More stories

  • in

    Modelling the Mediterranean Sea ecosystem at high spatial resolution to inform the ecosystem-based management in the region

    Barbier, E. B. Marine ecosystem services. Curr. Biol. 27, R507–R510 (2017).CAS 
    PubMed 

    Google Scholar 
    Liquete, C., Piroddi, C., Macías, D., Druon, J.-N. & Zulian, G. Ecosystem services sustainability in the Mediterranean Sea: Assessment of status and trends using multiple modelling approaches. Sci. Rep. 6, 34162 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 1–8 (2019).CAS 

    Google Scholar 
    Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Mar. Policy 57, 53–60 (2015).
    Google Scholar 
    Link, J. S. & Browman, H. I. Operationalizing and implementing ecosystem-based management. ICES J. Mar. Sci. 74, 379–381 (2017).
    Google Scholar 
    EC. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. Brussels: European Commission. (2020).EC. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, “Pathway to a healthy planet for all” with the sub-title “EU action Plan: ’Towards zero pollution for air, water and soil, COM (2021) 400. (2021).EC. The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the European Economic and Social Committee and the Committee of the Regions, COM (2019) 640. (2019).Alexander, K. & Haward, M. The human side of marine ecosystem-based management (EBM): ‘Sectoral interplay’ as a challenge to implementing EBM. Mar. Policy 101, 33–38 (2019).
    Google Scholar 
    EC. The EU Blue Economy Report 2021. (2021).Ostlaender, N. et al. Modelling Inventory and Knowledge Man-agement System of the European Commission (MIDAS) (Publications Office of the European Union, 2019).
    Google Scholar 
    Friedland, R. et al. Effects of nutrient management scenarios on marine eutrophication indicators: A Pan-European, multi-model assessment in support of the Marine Strategy Framework Directive. Front. Mar. Sci. 8, 596126 (2021).
    Google Scholar 
    Piroddi, C. et al. Effects of nutrient management scenarios on marine food webs: A Pan-European Assessment in support of the Marine Strategy Framework Directive. Front. Mar. Sci. 8, 179 (2021).
    Google Scholar 
    Corrales, X. et al. Multi-zone marine protected areas: Assessment of ecosystem and fisheries benefits using multiple ecosystem models. Ocean Coast. Manag. 193, 105232 (2020).
    Google Scholar 
    Bentley, J. W. et al. Refining fisheries advice with stock-specific ecosystem information. Front. Mar. Sci. 8, 602072 (2021).
    Google Scholar 
    Steenbeek, J. et al. Making spatial-temporal marine ecosystem modelling better—A perspective. Environ. Model. Softw. 145, 105209 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Heymans, J. J. et al. The ocean decade: A true ecosystem modelling challenge. Front. Mar. Sci. 7, 554573 (2020).
    Google Scholar 
    Hernvann, P.-Y. et al. The Celtic sea through time and space: Ecosystem modeling to unravel fishing and climate change impacts on food-web structure and dynamics. Front. Mar. Sci. 7, 1018 (2020).
    Google Scholar 
    Christensen, V. & Walters, C. J. Ecopath with Ecosim: Methods, capabilities and limitations. Ecol. Model. 172, 109–139 (2004).
    Google Scholar 
    Steenbeek, J. et al. Bridging the gap between ecosystem modeling tools and geographic information systems: Driving a food web model with external spatial–temporal data. Ecol. Model. 263, 139–151 (2013).
    Google Scholar 
    Christensen, V. et al. Representing variable habitat quality in a spatial food web model. Ecosystems 17, 1397–1412 (2014).CAS 

    Google Scholar 
    de Mutsert, K., Lewis, K., Milroy, S., Buszowski, J. & Steenbeek, J. Using ecosystem modeling to evaluate trade-offs in coastal management: Effects of large-scale river diversions on fish and fisheries. Ecol. Model. 360, 14–26 (2017).
    Google Scholar 
    Serpetti, N. et al. Modelling small scale impacts of Multi-Purpose Platforms: An ecosystem approach. Front. Mar. Sci. 8, 778 (2021).
    Google Scholar 
    DFO. Technical review of Roberts Bank Terminal 2 environmental assessment: section 10.3—assessing ecosystem productivity. DFO Can. Sci. Advis. Sec. Sci. Resp. 2016/050 (2016).Coll, M., Pennino, M. G., Steenbeek, J., Solé, J. & Bellido, J. M. Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches. Ecol. Model. 405, 86–101 (2019).
    Google Scholar 
    Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS One 5, e11842 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coll, M. et al. The Mediterranean Sea under siege: Spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21, 465–480 (2012).
    Google Scholar 
    Micheli, F. et al. Cumulative human impacts on mediterranean and black sea marine ecosystems: Assessing current pressures and opportunities. PLoS One 8, e79889 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piroddi, C., Colloca, F. & Tsikliras, A. C. The living marine resources in the Mediterranean Sea large marine ecosystem. Environ. Dev. 36, 100555 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Barale, V. & Gade, M. Remote Sensing of the European Seas. (Springer, 2008).Siokou-Frangou, I. et al. Plankton in the open Mediterranean Sea: A review. Biogeosciences 7, 1543–1586 (2010).ADS 

    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
    Google Scholar 
    Bianchi, C. N. et al. In Life in the Mediterranean Sea: A Look at Habitat Changes, vol. 1 55 (2012).Danovaro, R. et al. Deep-sea biodiversity in the Mediterranean Sea: The known, the unknown, and the unknowable. PLoS One 5, e11832 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moullec, F. et al. Capturing the big picture of Mediterranean marine biodiversity with an end-to-end model of climate and fishing impacts. Prog. Oceanogr. 178, 102179 (2019).
    Google Scholar 
    Macias, D., Garcia-Gorriz, E., Piroddi, C. & Stips, A. Biogeochemical control of marine productivity in the Mediterranean Sea during the last 50 years. Glob. Biogeochem. Cycles 28, 897–907 (2014).ADS 
    CAS 

    Google Scholar 
    Piroddi, C. et al. Historical changes of the Mediterranean Sea ecosystem: Modelling the role and impact of primary productivity and fisheries changes over time. Sci. Rep. 7, 44491 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lotze, H. K., Coll, M. & Dunne, J. A. Historical changes in marine resources, food-web structure and ecosystem functioning in the Adriatic Sea, Mediterranean. Ecosystems 14, 198–222 (2011).
    Google Scholar 
    Macias, D., Huertas, I. E., Garcia-Gorriz, E. & Stips, A. Non-Redfieldian dynamics driven by phytoplankton phosphate frugality explain nutrient and chlorophyll patterns in model simulations for the Mediterranean Sea. Prog. Oceanogr. 173, 37–50 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spedicato, M. T. et al. The MEDITS trawl survey specifications in an ecosystem approach to fishery management. Sci. Mar. 83, 9–20 (2019).
    Google Scholar 
    Corrales, X. et al. Hindcasting the dynamics of an Eastern Mediterranean marine ecosystem under the impacts of multiple stressors. Mar. Ecol. Prog. Ser. 580, 17–36 (2017).ADS 

    Google Scholar 
    FAO. The State of the Mediterranean and Black Sea fisheries (General Fisheries Commission for the Mediterranean (GFCM), 2020).Ferrà, C. et al. Mapping change in bottom trawling activity in the Mediterranean Sea through AIS data. Mar. Policy 94, 275–281 (2018).
    Google Scholar 
    Russo, T. et al. Trends in effort and yield of trawl fisheries: A case study from the Mediterranean Sea. Front. Mar. Sci. 6, 153 (2019).ADS 

    Google Scholar 
    Ramírez, F., Coll, M., Navarro, J., Bustamante, J. & Green, A. J. Spatial congruence between multiple stressors in the Mediterranean Sea may reduce its resilience to climate impacts. Sci. Rep. 8, 1–8 (2018).
    Google Scholar 
    Coll, M., Steenbeek, J., Ben Rais Lasram, F., Mouillot, D. & Cury, P. ‘Low-hanging fruit’ for conservation of marine vertebrate species at risk in the Mediterranean Sea. Glob. Ecol. Biogeogr. 24, 226–239 (2015).
    Google Scholar 
    Ruiz, J. et al. “Strengthening regional cooperation in the area of large pelagic fishery data collection (RECOLAPE)”, Annex III “Biological data collection for fisheries on highly migratory species” (2019).Boerder, K., Schiller, L. & Worm, B. Not all who wander are lost: Improving spatial protection for large pelagic fishes. Mar. Policy 105, 80–90 (2019).
    Google Scholar 
    Giakoumi, S. et al. Conserving European biodiversity across realms. Conserv. Lett. 12, e12586 (2019).
    Google Scholar 
    Gascuel, D. & Cheung, W. W. In Predicting Future Oceans 79–85 (Elsevier, 2019).Macias, D., Garcia-Gorriz, E. & Stips, A. Major fertilization sources and mechanisms for Mediterranean Sea coastal ecosystems. Limnol. Oceanogr. 63, 897–914 (2018).ADS 
    CAS 

    Google Scholar 
    Alvarez-Berastegui, D., Tugores, M., Ottmann, D., Martín-Quetglas, M. & Reglero, P. Bluefin tuna larval indices in the Western Mediterranean, ecological and analytical sources of uncertainty. Collect. Vol. Sci. Pap. ICCAT. 77, 289–311 (2020).
    Google Scholar 
    ICCAT. 2020 SCRS Advice to the Commission (Madrid, Spain, 2020).Clavel-Henry, M., Piroddi, C., Quattrocchi, F., Macias, D. & Christensen, V. Spatial distribution and abundance of mesopelagic fish biomass in the Mediterranean Sea. Front. Mar. Sci. 7, 1136 (2020).
    Google Scholar 
    García-Ruiz, C. et al. Spatio-temporal patterns of macrourid fish species in the northern Mediterranean Sea. Sci. Mar. 83, 117–127 (2019).
    Google Scholar 
    Ainsworth, C. Quantifying species abundance trends in the Northern Gulf of California using local ecological knowledge. Mar. Coast. Fish. 3, 190–218 (2011).
    Google Scholar 
    Morris, E. K. et al. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Coll, M. et al. Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecol. Ind. 60, 947–962 (2016).
    Google Scholar 
    Swartz, W., Sala, E., Tracey, S., Watson, R. & Pauly, D. The spatial expansion and ecological footprint of fisheries (1950 to present). PLoS One 5, e15143 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Damasio, L. M., Peninno, M. G. & Lopes, P. F. Small changes, big impacts: Geographic expansion in small-scale fisheries. Fish. Res. 226, 105533 (2020).
    Google Scholar 
    Coll, M. et al. Assessing fishing and marine biodiversity changes using fishers’ perceptions: The Spanish Mediterranean and Gulf of Cadiz case study. PLoS One 9, e85670 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tsikliras, A. C., Dinouli, A., Tsiros, V.-Z. & Tsalkou, E. The Mediterranean and Black Sea fisheries at risk from overexploitation. PLoS ONE 10, e0121188 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Pittman, S. et al. Seascape ecology: Identifying research priorities for an emerging ocean sustainability science. Mar. Ecol. Prog. Ser. 663, 1–29 (2021).ADS 

    Google Scholar 
    Kritzer, J. P. & Liu, O. R. In Stock Identification Methods 29–57 (Elsevier, 2014).Piroddi, C., Heymans, J. J., Macias, D., Gregoire, M. & Townsend, H. Editorial: Using ecological models to support and shape environmental policy decisions. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.815313 (2021).
    Google Scholar 
    Macias, D. et al. JRC marine modelling framework in support of the marine strategy framework directive: Inventory of models, basin configurations and datasets. Update 2018. (2018).Piante, C. & Ody, D. Blue Growth in the Mediterranean Sea: The Challenge of Good Environmental Status. 192 (France, 2015).Borja, A. et al. Past and future grand challenges in marine ecosystem ecology. Front. Mar. Sci. 7, 362 (2020).
    Google Scholar 
    Claudet, J., Loiseau, C., Sostres, M. & Zupan, M. Underprotected marine protected areas in a global biodiversity hotspot. One Earth 2, 380–384 (2020).ADS 

    Google Scholar 
    Piroddi, C., Coll, M., Steenbeek, J., Moy, D. M. & Christensen, V. Modelling the Mediterranean marine ecosystem as a whole: Addressing the challenge of complexity. Mar. Ecol. Prog. Ser. 533, 47–65 (2015).ADS 

    Google Scholar 
    Walters, C., Pauly, D. & Christensen, V. Ecospace: Prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2, 539–554 (1999).
    Google Scholar 
    Christensen, V., Walters, C., Pauly, D. & Forrest, R. Ecopath with Ecosim 6: A User’s Guide (University of British Columbia, 2008).
    Google Scholar 
    Kaschner, K. et al. AquaMaps: Predicted range maps for aquatic species. In World Wide Web Electronic Publication, www.aquamaps.org, Version, vol. 8, 2016 (2016).De Mutsert, K., Lewis, K. A., White, E. D. & Buszowski, J. End-to-End modeling reveals species-specific effects of large-scale coastal restoration on living resources facing climate change. Front. Mar. Sci. 8, 104 (2021).
    Google Scholar 
    Coll, M. et al. Advancing global ecological modeling capabilities to simulate future trajectories of change in marine ecosystems. Front. Mar. Sci. 741, 567877 (2020).
    Google Scholar 
    Shannon, C. & Weaver, W. (Univ. Illinois Press, 1949).Ainsworth, C. H. & Pitcher, T. J. Modifying Kempton’s species diversity index for use with ecosystem simulation models. Ecol. Ind. 6, 623–630 (2006).
    Google Scholar 
    Coll, M. & Steenbeek, J. Standardized ecological indicators to assess aquatic food webs: The ECOIND software plug-in for Ecopath with Ecosim models. Environ. Model. Softw. 89, 120–130 (2017).
    Google Scholar 
    Taconet, M., Kroodsma, D. & Fernandes, J. Global Atlas of AIS-Based Fishing Activity—Challenges and Opportunities (2021). More

  • in

    The study of aggression and affiliation motifs in bottlenose dolphins’ social networks

    Subjects and facilityWe observed two groups of Atlantic bottlenose dolphins (six different individuals in total) housed at the marine zoo “Marineland Mallorca”. One of the groups was composed of four individuals (G1) and the other was constituted by five individuals (G2). The two adult males and one of the females were the same in both groups (Table 1). Group composition changed due to the transfer of individuals to another pool of the zoo and due to the arrival of new individuals from another aquatic park.Table 1 Age, sex, group, and identification number in the network of the subject dolphins. M male, F female.Full size tableThe dolphins were kept in three outdoor interconnecting pools: the main performance pool (1.6 million liters of water), a medical pool (37.8 thousand liters of water) and a small pool (636.8 thousand liters of water). During the observational periods, the dolphins had free access to all the pools. Underwater viewing at the main and the small pool was available through the transparent walls around the rim of the pools.Ethics statementThis study was approved by the UIB Committee of Research Ethics and Marineland Mallorca. This research was conducted in compliance with the standards of the European Association of Zoos and Aquaria (EAZA). All subjects tested in this study were housed in Marineland Mallorca following the Directive 1999/22/EC on the keeping of animals in zoos. This study was strictly non-invasive and did not affect the welfare of dolphins.Behavioral observations and data collectionBehavioral data were collected in situ by APM from May to November 2016 for G1 and from November 2017 to February 2018 for G2. All observational periods were also recorded using two waterproof cameras SJCAM SJ4000. Observations were conducted at the main pool between 8:00 a.m. and 11:00 a.m. Due to the schedules and dynamics of the zoo, we were unable to collect data outside this period. Dolphin social behavior was registered and videotaped for 30 min–2 h each day. Only data from sessions that lasted at least 30 min were included in the analysis. We did not collect any data during training or medical procedures and resumed the observational session a few minutes after the end of these events.We recorded all occurrences of affiliative and aggressive interactions, the identities of the involved individuals and the identity of the dolphin initiating the contact. Aggressive contacts were defined by the occurrence of chasing, biting, and hitting, as established in previous studies37,38,39,40,41. Affiliative contacts were defined as contact swimming, synchronous breathing and swimming (at least 30″ of continuous swimming) or flipper-rubbing, as established in previous studies37,39,40,41,43.To assess the strength of the affiliative bonds in both groups, we calculated the index of affiliative relationships (IA) between dolphins following the procedure described in Yamamoto et al. For calculating the IA we recorded the relative frequencies of synchronous swimming since it is a well-defined affiliative behavior in dolphins. Data of synchronous swimming were recorded using group 0–1 sampling44 at 3-min intervals. This method consists of the observation of individuals during short periods and the recording of the occurrence (assigning to that period a 1) or non-occurrence (assigning to that period a 0) of a well-defined behavior44. For calculating the IA for each couple, the number of sampling periods in which synchronous swimming between individuals A and B occurred (XAB) was divided by the number of sampling periods in which individuals A and B were observed (YAB): (IA=frac{{X}_{AB}}{{Y}_{AB}})39,45. Therefore, the IA reflects the level of affiliation for each dolphin dyad based on the pattern of synchronous swimming. This index served to construct the general affiliative social networks of both groups of dolphins.Temporal network constructionTemporal networks can provide insight into social events such as conflicts and post-conflict interactions in which the order of interactions and the timing is crucial. Furthermore, they allow us to calculate the probabilities of the different affiliative and aggressive interactions occurring in the group.We used behavioral observations to construct temporal networks for each group. Each dolphin was treated as a node (N) with their aggressive and affiliative interactions supplying the network links. We divided the daily observations into periods of 3 min. In each period, we assigned a positive (+ 1), negative (− 1) or neutral (0) interaction to each pair of dolphins. That is, if during the period a pair of dolphins displayed affiliative interactions, we assigned a + 1 to the link between that pair of nodes, if they were involved in a conflict, we assigned a − 1, and if the pair did not engage in any interaction, we assigned to that link a 0. If during the same period, the pair displayed both aggressive and affiliative interactions we considered the last observed interaction. Therefore, we obtained an adjacency matrix (an N × N matrix describing the links in the network) for each group of dolphins. Thus, for each day we had a series of different signed networks of the group, each network representing a 3-min period.Social network analysis: time-aggregated networks and network motifsWe collapsed the temporal networks of each day in time-aggregated networks. This procedure consists in aggregating the data collected over time within specific intervals to create weighted networks. The sign and the weight of the links characterize these networks, indicating the valence and duration of the interaction respectively. Thus, they are static representations of the social structure of the group of dolphins. To obtain these time-aggregated networks we proceeded as follows:First, for each day we aggregated the values of each interaction of the temporal networks until one link qualitatively changed. We considered a qualitative change if one interaction passed from being negative (− 1) to positive (+ 1) meaning that the pair of dolphins reconciled after the conflict or vice versa, or if a new affiliation (+ 1) or aggression (− 1) took place, that is the link changed from being neutral (0) to positive or negative. If a link changed from being negative or positive to being neutral, we did not consider that this interaction has changed qualitatively. For example, if dolphins interacted positively during two periods of time, then they ceased to interact (neutral) and finally they engaged in an aggressive interaction, the total weight of the interaction in the resulting time-aggregated network would be of + 2. Therefore, a conflict or an affiliation may extend over multiple periods containing several contacts, and is considered finished when the interaction changes its valence. In this way, we obtained a series of time-aggregated networks for each day, which retain the information on the duration, timing, and ordering of the affiliative and aggressive events in the group.We examined the local-scale structure of the affiliative-aggressive social networks using motif analysis. Thus, for each group, we analyzed the network motif representation of the temporal and time-aggregated networks, identifying and recording the number of occurrences of each motif.Model of affiliative and aggressive interactionsWe built two models (a simple and a complex one) that aim to simulate the dynamics of aggressive and affiliative interactions of a group of four dolphins. These models were created using the observed probabilities of each affiliative or aggressive interaction between individuals in group G1. We only used the data of G1 since we had more hours of video recordings and, thus, more statistics of the pattern of dolphins’ interactions. Both models return affiliative/aggressive temporal networks constituted by four nodes and different aggressive, affiliative, or neutral interactions between the six possible pairs of individuals in the network. We simulated data for 20 periods of 3 min per day for a total of 80 days to mimic the empirical data time structure. We obtained one temporal network for each period (1600 temporal networks in total) and ran 100 realizations of each model.Our models work as follows: At the beginning of the simulations, all the interactions between the four nodes are neutral (0). In each period, we select a pair of nodes randomly and assign to that link a positive (+ 1) or a negative (− 1) interaction with probability p (calculated previously for each type of interaction). These interactions correspond to spontaneous aggressions and affiliations. In the complex model, if in the previous period a conflict took place, before assessing spontaneous interactions we first evaluated the different possible post-conflict contacts that could occur (reconciliation, new aggressions, and affiliations). Therefore, for reconciliations, we change the valence of the interaction from negative to positive with a certain probability. Then, we also randomly choose a pair of nodes including one of the former opponents and assign to that link a positive or negative interaction with the observed probabilities to simulate the occurrence of new affiliations (third party-affiliation) or redirected aggressions arising from the previous conflict. We keep on doing this procedure period by period. Lastly, we obtained the time-aggregated networks for the two models.The simpler model only includes the probability of aggression and affiliation between group members, whereas the complex one also includes the patterns of conflict resolution previously observed. In this way, the complex model serves to assess the influence of post-conflict management mechanisms on the observed pattern of aggressive/affiliative networks. That is, the complex model also keeps track of past actions. Thus, depending on the interaction of the previous step, the probability of the following interaction changes based on the observed pattern of conflict resolution strategies.Calculation of the observed probabilities of affiliative and aggressive interactionsFor the simple model, we calculated the probability of general aggression and affiliation per day without distinguishing between types of positive and negative interactions. Thus, we obtained the number of periods in which an aggressive or affiliative contact took place per day and divided it by the total number of periods of that day (probability of general aggression or affiliation per 3-min period). With these probabilities, we calculated the mean probability of general aggression and affiliation per period.For the complex model, we calculated the probabilities of reconciliation, new affiliations/aggressions, and spontaneous affiliations/aggressions per day. That is, the probability that former opponents exchange affiliative contacts after an aggressive encounter (reconciliation), the probabilities that a conflict may promote new affiliations (third-party affiliation) or new conflicts (redirected aggression) between one of the opponents and a bystander in the same day, and the probability of affiliative or aggressive interactions not derived from a previous conflict (spontaneous interactions). To classify affiliations and aggressions in these categories we used the temporal networks, examining the interactions that took place after a conflict between opponents and between them and bystanders. If the opponents reconciled or affiliated with a bystander after a fight, we assumed that the following affiliative or aggressive interactions were spontaneous and were not a consequence of that conflict. Thus, to calculate the number of spontaneous affiliations, we subtracted the number of reconciliations and new affiliations from the total number of affiliations per day. For spontaneous aggressions, we subtracted the number of new aggressions to the total number of aggressions per day. Then, we obtained the probability of spontaneous affiliation and aggression per period.Using the previous probabilities, we obtained the rate (r) of reconciliation, new aggression and new affiliation per minute with the following formula:({p=1-e}^{-rDelta t}). Using the same formula, we finally calculated the probability of reconciliation, new aggression and affiliation per 3-min period used in the complex model (Supplementary Table 1 for details of probabilities calculation).Network-motif analysisWe also carried out a network-motif analysis. As we did not consider the identities or sex of the nodes in these models, we grouped the obtained motifs into equivalent categories considering the pattern of interactions between nodes. We also classified the motifs obtained from the real data of G1 into those equivalent categories. Finally, we compared the pattern of equivalent network motifs of the observed social network of dolphins and the ones of the two models. To do so we calculated the Spearman’s rank correlation coefficient (rs), defined as a nonparametric measure of the statistical dependence between the rankings of two variables: ({r}_{s}=frac{covleft({rg}_{X}{rg}_{Y}right)}{{sigma }_{{rg}_{X}}}{sigma }_{{rg}_{Y}}); rgX and rgY are the rank variables; cov (rgX rgY) is the covariance of the rank variables, and σrgX and σrgY are the standard deviations of the rank variables. Therefore, this coefficient allows us to assess the statistical dependence between the motif ranking of the real data and the one of each model.Computational implementationsAll the models, network construction, visualization and motif analysis were generated and implemented using MATLAB R2018b. More

  • in

    Genomic and ecological evidence shed light on the recent demographic history of two related invasive insects

    Gandhi, K. J. K. & Herms, D. A. Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America. Biol. Invasions 12, 389–405 (2010).
    Google Scholar 
    Desurmont, G. A. et al. Alien interference: disruption of infochemical networks by invasive insect herbivores. Plant. Cell Environ. 37, 1854–1865 (2014).PubMed 

    Google Scholar 
    Kenis, M. et al. Ecological effects of invasive alien insects. Biol. Invasions 11, 21–45 (2009).
    Google Scholar 
    Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. 113, 7575–7579 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 1–8 (2016).
    Google Scholar 
    Sherpa, S. et al. Unravelling the invasion history of the Asian tiger mosquito in Europe. Mol. Ecol. 28, 2360–2377 (2019).PubMed 

    Google Scholar 
    Sherpa, S. et al. Landscape does matter: Disentangling founder effects from natural and human-aided post-introduction dispersal during an ongoing biological invasion. J. Anim. Ecol. 89, 2027–2042 (2020).PubMed 

    Google Scholar 
    Sherpa, S. & Després, L. The evolutionary dynamics of biological invasions: A multi‐approach perspective. Evol. Appl. (2021).North, H. L., McGaughran, A. & Jiggins, C. Insights into invasive species from whole-genome resequencing. Mol. Ecol. (2021).Ma, L. et al. Rapid and strong population genetic differentiation and genomic signatures of climatic adaptation in an invasive mealybug. Divers. Distrib. 26, 610–622 (2020).
    Google Scholar 
    Ortego, J., Céspedes, V., Millán, A. & Green, A. J. Genomic data support multiple introductions and explosive demographic expansions in a highly invasive aquatic insect. Mol. Ecol. 30, 4189–4203 (2021).PubMed 

    Google Scholar 
    Varone, L., Logarzo, G., Briano, J., Hight, S. & Carpenter, J. Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) use of Opuntia host species in Argentina. Biol. Invasions 16, 2367–2380 (2014).
    Google Scholar 
    Singer, M. C., Ng, D. & Moore, R. A. Genetic variation in oviposition preference between butterfly populations. J. Insect Behav. 4, 531–535 (1991).
    Google Scholar 
    Forister, M. L. Oviposition preference and larval performance within a diverging lineage of lycaenid butterflies. Ecol. Entomol. 29, 264–272 (2004).
    Google Scholar 
    Wiklund, C. The concept of oligophagy and the natural habitats and host plants of Papilio machaon L. Fennoscandia. Insect Syst. Evol. 5, 151–160 (1974).
    Google Scholar 
    Courtney, S. P. & Forsberg, J. Host use by two pierid butterflies varies with host density. Funct. Ecol. 2, 67–75 (1988).
    Google Scholar 
    Franklin, J. Species distribution models in conservation biogeography: developments and challenges. Divers. Distrib. 19, 1217–1223 (2013).
    Google Scholar 
    Peterson, A. et al. Ecological niches and geographic distributions. Monographs in Population Biology vol. 49 (2011).Alvarado-Serrano, D. F. & Knowles, L. L. Ecological niche models in phylogeographic studies: Applications, advances and precautions. Mol. Ecol. Resour. 14, 233–248 (2014).PubMed 

    Google Scholar 
    Carrera-Martínez, R., Aponte-Díaz, L. A., Ruiz-Arocho, J., Lorenzo-Ramos, A. & Jenkins, D. A. The effects of the invasive Harrisia cactus mealybug (Hypogeococcus sp.) and exotic lianas (Jasminum fluminense) on Puerto Rican native cacti survival and reproduction. Biol. Invasions 21, 3269–3284 (2019).
    Google Scholar 
    Acevedo-Rodríguez, P. & Strong, M. T. Catalogue of seed plants of the West Indies. Smithson. Contrib. to Bot. 98, 1–1192 (2012).
    Google Scholar 
    Carrera-Martínez, R., Aponte-Díaz, L., Ruiz-Arocho, J. & Jenkins, D. A. Symptomatology of infestation by Hypogeococcus pungens: Contrasts between host species. Haseltonia 2015, 14–18 (2015).
    Google Scholar 
    Aponte-Díaz, L., Ruiz-Arocho, J., Carrera-Martínez, R. & Ee, B. Contrasting effects of the invasive Hypogeococcus sp. (Hemiptera: Pseudococcidae) infestation on seed germination of Pilosocereus royenii (Cactaceae), a Puerto Rican native cactus. Caribb. J. Sci. 50, 212–218 (2020).
    Google Scholar 
    California Department of Food and Agriculture. Harrisia Cactus Mealybug | Hypogeococcus pungens | Pest rating proposals and final ratings. https://blogs.cdfa.ca.gov/Section3162/?p=5881 (2018).Poveda-Martínez, D. et al. Species complex diversification by host plant use in an herbivorous insect: The source of Puerto Rican cactus mealybug pest and implications for biological control. Ecol. Evol. 10, 10463–10480 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Segarra-Carmona, A. E., Ramírez-Lluch, A., Cabrera-Asencio, I. & Jiménez-López, A. N. First report of a new invasive mealybug, the Harrisia cactus mealybug Hypogeococcus pungens (Hemiptera: Pseudococcidae). J. Agric. Univ. Puerto Rico 94, 183–187 (2010).
    Google Scholar 
    Poveda-Martínez, D. et al. Untangling the Hypogeococcus pungens species complex (Hemiptera: Pseudococcidae) for Argentina, Australia, and Puerto Rico based on host plant associations and genetic evidence. PLoS ONE 14, e0220366 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    McKenzie, H. L. Mealybugs of California. (Univ of California Press, 1967).Hamon, A. B. A cactus mealybug, Hypogeococcus festerianus (Lizer y Trelles). Florida (Homoptera Coccoidea Pseudococcidae). Entomol. Circ. Div. Plant Ind. Florida Dep. Agric. Consum. Serv. 263, 2 (1984).Hodges, A. & Hodges, G. Hypogeococcus pungens Granara de Willink (Insecta: Hemiptera: Pseudococcidae), a mealybug. EDIS 2009, (2009).Halbert, S. Entomology section. Triology 35, 2–4 (1996).
    Google Scholar 
    Aguirre, M. B. et al. Analysis of biological traits of Anagyrus cachamai and Anagyrus lapachosus to assess their potential as biological control candidate agents against Harrisia cactus mealybug pest in Puerto Rico. Biocontrol 64, 539–551 (2019).CAS 

    Google Scholar 
    Aguirre, M. B. et al. Influence of competition and intraguild predation between two candidate biocontrol parasitoids on their potential impact against Harrisia cactus mealybug, Hypogeococcus sp. (Hemiptera: Pseudococcidae). Sci. Rep. 11, 13377 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eaton, D. A. R. & Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 2592–2594 (2020).CAS 
    PubMed 

    Google Scholar 
    Poveda-Martínez, D., Salinas, N., Aguirre, M. B., Sánchez-Restrepo, A. F. & Hight, S., Diaz-Soltero, H. Dataset generated in Genomic and ecological evidence shed light on the recent demographic history of two related invasive insects. https://doi.org/10.6084/m9.figshare.15167082.v2 (2022).Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Gattepaille, L. M., Jakobsson, M. & Blum, M. G. B. Inferring population size changes with sequence and SNP data: Lessons from human bottlenecks. Heredity (Edinb). 110, 409–419 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Born‐Schmidt, G. et al. The implementation of the mexican strategy on invasive species: How far have we come? Invasive Alien Species Obs. Issues from Around World 4, 153–164 (2021).
    Google Scholar 
    McFadyen, R. E. & Tomley, A. J. Preliminary indications of success in the biological control of Harrisia cactus (Eriocereus martinii Lab.) in Queensland. In Proceedings of the First Conference of the Council of Australian Weed Science Societies held at National Science Centre, Parkville, Victoria, Australia, 12–14 April 1978 108–112 (Council of Australian Weed Science Societies, 1978).McFadyen, R. E. & Tomley, A. J. The successful biological control of Harrisia cactus (Eriocereus martinii) in Queensland. In Proceedings of the Sixth Australian Weeds Conference, Volume 1, City of Gold Coast, Queensland, Australia, 13–18 September, 1981 139–143 (Queensland Weed Society, 1981).Paterson, I. D. et al. Biological control of Cactaceae in South Africa. African Entomol. 19, 230–246 (2011).
    Google Scholar 
    Sutton, G. F., Klein, H. & Paterson, I. D. Evaluating the efficacy of Hypogeococcus sp. as a biological control agent of the cactaceous weed Cereus jamacaru in South Africa. Biocontrol 63, 493–503 (2018).
    Google Scholar 
    Paterson, I. D. et al. Biological control of Cactaceae in South Africa. African Entomol. 29, 713–734 (2021).
    Google Scholar 
    McFadyen, R. E. Harrisia (Eriocereus) martinii (Labour.) Britton—Harrisia cactus Acanthocereus tetragonus (L.) Hummelink—sword pear. (ed. Julien, M., McFadyen, R., & Cullen, J.), Biological control of weeds in Australia 274– 281. (CSIRO Publishing, 2012).Julien, M. H. & Griffiths, M. Biological control of weeds: A world catalogue of agents and their target weeds. (Cab International, 1998).Houston, W. A. & Elder, R. Biocontrol of Harrisia cactus Harrisia martinii by the mealybug Hypogeococcus festerianus (Hemiptera: Pseudococcidae) in salt-influenced habitats in Australia. Austral Entomol. 58, 696–703 (2019).
    Google Scholar 
    Hofmeister, N., Werner, S. & Lovette, I. Environmental correlates of genetic variation in the invasive European starling in North America. Mol. Ecol. 30, 1251–1263 (2021).PubMed 

    Google Scholar 
    Driscoe, A. L. et al. Host plant associations and geography interact to shape diversification in a specialist insect herbivore. Mol. Ecol. 28, 4197–4211 (2019).CAS 
    PubMed 

    Google Scholar 
    Vidal, M. C., Quinn, T. W., Stireman, J. O. 3rd., Tinghitella, R. M. & Murphy, S. M. Geography is more important than host plant use for the population genetic structure of a generalist insect herbivore. Mol. Ecol. 28, 4317–4334 (2019).PubMed 

    Google Scholar 
    Poveda-Martínez, D. et al. Spatial and host related genomic variation in partially sympatric cactophagous moth species. Mol. Ecol. 31, 356–371 (2021).PubMed 

    Google Scholar 
    Cao, L., Wei, S., Hoffmann, A. A., Wen, J. & Chen, M. Rapid genetic structuring of populations of the invasive fall webworm in relation to spatial expansion and control campaigns. Divers. Distrib. 22, 1276–1287 (2016).
    Google Scholar 
    Sih, A. et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621 (2010).
    Google Scholar 
    Yang, Q.-Q. et al. Introgressive hybridization between two non-native apple snails in China: Widespread hybridization and homogenization in egg morphology. Pest Manag. Sci. 76, 4231–4239 (2020).CAS 
    PubMed 

    Google Scholar 
    Cordeiro, E. M. G. et al. Hybridization and introgression between Helicoverpa armigera and H zea: An adaptational bridge. BMC Evol. Biol. 20, 61 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pardo-Diaz, C. et al. Adaptive introgression across species boundaries in Heliconius butterflies. PLOS Genet. 8, e1002752 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caltagirone, L. E. Landmark examples in classical biological control. Annu. Rev. Entomol. 26, 213–232 (1981).
    Google Scholar 
    Goldson, S. L., Phillips, C. B. & Barlow, N. D. The value of parasitoids in biological control. New Zeal. J. Zool. 21, 91–96 (1994).
    Google Scholar 
    Wang, Z., Liu, Y., Shi, M., Huang, J. & Chen, X. Parasitoid wasps as effective biological control agents. J. Integr. Agric. 18, 705–715 (2019).
    Google Scholar 
    Miller, G., & Lugo. A. E. Guide to the ecological systems of Puerto Rico. IITF-GTR-35 (2009).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrews, S. FastQC: A Quality control tool for high throughput sequence data. (2010).Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Linck, E. & Battey, C. J. Minor allele frequency thresholds strongly affect population structure inference with genomic data sets. Mol. Ecol. Resour. 19, 639–647 (2019).CAS 
    PubMed 

    Google Scholar 
    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).
    Google Scholar 
    Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).
    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
    Google Scholar 
    Pembleton, L. W., Cogan, N. O. I. & Forster, J. W. St AMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 13, 946–952 (2013).CAS 
    PubMed 

    Google Scholar 
    Cockerham, C. C. Drift and mutation with a finite number of allelic states. Proc. Natl. Acad. Sci. 81, 530–534 (1984).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Lynch, M. & Conery, J. S. The origins of genome complexity. Science 302, 1401–1404 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).CAS 
    PubMed 

    Google Scholar 
    Keightley, P. D., Ness, R. W., Halligan, D. L. & Haddrill, P. R. Estimation of the spontaneous mutation rate per nucleotide site in a Drosophila melanogaster full-sib family. Genetics 196, 313–320 (2014).CAS 
    PubMed 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).Neu, C. W., Byers, C. R. & Peek, J. M. A technique for analysis of utilization-availability data. J. Wildl. Manage. 38, 541–545 (1974).
    Google Scholar 
    Soberón, J. & Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Informatics 2, 1-10 (2005).Jorge, S. & Miguel, N. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. 106, 19644–19650 (2009).
    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).
    Google Scholar 
    Cobos, M. E., Peterson, A., Barve, N. & Osorio-Olvera, L. Kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Title, P. O. & Bemmels, J. B. ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography (Cop.) 41, 291–307 (2018).
    Google Scholar 
    Warren, B. H. et al. Evaluating alternative explanations for an association of extinction risk and evolutionary uniqueness in multiple insular lineages. Evolution 72, 2005–2024 (2018).PubMed 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evol. Int. J. Org. Evol. 62, 2868–2883 (2008).
    Google Scholar 
    Schoener, T. W. The anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).
    Google Scholar 
    Van der Vaart, A. W. Asymptotic Statistics (UK Cam, 1998).MATH 

    Google Scholar  More

  • in

    Effect of marigold (Tagetes erecta L.) on soil microbial communities in continuously cropped tobacco fields

    Chen, X. L. et al. Effects of Meloidogyne incognitaon the fungal community in tobaccorhizosphere. Rev. Bras. Cienc. Solo. 46, e0210127 (2022).
    Google Scholar 
    Zhang, S. X. et al. Research progresses on continuous cropping obstacles of tobacco. Soils 47(5), 823–829 (2015).CAS 

    Google Scholar 
    Luo, J. Y. et al. Effects of soil salinity onrhizosphere soil microbes in transgenic Bt cotton fields. J. Integr. Agric. 16, 1624–1633 (2017).CAS 

    Google Scholar 
    Chaparro, J. M. et al. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48, 489–499 (2012).
    Google Scholar 
    Newton, A., Begg, G. & Swanston, J. Deployment of diversity for enhanced crop function. Ann. Appl. Biol. 154, 309–322 (2009).
    Google Scholar 
    Li, X. G. et al. Effects of intercropping with Atractylodeslancea and application of bio-organic fertiliser on soil invertebrates, disease control and peanut productivity in continuouspeanut cropping field in subtropical China. Agrofor. Syst. 88, 41–52 (2014).
    Google Scholar 
    Ahmed, W. et al. Ralstonia solanacearum, a deadly pathogen: Revisiting the bacterial wilt biocontrol practices in tobacco and other Solanaceae. Rhizosphere 21, 100479 (2022).
    Google Scholar 
    Gómez-Rodrıguez, O., Zavaleta-Mejıa, E., Gonzalez-Hernandez, V., Livera-Munoz, M. & Cárdenas-Soriano, E. Allelopathyand microclimatic modification of intercropping with marigold on tomato early blight disease development. Field Crops Res. 83, 27–34 (2003).
    Google Scholar 
    Weidenhamer, J. D., Montgomery, T. M., Cipollini, D. F., Weston, P. A. & Mohney, B. K. Plandensity and rhizosphere chemistry: Does marigold root exudate composition respond to intra-and interspecific competition?. J. Chem. Ecol. 45(5–6), 525–533 (2019).CAS 
    PubMed 

    Google Scholar 
    Ploeg, A. T. Effects of selected marigold varieties on root-knot nematodes and tomato and melon yields. Plant Dis. 86(5), 505–508 (2002).PubMed 

    Google Scholar 
    Hooks, C. R., Wang, K. H., Ploeg, A. & McSorley, R. Using marigold (Tagetes spp.) as a cover crop to protect crops fromplant-parasitic nematodes. Appl. Soil Ecol. 46, 307–320 (2010).
    Google Scholar 
    Li, W., Xu, J., Chen, H. & Qi, Y. Phytochemicals and their biological activities of plants in tagetes l.-sciencedirect. Chin. Herbal Med. 4(2), 103–117 (2012).
    Google Scholar 
    Weidenhamer, J. D., Mohney, B. K., Shihada, N. & Rupasinghe, M. Spatial and temporal dynamics of root exudation: How important is heterogeneity in allelopathic interactions?. J. Chem. Ecol. 40(8), 940–952 (2014).CAS 
    PubMed 

    Google Scholar 
    Marotti, I. et al. Thiophene occurrence in different tagetes species: Agricultural biomasses as sources ofbiocidal substances. J. Sci. Food Agric. 90(7), 1210–1217 (2010).CAS 
    PubMed 

    Google Scholar 
    Barto, E. K. et al. The fungal fastlane: Common mycorrhizal networks extendbioactive zones of allelochemicals in soils. PLoS ONE 6, e27195 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evenhuis, A., Korthals, G. & Molendijk, L. Tagetes patula as an effective catch crop forlong-term control of Pratylenchus penetrans. Nematology 6, 877–881 (2004).
    Google Scholar 
    Wu, W. T. et al. Effects of marigold-tobacco rotation on soil nematode community composition. Southwest China J. Agric. Sci. 32(2), 342–348 (2019).
    Google Scholar 
    Reynolds, L. B., Potter, J. W. & Ball-Coelho, B. R. Crop rotation with sp. is an alternative to chemical fumigation for control of root-lesion nematodes. Agron. J. 92(5), 957–966 (2000).
    Google Scholar 
    El-Hamawi, M., Youssef, M. & Zawam, H. S. Management of Meloidogyne incognita, the root-knot nematode, on soybean asaffected by marigold and sea ambrosia (damsisa) plants. J. Pest Sci. 77, 95–98 (2004).
    Google Scholar 
    Kumar, N., Krishnappa, K., Reddy, B., Ravichandra, N. & Karuna, K. Intercropping for the management of root-knotnematode, Meloidogyne incognitain vegetable-based cropping systems. Indian J. Nematol. 35, 46–49 (2005).
    Google Scholar 
    Zhang, J. et al. Crop rotation with marigold promotes soil bacterial structure to assist in mitigating clubroot Incidence in Chinese Cabbage. Plants 11(17), 2295 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xia, T. Y. et al. Microbial diversity of tobacco rhizospheresoil in different growth stages of marigold-tobacco intercropping system. Southwest China J. Agric. Sci. 31(4), 680–686 (2018).
    Google Scholar 
    Wei, H. Y. et al. Effects of marigold diversified cropping with angelica on fungal community in soils. Plant Prot. 41(5), 69–74 (2015).MathSciNet 
    CAS 

    Google Scholar 
    Li, Y. et al. Intercropping with marigold promotes soil health and microbialstructure to assist in mitigating tobacco bacterial wilt. J. Plant Pathol. 102, 731–742 (2020).
    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. MicroBiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 

    Google Scholar 
    Irikiin, I. et al. Rhizobacterial community-level, sole carbon source utilization pattern aff ects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system. Appl. Soil Ecol. 34(1), 27–32 (2006).
    Google Scholar 
    Wu, M. N. et al. Soil fungistasis and its relations to soil microbial composition and diversity: A case study of a series of soils with different fungistasis. J. Environ. Sci. 20(7), 871–877 (2008).CAS 

    Google Scholar 
    Mendes, L. W. et al. Soil-Borne microbiome: Linking diversity to function. Microb. Ecol. 70(1), 255–265 (2015).CAS 
    PubMed 

    Google Scholar 
    Jaiswal, A. K. et al. Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar. Sci. Rep. 7, 44382 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raaijmakers, J. M. & Mazzola, M. Soil immune responses soil microbiomes may be harnessed for plant health. Science 352, 1392–1393 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kušlienė, G., Rasmussen, J., Kuzyakov, Y. & Eriksen, J. Medium-term response of microbial community to rhizodeposits of white clover and ryegrass and tracing of active processes induced by 13C and 15N labelled exudates. Soil Biol. Biochem. 76, 22–33 (2014).
    Google Scholar 
    Mohammadi, K. Soil microbial activity and biomass as influenced by tillage and fertilization in wheat production. Am.-Eurasian J. Agric. Environ. Sci. 10, 330–337 (2011).
    Google Scholar 
    Wang, G. H. et al. Research progress of Acidobacteria ecology in soils. Biotechnol. Bull. 32(2), 14–20 (2016).
    Google Scholar 
    Wei, H., Wang, L., Hassan, M. & Xie, B. Succession of the functional microbial communities and the metabolic functions in maize straw composting process. Bioresour. Technol. 256, 333–341 (2018).CAS 
    PubMed 

    Google Scholar 
    Wang, Y., Liu, L., Yang, J., Duan, Y. & Zhao, Z. The diversity of microbial community and function varied in response to different agricultural residues composting. Sci. Total Environ. 715, 136983 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Glass, N. L., Schmoll, M., Cate, J. H. & Coradetti, S. Plant cell wall deconstruction by ascomycete fungi. Annu. Rev. Microbiol. 67, 477–498 (2013).CAS 
    PubMed 

    Google Scholar 
    Li, Y. et al. Linking soil fungal community structure and function to soil organic carbon chemical composition in intensively managed subtropical bamboo forests. Soil Biol. Biochem. 107, 19–31 (2017).CAS 

    Google Scholar 
    Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. & Ramos, L. P. Comparison of Penicillium echinulatumand Trichoderma reeseicellulases in relation to their activity against various cellulosic substrates. Bioresour. Technol. 99, 1417–1424 (2008).CAS 
    PubMed 

    Google Scholar  More

  • in

    Pathogen spillover driven by rapid changes in bat ecology

    During recent decades, pathogens that originated in bats have become an increasing public health concern. A major challenge is to identify how those pathogens spill over into human populations to generate a pandemic threat1. Many correlational studies associate spillover with changes in land use or other anthropogenic stressors2,3, although the mechanisms underlying the observed correlations have not been identified4. One limitation is the lack of spatially and temporally explicit data on multiple spillovers, and on the connections among spillovers, reservoir host ecology and behavior, and viral dynamics. We present 25 years of data on land-use change, bat behavior, and spillover of Hendra virus from Pteropodid bats to horses in subtropical Australia. These data show that bats are responding to environmental change by persistently adopting behaviors that were previously transient responses to nutritional stress. Interactions between land-use change and climate now lead to persistent bat residency in agricultural areas, where periodic food shortages drive clusters of spillovers. Pulses of winter flowering of trees in remnant forests appeared to prevent spillover. We developed integrative Bayesian network models based on these phenomena that accurately predicted the presence or absence of clusters of spillovers in each of 25 years. Our long-term study identifies the mechanistic connections among habitat loss, climate, and increased spillover risk. It provides a framework for examining causes of bat virus spillover and for developing ecological countermeasures to prevent pandemics. More

  • in

    Tidal effects on periodical variations in the occurrence of singing humpback whales in coastal waters of Chichijima Island, Ogasawara, Japan

    Morrison, M. A., Francis, M. P., Hartill, B. W. & Parkinson, D. M. Diurnal and tidal variation in the abundance of the fish fauna of a temperate tidal mudflat. Estuar. Coast. Shelf Sci. 54, 793–807 (2002).Article 
    ADS 

    Google Scholar 
    Ribeiro, J. et al. Seasonal, tidal and diurnal changes in fish assemblages in the Ria Formosa lagoon (Portugal). Estuar. Coast. Shelf Sci. 67, 461–474 (2006).Article 
    ADS 

    Google Scholar 
    Takemura, A., Rahman, M. S. & Park, Y. J. External and internal controls of lunar-related reproductive rhythms in fishes. J. Fish Biol. 76, 7–26 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mendes, S., Turrell, W., Lütkebohle, T. & Thompson, P. Influence of the tidal cycle and a tidal intrusion front on the spatio-temporal distribution of coastal bottlenose dolphins. Mar. Ecol. Prog. Ser. 239, 221–229 (2002).Article 
    ADS 

    Google Scholar 
    Johnston, D. W., Thorne, L. H. & Read, A. J. Fin whales Balaenoptera physalus and minke whales Balaenoptera acutorostrata exploit a tidally driven island wake ecosystem in the Bay of Fundy. Mar. Ecol. Prog. Ser. 305, 287–295 (2005).Article 
    ADS 

    Google Scholar 
    Ichikawa, K. et al. Dugong (Dugong dugon) vocalization patterns recorded by automatic underwater sound monitoring systems. J. Acoust. Soc. Am. 119, 3726–3733 (2006).Article 
    ADS 
    PubMed 

    Google Scholar 
    Akamatsu, T. et al. Seasonal and diurnal presence of finless porpoises at a corridor to the ocean from their habitat. Mar. Biol. 157, 1879–1887 (2010).Article 

    Google Scholar 
    Li, S. et al. Seasonal, lunar and tidal influences on habitat use of indo-pacific humpback dolphins in Beibu gulf, China. Zool. Stud. https://doi.org/10.6620/ZS.2018.57-01 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zamon, J. E. Seal predation on salmon and forage fish schools as a function of tidal currents in the San Juan Islands, Washington, USA. Fish. Oceanogr. 10, 353–366 (2001).Article 

    Google Scholar 
    Van Parijs, S. M., Hastie, G. D. & Thompson, P. M. Geographical variation in temporal and spatial vocalization patterns of male harbour seals in the mating season. Anim. Behav. 58, 1231–1239 (1999).Article 
    PubMed 

    Google Scholar 
    Bortolotto, G. A., Danilewicz, D., Hammond, P. S., Thomas, L. & Zerbini, A. N. Whale distribution in a breeding area: Spatial models of habitat use and abundance of western South Atlantic humpback whales. Mar. Ecol. Prog. Ser. 585, 213–227 (2017).Article 
    ADS 

    Google Scholar 
    Johnson, J. H. & Wolman, A. A. The humpback whale, Megaptera novaeangliae. Mar. Fish. Rev. 46, 30–37 (1984).
    Google Scholar 
    Kobayashi, N. et al. Spatial distribution and habitat use patterns of humpback whales in Okinawa, Japan. Mammal Study 41, 207–214 (2016).Article 

    Google Scholar 
    Mori, K., Sata, F., Yamaguchi, M., Suganuma, H. & Ueyanagi, S. Distribution, migration and local movements of humpback whale (Megaptera novaeangliae) in the adjacent waters of the Ogasawara (Bonin) Islands Japan. J. Fac. Mar. Sci. Technol. Tokai Univ. 45, 197–213 (1998).
    Google Scholar 
    Rasmussen, K., Calambokidis, J. & Steiger, G. H. Distribution and migratory destinations of humpback whales off the Pacific coast of Central America during the boreal winters of 1996–2003. Mar. Mammal Sci. 28, 1–13 (2012).Article 

    Google Scholar 
    Calambokidis, J. et al. SPLASH: structure of populations, levels of abuncance and status of humpback whales in the North Pacific. Final report for Contract AB133F-03-RP-00078, to U.S. Dept. of Comm. Western Administrative Center, Seattle, WA. https://cascadiaresearch.org/files/SPLASH-contract-Report-May08.pdf (2008).Hill, M. et al. Found: A missing breeding ground for endangered western North Pacific humpback whales in the Mariana Archipelago. Endanger. Species Res. 41, 91–103 (2020).Article 

    Google Scholar 
    Payne, R. S. & McVay, S. Songs of humpback whales. Science 173, 585–597 (1971).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Winn, H. E. & Winn, L. The song of the humpback whale Megaptera novaeangliae in the West Indies. Mar. Biol. 47, 97–114 (1978).Article 

    Google Scholar 
    Tyack, P. Interactions between singing Hawaiian humpback whales and conspecifics nearby. Behav. Ecol. Sociobiol. 8, 105–116 (1981).Article 

    Google Scholar 
    Herman, L. M. The multiple functions of male song within the humpback whale (Megaptera novaeangliae) mating system: Review, evaluation, and synthesis. Biol. Rev. 92, 1795–1818 (2017).Article 
    PubMed 

    Google Scholar 
    Au, W. W. L., Mobley, J., Burgess, W. C., Lammers, M. O. & Nachtigall, P. E. Seasonal and diurnal trends of chorusing humpback whales wintering in waters off western Maui. Mar. Mammal Sci. 16, 530–544 (2000).Article 

    Google Scholar 
    Cerchio, S., Collins, T., Strindberg, S., Bennett, C. & Rosenbaum, H. Humpback whale singing activity off northern Angola: An indication of the migratory cycle, breeding habitat and impact of seismic surveys on singer number in Breeding. Int. Whal. Comm. P. SC/62/SH12 (2010).Kobayashi, N., Okabe, H., Higashi, N., Miyahara, H. & Uchida, S. Diel patterns in singing activity of humpback whales in a winter breeding area in Okinawan (Ryukyuan) waters. Mar. Mammal Sci. 37, 982–992 (2021).Article 

    Google Scholar 
    Munger, L. M., Lammers, M. O., Fisher-Pool, P. & Wong, K. Humpback whale (Megaptera novaeangliae) song occurrence at American Samoa in long-term passive acoustic recordings, 2008–2009. J. Acoust. Soc. Am. 132, 2265–2272 (2012).Article 
    ADS 
    PubMed 

    Google Scholar 
    Barlow, D. R., Fournet, M. & Sharpe, F. Incorporating tides into the acoustic ecology of humpback whales. Mar. Mammal Sci. 35, 234–251 (2019).Article 

    Google Scholar 
    Chenoweth, E., Gabriele, C. & Hill, D. Tidal influences on humpback whale habitat selection near headlands. Mar. Ecol. Prog. Ser. 423, 279–289 (2011).Article 
    ADS 

    Google Scholar 
    Sousa-Lima, R. S., Clark, C. W. & Road, S. W. Modeling the effect of boat traffic on singing activity of humpback whales (Megaptera novaeangliae) in the abrolhos national marine park, Brazil. Can. Acoust 36, 174–181 (2008).
    Google Scholar 
    Cerchio, S., Strindberg, S., Collins, T., Bennett, C. & Rosenbaum, H. Seismic surveys negatively affect humpback whale singing activity off Northern Angola. PLoS ONE 9, e86464. https://doi.org/10.1371/journal.pone.0086464 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Darling, J. D. & Mori, K. Recent observations of humpback whales (Megaptera novaeangliae) in Japanese waters off Ogasawara and Okinawa. Can. J. Zool. 71, 325–333 (1993).Article 

    Google Scholar 
    Calambokidis, J. et al. Movements and population structure of humpback whales in the North Pacific. Mar. Mammal Sci. 17, 769–794 (2001).Article 

    Google Scholar 
    Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. & Wobbe, F. Generic mapping tools: Improved version released. Eos Trans. Am. Geophys. Union 94, 409–410 (2013).Article 
    ADS 

    Google Scholar 
    Helweg, D. A. & Herman, L. M. Diurnal patterns of behaviour and group membership of humpback whales (Megaptera novaeangliae) wintering in Hawaiian waters. Ethology 98, 298–311 (1994).Article 

    Google Scholar 
    Darling, J. D. & Berube, M. Interactions of singing humpback whales with other males. Mar. Mammal Sci. 17, 570–584 (2001).Article 

    Google Scholar 
    Whitlow, W. L. et al. Acoustic properties of humpback whale songs. J. Acoust. Soc. Am. 120, 1103–1110 (2006).Article 

    Google Scholar 
    Japan Coast Guard. Sailing Directions for South and East Coasts of Honshu. (1981).Tsujii, K. et al. Change in singing behavior of humpback whales caused by shipping noise. PLoS ONE 13, e0204112. https://doi.org/10.1371/journal.pone.0204112 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryan, J. P. et al. Humpback whale song occurrence reflects ecosystem variability in feeding and migratory habitat of the northeast Pacific. PLoS ONE 14, e0222456. https://doi.org/10.1371/journal.pone.0222456 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. 4.0.0 version. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2020).Wood, S.N. Generalized Additive Models: An Introduction with R 2nd edn, (Chapman and Hall/CRC, 2017). More

  • in

    The control of malaria vectors in rice fields: a systematic review and meta-analysis

    We investigated whether ricefield mosquito larval control and/or rice cultivation practices are associated with malaria vector densities through a systematic review and meta-analysis. Forty-seven experimental studies were eligible for inclusion in the qualitative analysis and thirty-three studies were eligible for the meta-analysis. It was demonstrated that the use of fish, chemical and biological larvicides in rice fields were effective in controlling larval malaria vector densities at all developmental stages. Intermittent irrigation, however, could only significantly reduce late-stage larvae. Based on a limited number of studies, meta-analyses on other forms of larval control such as monomolecular surface films (MSFs), neem, copepods and Azolla failed to demonstrate any consistent reduction in anopheline numbers. Similarly, rice cultivation practices such as plant variety and density, type of levelling and pesticide application were not generally associated with reduced malaria vectors. Nonetheless, in one study, minimal tillage was observed to reduce average numbers of larvae throughout a cropping season. In another study, herbicide application increased larval abundance over a 4-week period, as did one-time drainage in a third study.
    Despite their different modes of action, the use of chemical and bacterial larvicides and MSFs were all relatively effective measures of larval control in rice fields, varying between a 57% to 76% reduction in vector abundance compared to no larviciding. Their effects were highest (often reaching 100% reduction) only shortly following application but did not persist for longer than two weeks. These larvicides mostly had short residual half-lives because they were applied to paddy water which was naturally not completely stagnant: there was a small but constant process of water loss (through drainage, evapotranspiration and percolation) and replacement through irrigation. Hence, even with a residual formulation, weekly re-application would be needed for sustained control47,40,41,50. This would be very labour- and cost-intensive to scale-up, to ensure that larvicides are evenly distributed across vast areas (even at plot/sub-plot level) throughout at least one 5-month long rice-growing season per year42,51. Aerial application (including unmanned aerial vehicles), although widely used in the US and Europe, is unlikely to be a feasible delivery system for smallholders in SSA, even in large irrigation schemes26,27,48,49. Furthermore, if synthetic organic chemicals were to be considered for riceland malaria vector control, their management in the current landscape of insecticide resistance across Africa must be considered.Biological control using fish was found to be, in general, slightly more effective than (chemical, bacterial and MSF) larviciding. The degree of effectiveness was dependent on the fish species and their feeding preferences: surface-feeding, larvivorous species provided better anopheline control than bottom-feeding selective feeders4,43. Selecting the most suitable fish for local rice fields is not straightforward; many criteria need to be considered4,52,53. Generally, fish were well-received by rice farmers, perceived to contribute to increased yield by reducing weeds and pests and providing fertiliser through excrement43,44. This was reportedly also observed in Guangxi, China, where a certain proportion of the field had to be deepened into a side-trench where the fish could take shelter when the fields were drained. Even with this reduction in rice production area, carp rearing still increased yields by 10% and farmer’s income per hectare by 70%53. Unfortunately, none of the eligible studies in this review had included yield or water use as an outcome. Future entomological studies need to measure these critical agronomic variables so that studies of vector control in rice can be understood by, and transferred to, agronomists. In SSA, irrigated rice-fish farming can be scaled up provided that an inventory of fish species suitable for specific locations is available and that water is consistently available in fields (an important limiting factor in African irrigation schemes)54. Lessons can be learnt from successful large-scale rice-fish systems in Asia, where they have served as win–win solutions for sustainable food production and malaria control16,55.Overall, there was only limited evidence that intermittent irrigation is effective at reducing late-instar anopheline larvae in rice fields. This finding contrasts with prior reviews, which found mixed results (regardless of larval stage) but emphasised that success was site-specific4,17,56. This contrast is presumably due to the inclusion criteria of our systematic review. These reviews excluded studies in various geographical settings and some older studies that reported successful anopheline control with intermittent irrigation but lacked either a contemporaneous control arm, adequate replication or adequate differentiation between culicines and anophelines16,57,50,51,52,61. It seems, from our review, that intermittent irrigation does not prevent the recruitment of early instars (and in one case, may have encouraged oviposition31) but tends to prevent their development into late-stage immatures. This important conclusion is, however, based only on four studies; more evidence is urgently needed where future trials should consider the basic principles of modern trials with adequate replication, controls and differentiation between larval instars and species.Generally, it is observed that drainage, passive or active, did not reliably reduce overall numbers of mosquito immatures. In India and Kenya, closer inspection revealed that soils were not drying sufficiently, so any stranded larvae were not killed31,46. Highlighted by van der Hoek et al.29 and Keiser et al.17, water management in rice fields is very dependent on the physical characteristics of the soil and the climate and is most suited to places that not only favour rapid drying, but also have a good control of water supply17,56. Moreover, repeated drainage, although directed against mosquitoes, can also kill their aquatic predators62. Since mosquitoes can re-establish themselves in a newly flooded rice field more quickly than their predators, intermittent irrigation with more than a week between successive drying periods can permit repeated cycles of mosquito breeding without any predation pressure. Its efficacy against malaria vectors is therefore highly reliant on the timing of the wetting and drying periods. Further site-specific research on timing, especially with regards to predator–prey interactions within the rice agroecosystem, is required to find the perfect balance.Another limitation in intermittent irrigation is that it cannot be applied during the first two to three weeks following transplanting, because rice plants must remain flooded to recover from transplanting shock. Unfortunately, this time coincides with peak vector breeding. Thus, other methods of larval control would be required to fill this gap. To agronomists, intermittent irrigation provides benefits to farmers, as it does not penalise yield but significantly reduces water consumption. Nonetheless, farmer compliance seems to be variable, especially in areas where water availability is inconsistent and intermittent irrigation would potentially require more labour31,32,39. Importantly, rice farmers doubted their ability to coordinate water distribution evenly amongst themselves, suggesting that there may be sharing issues, as in the “tragedy of the commons”63. Instead, they said that they preferred to have an agreed authority to regulate water46.No general conclusions could be made on the effect on malaria vectors of other rice cultivation practices (apart from water management) because only one study was eligible for each practice. Nevertheless, these experiments on pesticide application, tillage and weed control, as well as another study on plant spacing (not eligible since glass rods were used to simulate rice plants), do illustrate that small changes in agronomic inputs and conditions can have considerable effects on mosquito densities, not just rice yield36,38,64. Moreover, in partially- or shallowly-flooded plots, the larvae are often concentrated in depressions (usually footprints), suggesting that rice operations which leave or remove footprints (e.g. hand-weeding, drum seeders, levelling) will influence vector breeding4.Our study has some important limitations. First, in most trials, the units of intervention were replicate plots of rice, and success was measured as a reduction in larval densities within treated plots. This design focuses on the identification of effective and easy-to-implement ways of growing rice without growing mosquitoes, on the assumption that higher vector densities are harmful. However, from a public health perspective, the need for epidemiological outcomes is often, and reasonably, stressed22,65. Nonetheless, from a farmers’ perspective, it is also important to consider whether the vectors emerging from their rice fields significantly contribute to the local burden of malaria and to determine how this contribution can be minimised. There is evidence that riceland vectors do increase malaria transmission, since human biting rates are much higher in communities living next to rice schemes than their non-rice counterparts66 and that additional riceland vectors may intensify transmission and malaria prevalence in rice communities15. Hence, when investigating how rice-attributed malaria risk can be minimised, mosquito abundance as measured in the experimental rice trials is a useful indicator of potential impact on epidemiological outcomes.Second, larval density was not always separated into larval developmental stages. This can be misleading because some interventions work by reducing larval survival (but not by preventing oviposition) and development to late instars and pupae. Therefore, an intervention could completely eliminate late-stage larvae and pupae but have little effect on the total number of immatures. This was illustrated in our meta-analyses of intermittent irrigation in Table 3 and Supplementary Table 5, and could have been the case for some studies that failed to demonstrate consistent reductions in overall anopheline numbers but did not differentiate between larval instars34,45,67,60,69. We infer that when monitoring mosquito immatures in rice trials, it is important to distinguish between larval instars and pupae. Pupae should always be counted separately since its abundance is the most direct indicator of adult productivity70.Third, experimental trials rarely reported the timing of intervention application or accounted for different rice-growing phases, or “days after transplantation”, in the outcome. Both aspects are important to consider since an intervention may be suited to control larvae during certain growth phases but not others. This is illustrated by Djegbe et al.38, where, compared to deep tillage, minimal tillage could significantly reduce larvae during the early stages of rice cultivation but not during tillering and maturation38. In contrast, other interventions, such as Azolla and predatory copepods, took time to grow and accumulate, and were more effective during the later stages of a rice season45,67,71. This differentiation is important because it can identify components that could potentially form a complementary set of interventions against riceland malaria vectors, each component being effective at different parts of the season. Since rice fields, and hence the dynamics of riceland mosquito populations, vary from place to place, this set of interventions must also be robust. Special attention must be paid to the early stages of rice cultivation, particularly the first few weeks after transplanting (or sowing), since, with many vector species, a large proportion of adult mosquitoes are produced during this time.Fourth, the analysis of entomological counts is often inadequate. Many studies failed to provide the standard deviation (or any other measure of error) for larval counts and could not be included in the quantitative analysis. Often, due to the extreme (and not unexpected) variability of larval numbers, sample sizes were insufficient to calculate statistically significant differences between treatments. Fifth, a high risk of bias was found across both CTS and CITS studies, including high heterogeneity and some publication bias. Study quality was, in general, a shortcoming and limited the number of eligible studies for certain interventions, including intermittent irrigation. Moreover, there are conspicuous a priori reasons for bias in such experimental trials: trial locations are frequently chosen to maximise the probability of success.Finally, few studies were conducted in African countries, where the relationship between rice and malaria is most important because of the efficiency, and the “rice-philic” nature, of the vector An. gambiae s.l.15. In particular, there was a lack of studies on the effectiveness and scalability of biological control and rice cultivation practices. There is also very little information (particularly social science studies) on the views and perspectives of African rice farmers on mosquitoes in rice and interventions to control them72,73.In the future, as malaria declines (particularly across SSA), the contribution of rice production to increased malaria transmission is likely to become more conspicuous15. Unless this problem is addressed, rice growing will probably become an obstacle to malaria elimination. Current default methods of rice production provide near-perfect conditions for the larvae of African malaria vectors. Therefore, we need to develop modified rice-growing methods that are unfavourable to mosquitoes but still favourable for the rice. Although larviciding and biological control may be appropriate, their unsustainable costs remain the biggest barrier to uptake amongst smallholder farmers. Future investigations into riceland vector control should pay more attention to interventions that may be useful to farmers.Supported by medical entomologists, agronomists should lead the research task of identifying cultivation methods that achieve high rice productivity whilst suppressing vector productivity. Rice fields are a major global source of greenhouse gases, and agronomists have responded by successfully developing novel cultivation methods that minimise these emissions while maintaining yield. We need the same kind of response from agronomists, to achieve malaria control co-benefits within rice cultivation. At present, only a few aspects of rice cultivation have been investigated for their effects on mosquitoes, and the potential of many other practices for reducing anopheline numbers are awaiting study. Due to the spatial and temporal heterogeneity of rice agroecosystems, it is likely that no single control method can reduce mosquito numbers throughout an entire cropping season and in all soil types and irrigation methods. Thus, effective overall control is likely to come from a combination of local, site-specific set of complementary methods, each of which is active and effective during a different phase of the rice-growing season. More

  • in

    The effects of visitors and social isolation from a peer on the behavior of a mixed-species pair of captive gibbons

    Kazarov, E. The Role of Zoos in Creating a Conservation Ethic in Visitors. SIT Digital Collections (2022). at https://digitalcollections.sit.edu/isp_collection/584.Hosey, G. How does the zoo environment affect the behaviour of captive primates?. Appl. Anim. Behav. Sci. 90, 107–129 (2005).
    Google Scholar 
    Morgan, K. & Tromborg, C. Sources of stress in captivity. Appl. Anim. Behav. Sci. 102, 262–302 (2007).
    Google Scholar 
    Sherwen, S. & Hemsworth, P. The visitor effect on zoo animals: Implications and opportunities for zoo animal welfare. Animals 9, 366 (2019).PubMed Central 

    Google Scholar 
    Chamove, A., Hosey, G. & Schaetzel, P. Visitors excite primates in zoos. Zoo Biol. 7, 359–369 (1988).
    Google Scholar 
    Tetley, C. L. & O’Hara, S. J. Ratings of animal personality as a tool for improving the breeding, management and welfare of zoo mammals. Anim. Welf. UFAW J. 21(4), 463 (2012).CAS 

    Google Scholar 
    Stoinski, T. S., Jaicks, H. F. & Drayton, L. A. Visitor effects on the behavior of captive western lowland gorillas: The importance of individual differences in examining welfare. Zoo Biol. 31(5), 586–599 (2012).PubMed 

    Google Scholar 
    Queiroz, M. B. & Young, R. J. The different physical and behavioural characteristics of zoo mammals that influence their response to visitors. Animals 8(8), 139 (2018).PubMed Central 

    Google Scholar 
    Fanson, K. V. & Wielebnowski, N. C. Effect of housing and husbandry practices on adrenocortical activity in captive Canada lynx (Lynx canadensis). Anim. Welf. 22, 159–165 (2013).CAS 

    Google Scholar 
    Pirovino, M. et al. Fecal glucocorticoid measurements and their relation to rearing, behavior, and environmental factors in the population of pileated gibbons (Hylobates pileatus) held in European zoos. Int. J. Primatol. 32(5), 1161–1178 (2011).
    Google Scholar 
    Williams, I., Hoppitt, W. & Grant, R. The effect of auditory enrichment, rearing method and social environment on the behavior of zoo-housed psittacines (Aves: Psittaciformes); implications for welfare. Appl. Anim. Behav. Sci. 186, 85–92 (2017).
    Google Scholar 
    Fernandez, E., Tamborski, M., Pickens, S. & Timberlake, W. Animal–visitor interactions in the modern zoo: Conflicts and interventions. Appl. Anim. Behav. Sci. 120, 1–8 (2009).
    Google Scholar 
    Hosey, G. & Skyner, L. Self-injurious behavior in zoo primates. Int. J. Primatol. 28, 1431–1437 (2007).
    Google Scholar 
    Mallapur, A., Sinha, A. & Waran, N. Influence of visitor presence on the behaviour of captive lion-tailed macaques (Macaca silenus) housed in Indian zoos. Appl. Anim. Behav. Sci. 94, 341–352 (2005).
    Google Scholar 
    Davey, G. Visitors’ Effects on the Welfare of Animals in the Zoo: A Review. J. Appl. Anim. Welf. Sci. 10, 169–183 (2007).CAS 
    PubMed 

    Google Scholar 
    Jones, H., McGregor, P., Farmer, H. & Baker, K. The influence of visitor interaction on the behavior of captive crowned lemurs (Eulemur coronatus) and implications for welfare. Zoo Biol. 35, 222–227 (2016).CAS 
    PubMed 

    Google Scholar 
    Cook, S. & Hosey, G. R. Interaction sequences between chimpanzees and human visitors at the zoo. Zoo Biol. 14(5), 431–440 (1995).
    Google Scholar 
    Baker, K. C. Benefits of positive human interaction for socially-housed chimpanzees. Anim. Welf. (South Mimms, Engl.nd) 13(2), 239 (2004).CAS 

    Google Scholar 
    Carder, G. & Semple, S. Visitor effects on anxiety in two captive groups of western lowland gorillas. Appl. Anim. Behav. Sci. 115, 211–220 (2008).
    Google Scholar 
    Wood, W. Interactions among environmental enrichment, viewing crowds, and zoo chimpanzees (Pantroglodytes). Zoo Biol. 17, 211–230 (1998).
    Google Scholar 
    Todd, P., Macdonald, C. & Coleman, D. Visitor-associated variation in captive Diana monkey (Cercopithecus diana diana) behaviour. Appl. Anim. Behav. Sci. 107, 162–165 (2007).
    Google Scholar 
    Davis, N., Schaffner, C. & Smith, T. Evidence that zoo visitors influence HPA activity in spider monkeys (Ateles geoffroyii rufiventris). Appl. Anim. Behav. Sci. 90, 131–141 (2005).
    Google Scholar 
    Sherwen, S. L. et al. Effects of visual contact with zoo visitors on black-capped capuchin welfare. Appl. Anim. Behav. Sci. 167, 65–73 (2015).
    Google Scholar 
    Choo, Y., Todd, P. & Li, D. Visitor effects on zoo orangutans in two novel, naturalistic enclosures. Appl. Anim. Behav. Sci. 133, 78–86 (2011).
    Google Scholar 
    Sherwen, S., Magrath, M., Butler, K., Phillips, C. & Hemsworth, P. A multi-enclosure study investigating the behavioural response of meerkats to zoo visitors. Appl. Anim. Behav. Sci. 156, 70–77 (2014).
    Google Scholar 
    Hosey, G. & Druck, P. The influence of zoo visitors on the behaviour of captive primates. Appl. Anim. Behav. Sci. 18, 19–29 (1987).
    Google Scholar 
    Mitchell, G. et al. More on the ‘influence’of zoo visitors on the behaviour of captive primates. Appl. Anim. Behav. Sci. 35(2), 189–198 (1992).
    Google Scholar 
    Sellinger, R. & Ha, J. The effects of visitor density and intensity on the behavior of two captive jaguars (Panthera onca). J. Appl. Anim. Welfare Sci. 8, 233–244 (2005).CAS 

    Google Scholar 
    Azevedo, C., Lima, M., Silva, V., Young, R. & Rodrigues, M. Visitor Influence on the Behavior of Captive Greater Rheas (Rhea americana, Rheidae Aves). J. Appl. Anim. Welfare Sci. 15, 113–125 (2012).
    Google Scholar 
    Das Gupta, M., Das, A., Sumy, M. C. & Islam, M. M. An explorative study on visitor’s behaviour and their effect on the behaviour of primates at Chittagong zoo. Bangladesh J. Vet. Anim. Sci. 5(2), 24–32 (2017).
    Google Scholar 
    Hemsworth, P. Human–animal interactions in livestock production. Appl. Anim. Behav. Sci. 81, 185–198 (2003).
    Google Scholar 
    Stoinski, T., Czekala, N., Lukas, K. & Maple, T. Urinary androgen and corticoid levels in captive, male Western lowland gorillas (Gorilla g. gorilla): Age- and social group-related differences. Am. J. Primatol. 56, 73–87 (2002).CAS 
    PubMed 

    Google Scholar 
    Stoinski, T., Lukas, K., Kuhar, C. & Maple, T. Factors influencing the formation and maintenance of all-male gorilla groups in captivity. Zoo Biol. 23, 189–203 (2004).
    Google Scholar 
    Olsson, I. & Westlund, K. More than numbers matter: The effect of social factors on behaviour and welfare of laboratory rodents and non-human primates. Appl. Anim. Behav. Sci. 103, 229–254 (2007).
    Google Scholar 
    Martin, J. E. Early life experiences: Activity levels and abnormal behaviours in resocialised chimpanzees. Anim Welf. 11(4), 419–436 (2002).CAS 

    Google Scholar 
    Birkett, L. P. & Newton-Fisher, N. E. How abnormal is the behaviour of captive, zoo-living chimpanzees?. PLoS ONE 6(6), e20101 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ballen, C., Shine, R. & Olsson, M. Effects of early social isolation on the behaviour and performance of juvenile lizards Chamaeleo calyptratus. Anim. Behav. 88, 1–6 (2014).
    Google Scholar 
    Coe, C., Mendoza, S., Smotherman, W. & Levine, S. Mother-infant attachment in the squirrel monkey: Adrenal response to separation. Behav. Biol. 22, 256–263 (1978).CAS 
    PubMed 

    Google Scholar 
    Mendoza, S., Smotherman, W., Miner, M., Kaplan, J. & Levine, S. Pituitary-adrenal response to separation in mother and infant squirrel monkeys. Dev. Psychobiol. 11, 169–175 (1978).CAS 
    PubMed 

    Google Scholar 
    Gilbert, M. & Baker, K. Social buffering in adult male rhesus macaques (Macaca mulatta): Effects of stressful events in single vs. pair housing. J. Med. Primatol. 40, 71–78 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Schapiro, S. Effects of social manipulations and environmental enrichment on behavior and cell-mediated immune responses in rhesus macaques. Pharmacol. Biochem. Behav. 73, 271–278 (2002).CAS 
    PubMed 

    Google Scholar 
    Chen, W. et al. Effects of social isolation and re-socialization on cognition and ADAR1 (p110) expression in mice. PeerJ 4, e2306 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Glatston, A., Geilvoet-Soeteman, E., Hora-Pecek, E. & Van Hooff, J. The influence of the zoo environment on social behavior of groups of cotton-topped tamarins Saguinus oedipus oedipus. Zoo Biol. 3, 241–253 (1984).
    Google Scholar 
    Mitchell, G. et al. Effects of visitors and cage changes on the behaviors of mangabeys. Zoo Biol. 10, 417–423 (1991).
    Google Scholar 
    Geissmann, T. & Orgeldinger, M. The relationship between duet songs and pair bonds in siamangs Hylobates syndactylus. Anim. Behav. 60, 805–809 (2000).CAS 
    PubMed 

    Google Scholar 
    Palombit, R. Pair bonds in monogamous apes: A comparison of the siamang hylobates syndactylus and the white-handed gibbon hylobates lar. Behaviour 133, 321–356 (1996).
    Google Scholar 
    Rutberg, A. The evolution of monogamy in primates. J. Theor. Biol. 104, 93–112 (1983).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Giorgi, A., Montebovi, G., Vitale, A. & Alleva, E. A behavioural case study of early social isolation of a subadult white-handed gibbon (Hylobates lar). Folia Primatol. 89, 287–294 (2018).
    Google Scholar 
    Skynner, L. A., Amory, J. R. & Hosey, G. The effect of visitors on the self-injurious behaviour of a male pileated gibbon (Hylobates pileatus). Zool. Garten 74(1), 38–41 (2004).
    Google Scholar 
    Smith, K. & Kuhar, C. Siamangs (Hylobates syndactylus) and white-cheeked gibbons (Hylobates leucogenys) show few behavioral differences related to zoo attendance. J. Appl. Anim. Welfare Sci. 13, 154–163 (2010).CAS 

    Google Scholar 
    Lukas, K. E. et al. Longitudinal study of delayed reproductive success in a pair of white-cheeked gibbons (Hylobates leucogenys). Zoo Biol. 21, 413–434 (2002).
    Google Scholar 
    Cooke, C. & Schillaci, M. Behavioral responses to the zoo environment by white handed gibbons. Appl. Anim. Behav. Sci. 106, 125–133 (2007).
    Google Scholar 
    Mootnick, A. & Baker, E. Masturbation in captiveHylobates (gibbons). Zoo Biol. 13, 345–353 (1994).
    Google Scholar 
    Geissmann, T. Reassessment of age of sexual maturity in gibbons (hylobates spp.). American Journal of Primatology 23, 11–22 (1991).Altmann, J. Observational study of behavior: Sampling methods. Behaviour 49(3–4), 227–266 (1974).CAS 
    PubMed 

    Google Scholar 
    Pomerantz, O. & Terkel, J. Effects of positive reinforcement training techniques on the psychological welfare of zoo-housed chimpanzees (Pan troglodytes). Am. J. Primatol. 71, 687–695 (2009).PubMed 

    Google Scholar 
    Orgeldinger, M. Protective and territorial behavior in captive siamangs (Hylobates syndactylus). Zoo Biol. 16, 309–325 (1997).
    Google Scholar 
    Fox, J. et al. Package ‘car’. Vienna: R Foundation for Statistical Computing, 16 https://cran.uni-muenster.de/web/packages/car/car.pdf (2012).Magnusson, A., Skaug, H., Nielsen, A., Berg, C., Kristensen, K., Maechler, M., van Bentham, K., Bolker, B., Brooks, M. & Brooks, M. M. Package ‘glmmtmb’. R Package Version 0.2. 0 (2017).Hartig, F., & Hartig, M. F. Package ‘DHARMa’. Vienna, Austria: R Development Core Team (2017).Troisi, A. Displacement activities as a behavioral measure of stress in nonhuman primates and human subjects. Stress 5, 47–54 (2002).PubMed 

    Google Scholar 
    Baker, K. & Aureli, F. Behavioural indicators of anxiety: An empirical test in chimpanzees. Behaviour 134, 1031–1050 (1997).
    Google Scholar 
    Vick, S. J. & Paukner, A. Variation and context of yawns in captive chimpanzees (Pan troglodytes). Am. J. Primatol. Off. J. Am. Soc. Primatol. 72(3), 262–269 (2010).
    Google Scholar 
    Norscia, I. & Palagi, E. When play is a family business: Adult play, hierarchy, and possible stress reduction in common marmosets. Primates 52, 101–104 (2010).PubMed 

    Google Scholar 
    Held, S. & Špinka, M. Animal play and animal welfare. Anim. Behav. 81, 891–899 (2011).
    Google Scholar 
    Davey, G. Visitor behavior in zoos: A review. Anthrozoös 19, 143–157 (2006).
    Google Scholar 
    Nimon, A. & Dalziel, F. Cross-species interaction and communication: a study method applied to captive siamang (Hylobates syndactylus) and long-billed corella (Cacatua tenuirostris) contacts with humans. Appl. Anim. Behav. Sci. 33, 261–272 (1992).
    Google Scholar 
    Suomi, S. Early determinants of behaviour: Evidence from primate studies. Br. Med. Bull. 53, 170–184 (1997).CAS 
    PubMed 

    Google Scholar 
    Anderson, J. & Chamove, A. Self-aggression and social aggression in laboratory-reared macaques. J. Abnorm. Psychol. 89, 539–550 (1980).CAS 
    PubMed 

    Google Scholar 
    Mallapur, A. & Choudhury, B. Behavioral abnormalities in captive nonhuman primates. J. Appl. Anim. Welfare Sci. 6, 275–284 (2003).CAS 

    Google Scholar 
    Barlow, C., Caldwell, C. & Lee, P. Individual differences and response to visitors in zoo-housed diana monkeys (Cercopithecus diana diana). Cabdirect.org (2022). at https://www.cabdirect.org/cabdirect/abstract/20123180753.Gartner, M. & Weiss, A. Studying primate personality in zoos: Implications for the management, welfare and conservation of great apes. International Zoo Yearbook 52, 79–91 (2018).
    Google Scholar 
    Mitchell, G., Raymond, E., Ruppenthal, G. & Harlow, H. Long-term effects of total social isolation upon behavior of rhesus monkeys. Psychol. Rep. 18, 567–580 (1966).
    Google Scholar 
    Martín, O., Vinyoles, D., García-Galea, E. & Maté, C. Improving the welfare of a zoo-housed male drill (Mandrillus leucophaeus poensis) aggressive toward visitors. J. Appl. Anim. Welfare Sci. 19, 323–334 (2016).
    Google Scholar 
    Ross, S., Melber, L., Gillespie, K. & Lukas, K. The impact of a modern, naturalistic exhibit design on visitor behavior: A cross-facility comparison. Visitor Stud. 15, 3–15 (2012).
    Google Scholar 
    Quadros, S., Goulart, V., Passos, L., Vecci, M. & Young, R. Zoo visitor effect on mammal behaviour: Does noise matter?. Appl. Anim. Behav. Sci. 156, 78–84 (2014).
    Google Scholar 
    Bonnie, K., Ang, M. & Ross, S. Effects of crowd size on exhibit use by and behavior of chimpanzees (Pan troglodytes) and Western lowland gorillas (Gorilla gorilla) at a zoo. Appl. Anim. Behav. Sci. 178, 102–110 (2016).
    Google Scholar  More