Effect of marigold (Tagetes erecta L.) on soil microbial communities in continuously cropped tobacco fields
Chen, X. L. et al. Effects of Meloidogyne incognitaon the fungal community in tobaccorhizosphere. Rev. Bras. Cienc. Solo. 46, e0210127 (2022).
Google Scholar
Zhang, S. X. et al. Research progresses on continuous cropping obstacles of tobacco. Soils 47(5), 823–829 (2015).CAS
Google Scholar
Luo, J. Y. et al. Effects of soil salinity onrhizosphere soil microbes in transgenic Bt cotton fields. J. Integr. Agric. 16, 1624–1633 (2017).CAS
Google Scholar
Chaparro, J. M. et al. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48, 489–499 (2012).
Google Scholar
Newton, A., Begg, G. & Swanston, J. Deployment of diversity for enhanced crop function. Ann. Appl. Biol. 154, 309–322 (2009).
Google Scholar
Li, X. G. et al. Effects of intercropping with Atractylodeslancea and application of bio-organic fertiliser on soil invertebrates, disease control and peanut productivity in continuouspeanut cropping field in subtropical China. Agrofor. Syst. 88, 41–52 (2014).
Google Scholar
Ahmed, W. et al. Ralstonia solanacearum, a deadly pathogen: Revisiting the bacterial wilt biocontrol practices in tobacco and other Solanaceae. Rhizosphere 21, 100479 (2022).
Google Scholar
Gómez-Rodrıguez, O., Zavaleta-Mejıa, E., Gonzalez-Hernandez, V., Livera-Munoz, M. & Cárdenas-Soriano, E. Allelopathyand microclimatic modification of intercropping with marigold on tomato early blight disease development. Field Crops Res. 83, 27–34 (2003).
Google Scholar
Weidenhamer, J. D., Montgomery, T. M., Cipollini, D. F., Weston, P. A. & Mohney, B. K. Plandensity and rhizosphere chemistry: Does marigold root exudate composition respond to intra-and interspecific competition?. J. Chem. Ecol. 45(5–6), 525–533 (2019).CAS
PubMed
Google Scholar
Ploeg, A. T. Effects of selected marigold varieties on root-knot nematodes and tomato and melon yields. Plant Dis. 86(5), 505–508 (2002).PubMed
Google Scholar
Hooks, C. R., Wang, K. H., Ploeg, A. & McSorley, R. Using marigold (Tagetes spp.) as a cover crop to protect crops fromplant-parasitic nematodes. Appl. Soil Ecol. 46, 307–320 (2010).
Google Scholar
Li, W., Xu, J., Chen, H. & Qi, Y. Phytochemicals and their biological activities of plants in tagetes l.-sciencedirect. Chin. Herbal Med. 4(2), 103–117 (2012).
Google Scholar
Weidenhamer, J. D., Mohney, B. K., Shihada, N. & Rupasinghe, M. Spatial and temporal dynamics of root exudation: How important is heterogeneity in allelopathic interactions?. J. Chem. Ecol. 40(8), 940–952 (2014).CAS
PubMed
Google Scholar
Marotti, I. et al. Thiophene occurrence in different tagetes species: Agricultural biomasses as sources ofbiocidal substances. J. Sci. Food Agric. 90(7), 1210–1217 (2010).CAS
PubMed
Google Scholar
Barto, E. K. et al. The fungal fastlane: Common mycorrhizal networks extendbioactive zones of allelochemicals in soils. PLoS ONE 6, e27195 (2011).ADS
CAS
PubMed
PubMed Central
Google Scholar
Evenhuis, A., Korthals, G. & Molendijk, L. Tagetes patula as an effective catch crop forlong-term control of Pratylenchus penetrans. Nematology 6, 877–881 (2004).
Google Scholar
Wu, W. T. et al. Effects of marigold-tobacco rotation on soil nematode community composition. Southwest China J. Agric. Sci. 32(2), 342–348 (2019).
Google Scholar
Reynolds, L. B., Potter, J. W. & Ball-Coelho, B. R. Crop rotation with sp. is an alternative to chemical fumigation for control of root-lesion nematodes. Agron. J. 92(5), 957–966 (2000).
Google Scholar
El-Hamawi, M., Youssef, M. & Zawam, H. S. Management of Meloidogyne incognita, the root-knot nematode, on soybean asaffected by marigold and sea ambrosia (damsisa) plants. J. Pest Sci. 77, 95–98 (2004).
Google Scholar
Kumar, N., Krishnappa, K., Reddy, B., Ravichandra, N. & Karuna, K. Intercropping for the management of root-knotnematode, Meloidogyne incognitain vegetable-based cropping systems. Indian J. Nematol. 35, 46–49 (2005).
Google Scholar
Zhang, J. et al. Crop rotation with marigold promotes soil bacterial structure to assist in mitigating clubroot Incidence in Chinese Cabbage. Plants 11(17), 2295 (2022).CAS
PubMed
PubMed Central
Google Scholar
Xia, T. Y. et al. Microbial diversity of tobacco rhizospheresoil in different growth stages of marigold-tobacco intercropping system. Southwest China J. Agric. Sci. 31(4), 680–686 (2018).
Google Scholar
Wei, H. Y. et al. Effects of marigold diversified cropping with angelica on fungal community in soils. Plant Prot. 41(5), 69–74 (2015).MathSciNet
CAS
Google Scholar
Li, Y. et al. Intercropping with marigold promotes soil health and microbialstructure to assist in mitigating tobacco bacterial wilt. J. Plant Pathol. 102, 731–742 (2020).
Google Scholar
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).ADS
CAS
PubMed
Google Scholar
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS
PubMed
Google Scholar
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. MicroBiol. 73, 5261–5267 (2007).ADS
CAS
PubMed
PubMed Central
Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS
PubMed
Google Scholar
Irikiin, I. et al. Rhizobacterial community-level, sole carbon source utilization pattern aff ects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system. Appl. Soil Ecol. 34(1), 27–32 (2006).
Google Scholar
Wu, M. N. et al. Soil fungistasis and its relations to soil microbial composition and diversity: A case study of a series of soils with different fungistasis. J. Environ. Sci. 20(7), 871–877 (2008).CAS
Google Scholar
Mendes, L. W. et al. Soil-Borne microbiome: Linking diversity to function. Microb. Ecol. 70(1), 255–265 (2015).CAS
PubMed
Google Scholar
Jaiswal, A. K. et al. Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar. Sci. Rep. 7, 44382 (2017).ADS
CAS
PubMed
PubMed Central
Google Scholar
Raaijmakers, J. M. & Mazzola, M. Soil immune responses soil microbiomes may be harnessed for plant health. Science 352, 1392–1393 (2016).ADS
CAS
PubMed
Google Scholar
Kušlienė, G., Rasmussen, J., Kuzyakov, Y. & Eriksen, J. Medium-term response of microbial community to rhizodeposits of white clover and ryegrass and tracing of active processes induced by 13C and 15N labelled exudates. Soil Biol. Biochem. 76, 22–33 (2014).
Google Scholar
Mohammadi, K. Soil microbial activity and biomass as influenced by tillage and fertilization in wheat production. Am.-Eurasian J. Agric. Environ. Sci. 10, 330–337 (2011).
Google Scholar
Wang, G. H. et al. Research progress of Acidobacteria ecology in soils. Biotechnol. Bull. 32(2), 14–20 (2016).
Google Scholar
Wei, H., Wang, L., Hassan, M. & Xie, B. Succession of the functional microbial communities and the metabolic functions in maize straw composting process. Bioresour. Technol. 256, 333–341 (2018).CAS
PubMed
Google Scholar
Wang, Y., Liu, L., Yang, J., Duan, Y. & Zhao, Z. The diversity of microbial community and function varied in response to different agricultural residues composting. Sci. Total Environ. 715, 136983 (2020).ADS
CAS
PubMed
Google Scholar
Glass, N. L., Schmoll, M., Cate, J. H. & Coradetti, S. Plant cell wall deconstruction by ascomycete fungi. Annu. Rev. Microbiol. 67, 477–498 (2013).CAS
PubMed
Google Scholar
Li, Y. et al. Linking soil fungal community structure and function to soil organic carbon chemical composition in intensively managed subtropical bamboo forests. Soil Biol. Biochem. 107, 19–31 (2017).CAS
Google Scholar
Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. & Ramos, L. P. Comparison of Penicillium echinulatumand Trichoderma reeseicellulases in relation to their activity against various cellulosic substrates. Bioresour. Technol. 99, 1417–1424 (2008).CAS
PubMed
Google Scholar More