More stories

  • in

    Publisher Correction: Hydroclimatic vulnerability of peat carbon in the central Congo Basin

    These authors contributed equally: Yannick Garcin, Enno Schefuß, Greta C. Dargie, Simon L. LewisAix Marseille University, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, FranceYannick Garcin & Ghislain GassierInstitute of Geosciences, University of Potsdam, Potsdam, GermanyYannick GarcinMARUM—Center for Marine Environmental Sciences, University of Bremen, Bremen, GermanyEnno SchefußSchool of Geography, University of Leeds, Leeds, UKGreta C. Dargie, Bart Crezee, Dylan M. Young, Andy J. Baird, Paul J. Morris & Simon L. LewisSchool of Geography and Sustainable Development, University of St Andrews, St Andrews, UKDonna Hawthorne, Ian T. Lawson & George E. BiddulphIFP Energies Nouvelles, Earth Sciences and Environmental Technologies Division, Rueil-Malmaison, FranceDavid SebagInstitute of Earth Surface Dynamics, Geopolis, University of Lausanne, Lausanne, SwitzerlandDavid SebagFaculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the CongoYannick E. Bocko & Y. Emmanuel Mampouya WeninaÉcole Normale Supérieure, Université Marien Ngouabi, Brazzaville, Republic of the CongoSuspense A. IfoÉcole Normale Supérieure d’Agronomie et de Foresterie, Université Marien Ngouabi, Brazzaville, Republic of the CongoMackline MbembaFaculté de Gestion des Ressources Naturelles Renouvelables, Université de Kisangani, Kisangani, Democratic Republic of the CongoCorneille E. N. Ewango & Joseph Kanyama TabuFaculté des Sciences, Université de Kisangani, Kisangani, Democratic Republic of the CongoCorneille E. N. EwangoInstitut Supérieur Pédagogique de Mbandaka, Mbandaka, Democratic Republic of the CongoOvide Emba & Pierre BolaSchool of Geography, Geology and the Environment, University of Leicester, Leicester, UKGenevieve Tyrrell, Arnoud Boom & Susan E. PageSchool of Water, Energy and Environment, Cranfield University, Bedford, UKNicholas T. GirkinBritish Geological Survey, Centre for Environmental Geochemistry, Keyworth, UKChristopher H. VaneInstitute of Earth Sciences, University of Lausanne, Lausanne, SwitzerlandThierry AdatteNEIF Radiocarbon Laboratory, Scottish Universities Environmental Research Centre (SUERC), Glasgow, UKPauline GulliverSchool of Biosciences, University of Nottingham, Nottingham, UKSofie SjögerstenDepartment of Geography, University College London, London, UKSimon L. Lewis More

  • in

    Scale matters in service supply

    Balvanera, P. et al. Bioscience 64, 49–57 (2014).Article 

    Google Scholar 
    Hooper, D. U. et al. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    Balvanera, P. et al. Ecol. Lett. 9, 1146–1156 (2006).Article 
    PubMed 

    Google Scholar 
    Cardinale, B. J. et al. Am. J. Bot. 98, 572–592 (2011).Article 
    PubMed 

    Google Scholar 
    Cardinale, B. J. B. J. et al. Nature 486, 59–67 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Manning, P. et al. in Advances in Ecological Research (eds Eisenhauer N. et al.) 323–356 (Academic, 2019).Le Provost, G. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01918-5 (2022).Felipe-Lucia, M. R. et al. Proc. Natl Acad. Sci. USA 117, 28140–28149 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foley, J. A. et al. Science 309, 570–574 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cardinale, B. J. et al. Ecology 94, 1697–1707 (2013).Article 
    PubMed 

    Google Scholar 
    Teles da Mota, V. & Pickering, C. J. Outdoor Recreat. Tour. 30, 100295 (2020).Article 

    Google Scholar 
    Mitchell, M. G. E. et al. Trends Ecol. Evol. 30, 190–198 (2015).Article 
    PubMed 

    Google Scholar 
    Raudsepp-Hearne, C. & Peterson, G. D. Ecol. Soc. 21, 16 (2016).Article 

    Google Scholar 
    Chaplin-Kramer, R. & Kremen, C. Ecol. Appl. 22, 1936–1948 (2012).Article 
    PubMed 

    Google Scholar  More

  • in

    Managing reefs for productivity

    Seguin, R. et al. Nat. Sustain. https://doi.org/10.1038/s41893-022-00981-x (2022).Article 

    Google Scholar 
    Roberts, C. M. & Polunin, N. V. C. Rev. Fish Biol. Fish. 1, 65–91 (1991).Article 

    Google Scholar 
    Cinner, J. E. et al. Soc. Nat. Resour. 27, 994–1005 (2014).Article 

    Google Scholar 
    MacNeil, M. A. et al. Nature 520, 341–344 (2015).Article 
    CAS 

    Google Scholar 
    Morais, R. A. & Bellwood, D. R. Coral Reefs 39, 1221–1231 (2020).Article 

    Google Scholar 
    Morais, R. A., Connolly, S. R. & Bellwood, D. R. Glob. Change Biol. 26, 1295–1305 (2020).Article 

    Google Scholar 
    Di Lorenzo, M. et al. Fish Fish. 21, 906–915 (2020).Article 

    Google Scholar 
    Ban, N. C. et al. Nat. Sustain. 2, 524–532 (2019).Article 

    Google Scholar 
    Rogers, A. et al. Ecology 99, 450–463 (2018).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Nat. Ecol. Evol. 3, 183–190 (2019).Article 

    Google Scholar  More

  • in

    Evolution of cross-tolerance in Drosophila melanogaster as a result of increased resistance to cold stress

    Prasad, N. G. & Joshi, A. What have two decades of laboratory life-history evolution studies on Drosophila melanogaster taught us?. J. Genet. 82, 45–76 (2003).CAS 
    PubMed 

    Google Scholar 
    MacMillan, H. A., Walsh, J. P. & Sinclair, B. J. The effects of selection for cold tolerance on cross-tolerance to other environmental stressors in Drosophila melanogaster. Insect Sci. 16, 263–276 (2009).
    Google Scholar 
    Flatt, T. Life-history evolution and the genetics of fitness components in drosophila melanogaster. Genetics 214(1), 3–48. https://doi.org/10.1534/genetics.119.300160 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hoffmann, A. A. & Parsons, P. A. Selection for increased desiccation resistance in Drosophila melanogaster: Additive genetic control and correlated responses for other stresses. Genetics 122, 837–845 (1989).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nghiem, D., Gibbs, A. G., Rose, M. R. & Bradley, T. J. Postponed aging and desiccation resistance in Drosophila melanogaster. Exp. Gerontol. 35, 957–969 (2000).CAS 
    PubMed 

    Google Scholar 
    Hoffmann, A. A., Scott, M., Partridge, L. & Hallas, R. Overwintering in Drosophila melanogaster: Outdoor field cage experiments on clinal and laboratory selected populations help to elucidate traits under selection. J. Evol. Biol. 16, 614–623 (2003).CAS 
    PubMed 

    Google Scholar 
    Bubliy, O. A. & Loeschcke, V. Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J. Evol. Biol. 18, 789–803 (2005).CAS 
    PubMed 

    Google Scholar 
    Bourg, É. L. & Le Bourg, É. A cold stress applied at various ages can increase resistance to heat and fungal infection in aged Drosophila melanogaster flies. Biogerontology 12, 185–193 (2011).PubMed 

    Google Scholar 
    Sejerkilde, M., Sørensen, J. G. & Loeschcke, V. Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster. J. Insect Physiol. 49, 719–726 (2003).CAS 
    PubMed 

    Google Scholar 
    Coulson, S. C. & Bale, J. S. Effect of rapid cold hardening on reproduction and survival of offspring in the housefly Musca domestica. J. Insect Physiol. 38, 421–424 (1992).
    Google Scholar 
    Bayley, M., Petersen, S. O., Knigge, T., Köhler, H.-R. & Holmstrup, M. Drought acclimation confers cold tolerance in the soil collembolan Folsomia candida. J. Insect Physiol. 47, 1197–1204 (2001).CAS 
    PubMed 

    Google Scholar 
    Wu, B. S. et al. Anoxia induces thermotolerance in the locust flight system. J. Exp. Biol. 205, 815–827 (2002).CAS 
    PubMed 

    Google Scholar 
    Phelan, J. P. et al. Breakdown in correlations during laboratory evolution. I. Comparative analyses of Drosophila populations. Evolution 57, 527–535 (2003).PubMed 

    Google Scholar 
    Hoffmann, A. A. & Harshman, L. G. Desiccation and starvation resistance in Drosophila: Patterns of variation at the species, population and intrapopulation levels. Heredity 83(Pt 6), 637–643 (1999).PubMed 

    Google Scholar 
    Sinclair, B. J., Nelson, S., Nilson, T. L., Roberts, S. P. & Gibbs, A. G. The effect of selection for desiccation resistance on cold tolerance of Drosophila melanogaster. Physiol. Entomol. 32, 322–327 (2007).
    Google Scholar 
    Anderson, A. R., Hoffmann, A. A. & McKechnie, S. W. Response to selection for rapid chill-coma recovery in Drosophila melanogaster: Physiology and life-history traits. Genet. Res. 85, 15–22 (2005).PubMed 

    Google Scholar 
    Kellett, M., Hoffmann, A. A. & Mckechnie, S. W. Hardening capacity in the Drosophila melanogaster species group is constrained by basal thermotolerance. Funct. Ecol. 19, 853–858 (2005).
    Google Scholar 
    Overgaard, J., Sørensen, J. G., Petersen, S. O., Loeschcke, V. & Holmstrup, M. Reorganization of membrane lipids during fast and slow cold hardening in Drosophila melanogaster. Physiol. Entomol. 31, 328–335 (2006).CAS 

    Google Scholar 
    Hoffmann, A. A., Hallas, R., Anderson, A. R. & Telonis-Scott, M. Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. J. Evol. Biol. 18, 804–810 (2005).CAS 
    PubMed 

    Google Scholar 
    Singh, K., Kochar, E. & Prasad, N. G. Egg Viability, Mating Frequency and Male Mating Ability Evolve in Populations of Drosophila melanogaster Selected for Resistance to Cold Shock. PLoS ONE 10, e0129992 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Singh, K., Kochar, E., Gahlot, P., Bhatt, K. & Prasad, N. G. Evolution of reproductive traits have no apparent life-history associated cost in populations of Drosophila melanogaster selected for cold shock resistance. BMC Ecol. Evol. 21, 1–4 (2021).
    Google Scholar 
    Salehipour-Shirazi, G., Ferguson, L. V. & Sinclair, B. J. Does cold activate the Drosophila melanogaster immune system?. J. Insect Physiol. 96, 29–34 (2017).CAS 
    PubMed 

    Google Scholar 
    Singh, K., Zulkifli, M. & Prasad, N. G. Identification and characterization of novel natural pathogen of Drosophila melanogaster isolated from wild captured Drosophila spp. Microbes Infect. 18, 813–821 (2016).PubMed 

    Google Scholar 
    Singh, K., Samant, M. A., Tom, M. T. & Prasad, N. G. Evolution of Pre- and Post-Copulatory Traits in Male Drosophila melanogaster as a Correlated Response to Selection for Resistance to Cold Stress. PLoS ONE 11, e0153629 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Lefevre, G. J. & Jonsson, U. B. The effect of cold shock on D. melanogaster sperm. Drosophila Inf. Serv. 1962(36), 86–876 (1962).
    Google Scholar 
    Novitski, E. & Rush, G. Viability and fertility of Drosophila exposed to sub-zero temperatures. Biol. Bull. 97, 150–157 (1949).CAS 
    PubMed 

    Google Scholar 
    Arbogast, R. T. Mortality and Reproduction of Ephestia cautella and Plodia interpunctella 1 Exposed as Pupae to High Temperatures. Environ. Entomol. 10, 708–711 (1981).
    Google Scholar 
    Saxena, B. P., Sharma, P. R., Thappa, R. K. & Tikku, K. Temperature induced sterilization for control of three stored grain beetles. J. Stored Prod. Res. 28, 67–70 (1992).
    Google Scholar 
    Collett, J. I. & Jarman, M. G. Adult female Drosophila pseudoobscura survive and carry fertile sperm through long periods in the cold: Populations are unlikely to suffer substantial bottlenecks in overwintering. Evolution 55, 840–845 (2001).CAS 
    PubMed 

    Google Scholar 
    Schnebel, E. M. & Grossfield, J. Mating-temperature range in drosophila. Evolution 38, 1296–1307 (1984).PubMed 

    Google Scholar 
    Chakir, M., Chafik, A., Moreteau, B., Gibert, P. & David, J. R. Male sterility thermal thresholds in Drosophila: D. simulans appears more cold-adapted than its sibling D. melanogaster. Genetica 114, 195–205 (2002).PubMed 

    Google Scholar 
    David, J. R. et al. Male sterility at extreme temperatures: A significant but neglected phenomenon for understanding Drosophila climatic adaptations. J. Evol. Biol. 18, 838–846 (2005).CAS 
    PubMed 

    Google Scholar 
    Dolgin, E. S., Whitlock, M. C. & Agrawal, A. F. Male Drosophila melanogaster have higher mating success when adapted to their thermal environment. J. Evol. Biol. 19, 1894–1900 (2006).CAS 
    PubMed 

    Google Scholar 
    David, J. R. Male sterility at high and low temperatures in Drosophila. J. Soc. Biol. 202, 113–117 (2008).PubMed 

    Google Scholar 
    Zhang, W., Zhao, F., Hoffmann, A. A. & Ma, C.-S. A single hot event that does not affect survival but decreases reproduction in the diamondback moth, plutella xylostella. PLoS ONE 8, e75923 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tucić, N. Genetic capacity for adaptation to cold resistance at different developmental stages of Drosophila melanogaster. Evolution 33, 350–358 (1979).PubMed 

    Google Scholar 
    Chen, C.-P. & Walker, V. K. Increase in cold-shock tolerance by selection of cold resistant lines in Drosophila melanogaster. Ecol. Entomol. 18, 184–190 (1993).
    Google Scholar 
    Ring, R. A. & Danks, H. V. Desiccation and cryoprotection: Overlapping adaptations. Cryo Lett. 15, 181–190 (1994).
    Google Scholar 
    Ring, R. A. & Danks, H. The role of trehalose in cold-hardiness and desiccation. Cryo Lett. 19, 275–282 (1998).CAS 

    Google Scholar 
    Singh, K. & Prasad, N. G. Cold stress upregulates the expression of heat shock proteins and Frost genes, but evolution of cold stress resistance is apparently not mediated through either heat shock proteins or Frost genes in the cold stress selected population. bioRxiv https://doi.org/10.1101/2022.03.07.483305 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bubliy, O. A., Kristensen, T. N., Kellermann, V. & Loeschcke, V. Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster. Funct. Ecol. 26, 245–253 (2012).
    Google Scholar 
    Kristensen, T. N., Loeschcke, V. & Hoffmann, A. A. Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proc. Biol. Sci. 274, 771–778 (2007).PubMed 

    Google Scholar 
    Hoffmann, A. A., Anderson, A. & Hallas, R. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol. Lett. 5, 614–618 (2002).
    Google Scholar 
    Yi, S.-X. & Lee, R. E. Jr. Detecting freeze injury and seasonal cold-hardening of cells and tissues in the gall fly larvae, Eurosta solidaginis (Diptera: Tephritidae) using fluorescent vital dyes. J. Insect Physiol. 49, 999–1004 (2003).CAS 
    PubMed 

    Google Scholar 
    Macmillan, H. A. & Sinclair, B. J. Mechanisms underlying insect chill-coma. J. Insect Physiol. 57, 12–20 (2011).CAS 
    PubMed 

    Google Scholar 
    Marshall, K. E. & Sinclair, B. J. The sub-lethal effects of repeated freezing in the woolly bear caterpillar Pyrrharctia isabella. J. Exp. Biol. 214, 1205–1212 (2011).PubMed 

    Google Scholar 
    Sinclair, B. J., Ferguson, L. V., Salehipour-shirazi, G. & MacMillan, H. A. Cross-tolerance and cross-talk in the cold: Relating low temperatures to desiccation and immune stress in insects. Integr. Comp. Biol. 53, 545–556 (2013).PubMed 

    Google Scholar 
    Roxström-Lindquist, K., Terenius, O. & Faye, I. Parasite-specific immune response in adult Drosophila melanogaster: A genomic study. EMBO Rep. 5, 207–212 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Pham, L. N., Dionne, M. S., Shirasu-Hiza, M. & Schneider, D. S. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 3, e26 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Mikonranta, L., Mappes, J., Kaukoniitty, M. & Freitak, D. Insect immunity: Oral exposure to a bacterial pathogen elicits free radical response and protects from a recurring infection. Front. Zool. 11, 23 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Ramløv, H. & Lee, R. E. Jr. Extreme resistance to desiccation in overwintering larvae of the gall fly Eurosta solidaginis (Diptera, tephritidae). J. Exp. Biol. 203, 783–789 (2000).PubMed 

    Google Scholar 
    Holmstrup, M., Bayley, M. & Ramløv, H. Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proc. Natl. Acad. Sci. 99, 5716–5720 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chippindale, A. K. et al. Resource acquisition and the evolution of stress resistance in drosophila melanogaster. Evolution 52, 1342 (1998).PubMed 

    Google Scholar 
    Rose, M. R. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38, 1004–1010 (1984).ADS 
    PubMed 

    Google Scholar 
    Crill, W. D., Huey, R. B. & Gilchrist, G. W. Within- and between-generation effects of temperature on the morphology and physiology of Drosophila melanogaster. Evolution 50, 1205–1218 (1996).PubMed 

    Google Scholar 
    Kwan, L., Bedhomme, S., Prasad, N. G. & Chippindale, A. K. Sexual conflict and environmental change: Trade-offs within and between the sexes during the evolution of desiccation resistance. J. Genet. 87, 383–394 (2008).PubMed 

    Google Scholar  More

  • in

    Numerical simulation and parameter optimization of earth auger in hilly area using EDEM software

    Experiment results and regression modelThe simulation experiment results based on the design scheme are presented in Table 4, including 24 analysis factors and 7 zero-point experiments for estimating the errors. Quadratic multiple regression analysis of the results in Table 4 was performed using the Design-Expert software, and the regression models between the influencing factors and evaluation indices were established as follows:$$ Y_{{1}} = {1767.57} – {64.29}X_{{1}} + {117.46}X_{{2}} + {324.46}X_{{3}} + {107.87}X_{{4}} – {21.81}X_{{1}} X_{{2}} + {17.94}X_{{1}} X_{{3}} – {41.44}X_{{1}} X_{{4}} + {16.69}X_{{2}} X_{{3}} – {41.19}X_{{2}} X_{{4}} + {73.56}X_{{3}} X_{{4}} + {23.2}{X_{{1}}^{{2}}} – {82.42}{{X_{{2}}}^{{2}}} – {13.17}{{X_{{3}}}^{{2}}} – {53.67}{{X_{{4}}}^{{2}}} $$$$ Y_{{2}} = {1968.14} + {636.42}X_{1} + {34.42}X_{2} + {66}X_{3} + {115.17}X_{{4}} + {28.63}X_{{1}} X_{{2}} + {9.13}X_{{1}} X_{{3}} – { 45.87}X_{{1}} X_{{4}} + {1}0X_{{2}} X_{{3}} + {30.5}X_{{2}} X_{{4}} – {1.75}X_{{3}} X_{{4}} + {55.03}{X_{{1}}^{{2}}} – {8.1}{{X_{{2}}}^{{2}}} – {72.72}{{X_{{3}}}^{2}} + {61.03}{{X_{{4}}}^{{2}}} $$Table 4 Experiment schemes and results.Full size tableThe relationship between the actual values of the efficiency of conveying-soil and the distance of throwing-soil and the predicted values of the regression model is shown in Fig. 7. It can be seen from Fig. 7 that the actual values are basically distributed on the predicted curve, consistent with the trend of the predicted values, and linearly distributed.Figure 7Scatter plot. (a) Scatter plot of actual and predicted distance of throwing-soil. (b) Scatter plot of actual and predicted efficiency of conveying-soil.Full size imageVariance analysis and discussionThe F-test and analysis of variance (ANOVA) were performed on the regression coefficients in the regression models of the evaluation indices Y1 and Y2, and the results are shown in Table 5. According to the significance values P of the lack of fitting in the regression models of the objective functions Y1 and Y2 in Table 5, PL1 = 0.1485  > 0.05 and PL2 = 0.2337  > 0.05 (both were not significant), indicating that no loss factor existed in the regression analysis, and the regression model exhibited a high fitting degree.Table 5 ANOVA results of regression model.Full size tableAccording to the ANOVA, the significance values P of each influencing factor in the test could be determined28. For the evaluation index Y1, the factors X1, X2, X3, X4, X3X4, X22, X42 had extremely significant influences, while the factors X1X4, X2X4 had a significant influence. For the evaluation index Y2, the factors X1, X3, X4, X1X4, X12, X32, X42 had extremely significant influences, and the factors X2, X1X4 had a significant influence. Within the level range of the selected factors, according to the F value of each factor as shown in Table 5, the weight of the factors affecting the efficiency of conveying-soil is feeding speed  > helix angle of auger  > rotating speed of auger  > slope angle. And the weight of the factors affecting the distance of throwing-soil is slope auger  > rotating speed of auger  > feeding speed  > helix angle of auger.In addition, it is obvious that there are interactions between the feeding speed and rotating speed of the auger, slope auger and rotating speed of auger, helix angle of the auger and rotating speed of the auger on the efficiency of conveying-soil Y1. For the distance of throwing-soil Y2, there is an interaction between the slope angle and the rotating speed of the auger.Analysis of response surfaceThe fitting coefficient of the efficiency of conveying-soil is R2 = 0.9714, R2adjust = 0.9263, R2pred = 0.8082, the difference between R2adjust and R2pred is less than 0.2. The fitting coefficient of the distance of throwing-soil is R2 = 0.9873, R2adjust = 0.9742, R2pred = 0.9355, the difference between R2adjust and R2pred is smaller than 0.2. It is indicated that the response surfaces of the two models established have good consistency and predictability for the experimental results29.The response surface is created directly using the Design-Expert software. After entering the data, select “Analysis” module. In the “Model-Graph” menu bar, select “3D-surface” to switch to the 3D view. To express the interactive influence of each factor on the efficiency of conveying-soil Y1 and distance of the throwing-soil Y2, the above two quadratic regression equations of the evaluation indices were subjected to the dimensionality reduction treatment. Two of the factors was set to level 0, while the other two underwent interaction effect analysis to study the influence law on the evaluation indices Y1 and Y2, and the corresponding response surfaces were generated, as illustrated in Fig. 8.Figure 83D response diagram effect of evaluation indices. (a) Effect of interaction between X1 and X2 on efficiency of conveying-soil. (b) Effect of interaction between X2 and X4 on efficiency of conveying-soil. (c) Effect of interaction between X3 and X4 on efficiency of conveying-soil. (d) Effect of interaction between X3 and X4 on distance of throwing-soil.Full size imageIt can be seen in Fig. 8a, when the slope angle was constant, the efficiency of conveying-soil increased with the rotating speed of the auger to a certain value, then the efficiency increase changed more gently. The reasons for this phenomenon are described as follows. On the one hand, the greater the kinetic energy of the soil when leaving the original position, and the thinner the soil was cut, resulting in the smaller the probability of blockage in the spiral blade space. On the other hand, the centrifugal force of soil arriving at the pit mouth is greater, so it does not obstruct in the pit mouth. However, if the rotation speed of the auger was too high and the soil layer cut was too thin, the subsequent soil’s driving effect to the front would be weakened, or even the flow would be interrupted, so the vertical rising speed of the soil would be reduced. When the rotational speed of the auger was constant, the efficiency of conveying-soil decreased with the increase of slope and then slightly increased. With the increase of slope, the time of slope cutting process increased, and there was more soil backfilling on the side of high altitude, which leaded to the reduction of soil discharge efficiency. However, with the increase of slope, the amount of soil slide at the pit mouth was increased, improving the efficiency of soil discharge. Further analysis demonstrated that the response surface for Y1 changed more rapidly in the direction of the rotating speed than in that of the slope angle, indicating that the rotating speed of auger X4 had a more significant influence than the slope angle X1.As can be seen in Fig. 8b, when the helix angle of the auger was fixed, the efficiency of conveying-soil continued to increase with the increase of the rotation speed. When the rotating speed of auger was fixed, the efficiency of conveying-soil increased with the increase of the helix angle and tends to decrease when it reached a certain value. The spiral blades space was the channel of soil movement. This phenomenon was caused by the increase of the gap between the two spiral blades with the increase of the helix angle of the auger, the soil was not easy to produce blockage. Meanwhile, the movement distance of soil was shorter, and the soil with higher kinetic energy was discharged more quickly from the pit. When reaching the pit mouth, the angle of soil throwing was larger and the soil backfilling rate was reduced. However, if the helix angle of auger was too large, the upward support ability and friction of the spiral blade surface to the soil would be reduced. Further analysis demonstrated that the response surface for Y1 changed more rapidly in the direction of the helix angle than the rotating speed of the auger, indicating that the helix angle of the auger X2 had a more significant influence than the rotating speed of the auger X4.When the feeding speed was fixed, the efficiency of throwing-soil continued to increase with the increase of the rotating speed. When the rotating speed of auger was fixed, the efficiency of the throwing-soil with the increase of the feeding speed (see in Fig. 8c). The phenomenon was caused by the faster the feeding speed of the auger, the thickness of soil cut per unit time increased. Furthermore, the subsequent driving force of soil increased, and the soil kinetic energy increased. However, in the actual production, excessive feeding speed would cause soil blockage on the surface of spiral blades. The reason is due to in the simulation process, the soil would not stop moving because of blockage. Further analysis demonstrated that the response surface for Y1 changed more rapidly in the direction of the rotating speed than in that of the feeding speed, indicating that the rotating speed of auger X4 had a more significant influence than the feeding speed X3.When the slope was fixed, the distance of the throwing-soil increased with the increase of rotation speed of the auger, and the increase amplitude increased gradually, as shown in Fig. 8d. The reason for this phenomenon was that the soil had more kinetic energy when it left its original position and the centrifugal force it received when it reaching the pit mouth is greater. When the rotation speed was too low, the soil layer was thin and the subsequent soil driving force was insufficient, resulting in the soil mass per unit area at the pit mouth was light and then the kinetic energy was small. When the rotating speed of auger was fixed, the distance of the throwing-soil increased continuously with the increase of the slope. As the slope increased, the time of soil swipe down process increased and then the rolling distance on the slope increased. Further analysis demonstrated that the response surface for Y2 changed more rapidly in the direction of the slope angle than in that of the rotating speed of auger, indicating that the slope angle X1 had a more significant influence than the rotating speed X3.Comprehensive optimal designAs relative importance and influencing rules of various experimental factors on evaluation indexes were different from each other, evaluation indexes should be taken into comprehensive consideration30. The optimization equation is obtained by the Design-Expert software multi-objective optimization method with Y1 and Y2 as the optimization objective function.$$25le {X}_{1}le 45$$$$10le {X}_{2}le 22$$$$0.04le {X}_{3}le 0.1$$$$30le {X}_{4}le 120$$$${{Y}_{1}}_{mathrm{max}}({X}_{1},{X}_{2},{X}_{3},{X}_{4})$$$${{Y}_{2}}_{min}({X}_{1},{X}_{2},{X}_{3},{X}_{4})$$In practice, the best combination of parameters needs to be selected according to the terrain slope. When the slope was fixed, the Design-Expert software was applied to optimize and solve the above mathematical model. The optimal combination of working parameters affecting the efficiency of conveying-soil Y1 and distance of throwing-soil Y2 for the auger were obtained and are shown in Table 6. If the ground preparation was required before the digging operation, the digging parameters can be designed according to values of Group 6 in Table 6.Table 6 Optimal parameter combinations of several terrain slopes.Full size tableDisturbance of soilA soil disturbance is defined as the loosening, movement and mixing of soil caused by an auger passing through the soil16. In the interface of the EDEM Analyst, add a “Clipping plane” to show the movement of the auger inside the pit. The kinetic energy, soil particle velocity vector, and velocity value of soil particles is observed when the auger in the middle of the soil bin31,32, as shown in Fig. 9.Figure 9The disturbance of the soil effect by spiral blade.Full size imageThe soil was lifted to the surface and then dropped to the lower side. In addition to the volume occupied by the spiral blades, the disturbed area also included the out-of-pit disturbed area caused by the compression of the cutting end of the spiral blade, as shown in the lower left corner of the auger.The kinetic energy and velocity of soil decreased firstly and then increased along the opposite direction of the auger feeding. The cutting end of the auger and the soil-throwing section occurred in the region with high kinetic energy and velocity. This was because the maximum kinetic energy was obtained at the cutting end of the auger, which was gradually consumed in the process of rising. After reaching the dumping end, the soil lost the restraint of the pit wall. When the centrifugal force of soil lost the reaction force, the kinetic energy of soil increased. Too much kinetic energy, however, can cause the soil to spread too far, causing subsequent trouble. The kinetic energy of the soil at the cutting end was related to the rotational speed of the auger. The spiral angle affected the angle between the force and gravity, and then the kinetic energy consumption in the process of soil increased.Verification experimentsTo verify the accuracy of the optimization model for auger working, as well as to evaluate the rationality of the working parameter combination optimized by the virtual experiment, performance verification tests were carried out on the EDEM software. According to the optimized process parameter setting test (as shown in Table 6), the relative error between the theoretical value and the experimental value was obtained. The verification test results are summarized in Table 7. The average relative errors of the efficiency of conveying-soil and the distance of throwing-soil between the Theoretical value and text value were only 4.4%, 9.1%. The simulation model is fairly accurate. The field performance verification experiments were carried out in slope. Figure 10 illustrates the field test and working conditions.Table 7 Results and comparison of validation test.Full size tableFigure 10Operation diagram at the experiment site.Full size image More

  • in

    Global and regional ecological boundaries explain abrupt spatial discontinuities in avian frugivory interactions

    Dataset acquisitionPlant-frugivore network data were obtained through different online sources and publications (Supplementary Table 1). Only networks that met the following criteria were retrieved: (i) the network contains quantitative data (a measure of interaction frequency) from a location, pooling through time if necessary; (ii) the network includes avian frugivores. Importantly, we removed non-avian frugivores from our analyses because only 28 out of 196 raw networks (before data cleaning) sampled non-avian frugivores, and not removing non-avian frugivores would generate spurious apparent turnover between networks that did vs. did not sample those taxa. In addition, the removal of non-avian frugivores did not strongly decrease the number of frugivores in our dataset (Supplementary Fig. 20a) or the total number of links in the global network of frugivory (Supplementary Fig. 20b). Furthermore, non-avian frugivores, as well as their interactions, were not shared across ecoregions and biomes (Supplementary Fig. 21), so their inclusion would only strengthen the results we found (though as noted above, we believe that this would be spurious because they are not as well sampled); (iii) the network (after removal of non-avian frugivores) contains greater than two species in each trophic level. Because this size threshold was somewhat arbitrary, we used a sensitivity analysis to assess the effect of our network size threshold on the reported patterns (see Sensitivity analysis section in the Supplementary Methods and Supplementary Figs. 22–24); and (iv) network sampling was not taxonomically restricted, that is, sampling was not focused on a specific taxonomic group, such as a given plant or bird family. Note, however, that authors often select focal plants or frugivorous birds to be sampled, but this was not considered as a taxonomic restriction if plants and birds were not selected based on their taxonomy (e.g., focal plants were selected based on the availability of fruits at the time of sampling, or focal birds were selected based on previous studies of bird diet in the study site). The first source for network data was the Web of Life database42, which contains 33 georeferenced plant-frugivore networks from 28 published studies, of which 12 networks met our criteria.We also accessed the Scopus database on 04 May 2020 using the following keyword combination: (“plant-frugivore*” OR “plant-bird*” OR “frugivorous bird*” OR “avian frugivore*” OR “seed dispers*”) AND (“network*” OR “web*”) to search for papers that include data on avian frugivory networks. The search returned a total of 532 studies, from which 62 networks that met the above criteria were retrieved. We also contacted authors to obtain plant-frugivore networks that were not publicly available, which provided us a further 110 networks. The remaining networks (N = 12) were obtained by checking the database from a recently published study12. In total, 196 quantitative avian frugivory networks were used in our analyses.Generating the distance matrices to serve as predictor and response variablesEcoregion and biome distancesWe used the most up-to-date (2017) map of ecoregions and biomes3, which divides the globe into 846 terrestrial ecoregions nested within 14 biomes, to generate our ecoregion and biome distance matrices. Of these, 67 ecoregions and 11 biomes are represented in our dataset (Supplementary Figs. 1 and 2). We constructed two alternative versions of both the ecoregion and biome distance matrices. In the first, binary version, if two ecological networks were from localities within the same ecoregion/biome, a dissimilarity of zero was given to this pair of networks, whereas a dissimilarity of one was given to a pair of networks from distinct ecoregions/biomes (this is the same as calculating the Euclidean distance on a presence–absence matrix with networks in rows and ecoregion/biomes in columns).In the second, quantitative version, we estimated the pairwise environmental dissimilarity between our ecoregions and biomes using six environmental variables recently demonstrated to be relevant in predicting ecoregion distinctness, namely mean annual temperature, temperature seasonality, mean annual rainfall, rainfall seasonality, slope and human footprint38. We obtained climatic and elevation data from WorldClim 2.143 at a spatial resolution of 1-km2. We transformed the elevation raster into a slope raster using the terrain function from the raster package44 in R45. As a measure of human disturbance, we used human footprint—a metric that combines eight variables associated with human disturbances of the environment: the extent of built environments, crop land, pasture land, human population density, night-time lights, railways, roads and navigable waterways26. The human footprint raster was downloaded at a 1-km2 resolution26. Because human footprint data were not available for one of our ecoregions (Galápagos Islands xeric scrub), we estimated human footprint for this ecoregion by converting visually interpreted scores into the human footprint index. We did this by analyzing satellite images of the region and following a visual score criterion26. Given the previously demonstrated strong agreement between visual score and human footprint values26, we fitted a linear model using the visual score and human footprint data from 676 validation plots located within the Deserts and xeric shrublands biome – the biome in which the Galápagos Islands xeric scrub ecoregion is located – and estimated the human footprint values for our own visual scores using the predict function in R45.We used 1-km2 resolution rasters and the extract function from the raster package44 to calculate the mean value of each of our six environmental variables for each ecoregion in our dataset. Because biomes are considerably larger than ecoregions (which makes obtaining environmental data for biomes more computationally expensive) we used a coarser spatial resolution of 5-km2 for calculating the mean values of environmental variables for each biome. Since a 5-km2 resolution raster was not available for human footprint, we transformed the 1-km2 resolution raster into a 5-km2 raster using the resample function from the same package.To combine these six environmental variables into quantitative matrices of ecoregion and biome environmental dissimilarity, we ran a Principal Component Analysis (PCA) on our scaled multivariate data matrix (where rows are ecoregions or biomes and columns are environmental variables). From this PCA, we selected the scores of the four and three principal components, which represented 89.6% and 88.7% of the variance for ecoregions and biomes, respectively, and converted it into a distance matrix by calculating the Euclidean distance between pairs of ecoregions/biomes using the vegdist function from the vegan package46. Finally, we transformed the ecoregion or biome distance matrix into a N × N matrix where N is the number of local networks. In this matrix, cell values represent the pairwise environmental dissimilarity between the ecoregions/biomes where the networks are located. The main advantage of using this quantitative approach is that, instead of simply evaluating whether avian frugivory networks located in distinct ecoregions or biomes are different from each other in terms of network composition and structure (as in our binary approach), we were also able to determine whether the extent of network dissimilarity depended on how environmentally different the ecoregions or biomes are from one another.Local-scale human disturbance distanceTo generate our local human disturbance distance matrix, we extracted human footprint data at a 1-km2 spatial resolution26 and calculated the mean human footprint values within a 5-km buffer zone around each network site. For the networks located within the Galápagos Islands xeric scrub ecoregion (N = 4), we estimated the human footprint index using the same method described in the previous section for ecoregion- or biome-scale human footprint. We then calculated the pairwise Euclidean distance between human footprint values from our network sites. Thus, low cell values in the local human disturbance distance matrix indicate pairs of network sites with a similar level of human disturbance, while high values represent pairs of network sites with very different levels of human disturbance.Spatial distanceThe spatial distance matrix was generated using the Haversine (i.e., great circle) distance between all pairwise combinations of network coordinates. In this matrix, cell values represent the geographical distance between network sites.Elevational differenceWe calculated the Euclidean distance between pairwise elevation values (estimated as meters above sea level) of network sites to generate our elevational difference matrix. Elevation values were obtained from the original sources when available or using Google Earth47. In the elevational difference matrix, low cell values represent pairs of network sites within similar elevations, whereas high values represent pairs of network sites within very different elevations.Network sampling dissimilarityWe used the metadata retrieved from each of our 196 local networks to generate our network sampling dissimilarity matrices, which aim to control statistically for differences in network sampling. There are many ways in which sampling effort could be quantified, so we began by calculating a variety of metrics, then narrowed our options by assessing which of these was most related to network metrics. We divided the sampling metrics into two categories: time span-related metrics (i.e., sampling hours and months) and empirical metrics of sampling completeness (i.e., sampling completeness and sampling intensity), which aim to account for how complete network sampling was in terms of species interactions (Supplementary Table 2).We selected the quantitative sampling metrics to be included in our models based on (i) the fit of generalized linear models evaluating the relationship between number of sampling hours and sampling months of the study and network-level metrics (i.e., bird richness, plant richness and number of links), and (ii) how well time span-related metrics, sampling completeness and sampling intensity predicted the proportion of known interactions that were sampled in each local network (hereafter, ratio of interactions) for a subset of the data. This latter metric, defined as the ratio between the number of interactions in the local network and the number of known possible interactions in the region involving the species in the local network, captures raw sampling completeness. Therefore, ratio of interactions estimates, for a given set of species, the proportion of all their interactions known for a region that are found to occur among those same species in the local network. To calculate this metric, we needed high-resolution information on the possible interactions, so we used a subset of 14 networks sampled in Aotearoa New Zealand, since there is an extensive compilation of frugivory events recorded for this country48. After this process, we selected number of sampling hours, number of sampling months and sampling intensity for inclusion in our statistical models (Supplementary Figs. 7 and 8; Supplementary Table 2). We generated the corresponding distance matrices by calculating the Euclidean distance between metric values. Similarly, we generated a Euclidean distance matrix for differences in sampling year between pairs of networks, which aims to account for long-term changes in the environment, species composition and network sampling methods. We obtained the sampling year of our local networks from the original sources and calculated the mean sampling year value for those networks sampled across multiple years.Because sampling methods, such as sampling design, focus (i.e., focal taxa, which determines whether a zoocentric or phytocentric method was used), interaction frequency type (i.e., how interaction frequency was measured) and coverage (total or partial) might also affect the observed plant-frugivore interactions49, we combined these variables into a single distance matrix to estimate the overall differences in sampling methods between networks. Because most of these variables were categorical with multiple levels (Supplementary Table 3), we generated our method’s dissimilarity matrix by using a generalization of Gower’s distance method50, which allows the treatment of different types of variables when calculating distances. For this, we used the dist.ktab function from the ade4 package51. We ran a Principal Coordinates Analysis (PCoA) on this distance matrix, selected the first four axes, which explained 81.2% of the variation in method’s dissimilarity, and calculated the Euclidean distance between pairs of networks using the vegdist function from the vegan package46 in R45.Network dissimilarityWe generated three network dissimilarity matrices to be our response variables in the statistical models. In the first, cell values represent the pairwise dissimilarity in species composition between networks (beta diversity of species; βS)27. Second, we measured interaction dissimilarity (beta diversity of interactions; βWN), which represents the pairwise dissimilarity in the identity of interactions between networks27. Importantly, we did not include interaction rewiring (βOS) in our main analysis because this metric can only be calculated for networks that share interaction partners (i.e., it estimates whether shared species interact differently)27, which limited the number and the spatial distribution of networks available for analysis (but see the Rewiring analysis section for an analysis on the subset of our dataset for which this was possible). Metrics were calculated using the network_betadiversity function from the betalink package52 in R45.Finally, we calculated a third dissimilarity matrix to capture overall differences in network structure. We recognize that there are many potential metrics of network structure, and that many of these are strongly correlated with one another53,54,55,56. We therefore chose a range of metrics that captured the number of links, their relative weightings (including across trophic levels), and their arrangement among species, then combined these into a single distance matrix. Specifically, we quantified network structural dissimilarity using the following metrics: weighted connectance, weighted nestedness, interaction evenness, PDI and modularity.Weighted connectance represents the number of links relative to the number of possible links, weighted by the frequency of each interaction55, and is therefore a measure of network-level specialization (higher values of weighted connectance indicate lower specialization). Importantly, it has been suggested that connectance affects persistence in mutualistic systems54. We measured nestedness (i.e., the pattern in which specialist species interact with proper subsets of the species that generalist species interact with) using the weighted version of nestedness based on overlap and decreasing fill (wNODF)57. Notably, nested structures have been commonly reported in plant-frugivore networks33. Interaction evenness is Shannon’s evenness index applied for species interactions and represents how evenly distributed the interactions are in the network21,58. This metric has been previously demonstrated to decline with habitat modification as a consequence of some interactions being favored over others in high-disturbance environments21. PDI (Paired Difference Index) is a measure of species-level specialization on resources and a reliable indicator not only of specialization, but also of absolute generalism59. Thus, this metric contributes to understanding of the ecological processes that drive the prevalence of specialists or generalists in ecological networks59. In order to obtain a network-level PDI, we calculated the weighted mean PDI for each local network. Finally, we calculated modularity (i.e., the level of compartmentalization within networks) using the DIRTPLAwb+ algorithm60. Modularity estimates the extent to which species within modules interact more with each other than with species from other modules61, and it has been demonstrated to affect the persistence and resilience of mutualistic networks54. All the selected network metrics are based on weighted (quantitative) interaction data, as these have been suggested to be less biased by sampling incompleteness62 and to better reflect environmental changes21. All network metrics were calculated using the bipartite package63 in R45.We ran a Principal Component Analysis (PCA) on our scaled multivariate data matrix (N × M where N is the number of local networks in our dataset and M is the number of network metrics), selected the scores of the three principal components, which represented 89.9% of the variance in network metrics, and converted it into a network structural dissimilarity matrix by calculating the Euclidean distance between networks. In this distance matrix, cell values represent differences in the overall architecture of networks (over all the network metrics calculated), and therefore provide a complementary approach for evaluating how species interaction patterns vary across large-scale environmental gradients.Statistical analysisWe employed a two-tailed statistical test that combines Generalized Additive Models (GAM)29 and Multiple Regression on distance Matrices (MRM)30 to evaluate the effect of each of our predictor distance matrices on our response matrix. With this approach, we were able to fit GAMs where the predictor and responsible variables are distance matrices, while accounting for the non-independence of distances from each local network by permuting the response matrix30. The main advantage of using GAMs is their flexibility in modeling non-linear relationships through smooth functions, which are represented by a sum of simpler, fixed basis functions that determine their complexity29. Using GAM-based MRM models allowed us to obtain F values for each of the smooth terms (i.e., smooth functions of the predictor variables in our model), and test statistical significance at the level of individual variables. The binary versions of ecoregion and biome distance matrices (with two levels, “same” or “distinct”) were treated as categorical variables in the models, and t values were used for determining statistical significance. We fitted GAMs with thin plate regression splines64 using the gam function from the mgcv package29 in R45. Smoothing parameters were estimated using restricted maximum likelihood (REML)29. Our GAM-based MRM models were calculated using a modified version of the MRM function from the ecodist package65, which allowed us to combine GAMs with the permutation approach from the original MRM function (see Code availability). All the models were performed with 1000 permutations (i.e., shuffling) of the response matrix.We explored the unique and shared contributions of our predictor variables to network dissimilarity using deviance partitioning analyses. These were performed by fitting reduced models (i.e., GAMs where one or more predictor variables of interest were removed) using the same smoothing parameters as in the full model and comparing the explained deviance. We fixed smoothing parameters for comparisons in this way because these parameters tend to vary substantially (to compensate) if one of two correlated predictors is dropped from a GAM.Assessing the influence of individual studies on the reported patternsBecause our dataset comprises 196 local frugivory networks obtained from 93 different studies, and some of these studies contained multiple networks, we needed to evaluate whether our results were strongly biased by individual studies. To do this, we followed the approach from a previous study66 and tested whether F values of smooth terms and t values of categorical variables (binary version of ecoregion and biome distances) changed significantly when jackknifing across studies. We did this by dropping one study from the dataset and re-fitting the models, and then repeating this same process for all the studies in our dataset.We found a number of consistent patterns within different subsets of the data (Supplementary Figs. 15 and 16); however, some of the patterns we observed appear to be driven by individual studies with multiple networks, and hence are less representative. For instance, the study with the greatest number of networks in our dataset (study ID = 76), which contains 35 plant-frugivore networks sampled across an elevation gradient in Mt. Kilimanjaro, Tanzania67, had an overall high influence on the results when compared with the other studies. By re-running our GAM-based MRM models after removing this study from our dataset, we found that the effect of biome boundaries on interaction dissimilarity is no longer significant, whereas the effects of ecoregion boundaries, human disturbance distance, spatial distance and elevational differences remained consistent with those from the full dataset (Supplementary Table 33). Nevertheless, all the results were qualitatively similar to those obtained for the entire dataset when using network structural dissimilarity as the response variable (Supplementary Table 34).Rewiring analysisInteraction rewiring (βOS) estimates the extent to which shared species interact differently27. Because this metric can only be calculated for networks that share species from both trophic levels, we selected a subset of network pairs that shared plants and frugivorous birds (N = 1314) to test whether interaction rewiring increases across large-scale environmental gradients. Importantly, since not all possible combinations of network pairs contained values of interaction rewiring (i.e., not all pairs of networks shared species), a pairwise distance matrix could not be generated for this metric. Thus, we were not able to use the same statistical approach used in our main analysis, which is based on distance matrices (see Statistical analysis section). Instead, we performed a Generalized Additive Mixed-effects Model (GAMM) using ecoregion, biome, human disturbance, spatial, elevational, and sampling-related distance metrics as fixed effects and network IDs as random effects (to account for the non-independence of distances) (Supplementary Table 35). We also performed a reduced model with only ecoregion and biome distance metrics as predictor variables (Supplementary Table 36). The binary version of ecoregion and biome distance metrics (with two levels, “same” or “distinct”) were used as categorical variables in both models. Interaction rewiring (βOS) was calculated using the network_betadiversity function from the betalink package52 in R45. Although it has been recently argued that this metric may overestimate the importance of rewiring for network dissimilarity68, our main focus was not the partitioning of network dissimilarity into species turnover and rewiring components, but rather simply detecting whether the sub-web of shared species interacted differently. In this case, βOS (as developed by ref. 27) is an adequate and useful metric68. We fitted our models using the gamm4 function from the gamm4 package69 in R45. Smoothing parameters were estimated using restricted maximum likelihood (REML)29.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Towards process-oriented management of tropical reefs in the anthropocene

    McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641 (2015).Article 

    Google Scholar 
    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).Article 

    Google Scholar 
    Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl Acad. Sci. USA 117, 13596–13602 (2020).Article 
    CAS 

    Google Scholar 
    Brandl, S. J. et al. Extreme environmental conditions reduce coral reef fish biodiversity and productivity. Nat. Commun. 11, 3832 (2020).Article 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).Article 
    CAS 

    Google Scholar 
    Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. https://doi.org/10.1111/1365-2435.13331 (2019).Pereira, P. H. C. et al. Effectiveness of management zones for recovering parrotfish species within the largest coastal marine protected area in Brazil. Sci. Rep. 12, 12232 (2022).Article 
    CAS 

    Google Scholar 
    Campbell, S. J. et al. Fishing restrictions and remoteness deliver conservation outcomes for Indonesia’s coral reef fisheries. Conserv. Lett 13, e12698 (2020).Article 

    Google Scholar 
    Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. Proc. Natl Acad. Sci. USA 115, E6116–E6125 (2018).Article 
    CAS 

    Google Scholar 
    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).Article 
    CAS 

    Google Scholar 
    Mumby, P. J., Steneck, R. S., Roff, G. & Paul, V. J. Marine reserves, fisheries ban, and 20 years of positive change in a coral reef ecosystem. Conserv. Biol. 35, 1473–1483 (2021).Article 

    Google Scholar 
    Harrison, H. B. et al. Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr. Biol. 22, 1023–1028 (2012).Article 
    CAS 

    Google Scholar 
    Kerwath, S. E., Winker, H., Götz, A. & Attwood, C. G. Marine protected area improves yield without disadvantaging fishers. Nat. Commun. 4, 2347 (2013).Article 

    Google Scholar 
    Di Lorenzo, M., Guidetti, P., Di Franco, A., Calò, A. & Claudet, J. Assessing spillover from marine protected areas and its drivers: a meta‐analytical approach. Fish Fish. 21, 906–915 (2020).Article 

    Google Scholar 
    Ban, N. C. et al. Well-being outcomes of marine protected areas. Nat. Sustain. 2, 524–532 (2019).Article 

    Google Scholar 
    Cinner, J. E. et al. Winners and losers in marine conservation: fishers’ displacement and livelihood benefits from marine reserves. Soc. Nat. Resour. 27, 994–1005 (2014).Article 

    Google Scholar 
    Gurney, G. G. et al. Biodiversity needs every tool in the box: use OECMs. Nature 595, 646–649 (2021).Article 
    CAS 

    Google Scholar 
    Smallhorn-West, P. F. et al. Hidden benefits and risks of partial protection for coral reef fisheries. Ecol. Soc. 27, art26 (2022).Article 

    Google Scholar 
    Turnbull, J. W., Johnston, E. L. & Clark, G. F. Evaluating the social and ecological effectiveness of partially protected marine areas. Conserv. Biol. 35, 921–932 (2021).Article 

    Google Scholar 
    Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).Article 
    CAS 

    Google Scholar 
    Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).Article 
    CAS 

    Google Scholar 
    McShane, T. O. et al. Hard choices: making trade-offs between biodiversity conservation and human well-being. Biol. Conserv. 144, 966–972 (2011).Article 

    Google Scholar 
    MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).Article 
    CAS 

    Google Scholar 
    McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011).Article 
    CAS 

    Google Scholar 
    Morais, R. A. & Bellwood, D. R. Principles for estimating fish productivity on coral reefs. Coral Reefs 39, 1221–1231 (2020).Article 

    Google Scholar 
    Lindeman, R. L. The trophic-dynamic aspect of ecology. Ecology 23, 399–417 (1942).Article 

    Google Scholar 
    Pauly, D. & Froese, R. MSY needs no epitaph—but it was abused. ICES J. Mar. Sci. 78, 2204–2210 (2021).Article 

    Google Scholar 
    Rindorf, A. et al. Strength and consistency of density dependence in marine fish productivity. Fish Fish. 23, 812–828 (2022).Article 

    Google Scholar 
    Morais, R. A., Connolly, S. R. & Bellwood, D. R. Human exploitation shapes productivity–biomass relationships on coral reefs. Glob. Change Biol. 26, 1295–1305 (2020).Article 

    Google Scholar 
    Kolding, J., Bundy, A., van Zwieten, P. A. M. & Plank, M. J. Fisheries, the inverted food pyramid. ICES J. Mar. Sci. 73, 1697–1713 (2016).Article 

    Google Scholar 
    Morais, R. A. et al. Severe coral loss shifts energetic dynamics on a coral reef. Funct. Ecol. 34, 1507–1518 (2020).Article 

    Google Scholar 
    Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75, 1166–1168 (2018).Article 

    Google Scholar 
    Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).Article 

    Google Scholar 
    Parravicini, V. et al. Global patterns and predictors of tropical reef fish species richness. Ecography 36, 1254–1262 (2013).Article 

    Google Scholar 
    Morais, R. A. & Bellwood, D. R. Global drivers of reef fish growth. Fish Fish. 19, 874–889 (2018).Article 

    Google Scholar 
    Gislason, H., Daan, N., Rice, J. C. & Pope, J. G. Size, growth, temperature and the natural mortality of marine fish: natural mortality and size. Fish Fish. 11, 149–158 (2010).Article 

    Google Scholar 
    Graham, N. A. J. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).Article 
    CAS 

    Google Scholar 
    Froese, R. & Pauly, D. (eds.). FishBase. Version 06/2022. https://www.fishbase.org (2022).Cochrane, K. L. Reconciling sustainability, economic efficiency and equity in marine fisheries: has there been progress in the last 20 years? Fish Fish. 22, 298–323 (2021).Article 

    Google Scholar 
    Morais, R. A., Siqueira, A. C., Smallhorn-West, P. F. & Bellwood, D. R. Spatial subsidies drive sweet spots of tropical marine biomass production. PLoS Biol. 19, e3001435 (2021).Article 
    CAS 

    Google Scholar 
    Hamilton, M. et al. Climate impacts alter fisheries productivity and turnover on coral reefs. Coral Reefs https://doi.org/10.1007/s00338-022-02265-4 (2022).Cooke, R. et al. Anthropogenic disruptions to longstanding patterns of trophic-size structure in vertebrates. Nat Ecol Evol. 6, 684–692 (2022).Article 

    Google Scholar 
    Eddy, T. D. et al. Energy flow through marine ecosystems: confronting transfer efficiency. Trends Ecol. Evol. 36, 76–86 (2021).Article 

    Google Scholar 
    Devillers, R. et al. Reinventing residual reserves in the sea: are we favouring ease of establishment over need for protection? Aquat. Conserv. Mar. Freshw. Ecosyst. 25, 480–504 (2015).Article 

    Google Scholar 
    Fontoura, L. et al. Protecting connectivity promotes successful biodiversity and fisheries conservation. Science 375, 336–340 (2022).Article 
    CAS 

    Google Scholar 
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).Article 
    CAS 

    Google Scholar 
    Agardy, T., di Sciara, G. N. & Christie, P. Mind the gap: addressing the shortcomings of marine protected areas through large scale marine spatial planning. Mar. Policy 35, 226–232 (2011).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Habitat and fishing control grazing potential on coral reefs. Funct. Ecol. 34, 240–251 (2020).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).Article 

    Google Scholar 
    Dudley, N. et al. The essential role of other effective area-based conservation measures in achieving big bold conservation targets. Glob. Ecol. Conserv. 15, e00424 (2018).Article 

    Google Scholar 
    Zupan, M. et al. How good is your marine protected area at curbing threats? Biol. Conserv. 221, 237–245 (2018).Article 

    Google Scholar 
    Pollnac, R. et al. Marine reserves as linked social–ecological systems. Proc. Natl Acad. Sci. USA 107, 18262–18265 (2010).Article 
    CAS 

    Google Scholar 
    McClanahan, T. R., Marnane, M. J., Cinner, J. E. & Kiene, W. E. A comparison of marine protected areas and alternative approaches to coral-reef management. Curr. Biol. 16, 1408–1413 (2006).Article 
    CAS 

    Google Scholar 
    Smallhorn-West, P. F., Weeks, R., Gurney, G. & Pressey, R. L. Ecological and socioeconomic impacts of marine protected areas in the South Pacific: assessing the evidence base. Biodivers. Conserv. 29, 349–380 (2020).Article 

    Google Scholar 
    Cinner, J. E. et al. Sixteen years of social and ecological dynamics reveal challenges and opportunities for adaptive management in sustaining the commons. Proc. Natl Acad. Sci. USA 116, 26474–26483 (2019).Article 
    CAS 

    Google Scholar 
    Wilson, S. K. et al. Habitat degradation and fishing effects on the size structure of coral reef fish communities. Ecol. Appl. 20, 442–451 (2010).Article 
    CAS 

    Google Scholar 
    Nash, K. L. & Graham, N. A. J. Ecological indicators for coral reef fisheries management. Fish Fish. 17, 1029–1054 (2016).Article 

    Google Scholar 
    Brandl, S. J., Goatley, C. H. R., Bellwood, D. R. & Tornabene, L. The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biol. Rev. 93, 1846–1873 (2018).Article 

    Google Scholar 
    Willis, T. J. Visual census methods underestimate density and diversity of cryptic reef fishes. J. Fish. Biol. 59, 1408–1411 (2001).Article 

    Google Scholar 
    Allen, K. R. Relation between production and biomass. J. Fish. Res. Board Can. 28, 1573–1581 (1971).Article 

    Google Scholar 
    Leigh, E. G. On the relation between the productivity, biomass, diversity, and stability of a community. Proc. Natl Acad. Sci. USA 53, 777–783 (1965).Article 
    CAS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Cinner, J. E., Daw, T. & McClanahan, T. R. Socioeconomic factors that affect artisanal fishers’ readiness to exit a declining fishery. Conserv. Biol. 23, 124–130 (2009).Article 
    CAS 

    Google Scholar 
    Cinner, J. E. et al. Linking social and ecological systems to sustain coral reef fisheries. Curr. Biol. 19, 206–212 (2009).Article 
    CAS 

    Google Scholar 
    Hicks, C. C., Crowder, L. B., Graham, N. A., Kittinger, J. N. & Cornu, E. L. Social drivers forewarn of marine regime shifts. Front. Ecol. Environ. 14, 252–260 (2016).Article 

    Google Scholar 
    Espinosa-Romero, M. J., Rodriguez, L. F., Weaver, A. H., Villanueva-Aznar, C. & Torre, J. The changing role of NGOs in Mexican small-scale fisheries: from environmental conservation to multi-scale governance. Mar. Policy 50, 290–299 (2014).Article 

    Google Scholar 
    Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).Article 

    Google Scholar 
    Edgar, G. J. et al. Establishing the ecological basis for conservation of shallow marine life using Reef Life Survey. Biol. Conserv. 252, 108855 (2020).Article 

    Google Scholar 
    Selig, E. R. et al. Mapping global human dependence on marine ecosystems. Conserv. Lett. 12, e12617 (2019).Article 

    Google Scholar  More

  • in

    Switch to perennial rice promotes sustainable farming

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Zhang, S. et al. Sustained productivity and agronomic potential of perennial rice. Nat. Sustain. https://doi.org/10.1038/s41893-022-00997-3 (2022). More