
    Kleindienst, S., Paul, J. H. & Joye, S. B. Using dispersants after oil spills: Impacts on the composition and activity of microbial communities. Nat. Rev. Microbiol. 13, 388–396 (2015).CAS 
    PubMed 

    Google Scholar 
    Williams, T. J. et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ. Microbiol. 15, 1302–1317 (2013).CAS 
    PubMed 

    Google Scholar 
    Gobet, A. et al. Evolutionary evidence of algal polysaccharide degradation acquisition by Pseudoalteromonas carrageenovora 9T to adapt to macroalgal niches. Front. Microbiol. 10, 2740 (2018).
    Google Scholar 
    Beier, S., Rivers, A. R., Moran, M. A. & Obernosterer, I. The transcriptional response of prokaryotes to phytoplankton-derived dissolved organic matter in seawater. Environ. Microbiol. 17, 3466–3480 (2015).CAS 
    PubMed 

    Google Scholar 
    Müller, O., Seuthe, L., Bratbak, G. & Paulsen, M. L. Bacterial response to permafrost derived organic matter input in an Arctic fjord. Front. Mar. Sci. 5, 263 (2018).
    Google Scholar 
    Fernández-Álvarez, C. & Santos, Y. Identification and typing of fish pathogenic species of the genus Tenacibaculum. Appl. Microbiol. Biotechnol. 102, 9973–9989 (2018).PubMed 

    Google Scholar 
    Wirth, J. S. & Whitman, W. B. Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal. Int. J. Syst. Evol. Microbiol. 68, 2393–2411 (2018).CAS 
    PubMed 

    Google Scholar 
    Luo, H. & Moran, M. A. Evolutionary ecology of the marine Roseobacter clade. Microbiol. Mol. Biol. Rev. 78, 573–587 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Shahina, M. et al. Luteibaculum oceani gen. nov., sp. Nov., a carotenoid-producing, lipolytic bacterium isolated from surface seawater, and emended description of the genus Owenweeksia Lau et al. 2005. Int. J. Syst. Evol. Microbiol. 63, 4765–4770 (2013).CAS 
    PubMed 

    Google Scholar 
    Davidov, Y. & Jurkevitch, E. Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax–Peredibacter clade as Bacteriovoracaceae fam. nov. Int. J. Syst. Evol. Microbiol. 54, 1439–1452 (2004).CAS 
    PubMed 

    Google Scholar 
    Müller, F. D., Beck, S., Strauch, E. & Linscheid, M. W. Bacterial predators possess unique membrane lipid structures. Lipids 46, 1129–1140 (2011).PubMed 

    Google Scholar 
    Kandel, P. P., Pasternak, Z., van Rijn, J., Nahum, O. & Jurkevitch, E. Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol. Ecol. 89, 149–161 (2014).CAS 
    PubMed 

    Google Scholar 
    Cao, H., Wang, H., Yu, J., An, J. & Chen, J. Encapsulated bdellovibrio powder as a potential bio-disinfectant against whiteleg shrimp-pathogenic vibrios. Microorganisms 7, 25 (2019).
    Google Scholar 
    Jafarian, N., Sepahi, A. A., Naghavi, N. S., Hosseini, F. & Nowroozi, J. Using autochthonous Bdellovibrio as a predatory bacterium for reduction of Gram-negative pathogenic bacteria in urban wastewater and reuse it. Iran. J. Microbiol. 12, 556–564 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Cosgrove, L., McGeechan, P. L., Handley, P. S. & Robson, G. D. Effect of biostimulation and bioaugmentation on degradation of polyurethane buried in soil. Appl. Environ. Microbiol. 76, 810–819 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cruz, A. et al. Microbial remediation of organometals and oil hydrocarbons in the marine environment. In Marine Pollution and Microbial Remediation 41–66 (Springer, 2017).
    Google Scholar 
    Zhao, J., Chen, M., Quan, C. S. & Fan, S. D. Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens. J. Fish Dis. 38, 771–786 (2015).CAS 
    PubMed 

    Google Scholar 
    Tyc, O., Song, C., Dickschat, J. S., Vos, M. & Garbeva, P. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 25, 280–292 (2017).CAS 
    PubMed 

    Google Scholar  More

  • in

    Low net carbonate accretion characterizes Florida’s coral reef

    Survey sites and data collectionBenthic and fish surveys were conducted at randomly stratified sites throughout the entirety of the FRT by NOAA’s National Coral Reef Monitoring Program (NCRMP). Sites were categorized into three biogeographic regions, including Dry Tortugas (DRTO, n = 228), Florida Keys (FLKs, n = 322), and Southeast Florida (SEFL, n = 173) (Fig. 1). The Florida Keys were further classified into the following four sub-regions: Lower Keys (LK, n = 103), Middle Keys (MK, n = 46), Upper Keys (UK, n = 140), Biscayne (BISC, n = 33). Within each region/sub-region (except for SEFL), reefs were categorized according to reef types. For DRTO, this included bank, forereef, and lagoon reef sites. For the LK, MK, UK, and BISC, reef types were categorized as inshore, mid-channel, and offshore. Data were collected throughout the region in 2014, 2016, and 2018.Fish and benthic surveys were conducted in accordance with NCRMP methodologies34 (Table S2). The protocol used for the fish surveys was developed from a modified Reef Visual Census (RVC) method35 and was performed using a stratified random sampling design. Divers surveyed two 15 m diameter cylinders, spaced 15 m apart. Fish species were identified to the lowest taxonomic level for a period of five minutes. This was followed by an additional five minutes dedicated to recording species abundances and sizes (10 cm bins).Surveys were used to quantify the benthic cover at each site. The protocol for these surveys followed a standard line point-intercept sampling design. At each site, a 15 m weighted transect was draped along the reef surface. Surveyors recorded benthic composition at 15 cm intervals along the transect (i.e., 100 equidistant points). The benthic composition from these 100 points was then transformed to percent cover of ecologically important functional groups (scleractinian coral [species-specific], gorgonians, hydrocoral, CCA, macroalgae, turf algae, sponges, bare/dead substrate, sand/sediment).Carbonate budget analysisPlanar benthic surveys were adjusted to account for the three-dimensional complexity (i.e., rugosity) of each site using light detection and ranging (LiDAR) data (1 m horizontal resolution; 15 cm vertical resolution) from topobathymetric mapping surveys of the South Florida eastern coastline conducted by NOAA’s National Geodetic Survey. A 15 m x 15 m region of interest (ROI) was placed around the GPS coordinates of each site using ArcGIS Pro with 3D and Spatial Analyst extensions (ESRI). The ROI was then overlaid with existing multibeam echosounder (MBES) and LiDAR bathymetry data. Within the ROI, LiDAR was extracted using the Clip Raster function from ArcPy (ArcGIS’s python coding interface), and the Surface Volume tool was used to calculate the 3D surface area. Rugosity was calculated by dividing the 3D surface area by the 2D surface area of the ROI.The methodology for standardizing reef carbonate budgets to topographic complexity (i.e., rugosity) diverged from that of the ReefBudget approach by using site-specific rugosity rather than species-specific rugosity17. This was a necessary limitation of this analysis as transect rugosity at 1 m increments was not measured using the NCRMP benthic survey protocol. To ensure that reef topographic complexity was still accounted for, however, rugosity of the entire reef site, calculated from LiDAR bathymetry data, was used in this analysis. While rugosity of the site rather than of each benthic component, specifically for corals, can lead to an under or overestimation of carbonate production rates, we note that site and species rugosity (i.e., encrusting and massive coral morphologies) was low for the vast majority of sites and species surveyed, thereby reducing the probability of an under or overestimation.Reef carbonate budget analysis was performed following a modified version of the ReefBudget approach17. Coral carbonate production was derived from species-specific linear extension rates (cm year−1), skeletal density (g cm−3), coral morphology (branching, massive, sub-massive, encrusting/plating), and percent cover. Carbonate production by CCA and other calcareous encrusters was similarly calculated as a function of surface area, literature reported linear extension rates, and skeletal density17. Gross carbonate production at each survey site was measured as the sum total of carbonate production by all calcareous organisms found at each site and was standardized to site-specific reef rugosity.Gross carbonate erosion for each survey-site was calculated as the sum total of erosion by four bioeroding groups: parrotfish, microborers, macroborers, and urchins. The calculations roughly followed the ReefBudget methodologies17 (Table 1). Parrotfish size frequency distributions from NCRMP surveys were multiplied by size and species-specific bite rates (bites min−1), volume removed per bite (cm3), and proportion of bites leaving scars to calculate total parrotfish erosion17. The substrate density (1.72 g cm−3) used in these calculations followed that of the ReefBudget protocol17. Microbioerosion was calculated from the percent cover of dead coral substrate, which was multiplied by a literature-derived rate17 of − 0.240 kg CaCO3 m−2 year−1. Macroboring was calculated as the percent cover of clionid sponges multiplied by the average erosion rate of all Caribbean/Atlantic clionid sponges17 (-6.05 kg CaCO3 m−2 year−1). External bioerosion by urchins was calculated using Diadema urchin abundance collected from the benthic surveys. Due to the lack of test size data from the NCRMP benthic surveys, urchin abundance was multiplied by the bioerosion rate of an average test sized36 (66 mm) Caribbean/Atlantic Diadema urchin (-0.003 kg CaCO3 m-2 year−1). While using an average test sized Diadema urchin for this analysis may have led to an under or overestimation of urchin erosion, the abundance of Diadema urchins measured in the surveys was minimal, as they appeared to be functionally irrelevant across the FRT.Model validationAs the survey methodologies and data sources employed in this analysis were modified from that of the standard ReefBudget approach17, we chose to validate our model through a fine scale temporal comparison of annual ReefBudget surveys conducted by NOAA at Cheeca Rocks (UK) to three nearby NCRMP sites used in our analysis. Since the NCRMP surveys were performed in 2014, 2016, and 2018, this study focused exclusively on these three survey years from the NOAA Cheeca Rocks dataset. Temporal trends related to reef growth/erosion were visually compared to see if survey types provided comparable results (SI Figure S6).Statistical analysisAll model calculations and statistical analyses were performed using R37 with the R Studio extension38. Generalized linear models (GLMs) were run on response variables involved in habitat production (i.e., net carbonate production, gross carbonate production, and gross carbonate erosion) to evaluate spatial trends related to reef development across sub-regions and reef types. Each GLM was performed with reef type being nested within sub-region. The best fit distribution for each variable was determined using the fitdistrplus R package39. Linear regression analysis was used to evaluate the relationship between net carbonate production and both live coral cover and parrotfish biomass. All plots were created using ggplot2 R package40 and edited for style with Adobe Illustrator41. More

  • in

    Lithology and disturbance drive cavefish and cave crayfish occurrence in the Ozark Highlands ecoregion

    Sket, B. Can we agree on an ecological classification of subterranean animals?. J. Nat. Hist. 42, 1549–1563. https://doi.org/10.1080/00222930801995762 (2008).Article 

    Google Scholar 
    Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69, 641–650. https://doi.org/10.1093/biosci/biz064 (2019).Article 

    Google Scholar 
    Boulton, A. J., Fenwick, G. D., Hancock, P. J. & Harvey, M. S. Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebr. Syst. 22, 103–116. https://doi.org/10.1071/IS07024 (2008).Article 

    Google Scholar 
    Danielopol, D. L. & Griebler, C. Changing paradigms in groundwater ecology—From the ‘living fossils’ tradition to the ‘new groundwater ecology’. Int. Rev. Hydrobiol. 93, 565–577. https://doi.org/10.1002/iroh.200711045 (2008).Article 

    Google Scholar 
    Griebler, C., Malard, F. & Lefébure, T. Current developments in groundwater ecology—From biodiversity to ecosystem function and services. Curr. Opin. Biotechnol. 27, 159–167. https://doi.org/10.1016/j.copbio.2014.01.018 (2014).Article 
    PubMed 

    Google Scholar 
    Fišer, C. Niphargus—A model system for evolution and ecology. In Encyclopedia of Caves (eds Culver, D. C. et al.) 746–755 (Academic Press, 2019).Chapter 

    Google Scholar 
    Riddle, M. R. et al. Insulin resistance in cavefish as an adaptation to a nutrient-limited environment. Nature 555, 647–651. https://doi.org/10.1038/nature26136 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibert, J. et al. Assessing and conserving groundwater biodiversity: Synthesis and perspectives. Freshw. Biol. 54, 930–941. https://doi.org/10.1111/j.1365-2427.2009.02201.x (2009).Article 

    Google Scholar 
    Trontelj, P. et al. A molecular test for cryptic diversity in ground water: How large are the ranges of macro stygobionts?. Freshw. Biol. 54, 727–744. https://doi.org/10.1111/j.1365-2427.2007.01877.x (2009).Article 

    Google Scholar 
    Cooper, J. E. Ecological and Behavioral Studies in Shelta Cave, Alabama, with Emphasis on Decapod Crustaceans (University of Kentucky, 1975).
    Google Scholar 
    Voituron, Y., de Fraipont, M., Issartel, J., Guillaume, O. & Clobert, J. Extreme lifespan of the human fish (Proteus anguinus): A challenge for ageing mechanisms. Biol. Lett. 7, 105–107. https://doi.org/10.1098/rsbl.2010.0539 (2011).Article 
    PubMed 

    Google Scholar 
    Poulson, T. L. Cave adaptation in amblyopsid fishes. Am. Midl. Nat. 70, 257–290. https://doi.org/10.2307/2423056 (1963).Article 

    Google Scholar 
    Venarsky, M. P., Huryn, A. D. & Benstead, J. P. Re-examining extreme longevity of the cave crayfish Orconectes australis using new mark–recapture data: A lesson on the limitations of iterative size-at-age models. Freshw. Biol. 57, 1471–1481. https://doi.org/10.1111/j.1365-2427.2012.02812.x (2012).Article 

    Google Scholar 
    Culver, D. C., Kane, T. C. & Fong, D. W. Adaptation and Natural Selection in Caves: The Evolution of Gammarus minus (Harvard University Press, 1995).Book 

    Google Scholar 
    Niemiller, M. L. & Poulson, T. L. Subterranean fishes of North America: Amblyopsidae. In Biology of Subterranean Fishes (eds Trajano, E. et al.) 169–280 (CRC Press, 2010).Chapter 

    Google Scholar 
    Fišer, C., Zagmajster, M. & Zakšek, V. Coevolution of life history traits and morphology in female subterranean amphipods. Oikos 122, 770–778. https://doi.org/10.1111/j.1600-0706.2012.20644.x (2013).Article 

    Google Scholar 
    Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. Biol. Sci. 267, 1947–1952. https://doi.org/10.1098/rspb.2000.1234 (2000).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change 4, 217–221. https://doi.org/10.1038/nclimate2113 (2014).Article 
    ADS 

    Google Scholar 
    Niemiller, M. L., Bichuette, E. & Taylor, S. J. Conservation of cave fauna in Europe and the Americas. In Ecological Studies: Cave Ecology (eds Moldovan, O. T. et al.) 451–478 (Springer, 2018).Chapter 

    Google Scholar 
    Niemiller, M. L. & Taylor, S. J. Protecting cave life. In Encyclopedia of Caves (eds Culver, D. C. et al.) 822–829 (Academic Press, 2019).Chapter 

    Google Scholar 
    Niemiller, M. L., Taylor, S. J., Slay, M. E. & Hobbs, H. H. III. Biodiversity in the United States and Canada. In Encyclopedia of Caves (eds Culver, D. C. et al.) 163–176 (Academic Press, 2019).Chapter 

    Google Scholar 
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–529. https://doi.org/10.1146/annurev-ecolsys-112414-054400 (2015).Article 

    Google Scholar 
    MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence (Academic Press, 2018).MATH 

    Google Scholar 
    Roberto, P. & Pietro, B. Species rediscovery or lucky endemic? Looking for the supposed missing species Leistus punctatissimus through a biogeographer’s eye (Coleoptera, Carabidae). ZooKeys 740, 97–108. https://doi.org/10.3897/zookeys.740.23495 (2018).Article 

    Google Scholar 
    Chu, C., Mandrak, N. E. & Minns, C. K. Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Divers. Distrib. 11, 299–310. https://doi.org/10.1111/j.1366-9516.2005.00153.x (2005).Article 

    Google Scholar 
    Larson, E. R. & Olden, J. D. Latent extinction and invasion risk of crayfishes in the southeastern United States. Conserv. Biol. 24, 1099–1110. https://doi.org/10.1111/j.1523-1739.2010.01462.x (2010).Article 
    PubMed 

    Google Scholar 
    Filipe, A. F. et al. Selection of priority areas for fish conservation in Guadiana River Basin, Iberian Peninsula. Conserv. Biol. 18, 189–200. https://doi.org/10.1111/j.1523-1739.2004.00620.x (2004).Article 

    Google Scholar 
    Mammola, S. et al. Fundamental research questions in subterranean biology. Biol. Rev. 95, 1855–1872. https://doi.org/10.1111/brv.12642 (2020).Article 
    PubMed 

    Google Scholar 
    Domínguez-Domínguez, O., Martínez-Meyer, E., Zombrano, L. & de León, G. P. Using ecological-niche modeling as a conservation tool for freshwater species: Live-bearing fishes in central Mexico. Conserv. Biol. 20, 1730–1739. https://doi.org/10.1111/j.1523-1739.2006.00588.x (2006).Article 
    PubMed 

    Google Scholar 
    Mammola, S. & Leroy, B. Applying species distribution models to caves and other subterranean habitats. Ecography 41, 1194–1208. https://doi.org/10.1111/ecog.03464 (2018).Article 

    Google Scholar 
    Castellarini, F., Malard, F., Dole-Olivier, M. & Gibert, J. Modelling the distribution of stygobionts in the Jura Mountains (eastern France). Implications for the protection of ground waters. Divers. Distrib. 13, 213–224. https://doi.org/10.1111/j.1472-4642.2006.00317.x (2007).Article 

    Google Scholar 
    Foulquier, A., Malard, F., Lefébure, T., Douady, C. J. & Gibert, J. The imprint of Quaternary glaciers on the present-day distribution of the obligate groundwater amphipod Niphargus virei (Niphargidae). J. Biogeogr. 35, 552–564. https://doi.org/10.1111/j.1365-2699.2007.01795.x (2008).Article 

    Google Scholar 
    Johns, T. et al. Regional-scale drivers of groundwater faunal distributions. Freshw. Sci. 34, 316–328. https://doi.org/10.1086/678460 (2015).Article 

    Google Scholar 
    Camp, C. D., Wooten, J. A., Jensen, J. B. & Bartek, D. F. Role of temperature in determining relative abundance in cave twilight zones by two species of lungless salamander (family Plethodontidae). Can. J. Zool. 92, 119–127. https://doi.org/10.1139/cjz-2013-0178 (2014).Article 

    Google Scholar 
    Korbel, K. L., Hancock, P. J., Serov, P., Lim, R. P. & Hose, G. C. Groundwater ecosystems vary with land use across a mixed agricultural landscape. J. Environ. Qual. 42, 380–390. https://doi.org/10.2134/jeq2012.0018 (2013).Article 
    PubMed 

    Google Scholar 
    Español, C. et al. Does land use impact on groundwater invertebrate diversity and functionality in floodplains?. Ecol. Eng. 103, 394–403. https://doi.org/10.1016/j.ecoleng.2016.11.061 (2017).Article 

    Google Scholar 
    Christman, M. C. et al. Predicting the occurrence of cave-inhabiting fauna based on features of the earth surface environment. PLoS One 11, e0160408. https://doi.org/10.1371/journal.pone.0160408 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zagmajster, M. et al. Geographic variation in range size and beta diversity of groundwater crustaceans: Insights from habitats with low thermal seasonality. Glob. Ecol. Biogeogr. 23, 1135–1145. https://doi.org/10.1111/geb.12200 (2014).Article 

    Google Scholar 
    Poff, N. L. Landscape filters and species traits: Towards mechanistic understanding and prediction in stream ecology. J. North Am. Benthol. Soc. 16, 391–409. https://doi.org/10.2307/1468026 (1997).Article 

    Google Scholar 
    Stevenson, R. J. Scale-dependent determinants and consequences of benthic algal heterogeneity. J. North Am. Benthol. Soc. 16, 248–262. https://doi.org/10.2307/1468255 (1997).Article 
    ADS 

    Google Scholar 
    U.S. Geological Survey. NLCD 2011 land cover. Multi-Resolution Land Characteristics. https://www.mrlc.gov/data/nlcd-2011-land-cover-conus (2011).Adamski, J. C. Geochemistry of the Springfield Plateau Aquifer of the Ozark Plateaus Province in Arkansas, Kansas, Missouri and Oklahoma, USA. Hydrol. Process. 14, 849–866. https://doi.org/10.1002/(SICI)1099-1085(20000415)14:5%3c849::AID-HYP973%3e3.0.CO;2-7 (2000).Article 
    ADS 

    Google Scholar 
    Woods, A. J. et al. Ecoregions of Oklahoma (Color Poster with Map, Descriptive Text, Summary Tables, and Photographs) (U.S. Geological Survey, 2005).
    Google Scholar 
    Unklesbay, A. G. & Vineyard, J. D. Missouri Geology: Three Billion Years of Volcanoes, Seas, Sediments, and Erosion (University of Missouri Press, 1992).
    Google Scholar 
    Eigenmann, C. H. A new blind fish. In Proceedings of the Indiana Academy of Science 1897 (ed Waldo, C. A.) 231 (1898).Graening, G. O., Fenolio, D. B., Niemiller, M. L., Brown, A. V. & Beard, J. B. The 30-year recovery effort for the Ozark cavefish (Amblyopsis rosae): Analysis of current distribution, population trends, and conservation status of this threatened species. Environ. Biol. Fish. 87, 55–88. https://doi.org/10.1007/s10641-009-9568-2 (2010).Article 

    Google Scholar 
    Niemiller, M. L., Near, T. J. & Fitzpatrick, B. M. Delimiting species using multilocus data: Diagnosing cryptic diversity in the southern cavefish, Typhlichthys subterraneus (Teleostei: Amblyopsidae). Evolution 66, 846–866. https://doi.org/10.1111/j.1558-5646.2011.01480.x (2012).Article 
    PubMed 

    Google Scholar 
    Hobbs, H. H. Jr. & Brown, A. V. A new troglobitic crayfish from northwestern Arkansas (Decapoda: Cambaridae). Proc. Biol. Soc. Wash. 100, 1040–1048 (1987).
    Google Scholar 
    Graening, G. O., Slay, M. E., Brown, A. V. & Koppelman, J. B. Status and distribution of the endangered Benton cave crayfish, Cambarus aculabrum (Decapoda: Cambaridae). Southwest. Nat. 51, 376–381. https://doi.org/10.1894/0038-4909(2006)51[376:SADOTE]2.0.CO;2 (2006).Article 

    Google Scholar 
    Faxon, W. Cave animals from southwestern Missouri. Bull. Mus. Comp. Zool. 17, 225–240 (1889).
    Google Scholar 
    Graening, G. O., Hobbs, H. H. III., Slay, M. E., Elliott, W. R. & Brown, A. V. Status update for bristly cave crayfish, Cambarus setosus (Decapoda: Cambaridae), and range extension into Arkansas. Southwest. Nat. 51, 382–392. https://doi.org/10.1894/0038-4909(2006)51[382:SUFBCC]2.0.CO;2 (2006).Article 

    Google Scholar 
    Hobbs, H. H. III. Cambarus (Jugicambarus) subterraneus, a new cave crayfish (Decapoda: Cambaridae) from northeastern Oklahoma, with a key to the troglobitic members of the subgenus Jugicambarus. Proc. Biol. Soc. Wash. 106, 719–727 (1993).
    Google Scholar 
    Graening, G. O. & Fenolio, D. B. Status update of the Delaware County cave crayfish, Cambarus subterraneus (Decapoda: Cambaridae). Proc. Okla. Acad. Sci. 85, 85–89 (2005).
    Google Scholar 
    Hobbs, H. H. Jr. & Cooper, M. R. A new troglobitic crayfish from Oklahoma (Decapoda: Astacidae). Proc. Biol. Soc. Wash. 85, 49–56 (1972).
    Google Scholar 
    Graening, G. O. et al. Range extension and status update for the Oklahoma cave crayfish, Cambarus tartarus (Decapoda: Cambaridae). Southwest. Nat. 51, 94–99 (2006).Article 

    Google Scholar 
    Hobbs, H. H. III. A new cave crayfish of the genus Orconectes, subgenus Orconectes, from southcentral Missouri, USA, with a key to the stygobitic species of the genus (Decapoda, Cambaridae). Crustaceana 74, 635–646. https://doi.org/10.1163/156854001750377911 (2001).Article 

    Google Scholar 
    Miller, B. V. The Hydrology of the Carroll Cave-Toronto Springs System: Identifying and Examining Source Mixing Through Dye Tracing, Geochemical Monitoring, Seepage Runs, and Statistical Methods (Western Kentucky University, 2010).
    Google Scholar 
    Mouser, J. B., Brewer, S. K., Niemiller, M. L., Mollenhauer, R. & Van Den Bussche, R. Comparing visual and environmental DNA surveys for detection of stygobionts. Subterr. Biol. 39, 79–105. https://doi.org/10.3897/subtbiol.39.64279 (2021).Article 

    Google Scholar 
    Longmire, J. L., Maltbie, M. & Baker, R. J. Use of “Lysis Buffer” in DNA Isolation and Its Implication for Museum Collections (Museum of Texas Tech University, 1997).Book 

    Google Scholar 
    Mouser, J. B., Mollenhauer, R. & Brewer, S. K. Relationships between landscape constraints and a crayfish assemblage with consideration of competitor presence. Divers. Distrib. 25, 61–73. https://doi.org/10.1111/ddi.12840 (2019).Article 

    Google Scholar 
    U.S. Geological Survey. 1 Arc-second digital elevation models (DEMs)—USGS national map 3DEP downloadable data collection. https://data.usgs.gov/datacatalog/data/USGS:35f9c4d4-b113-4c8d-8691-47c428c29a5b (U.S. Geological Survey, 2017).Oak Ridge National Laboratory Distributed Active Archive Center. MODIS and VIIRS land products global subsetting and visualization tool. Oak Ridge National Laboratory Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/1379 (2018).Horton, J. D., San Juan, C. A. & Stoeser, D. B. The state geologic map compilation (SGMC) geodatabase of the conterminous United States. U.S. Geol. Surv. https://doi.org/10.3133/ds1052 (2017).Article 

    Google Scholar 
    MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 (2002).Article 

    Google Scholar 
    Tyre, A. J. et al. Improving precision and reducing bias in biological surveys: Estimating false negative error rates. Ecol. Appl. 13, 1790–1801. https://doi.org/10.1890/02-5078 (2003).Article 

    Google Scholar 
    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel Hierarchical Models (Cambridge University Press, 2007).
    Google Scholar 
    Kéry, M. & Royle, J. A. Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS (Academic Press, 2016).MATH 

    Google Scholar 
    Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing (eds Hornik, K. et al.) 1–10 (Austrian Science Foundation, 2003).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Kellner, J. jagsUI: A wrapper around ‘rjags’ to streamline ‘JAGS’ analyses. https://CRAN.R-project.org/package=jagsUI (R-project, 2019).Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455. https://doi.org/10.1080/10618600.1998.10474787 (1998).Article 
    MathSciNet 

    Google Scholar 
    Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan (Academic Press, 2015).MATH 

    Google Scholar 
    Hobbs, N. T. & Hooten, M. B. Bayesian Models (Princeton University Press, 2015). https://doi.org/10.1515/9781400866557.Book 

    Google Scholar 
    Conn, P. B., Johnson, D. S., Williams, P. J., Melin, S. R. & Hooten, M. B. A guide to Bayesian model checking for ecologists. Ecol. Monogr. 88, 526–542. https://doi.org/10.1002/ecm.1314 (2018).Article 

    Google Scholar 
    Allan, J. D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 35, 257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122 (2004).Article 

    Google Scholar 
    Paul, M. J. & Meyer, J. L. Streams in the urban landscape. Annu. Rev. Ecol. Evol. Syst. 32, 333–365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040 (2001).Article 

    Google Scholar 
    Wicks, C., Kelley, C. & Peterson, E. Estrogen in a karstic aquifer. Groundwater 42, 384–389. https://doi.org/10.1111/j.1745-6584.2004.tb02686.x (2004).Article 

    Google Scholar 
    Buřič, M., Kouba, A., Máchová, J., Mahovská, I. & Kozák, P. Toxicity of the organophosphate pesticide diazinon to crayfish of differing age. Int. J. Environ. Sci. Technol. 10, 607–610. https://doi.org/10.1007/s13762-013-0185-4 (2013).Article 

    Google Scholar 
    Sohn, L., Brodie, R. J., Couldwell, G., Demmons, E. & Sturve, J. Exposure to a nicotinoid pesticide reduces defensive behaviors in a non-target organism, the rusty crayfish Orconectes rusticus. Ecotoxicology 27, 900–907. https://doi.org/10.1007/s10646-018-1950-4 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Noltie, D. B. & Wicks, C. M. How hydrogeology has shaped the ecology of Missouri’s Ozark cavefish, Amblyopsis rosae, and southern cavefish, Typhlichthys subterraneus: Insights on the sightless from understanding the underground. Environ. Biol. Fish. 62, 171–194. https://doi.org/10.1023/A:1011815806589 (2001).Article 

    Google Scholar 
    Kuhajda, B. R. & Mayden, R. L. Status of the federally endangered Alabama cavefish, Speoplatyrhinus poulsoni (Amblyopsidae), in Key Cave and surrounding caves, Alabama. Environ. Biol. Fish. 62, 215–222. https://doi.org/10.1023/A:1011817023749 (2001).Article 

    Google Scholar 
    Hutchins, B. T. The conservation status of Texas groundwater invertebrates. Biodivers. Conserv. 27, 475–501. https://doi.org/10.1007/s10531-017-1447-0 (2018).Article 

    Google Scholar 
    Niemiller, M. L. et al. Discovery of a new population of the federally endangered Alabama cave shrimp, Palaemonias alabamae Smalley, 1961, in northern Alabama. Subterr. Biol. 32, 43–59. https://doi.org/10.3897/subtbiol.32.38280 (2019).Article 

    Google Scholar 
    Abell, R., Allan, J. D. & Lehner, B. Unlocking the potential of protected areas for freshwaters. Biol. Conserv. 134, 48–63. https://doi.org/10.1016/j.biocon.2006.08.017 (2007).Article 

    Google Scholar 
    Liu, Y. et al. A review on effectiveness of best management practices in improving hydrology and water quality: Needs and opportunities. Sci. Total Environ. 601–602, 580–593. https://doi.org/10.1016/j.scitotenv.2017.05.212 (2017).Article 
    ADS 
    PubMed 

    Google Scholar  More

  • in

    Two simple movement mechanisms for spatial division of labour in social insects

    Automated tracking of four social insect speciesFifty queenright colonies were used in the tracking experiments (Table 1). Honeybee colonies (subspecies A. mellifera carnica) were housed in the campus apiary of the University of Lausanne. Colonies of L. niger were raised from single mated queens collected on campus. T. nylanderi colonies were collected from the University of Lausanne campus, and L. acervorum colonies collected from Anzeindaz, Switzerland. These four species were chosen because of their abundance and easy availability in Switzerland, and because they – or closely-related species – have previously been used as model systems for the study of spatial organisation in social insects20,21,23,27,44. The colony sizes used in our experiments (Table 1) fell within the natural range of sizes experienced by these species in nature, either as recently founded colonies (L. niger colonies are founded by a single queen and progressively grow from a few workers to mature sizes of up to 40,000 workers over the course of several years; new honeybee colonies are founded by swarms counting 2400–41,000 bees61) or as mature colonies (all colonies of T. nylanderi and L. acervorum used in our experiments were mature colonies collected whole from the field).In all species, a paper tag bearing a unique two-dimensional barcode was glued to the thorax of individuals to allow automated tracking of their movements (Fig. S1). In the ants, tagging of all individuals was performed in a single session two days before the beginning of the experiment, whilst in the bees, newly-emerged workers (one-day-old or less) were tagged every 3 days over the 21 days prior to the beginning of the experiment (Supplementary Note 1).Tagged colonies were kept in glass observation nests with a single entrance (internal nest dimensions, A. mellifera: 69 × 45 × 4 cm, L. niger: 70 × 40 × 8 mm; L. acervorum: 63 × 42 × 2 mm, T. nylanderi: 63 × 42 × 1.5 mm). The honeybee observation nests also included a 64 × 44 cm wooden frame enclosing a double-sided wax comb containing honey, pollen, and developing brood20. Bees were free to move between both sides of the comb. In all species, individuals were allowed to freely exit and enter the nest. Ants were provided with ad libitum food (Drosophila, sugar solution) and water in a foraging arena, while bees foraged on natural resources outside. Both the ant and honeybee observation nests were exposed to diurnal cycles of temperature and light (Supplementary Note 1).High resolution digital video cameras operating at two frames per second were used to identify the location and orientation of each tag across successive images22. All colonies were continuously tracked for three days, which corresponded to the inter-cohort time in the honeybee colonies. The trajectories of each worker, and the physical contacts between workers (Fig. S18 and Supplementary Note 14) were extracted using an existing software pipeline62.Building bipartite site-visit networksTo quantify the spatial preferences of individual ants and bees, the interior of the nest was discretised into a regular hexagonal lattice (Fig. 1a, b). Because the worker body lengths of our four study species span an order of magnitude (from ~ 1.5 mm for T. nylanderi to ~ 15 mm for A. mellifera), the width of the hexagonal bins were defined as 1/4 of the mean worker body-length.To characterise the spatial preferences of different individuals to different parts of the nest, we counted the number of times ({n}_{i}^{s}) that each individual i visited each hexagonal site s. A visit by individual i to site s began when i crossed the border into s, and was terminated when i crossed the border out of s, regardless of the amount of time spent inside. To prevent stationary individuals located on the border between two adjacent sites from rapidly accumulating many single-frame visits to the two sites, successive visits to a same site were only counted when at least 20s elapsed between the end of the previous visit and the start of the next.The site-visit data were used to construct a bipartite network, in which individuals (layer 1) were connected by undirected edges to the sites (layer 2) they visited (Fig. 1c, d). Because individuals typically made multiple visits to the same sites, each edge i–s was weighted according to the total number of times individual i visited site s, that is, ({n}_{i}^{s}).Partitioning site-visit networks into modulesThe extent to which the site-visit networks were partitioned into discrete ‘modules’ (i.e., set of workers with similar space-use patterns and the set of sites that they exhibit strong ties to) was assessed using the DIRTLPAwb+ algorithm for partitioning weighted bipartite networks39. This algorithm searches for the partition that maximises the number and strength of the links within modules, whilst minimizing connections between modules. The number of modules was not specified a priori by the user, but was identified by the algorithm. All site-visit networks had positive modularity (Fig. S3), indicating that they could be partitioned into a set of well-separated modules (Figs. 1e–h, S2, and S4–S5). The modules in each partition were then assigned functional labels according to the following rules. First, the module whose sites were on average closest to the nest entrance was labelled ‘forager’ module. Second, the module or modules with the greatest spatial overlap with the brood pile in the ant colonies or the broodnest(s) in the honeybee colonies were labelled ‘nurse’ module(s). After defining the forager and nurse modules, the remaining modules (if any) were labelled as follows. If there was only one module remaining after identifying the nurse and forager modules, as was typically the case in honeybee colonies, it was labelled ‘peripheral’. If there were two modules remaining, as was typically the case in ant colonies, then the module whose sites were on average closer to the nest borders (i.e., to the periphery of the nest) was labelled ‘peripheral’, and the remaining module labelled ‘intermediate’. In some cases, the DIRTLPAwb+ algorithm identified five or more modules (9.0% of all iterations across all species and colonies). In these cases, the supernumerary modules never contained more than 1 or 2 individuals, and as they could not be unequivocally assigned using our labelling scheme, they were left unclassified for these iterations.Validating network modulesAs a network constructed by a purely random process could exhibit apparent modular structure by chance, we tested whether the discovered modules represent statistically significant entities. To do so, we produced 1000 null model random networks for each observed network using an established permutation method for bipartite networks63 (Supplementary Note 2). Comparisons between the maximum modularity of the observed networks with that of the corresponding random networks showed that, in all four species, the observed modularity was significantly greater than expected by chance (Fig. S3).Constructing worker task profilesA unique labour profile for each ant and each honeybee was constructed by estimating the activity of each worker in the following four tasks:1. Entrance guarding: workers were classed as guarding when they were (i) within two body lengths of the entrance, (ii) roughly facing the entrance, i.e., with a body alignment diverging from the direct heading to the entrance by no more than π/2 radians, and (iii) ‘on station’ at the entrance, as defined by trajectory coordinates with an associated first passage time (ref. 64; time taken for the individual to pass beyond a circle centred on its current location with a radius of two body-lengths) in excess of 500s.2. Patrolling: workers were classed as patrolling65 when they were (i) active, and (ii) ‘roaming’, as defined by first passage times of More

  • in

    Community context and pCO2 impact the transcriptome of the “helper” bacterium Alteromonas in co-culture with picocyanobacteria

    We aimed to understand the impact of changing pCO2 (400 vs. 800 ppm, representing current and projected year 2100 concentrations) on Prochlorococcus and Synechococcus and its effects on their interactions with the co-cultured heterotrophic “helper” bacterium Alteromonas sp. EZ55. Consistent with our previous research [7], EZ55 was more strongly affected by year 2100 pCO2 than any of the photoautotrophs in our study despite the primary dependence of the latter organisms’ metabolism on CO2. Strikingly, elevated pCO2 tended to reduce or eliminate the effect of co-culture on EZ55, with far fewer genes being significantly differentially transcribed relative to axenic EZ55 at the same pCO2. Thus, pCO2 strongly impacted the metabolic conversation between cyanobacteria and EZ55. Our detailed analysis of differentially regulated metabolic pathways suggested three mutually reinforcing mechanisms underlying this dynamic interaction: (i) pCO2 impacts on the release of ‘leaky’ cyanobacteria-derived metabolites, (ii) alteration of the dynamics of competition over inorganic nutrients between the co-cultured organisms, and (iii) modulation of bacterial and phytoplankton stress states. We explore each of these mechanisms in further detail below.Carbon cycling of “leaky” metabolites in co-cultureThe media we used for coculturing phytoplankton and bacteria contained no exogenous carbon sources; therefore, EZ55 was dependent on cyanobacterial exudates to grow, and it is likely that much of its changed transcription reflected changing availability of extracellular metabolites in the medium. The significant upregulation of carbon catabolism and transport genes as well as chemotaxis genes in co-cultures relative to axenic EZ55 supports the view that bacterial remineralization of cyanobacteria-secreted organic compounds is a driving force in these simple ecosystems. Additionally, changes in transcription of carbohydrate catabolism and transport genes provide clues as to which metabolites were being secreted under different experimental conditions (Fig. 5).Fig. 5: Proposed reconstruction of Alteromonas EZ55 ecophysiology.Reconstructions are shown for four different community contexts (axenic culture, or co-culture with Prochlorococcus MIT9312, Synechococcus WH8102, or Synechococcus CC9311) at 400 or 800 ppm pCO2, reflecting possible changes in the availability of C compounds, growth limiting factors, and stress conditions consistent with differential gene transcription observations. EZ55 image was obtained by cryoelectron microscopy from the sessions reported in Hennon et al. [7]. Background colors for each partner correspond to the bar colors in Fig. 3.Full size imageLike all oxygenic phototrophs, the cyanobacteria studied here fix carbon using the enzyme rubisco, which also catalyzes the undesirable photorespiration reaction leading to the production of 2PG instead of photosynthate. Phytoplankton in the field and in culture have been observed to excrete low molecular weight carboxylic acids including glycolate [39,40,41]. Photorespiratory glycolate is one of the most abundant sources of carbon in the oceans [38] and a preferred growth substrate for some marine heterotrophic bacteria [42]. Moreover the bacterial glcD gene for converting glycolate to glyoxylate is ubiquitously transcribed in the ocean [41, 43]. Although EZ55 lacks a specific transporter for glycolate, it can be taken up by the cell using the same transporters used for acetate and lactate uptake [44, 45], both of which were upregulated in co-culture conditions at 400 ppm (Fig. 3). Our data also showed differential regulation of enzymes involved in glycolate catabolism pathways, with at least one pathway upregulated in co-culture with each cyanobacterial strain (Fig. 3). We further demonstrated that EZ55 cultures were capable of growth on glycolate as a sole source of carbon, possibly using a novel GlcDF fusion protein (Fig. S11) and/or a plant-like LOX/GOX enzyme (Fig. 4). Thus, photorespiratory byproducts are likely a source of carbon for EZ55 in these cultures, particularly in the presence of MIT9312, which has no detectable enzymes for reclaiming 2PG on its own.There was also evidence that EZ55 utilized amino acids, organic acids, and fatty acids produced by phytoplankton under certain conditions in these cultures (Fig. S9). Lactate, acetate, and propanoate transporters and catabolism pathways were upregulated in co-culture with all cyanobacteria, as was pyruvate dehydrogenase with MIT9312, but only at 400 ppm. Both valine and glycine catabolism were also upregulated at 400 ppm in co-culture with the two Synechococcus strains, and fatty acid catabolism was upregulated in co-culture with MIT9312 and CC9311 at 400 ppm pCO2. Most of these substances have been directly or indirectly observed in cyanobacterial cultures in previous studies. For example, glycolate, lactate, acetate, and pyruvate have been directly measured in Prochlorococcus spent media [39], and co-culture with Prochlorococcus can fulfill the SAR11 growth requirement for glycine and pyruvate [46]. Fatty acid catabolism genes may have targeted membrane vesicles which are abundantly released by Prochlorococcus and other marine bacteria and may be a significant source of carbon for heterotrophs in the ocean [47, 48]; if so, future studies should investigate if WH8102 produces fewer vesicles than the other two cyanobacteria, explaining the differential transcription of beta-oxidation genes observed here.Valine, fatty acid, and propanoate catabolic pathways intersect with the formation of propanoyl-coA which in bacteria is generally fed into the TCA cycle through the methylcitrate pathway [49], which was significantly downregulated at 400 ppm in co-culture with all cyanobacteria even though other genes in these pathways were upregulated. Therefore, it is not clear what the ultimate fate of carbon from these sources is, although it is possible that EZ55 may be able to convert propanoyl-coA into a TCA cycle intermediate through another alternative pathway (e.g. as has been described in Mycobacterium tuberculosis via the methylmalonyl pathway [50]).Notably, gene transcription related to the utilization of all these products declined at 800 ppm pCO2 (Figs. 3, S8, S9). This was not unexpected for enzymes in the glycolate utilization pathways, as the increased CO2/O2 ratio at 800 ppm should decrease the rate of photorespiration relative to carbon fixation and therefore the availability of photorespiratory metabolites like glycolate [51, 52]. It is not clear, however, why organic and fatty acids would be less abundant in cyanobacterial exudates at 800 ppm. One possibility is that cyanobacteria release fewer of these compounds into the medium at high pCO2 because of a change in their internal redox state under these conditions favoring full oxidation of photosynthate. If future pCO2 conditions fundamentally alter the character of phytoplankton exudates, this could have profound implications for evolution and ecosystem functioning in future oceans.Evidence for inorganic nutrient limitation and competitionAutotrophic cyanobacteria and heterotrophic EZ55 were unlikely to compete over carbon under our experimental conditions, but we observed evidence of competition over inorganic nutrients such as N, P, and Fe. EZ55 phosphate, ammonium, and iron transporters, nitrogen regulatory protein P-II, and glutamine synthetase (the primary gateway for N assimilation in bacteria) were all more highly transcribed for all co-cultures compared to axenic cultures at 400 ppm pCO2 (Fig. S6), suggesting a switch from axenic carbon limitation to nutrient limitation in the presence of a continual supply of photosynthetically derived carbon (Fig. 5). On the other hand, few nutrient transporters were upregulated compared to axenic under 800 ppm pCO2. Although gene transcription data alone is not sufficient to conclude whether Alteromonas is limited by inorganic or organic nutrients, the reduced importance of nutrient acquisition suggests that EZ55 is carbon limited under these conditions just as it is in the absence of cyanobacteria.There were comparatively few species-specific changes in EZ55 nutrient transporter gene transcription. One example was an ammonium transporter, which was strongly upregulated in co-culture with both open ocean cyanobacteria (MIT9312 and WH8102) at 400 ppm pCO2. This may reflect a response to a comparatively high affinity for N in cyanobacteria adapted to the permanently oligotrophic open ocean, making them much stronger competitors for limiting N than coastal CC9311. N competition with EZ55 has been observed to increase the relative competitive fitness of Prochlorococcus vs. Synechococcus (coastal strain WH7803) in 3-way co-cultures [53]. In contrast, WH8102 appears to have higher N demand under 800 ppm pCO2, significantly upregulating a nitrate transporter and several genes related to urea utilization (Fig. S2). This may be explained by the enhanced transcription of carbon fixation genes and faster exponential growth rates observed in WH8102 at elevated pCO2, increasing N demand, and may indicate that WH8102 was C limited at 400 ppm.It is important to note that different N sources were provided in PEv medium (in which axenic EZ55 and MIT9312 co-cultures were grown) and SEv medium (in which CC9311 and WH8102 co-cultures were grown), with NH4+ in the former and NO3- in the latter. However, we do not think this difference can explain the observed changes in gene regulation, since EZ55 is capable of growth using either N source. It is interesting to note, however, that EZ55’s ammonium transporter was upregulated in both media types (Fig. S6), suggesting it may be benefitting from ammonium excreted by Synechococcus in SEv co-cultures.Impacts of co-culture and pCO2 on stress conditionsEZ55 showed less transcription of stress-related genes at 400 than 800 ppm pCO2, and also less evidence of stress in co-culture with any cyanobacterium than in axenic culture by itself. Nearly every gene in the EZ55 genome related to protection from H2O2 was downregulated in co-culture at 400 ppm, as were a suite of other stress-related genes (Fig. 2); on the other hand, many of these genes were significantly upregulated relative to axenic conditions at 800 ppm. Additionally, at 800 ppm there was a pronounced difference in EZ55 H2O2 defense gene transcription between cyanobacterial partners. As we described previously [7], both monofunctional catalases were downregulated at 800 ppm in co-culture with MIT9312, as were 2 of 3 alkylhydroperoxide reductase genes (although the third was significantly upregulated). In contrast, the monofunctional catalase genes were significantly upregulated in co-culture with WH8102 at 800 ppm. Elevated transcription of genes involved in the biosynthesis of glycine betaine, an osmoprotectant which has also been shown to function as an antioxidant [54, 55], provides further evidence for increased oxidative stress in co-culture with Synechococcus at 800 ppm in EZ55.Some indication of the mechanism behind EZ55’s changing stress level under co-culture and elevated pCO2 can be seen in the dynamics of three stress-related RNA polymerase sigma factors. Both rpoE and rpoH, responsible for controlling envelope and heat stress regulons, respectively, were downregulated at 400 ppm in co-culture relative to axenic and 800 ppm conditions; rpoE was significantly upregulated at 800 ppm pCO2. These trends are consistent with starvation-induced oxidative stress under both axenic and 800 ppm conditions, as discussed above. In contrast, rpoS was upregulated at 400 ppm pCO2, strongly so in co-culture with MIT9312. RpoS is a specialized sigma factor that accumulates under conditions of nutrient deprivation or as cells enter the stationary phase and serves to increase general stress resistance [56, 57]. For example, in Escherichia coli RpoS was shown to play a crucial role for survival during nitrogen deprivation [58]. While the decoupling of the transcription of oxidative stress genes like catalase from rpoS transcription was unexpected, rpoS trends are consistent with EZ55 being nutrient limited at 400 ppm pCO2 (Fig. S6) and with the upregulation of catalase in co-culture with MIT9312, but not WH8102 or CC9311, at 400 ppm (Fig. 2).In contrast to EZ55, differentially transcribed genes related to stress responses were rare in cyanobacteria at 800 ppm. While both MIT9312 and WH8102 had significant growth impairments at 800 ppm (Fig. S1), there was little evidence of a stress-specific gene transcription response in either strain. DNA mismatch repair genes were enriched as a group at 800 ppm in Prochlorococcus, although the only individual stress-related protein that was differentially transcribed was a HLI protein that was strongly downregulated at 800 ppm. No stress-related genes or gene sets were enriched in WH8102, and the small number of differentially transcribed stress genes in CC9311 (e.g., heat-shock and HLI proteins) were all downregulated at 800 ppm. This could indicate a dependence of both MIT9312 and WH8102 on their co-cultured EZ55 partner for protection, as neither of these cyanobacterial genomes contains catalase or several other stress-response genes common in heterotrophic bacteria. It could also indicate that they have different stress response mechanisms than those that have been characterized in heterotrophic bacteria; for instance, several hypothetical proteins of unknown function were differentially regulated in each cyanobacterium between the pCO2 conditions. Finally, it is possible that the stresses experienced by MIT9312 and WH8102 occurred in the initial days after transfer into fresh media (i.e., the significantly extended lag period observed for both), and were alleviated by the late log phase when the cultures were sampled for RNA sequencing.Summary overview of metabolic responsesWe have shown that the response to elevated pCO2 in our algal:bacterial co-cultures was driven more by interspecies interactions than by CO2-specific responses themselves. While it is important to note that we do not have direct culture-based evidence for some of these claims, we feel that gene transcription evidence is strong for several conclusions regarding the interactions in our cultures (Fig. 5).First, increased pCO2 appears to have fundamentally altered the amount and/or types of carbon compounds secreted by all three cyanobacterial strains examined, placing EZ55 into a stationary-phase metabolic state nearly indistinguishable to being in culture media with no added carbon source at all. We suggest that this is driven directly by the higher CO2:O2 ratio, which lowered the rate of photorespiration and subsequent release of 2PG and/or glycolate and indirectly may have reduced the amount of incompletely oxidized carbon released by cyanobacteria by changing the intracellular redox state [59]. Possibly because of the changing supply of carbon, EZ55 also appeared to transition away from a state of nutrient competition with its cyanobacterial partners, exemplified by decreased transcription of nutrient transporters at elevated pCO2 (Fig. S6).Second, co-culture at 400 ppm clearly reduced stress on EZ55 relative to either axenic growth or co-culture growth at 800 ppm, possibly due to the provision of a more reliable source of C as described above by the cyanobacterial partner under these conditions. In contrast, both MIT9312 and WH8102 clearly experienced elevated stress, potentially related to the changes in EZ55’s metabolism under these conditions. One of the major conclusions from our previous work [7] was the finding that EZ55 reduced catalase transcription at 800 ppm pCO2, eliminating the “helper” effect that Prochlorococcus depends on to grow in culture [13, 14]. In this work we see that the catalase response in co-culture with MIT9312 was opposite that in co-culture with the two Synechococcus strains. One possible explanation for this lies in the fact that MIT9312, unlike the other three strains in this study, did not possess a complete 2PG catabolism pathway and therefore likely excreted this product where it was subsequently catabolized by EZ55. We confirmed by genomic analysis (Figs. S10–S13) and culture experiments (Fig. 4) that EZ55 was able to grow on glycolate as a sole carbon source, and that its intracellular H2O2 concentration was elevated compared to growth on glucose. We suggest that more 2PG was secreted by MIT9312 at 400 ppm pCO2 due to the lower CO2:O2 ratio, and that growth on this carbon source increased EZ55’s internal oxidative stress load, resulting in higher transcription of H2O2 defenses such as catalase (Fig. 2). If true, this provides one possible explanation of why the “helper” relationship broke down at elevated pCO2 – by leaking 2PG as a readily available growth substrate for EZ55 at 400 ppm, MIT9312 forced EZ55 to maintain a high degree of intracellular ROS defense, leading to the well-characterized ability of EZ55 to cross-protect Prochlorococcus strains from the relatively lower H2O2 concentrations in the bulk environment, and allowing MIT9312 to eliminate two energetically costly enzymatic pathways. When higher pCO2 reduced the rate of photorespiration, EZ55’s need to produce excess catalase decreased, resulting in lower levels of protection, and concomitant growth impairments, for MIT9312.This is an example of how leaky Black Queen functions allow organisms like Prochlorococcus to streamline their metabolism while simultaneously creating stable interdependencies within their communities. However, it also shows how Black Queen-stabilized exchanges can break down. If our hypothesized relationship between pCO2 and catalase production is correct, then this system depends on the passive release of a metabolic by-product that evolved under a set of atmospheric pCO2 conditions that have been largely stable for thousands of years – but this leaves the system particularly vulnerable to the rapid changes in pCO2 currently taking place and may leave Prochlorococcus with no protection at all in the future ocean. If Prochlorococcus is outcompeted by less-streamlined competitors, this could reduce the overall efficiency of primary production in the open ocean gyres with possible positive feedbacks on CO2 accumulation in the atmosphere. Subsequent experiments should examine whether Prochlorococcus can overcome this imbalance through adaptive evolution quickly enough to avoid serious disruptions of its current niche.In conclusion, these results provide further support for the observation that axenic cultures do not provide a good window into the behavior of natural communities. The metabolism of Alteromonas sp. EZ55, a ubiquitous consumer in the ocean, was strongly dependent on its community context, and relatively subtle shifts in the chemical environment induced by elevated pCO2 were sufficient to significantly remodel its physiology. Moreover, the transcriptional response of EZ55 to changing pCO2 was much greater than that of any of the photoautotrophs examined, suggesting that more work is needed to understand the often-ignored heterotrophic bacteria associated with marine primary producers and how they will respond to global ocean change. Thus, further research is indicated on some of our core findings and hypotheses (e.g., the role of 2PG, and the nature of the carbon exchanged between the cyanobacteria and Alteromonas) via metabolomics or direct substrate measurements. These results further highlight the importance of laboratory experiments using co-cultures as an experimentally tractable intermediate between oversimplified axenic cultures and overly complicated natural communities. They also highlight the dominant role that primary producers play in determining the metabolism and interactions of the organisms that depend on them for sustenance. More

  • in

    Publisher Correction: Hydroclimatic vulnerability of peat carbon in the central Congo Basin

    These authors contributed equally: Yannick Garcin, Enno Schefuß, Greta C. Dargie, Simon L. LewisAix Marseille University, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, FranceYannick Garcin & Ghislain GassierInstitute of Geosciences, University of Potsdam, Potsdam, GermanyYannick GarcinMARUM—Center for Marine Environmental Sciences, University of Bremen, Bremen, GermanyEnno SchefußSchool of Geography, University of Leeds, Leeds, UKGreta C. Dargie, Bart Crezee, Dylan M. Young, Andy J. Baird, Paul J. Morris & Simon L. LewisSchool of Geography and Sustainable Development, University of St Andrews, St Andrews, UKDonna Hawthorne, Ian T. Lawson & George E. BiddulphIFP Energies Nouvelles, Earth Sciences and Environmental Technologies Division, Rueil-Malmaison, FranceDavid SebagInstitute of Earth Surface Dynamics, Geopolis, University of Lausanne, Lausanne, SwitzerlandDavid SebagFaculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the CongoYannick E. Bocko & Y. Emmanuel Mampouya WeninaÉcole Normale Supérieure, Université Marien Ngouabi, Brazzaville, Republic of the CongoSuspense A. IfoÉcole Normale Supérieure d’Agronomie et de Foresterie, Université Marien Ngouabi, Brazzaville, Republic of the CongoMackline MbembaFaculté de Gestion des Ressources Naturelles Renouvelables, Université de Kisangani, Kisangani, Democratic Republic of the CongoCorneille E. N. Ewango & Joseph Kanyama TabuFaculté des Sciences, Université de Kisangani, Kisangani, Democratic Republic of the CongoCorneille E. N. EwangoInstitut Supérieur Pédagogique de Mbandaka, Mbandaka, Democratic Republic of the CongoOvide Emba & Pierre BolaSchool of Geography, Geology and the Environment, University of Leicester, Leicester, UKGenevieve Tyrrell, Arnoud Boom & Susan E. PageSchool of Water, Energy and Environment, Cranfield University, Bedford, UKNicholas T. GirkinBritish Geological Survey, Centre for Environmental Geochemistry, Keyworth, UKChristopher H. VaneInstitute of Earth Sciences, University of Lausanne, Lausanne, SwitzerlandThierry AdatteNEIF Radiocarbon Laboratory, Scottish Universities Environmental Research Centre (SUERC), Glasgow, UKPauline GulliverSchool of Biosciences, University of Nottingham, Nottingham, UKSofie SjögerstenDepartment of Geography, University College London, London, UKSimon L. Lewis More

  • in

    Optimization of adult mosquito trap settings to monitor populations of Aedes and Culex mosquitoes, vectors of arboviruses in La Reunion

    Randolph, S. E. & Rogers, D. J. The arrival, establishment and spread of exotic diseases: Patterns and predictions. Nat. Rev. Microbiol. 8, 361–371 (2010).Article 
    PubMed 

    Google Scholar 
    Boussès, P., Dehecq, J. S., Brengues, C. & Fontenille, D. Inventaire actualisé des moustiques (Diptera : Culicidae) de l’île de La Réunion, océan Indien. Bulletin de la Société de pathologie exotique 106, 113–125 (2013).Article 
    PubMed 

    Google Scholar 
    Delatte, H. et al. Geographic distribution and developmental sites of Aedes albopictus (Diptera: Culicidae) during a Chikungunya epidemic event. Vector-Borne Zoonotic Dis. 8, 25–34 (2008).Article 
    PubMed 

    Google Scholar 
    Gomard, Y., Lebon, C., Mavingui, P. & Atyame, C. M. Contrasted transmission efficiency of Zika virus strains by mosquito species Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Reunion Island. Parasites Vectors https://doi.org/10.1186/s13071-020-04267-z (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vazeille, M., Dehecq, J.-S. & Failloux, A.-B. Vectorial status of the Asian tiger mosquito Aedes albopictus of La Réunion Island for Zika virus: Ae. Albopictus of la réunion island. Med. Vet. Entomol. 32, 251–254 (2018).Article 
    PubMed 

    Google Scholar 
    Youssouf, H. et al. Rift valley fever outbreak, Mayotte, France, 2018–2019. Emerg. Infect. Dis. 26, 769–772 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sang, R. et al. Rift valley fever virus epidemic in Kenya, 2006/2007: The entomologic investigations. Am. J. Trop. Med. Hyg. 83, 28–37 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardinale, E. et al. West Nile virus infection in horses, Indian ocean. Comp. Immunol. Microbiol. Infect. Dis. 53, 45–49 (2017).Article 
    PubMed 

    Google Scholar 
    Bouyer, J., Yamada, H., Pereira, R., Bourtzis, K. & Vreysen, M. J. B. Phased conditional approach for mosquito management using sterile insect technique. Trends Parasitol. 36, 325–336 (2020).Article 
    PubMed 

    Google Scholar 
    Lees, R. S., Carvalho, D. O. & Bouyer, J. Potential Impact of Integrating the Sterile Insect Technique into the Fight against Disease-Transmitting Mosquitoes 1081–1118 (CRC Press, 2021). https://doi.org/10.1201/9781003035572-33.Book 

    Google Scholar 
    Gouagna, L. C. et al. Strategic approach, advances, and challenges in the development and application of the SIT for area-wide control of Aedes albopictus mosquitoes in Reunion Island. Insects 11, 770 (2020).Article 
    PubMed Central 

    Google Scholar 
    Bouyer, J. & Lefrançois, T. Boosting the sterile insect technique to control mosquitoes. Trends Parasitol. 30, 271–273 (2014).Article 
    PubMed 

    Google Scholar 
    Soghigian, J. et al. Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Mol. Ecol. 29, 3593–3606 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouyer, J. & Vreysen, M. J. B. Yes, irradiated sterile male mosquitoes can be sexually competitive!. Trends Parasitol. 36, 877–880 (2020).Article 
    PubMed 

    Google Scholar 
    Owino, E. A. et al. Field evaluation of natural human odours and the biogent-synthetic lure in trapping Aedes aegypti, vector of dengue and chikungunya viruses in Kenya. Parasites Vectors 7, 451 (2014).
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kröckel, U., Andreas, R., Eiras, Á. & Geier, M. New tools for surveillance of adult yellow fever mosquitoes: Comparison of trap catches with human landing rates in an urban environment. J. Am. Mosq. Control Assoc. 22, 229–238 (2006).Article 
    PubMed 

    Google Scholar 
    Haramboure, M. et al. Modelling the control of Aedes albopictus mosquitoes based on sterile males release techniques in a tropical environment. Ecol. Model. 424, 109002 (2020).Article 

    Google Scholar 
    Farajollahi, A. et al. Field efficacy of BG-sentinel and industry-standard traps for Aedes albopictus (Diptera: Culicidae) and West Nile Virus Surveillance. J. Med. Entomol. 46, 919–925 (2009).Article 
    PubMed 

    Google Scholar 
    Roiz, D. et al. Trapping the Tiger: Efficacy of the novel BG-sentinel 2 with several attractants and carbon dioxide for collecting Aedes albopictus (Diptera: Culicidae) in Southern France. J. Med. Entomol. 53, 460–465 (2016).Article 
    PubMed 

    Google Scholar 
    Wilke, A. B. B. et al. Assessment of the effectiveness of BG-sentinel traps baited with CO2 and BG-Lure for the surveillance of vector mosquitoes in miami-dade County Florida. PLoS ONE 14, e0212688 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Staunton, K. M. et al. Effect of BG-lures on the male aedes (Diptera: Culicidae) sound trap capture rates. J. Med. Entomol. 58, 2425–2431 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Visser, T. M. et al. Optimisation and field validation of odour-baited traps for surveillance of Aedes aegypti adults in Paramaribo Suriname. Parasites Vectors 13, 121 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Owino, E. A. et al. An improved odor bait for monitoring populations of Aedes aegypti-vectors of dengue and chikungunya viruses in Kenya. Parasites Vectors 8, 253 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Le Goff, G. et al. Comparison of efficiency of BG-sentinel traps baited with mice, mouse-litter, and CO2 lures for field sampling of male and female aedes albopictus mosquitoes. Insects 8, 95 (2017).Article 
    PubMed Central 

    Google Scholar 
    Nielsen, G. D., Petersen, S. H., Vinggaard, A. M., Hansen, L. F. & Wolkoff, P. Ventilation, CO2 production, and CO2 exposure effects in conscious, restrained CF-1 mice. Pharmacol. Toxicol. 72, 163–168 (1993).
    Article 
    PubMed 

    Google Scholar 
    Gouagna, L. C., Dehecq, J.-S., Fontenille, D., Dumont, Y. & Boyer, S. Seasonal variation in size estimates of Aedes albopictus population based on standard mark–release–recapture experiments in an urban area on Reunion Island. Acta Trop. 143, 89–96 (2015).Article 
    PubMed 

    Google Scholar 
    Dekker, T., Geier, M. & Cardé, R. T. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J. Exp. Biol. 208, 2963–2972 (2005).Article 
    PubMed 

    Google Scholar 
    Grant, A. J. & O’Connell, R. J. Age-related changes in female mosquito carbon dioxide detection. J. Med. Entomol. 44, 617–623 (2007).Article 
    PubMed 

    Google Scholar 
    Bohbot, J. & Vogt, R. G. Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout. Insect Biochem. Mol. Biol. 35, 961–979 (2005).Article 
    PubMed 

    Google Scholar 
    Hartberg, W. K. Observations on the mating behaviour of Aedes aegypti in nature. Bull. World Health Organ. 45, 847 (1971).PubMed 
    PubMed Central 

    Google Scholar 
    Cator, L. J., Arthur, B. J., Ponlawat, A. & Harrington, L. C. Behavioral observations and sound recordings of free-flight mating swarms of Ae. aegypti (Diptera: Culicidae) in Thailand. J. Med. Entomol. 48, 941–946 (2011).Article 
    PubMed 

    Google Scholar 
    Lacroix, R., Delatte, H., Hue, T. & Reiter, P. Dispersal and survival of male and female Aedes albopictus(Diptera: Culicidae) on Réunion Island. J. Med. Entomol. 46, 1117–1124 (2009).Article 
    PubMed 

    Google Scholar 
    Pombi, M. et al. Field evaluation of a novel synthetic odour blend and of the synergistic role of carbon dioxide for sampling host-seeking Aedes albopictus adults in Rome, Italy. Parasites Vectors 7, 580 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cilek, J. E., Hallmon, C. F. & Johnson, R. Semi-field comparison of the Bg Lure, nonanal, and 1-Octen-3-OL to attract adult mosquitoes in northwestern Florida. J. Am. Mosq. Control Assoc. 27, 393–397 (2011).Article 
    PubMed 

    Google Scholar 
    Bagny Beilhe, L., Delatte, H., Juliano, S. A., Fontenille, D. & Quilici, S. Ecological interactions in Aedes species on Reunion Island. Med. Vet. Entomol. 27, 387–397 (2013).Article 
    PubMed 

    Google Scholar 
    Golstein, C., Boireau, P. & Pagès, J.-C. Benefits and limitations of emerging techniques for mosquito vector control. Comptes Rendus Biol. 342, 270–272 (2019).Article 

    Google Scholar 
    Maïga, H., Gilles, J. R. L., Lees, R. S., Yamada, H. & Bouyer, J. Demonstration of resistance to satyrization behavior in Aedes aegypti from La Réunion island. Parasite 27, 22 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Soft. https://doi.org/10.18637/jss.v027.i08 (2008).Article 

    Google Scholar 
    Fawaz, E. Y., Allan, S. A., Bernier, U. R., Obenauer, P. J. & Diclaro, J. W. Swarming mechanisms in the yellow fever mosquito: Aggregation pheromones are involved in the mating behavior of Aedes aegypti. J. Vector Ecol. 39, 347–354 (2014).Article 
    PubMed 

    Google Scholar 
    Guthery, F. S., Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach. J. Wildl. Manag. 67, 655 (2003).Article 

    Google Scholar 
    Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology 399 (CRC Press/Chapman & Hall, 2006). https://doi.org/10.1201/9781315273075.Book 
    MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2022).Barton, K. MuMIn: Multi-Model Inference. (R-Forge, 2022).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 496 (Springer-Verlag, 2002).MATH 

    Google Scholar 
    Xie, Y., Dervieux, C. & Riederer, E. R Markdown Cookbook (Chapman; Hall/CRC, 2020). https://doi.org/10.1201/9781003097471.Book 

    Google Scholar  More