More stories

  • in

    Aquaculture rearing systems induce no legacy effects in Atlantic cod larvae or their rearing water bacterial communities

    Bacterial density and growth potential in the rearing water were related to the microbial carrying capacityQuantifying the bacterial density in each tank verified that we obtained a higher bacterial load in the systems with added organic material. The bacterial density was, on average, 7.8× higher in the systems with high compared to low bacterial carrying capacity. This difference was particularly evident at 2 (34.8×, Kruskal–Wallis p = 0.0008) and 9 DPH (9.1×, Kruskal–Wallis p = 0.0007) (Fig. 1). The bacterial density increased throughout the experiment for the tanks with low microbial carrying capacity (treatment group MMS−, FTS−), reflecting increased larval feeding and defecation. Contrastingly, the bacterial density was relatively stable over time in the MMS+ treatment and even decreased over time in the FTS+ treatment. When averaging the densities at 11 and 15 DPH within each rearing treatment, we observed that the ‘MMS+ to FTS+’ had a considerable difference in the bacterial density between incoming and rearing water (24.2×). In contrast, this difference was below 8.2× in all other treatment tanks. Such differences in density indicated that some communities were below the microbial carrying capacity of the systems. We thus investigated the growth potential to determine if carrying capacity was reached in the rearing water.Figure 1Bacterial density (million bacterial cells mL−1) at various days post-hatching (DPH) in incoming and rearing tank water. Note that the y-axis is log scaled. Colours indicate the rearing treatment, and shape signifies rearing (filled circle) and incoming water (filled triangle).Full size imageThe bacterial net growth potential in the intake and rearing water was quantified as the number of cell doublings after incubation for 3 days11. Generally, the FTS− and MMS− rearing water had net growth potential with an average of 0.2 and 0.1, respectively (Supplementary Fig. 2). In contrast, the rearing water of the FTS+ and MMS+ had a negative net growth potential with averages of −0.2 and −0.06, respectively. In the case of negative net growth potential, the bacterial density decreased during the incubation. A negative net growth potential suggested that the rearing water bacterial communities were at the tank’s microbial carrying capacity at the time of sampling. Thus, the bacterial communities were at the carrying capacity of the high (+) carrying capacity systems and below in the low (−) systems. To gain a deeper understanding of the bacterial community characteristics the 16S rRNA gene of the bacterial community was sequenced at 1 and 9 DPH.Initial rearing condition did not leave a legacy effect on bacterial α-diversityThe bacterial α-diversity of the rearing water was investigated at 1 and 12 DPH (Fig. 2). At 1 DPH, the richness was comparable between the FTS−, FTS+ and MMS+ treatments, but on average, 1.5× higher for the MMS− treatment (307 vs 205 ASVs, Tukey’s test p  More

  • in

    Climate change will redefine taxonomic, functional, and phylogenetic diversity of Odonata in space and time

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).Article 
    PubMed 

    Google Scholar 
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diamond, S. E. Contemporary climate‐driven range shifts: putting evolution back on the table. Functional Ecol. 32, 1652–1665 (2018).Article 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 
    PubMed 

    Google Scholar 
    Nelson, E. J. et al. Climate change’s impact on key ecosystem services and the human well‐being they support in the US. Front. Ecol. Environ. 11, 483–893 (2013).Article 

    Google Scholar 
    Prather, C. M. et al. Invertebrates, ecosystem services and climate change. Biol. Rev. 88, 327–348 (2013).Article 
    PubMed 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. World scientists’ warning of a climate emergency 2021. BioScience 71, 894–898 (2021).Article 

    Google Scholar 
    Gallagher, R. V., Hughes, L. & Leishman, M. R. Species loss and gain in communities under future climate change: consequences for functional diversity. Ecography 36, 531–540 (2013).Article 

    Google Scholar 
    Saladin, B. et al. Rapid climate change results in long-lasting spatial homogenization of phylogenetic diversity. Nat. Commun. 11, 1–8 (2020).Article 

    Google Scholar 
    Stewart, P. S. et al. Global impacts of climate change on avian functional diversity. Ecol. Lett. 25, 673–685 (2022).Article 
    PubMed 

    Google Scholar 
    Mammola, S., Carmona, C. P., Guillerme, T. & Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869–1885 (2021).Article 
    CAS 

    Google Scholar 
    Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2017).Article 
    PubMed 

    Google Scholar 
    Pavoine, S. & Bonsall, M. B. Measuring biodiversity to explain community assembly: a unified approach. Biol. Rev. 86, 792–812 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).Article 

    Google Scholar 
    Wang, S. & Loreau, M. Ecosystem stability in space: α, β and γ variability. Ecol. Lett. 17, 891–901 (2014).Article 
    PubMed 

    Google Scholar 
    Cardoso, P. et al. Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. J. Biogeogr. 41, 749–761 (2014).Article 

    Google Scholar 
    Hassall, C. Odonata as candidate macroecological barometers for global climate change. Freshwater Sci. 34, 1040–1049 (2015).Article 

    Google Scholar 
    Grewe, Y., Hof, C., Dehling, D. M., Brandl, R. & Brändle, M. Recent range shifts of European dragonflies provide support for an inverse relationship between habitat predictability and dispersal. Global Ecol. Biogeogr. 22, 403–409 (2013).Article 

    Google Scholar 
    Moore, M. P. et al. Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proc. Natl Acad. Sci. 118, https://doi.org/10.1073/pnas.2101458118 (2021).Castillo-Pérez, E. U., Suárez-Tovar, C. M., González-Tokman, D., Schondube, J. E. & Córdoba-Aguilar, A. Insect thermal limits in warm and perturbed habitats: Dragonflies and damselflies as study cases. J. Thermal Biol. 103, 103164 (2022).Article 

    Google Scholar 
    May, M. L. Odonata: Who they are and what they have done for us lately: Classification and ecosystem services of dragonflies. Insects 10, 62 (2019).Article 
    PubMed Central 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Global Change biology 11, 502–506 (2005).Article 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biol. 12, 450–455 (2006).Heino, J., Virkkala, R. & Toivonen, H. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol. Rev. 84, 39–54 (2009).Article 
    PubMed 

    Google Scholar 
    Mustonen, K. R. et al. Thermal and hydrologic responses to climate change predict marked alterations in boreal stream invertebrate assemblages. Global Change Biol. 24, 2434–2446 (2018).Article 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Difficult decisions: strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128–133 (2018).Article 

    Google Scholar 
    Wong, J. S. et al. Comparing patterns of taxonomic, functional and phylogenetic diversity in reef coral communities. Coral Reefs 37, 737–750 (2018).Article 

    Google Scholar 
    Arnan, X., Cerdá, X. & Retana, J. Relationships among taxonomic, functional, and phylogenetic ant diversity across the biogeographic regions of Europe. Ecography 40, 448–457 (2017).Article 

    Google Scholar 
    Strecker, A. L., Olden, J. D., Whittier, J. B. & Paukert, C. P. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecol. Appl. 21, 3002–3013 (2011).Article 

    Google Scholar 
    Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10, 1–3 (2019).Article 

    Google Scholar 
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).Article 

    Google Scholar 
    Ovaskainen, O., Rybicki, J. & Abrego, N. What can observational data reveal about metacommunity processes? Ecography 42, 1877–1886 (2019).Article 

    Google Scholar 
    Thomas, C. D. The development of Anthropocene biotas. Philos. Trans. R. Soc. B 375, 20190113 (2020).Article 

    Google Scholar 
    Krosby, M. et al. Climate-induced range overlap among closely related species. Nat. Clim. Change 5, 883–886 (2015).Article 

    Google Scholar 
    Sánchez-Guillén, R. A., Wellenreuther, M., Cordero-Rivera, A. & Hansson, B. Introgression and rapid species turnover in sympatric damselflies. BMC Evol. Biol. 11, 1–17 (2011).Article 

    Google Scholar 
    Bybee, S. et al. Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. Front. Zool. 13, 1–20 (2016).Article 

    Google Scholar 
    Tobias, N. & Monika, W. Does taxonomic homogenization imply functional homogenization in temperate forest herb layer communities? Plant Ecol. 213, 431–443 (2012).Article 

    Google Scholar 
    Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946 (2013).Article 
    PubMed 

    Google Scholar 
    Ball-Damerow, J. E., M’Gonigle, L. K. & Resh, V. H. Changes in occurrence, richness, and biological traits of dragonflies and damselflies (Odonata) in California and Nevada over the past century. Biodiversity Conserv. 23, 2107–2126 (2014).Article 

    Google Scholar 
    McGoff, E., Solimini, A. G., Pusch, M. T., Jurca, T. & Sandin, L. Does lake habitat alteration and land-use pressure homogenize European littoral macroinvertebrate communities? J. Appl. Ecol. 50, 1010–1018 (2013).Article 

    Google Scholar 
    Vilenica, M., Kerovec, M., Pozojević, I. & Mihaljević, Z. Odonata assemblages in anthropogenically impacted lotic habitats. J. Limnol. 80, 1968 (2021).Mammola, S. et al. Challenges and opportunities of species distribution modelling of terrestrial arthropod predators. Diversity Distrib. 27, 2596–2614 (2021).Article 

    Google Scholar 
    Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecol. Biogeogr. 27, 245–256 (2018).Article 

    Google Scholar 
    Kalkman, V. J. et al. Diversity and conservation of European dragonflies and damselflies (Odonata). Hydrobiologia 811, 269–282 (2018). .Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).Article 

    Google Scholar 
    Miller, J. A. & Holloway, P. Incorporating movement in species distribution models. Progr. Phys. Geogr. 39, 837–849 (2015).Article 

    Google Scholar 
    Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. 115, 11982–11987 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Pinkert, S. et al. Evolutionary processes, dispersal limitation and climatic history shape current diversity patterns of European dragonflies. Ecography 41, 795–804 (2018).Article 

    Google Scholar 
    Comte, L., Murienne, J. & Grenouillet, G. Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nat. Commun. 5, 1–9 (2014).Article 

    Google Scholar 
    Buckley, L. B. & Kingsolver, J. G. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Ann. Rev. Ecol. Evol. Syst. 43, 205–226 (2012).Article 

    Google Scholar 
    Tikhonov, G. et al. Joint species distribution modelling with the R‐package Hmsc. Methods Ecol. Evol. 11, 442–447 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corbet, P. S. The life-history of the emperor dragonfly Anax imperator Leach (Odonata: Aeshnidae). J. Animal Ecol. 1–69. https://doi.org/10.2307/1781 (1957).Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8(9), 993–1009 (2005).Article 
    PubMed 

    Google Scholar 
    Peterson, A. T. et al. Ecological niches and geographic distributions (MPB-49) (Princeton University Press, 2011).Franklin, J. Mapping species distributions: spatial inference and prediction (Cambridge University Press, 2010).Ryo, M. et al. Explainable artificial intelligence enhances the ecological interpretability of black‐box species distribution models. Ecography 44(2), 199–205 (2021).Article 

    Google Scholar 
    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adams, M. P. et al. Prioritizing localized management actions for seagrass conservation and restoration using a species distribution model. Aquat. Conserv. Marine Freshwater Ecosyst. 26, 639–659 (2016).Ficetola, G. F., Thuiller, W. & Padoa‐Schioppa, E. From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle. Diversity Distrib. 15, 108–116 (2009).Article 

    Google Scholar 
    Wang, Y., Xie, B., Wan, F., Xiao, Q. & Dai, L. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Sci. 15, 365 (2007).Article 

    Google Scholar 
    Santini, L., Benítez‐López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. Assessing the reliability of species distribution projections in climate change research. Diversity Distrib. 27, 1035–1050 (2021).Article 

    Google Scholar 
    Guyennon, A. et al. Colonization and extinction dynamics and their link to the distribution of European trees at the continental scale. J. Biogeogr. 49, 117–129 (2022).Article 

    Google Scholar 
    Pritchard, G. & Leggott, M. A. Temperature, incubation rates and origins of dragonflies. Adv. Odonatol. 3, 121–126 (1987).
    Google Scholar 
    Clausnitzer, V. et al. Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biol. Conserv. 142, 1864–1869 (2009).Article 

    Google Scholar 
    Córdoba-Aguilar, A. (Ed.). Dragonflies and damselflies: model organisms for ecological and evolutionary research (OUP Oxford, 2008).Corbet, P. S. et al. Dragonflies: behaviour and ecology of Odonata (Harley books, 1999).Troast, D., Suhling, F., Jinguji, H., Sahlén, G. & Ware, J. A global population genetic study of Pantala flavescens. PloS One 11, e0148949 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harabiš, F. & Dolný, A. The effect of ecological determinants on the dispersal abilities of central European dragonflies (Odonata). Odonatologica 40, 17 (2011).
    Google Scholar 
    Boudot, J. P. & Kalkman, V. J. (eds) Atlas of the European dragonflies and damselflies (KNNV publishing, 2015).Dijkstra, K. D. & Schröter, A. Field guide to the dragonflies of Britain and Europe (Bloomsbury Publishing, 2020).Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PloS One 12, e0189577 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inf. 19, 10–15 (2014).Article 

    Google Scholar 
    Zizka, A. et al. No one-size-fits-all solution to clean GBIF. PeerJ 8, e9916 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burgman, M. A. & Fox, J. C. Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning, Animal Conservation Forum (6, No. 1, pp. 19–28 (Cambridge University Press, 2003). https://doi.org/10.1017/S1367943003003044Calenge, C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Hijmans, R. J. Raster: geographic data analysis and modeling. https://CRAN.R-project.org/package=raster (2020).Hijmans, R. J., Phillips S., Leathwick J. & Elith J. Dismo: species distribution modeling. https://CRAN.R-project.org/package=dismo (2020).Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).Article 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    Mukaka, M. M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 24, 69–71 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Hausfather, Z. & Peters, G. P. Emissions–the ‘business as usual’story is misleading https://doi.org/10.1038/d41586-020-00177-3 (2020)Mammola, S., Milano, F., Vignal, M., Andrieu, J. & Isaia, M. Associations between habitat quality, body size and reproductive fitness in the alpine endemic spider Vesubia jugorum. Global Ecol. Biogeogr. 28, 1325–1335 (2019).Article 

    Google Scholar 
    Mammola, S., Goodacre, S. L. & Isaia, M. Climate change may drive cave spiders to extinction. Ecography 41(1), 233–243 (2018).Article 

    Google Scholar 
    Hastie, T. J. & Tibshirani, R. J. Generalized additive models (Routledge, 2017).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3-4), 231–259 (2006).Article 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning (p. 83).https://doi.org/10.1145/1015330.1015412 (2004).Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Animal Ecol. 77, 802–813 (2008).Article 
    CAS 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).Article 
    PubMed 

    Google Scholar 
    Grenouillet, G., Buisson, L., Casajus, N. & Lek, S. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34, 9–17 (2011).Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data. Ecol. Appl. 19, 181–197 (2009).Article 
    PubMed 

    Google Scholar 
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).Article 

    Google Scholar 
    Zhang, Z. et al. Lineage‐level distribution models lead to more realistic climate change predictions for a threatened crayfish. Diversity Distrib. 27, 684–695 (2021).Article 

    Google Scholar 
    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).Article 

    Google Scholar 
    Martín‐Vélez, V. & Abellán, P. Effects of climate change on the distribution of threatened invertebrates in a Mediterranean hotspot. Insect Conserv. Divers. https://doi.org/10.1111/icad.12563 (2022).Qiao, H., Soberon, J. & Peterson, A. T. No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 6, 1126–1136 (2015).Article 

    Google Scholar 
    Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography 43, 1261–1277 (2020).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).Article 
    PubMed 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61(1), 1–10 (1992).Article 

    Google Scholar 
    Cadotte, M. W. et al. Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol. Lett. 13, 96–105 (2010).Article 
    PubMed 

    Google Scholar 
    Pollock, L. J. et al. Protecting biodiversity (in all its complexity): new models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).Article 
    PubMed 

    Google Scholar 
    Corbet, P. S. ‘Biology of Odonata’. Ann. Rev. Entomol. 25, 189–217 (1980).Article 

    Google Scholar 
    Mitchell. Dragonfly locomotion: Ecology, form and function. PhD thesis, (University of Leeds, 2018). https://etheses.whiterose.ac.uk/21211/.The GIMP Development Team. GIMP (version 2.10.12). https://www.gimp.org (2019).Weller, H. Colordistance: distance metrics for image color similarity. https://CRAN.R-project.org/package=colordistance (2020).R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020). https://www.R-project.org/.de Bello, F., Botta‐Dukát, Z., Lepš, J. & Fibich, P. Towards a more balanced combination of multiple traits when computing functional differences between species. Methods Ecol. Evol. 12, 443–448 (2021).Article 

    Google Scholar 
    Hassall, C. & Thompson, D. J. The effects of environmental warming on Odonata: a review. Int. J. Odonatol. 11, 131–153 (2008).Article 

    Google Scholar 
    Acquah‐Lamptey, D., Brändle, M., Brandl, R. & Pinkert, S. Temperature‐driven color lightness and body size variation scale to local assemblages of European Odonata but are modified by propensity for dispersal. Ecol. Evol. 10, 8936–8948 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Outomuro, D. & Johansson, F. Wing morphology and migration status, but not body size, habitat or Rapoport’s rule predict range size in North‐American dragonflies (Odonata: Libellulidae). Ecography 42, 309–320 (2019).Article 

    Google Scholar 
    Rundle, S. D., Bilton, D. T., Abbott, J. C. & Foggo, A. Range size in North American Enallagma damselflies correlates with wing size. Freshwater Biol. 52, 471–477 (2007).Article 

    Google Scholar 
    Finlayson, C. M. et al. The second warning to humanity–providing a context for wetland management and policy. Wetlands 39, 1–5 (2019).Article 

    Google Scholar 
    Okude, G. & Futahashi, R. Pigmentation and color pattern diversity in Odonata. Curr. Opin. Genet. Dev. 69, 14–20 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mani, M. S. Ecology and biogeography of high altitude insects, vol. 4. (Springer Science & Business Media, 2013).Suárez‐Tovar, C. M., Guillermo‐Ferreira, R., Cooper, I. A., Cezário, R. R. & Córdoba‐Aguilar, A. Dragon colors: the nature and function of Odonata (dragonfly and damselfly) coloration. J. Zool. https://doi.org/10.1111/jzo.12963 (2022).Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).Article 
    PubMed 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).CAS 
    PubMed 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardoso, P., Stefano, M., Francois, R. & Jose, C. C. BAT: biodiversity assessment tools. https://CRAN.R-project.org/package=BAT (2021).Robert J. H. geosphere: spherical trigonometry. R package version 1.5-14. https://CRAN.R-project.org/package=geosphere (2021).Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 217–223 https://doi.org/10.1111/j.2041-210X.2011.00169.x (2012).Joy, J. B., Liang, R. H., McCloskey, R. M., Nguyen, T. & Poon, A. F. Ancestral reconstruction. PLoS Comput. Biol. 12, e1004763 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Orme, D. et al. caper: comparative analyses of phylogenetics and evolution in R. R package version 1.0.1 (2018).Silva, L. F. et al. Functional responses of Odonata larvae to human disturbances in neotropical savanna headwater streams. Ecol. Indic. 133, 108367 (2021).Article 

    Google Scholar  More

  • in

    Nasal microbiome disruption and recovery after mupirocin treatment in Staphylococcus aureus carriers and noncarriers

    Study population and study designThis is a prospective interventional cohort study of healthy S. aureus carriers and noncarriers in the Netherlands. All experiments were performed in accordance with the Dutch Medical Research Involving Human Subjects Act (WMO). The study protocol was approved by the local Medical Ethical Committee of the Erasmus University Medical Centre Rotterdam, The Netherlands (MEC-2018-091). Written informed consent was obtained for all participants. Participants were recruited through advertisements at Dutch universities and the research teams social networks. Exclusion criteria were age  8 CFU/mL for each culture. Noncarriers were defined as 2 S. aureus-negative cultures. Intermittent S. aureus carriers were excluded from further participation in the study. Eligible volunteers were enrolled on a first-come, first-served basis.Eligible participants were asked to fill out a questionnaire regarding risk factors for S. aureus acquisition. All participants received decolonization treatment. Decolonization consisted of mupirocin nasal ointment (2%, GlaxoSmithKline BV, Zeist, the Netherlands) twice daily and chlorhexidine gluconate cutaneous solution (4%w/v, Regent Medical Overseas Limited, Oldham, UK) once daily, both for 5 days.Nasal samples were taken 1 day before decolonization (D0) and 2 days (D7), 1 month (M1), 3 months (M3) and 6 months (M6) after decolonization. All participants received a personal demonstration for nasal sampling by the executive researcher. Thereafter, all specimens were taken by the participants by inserting a swab (ESwab, 490CE.A, Copan Italia, Brescia, Italy) into one nostril and rotating 5 times, repeating this in the second nostril using the same swab. Swabs were collected in a container filled with 1 ml modified Liquid Amies, a collection and transport solution, and sent through regular mail service (non-temperature controlled) or deposited at the laboratory personally.
    Staphylococcus aureus quantitative cultureQuantitative S. aureus cultures were conducted to examine the dynamics of S. aureus carriage over the 6-month follow-up period after decolonization. Swab containers were vortexed for 20 s before plating. Serial dilutions of Amies medium were plated onto phenol mannitol salt agar (PHMA) and incubated for 2 days at 37 °C. Swabs were placed in phenol mannitol salt broth (PHMB) and incubated for 7 days at 37 °C for enrichment. S. aureus growth was confirmed by a latex agglutination test (Staph Plus Latex Kit, Diamondial, Vienna, Austria). Morphologically different S. aureus colonies were selected for spa typing and methicillin resistance screening using BBL CHROMagar MRSA II agar (BD, Breda, The Netherlands).
    Spa typingMolecular typing of S. aureus isolates was performed to infer whether recolonization with S. aureus in decolonized carriers involved the same spa-type. Typing was limited to the last S. aureus positive culture moment and the last S. aureus positive culture moment after decolonization in recolonised carriers. S. aureus DNA lysates were prepared by boiling in 10 mM Tris–HCl, 1 mM disodium EDTA, pH 8.0 or extraction with the QIAamp DNA Mini Kit (QIAGEN, Venlo, The Netherlands) according to the manufacturer’s instructions. Amplification of the S. aureus protein A (spa) repeat region was performed by PCR with 2 sets of primers. One set consisted of forward primer spa-1113, 5′-TAAAGACGATCCTTCGGTGAGC-3′ and reverse primer spa-1514, 5′-CAGCAGTAGTGCCGTTTGCTT-3′24. The other set consisted of forward primers spa-F1, 5′-AACAACGTAACGGCTTCATCC-3′ and spa-F2 5′-AGACGATCCTTCAGTGAGC-3′ and reverse primer spa-R1 5′-GCTTTTGCAATGTCATTTACTG-3′. Amplicons were purified with ExoSAP-IT (Applied Biosystems) according to the manufacturer’s instructions and sent for sequence analysis (Baseclear, Leiden, The Netherlands). Resulting sequences were analysed using BioNumerics v7.6 (Applied Maths NV, Sint-Martens-Latem, Belgium) and the spa types were assigned by use of the RidomStaphType database (Ridom GmbH, Würzburg, Germany).16S ribosomal RNA sequencing of nasal microbiotaThe impact of decolonization on the nasal microbiome and the recovery of the microbiome structure after decolonization were examined by means of 16S rRNA metabarcoding. Amies medium from each nasal swab container was stored at − 80 °C on the day of receipt at the study laboratory in Rotterdam, NL, then sent at − 80 °C to the microbiome analysis laboratory in Lyon, FR. To properly capture the impact of decolonization on the living microbiota, metabarcoding used RNA-based 16S ribosomal RNA (rRNA, which is preserved in living cells but quickly cleared after cell death or lysis) rather than the DNA coding sequence, as DNA can persist for prolonged time periods after cell death25,26,27,28. RNA was extracted using the Mag Bind® Total RNA 96 Kit (Omega Bio-tek) tissue protocol from 150 µL of samples’ material. Cell lysis was performed using beads (Disruptor plate C plus—Omega Bio-tek) and proteinase K for 15 min at 2600 rpm, followed by 10 min at room temperature without agitation, and finished with a DNase I digestion of 20 min at room temperature. RNA was quantified using QuantiFluor RNA kit on Tecan Safire (TECAN). 10 ng total RNA was used for reverse transcription using FIREScript RT cDNA synthesis kit (Solis Biodyne) with random primers, then cDNA was purified with SPRIselect reagent (Beckman coulter) and quantified.The rRNA V1–V3 region was PCR amplified using the 5× HOT BIOAmp® BlendMaster Mix 12,5 mM MgCl 2 (Biofidal), 10× GC rich Enhancer (Biofidal) and BSA 20 mg/mL. The PCR reaction consisted of 30 cycles at 56 °C using the forward primer 27F, 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG AGAGTTTGATCCTGGCTCAG-3′ and reverse primer 534R, 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATTACCGCGGCTGCTGG-3′ in 25 µL of solution. PCR products were purified using SPRIselect beads (Beckman Coulter) in 20 µL nuclease-free water and quantified using QuantiFluor dsDNA (Promega). Samples were indexed with lllumina’s barcodes with the same PCR reagents during a 12 cycles PCR, then purified and quantified as previously mentioned. Samples were normalized and pooled, then sequenced using Illumina MiSeq V3 Flow Cell following the constructor’s recommendations for a 2 × 300 bp paired-end application. A mean of 130 k proofread reads per sample was obtained.Experiment buffers were used as negative controls to detect contamination by out-of-sample bacterial RNA. RNA extraction was controlled using an in-house mix of live Staphylococcus aureus ATCC29213 and Escherichia coli ATCC25922 in equal proportions, allowing for assessing extraction bias in Gram-positive and -negative bacteria. PCR amplification bias was controlled using a commercial DNA mix of 8 bacterial species (ZymoBIOMICS™ Microbial Community DNA Standard).Bioinformatics and statistical analysesSequencing reads were quality checked and trimmed. Paired-ended read pairs were merged using BBMap version 38.49 (available at https://sourceforge.net/projects/bbmap/), with default options besides a minimum single size of 150 bp with an average Phred quality score higher than 10, and a total pair size of minimum 400 bp. PCR adapters were removed with cutadapt v.2.1 (Martin 2011) then dereplicated using vsearch v.2.12.029 with the sizeout option. For species assignment, reads were aligned to sequences of NCBI blast 16S_ribosomal_RNA database (version date 03.12.2020) using Blastn v.2.11.0+30,31, keeping a maximum of 20 reference targets. Read counts per bacterial species were normalized to account for taxon-specific variations of the copy number of 16S rRNA genes using NCBI rrnDB-5.5 database based on the mean gene copy number in the taxon.To optimize the resolution of sequencing read taxonomic assignment, we used in-house bioinformatic software publicly available at https://github.com/rasigadelab/taxonresolve. Briefly, when a read matches sequences from several species with identical alignment scores, taxonomic assignment pipelines typically output the higher taxonomic level such as the genus (e.g., Staphylococcus spp. when a read matches S. aureus and S. epidermidis). This loss of information can be problematic when species-level discrimination is important. To prevent losing species-level information, the taxonresolve software assigns reads with uncertain species to groups of species rather than to genera.Bacterial species deemed present from contaminating sources such as kits reagents and found in negative controls, mostly from the Bacillus genera, were removed. A total of 1376 species or group of species were retained. The rarefaction curves corresponding to the sequencing effort to assess the species richness within samples are shown in Supplementary Fig. 3. Most samples reached a plateau after 40,000 sequences.Given the small sample size compared to the number of variables and species considered in this study, no hypothesis testing was performed, and we provide a descriptive assessment of the results. In figures, 95% confidence intervals of the means were computed based on normal approximation, after log transformation for CFU/mL and log odds transformation for quantities restricted to the [0, 1] interval, such as proportions.In microbial diversity analyses, we retained the 9 most prevalent bacterial species and pooled the other species into an ‘Others’ category. To assess the disruption and possible recovery of the microbiota, the divergence of sampled microbiota relative to the initial, pre-treatment microbiota (D0) was assessed using the Bray–Curtis dissimilarity at each sampling time point relative to the first sample of the same patient.Software code of the analyses are available at https://github.com/rasigadelab/macotra-metabarcoding. Data are available at https://zenodo.org/record/6382657. Analyses and figures used R software v3.6.032 with packages dplyr33, ggplot234, vegan35, and MicrobiomAnalyst available at https://www.microbiomeanalyst.ca36,37. More

  • in

    The role of individual variability on the predictive performance of machine learning applied to large bio-logging datasets

    Tsai, C.-W., Lai, C.-F., Chao, H.-C. & Vasilakos, A. V. Big data analytics: a survey. J. Big Data 2, 21 (2015).
    Google Scholar 
    Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).ADS 
    CAS 

    Google Scholar 
    Manzoni, C. et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 19, 286–302 (2018).CAS 

    Google Scholar 
    Lichtman, J. W., Pfister, H. & Shavit, N. The big data challenges of connectomics. Nat. Neurosci. 17, 1448–1454 (2014).CAS 

    Google Scholar 
    Altaf-Ul-Amin, M., Afendi, F. M., Kiboi, S. K. & Kanaya, S. Systems biology in the context of big data and networks. Biomed. Res. Int. 2014, 428570 (2014).
    Google Scholar 
    Xia, J., Wang, J. & Niu, S. Research challenges and opportunities for using big data in global change biology. Glob. Change Biol. 26, 6040–6061 (2020).ADS 

    Google Scholar 
    Hindell, M. A. et al. Tracking of marine predators to protect Southern Ocean ecosystems. Nature 580, 87–92 (2020).ADS 
    CAS 

    Google Scholar 
    Hussey, N. E. et al. Ecology. Aquatic animal telemetry: A panoramic window into the underwater world. Science 348, 1255642 (2015).
    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).
    Google Scholar 
    Sherub, S., Fiedler, W., Duriez, O. & Wikelski, M. Bio-logging, new technologies to study conservation physiology on the move: a case study on annual survival of Himalayan vultures. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 203, 531–542 (2017).
    Google Scholar 
    Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 375, eabg1780 (2022).CAS 

    Google Scholar 
    Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. J. Anim. Ecol. 89, 161–172 (2020).
    Google Scholar 
    Patterson, A., Gilchrist, H. G., Chivers, L., Hatch, S. & Elliott, K. A comparison of techniques for classifying behavior from accelerometers for two species of seabird. Ecol. Evol. 9, 3030–3045 (2019).
    Google Scholar 
    Masello, J. F. et al. How animals distribute themselves in space: energy landscapes of Antarctic avian predators. Mov. Ecol. 9, 24 (2021).
    Google Scholar 
    Shepard, E. L. C. et al. Energy landscapes shape animal movement ecology. Am. Nat. 182, 298–312 (2013).
    Google Scholar 
    Elliott, K. H., Le Vaillant, M., Kato, A., Speakman, J. R. & Ropert-Coudert, Y. Accelerometry predicts daily energy expenditure in a bird with high activity levels. Biol. Lett. 9, 20120919 (2013).
    Google Scholar 
    Nickel, B. A., Suraci, J. P., Nisi, A. C. & Wilmers, C. C. Energetics and fear of humans constrain the spatial ecology of pumas. Proc. Natl. Acad. Sci. USA 118, e2004592118 (2021).
    Eisaguirre, J. M., Booms, T. L., Barger, C. P., Lewis, S. B. & Breed, G. A. Novel step selection analyses on energy landscapes reveal how linear features alter migrations of soaring birds. J. Anim. Ecol. 89, 2567–2583 (2020).
    Google Scholar 
    Wittemyer, G., Northrup, J. M. & Bastille-Rousseau, G. Behavioural valuation of landscapes using movement data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180046 (2019).
    Google Scholar 
    Chimienti, M. et al. The use of an unsupervised learning approach for characterizing latent behaviors in accelerometer data. Ecol. Evol. 6, 727–741 (2016).
    Google Scholar 
    Hounslow, J. L. et al. Assessing the effects of sampling frequency on behavioural classification of accelerometer data. J. Exp. Mar. Bio. Ecol. 512, 22–30 (2019).
    Google Scholar 
    Glass, T. W., Breed, G. A., Robards, M. D., Williams, C. T. & Kielland, K. Accounting for unknown behaviors of free-living animals in accelerometer-based classification models: Demonstration on a wide-ranging mesopredator. Ecol. Inf. 60, 101152 (2020).
    Google Scholar 
    Wang, Y. et al. Movement, resting, and attack behaviors of wild pumas are revealed by tri-axial accelerometer measurements. Mov. Ecol. 3, 2 (2015).
    Google Scholar 
    Chakravarty, P., Cozzi, G., Ozgul, A. & Aminian, K. A novel biomechanical approach for animal behaviour recognition using accelerometers. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13172 (2019).Article 

    Google Scholar 
    Clarke, T. M. et al. Using tri-axial accelerometer loggers to identify spawning behaviours of large pelagic fish. Mov. Ecol. 9, 26 (2021).
    Google Scholar 
    Zhang, J., O’Reilly, K. M., Perry, G. L. W., Taylor, G. A. & Dennis, T. E. Extending the functionality of behavioural change-point analysis with k-Means clustering: a case study with the little penguin (Eudyptula minor). PLoS ONE 10, e0122811 (2015).
    Google Scholar 
    Korpela, J. et al. Machine learning enables improved runtime and precision for bio-loggers on seabirds. Commun. Biol. 3, 633 (2020).
    Google Scholar 
    Jeantet, L. et al. Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology. R. Soc. Open Sci. 7, 200139 (2020).ADS 

    Google Scholar 
    Wang, G. Machine learning for inferring animal behavior from location and movement data. Ecol. Inf. 49, 69–76 (2019).
    Google Scholar 
    Dunford, C. E. et al. Surviving in steep terrain: a lab-to-field assessment of locomotor costs for wild mountain lions (Puma concolor). Mov. Ecol. 8, 34 (2020).
    Google Scholar 
    Jeanniard-du-Dot, T., Guinet, C., Arnould, J. P. Y., Speakman, J. R. & Trites, A. W. Accelerometers can measure total and activity-specific energy expenditures in free-ranging marine mammals only if linked to time-activity budgets. Funct. Ecol. 31, 377–386 (2017).
    Google Scholar 
    Hicks, O. et al. Acceleration predicts energy expenditure in a fat, flightless, diving bird. Sci. Rep. 10, 21493 (2020).ADS 
    CAS 

    Google Scholar 
    Dentinger, J. E. et al. A probabilistic framework for behavioral identification from animal-borne accelerometers. Ecol. Model. 464, 109818 (2022).
    Google Scholar 
    Chakravarty, P., Maalberg, M., Cozzi, G., Ozgul, A. & Aminian, K. Behavioural compass: animal behaviour recognition using magnetometers. Mov. Ecol. 7, 28 (2019).
    Google Scholar 
    Hammond, T. T., Palme, R. & Lacey, E. A. Ecological specialization, variability in activity patterns and response to environmental change. Biol. Lett. 14, 20180115 (2018).
    Google Scholar 
    Lynch, H. J. & LaRue, M. A. First global census of the Adélie Penguin. Auk 131, 457–466 (2014).
    Google Scholar 
    Riaz, J., Bestley, S., Wotherspoon, S., Freyer, J. & Emmerson, L. From trips to bouts to dives: temporal patterns in the diving behaviour of chick-rearing Adélie penguins East Antarctica. Mar. Ecol. Prog. Ser. 654, 177–194 (2020).ADS 

    Google Scholar 
    Cherel, Y. Isotopic niches of emperor and Adélie penguins in Adélie Land, Antarctica. Mar. Biol. 154, 813–821 (2008).
    Google Scholar 
    Little Penguin (Eudyptula minor) – BirdLife species factsheet. at Carroll, G., Harcourt, R., Pitcher, B. J., Slip, D. & Jonsen, I. Recent prey capture experience and dynamic habitat quality mediate short-term foraging site fidelity in a seabird. Proc. Biol. Sci. 285, 20180788 (2018).
    Google Scholar 
    Meyer, X. et al. Oceanic thermal structure mediates dive sequences in a foraging seabird. Ecol. Evol. 10, 6610–6622 (2020).
    Google Scholar 
    Cavallo, C. et al. Quantifying prey availability using the foraging plasticity of a marine predator, the little penguin. Funct. Ecol. https://doi.org/10.1111/1365-2435.13605 (2020).Article 

    Google Scholar 
    Ropert-Coudert, Y., Chiaradia, A. & Kato, A. An exceptionally deep dive by a Little Penguin Eudyptula minor. Mar. Ornithol 34, 71–74 (2006).
    Google Scholar 
    Ropert-Coudert, Y., Kato, A., Wilson, R. P. & Cannell, B. Foraging strategies and prey encounter rate of free-ranging Little Penguins. Mar. Biol. 149, 139–148 (2006).
    Google Scholar 
    Rodríguez, A., Chiaradia, A., Wasiak, P., Renwick, L. & Dann, P. Waddling on the dark side: ambient light affects attendance behavior of little penguins. J. Biol. Rhythms 31, 194–204 (2016).
    Google Scholar 
    Ropert-Coudert, Y. et al. Happy feet in a hostile world? the future of penguins depends on proactive management of current and expected threats. Front. Mar. Sci. 6, 248 (2019).
    Google Scholar 
    Shuert, C. R., Pomeroy, P. P. & Twiss, S. D. Assessing the utility and limitations of accelerometers and machine learning approaches in classifying behaviour during lactation in a phocid seal. Anim. Biotelemetry 6, 14 (2018).
    Google Scholar 
    Dickinson, E. R. et al. Limitations of using surrogates for behaviour classification of accelerometer data: refining methods using random forest models in Caprids. Mov. Ecol. 9, 28 (2021).
    Google Scholar 
    Conway, A. M., Durbach, I. N., McInnes, A. & Harris, R. N. Frame-by-frame annotation of video recordings using deep neural networks. Ecosphere 12, e03384 (2021).
    Google Scholar 
    Ravindran, S. Five ways deep learning has transformed image analysis. Nature 609, 864–866 (2022).ADS 
    CAS 

    Google Scholar 
    Del Caño, M. et al. Fine-scale body and head movements allow to determine prey capture events in the Magellanic Penguin (Spheniscus magellanicus). Mar. Biol. 168, 84 (2021).
    Google Scholar 
    Johnson, J. M. & Khoshgoftaar, T. M. Survey on deep learning with class imbalance. J. Big Data 6, 27 (2019).
    Google Scholar 
    Hazen, E. L. et al. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17, 565–574 (2019).
    Google Scholar 
    Sánchez, S. et al. Within-colony spatial segregation leads to foraging behaviour variation in a seabird. Mar. Ecol. Prog. Ser. 606, 215–230 (2018).ADS 

    Google Scholar 
    Patrick, S. C., Martin, J. G. A., Ummenhofer, C. C., Corbeau, A. & Weimerskirch, H. Albatrosses respond adaptively to climate variability by changing variance in a foraging trait. Glob. Change Biol. https://doi.org/10.1111/gcb.15735 (2021).Article 

    Google Scholar 
    Bonar, M. et al. Geometry of the ideal free distribution: individual behavioural variation and annual reproductive success in aggregations of a social ungulate. Ecol. Lett. 23, 1360–1369 (2020).
    Google Scholar 
    Michelot, C., Kato, A., Raclot, T. & Ropert-Coudert, Y. Adélie penguins foraging consistency and site fidelity are conditioned by breeding status and environmental conditions. PLoS ONE 16, e0244298 (2021).CAS 

    Google Scholar 
    Mahoney, P. J. et al. Navigating snowscapes: scale-dependent responses of mountain sheep to snowpack properties. Ecol. Appl. 28, 1715–1729 (2018).
    Google Scholar 
    Watanabe, Y. Y., Ito, K., Kokubun, N. & Takahashi, A. Foraging behavior links sea ice to breeding success in Antarctic penguins. Sci. Adv. 6, eaba4828 (2020).ADS 

    Google Scholar 
    Lescroël, A. et al. Working less to gain more: when breeding quality relates to foraging efficiency. Ecology 91, 2044–2055 (2010).
    Google Scholar 
    Zimmer, I., Ropert-Coudert, Y., Kato, A., Ancel, A. & Chiaradia, A. Does foraging performance change with age in female little penguins (Eudyptula minor)?. PLoS ONE 6, e16098 (2011).ADS 
    CAS 

    Google Scholar 
    Hertel, A. G., Royauté, R., Zedrosser, A. & Mueller, T. Biologging reveals individual variation in behavioural predictability in the wild. J. Anim. Ecol. 90, 723–737 (2021).
    Google Scholar 
    Dickinson, E. R., Stephens, P. A., Marks, N. J., Wilson, R. P. & Scantlebury, D. M. Best practice for collar deployment of tri-axial accelerometers on a terrestrial quadruped to provide accurate measurement of body acceleration. Anim. Biotelemetry 8, 9 (2020).
    Google Scholar 
    Garde, B. et al. Ecological inference using data from accelerometers needs careful protocols. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13804 (2022).Article 

    Google Scholar 
    Watanabe, Y. Y., Ito, M. & Takahashi, A. Testing optimal foraging theory in a penguin-krill system. Proc. Biol. Sci. 281, 20132376 (2014).
    Google Scholar 
    Grémillet, D. et al. Energetic fitness: Field metabolic rates assessed via 3D accelerometry complement conventional fitness metrics. Funct. Ecol. 32, 1203–1213 (2018).
    Google Scholar 
    Chimienti, M. et al. Quantifying behavior and life-history events of an Arctic ungulate from year-long continuous accelerometer data. Ecosphere 12, e03565 (2021).
    Google Scholar 
    Sutton, G. J., Botha, J. A., Speakman, J. R. & Arnould, J. P. Y. Validating accelerometry-derived proxies of energy expenditure using the doubly-labelled water method in the smallest penguin species. Biol. Open 10, bio055475 (2021).
    Google Scholar 
    Pagano, A. M. & Williams, T. M. Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: A validation with doubly labeled water. Ecol. Evol. 9, 4210–4219 (2019).
    Google Scholar 
    Ballance, L. T., Ainley, D. G., Ballard, G. & Barton, K. An energetic correlate between colony size and foraging effort in seabirds, an example of the Adélie penguin Pygoscelis adeliae. J. Avian Biol. 40, 279–288 (2009).
    Google Scholar 
    Wilson, R. P. et al. Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildl. Soc. Bull. 25, 101–106 (1997).
    Google Scholar 
    Shepard, E. L. C. et al. Identification of animal movement patterns using tri-axial accelerometry. Endanger. Species Res. 10, 47–60 (2008).ADS 

    Google Scholar 
    Kato, A., Ropert-Coudert, Y., Grémillet, D. & Cannell, B. Locomotion and foraging strategy in foot-propelled and wing-propelled shallow-diving seabirds. Mar. Ecol. Prog. Ser. 308, 293–301 (2006).ADS 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://url.org/www.R-project.org/ (2021).
    Ainley, D. The Adélie Penguin: Bellwether of Climate Change (New York: Columbia University Press) (2006).Langrognet, F. et al. Rmixmod: Classification with Mixture Modelling. (2020).Bishop, C. M. Pattern Recognition and Machine Learning. Springer Science+Business Media, LLC, New
    York, NY. (2006).Amélineau, F. et al. Intra- and inter-individual changes in little penguin diving and isotopic composition over the breeding season. Mar. Biol. 168, 62 (2021).
    Google Scholar 
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
    Google Scholar 
    Kuhn, M. & Wickham, H. Tidymodels: a collection of packages for modeling and machine learning using tidyverse principles. https://www.tidymodels.org (2020).Wright, M. N. & Ziegler, A. Ranger : A fast implementation of random forests for high dimensional data in C++ andR. J. Stat. Softw. 77, 1–17 (2017).
    Google Scholar  More

  • in

    Transposable elements maintain genome-wide heterozygosity in inbred populations

    Kristensen, T. N. et al. A test of quantitative genetic theory using Drosophila- effects of inbreeding and rate of inbreeding on heritabilities and variance components. J. Evol. Biol. 18, 763–770 (2005).CAS 
    PubMed 

    Google Scholar 
    Angeloni, F., Ouborg, N. J. & Leimu, R. Meta-analysis on the association of population size and life history with inbreeding depression in plants. Biol. Conserv. 144, 35–43 (2011).
    Google Scholar 
    Caballero, A., Bravo, I. & Wang, J. Inbreeding load and purging: implications for the short-term survival and the conservation management of small populations. Heredity 118, 177–185 (2017).CAS 
    PubMed 

    Google Scholar 
    Park, D. S., Ellison, A. M. & Davis, C. C. Mating system does not predict niche breath. Glob. Ecol. Biogeogr. 27, 804–813 (2018).
    Google Scholar 
    Buckley, J., Daly, R., Cobbold, C. A., Burgess, K. & Mable, B. K. Changing environments and genetic variation: natural variation in inbreeding does not compromise short-term physiological responses. Proc. R. Soc. B Biol. Sci. 286, 20192109 (2019).
    Google Scholar 
    Grossenbacher, D., Briscoe Runquist, R., Goldberg, E. E. & Brandvain, Y. Geographic range size is predicted by plant mating system. Ecol. Lett. 18, 706–713 (2015).PubMed 

    Google Scholar 
    Wright, S. I., Lauga, B. & Charlesworth, D. Rates and patterns of molecular evolution in inbred and outbred arabidopsis. Mol. Biol. Evol. 19, 1407–1420 (2002).CAS 
    PubMed 

    Google Scholar 
    Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Platt, A. et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 6, e1000843 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Lynch, M., Conery, J. & Burger, R. Mutation accumulation and the extinction of small populations. Am. Nat. 146, 489–518 (1995).
    Google Scholar 
    Willis, J. H. The role of genes of large effect on inbreeding depression in Mimulus guttatus. Evolution 53, 1678–1691 (1999).CAS 
    PubMed 

    Google Scholar 
    Coron, C., Méléard, S., Porcher, E. & Robert, A. Quantifying the mutational meltdown in diploid populations. Am. Nat. 181, 623–636 (2013).PubMed 

    Google Scholar 
    Kyriazis, C. C., Wayne, R. K. & Lohmueller, K. E. Strongly deleterious mutations are a primary determinant of extinction risk due to inbreeding depression. Evol. Lett. https://doi.org/10.1002/evl3.209 (2020).Barrett, S. C. H. & Charlesworth, D. Effects of a change in the level of inbreeding on the genetic load. Nature 352, 522–524 (1991).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hedrick, P. W. & Garcia-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 31, 940–952 (2016).PubMed 

    Google Scholar 
    Robinson, J. A., Brown, C., Kim, B. Y., Lohmueller, K. E. & Wayne, R. K. Purging of strongly deleterious mutations explains long-term persistence and absence of inbreeding depression in island foxes. Curr. Biol. 28, 3487–3494.e4 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khan, A. et al. Genomic evidence for inbreeding depression and purging of deleterious genetic variation in Indian tigers. Proc. Natl. Acad. Sci. USA 118, e2023018118 (2021).Byers, D. L. & Waller, D. M. Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu. Rev. Ecol. Syst. 30, 479–513 (1999).
    Google Scholar 
    Goodwillie, C., Kalisz, S. & Eckert, C. G. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 36, 47–79 (2005).
    Google Scholar 
    Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. 8, 269–294 (1966).CAS 
    PubMed 

    Google Scholar 
    Covert, A. W. III, Lenski, R. E., Wilke, C. O. & Ofria, C. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution. Proc. Natl Acad. Sci. USA 110, E3171–E3178 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castellano, D., Coronado-Zamora, M., Campos, J. L., Barbadilla, A. & Eyre-Walker, A. Adaptive evolution is substantially impeded by hill–robertson interference in Drosophila. Mol. Biol. Evol. 33, 442–455 (2016).CAS 
    PubMed 

    Google Scholar 
    Anderson, J. T., Lee, C.-R., Rushworth, C. A., Colautti, R. I. & Mitchell-Olds, T. Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol. Ecol. 22, 699–708 (2013).PubMed 

    Google Scholar 
    Hämälä, T. & Savolainen, O. Genomic patterns of local adaptation under gene flow in arabidopsis lyrata. Mol. Biol. Evol. 36, 2557–2571 (2019).
    Google Scholar 
    Taylor, M. A. et al. Large-effect flowering time mutations reveal conditionally adaptive paths through fitness landscapes in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 116, 17890–17899 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Storz, J. F. Causes of molecular convergence and parallelism in protein evolution. Nat. Rev. Genet. 17, 239–250 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mimura, M. & Aitken, S. N. Local adaptation at the range peripheries of Sitka spruce. J. Evol. Biol. 23, 249–258 (2010).CAS 
    PubMed 

    Google Scholar 
    Stanton-Geddes, J., Tiffin, P. & Shaw, R. G. Role of climate and competitors in limiting fitness across range edges of an annual plant. Ecology 93, 1604–1613 (2012).PubMed 

    Google Scholar 
    Vergeer, P. & Kunin, W. E. Adaptation at range margins: common garden trials and the performance of Arabidopsis lyrata across its northwestern European range. N. Phytol. 197, 989–1001 (2013).
    Google Scholar 
    Volis, S., Ormanbekova, D. & Shulgina, I. Role of selection and gene flow in population differentiation at the edge vs. interior of the species range differing in climatic conditions. Mol. Ecol. 25, 1449–1464 (2016).CAS 
    PubMed 

    Google Scholar 
    Glémin, S., Bazin, E. & Charlesworth, D. Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proc. R. Soc. B Biol. Sci. 273, 3011–3019 (2006).
    Google Scholar 
    Almeida‐Rocha, J. M., Soares, L. A. S. S., Andrade, E. R., Gaiotto, F. A. & Cazetta, E. The impact of anthropogenic disturbances on the genetic diversity of terrestrial species: A global meta‐analysis. Mol. Ecol. 29, 4812–4822 (2020).PubMed 

    Google Scholar 
    Schrader, L. et al. Transposable element islands facilitate adaptation to novel environments in an invasive species. Nat. Commun. 5, 5495 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lu, L. et al. Tracking the genome-wide outcomes of a transposable element burst over decades of amplification. Proc. Natl Acad. Sci. USA 114, E10550–E10559 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schrader, L. & Schmitz, J. The impact of transposable elements in adaptive evolution. Mol. Ecol. 28, 1537–1549 (2019).PubMed 

    Google Scholar 
    Habig, M., Lorrain, C., Feurtey, A., Komluski, J. & Stukenbrock, E. H. Epigenetic modifications affect the rate of spontaneous mutations in a pathogenic fungus. Nat. Commun. 12, 1–13 (2021).
    Google Scholar 
    Wicker, T. et al. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses. Nat. Commun. 7, 1–9 (2016).
    Google Scholar 
    Dubin, M. J., Mittelsten Scheid, O. & Becker, C. Transposons: a blessing curse. Curr. Opin. Plant Biol. 42, 23–29 (2018).CAS 
    PubMed 

    Google Scholar 
    Stapley, J., Santure, A. W. & Dennis, S. R. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol. Ecol. 24, 2241–2252 (2015).CAS 
    PubMed 

    Google Scholar 
    Sultana, T., Zamborlini, A., Cristofari, G. & Lesage, P. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat. Rev. Genet. 18, 292–308 (2017).CAS 
    PubMed 

    Google Scholar 
    Baduel, P. et al. Genetic and environmental modulation of transposition shapes the evolutionary potential of Arabidopsis thaliana. Genome Biol. 22, 1–26 (2021).
    Google Scholar 
    Quesneville, H. Twenty years of transposable element analysis in the Arabidopsis thaliana genome. Mob. DNA 11, 28 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ossowski, S. et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Coulondre, C., Miller, J. H., Farabaugh, P. J. & Gilbert, W. Molecular basis of base substitution hotspots in Escherichia coli. Nature 274, 775–780 (1978).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Duncan, B. K. & Miller, J. H. Mutagenic deamination of cytosine residues in DNA. Nature 287, 560–561 (1980).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Linquist, S. et al. Distinguishing ecological from evolutionary approaches to transposable elements. Biol. Rev. 88, 573–584 (2013).PubMed 

    Google Scholar 
    Dupeyron, M., Singh, K. S., Bass, C. & Hayward, A. Evolution of Mutator transposable elements across eukaryotic diversity. Mob. DNA 10, 1–14 (2019).
    Google Scholar 
    Batstone, R. T. Genomes within genomes: nested symbiosis and its implications for plant evolution. New Phytol. https://doi.org/10.1111/nph.17847 (2021).Pietzenuk, B. et al. Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements. Genome Biol. 17, 209 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Horváth, V., Merenciano, M. & González, J. Revisiting the relationship between transposable elements and the eukaryotic stress response. Trends Genet. 33, 832–841 (2017).PubMed 

    Google Scholar 
    Liu, S. et al. Role of H1 and DNA methylation in selective regulation of transposable elements during heat stress. N. Phytol. 229, 2238–2250 (2021).CAS 

    Google Scholar 
    Mao, H. et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat. Commun. 6, 1–13 (2015).ADS 
    CAS 

    Google Scholar 
    Castelletti, S., Tuberosa, R., Pindo, M. & Salvi, S. A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL vgt1. G3 Genes, Genomes, Genet. 4, 805–812 (2014).CAS 

    Google Scholar 
    Legrand, S. et al. Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mob. DNA 10, 30 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Quadrana, L. et al. Transposition favors the generation of large effect mutations that may facilitate rapid adaption. Nat. Commun. 10, 1–10 (2019).CAS 

    Google Scholar 
    Teschendorf, A. E. & Relton, C. L. Statistical and integrative system-level analysis of DNA methylation data. Nat. Rev. Genet. 19, 129–147 (2019).
    Google Scholar 
    Bonchev, G. & Willi, Y. Accumulation of transposable elements in selfing populations of Arabidopsis lyrata supports the ectopic recombination model of transposon evolution. N. Phytol. 219, 767–778 (2018).CAS 

    Google Scholar 
    Lockton, S., Ross-Ibarra, J. & Gaut, B. S. Demography and weak selection drive patterns of transposable element diversity in natural populations of Arabidopsis lyrata. Proc. Natl Acad. Sci. USA 105, 13965–13970 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lockton, S. & Gaut, B. S. The evolution of transposable elements in natural populations of self-fertilizing Arabidopsis thaliana and its outcrossing relative Arabidopsis lyrata. BMC Evol. Biol. 10, 10 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Mable, B. K., Dart, A. V. R., Berardo, C., Di & Witham, L. Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution 59, 1437–1448 (2005).PubMed 

    Google Scholar 
    Foxe, J. P. et al. Reconstructing origins of loss of self-incompatibility and selfing in North American Arabidopsis lyrata: a population genetic context. Evolution 64, 3495–3510 (2010).PubMed 

    Google Scholar 
    Quadrana, L. et al. The Arabidopsis thaliana mobilome and its impact at the species level. Elife 5, e15716 (2016).Stuart, T. et al. Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation. Elife 5, e20777 (2016).Willi, Y. Mutational meltdown in selfing Arabidopsis lyrata. Evolution 67, 806–815 (2013).PubMed 

    Google Scholar 
    Joschinski, J., van Kleunen, M. & Stift, M. Costs associated with the evolution of selfing in North American populations of Arabidopsis lyrata? Evol. Ecol. 29, 749–764 (2015).
    Google Scholar 
    Koonin, E. V. & Krupovic, M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat. Rev. Genet. 16, 184–192 (2015).CAS 
    PubMed 

    Google Scholar 
    Li, Z.-W. et al. Transposable elements contribute to the adaptation of Arabidopsis thaliana. Genome Biol. Evol. 10, 2140–2150 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Catlin, N. S. & Josephs, E. B. The important contribution of transposable elements to phenotypic variation and evolution. Curr. Opin. Plant Biol. 65, 102140 (2022).CAS 
    PubMed 

    Google Scholar 
    Casacuberta, E. & González, J. The impact of transposable elements in environmental adaptation. Mol. Ecol. 22, 1503–1517 (2013).CAS 
    PubMed 

    Google Scholar 
    Baduel, P., Quadrana, L., Hunter, B., Bomblies, K. & Colot, V. Relaxed purifying selection in autopolyploids drives transposable element over-accumulation which provides variants for local adaptation. Nat. Commun. 10, 1–10 (2019).
    Google Scholar 
    Wos, G., Choudhury, R. R., Kolář, F. & Parisod, C. Transcriptional activity of transposable elements along an elevational gradient in Arabidopsis arenosa. Mob. DNA 12, 7 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stebbins, G. L. Self fertilization and population variability in the higher plants. Am. Nat. 91, 337–354 (1957).
    Google Scholar 
    Takebayashi, N. & Morrell, P. L. Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. Am. J. Bot. 88, 1143–1150 (2001).CAS 
    PubMed 

    Google Scholar 
    Igic, B. & Busch, J. W. Is self‐fertilization an evolutionary dead end? N. Phytol. 198, 386–397 (2013).
    Google Scholar 
    Goldberg, E. E. et al. Species selection maintains self-incompatibility. Science 330, 493–495 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Abu Awad, D. & Billiard, S. The double edged sword: The demographic consequences of the evolution of self-fertilization. Evolution 71, 1178–1190 (2017).PubMed 

    Google Scholar 
    Fijarczyk, A. & Babik, W. Detecting balancing selection in genomes: limits and prospects. Mol. Ecol. 24, 3529–3545 (2015).CAS 
    PubMed 

    Google Scholar 
    Wu, Q. et al. Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives. Genome Biol. 18, 1–15 (2017).CAS 

    Google Scholar 
    Kerwin, R. et al. Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness. Elife 2015, 1–28 (2015).
    Google Scholar 
    Waller, D. M. Addressing Darwin’s dilemma: can pseudo-overdominance explain persistent inbreeding depression and load? Evolution 75, 779–793 (2021).CAS 
    PubMed 

    Google Scholar 
    Gilbert, K. J., Pouyet, F., Excoffier, L. & Peischl, S. Transition from background selection to associative overdominance promotes diversity in regions of low recombination. Curr. Biol. 30, 101–107.e3 (2020).CAS 
    PubMed 

    Google Scholar 
    Buckley, J. et al. R-gene variation across Arabidopsis lyrata subspecies: effects of population structure, selection and mating system. BMC Evol. Biol. 16, 93 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Schmickl, R., Jørgensen, M. H., Brysting, A. K. & Koch, M. A. Phylogeographic implications for the north american boreal-arctic Arabidopsis lyrata complex. Plant Ecol. Divers. 1, 245–254 (2008).
    Google Scholar 
    Buckley, J., Holub, E. B., Koch, M. A., Vergeer, P. & Mable, B. K. Restriction associated DNA-genotyping at multiple spatial scales in Arabidopsis lyrata reveals signatures of pathogen-mediated selection. BMC Genomics 19, 1–21 (2018).
    Google Scholar 
    Flutre, T., Duprat, E., Feuillet, C. & Quesneville, H. Considering transposable element diversification in de novo annotation approaches. PLoS ONE 6, e16526 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: an R package to perform genome scans for selection based on principal component analysis. in. Mol. Ecol. Resour. 17, 67–77 (2017).CAS 
    PubMed 

    Google Scholar 
    Privé, F., Luu, K., Vilhjálmsson, B. J. & Blum, M. G. B. Performing highly efficient genome scans for local adaptation with R Package pcadapt Version 4. Mol. Biol. Evol. 37, 2153–2154 (2020).PubMed 

    Google Scholar 
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Charlesworth, J. & Eyre-Walker, A. The McDonald-Kreitman test and slightly deleterious mutations. Mol. Biol. Evol. 25, 1007–1015 (2008).CAS 
    PubMed 

    Google Scholar 
    Hernandez, R. D. et al. Ultrarare variants drive substantial cis heritability of human gene expression. Nat. Genet. 51, 1349–1355 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williamson, R. J. et al. Evidence for widespread positive and negative selection in coding and conserved noncoding regions of capsella grandiflora. PLoS Genet. 10, e1004622 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).
    Google Scholar 
    Mattila, T. M., Tyrmi, J., Pyhäjärvi, T. & Savolainen, O. Genome-wide analysis of colonization history and concomitant selection in Arabidopsis lyrata. Mol. Biol. Evol. 34, 2665–2677 (2017).CAS 
    PubMed 

    Google Scholar  More

  • in

    Factors underlying bird community assembly in anthropogenic habitats depend on the biome

    Hobbs, R. J. et al. Novel ecosystems: Theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 15, 1–7 (2006).
    Google Scholar 
    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
    Google Scholar 
    Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).
    Google Scholar 
    Zobel, M. The species pool concept as a framework for studying patterns of plant diversity. J. Veg. Sci. 27, 8–18 (2016).
    Google Scholar 
    Birkhofer, K. et al. Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities. J. Anim. Ecol. 86, 511–520 (2017).PubMed 

    Google Scholar 
    Temperton, V. M. Assembly Rules and Restoration Ecology: Bridging the Gap Between Theory and Practice (Island Press, 2004).
    Google Scholar 
    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).PubMed 

    Google Scholar 
    Gascon, C. et al. Matrix habitat and species richness in tropical forest remnants. Biol. Conserv. 91, 223–229 (1999).
    Google Scholar 
    Filloy, J., Zurita, G. A., Corbelli, J. M. & Bellocq, M. I. On the similarity among bird communities: Testing the influence of distance and land use. Acta Oecol. 36, 333–338 (2010).ADS 

    Google Scholar 
    Vaccaro, A., Filloy, J. & Bellocq, M. What land use better preserves the functional and taxonomic diversity of birds in a grassland biome?. Avian Conserv. Ecol. 14, 1 (2019).
    Google Scholar 
    Vaccaro, A. S. & Bellocq, M. I. Diversidad taxonómica y funcional de aves: Diferencias entre hábitats antrópicos en un bosque subtropical. Ecol. Austral 29, 391–404 (2019).
    Google Scholar 
    Sekercioglu, C. H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 153, 153–161 (2012).
    Google Scholar 
    Zurita, G. A. & Bellocq, M. I. Bird assemblages in anthropogenic habitats: Identifying a suitability gradient for native species in the Atlantic Forest. Biotropica 44, 412–419 (2012).
    Google Scholar 
    Azpiroz, A. B. et al. Ecology and conservation of grassland birds in southeastern South America: A review. J. Field Ornithol. 83, 217–246 (2012).
    Google Scholar 
    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).PubMed 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
    Google Scholar 
    Corbelli, J. M. et al. Integrating taxonomic, functional and phylogenetic beta diversities: Interactive effects with the biome and land use across taxa. PLoS ONE 10, 1–17 (2015).
    Google Scholar 
    Purschke, O. et al. Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: Insights into assembly processes. J. Ecol. 101, 857–866 (2013).
    Google Scholar 
    Srivastava, D. S., Cadotte, M. W., Macdonald, A. A. M., Marushia, R. G. & Mirotchnick, N. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648 (2012).PubMed 

    Google Scholar 
    Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).PubMed 

    Google Scholar 
    Mouquet, N. et al. Ecophylogenetics: Advances and perspectives. Biol. Rev. 87, 769–785 (2012).PubMed 

    Google Scholar 
    Ackerly, D. D., Schwilk, D. W. & Webb, C. O. Niche evolution and adaptive radiation: Testing the order of trait divergence. Ecology 87, S50–S61 (2006).CAS 
    PubMed 

    Google Scholar 
    Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843 (2004).CAS 
    PubMed 

    Google Scholar 
    Losos, J. B. et al. Niche lability in the evolution of a Caribbean lizard community. Nature 424, 542–545 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stevens, R. D., Gavilanez, M. M., Tello, J. S. & Ray, D. A. Phylogenetic structure illuminates the mechanistic role of environmental heterogeneity in community organization. J. Anim. Ecol. 81, 455–462 (2012).PubMed 

    Google Scholar 
    García-Navas, V. & Thuiller, W. Farmland bird assemblages exhibit higher functional and phylogenetic diversity than forest assemblages in France. J. Biogeogr. 47, 2392–2404 (2020).
    Google Scholar 
    Henwood, W. D. Toward a strategy for the conservation and protection of the world’s temperate grasslands. Univ. Neb. Press 20, 121–134 (2010).ADS 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Landi, M., Oesterheld, M. & Deregibus, V. A. Manual de especies forrajeras de los pastizales naturales de Entre Ríos (1987).Viglizzo, E. F. et al. Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agric. Ecosyst. Environ. 83, 65–81 (2001).
    Google Scholar 
    Galindo Leal, C. & de Gusmão Câmara, I. The Atlantic Forest of South America: Biodiversity Status, Threats and Outlook (Island Press, 2003).
    Google Scholar 
    Oliveira-Filho, A. T. & Fontes, M. A. L. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32, 793–810 (2000).
    Google Scholar 
    DeGraaf, R. M., Geis, A. D. & Healy, P. A. Bird population and habitat surveys in urban areas. Landsc. Urban Plan. 21, 181–188 (1991).
    Google Scholar 
    Ralph, C. J. et al. Manual de métodos de campo para el monitoreo de aves terrestres. Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, Albany, CA 46 http://www.srs.fs.usda.gov/pubs/31462. https://doi.org/10.3145/epi.2006.jan.15 (1996).Bibby, C., Jones, M. & Marsden, S. Expedition field techniques: Bird surveys. in (ed. Society, R. G.) (1998).Zurita, G. A. & Bellocq, M. I. Spatial patterns of bird community similarity: Bird responses to landscape composition and configuration in the Atlantic forest. Landsc. Ecol. 25, 147–158 (2010).
    Google Scholar 
    Koper, N. & Schmiegelow, F. K. K. A multi-scaled analysis of avian response to habitat amount and fragmentation in the Canadian dry mixed-grass prairie. Landsc. Ecol. 21, 1045 (2006).
    Google Scholar 
    Xeno-canto-Foundation. Xeno-canto website. https://www.xeno-canto.org (2018).Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).
    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org (2018).Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    PubMed 

    Google Scholar 
    Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100 (2008).CAS 
    PubMed 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Core Team. nlme: Linear and Nonlinear mixed effects models. R package version 3.1–117. (2014).Lenth, R. V. Least-Squares Means: The R Package lsmeans. J. Stat. Softw. https://doi.org/10.18637/jss.v069.i01 (2016).Article 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32, 429–437 (2017).PubMed 

    Google Scholar 
    Concepción, E. D. et al. Contrasting trait assembly patterns in plant and bird communities along environmental and human-induced land-use gradients. Ecography 40, 753–763 (2016).
    Google Scholar 
    Cerezo, A., Conde, M. C. & Poggio, S. L. Pasture area and landscape heterogeneity are key determinants of bird diversity in intensively managed farmland. Biodivers. Conserv. 20, 2649–2667 (2011).
    Google Scholar 
    Pretelli, M. G., Isacch, J. P. & Cardoni, D. A. Year-round abundance, richness and nesting of the bird assemblage of tall grasslands in the south-east Pampas region, Argentina. Ardeola 60, 327–343 (2013).
    Google Scholar 
    Molinari, R. L. Biografía de la Pampa: 4 siglos de historia del campo argentino (Fundación Colombina “V Centenario,” 1987).
    Google Scholar 
    Filloy, J. & Bellocq, M. I. Patterns of bird abundance along the agricultural gradient of the Pampean region. Agric. Ecosyst. Environ. 120, 291–298 (2007).
    Google Scholar 
    Le Viol, I. et al. More and more generalists: Two decades of changes in the European avifauna. Biol. Lett. 8, 780–782 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Concepción, E. D., Moretti, M., Altermatt, F., Nobis, M. P. & Obrist, M. K. Impacts of urbanisation on biodiversity: The role of species mobility, degree of specialisation and spatial scale. Oikos 124, 1571–1582 (2015).
    Google Scholar 
    Emerson, B. C. & Gillespie, R. G. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23, 619–630 (2008).PubMed 

    Google Scholar 
    Morse, N. B. et al. Novel ecosystems in the Anthropocene: A revision of the novel ecosystem concept for pragmatic applications. Ecol. Soc. 19, 12 (2014).
    Google Scholar 
    Loyn, R. H., McNabb, E. G., Macak, P. & Noble, P. Eucalypt plantations as habitat for birds on previously cleared farmland in south-eastern Australia. Biol. Conserv. 137, 533–548 (2007).
    Google Scholar 
    Marsden, S., Whiffin, M. & Galetti, M. Bird diversity and abundance in forest fragments and Eucalyptus plantations around an Atlantic forest reserve, Brazil. Biodivers. Conserv. 10, 737–751 (2001).
    Google Scholar 
    Zurita, G. A., Rey, N., Varela, D. M., Villagra, M. & Bellocq, M. I. Conversion of the Atlantic Forest into native and exotic tree plantations: Effects on bird communities from the local and regional perspectives. For. Ecol. Manag. 235, 164–173 (2006).
    Google Scholar 
    Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity ecosystem-function. Ecology 92, 1573–1581 (2011).PubMed 

    Google Scholar 
    Sol, D. et al. The worldwide impact of urbanisation on avian functional diversity. Ecol. Lett. 23, 962–972 (2020).PubMed 

    Google Scholar 
    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
    Google Scholar 
    Palacio, F. X., Ibañez, L. M., Maragliano, R. E. & Montalti, D. Urbanization as a driver of taxonomic, functional, and phylogenetic diversity losses in bird communities. Can. J. Zool. 96, 1114–1121 (2018).
    Google Scholar 
    Sol, D., Bartomeus, I., González-Lagos, C. & Pavoine, S. Urbanisation and the loss of phylogenetic diversity in birds. Ecol. Lett. 20, 721–729 (2017).PubMed 

    Google Scholar 
    Luck, G. W., Carter, A. & Smallbone, L. Changes in bird functional diversity across multiple land uses: Interpretations of functional redundancy depend on functional group identity. PLoS ONE 8, e63671 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coetzee, B. W. T. & Chown, S. L. Land-use change promotes avian diversity at the expense of species with unique traits. Ecol. Evol. 6, 7610–7622 (2016).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The evolution of reproductive modes and life cycles in amphibians

    Phung, T. X., Nascimento, J. C. S., Novarro, A. J. & Wiens, J. J. Correlated and decoupled evolution of adult and larval body size in frogs. Proc. R. Soc. Lond. B 287, 20201474–10 (2020).
    Google Scholar 
    Hall, B. K. & Wake, M. H. The Origin and Evolution of Larval Forms (Gulf Professional Publishing, 1999).Hime, P. M. et al. Phylogenomics reveals ancient gene tree discordance in the amphibian tree of life. Syst. Biol. 70, 49–66 (2021).CAS 
    PubMed 

    Google Scholar 
    Duellman, W. E. & Trueb, L. Biology of Amphibians (Johns Hopkins University Press, 1994).Nunes-de-Almeida, C. H., Batista Haddad, C. F. & Toledo, L. F. A revised classification of the amphibian reproductive modes. Salamandra 57, 413–427 (2021).
    Google Scholar 
    Vences, M. & Köhler, J. Global diversity of amphibians (Amphibia) in freshwater. Hydrobiologia 595, 569–580 (2007).
    Google Scholar 
    Blackburn, D. G. Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis. J. Morphol. 276, 961–990 (2015).PubMed 

    Google Scholar 
    AmphibiaWeb. Electronic Database (University of California, Berkeley, CA, USA, 2019). https://amphibiaweb.org.Frost, D. R. Amphibian Species of the World: an Online Reference. Version 6.0 (date of access: 01.08.2019). Electronic Database (American Museum of Natural History, New York, USA, 2019). https://amphibiansoftheworld.amnh.org/.Bonett, R. M., Ledbetter, N. M., Hess, A. J., Herrboldt, M. A. & Denoël, M. Repeated ecological and life cycle transitions make salamanders an ideal model for evolution and development. Developmental Dynamics 251, 957–972 (2022).Salthe, S. N. Reproductive modes and the number and sizes of ova in the urodeles. Am. Midl. Naturalist 81, 467490 (1969).
    Google Scholar 
    Salthe, S. N. & Duellman, W. E. in Evolutionary Biology of the Anurans (ed. Vial, J. L.) 229–249 (University of Missouri Press Columbia, 1973).Haddad, C. & Prado, C. P. A. Reproductive modes in frogs and their unexpected diversity in the Atlantic Forest of Brazil. BioScience 55, 207–217 (2005).
    Google Scholar 
    Lutz, B. Ontogenetic evolution in frogs. Evolution 2, 29–39 (1948).CAS 
    PubMed 

    Google Scholar 
    Crump, M. L. Anuran reproductive modes: evolving perspectives. J. Herpetol. 49, 1–16 (2015).
    Google Scholar 
    Schoch, R. Evolution of life cycles in early amphibians. Annu. Rev. Earth Planet. Sci. 37, 135–162 (2009).ADS 
    CAS 

    Google Scholar 
    Meegaskumbura, M. et al. Patterns of reproductive-mode evolution in Old World tree frogs (Anura, Rhacophoridae). Zool. Scr. 44, 509–522 (2015).
    Google Scholar 
    Portik, D. M. & Blackburn, D. C. The evolution of reproductive diversity in Afrobatrachia: A phylogenetic comparative analysis of an extensive radiation of African frogs. Evolution 70, 2017–2032 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    San Mauro, D. et al. Life-history evolution and mitogenomic phylogeny of caecilian amphibians. Mol. Phylogenet. Evol. 73, 177–189 (2014).PubMed 

    Google Scholar 
    Pereira, E. B., Collevatti, R. G., de Carvalho Kokubum, M. N., de Oliveira Miranda, N. E. & Maciel, N. M. Ancestral reconstruction of reproductive traits shows no tendency toward terrestriality in leptodactyline frogs. BMC Evol. Biol. 15, 91 (2015).Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700 (2012).PubMed 

    Google Scholar 
    Wake, D. B. & Hanken, J. Direct development in the lungless salamanders: what are the consequences for developmental biology, evolution and phylogenesis? Int. J. Dev. Biol. 40, 859–869 (1996).CAS 
    PubMed 

    Google Scholar 
    Dubois, A. Developmental pathway, speciation and supraspecific taxonomy in amphibians: 1. Why are there so many frog species in Sri Lanka? Alytes 22, 19–37 (2004).
    Google Scholar 
    Hedges, S. B., Duellman, W. E. & Heinicke, M. P. New World direct-developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation. Zootaxa 1737, 1–182 (2008).
    Google Scholar 
    Dugo-Cota, Á., Vilà, C., Rodríguez, A. & Gonzalez-Voyer, A. Ecomorphological convergence in Eleutherodactylus frogs: a case of replicate radiations in the Caribbean. Ecol. Lett. 22, 884–893 (2019).PubMed 

    Google Scholar 
    Simpson, G. G. The Major Features of Evolution (Columbia University Press, 1953).Vági, B., Végvári, Z., Liker, A., Freckleton, R. P. & Szekely, T. Parental care and the evolution of terrestriality in frogs. Proc. R. Soc. Lond. B 286, 20182737–10 (2019).
    Google Scholar 
    Furness, A. I. & Capellini, I. The evolution of parental care diversity in amphibians. Nat. Commun. 10, 1–12 (2019).CAS 

    Google Scholar 
    Furness, A. I., Venditti, C. & Capellini, I. Terrestrial reproduction and parental care drive rapid evolution in the trade-off between offspring size and number across amphibians. PLoS Biol. 20, e3001495 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wollenberg, K. C., Vieites, D. R., Glaw, F. & Vences, M. Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs. BMC Evol. Biol. 11, 217 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Cayuela, H. et al. Determinants and consequences of dispersal in vertebrates with complex life cycles: a review of pond-breeding amphibians. Q. Rev. Biol. 95, 1–36 (2020).
    Google Scholar 
    Phillimore, A. B., Freckleton, R. P., Orme, C. D. L. & Owens, I. P. F. Ecology predicts large‐scale patterns of phylogenetic diversification in birds. Am. Nat. 168, 220–229 (2006).PubMed 

    Google Scholar 
    Chen, J.-M. et al. An integrative phylogenomic approach illuminates the evolutionary history of Old World tree frogs (Anura: Rhacophoridae). Mol. Phylogenet. Evol. 145, 106724 (2020).PubMed 

    Google Scholar 
    Zimkus, B. M., Lawson, L., Loader, S. P. & Hanken, J. Terrestrialization, miniaturization and rates of diversification in African Puddle Frogs (Anura: Phrynobatrachidae). PLoS ONE 7, e35118 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moen, D. S. Improving inference and avoiding over-interpretation of hidden-state diversification models: specialized plant breeding has no effect on diversification in frogs. Evolution 76, 373–384 (2022).PubMed 

    Google Scholar 
    Eastman, J. M. & Storfer, A. Correlations of life-history and distributional-range variation with salamander diversification rates: evidence for species selection. Syst. Biol. 60, 503–518 (2011).PubMed 

    Google Scholar 
    Bonett, R. M., Steffen, M. A., Lambert, S. M., Wiens, J. J. & Chippindale, P. T. Evolution of paedomorphosis in plethodontid salamanders: ecological correlates and re-evolution of metamorphosis. Evolution 68, 466–482 (2014).PubMed 

    Google Scholar 
    Akaike, H. A new look at the statistical-model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Wagenmakers, E.-J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196 (2004).PubMed 

    Google Scholar 
    Beaulieu, J. M., Oliver, J. C., O’Meara, B. & Boyko, J. R package ‘corHMM’: hidden markov models of character evolution. (2020).Pagel, M. & Meade, A. BayesTraits, version 4. University of Reading, Berkshire, UK. http://www.evolution.rdg.ac.uk (2022).Pagel, M. & Meade, A. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167, 808–825 (2006).PubMed 

    Google Scholar 
    Maddison, W., Midford, P. & Otto, S. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).PubMed 

    Google Scholar 
    FitzJohn, R. G., Maddison, W. P. & Otto, S. P. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 58, 595–611 (2009).PubMed 

    Google Scholar 
    Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).PubMed 

    Google Scholar 
    Herrera-Alsina, L., van Els, P. & Etienne, R. S. Detecting the dependence of diversification on multiple traits from phylogenetic trees and trait data. Syst. Biol. 68, 317–328 (2018).
    Google Scholar 
    Strathmann, R. R. Hypotheses on the origins of marine larvae. Annu. Rev. Ecol. Syst. 24, 89–117 (1993).
    Google Scholar 
    Wray, G. A. Evolution of larvae and developmental modes. In Ecology of Marine Invertebrate Larvae. (ed. McEdward, L.) 413–447 (CRC Press, 1995).Raff, R. A. Origins of the other metazoan body plans: the evolution of larval forms. Philos. T R. Soc. B 363, 1473–1479 (2008).
    Google Scholar 
    Collin, R. & Moran, A. in Evolutionary Ecology of Marine Invertebrate Larvae 50–66 (Oxford University Press, 2018).Collin, R. & Miglietta, M. P. Reversing opinions on Dollo’s Law. Trends Ecol. Evol. 23, 602–609 (2008).PubMed 

    Google Scholar 
    Wiens, J. J. Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo’s law. Evolution 65, 1283–1296 (2011).PubMed 

    Google Scholar 
    Wiens, J. J., Kuczynski, C. A., Duellman, W. E. & Reeder, T. W. Loss and re-evolution of complex life cycles in marsupial frogs: does ancestral trait reconstruction mislead? Evolution 61, 1886–1899 (2007).CAS 
    PubMed 

    Google Scholar 
    Chippindale, P. T., Bonett, R. M., Baldwin, A. S. & Wiens, J. J. Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. Evolution 58, 2809–2815 (2004).CAS 
    PubMed 

    Google Scholar 
    Castroviejo-Fisher, S. et al. Phylogenetic systematics of egg-brooding frogs (Anura: Hemiphractidae) and the evolution of direct development. Zootaxa 4004, 1–75 (2015).PubMed 

    Google Scholar 
    Naumann, B., Schweiger, S., Hammel, J. U. & Müller, H. Parallel evolution of direct development in frogs—skin and thyroid gland development in African Squeaker Frogs (Anura: Arthroleptidae: Arthroleptis). Dev. Dyn. 250, 584–600 (2021).PubMed 

    Google Scholar 
    Goldberg, J., Taucce, P. P. G., Quinzio, S. I., Haddad, C. F. B. & Candioti, F. V. Increasing our knowledge on direct-developing frogs: the ontogeny of Ischnocnema henselii (Anura: Brachycephalidae). Zool. Anz. 284, 78–87 (2020).
    Google Scholar 
    Wassersug, R. J. & Duellman, W. E. Oral structures and their development in egg-brooding hylid frog embryos and larvae: evolutionary and ecological implications. J. Morphol. 182, 1–37 (1984).PubMed 

    Google Scholar 
    Kerney, R. R., Blackburn, D. C., Müller, H. & Hanken, J. Do larval traits re-evolve? Evidence from the embryogenesis of a direct-developing salamander, Plethodon cinereus. Evolution 66, 252–262 (2011).PubMed 

    Google Scholar 
    Theska, T. Musculoskeletal development of the Central African caecilian Idiocranium russeli (Amphibia: Gymnophiona: Indotyphlidae) and its bearing on the re-evolution of larvae in caecilian amphibians. Zoomorphology 138, 137–158 (2019).
    Google Scholar 
    Laslo, M., Denver, R. J. & Hanken, J. Evolutionary conservation of thyroid hormone receptor and deiodinase expression dynamics in ovo in a direct-developing frog, Eleutherodactylus coqui. Front. Endocrinol. 10, 307 (2019).
    Google Scholar 
    Gao, W. et al. Genomic and transcriptomic investigations of the evolutionary transition from oviparity to viviparity. Proc. Natl Acad. Sci. USA 116, 3646–3655 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altig, R. & Crother, B. I. The evolution of three deviations from the biphasic anuran life cycle: alternatives to selection. Herpetol. Rev. 37, 321–356 (2006).
    Google Scholar 
    Venturelli, D. P., da Silva, W. R. & Giaretta, A. A. Tadpoles’ resistance to desiccation in species of Leptodactylus (Anura, Leptodactylidae). J. Herpetol. 55, 265–270 (2021).
    Google Scholar 
    Seymour, R. S. Respiration of aquatic and terrestrial amphibian embryos. American Zoologist 39, 261–270 (1999).Blackburn, D. G. Convergent evolution of viviparity, matrotrophy, and specializations for fetal nutrition in reptiles and other vertebrates. Am. Zool. 32, 313–321 (1992).
    Google Scholar 
    Buckley, D., Alcobendas, M., García-París, M. & Wake, M. H. Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra. Evol. Dev. 9, 105–115 (2007).PubMed 

    Google Scholar 
    Kusrini, M. D., Rowley, J. J. L., Khairunnisa, L. R., Shea, G. M. & Altig, R. The reproductive biology and larvae of the first tadpole-bearing frog, Limnonectes larvaepartus. PLoS ONE 10, e116154–e116159 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lanza, B. & Leo, P. Sul primo caso sicuro di riproduzione vivipara nel genere Speleomantes. 1–54 (2000).Lunghi, E. et al. Comparative reproductive biology of European cave salamanders (Genus Hydromantes): nesting selection and multiple annual breeding. Salamandra 54, 101–108 (2018).
    Google Scholar 
    Liedtke, H. C. et al. Terrestrial reproduction as an adaptation to steep terrain in African toads. Proc. R. Soc. Lond. B 284, 20162598–20162599 (2017).
    Google Scholar 
    Wake, M. H. The reproductive biology of Eleutherodactylus jasperi (Amphibia, Anura, Leptodactylidae), with comments on the evolution of live-bearing systems. J. Herpetol. 12, 121–133 (1978).
    Google Scholar 
    Jennings, D. H. & Hanken, J. Mechanistic basis of life history evolution in anuran amphibians: thyroid gland development in the direct-developing frog, Eleutherodactylus coqui. Gen. Comp. Endocr. 111, 225–232 (1998).CAS 
    PubMed 

    Google Scholar 
    Callery, E. M. & Elinson, R. P. Thyroid hormone-dependent metamorphosis in a direct developing frog. Proc. Natl Acad. Sci. USA 97, 2615–2620 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callery, E. M., Hung, F. & Elinson, R. P. Frogs without polliwogs: evolution of anuran direct development. BioEssays 23, 233–241 (2001).CAS 
    PubMed 

    Google Scholar 
    Buckley, L. B. & Jetz, W. Environmental and historical constraints on global patterns of amphibian richness. Proc. R. Soc. Lond. B 274, 1167–1173 (2007).
    Google Scholar 
    Pyron, R. A. & Wiens, J. J. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc. R. Soc. Lond. B 280, 20131622 (2013).
    Google Scholar 
    Gómez-Rodríguez, C., Baselga, A. & Wiens, J. J. Is diversification rate related to climatic niche width? Glob. Ecol. Biogeogr. 24, 383–395 (2015).
    Google Scholar 
    Moen, D. S. & Wiens, J. J. Microhabitat and climatic niche change explain patterns of diversification among frog families. Am. Nat. 190, 29–44 (2017).PubMed 

    Google Scholar 
    Kozak, K. H. & Wiens, J. J. Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol. Lett. 13, 1378–1389 (2010).PubMed 

    Google Scholar 
    Jaramillo, A. F. et al. Vastly underestimated species richness of Amazonian salamanders (Plethodontidae: Bolitoglossa) and implications about plethodontid diversification. Mol. Phylogenet. Evol. 149, 106841 (2020).PubMed 

    Google Scholar 
    Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).PubMed 

    Google Scholar 
    Bars-Closel, M., Kohlsdorf, T., Moen, D. S. & Wiens, J. J. Diversification rates are more strongly related to microhabitat than climate in squamate reptiles (lizards and snakes). Evolution 71, 2243–2261 (2017).PubMed 

    Google Scholar 
    Cyriac, V. P. & Kodandaramaiah, U. Digging their own macroevolutionary grave: fossoriality as an evolutionary dead end in snakes. J. Evolution. Biol. 31, 587–598 (2018).CAS 

    Google Scholar 
    Zamudio, K. R., Bell, R. C., Nali, R. C., Haddad, C. F. B. & Prado, C. P. A. Polyandry, predation, and the evolution of frog reproductive modes. Am. Nat. 188, S41–S61 (2016).PubMed 

    Google Scholar 
    Lion, M. B. et al. Global patterns of terrestriality in amphibian reproduction. Glob. Ecol. Biogeogr. 4, 679–13 (2019).
    Google Scholar 
    Müller, H. et al. Forests as promoters of terrestrial life-history strategies in East African amphibians. Biol. Lett. 9, 20121146–20121146 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Velo-Antón, G., García-París, M., Galán, P. & Cordero Rivera, A. The evolution of viviparity in Holocene islands: ecological adaptation versus phylogenetic descent along the transition from aquatic to terrestrial environments. J. Zool. Syst. Evol. Res. 45, 345–352 (2007).
    Google Scholar 
    Liedtke, H. C. AmphiNom: an amphibian systematics tool. Syst. Biodivers. 17, 1–6 (2019).
    Google Scholar 
    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020). http://www.R-project.org/.IUCN. IUCN 2020. The IUCN Red List of Threatened Species. Version 2020-2. https://www.iucnredlist.org (2019).AmphibiaChina. The database of Chinese amphibians. Electronic Database (Kunming Institute of Zoology (CAS), Kunming, Yunnan, China, 2019) http://www.amphibiachina.org/.Ron, S. R., Yanez-Muñoz, M. H., Merino-Viteri, A. & Ortiz, D. A. Anfibios del Ecuador. Version 2019.0 (Museo de Zoología, Pontificia Universidad Católica del Ecuador, 2019). https://bioweb.bio/faunaweb/amphibiaweb.Greven, H. In Reproductive Biology and Phylogeny of Urodela 447–475 (Taylor & Francis, 2003).Marks, S. B. & Collazo, A. Direct development in Desmognathus aeneus (Caudata: Plethodontidae): a staging table. Copeia 1998, 637–648 (1998).
    Google Scholar 
    Müller, H., Loader, S. P., Ngalason, W., Howell, K. M. & Gower, D. J. Reproduction in brevicipitid frogs (Amphibia: Anura: Brevicipitidae)—evidence from Probreviceps m. macrodactylus. Copeia 2007, 726–733 (2007).
    Google Scholar 
    Velo-Antón, G., Santos, X., Sanmartín-Villar, I., Cordero-Rivera, A. & Buckley, D. Intraspecific variation in clutch size and maternal investment in pueriparous and larviparous Salamandra salamandra females. Evol. Ecol. 29, 185–204 (2014).
    Google Scholar 
    Beaulieu, J. M., O’Meara, B. C. & Donoghue, M. J. Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. Systematic biology 62, 725–737 (2013).Pupko, T., Pe’er, I., Shamir, R. & Graur, D. A fast algorithm for joint reconstruction of ancestral amino acid sequences. Mol. Biol. Evol. 17, 890–896 (2000).CAS 
    PubMed 

    Google Scholar 
    Bollback, J. P. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinforma. 7, 88 (2006).
    Google Scholar 
    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R. News 6, 7–11 (2006).
    Google Scholar 
    Tuffley, C. & Steel, M. Modeling the covarion hypothesis of nucleotide substitution. Math. Biosci. 147, 63–91 (1998).MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M. H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011).PubMed 

    Google Scholar 
    Nakov, T., Beaulieu, J. M. & Alverson, A. J. Diatoms diversify and turn over faster in freshwater than marine environments. Evolution 73, 2497–2511 (2019).PubMed 

    Google Scholar 
    Etienne, R. S. et al. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proc. R. Soc. Lond. B 279, 1300–1309 (2011).
    Google Scholar  More

  • in

    Author Correction: Climate change reshuffles northern species within their niches

    These authors contributed equally: Laura H. Antão, Benjamin Weigel.These authors jointly supervised this work: Tomas Roslin, Anna-Liisa Laine.Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, FinlandLaura H. Antão, Benjamin Weigel, Giovanni Strona, Maria Hällfors, Elina Kaarlejärvi, Otso Ovaskainen, Marjo Saastamoinen, Jarno Vanhatalo, Tomas Roslin & Anna-Liisa LaineDepartment of Biological Sciences, University of South Carolina, Columbia, SC, USATad DallasDepartment of Biology, Lund University, Lund, SwedenØystein H. OpedalFinnish Environment Institute (SYKE), Helsinki, FinlandJanne Heliölä, Mikko Kuussaari, Juha Pöyry & Kristiina VuorioNatural Resources Institute Finland (Luke), Helsinki, FinlandHeikki Henttonen, Otso Huitu, Andreas Lindén, Päivi Merilä, Maija Salemaa & Tiina TonteriSection of Ecology, Department of Biology, University of Turku, Turku, FinlandErkki KorpimäkiFinnish Museum of Natural History, University of Helsinki, Helsinki, FinlandAleksi LehikoinenKainuu Centre for Economic Development, Transport and the Environment, Kajaani, FinlandReima LeinonenUniversity of Helsinki, Helsinki, FinlandHannu PietiäinenDepartment of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FinlandOtso OvaskainenCentre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, NorwayOtso OvaskainenHelsinki Institute of Life Science, University of Helsinki, Helsinki, FinlandMarjo SaastamoinenDepartment of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, FinlandJarno VanhataloSpatial Foodweb Ecology Group, Department of Agricultural Sciences, University of Helsinki, Helsinki, FinlandTomas RoslinSpatial Foodweb Ecology Group, Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, SwedenTomas RoslinDepartment of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, SwitzerlandAnna-Liisa Laine More