More stories

  • in

    Predicting the potential global distribution of an invasive alien pest Trioza erytreae (Del Guercio) (Hemiptera: Triozidae)

    McNeely JA. editor. Global strategy on invasive alien species. IUCN (2001).Perrings, C. et al. Biological invasion risks and the public good: An economic perspective. Conserv. Ecol. 6, 1 (2002).
    Google Scholar 
    Taylor, B. W. & Irwin, R. E. Linking economic activities to the distribution of exotic plants. Proc. Natl. Acad. Sci. U.S.A. 101, 17725–17730 (2004).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, B. A. Alien invasive species: Impacts on forests and forestry—A review (Forestry Department and Forest Resource Division FAO, FAO Corporate Document Repository, 2005).
    Google Scholar 
    McBeath, J. H. & McBeath, J. Invasive Species and Food Security 157–176 (In Environmental Change and Food Security in China. Springer, 2010).
    Google Scholar 
    Ziska, L. H., Blumenthal, D. M., Runion, G. B., Hunt, E. R. & Diaz-Soltero, H. Invasive species and climate change: An agronomic perspective. Clim. Change. 105, 13–42 (2011).Article 
    ADS 

    Google Scholar 
    Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl. Acad. Sci. U.S.A. 113, 11261–11265 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Otero, R. P., Vázquez, J. P. M. & Del Estal, P. Detección de la psila africana de los cítricos, Trioza erytreae (Del Guercio, 1918) (Hemiptera: Psylloidea: Triozidae), en la Península Ibérica. Arquivos Entomolóxicos 13, 119–122 (2015).
    Google Scholar 
    van den Berg, M. A., Deacon, & V. E.,. Dispersal of the citrus psylla, Trioza erytreae (Hemiptera: Triozidae), in the absence of its host plants. Phytophylactica 20, 361–368 (1988).
    Google Scholar 
    CABI. Trioza erytreae. In: Invasive Species Compendium. Wallingford, UK: CAB International. www.cabi.org/isc. (2021).Lounsbury, C. P. Psyllidae or jumping plant lice in Report of the Government Entomologist for the year 1896. Cape of Good Hope, South Africa, (Unpublished report), 115–118 (1897).Ruíz-Rivero, O. et al. Insights into the origin of the invasive populations of Trioza erytreae in Europe using microsatellite markers and mtDNA barcoding approaches. Sci. Rep. 11, 1–15 (2021).Article 

    Google Scholar 
    Benhadi-Marín, J., Fereres, A. & Pereira, J.A. Potential areas of spread of Trioza erytreae over mainland Portugal and Spain. J. Pest Sci.1–12 (2021).Bové, J.M. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. Plant Pathol. 7–37 (2006).Laštuvka, Z. Climate change and its possible influence on the occurrence and importance of insect pests. Plant Prot. Sci. 45, S53–S62 (2009).Article 

    Google Scholar 
    Thomson, L. J., Macfadyen, S. & Hoffmann, A. A. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control. 52, 296–306 (2010).Article 

    Google Scholar 
    Bajwa, A.A., Farooq, M., Al-Sadi, A.M., Nawaz, A., Jabran, K. & Siddique, K.H. Impact of climate change on biology and management of wheat pests. J. Crop Prot. 105304 (2020).Hamann, E., Blevins, C., Franks, S. J., Jameel, M. I. & Anderson, J. T. Climate change alters plant–herbivore interactions. New Phytol. 229, 1894–1910 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cornelissen, T. Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop. Entomol. 40, 155–163 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Raffa, K. F. et al. Responses of tree-killing bark beetles to a changing climate. Clim. Change Insect Pests. 7, 173–201 (2015).Article 

    Google Scholar 
    Cocuzza, G. E. M. et al. A review on Trioza erytreae (African citrus psyllid), now in mainland Europe, and its potential risk as vector of huanglongbing (HLB) in citrus. J. Pest Sci. 90, 1–17 (2017).Article 

    Google Scholar 
    Vector of citrus greening disease. Aidoo, O. F., Tanga, C. M., Azrag, A. G., Mohamed, S. A., Khamis, F. M., Rasowo, B. A. … & Borgemeister, C. Temperature-based phenology model of African citrus triozid (Trioza erytreae Del Guercio). J. Appl. Entomol. 146, 1–2 (2021).
    Google Scholar 
    Catling, H. D., The bionomics of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: PsyUidae), 1. The influence of the flushing rhythm of citrus and factors which regulate flushing. J. Entomol. Soc. S. Afr. 32, 191–208 (1969).Green, G. C. E., & Catling, H. D. “Weather-induced mortality of the citrus psylla, Trioza erytreae (Del Guercio)(Homoptera: Psyllidae), a vector of greening virus, in some citrus producing areas of southern Africa.” Agric. Meteorol. 8, 305–317(1971).Vicente-Serrano, S. M., González-Hidalgo, J. C., de Luis, M. & Raventós, J. Drought patterns in the Mediterranean area: The Valencia region (eastern Spain). Clim. Res. 26, 5–15 (2004).Article 

    Google Scholar 
    Millán, M. M., Estrela, M. J. & Miró, J. Rainfall components: variability and spatial distribution in a Mediterranean Area (Valencia Region). J. Clim. 18, 2682–2705 (2005).Article 
    ADS 

    Google Scholar 
    Srivastava, V., Lafond, V. & Griess, V.C. Species distribution models (SDM): applications, benefits and challenges in invasive species management. CAB Rev. 14(10.1079) (2019).Halsch, C.A., Shapiro, A.M., Fordyce, J.A., Nice, C.C., Thorne, J.H., Waetjen, D.P. & Forister, M.L. Insects and recent climate change. Proc. Natl. Acad. Sci. U.S.A. 118 (2021).Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article 

    Google Scholar 
    Lobo, J. M., Jiménez-Valverde, A. & Hortal, J. The uncertain nature of absences and their importance in species distribution modelling. ECOGEG 33, 103–114 (2010).
    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N.E. Habitat suitability and distribution models: with applications in R. Cambridge University Press. (2017).de la Vega, G. J. & Corley, J. C. Drosophila suzukii (Diptera: Drosophilidae) distribution modelling improves our understanding of pest range limits. Int. J. Pest Manag. 65, 217–227 (2019).Article 

    Google Scholar 
    Tavanpour, T., Sarafrazi, A., Mehrnejad, M.R. & Imani, S. Distribution modelling of Acrosternum spp. (Hemiptera: Pentatomidae) in south of Iran. Biologia, 74, 1627–1635 (2019).Barton, M. G. & Terblanche, J. S. Predicting performance and survival across topographically heterogeneous landscapes: the global pest insect Helicoverpa armigera (H übner, 1808) (L epidoptera: N octuidae). Austral. Entomol. 53, 249–258 (2014).Article 

    Google Scholar 
    Kearney, M. & Porter, W. P. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).Article 
    PubMed 

    Google Scholar 
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Shabani, F., Kumar, L. & Ahmadi, M. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol. Evol. 6, 5973–5986 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kearney, M. R., Wintle, B. A. & Porter, W. P. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv. Lett. 3, 203–213 (2010).Article 

    Google Scholar 
    Moran, V. C. & Blowers, J. R. On the biology of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). J. Entomol. Soc. S. Afr. 30, 96–106 (1967).
    Google Scholar 
    Samways, M.J. & Manicom, B.Q. Immigration, frequency distributions and dispersion patterns of the psyllid Trioza erytreae (Del Guercio) in a citrus orchard. J. Appl. Ecol. 463–472 (1983).Pérez-Rodríguez, J. et al. Classical biological control of the African citrus psyllid Trioza erytreae, a major threat to the European citrus industry. Sci. Rep. 9, 1–11 (2019).Article 

    Google Scholar 
    Aidoo, O. F. et al. Host suitability and feeding preference of the African citrus triozid Trioza erytreae Del Guercio (Hemiptera: Triozidae), natural vector of “Candidatus Liberibacter africanus”. J. Appl. Entomol. 143, 262–270 (2019).Article 

    Google Scholar 
    Moran, V. C. Preliminary observations on the choice of host plants by adults of the citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). J. Entomol. Soc. S. Afr. 31, 403–410 (1968).
    Google Scholar 
    van den Berg, M. A., Deacon, V. E. & Thomas, C.D. Ecology of the citrus psylla, Trioza erytreae (Hemiptera: Triozidae). 3. Mating, fertility and oviposition. Phytophylactica. 23, 195–200 (1991).Khamis, F. M. et al. DNA barcode reference library for the African citrus triozid, Trioza erytreae (Hemiptera: Triozidae): Vector of African citrus greening. J. Econ. Entomol. 110, 2637–2646 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Aidoo, O. F. et al. The African citrus triozid Trioza erytreae Del Guercio (Hemiptera: Triozidae): temporal dynamics and susceptibility to entomopathogenic fungi in East Africa. Int. J. Trop. Insect Sci. 41, 563–573 (2021).Article 

    Google Scholar 
    Rasowo, B. A. et al. Diversity and phylogenetic analysis of endosymbionts from Trioza erytreae (Del Guercio) and its parasitoids in Kenya. J. Appl. Entomol. 145, 104–116 (2021).Article 

    Google Scholar 
    Espinosa-Zaragoza, S., Aguirre-Medina, J. F. & López-Martínez, V. Does the African Citrus psyllid, Trioza erytreae (Del Guercio) (Hemiptera: Triozidae), Represent a phytosanitary threat to the citrus industry in Mexico?. Insects. 12, 450 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aidoo, O.F., Tanga, C.M., Mohamed, S.A., Khamis, F.M., Baleba, S.B., Rasowo, B.A., Ambajo, J., Sétamou, M., Ekesi, S. & Borgemeister, C. Detection and monitoring of ‘Candidatus’ Liberibacter spp. vectors: African citrus triozid Trioza erytreae Del Guercio (Hemiptera: Triozidae) and Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) in citrus groves in East Africa. Agric. For. Entomol. 22, 401–409 (2020a).Urbaneja-Bernat, P., Hernández-Suárez, E., Tena, A. & Urbaneja, A. Preventive measures to limit the spread of Trioza erytreae (Del Guercio) (Hemiptera: Triozidae) in mainland Europe. J. Appl. Entomol. 144, 553–559 (2020).Article 

    Google Scholar 
    Aidoo, O. F. et al. Size and shape analysis of Trioza erytreae Del Guercio (Hemiptera: Triozidae), vector of citrus huanglongbing disease. Pest Manag. Sci. 75, 760–771 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Arenas-Arenas, F. J., Duran-Vila, N., Quinto, J. & Hervalejo, A. Geographic spread and inter-annual evolution of populations of Trioza erytreae in the Iberian Peninsula. Plant Pathol. 101, 1151–1157 (2019).Article 

    Google Scholar 
    Kalyebi, A. et al. Detection and identification of etiological agents (Liberibacter spp.) associated with citrus greening disease in Uganda. J. Agric. Sci. 16, 43–54 (2015).
    Google Scholar 
    Kyalo Richard., Abdel-Rahman, E.M., Mohamed, S.A., Ekesi, S., Borgemeister, C. & Landmann, T. Importance of remotely-sensed vegetation variables for predicting the spatial distribution of African citrus triozid (Trioza erytreae) in Kenya. ISPRS Int. J. Geoinf. 7, 429 (2018).Benhadi-Marín, J., Fereres, A. & Pereira, J. A. A model to predict the expansion of Trioza erytreae throughout the Iberian Peninsula using a pest risk analysis approach. Insects. 11, 576 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moran, V. C. The development of the citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae), on Citrus limon and four indigenous host plants. J. Entomol. Soc. S. Afr. 31, 391–402 (1986).
    Google Scholar 
    Tamesse, J. L. Key for identification of the Hymenopteran parasitoids of the African citrus psylla Trioza erytreae Del Guercio (Hemiptera: Triozidae) in Cameroon. Afr. J. Agric. Res. 4, 085–091 (2009).
    Google Scholar 
    Hailu, T. & Wakgari, M. Distribution and damage of African citrus psyllids (Trioza erytreae) in Casimiroa edulis producing areas of the eastern zone of Ethiopia. Int. J. Environ. Agric. Biotech. 4, 741–750 (2019).
    Google Scholar 
    Urbaneja-Bernat, P. et al. Host range testing of Tamarixia dryi (Hymenoptera: Eulophidae) sourced from South Africa for classical biological control of Trioza erytreae (Hemiptera: Psyllidae) in Europe. Biol. Control. 135, 110–116 (2019).Article 

    Google Scholar 
    Hernández-Suárez, E., Pérez-Rodríguez, J., Suárez-Méndez, L., Urbaneja-Bernat, P., Rizza, R., Siverio, F., Piedra-Buena, A., Urbaneja, A. &Tena, A.. Control de Trioza erytreae en las Islas Canarias por el parasitoide Tamarixia dryi. Phytoma España. La revista profesional de sanidad vegetal. 28–32 (2021).Molina, P., Martínez-Ferrer, M. T., Campos-Rivela, J. M., Riudavets, J. & Agustí, N. Development of a PCR-based method for the screening of potential predators of the African citrus psyllid Trioza erytreae (Del Guercio). Biol. Control. 160, 104661 (2021).Article 
    CAS 

    Google Scholar 
    Kumar, S., Neven, L. G., & Yee, W. L. Evaluating correlative and mechanistic niche models for assessing the risk of pest establishment. Ecosphere. 5, (2014).Kriticos, D. J. et al. The potential distribution of invading Helicoverpa armigera in North America: Is it just a matter of time?. PLoS ONE 10, e0119618 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sutherst, R. W., Maywald, G. F. & Bourne, A. S. Including species interactions in risk assessments for global change. Glob. Chang. Biol. 13, 1843–1859 (2007).Article 
    ADS 

    Google Scholar 
    Shabani, F., Kumar, L. & Esmaeili, A. Use of CLIMEX, land use and topography to refine areas suitable for date palm cultivation in Spain under climate change scenarios. J. Earth Sci. Clim. Change. 4, 145 (2013).
    Google Scholar 
    Silva, R. S., Kumar, L., Shabani, F. & Picanço, M. C. Assessing the impact of global warming on worldwide open field tomato cultivation through CSIRO-Mk3•0 global climate model. J. Agric. Sci. 155, 407–420 (2016).Article 

    Google Scholar 
    Kriticos, D. J. et al. CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 3, 53–64 (2012).Article 

    Google Scholar 
    Catling, H. D. The bionomics of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae) 3. The influence of extremes of weather on survival. J. Ecol. Soc. S. Afr. 32, 273–290 (1969).Aubert, B. Trioza erytreae Del Guercio and Diaphorina citri Kuwayama (Homoptera: Psylloidea), the two vectors of citrus greening disease: biological aspects and possible control strategy. Fruits 42, 149–162 (1987).
    Google Scholar 
    Gordon, H. B., Rotstayn, L. D., Mcgregor, J. L., Dix, M. R., Kowalczyk, E. A., O’farrell, S. P., Waterman, L. J., Hirst, A. C., Wilson, S. G., Collier, M. A., Watterson, I. G. & Elliott, T. I. The CSIRO Mk3 Climate System Model. CSIRO Atmospheric Research Technical Paper No. 60. Canberra: CSIRO. (2002).Van Vuuren, D. P. & Carter, T. R. Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim. Change. 122, 415–429 (2013).Article 
    ADS 

    Google Scholar 
    Fecher, B., Friesike, S. & Hebing, M. What drives academic data sharing?. PLoS ONE 10, e0118053 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Imker, H. J., Luong, H., Mischo, W. H., Schlembach, M. C. & Wiley, C. An examination of data reuse practices within highly cited articles of faculty at a research university. J. Acad. Librariansh. 47, 102369 (2021).Article 

    Google Scholar 
    Aidoo, O. F. et al. Distribution, degree of damage and risk of spread of Trioza erytreae (Hemiptera: Triozidae) in Kenya. J. Appl. Entomol. 143, 822–833 (2019).Article 

    Google Scholar 
    Mack, R.N., Simberloff, D., Mark Lonsdale, W., Evans, H., Clout, M. & Bazzaz, F.A. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).EPPO. EPPO Global database. In: EPPO Global database, Paris, France: EPPO. https://gd.eppo.int/ (2021).Beattie, G.A.C., Holford, P., Mabberley, D.J., Haigh, A.M. and Broadbent, P. Australia and huanglongbing. Food & Fertilizer Technology Center. (2008).Beattie, G.A.C. & Barkley, P. Huanglongbing and its Vectors. A Pest Specific Contingency Plan for the Citrus and Nursery and Garden Industries (Version 2), February 2009. Horticulture Australia Ltd., Sydney (2009).Plant Biosecurity. Final pest risk analysis report for ‘Candidatus Liberibacter species’ and their vectors associated with Rutaceae. Department of Agriculture, Fisheries and Forestry, Canberra. (2011).Silva, R. S., Kumar, L., Shabani, F. & Picanço, M. C. Potential risk levels of invasive Neoleucinodes elegantalis (small tomato borer) in areas optimal for open-field Solanum lycopersicum (tomato) cultivation in the present and under predicted climate change. Pest. Manag. Sci. 73, 616–627 (2017).Article 
    PubMed 

    Google Scholar 
    Santana, P. A., Kumar, L., Da Silva, R. S. & Picanço, M. C. Global geographic distribution of Tuta absoluta as affected by climate change. J. Pest Sci. 92, 1373–1385 (2019).Article 

    Google Scholar 
    da Graça, J. V. Citrus greening disease. Annu. Rev. Phytopathol. 29, 109–136 (1991).Article 

    Google Scholar 
    Li, W., Levy, L. & Hartung, J. S. Quantitative distribution of ‘Candidatus Liberibacter asiaticus’ in citrus plants with citrus huanglongbing. Phytopathology 99, 139–144 (2009).Article 
    ADS 
    PubMed 

    Google Scholar 
    Tatineni, S. et al. In Planta Distribution of ‘Candidatus Liberbacter asiaticus’ as revealed by Polymerase Chain Reaction (PCR) and Real-time PCR. Phytopathology 98, 592–599 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Aubert, B. Historical perspectives of HLB in Asia. In: International Research Conference on Huanglongbing; Proceedings of the Meeting (eds. Gottwald RT, Graham HJ) Orlando, Florida. 16–24 (2008).microscopy and microarray analysis. Kim, J, S., Sagaram, U.S., Burns, J.K., Li, J.L. & Wang, N. Response of sweet orange (Citrus sinensis) to ‘Candidatus Liberibacter asiaticus’ infection. Phytopathology 99, 50–57 (2009).Article 

    Google Scholar 
    EPPO. Trioza erytreae. EPPO datasheets on pests recommended for regulation (2022). Available online. https://gd.eppo.int.Ajene, I. J. et al. Habitat suitability and distribution potential of Liberibacter species (“Candidatus Liberibacter asiaticus” and “Candidatus Liberibacter africanus”) associated with citrus greening disease. Divers. Distrib. 26, 575–588 (2020).Article 

    Google Scholar 
    Manjunath, K. Á., Halbert, S. E., Ramadugu, C. H., Webb, S. U. & Lee, R. F. Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus huanglongbing in Florida. Phytopathology 98, 387–396 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Halbert, S. E. & Manjunath, K. L. Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida. Fla. Entomol. 87, 330–353 (2004).Article 

    Google Scholar  More

  • in

    Joint analysis of structured and semi-structured community science data improves precision of relative abundance but not trends in birds

    Data acquisition and preparationStructured datasetsWe used structured North American Breeding Bird Survey (BBS) data, which is conducted annually over  > 2500 routes across the United States and Canada11,12 during the peak of the breeding season (May and June). BBS routes were approximately 40 km long with 50 stops spaced 0.8 km apart. At each stop a 3-min point count was conducted, where all species seen or heard were recorded12. We downloaded the entire dataset, 1966–2019, to identify each observer’s first year and account for differences in survey experience. We created a binary variable for the observers’ first year, with 1 indicating the first year they provided data, and 0 indicating all subsequent years. We then subset the data to years 2010–2019 to align with available community science data. We zero-filled BBS data by adding zeros for each species on routes in which birds were not detected in each year.Semi-structured datasetWe used the eBird Basic Dataset as a semi-structured dataset. We used checklists within the US and Canada during June and July from 2010 to 2019. Data were filtered to impose structure on the observation process and minimize effects of unequal spatial and temporal sampling using the auk package in program R24,25,56,59,60. Data were filtered to only include complete checklists where observers recorded counts of all species detected to reduce effects of preferential species reporting61. We also filtered data based on observer effort to only include checklists  More

  • in

    Off the hook: electrical device keeps sharks away from fishing lines

    .readcube-buybox { display: none !important;}
    More than 30% of shark and ray species are edging towards extinction, mainly because they are unintentionally caught by fishers targeting tuna and other commercially valuable species. A new device might help to keep some of these threatened species away from fishing hooks.

    Access options

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to Nature and 55 other Nature journal$29.99monthlySubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueAll prices are NET prices.VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00All prices are NET prices.

    Additional access options:

    doi: https://doi.org/10.1038/d41586-022-03776-4

    References

    Subjects

    Conservation biology More

  • in

    Intracellular common gardens reveal niche differentiation in transposable element community during bacterial adaptive evolution

    Bacterial strains, primers, and growth conditionsBacterial strains, plasmids, and primers used in this study are shown in Supplementary Table S1. Escherichia coli strains carrying plasmids used in conjugation experiments were grown at 37 °C in LB medium. S. fredii CCBAU25509 (SF2) and its derivatives were grown at 28 °C in TY medium (5 g tryptone, 3 g yeast extract, 0.6 g CaCl2 per liter). To screen and purify conjugants or obtain pure cultures of bacteria, antibiotics were supplemented as required at the following concentrations (μg/mL): for E. coli, gentamicin (Gen), 30; and kanamycin (Km), 100; for Sinorhizobium strains, trimethoprim (Tmp), 10; nalidixic acid (Na), 30; and kanamycin (Km), 100. To screen sacB mutants from SF2 derivatives, firstly SF2 tolerance of 8%-30% sucrose in the TY medium was measured by the growth curve using Bioscreen C (Oy Growth Curves Ab Ltd, Raisio, Finland), and then the TY medium containing 10% sucrose was chosen as the selection medium.Construction of S. fredii derivatives harboring xenogeneic PsacB-sacB
    The multipartite genome of SF2 consists of a chromosome (Ch, GC% = 62.6%), a chromid (pB, GC% = 62%) [31], and a symbiosis plasmid (pA, GC% = 59%) [26]. Within each replicon, an insertion position, with GC% of its 10 kb flanking region being the same as the replicon average, was chosen for subsequent experiments (Fig. 1A). The suicide plasmid pJQ200SK carries the wild-type sacB gene (characterized by its low GC content of 38.8%; 1422 bp) and its promoter region PsacB (GC% = 36.1%, 446 bp) from Bacillus subtilis subsp. subtilis str. 168 [32]. A Km-resistant cassette from pBBR1MCS-2 [33] was amplified and assembled with a linearized pJQ200SK lacking the Gm-resistant cassette using a seamless cloning kit (Taihe Biotechnology, Beijing, China) as described previously [34]. This generated pJQ-L carrying the wild-type low GC% sacB (38.8%; 1422 bp; L-GC). The sacB gene with medium (54.6%; M-GC) or high GC (61.6%; H-GC) content in its synonymous codons was synthesized (Fig. S1), and used to replace the wild-type low GC% sacB gene of pJQ-L to generate pJQ-M and pJQ-H. This was also performed using the seamless cloning method as described above with the linearized pJQ-L lacking the wild-type sacB. Three genomic segments of SF2 (pA:330682-331687, pB:702541-703493, Ch:674057-675207) were individually cloned into each of pJQ-L, pJQ-M, and pJQ-H at the SmaI site using the seamless cloning method, which allowed subsequent integration of xenogeneic cassettes into three replicons. This generated nine plasmids (pJQ-L_pA, pJQ-L_pB, pJQ-L_Ch; pJQ-M_pA, pJQ-M_pB, pJQ-M_Ch; pJQ-H_pA, pJQ-H_pB, pJQ-H_Ch), which were transformed into E. coli DH5α and verified by Sanger sequencing before conjugation into rhizobia via triparental mating with helper plasmid pRK2013 [35]. This generated nine SF2 derivatives individually carrying a xenogeneic cassette in a replicon (Fig. 1A). The correct insertion of the xenogeneic cassette was checked by PCR.Fig. 1: Screening mutations in xenogeneic sacB of different GC content.A The xenogeneic cassettes harboring sacB of L-GC, M-GC, or H-GC were individually inserted into the symbiosis plasmid (pA; GC% = 59%), chromid (pB; GC% = 62%), or chromosome (Ch; GC% = 62.6%) of Sinorhizobium fredii CCBAU25509. Gene IDs surrounding each insertion position are shown. GC% of the three sacB versions were 38.8% (L-GC, the wild-type version from Bacillus subtilis subsp. subtilis str. 168), 54.6% (M-GC, synthesized), and 61.6% (H-GC, synthesized). The wild-type PsacB (GC% = 36.1%, 446 bp) of B. subtilis 168 was cloned together with each of the three versions of sacB. The number of A, T, C, or G in the 1422 bp sacB gene is indicated. B Growth curves in TY medium. C Levansucrase enzyme activity assay of crude proteins collected at OD600 = 1.2 in TY medium. Different letters indicate significant difference (Average ± SEM; ANOVA followed by Duncan’s test, alpha = 0.05). D Growth curves in TY medium supplemented with 10% sucrose. E Schematic view of culturing, mutant screening, and mutation identification in this work. sacB, levansucrase gene; km, kanamycin resistance gene.Full size imageThe xenogeneic silencer MucR prefers low GC% DNA targets [29, 30], and its potential role in niche differentiation for IS community members was tested. SF2 has two mucR copies, and the in-frame deletion mutant ΔmucR1R2 was constructed by using an allelic exchange strategy: upstream and downstream ~500 bp flanking regions of mucR1 or mucR2 were amplified and assembled with the linearized allelic exchange vector pJQ200SK. The pJQ200SK derivative used to delete mucR1 was linearized and then cloned seamlessly with the sequence coding MucR1 and C-terminal fused FLAG-tag. The resultant plasmid was conjugated into SF2 to generate SF2MucR1FLAG. The xenogeneic cassettes carrying plasmids (pJQ-L_pA, pJQ-M_pA, pJQ-H_pA) were then inserted into the same position of pA in ΔmucR1R2 and SF2MucR1FLAG, and verified by PCR.Mutant screening and calculation of mutation frequencyTo screen sacB mutants from SF2 derivatives, single colonies of S. fredii derivatives were inoculated and grown to an OD600 = 0.2, 0.6, 1.2, and 2.0, and dilutions were applied to plates with and without 10% sucrose respectively. The number of colonies on the 10% sucrose TY plates was recorded as “A” at the dilution of 10−a, and the number of colonies on the sucrose-free TY plates was recorded as “B” at the dilution of 10−b. The total mutation frequency was then calculated by (A·10-a)/(B·10-b). Independent colonies on the 10% sucrose TY plates were further purified on the same medium plates, and the full length of PsacB-sacB fragment was amplified by colony PCR. Gene loss, SNPs or short InDels, or large insertion mutations were identified by electrophoresis analysis of PCR products. Representative clones with large insertion mutations were selected for Sanger sequencing. Three independent experiments were performed for all test strains.Enzyme activity assay for levansucraseTo evaluate the function of xenogeneic sacB in SF2 derivatives, sucrose was dissolved in the buffer solution (0.1 M CH3COONa, pH 5.5), and the total protein extract of bacteria was added (calibrated to the same concentration) to make the final concentration of sucrose 1%, and the reaction system was incubated at 28°C for 12 h. After adding the color development solution (3,5-dinitrosalicylic acid 6.3 g, sodium hydroxide 21.0 g, potassium sodium tartrate 182.0 g, phenol 5.0 g, sodium metabisulfite 5.0 g in 1000 mL water; BOXBIO, Beijing, China), the enzyme was inactivated at 95 °C for 5 min, and the absorbance value at 540 nm was measured to calculate the glucose content. Determination of the release of glucose and fructose from sucrose allowed calculation of the total activity of the levansucrase. One unit (U) of enzyme is defined as the amount of enzyme required for producing 1 µmol glucose per min in reaction buffer. The specific activity of levansucrase hydrolysis activity is the activity units per mg of protein (U/mg).5′RACETo determine the transcription start site of the sacB gene, a 5′RACE experiment was performed with the 5′RACE kit (Sangon, Beijing, China) for Rapid Amplification of cDNA Ends using three gene-specific primers (Table S1) that anneal to the known region and an adapter primer that targets the 5′ end. Products generated by 5′RACE were subcloned into the TOPO-TA vector and individual colonies were sequenced.RNA extraction and RT-qPCRTo determine transcriptional levels of the major active ISs in SF2 and its ΔmucR1R2 mutant, strains were grown in 50 mL TY liquid medium to an OD600 of 1.2. A bacterial total RNA Kit (Zomanbio, Beijing, China) was used for total RNA extraction. cDNA was synthesized using FastKing-RT SuperMix (TIANGEN, Beijing, China). qPCR was performed by using QuantStudio 6 Flex and 2× RealStar Green Mixture (Genstar, Beijing, China). The primer pairs used are listed in Table S1. The 16S rRNA gene was used as an internal reference to normalize the expression level. Three independent biological replicates were performed.ChIP-qPCRTo test the potential recruitment of MucR in the xenogeneic PsacB-sacB region, three SF2 derivative strains harboring sacB of different GC% in the pA replicon and MucR1-FLAG (Table S1; MucR1-FLAG: L-GC, MucR1-FLAG: M-GC, MucR1-FLAG: H-GC) were cultured until the OD600 had reached 1.2. Formaldehyde was added into the TY medium to a final concentration of 1%, which was then incubated at 28 °C for 15 min. To stop crosslinking, glycine was added to a final concentration of 0.1 M. The cross-linked samples were harvested (5000 × g, 5 min, 4 °C) and washed twice with cold phosphate-buffered saline (PBS). After the pellets were ground into fine powder in liquid nitrogen, the samples were resuspended in buffer containing 1% SDS and 1 mM phenylmethanesulfonyl fluoride, and lysed by sonication using a sonicator (Q800R3, QSonica). Chromatin immunoprecipitation (ChIP) was performed using the ChIP assay kit (Beyotime, Shanghai, China) according to the manufacturer’s recommendations. The supernatant was collected and chromatin was immunoprecipitated with Anti-FLAG M2 antibody (Sigma). Input control and DNA obtained from the immunoprecipitation were amplified by PCR using primers listed in Table S1. The recruitment level of FLAG-tagged MucR1 in multiple regions within the PsacB-sacB fragment inserted by ISs at high frequency was detected by ChIP-qPCR.Crosslinking and western blotting assayTo test the ability of MucR1 to form homodimer in SF2 derivatives carrying sacB in pA, rhizobial cells (SF2MucR1FLAG, MucR1-FLAG: L-GC, MucR1-FLAG: M-GC, and MucR1-FLAG: H-GC) were cultured in 50 mL TY medium to an OD600 of 1.2. Formaldehyde was added at a final concentration of 1% in the culture which was then shaken at 28 °C, 100 rpm for 15 min to allow crosslinking. The crosslinking reaction was terminated by adding a final concentration of 100 mM glycine (28 °C, 100 rpm, 5 min). 1 mL of the above solution was centrifuged (5000 × g, 4 °C, 1 min), resuspended in 50 µL SDS loading buffer to a uniform cell density, and then boiled for 10 minutes for lysis. Next, lysates were separated on 12% SDS-PAGE and transferred to a nitrocellulose membrane. For immunodetection of individual proteins, the method described previously was used [30]. Briefly, mouse monoclonal Anti-FLAG M2 antibody (Sigma), HRP (horseradish peroxidase) conjugated goat Anti-mouse IgG (Abcam), and eECL Western blot kit (CWBIO, Beijing, China) were used, and chemiluminescence signals were visualized using Fusion FX6 (Vilber) and Evolution-Capt Edge software.Protein purificationTo purify MucR1 protein, E. coli BL21(DE3) carrying His6-SUMO-tagged MucR1 in the pET30a [29] was cultured in 500 mL LB medium until OD600 reached 0.8. The procedure described previously was used [30]. IPTG was then added to the culture to a final concentration of 0.6 mM and switched to 18 °C at 150 rpm for 12 h. Cells were harvested by centrifugation (5000 × g, 5 min, 4 °C) and resuspended in 30 mL of lysis buffer (25 mM Tris, pH 8.0, 250 mM NaCl, 10 mM imidazole) supplemented with 0.1 mg/mL DNase I, 0.4 mg/mL of lysozyme, and protease inhibitor mixture (Roche). After 30 min incubation and 120 sonication cycles (300 W, 10 s on, 10 s off), lysates were removed by centrifugation (18,000 × g, 4 °C, 30 min) and filtration through a 0.22 μm membrane. The supernatant was loaded onto Ni-Agarose Resin (CWBIO, Beijing, China) pre-washed using lysis buffer, washed 3 times with wash buffer (lysis buffer containing 20 mM imidazole), and then eluted by lysis buffer containing imidazole gradient (100, 200, 300 mM imidazole). The purified proteins were finally concentrated by ultrafiltration and redissolved in storage buffer (25 mM Tris, pH 8.0, 250 mM NaCl, 10% glycerol) prior to use or storage at −80 °C.DNA bridging assayTo determine if MucR1 can form DNA-MucR1-DNA complex with various regions of xenogeneic PsacB-sacB fragment, a DNA bridging assay described earlier [30, 36] was performed with modifications. DNA probes were prepared by annealing of synthesized complementary strands (PsacB −90~−24) or by PCR amplification (PsacB −90~+3, sacB +710~+802, sacB +908~+1007) using 5′-biotin-labeled or 5′-Cy5 primers (Table S1). In each bridging assay, 100 μL of hydrophilic streptavidin magnetic beads (NEB) were washed twice with 500 μL of PBS and then resuspended in 500 μL of coupling buffer (20 mM Tris-HCl, pH 7.4, 1 mM EDTA, 500 mM NaCl). Then, the suspension was supplied with 10 pmol of biotin-labeled DNA and incubated with the beads for 30 min at room temperature with gentle rotation. The resulting beads were washed twice with 500 μL of incubation buffer (20 mM Tris, pH 7.4, 150 mM NaCl, 1 mM dithiothreitol, 5% glycerol (vol/vol), 0.05% Tween 20) and resuspended after the addition of 10 pmol Cy5-labeled DNA and 10 μL HRV 3C protease to a final volume of 500 μL. The HRV 3C protease was used herein to remove SUMO. A twofold serial dilution of the protein sample was added to each 50 μL aliquot of bead suspension, and supplemented with incubation buffer to 60 μL final volume. After 30 minutes of incubation with gentle rotation at room temperature, the mixture was placed on a magnetic stand for 5 minutes. The supernatant was collected and labeled as Sample A. The beads were mixed with 60 μL of elution buffer (incubation buffer with 0.1% SDS and 20 μg/mL biotin) and incubated in a boiling water bath for 10 min. The eluted samples were labeled as Sample B. Cy5 fluorescence signals of Sample A and B were detected by a Microscale Thermophoresis Monolith NT.115 system (NanoTemper). The Cy5 fluorescence signal of the Sample A from the treatment without MucR1 was defined as 100% input signal.Statistical analysesAnalysis of variance (ANOVA) followed by Duncan’s test, Student’s t-test, and Fisher’s exact test were performed using GraphPad Prism 8. The closest homolog of individual active ISs and their family identification were determined using ISfinder [37]. Target sequence logos of ISs were generated by multiple sequence alignments of insertion sites within xenogeneic PsacB-sacB or genomic background using the program WebLogo [38].Although the fundamental niche, not constrained by biological interactions, cannot be determined by observation [15], the realized niche, representing a proportion of the fundamental niche where organisms actually live under abiotic and biotic interactions, can be estimated by correlative approaches [15, 39]. In order to address the influence of intracellular variables on biased IS insertions into nine common gardens, the within outlying mean index analysis developed for niche differentiation analysis was carried out using the R package “subniche” [40, 41]. The intracellular environmental gradients were determined by Principal Component Analysis (PCA) based on variables as follows: GC% of different sacB versions, replicon GC%, the number of each IS in the corresponding replicon where sacB is inserted, available insertion sites of ISs in different sacB versions, and levansucrase activity of strains carrying different sacB versions. Within this multidimensional Euclidean space (environmental space), mean positions in realized (sub)niches and parameters of each IS were obtained for the whole data set (realized niches in environmental space defined by nine common gardens) or various subsets (realized subniches in sub-environmental spaces identified by the hierarchical clustering analysis with the ward.D method based on the Euclidean distance matrix) [41]. Two and three subsets rather than four and more subsets were statistically analyzable. By comparing to the overall average habitat conditions (G) or the average subset habitat conditions (GK) of the spatial domain, ISs selecting for a less common habitat were indicated by their significantly higher niche marginality values compared to the simulated values, based on a Monte Carlo test with 1,000 permutations, under the hypothesis that each IS is indifferent to its intracellular environment [40]. More

  • in

    Resource sharing is sufficient for the emergence of division of labour

    Ulrich, Y., Saragosti, J., Tokita, C. K., Tarnita, C. E. & Kronauer, D. J. C. Fitness benefits and emergent division of labour at the onset of group living. Nature 560, 635–638 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Duarte, A., Weissing, F. J., Pen, I. & Keller, L. An evolutionary perspective on self-organized division of labor in social insects. Annu Rev. Ecol. Evol. Syst. 42, 91–110 (2011).Article 

    Google Scholar 
    West, S. A. & Cooper, G. A. Division of labour in microorganisms: an evolutionary perspective. Nat. Rev. Microbiol. 14, 716–723 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Oster, G. F. & Wilson, E. O. Caste and ecology in the social insects. (Princeton University Press, 1978).Arnold, K. E., Owens, I. P. F. & Goldizen, A. W. Division of labour within cooperatively breeding groups. Behav 142, 1577–1590 (2005).Article 

    Google Scholar 
    Bruintjes, R. & Taborsky, M. Size-dependent task specialization in a cooperative cichlid in response to experimental variation of demand. Anim. Behav. 81, 387–394 (2011).Article 

    Google Scholar 
    Bergmüller, R. & Taborsky, M. Adaptive behavioural syndromes due to strategic niche specialization. BMC Ecol. 7, 12 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schaller, G. B. The Serengeti lion: a study of predator-prey relations. (University of Chicago press, 2009).Bonabeau, E., Theraulaz, G. & Deneubourg, J.-L. Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proc. Biol. Sci. 263, 1565–1569 (1996).Article 

    Google Scholar 
    Bonabeau, E. Fixed response thresholds and the regulation of division of labor in insect societies. Bull. Math. Biol. 60, 753–807 (1998).Article 
    MATH 

    Google Scholar 
    Graham, S., Myerscough, M. R., Jones, J. C. & Oldroyd, B. P. Modelling the role of intracolonial genetic diversity on regulation of brood temperature in honey bee (Apis mellifera L.) colonies. Insect Soc. 53, 226–232 (2006).Article 

    Google Scholar 
    Jeanson, R., Fewell, J. H., Gorelick, R. & Bertram, S. M. Emergence of increased division of labor as a function of group size. Behav. Ecol. Sociobiol. 62, 289–298 (2007).Article 

    Google Scholar 
    Gove, R., Hayworth, M., Chhetri, M. & Rueppell, O. Division of labour and social insect colony performance in relation to task and mating number under two alternative response threshold models. Insect. Soc. 56, 319–331 (2009).Article 

    Google Scholar 
    Ulrich, Y. et al. Response thresholds alone cannot explain empirical patterns of division of labor in social insects. PLoS Biol. 19, e3001269 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jeanson, R. & Weidenmüller, A. Interindividual variability in social insects – proximate causes and ultimate consequences. Biol. Rev. 89, 671–687 (2014).Article 
    PubMed 

    Google Scholar 
    Toth, A. L. & Robinson, G. E. Worker nutrition and division of labour in honeybees. Anim. Behav. 69, 427–435 (2005).Article 

    Google Scholar 
    Smith, C. R. et al. Nutritional asymmetries are related to division of labor in a queenless ant. PLoS ONE 6, e24011 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernadou, A. et al. Stress and early experience underlie dominance status and division of labour in a clonal insect. Proc. R. Soc. B 285, 20181468 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernadou, A., Hoffacker, E., Pable, J. & Heinze, J. Lipid content influences division of labour in a clonal ant. J. Exp. Biol. 223, jeb.219238 (2020).Article 

    Google Scholar 
    Dussutour, A., Poissonnier, L.-A., Buhl, J. & Simpson, S. J. Resistance to nutritional stress in ants: when being fat is advantageous. J. Exp. Biol. 219, 824–833 (2016).Article 
    PubMed 

    Google Scholar 
    Blanchard, G. B., Orledge, G. M., Reynolds, S. E. & Franks, N. R. Division of labour and seasonality in the ant Leptothorax albipennis: worker corpulence and its influence on behaviour. Anim. Behav. 59, 723–738 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Toth, A. L., Kantarovich, S., Meisel, A. F. & Robinson, G. E. Nutritional status influences socially regulated foraging ontogeny in honey bees. J. Exp. Biol. 208, 4641–4649 (2005).Article 
    PubMed 

    Google Scholar 
    Carter, G. G. & Wilkinson, G. S. Food sharing in vampire bats: reciprocal help predicts donations more than relatedness or harassment. Proc. R. Soc. B 280, 20122573 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meurville, Marie-Pierre & LeBoeuf, AdriaC. Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecol N. 31, 1–30 (2021).
    Google Scholar 
    Duarte, A., Pen, I., Keller, L. & Weissing, F. J. Evolution of self-organized division of labor in a response threshold model. Behav. Ecol. Sociobiol. 66, 947–957 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moll, K., Federle, W. & Roces, F. The energetics of running stability: costs of transport in grass-cutting ants depend on fragment shape. J. Exp. Biol. 215, 161–168 (2012).Article 
    PubMed 

    Google Scholar 
    Ostwald, M. M., Fox, T. P., Harrison, J. F. & Fewell, J. H. Social consequences of energetically costly nest construction in a facultatively social bee. Proc. R. Soc. B 288, 20210033 (2021). rspb.2021.0033.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Molina, Y. & O’Donnell, S. A developmental test of the dominance-nutrition hypothesis: linking adult feeding, aggression, and reproductive potential in the paperwasp Mischocyttarus mastigophorus. Ethol. Ecol. Evol. 20, 125–139 (2008).Article 

    Google Scholar 
    Fiocca, K. et al. Reproductive physiology corresponds to adult nutrition and task performance in a Neotropical paper wasp: a test of dominance-nutrition hypothesis predictions. Behav. Ecol. Sociobiol. 74, 114 (2020).Article 
    MathSciNet 

    Google Scholar 
    Wcislo, W. T. & Gonzalez, V. H. Social and ecological contexts of trophallaxis in facultatively social sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera, Halictidae). Insect Soc. 53, 220–225 (2006).Article 

    Google Scholar 
    Gautrais, J., Theraulaz, G., Deneubourg, J.-L. & Anderson, C. Emergent polyethism as a consequence of increased colony size in insect societies. J. Theor. Biol. 215, 363–373 (2002).Article 
    ADS 
    PubMed 

    Google Scholar 
    Ferguson-Gow, H., Sumner, S., Bourke, A. F. G. & Jones, K. E. Colony size predicts division of labour in attine ants. Proc. R. Soc. B 281, 20141411 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dornhaus, A., Holley, J.-A. & Franks, N. R. Larger colonies do not have more specialized workers in the ant Temnothorax albipennis. Behav. Ecol. 20, 922–929 (2009).Article 

    Google Scholar 
    Ackermann, M. et al. Self-destructive cooperation mediated by phenotypic noise. Nature 454, 987–990 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dubnau, D. & Losick, R. Bistability in bacteria. Mol. Microbiol 61, 564–572 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Honegger, K. & de Bivort, B. Stochasticity, individuality and behavior. Curr. Biol. 28, R8–R12 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schiessl, K. T. et al. Individual- versus group-optimality in the production of secreted bacterial compounds. Evolution 73, 675–688 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elsner, D., Hartfelder, K. & Korb, J. Molecular underpinnings of division of labour among workers in a socially complex termite. Sci. Rep. 11, 18269 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kohlmeier, P., Feldmeyer, B. & Foitzik, S. Vitellogenin-like A–associated shifts in social cue responsiveness regulate behavioral task specialization in an ant. PLoS Biol. 16, e2005747 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morandin, C., Hietala, A. & Helanterä, H. Vitellogenin and vitellogenin-like gene expression patterns in relation to caste and task in the ant Formica fusca. Insect Soc. 66, 519–531 (2019).Article 

    Google Scholar 
    Cooper, G. A. & West, S. A. Division of labour and the evolution of extreme specialization. Nat. Ecol. Evol. 2, 1161–1167 (2018).Article 
    PubMed 

    Google Scholar 
    Ferrante, E., Turgut, A. E., Duéñez-Guzmán, E., Dorigo, M. & Wenseleers, T. Evolution of Self-Organized Task Specialization in Robot Swarms. PLoS Comput. Biol. 11, e1004273 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    West-Eberhard, M.J. Wasp societies as microcosms for the study of development and evolution. in Natural history and evolution of paper-wasps (eds. Turillazzi, S. & West-Eberhard, M. J.) 290–317 (Oxford University Press, 1996).West-Eberhard, M. J. Flexible strategy and social evolution. in Animal societies: theories and facts (eds. Itō, Y., Brown, J. L. & Kikkawa, J.) 35–51 (Japan Scientific Societies Press, 1987).Amdam, G. V., Csondes, A., Fondrk, M. K. & Page, R. E. Complex social behaviour derived from maternal reproductive traits. Nature 439, 76–78 (2006).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krishnan, J. U., Brahma, A., Chavan, S. K. & Gadagkar, R. Nutrition induced direct fitness for workers in a primitively eusocial wasp. Insect Soc. 68, 319–325 (2021).Article 

    Google Scholar 
    O’Donnell, S. et al. Adult nutrition and reproductive physiology: a stable isotope analysis in a eusocial paper wasp (Mischocyttarus mastigophorus, Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 72, 86 (2018).Article 

    Google Scholar 
    Salomon, M., Mayntz, D. & Lubin, Y. Colony nutrition skews reproduction in a social spider. Behav. Ecol. 19, 605–611 (2008).Article 

    Google Scholar 
    Hunt, J. H. & Amdam, G. V. Bivoltinism as an antecedent to eusociality in the paper wasp genus Polistes. Science 308, 264–267 (2005).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hunt, J. H., Buck, N. A. & Wheeler, D. E. Storage proteins in vespid wasps: characterization, developmental pattern, and occurrence in adults. J. Insect Physiol. 49, 785–794 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, J. H. et al. Differential gene expression and protein abundance evince ontogenetic bias toward castes in a primitively eusocial wasp. PLoS ONE 5, e10674 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, C. R., Toth, A. L., Suarez, A. V. & Robinson, G. E. Genetic and genomic analyses of the division of labour in insect societies. Nat. Rev. Genet. 9, 735–748 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sumner, S., Pereboom, J. J. M. & Jordan, W. C. Differential gene expression and phenotypic plasticity in behavioural castes of the primitively eusocial wasp, Polistes canadensis. Proc. R. Soc. B 273, 19–26 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gräff, J., Jemielity, S., Parker, J. D., Parker, K. M. & Keller, L. Differential gene expression between adult queens and workers in the ant Lasius niger. Mol. Ecol. 16, 675–683 (2007).Article 
    PubMed 

    Google Scholar 
    Nelson, C. M., Ihle, K. E., Fondrk, M. K., Page, R. E. & Amdam, G. V. The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol. 5, e62 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corona, M. et al. Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus. PLoS Genet 9, e1003730 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fewell, J. H. & Page, R. E. Jr The emergence of division of labour in forced associations of normally solitary ant queens. Evolut. Ecol. Res. 1, 537–548 (1999).
    Google Scholar 
    Kalina, J. Nest intruders, nest defence and foraging behaviour in the Black-and-white Casqued Hornbill Bycanistes subcylindricus. Ibis 131, 567–571 (1988).Article 

    Google Scholar 
    Heinsohn, R. & Legge, S. Breeding biology of the reverse-dichromatic, co-operative parrot Eclectus roratus. J. Zool. 259, 197–208 (2003).Article 

    Google Scholar 
    Zárybnická, M. & Vojar, J. Effect of male provisioning on the parental behavior of female Boreal Owls Aegolius funereus. Zool. Stud. 52, 36 (2013).Article 

    Google Scholar 
    Flores, E. & Herrero, A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 8, 39–50 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maynard Smith, J. & Szathmáry, E. The major transitions in evolution. (W.H. Freeman, 1995).West, S. A., Fisher, R. M., Gardner, A. & Kiers, E. T. Major evolutionary transitions in individuality. Proc. Natl Acad. Sci. 112, 10112–10119 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gorelick, R., Bertram, S. M., Killeen, P. R. & Fewell, J. H. Normalized mutual entropy in biology: quantifying division of labor. Am. Naturalist 164, 677–682 (2004).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).Wickham, H. ggplot2: elegant graphics for data analysis. (Springer-Verlag New York, 2016).Auguie, B. gridExtra: miscellaneous functions for ‘Grid’ graphics. (https://CRAN.R-project.org/package=gridExtra, 2017).Wilke, C. O. cowplot: streamlined plot theme and plot annotations for ‘ggplot2’. (https://CRAN.R-project.org/package=cowplot, 2019).Mills, B. R. MetBrewer: color palettes inspired by works at the Metropolitan Museum of Art. (https://CRAN.R-project.org/package=MetBrewer, 2021). More

  • in

    Parasitic infection increases risk-taking in a social, intermediate host carnivore

    Dubey, J. P. Toxoplasmosis of animals and humans. (CRC Press, 2010).Robert-Gangneux, F. & Dardé, M. L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin. Microbiol Rev. 25, 264–296 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wong, S. & Remington, J. S. Toxoplasmosis in Pregnancy. Clin. Infect. Dis. 18, 853–861 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Arantes, T. P. et al. Toxoplasma gondii: Evidence for the transmission by semen in dogs. Exp. Parasitol. 123, 190–194 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stibbs, H. H. Changes in brain concentrations of catecholamines and indoleamines in Toxoplasma gondii infected mice. Ann. Trop. Med Parasitol. 79, 153–157 (1985).Article 
    CAS 
    PubMed 

    Google Scholar 
    McConkey, G. A., Martin, H. L., Bristow, G. C. & Webster, J. P. Toxoplasma gondii infection and behaviour – Location, location, location? J. Exp. Biol. 216, 113–119 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lim, A., Kumar, V., Hari Dass, S. A. & Vyas, A. Toxoplasma gondii infection enhances testicular steroidogenesis in rats. Mol. Ecol. 22, 102–110 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zouei, N., Shojaee, S., Mohebali, M. & Keshavarz, H. The association of latent toxoplasmosis and level of serum testosterone in humans. BMC Res Notes 11, 365 (2018).Arnott, M. A., Cassella, J. P., Aitken, P. P. & Hay, J. Social interactions of mice congenital Toxoplasma infection. Ann. Trop. Med Parasitol. 84, 149–156 (1990).Article 
    CAS 
    PubMed 

    Google Scholar 
    Coccaro, E. F. et al. Toxoplasma gondii infection: Relationship with aggression in psychiatric subjects. J. Clin. Psychiatry 77, 334–341 (2016).Article 
    PubMed 

    Google Scholar 
    Webster, J. P., Brunton, C. F. A. & Macdonald, D. W. Effect of Toxoplasma Gondii Upon Neophobic Behaviour in Wild Brown Rats, Rattus Norvegicus. Parasitology 109, 37–43 (1994).Article 
    PubMed 

    Google Scholar 
    Berdoy, M., Webster, J. P. & Mcdonald, D. W. Fatal attraction in rats infected with Toxoplasma gondii. Proc. R. Soc. B: Biol. Sci. 267, 1591–1594 (2000).Article 
    CAS 

    Google Scholar 
    Poirotte, C. et al. Morbid attraction to leopard urine in toxoplasma-infected chimpanzees. Curr. Biol. 26, R98–R99, https://doi.org/10.1016/j.cub.2015.12.020 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gering, E. et al. Toxoplasma gondii infections are associated with costly boldness toward felids in a wild host. Nat. Commun. 12, 3842 (2021).Smith, D. W., Stahler, D. R. & MacNulty, D. R. Yellowstone Wolves: Science and Discovery in the World’s First National Park. (University of Chicago Press, 2020).Ruth, T. K., Buotte, P. C., Hornocker, M., Murphy, K. M. & Smith, D. W. Patterns of Resource Use Prior to and during Wolf Restoration. in Yellowstone Cougars: Ecology Before And During Wolf Restoration (eds. Ruth, T. K., Buotte, P. C. & Hornocker, M.) 151–175 (University Press of Colorado, 2019).Brandell, E. E. et al. Patterns and processes of pathogen exposure in gray wolves across North America. Sci. Rep. 11, 3722 (2021).Watts, D. E. & Benson, A. M. Prevalence of antibodies for selected canine pathogens among wolves (Canis lupus) from the Alaska Peninsula, USA. J. Wildl. Dis. 52, 506–515 (2016).Article 
    PubMed 

    Google Scholar 
    Galván-Ramírez, M. D. L. L., Gutíerrez-Maldonado, A. F., Verduzco-Grijalva, F. & Judith Marcela, D. J. The role of hormones on toxoplasma gondii infection: A systematic review. Front. Microbiol. 5, 503 (2014).Kreeger, T. J. The Internal Wolf: Physiology, Pathology, and Pharmacology. in Wolves: Behavior, Ecology, and Conservation (eds. Mech, L. D. & Boitani, L.) 192–217 (University of Chicago Press, 2003).Sands, J. & Creel, S. Social dominance, aggression and faecal glucocorticoid levels in a wild population of wolves, Canis lupus. Anim. Behav. 67, 387–396 (2004).Article 

    Google Scholar 
    Cassidy, K. A., Mech, L. D., MacNulty, D. R., Stahler, D. R. & Smith, D. W. Sexually dimorphic aggression indicates male gray wolves specialize in pack defense against conspecific groups. Behavioural Process. 136, 64–72 (2017).Article 

    Google Scholar 
    Ganz, T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Anderson, T. M. et al. Molecular and evolutionary history of melanism in North American gray wolves. Science (1979) 323, 1339–1343 (2009).CAS 

    Google Scholar 
    Smith, D. W. et al. Population Dynamics and Demography. in Yellowstone Wolves: Science and Discovery in the World’s First National Park (eds. Smith, D. W., Stahler, D. R. & MacNulty, D. R.) 77–92 (University of Chicago Press, 2020).Geremia, C. et al. Integrating population- and individual-level information in a movement model of Yellowstone bison. Ecol. Appl. 24, 346–362 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Houston, D. B. Elk as Winter-Spring Food for Carnivores in Northern Yellowstone National Park. J. Appl. Ecol. 15, 653–661 (1978).Article 

    Google Scholar 
    White, P. J. et al. Migration of northern yellowstone elk: Implications of spatial structuring. J. Mammal. 91, 827–837 (2010).Article 

    Google Scholar 
    Jimenez, M. D. et al. Wolf dispersal in the Rocky Mountains, Western United States: 1993–2008. J. Wildl. Manag. 81, 581–592 (2017).Article 

    Google Scholar 
    Fuller, T. K., Mech, L. D. & Cochrane, J. F. Wolf population dynamics. in Wolves: Behavior, Ecology, and Conservation2 (eds. Mech, L. D. & Boitani, L.) 161–191 (University of Chicago Press, 2003).Clutton-Brock, T. Mammal Societies. (John Wiley & Sons, 2016).Dass, S. A. H. et al. Protozoan parasite Toxoplasma gondii manipulates mate choice in rats by enhancing attractiveness of males. PLoS One 6, 1–6 (2011).Article 

    Google Scholar 
    Packard, J. M. Wolf Behavior: Reproductive, Social and Intelligent. in Wolves: Behavior, Ecology, and Conservation (eds. Mech, L. D. & Boitani, L.) (University of Chicago Press, 2003).Stahler, D. R. et al. Ecology of Family Dynamics in Yellowstone Wolf Packs. in Yellowstone Wolves: Science and Discovery in the World’s First National Park (eds. Smith, D. W., Stahler, D. R. & MacNulty, D. R.) 42–60 (University of Chicago Press, 2020).Sikes, R. S. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 97, 663–688 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Murphy, K. M. et al. Distribution of Canada lynx in Yellowstone National Park. Northwest Sci. 80, 199–206 (2006).
    Google Scholar 
    Murphy, K. M. The ecology of the cougar (Puma concolor) in the northern Yellowstone ecosystem: Interactions with prey, bears, and humans. (University of Idaho, Moscow, USA, 1998).Ruth, T. K., Buotte, P. C. & Quigley, H. B. Comparing Ground Telemetry and Global Positioning System Methods to Determine Cougar Kill Rates. J. Wildl. Manag. 74, 1122–1133 (2010).Article 

    Google Scholar 
    Anton, C. B. The demography and comparative ethology of top predators in a multi-carnivore system. 211 (2020).Cassidy, K. A. et al. Yellowstone Wolf Project Annual Report. (2021).Ruth, T. K., Buotte, P. C. & Hornocker, M. Spatial Responses of Cougars to Wolf Presence. in Yellowstone Cougars: Ecology Before And During Wolf Restoration (eds. Ruth, T. K., Buotte, P. C. & Hornocker, M.) 129–150 (University Press of Colorado, 2019).Sawaya, M. A. et al. Evaluation of noninvasive genetic sampling methods for cougars in Yellowstone National Park. J. Wildl. Manag. 75, 612–622 (2011).Article 

    Google Scholar 
    Metz, M. C. et al. Accounting for imperfect detection in observational studies: modeling wolf sightability in Yellowstone National Park. Ecosphere 11, e03152 (2020).Rothman, R. J. & Mech, L. D. Scent-marking in lone wolves and newly formed pairs. Anim. Behav. 27, 750–760 (1979).Article 

    Google Scholar 
    Liesenfeld, O., Nguyen, T. A., Pharke, C. & Suzuki, Y. Importance of gender and sex hormones in regulation of susceptibility of the small intestine to peroral infection with Toxoplasma gondii tissue cysts. J. Parasitol. 87, 1491–1493 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Molnar, B. et al. Environmental and intrinsic correlates of stress in free-ranging wolves. PLoS One 10, 1–25 (2015).Article 

    Google Scholar 
    Anton, C. B. et al. Gray wolf habitat use in response to visitor activity along roadways in Yellowstone National Park. Ecosphere 11, e03164 (2020). More

  • in

    Newer roots for agriculture

    Annual grains, domesticated from wild species, have dominated agriculture since the Neolithic. A new study reports how turning to high-yield perennial rice crops could maintain key ecosystem functions while supporting livelihoods.The past several decades have seen modest but growing investments in the development of perennial grain crops, including perennial counterparts of wheat, rice and sorghum suitable for the USA, China, Europe and Africa. One technique involves domesticating wild perennial species through continual selection of desirable traits over multiple generations3. A recently developed perennial grain currently grown for niche markets in the USA, Kernza, was domesticated from Thinopyrum intermedium, a wild relative of wheat. While yields of Kernza remain low compared with those of annual wheat, they are increasing. As with the development of perennial rice, plant breeders can also cross perennial species with domesticated annual relatives to produce perennial hybrids with desirable traits derived from the annual parent3. More

  • in

    Variation in blubber cortisol levels in a recovering humpback whale population inhabiting a rapidly changing environment

    Wikelski, M. & Cooke, S. J. Conservation physiology. Trends Ecol. Evol. 21, 38–46 (2006).Article 
    PubMed 

    Google Scholar 
    Cattet, M. et al. Understanding grizzly bear health in the context of changing landscapes. Foothills Model Forest Grizzly Bear Research Program Annual Report, 80–86 (2005).Reeder, D. M. & Kramer, K. M. Stress in free-ranging mammals: Integrating physiology, ecology, and natural history. J. Mammal. 86, 225–235. https://doi.org/10.1644/bhe-003.1 (2005).Article 

    Google Scholar 
    Dunlop, R. A., Braithwaite, J., Mortensen, L. O. & Harris, C. M. Assessing population-level effects of anthropogenic disturbance on a marine mammal population. Front. Mar. Sci. 8, 230 (2021).Article 

    Google Scholar 
    Atkinson, S., Crocker, D., Houser, D. & Mashburn, K. Stress physiology in marine mammals: How well do they fit the terrestrial model?. J. Comp. Physiol. B. 185, 463–486. https://doi.org/10.1007/s00360-015-0901-0 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Romero, L. M. & Beattie, U. K. Common myths of glucocorticoid function in ecology and conservation. J. Exp. Zool. Part A: Ecol. Integr. Physiol. 337, 7–14. https://doi.org/10.1002/jez.2459 (2022).Article 
    CAS 

    Google Scholar 
    Champagne, C. D. et al. Blubber cortisol qualitatively reflects circulating cortisol concentrations in bottlenose dolphins. Mar. Mamm. Sci. 33, 134–153 (2017).Article 
    CAS 

    Google Scholar 
    Champagne, C. D. et al. Comprehensive endocrine response to acute stress in the bottlenose dolphin from serum, blubber, and feces. Gen. Comp. Endocrinol. 266, 178 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Teerlink, S., Horstmann, L. & Witteveen, B. Humpback whale (Megaptera novaeangliae) blubber steroid hormone concentration to evaluate chronic stress response from whale-watching vessels. Aquat. Mamm. 44, 411 (2018).Article 

    Google Scholar 
    Mingramm, F. M., Keeley, T., Whitworth, D. J. & Dunlop, R. A. Blubber cortisol levels in humpback whales (Megaptera novaeangliae): A measure of physiological stress without effects from sampling. Gen. Comp. Endocrinol. 291, 113436 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Saco, Y. et al. Evaluation of serum cortisol, metabolic parameters, acute phase proteins and faecal corticosterone as indicators of stress in cows. Vet. J. 177, 439–441 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rolland, R. M. et al. Evidence that ship noise increases stress in right whales. Proc. R. Soc. B: Biol. Sci. 279, 2363–2368. https://doi.org/10.1098/rspb.2011.2429 (2012).Article 

    Google Scholar 
    Rocha, R., Clapham, P. J. & Ivashchenko, Y. V. Emptying the oceans: A summary of industrial whaling catches in the 20th century. Mar. Fish. Rev 76, 37–48 (2014).Article 

    Google Scholar 
    Comission, I. W. Report of the scientific committee. Journal of Cetacean Research and Management SC/68C (2021).Ducklow, H. W. et al. West Antarctic Peninsula: An ice-dependent coastal marine ecosystem in transition. Oceanography 26, 190–203 (2013).Article 

    Google Scholar 
    Laws, R. Seals and whales of the Southern Ocean 81–96 (Philosophical Transactions of the Royal Society of London. Series B, 1977).
    Google Scholar 
    Savoca, M. S. et al. Baleen whale prey consumption based on high-resolution foraging measurements. Nature 599, 85–90. https://doi.org/10.1038/s41586-021-03991-5 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pallin, L. J. et al. High pregnancy rates in humpback whales (Megaptera novaeangliae) around the Western Antarctic Peninsula, evidence of a rapidly growing population. R. Soc. Open Sci. https://doi.org/10.1098/rsos.180017 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bender, N. A., Crosbie, K. & Lynch, H. J. Patterns of tourism in the Antarctic Peninsula region: A 20-year analysis. Antarct. Sci. 28, 194–203. https://doi.org/10.1017/s0954102016000031 (2016).Article 
    ADS 

    Google Scholar 
    Operators, I. A. o. A. T. (2019).Trumble, S. J. et al. Baleen whale cortisol levels reveal a physiological response to 20th century whaling. Nat. Commun. https://doi.org/10.1038/s41467-018-07044-w (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cates, K. A. et al. Corticosterone in central north pacific male humpback whales (Megaptera novaeangliae): Pairing sighting histories with endocrine markers to assess stress. Gen. Comp. Endocrinol. 296, 113540 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sprogis, K. R., Videsen, S. & Madsen, P. T. Vessel noise levels drive behavioural responses of humpback whales with implications for whale-watching. eLife https://doi.org/10.7554/elife.56760 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rolland, R. et al. Fecal glucocorticoids and anthropogenic injury and mortality in North Atlantic right whales Eubalaena glacialis. Endanger. Species Res. 34, 417–429. https://doi.org/10.3354/esr00866 (2017).Article 

    Google Scholar 
    Modest, M. et al. First description of migratory behavior of humpback whales from an Antarctic feeding ground to a tropical calving ground. Anim. Biotelem. 9, 1–16 (2021).Article 

    Google Scholar 
    Amaral, R. S. Use of alternative matrices to monitor steroid hormones in aquatic mammals: A review. Aquat. Mamm. 36, 162 (2010).Article 

    Google Scholar 
    Graham, K. M., Burgess, E. A. & Rolland, R. M. Stress and reproductive events detected in North Atlantic right whale blubber using a simplified hormone extraction protocol. Conserv. Physiol. https://doi.org/10.1093/conphys/coaa133 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Atkinson, S. et al. Pregnancy rate and biomarker validations from the blubber of eastern North Pacific blue whales. Mar. Mamm. Sci. https://doi.org/10.1111/mms.12616 (2019).Article 

    Google Scholar 
    Hunt, K. E., Rolland, R. M., Kraus, S. D. & Wasser, S. K. Analysis of fecal glucocorticoids in the North Atlantic right whale (Eubalaena glacialis). Gen. Comp. Endocrinol. 148, 260–272. https://doi.org/10.1016/j.ygcen.2006.03.012 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mashburn, K. L. & Atkinson, S. Evaluation of adrenal function in serum and feces of Steller sea lions (Eumetopias jubatus): Influences of molt, gender, sample storage, and age on glucocorticoid metabolism. Gen. Comp. Endocrinol. 136, 371–381. https://doi.org/10.1016/j.ygcen.2004.01.016 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jeanniard Du Dot, T. et al. Changes in glucocorticoids, IGF-I and thyroid hormones as indicators of nutritional stress and subsequent refeeding in Steller sea lions (Eumetopias jubatus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol 152, 524–534. https://doi.org/10.1016/j.cbpa.2008.12.010 (2009).Article 
    CAS 

    Google Scholar 
    Foley, C. A. H., Papageorge, S. & Wasser, S. K. Noninvasive stress and reproductive measures of social and ecological pressures in free-ranging African elephants. Conserv. Biol. 15, 1134–1142. https://doi.org/10.1046/j.1523-1739.2001.0150041134.x (2001).Article 

    Google Scholar 
    Challis, J. R., Matthews, S. G., Gibb, W. & Lye, S. J. Endocrine and paracrine regulation of birth at term and preterm. Endocr. Rev. 21, 514–550 (2000).CAS 

    Google Scholar 
    Robeck, T. R., Steinman, K. J. & O’Brien, J. K. Characterization and longitudinal monitoring of serum androgens and glucocorticoids during normal pregnancy in the killer whale (Orcinus orca). Gen. Comp. Endocrinol. 247, 116–129 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rolland, R. M., Hunt, K. E., Kraus, S. D. & Wasser, S. K. Assessing reproductive status of right whales (Eubalaena glacialis) using fecal hormone metabolites. Gen. Comp. Endocrinol. 142, 308–317 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Burgess, E. A., Hunt, K. E., Kraus, S. D. & Rolland, R. M. Adrenal responses of large whales: Integrating fecal aldosterone as a complementary biomarker to glucocorticoids. Gen. Comp. Endocrinol. 252, 103–110. https://doi.org/10.1016/j.ygcen.2017.07.026 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ducklow, H. W. et al. Marine pelagic ecosystems: The west Antarctic Peninsula. Philos. Trans. R. Soc. London B: Biol. Sci. 362, 67–94 (2007).Article 
    PubMed 

    Google Scholar 
    Rogers, A. et al. Antarctic futures: An assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Ann. Rev. Mar. Sci. 12, 87–120 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hillbrand, F. & Elsaesser, F. Concentrations of progesterone in the backfat of pigs during the oestrous cycle and after ovariectomy. J. Reprod. Fertil. 69, 73–80 (1983).Article 
    CAS 
    PubMed 

    Google Scholar 
    Funasaka, N. et al. Seasonal difference of diurnal variations in serum melatonin, cortisol, testosterone, and rectal temperature in Indo-Pacific bottlenose dolphins (Tursiops aduncus). Aquat. Mamm. 37, 433 (2011).Article 

    Google Scholar 
    Oki, C. & Atkinson, S. Diurnal patterns of cortisol and thyroid hormones in the Harbor seal (Phoca vitulina) during summer and winter seasons. Gen. Comp. Endocrinol. 136, 289–297. https://doi.org/10.1016/j.ygcen.2004.01.007 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lavigne, D., Innes, S., Worthy, G. & Edwards, E. F. Lower critical temperatures of blue whales, Balaenoptera musculus. J. Theor. Biol. 144, 249–257 (1990).Article 
    ADS 

    Google Scholar 
    Nichols, R. C. et al. Intra-seasonal variation in feeding rates and diel foraging behaviour in a seasonally fasting mammal, the humpback whale. R. Soc. Open Sci. https://doi.org/10.1098/rsos.211674 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bierlich, K. C. Incorporating Photogrammetric Uncertainty in UAS-based Morphometric Measurements of Baleen Whales, (2021).Kellar, N. M. et al. Blubber cortisol: A potential tool for assessing stress response in free-ranging dolphins without effects due to sampling. PLoS ONE 10, e0115257 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bejder, L. & Samuels, A. Evaluating the effects of nature-based tourism on cetaceans. Mar. Mamm. Fish. Tour. Manag. Issues 1, 229–256 (2003).
    Google Scholar 
    New, L. F. et al. The modelling and assessment of whale-watching impacts. Ocean Coast. Manag. 115, 10–16 (2015).Article 

    Google Scholar 
    Avila, I. C., Correa, L. M. & Parsons, E. Whale-watching activity in Bahía Málaga, on the Pacific coast of Colombia, and its effect on humpback whale (Megaptera novaeangliae) behavior. Tour. Mar. Environ. 11, 19–32 (2015).Article 

    Google Scholar 
    Amrein, A. M., Guzman, H. M., Surrey, K. C., Polidoro, B. & Gerber, L. R. Impacts of whale watching on the behavior of humpback whales (Megaptera novaeangliae) in the Coast of Panama. Front. Mar. Sci. 7, 1105 (2020).Article 

    Google Scholar 
    Heenehan, H. et al. Caribbean Sea soundscapes: monitoring humpback whales, biological sounds, geological events, and anthropogenic impacts of vessel noise. Front. Mar. Sci., 347 (2019).Keay, J. M., Singh, J., Gaunt, M. C. & Kaur, T. Fecal glucocorticoids and their metabolites as indicators of stress in various mammalian species: A literature review. J. Zoo Wildl. Med. 37, 234–244 (2006).Article 
    PubMed 

    Google Scholar 
    Harris, K., Gende, S. M., Logsdon, M. G. & Klinger, T. Spatial pattern analysis of cruise ship-humpback whale interactions in and near Glacier Bay National Park, Alaska. Environ. Manag. 49, 44–54. https://doi.org/10.1007/s00267-011-9754-9 (2012).Article 
    ADS 

    Google Scholar 
    Palsbøll, P. J., Larsen, F. & Hansen, E. S. Sampling of skin biopsies from free-raging large cetaceans in west greenland: Development of new biopsy tips and bolt designs. International Whaling Commission Special Issue Series (1991).Weinstein, B. G., Double, M., Gales, N., Johnston, D. W. & Friedlaender, A. S. Identifying overlap between humpback whale foraging grounds and the Antarctic krill fishery. Biol. Cons. 210, 184–191 (2017).Article 

    Google Scholar 
    Lambertsen, R. H. A biopsy system for large whales and its use for cytogenetics. J. Mammal. 68, 443–445. https://doi.org/10.2307/1381495 (1987).Article 

    Google Scholar 
    Gilson, A., Syvanen, M., Levine, K. & Banks, J. Deer gender determination by polymerase chain reaction. Calif. Fish Game 84, 159–169 (1998).
    Google Scholar 
    Aasen, E. & Medrano, J. F. Amplification of the ZFY and ZFX genes for sex identification in humans, cattle, sheep and goats. Bio/Technology 8, 1279–1281 (1990).CAS 
    PubMed 

    Google Scholar 
    Valsecchi, E. & Amos, W. Microsatellite markers for the study of cetacean populations. Mol. Ecol. 5, 151–156 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Palsbøll, P., Bérubé, M., Larsen, A. & Jørgensen, H. Primers for the amplification of tri-and tetramer microsatellite loci in baleen whales. Mol. Ecol. 6, 893–895 (1997).Article 
    PubMed 

    Google Scholar 
    Berube, M., Jørgensen, H., McEwing, R. & Palsbøll, P. J. Polymorphic di-nucleotide microsatellite loci isolated from the humpback whale, Megaptera novaeangliae. Mol. Ecol. 9, 2181–2183 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Waldick, R., Brown, M. & White, B. Characterization and isolation of microsatellite loci from the endangered North Atlantic right whale. Mol. Ecol. 8, 1763–1765 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Baker, C. S. et al. Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Mar. Ecol. Progress Ser. 494, 291 (2013).Article 
    ADS 

    Google Scholar 
    Constantine, R. et al. Abundance of humpback whales in Oceania using photo-identification and microsatellite genotyping. Mar. Ecol. Prog. Ser. 453, 249–261 (2012).Article 
    ADS 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article 

    Google Scholar 
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).Article 
    PubMed 

    Google Scholar 
    Kellar, N. M., Trego, M. L., Marks, C. I. & Dizon, A. E. Determining pregnancy from blubber in three species of delphinids. Mar. Mamm. Sci. 22, 1–16 (2006).Article 

    Google Scholar 
    Pallin, L., Robbins, J., Kellar, N., Bérubé, M. & Friedlaender, A. Validation of a blubber-based endocrine pregnancy test for humpback whales. Conserv. Physiol. https://doi.org/10.1093/conphys/coy031 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kellar, N. M. et al. Low reproductive success rates of common bottlenose dolphins Tursiops truncatus in the northern Gulf of Mexico following the Deepwater Horizon disaster (2010–2015). Endanger. Species Res. 33, 143–158 (2017).Article 

    Google Scholar 
    R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2021).ArcMap (version 10.8.2) (Redlands, CA: Esri Inc, 2022). More