More stories

  • in

    Health risk assessment and source apportionment of potentially toxic metal(loid)s in windowsill dust of a rapidly growing urban settlement, Iran

    PTM concentrationsIn Table 1, the descriptive statistics of PTMs in 50 dust samples from Qom city are described. The background values were used based on the concentrations of metals in the Upper Continental Crust. The mean concentration of As, Cd, Cu, Mo, Pb, Sb, and, Zn exceeded the background value. Also, Cd, Cu, Mo, Pb, Sb, and, Zn had a coefficient of variation (C.V.) greater than 50%, indicating a severe variability in PTMs concentrations in the atmospheric dust of the studied area2. Metals with C.V.  Pb  > Zn  > As  > Cd  > Cu  > Mo  > Cr  > Mn  > Ni = Co. Antimony (38.55) and Pb (35.13) had the highest average EF values, which means they were enriched very high in the windowsill dust. Also, they had a wide range of EF values in the 50 stations: from 4.0 to 227.0 for Sb, and from 8.3 to 140.8 for Pb which might reflect the existence of discrete multiple sources in the studied area. The degree of enrichment for Pb and Sb in the industrial sector was extreme and in the commercial sector was very high; also, the other sectors were significantly enriched. Zinc and As had a more homogenous enrichment in the area. In all the functional sectors, 95% and 84% of stations were significantly enriched by As and Zn, respectively. Copper, Cd, and Mo were moderately enriched in all functional sectors, but the greenspace sector had minimal enrichment by these elements. Some areas in the industrial sector had significant to very high enrichment of Cd. The EF value indicated Co, Cr, Mn, and Ni were minimally enriched in all the stations.Figure 2Box plot of the (a) enrichment factor (EF), and (b) geo accumulation index (Igeo) for the dust samples in the studied area.Full size imageThe highest average values of Igeo were obtained in the order of Pb  > Sb  > As  > Zn. PTMs included Co, Cr, Ni, Fe, and Mn were categorized as unpolluted and Cd, Cu, and Mo were in the category of unpolluted to moderately polluted. In the industrial zone, the windowsill dust was extremely polluted with Sb and Pb. The sequence of contamination intensity with Pb, Zn and Sb according to land use was: industrial  > commercial  > residential  > greenspace. The highest concentration of arsenic in the study area belongs to the industrial area.To evaluate the pollution level based on land use, PLI and mCd indices were utilized (Fig. 3). These cumulative indices showed that the dust in Qom city is considerably contaminated with PTMs. According to the PLI index, all the stations were categorized as polluted sites. The PLIzone values were in the order of industrial (3.77)  > commercial (2.05)  > residential (1.67)  > green space (1.38). This pattern was also repeated with the mCd index. The mCd for the industrial sector ranged from 6.98 (high contamination level) to 39.60 (ultra-high contamination level). In the commercial sector, fifty percent of dust samples were classified as having a high degree of contamination. All the greenspace stations were in the moderate pollution category. This shows the possible effect of tree density in diminishing the risk of dust pollution to the receptors.Figure 3Pollution level indexes (a) mCd and (b) PLI, based on four functional areas.Full size imageSpatial distribution of PTMsThe As, Cd, Cu, Sb, Pb, and Zn content in 100% of the dust samples exceeded the background value. Spatial distribution maps were generated for the hotspot PTMs (As, Sb, Pb, Cd, Cu, Mo and Zn) by applying the inverse distance weighted (IDW) interpolation method (ArcGIS 10.3). Figure 4 demonstrates that PTMs dispersions were slightly influenced by the prevailing wind direction (from the west), suggesting they came from the point- or area- sources. On the other hand, the K–S test showed that the overall distribution of PTMs was not normal in the studied region. This might signify the influence of industrial activities and the presence of multiple sources of dust.Figure 4Spatial distribution maps of seven PTMs in windowsill dusts of Qom, Iran. This map was constructed using ArcGIS version 10.3. (https://www.esri.com/en-us/arcgis/products/arcgisdesktop/overview).Full size imageThe highest pollution load of PTMs belonged to the industrial section. The level of pollution gradually decreased from Shokouhieh to Mahmoudabad industrial zones. The reason is related to more active industries, a closed environment, and more construction existing in Shokouhieh industrial town than in Mahmoudabad industrial town.There is a clear decreasing trend from the central part to southern (downtown area) and southwestern (suburb area) parts of the city. In fact, these parts are diffusely populated and the southwestern part is almost new with lots of barren lands. Copper, Mo, and Cd show high concentrations toward the central part of the city. Educational, cultural and commercial activities are mainly located in the central part of the city. Also, historical and religious districts in the city center are accompanied by a huge influx of tourists throughout the year. For this reason, the central part of the city has various public transportations such as bus stands and taxi stations, and is dominated by a high load of motorcycles.In the eastern part of the city, some hotspots can be observed (Fig. 4). This part includes an important transportation system (like highways and a complex interchange) where exhaust traffic emissions might be a probable source of As, Sb, Pb, and Zn. Unlike Pb and Zn, several peaks of As are scattered in the western part, suggesting an area source might exist in the region. It is noteworthy that the western area is densely populated with lots of residential buildings. Bisht et al. (2022)35 also observed hotspots of As in the residential area of Dehradun, India.PTM potential sourcesTo evaluate the relationship between PTMs in dust samples, the Spearman correlation and PCA were developed (Fig. 5) and more details are given in Table S7. Statistical analysis can help to identify the potential source of contamination in urban dust. The Spearman correlation was significant at p  residential ≈ greenspace. The five PTMs with the highest overall HI are ranked as follows: Pb  > As  > Cr  > Mn  > Sb (Fig. 7). The HI values in all the sections were lower than the permissible level (1.00), except for Pb. In the industrial section, Pb recorded the highest HI value for children (HI = 1.73) which exceeded the acceptable value. The HI values were 10 times higher for children than adults indicating they are more susceptible to PTMs in the dust.The dominant pathway for noncancerous risk was ingestion followed by dermal contact and inhalation. The trend is in line with previous research25,51,52. However, for Co and Mn, the descending order was different as follows ingestion  > inhalation  > dermal contact. The highest contribution of HQinh and HQderm to HI was measured for Co (34.0%) and Cd (29.0%), respectively.In this study, the carcinogenic risk from windowsill dust was estimated for the carcinogens including Cd, Co, Cr and Ni, Pb, and As through the possible routes (Fig. 8, Table S9). The contribution of PTMs to CR decreased in the order of Cr (3.24E−05)  > As (2.05E−05)  > Pb (2.52E−06)  > Co (6.91E−09)  > Ni (1.72E−09)  > Cd (2.58E−10). The average CR values for target PTMs through inhalation ranged from 7.9E−10 to 1.7E−07, which remained in the safety zone (CR  inhalation  > dermal (Fig. 8). While the contribution of Cr to carcinogenic risk was higher through inhalation than ingestion. The reports concluded that the primary exposure route of Cr is inhalation54. Considering the predominant forms of Cr in the environment, CrVI is more toxic than CrIII. Exposure to CrVI can cause immunological diseases, dental effects and carcinogenic effects (lung cancer, nose and nasal sinus cancer, suspected laryngeal and stomach cancers)54,55.The result of health risk from target PTMs in windowsills of Qom indicates significant chronic exposure to Pb can take place for children in the industrial zone. The ingestion route is the most probable pathway for children due to their hand–to–mouth behavior56. Lead can bio-accumulate in the body without any obvious symptoms of toxicity56. The total CR values for Pb, Cr and As in different land-use types were in the range of tolerable carcinogenic risk (1 × 10−4  More

  • in

    Record-breaking fires in the Brazilian Amazon associated with uncontrolled deforestation

    G.M., L.O.A., L.V.G. and L.E.O.C.A. thank the São Paulo Research Foundation (FAPESP) for funding (grants 2019/25701-8, 2020/08916-8, 2016/02018-2 and 2020/15230-5, respectively). L.O.A. and L.E.O.C.A. thank the National Council for Scientific and Technological Development (CNPq) for funding (grants 314473/2020-3 and 314416/2020-0, respectively). G.d.O. thanks the University of South Alabama Faculty Development Council Grant for funding (grant 279600-2022). More

  • in

    Author Correction: Climate change reshuffles northern species within their niches

    These authors contributed equally: Laura H. Antão, Benjamin Weigel.These authors jointly supervised this work: Tomas Roslin, Anna-Liisa Laine.Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, FinlandLaura H. Antão, Benjamin Weigel, Giovanni Strona, Maria Hällfors, Elina Kaarlejärvi, Otso Ovaskainen, Marjo Saastamoinen, Jarno Vanhatalo, Tomas Roslin & Anna-Liisa LaineDepartment of Biological Sciences, University of South Carolina, Columbia, SC, USATad DallasDepartment of Biology, Lund University, Lund, SwedenØystein H. OpedalFinnish Environment Institute (SYKE), Helsinki, FinlandJanne Heliölä, Mikko Kuussaari, Juha Pöyry & Kristiina VuorioNatural Resources Institute Finland (Luke), Helsinki, FinlandHeikki Henttonen, Otso Huitu, Andreas Lindén, Päivi Merilä, Maija Salemaa & Tiina TonteriSection of Ecology, Department of Biology, University of Turku, Turku, FinlandErkki KorpimäkiFinnish Museum of Natural History, University of Helsinki, Helsinki, FinlandAleksi LehikoinenKainuu Centre for Economic Development, Transport and the Environment, Kajaani, FinlandReima LeinonenUniversity of Helsinki, Helsinki, FinlandHannu PietiäinenDepartment of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FinlandOtso OvaskainenCentre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, NorwayOtso OvaskainenHelsinki Institute of Life Science, University of Helsinki, Helsinki, FinlandMarjo SaastamoinenDepartment of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, FinlandJarno VanhataloSpatial Foodweb Ecology Group, Department of Agricultural Sciences, University of Helsinki, Helsinki, FinlandTomas RoslinSpatial Foodweb Ecology Group, Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, SwedenTomas RoslinDepartment of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, SwitzerlandAnna-Liisa Laine More

  • in

    As elephant poaching falls in Africa, instate more ivory bans

    The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) last month released its annual report on elephant poaching. It reveals a downward trend across African range states, based on data from its Monitoring the Illegal Killing of Elephants programme. The decline correlates with reduced ivory trading over the period, particularly in the Chinese market.
    Competing Interests
    The author declares no competing interests. More

  • in

    Influence of tillage systems and sowing dates on the incidence of leaf spot disease in Telfairia occidentalis caused by Phoma sorghina in Cameroon

    ResultsSoil physiochemical propertiesThe preliminary status of the soil analyzed before the commencement of the field preparatory activities revealed that the soil was subtlety fertile with regard to the physical and chemical properties (Table 1).Table 1 Physicochemical properties of the soil.Full size tableAssessment of disease incidence at sowing dates during each year in the trial studyIn the trial study, very low and statistically significant (p  More

  • in

    Intensive grassland management disrupts below-ground multi-trophic resource transfer in response to drought

    Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021)Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Seneviratne, S. I. et al. Weather and climate extreme events in a changing climate. In Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021).Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain 1, 441–446 (2018).
    Google Scholar 
    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Bardgett, R. D. & Cook, R. Functional aspects of soil animal diversity in agricultural grasslands. Appl. Soil Ecol. 10, 263–276 (1998).
    Google Scholar 
    Postma-Blaauw, M. B., de Goede, R. G. M., Bloem, J., Faber, J. H. & Brussaard, L. Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91, 460–473 (2010).PubMed 

    Google Scholar 
    Vályi, K., Rillig, M. C. & Hempel, S. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants. N. Phytologist 205, 1577–1586 (2015).
    Google Scholar 
    de Vries, F. T., Hoffland, E., van Eekeren, N., Brussaard, L. & Bloem, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. Biochem. 38, 2092–2103 (2006).
    Google Scholar 
    de Vries, F. T. et al. Extensive Management Promotes Plant and Microbial Nitrogen Retention in Temperate Grassland. PLoS ONE 7, e51201 (2012).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Vries, F. T., van Groenigen, J. W., Hoffland, E. & Bloem, J. Nitrogen losses from two grassland soils with different fungal biomass. Soil Biol. Biochem. 43, 997–1005 (2011).
    Google Scholar 
    Malik, A. A. et al. Soil fungal: bacterial ratios are linked to altered carbon cycling. Front. Microbiol. 7, 1247 (2016).Bardgett, R. D., Streeter, T. C. & Bol, R. Soil Microbes Compete Effectively with Plants for Organic-Nitrogen Inputs to Temperate Grasslands. Ecology 84, 1277–1287 (2003).
    Google Scholar 
    Bardgett, R. D. & McAlister, E. The measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fertil. Soils 29, 282–290 (1999).
    Google Scholar 
    Gordon, H., Haygarth, P. M. & Bardgett, R. D. Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biol. Biochem. 40, 302–311 (2008).CAS 

    Google Scholar 
    Duffy, J. E. et al. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol. Lett. 10, 522–538 (2007).PubMed 

    Google Scholar 
    Wang, S. & Brose, U. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecol. Lett. 21, 9–20 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ruf, A., Kuzyakov, Y. & Lopatovskaya, O. Carbon fluxes in soil food webs of increasing complexity revealed by C-14 labelling and C-13 natural abundance. Soil Biol. Biochem. 38, 2390–2400 (2006).CAS 

    Google Scholar 
    Pollierer, M. M., Langel, R., Koerner, C., Maraun, M. & Scheu, S. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol. Lett. 10, 729–736 (2007).PubMed 

    Google Scholar 
    Eissfeller, V. et al. Incorporation of plant carbon and microbial nitrogen into the rhizosphere food web of beech and ash. Soil Biol. Biochem. 62, 76–81 (2013).CAS 

    Google Scholar 
    Gilbert, K. J. et al. Exploring carbon flow through the root channel in a temperate forest soil food web. Soil Biol. Biochem. 76, 45–52 (2014).CAS 

    Google Scholar 
    Goncharov, A. A., Tsurikov, S. M., Potapov, A. M. & Tiunov, A. V. Short-term incorporation of freshly fixed plant carbon into the soil animal food web: field study in a spruce forest. Ecol. Res. 31, 923–933 (2016).CAS 

    Google Scholar 
    Chomel, M. et al. Drought decreases incorporation of recent plant photosynthate into soil food webs regardless of their trophic complexity. Glob. Change Biol. 25, 3549–3561 (2019).ADS 

    Google Scholar 
    Moore, J. C., de Ruiter, P. C. & Hunt, H. W. Influence of productivity on the stability of real and model ecosystems. Science 261, 906–908 (1993).ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, Patterns of Interaction Strengths, and Stability in Real Ecosystems. Science 269, 1257–1260 (1995).ADS 
    PubMed 

    Google Scholar 
    Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rooney, N. & McCann, K. S. Integrating food web diversity, structure and stability. Trends Ecol. Evolution 27, 40–46 (2012).
    Google Scholar 
    de Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change 2, 276 (2012).ADS 

    Google Scholar 
    Ingrisch, J. et al. Land Use Alters the Drought Responses of Productivity and CO2 Fluxes in Mountain Grassland. Ecosystems 21, 689–703 (2018).PubMed 

    Google Scholar 
    Karlowsky, S. et al. Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant‐microbial interactions. J. Ecol. 106, 1230–1243 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Vilonen, L., Ross, M. & Smith, M. D. What happens after drought ends: synthesizing terms and definitions. N. Phytologist 235, 420–431 (2022).
    Google Scholar 
    Ingrisch, J., Karlowsky, S., Hasibeder, R., Gleixner, G. & Bahn, M. Drought and recovery effects on belowground respiration dynamics and the partitioning of recent carbon in managed and abandoned grassland. Glob. Change Biol. 26, 4366–4378 (2020).ADS 

    Google Scholar 
    Ward, S. E. et al. Legacy effects of grassland management on soil carbon to depth. Glob. Change Biol. 22, 2929–2938 (2016).ADS 

    Google Scholar 
    Henry, C. et al. A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nat. Commun. 10, 3398 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baptist, F. et al. 13C and 15N allocations of two alpine species from early and late snowmelt locations reflect their different growth strategies. J. Exp. Bot. 60, 2725–2735 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, A. et al. Root functional traits explain root exudation rate and composition across a range of grassland species. J. Ecol. 110, 21–33 (2022).
    Google Scholar 
    Deyn, G. B. D., Quirk, H., Oakley, S., Ostle, N. J. & Bartgett, R. D. Rapid transfer of photosynthetic carbon through the plant-soil system in differently managed species-rich grasslands. Biogeosciences 8, 1131–1139 (2011).Pausch, J. et al. Small but active – pool size does not matter for carbon incorporation in below‐ground food webs.Functional Ecol. 30, 479–489 (2016).
    Google Scholar 
    Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Z. et al. The flux of root-derived carbon via fungi and bacteria into soil microarthropods (Collembola) differs markedly between cropping systems. Soil Biol. Biochem. 160, 108336 (2021).CAS 

    Google Scholar 
    Joergensen, R. Ergosterol and microbial biomass in the rhizosphere of grassland soils. Soil Biol. Biogeochemistry 32, 647–652 (2000).CAS 

    Google Scholar 
    Staddon, P. L., Ramsey, C. B., Ostle, N., Ineson, P. & Fitter, A. H. Rapid Turnover of Hyphae of Mycorrhizal Fungi Determined by AMS Microanalysis of 14C. Science 300, 1138–1140 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Johnson, D., Leake, J. R., Ostle, N., Ineson, P. & Read, D. J. In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. N. Phytologist 153, 327–334 (2002).CAS 

    Google Scholar 
    Johnson, D., Leake, J. R. & Read, D. J. Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of C-14. Soil Biol. Biochem. 34, 1521–1524 (2002).CAS 

    Google Scholar 
    Schimel, J., Balser, T. C. & Wallenstein, M. Microbial Stress-Response Physiology and Its Implications for Ecosystem Function. Ecology 88, 1386–1394 (2007).PubMed 

    Google Scholar 
    Strickland, M. S. & Rousk, J. Considering fungal:bacterial dominance in soils – Methods, controls, and ecosystem implications. Soil Biol. Biochem. 42, 1385–1395 (2010).CAS 

    Google Scholar 
    Manzoni, S., Schimel, J. P. & Porporato, A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93, 930–938 (2012).PubMed 

    Google Scholar 
    Holden, S. R. & Treseder, K. K. A meta-analysis of soil microbial biomass responses to forest disturbances. Front Microbiol 4, 163 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Guhr, A., Borken, W., Spohn, M. & Matzner, E. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. PNAS 112, 14647–14651 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allen, M. F. Mycorrhizal Fungi: Highways for Water and Nutrients in Arid Soils. Vadose Zone J. 6, 291–297 (2007).
    Google Scholar 
    Kakouridis, A. et al. Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. bioRxiv https://doi.org/10.1101/2020.09.21.305409 (2020).Leake, J. R., Ostle, N. J., Rangel-Castro, J. I. & Johnson, D. Carbon fluxes from plants through soil organisms determined by field 13CO2 pulse-labelling in an upland grassland. Appl. Soil Ecol. 33, 152–175 (2006).
    Google Scholar 
    Maaß, S., Migliorini, M., Rillig, M. C. & Caruso, T. Disturbance, neutral theory, and patterns of beta diversity in soil communities. Ecol. Evolution 4, 4766–4774 (2014).
    Google Scholar 
    Barnard, R. L., Osborne, C. A. & Firestone, M. K. Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate. ISME J. 9, 946–957 (2015).CAS 
    PubMed 

    Google Scholar 
    Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol 9, 119–130 (2011).CAS 
    PubMed 

    Google Scholar 
    Meisner, A., Bååth, E. & Rousk, J. Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biol. Biochem. 66, 188–192 (2013).CAS 

    Google Scholar 
    Meisner, A., Rousk, J. & Bååth, E. Prolonged drought changes the bacterial growth response to rewetting. Soil Biol. Biochem. 88, 314–322 (2015).CAS 

    Google Scholar 
    Blazewicz, S. J., Schwartz, E. & Firestone, M. K. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology 95, 1162–1172 (2014).PubMed 

    Google Scholar 
    Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos. Trans. R. Soc. B: Biol. Sci. 368, 20130122 (2013).
    Google Scholar 
    Baggs, E. M., Rees, R. M., Smith, K. A. & Vinten, A. J. A. Nitrous oxide emission from soils after incorporating crop residues. Soil Use & Manag. 16, 82–87 (2000).
    Google Scholar 
    Le Roux, X., Bardy, M., Loiseau, P. & Louault, F. Stimulation of soil nitrification and denitrification by grazing in grasslands: do changes in plant species composition matter? Oecologia 137, 417–425 (2003).ADS 
    PubMed 

    Google Scholar 
    Morley, N. & Baggs, E. M. Carbon and oxygen controls on N2O and N2 production during nitrate reduction. Soil Biol. Biochem. 42, 1864–1871 (2010).CAS 

    Google Scholar 
    Davidson, E. A. & Kanter, D. Inventories and scenarios of nitrous oxide emissions. Environ. Res. Lett. 9, 105012 (2014).ADS 

    Google Scholar 
    Bateman, E. J. & Baggs, E. M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 41, 379–388 (2005).CAS 

    Google Scholar 
    Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knapp, A. K. et al. Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. Glob. Change Biol. 23, 1774–1782 (2017).ADS 

    Google Scholar 
    Cole, A. J. et al. Grassland biodiversity restoration increases resistance of carbon fluxes to drought. J. Appl. Ecol. 56, 1806–1816 (2019).CAS 

    Google Scholar 
    Fuchslueger, L., Bahn, M., Fritz, K., Hasibeder, R. & Richter, A. Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. N. Phytologist 201, 916–927 (2014).CAS 

    Google Scholar 
    Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 61, 127–130 (2012).
    Google Scholar 
    Frostegård, Å., Bååth, E. & Tunlio, A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol. Biochem. 25, 723–730 (1993).
    Google Scholar 
    Olsson, P. A., Thingstrup, I., Jakobsen, I. & Bååth, E. Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol. Biochem. 31, 1879–1887 (1999).CAS 

    Google Scholar 
    Hopkin, S. P. A key to the Collembola (springtails) of Britain and Ireland (FSC, 2007).Krantz, G. W. & Walter, D. E. A manual of acarology (Texas Tech Universty Press, 2009).Caruso, T. & Migliorini, M. Euclidean geometry explains why lengths allow precise body mass estimates in terrestrial invertebrates: The case of oribatid mites. J. Theor. Biol. 256, 436–440 (2009).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Ganihar, S. R. Biomass estimates of terrestrial arthropods based on body length. J. Biosci. 22, 219–224 (1997).
    Google Scholar 
    Johnson, D., Vachon, J., Britton, A. J. & Helliwell, R. C. Drought alters carbon fluxes in alpine snowbed ecosystems through contrasting impacts on graminoids and forbs. N. Phytologist 190, 740–749 (2011).CAS 

    Google Scholar 
    Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).ADS 
    PubMed 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    Anderson, M. J. Distance-Based Tests for Homogeneity of Multivariate Dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed effects models and extensions in ecology with R. (Springer, 2009). More

  • in

    Asynchronous responses of microbial CAZymes genes and the net CO2 exchange in alpine peatland following 5 years of continuous extreme drought events

    The effects of extreme drought on soil biochemical propertiesAs shown in Fig. 1A, the range of SOC during the early, midterm and late extreme drought experiments, were 73.53–251.44 g kg−1, 54.75–256.16 g kg−1, and 66.37–282.16 g kg−1, respectively. Concomitantly, DOC was 171.85–323.74 mg kg−1, 158.15 – 504.62 mg kg−1, and 166.63–418.43 mg kg−1, MBC was 247.80 – 461.69 mg kg−1, 257.90–450.98 mg kg−1, and 264.10–458.15 mg kg−1, respectively (Fig. 1B, C). The variation ranges of soil TN were 3.50–16.60 g kg−1, 4.70–34.5 g kg−1, and 6.70–32.50 g kg−1, respectively (Fig. 1D). Similarly, the variation ranges of NH4+ were 5.96–12.03 g kg−1, 5.39–12.59 g kg−1, and 5.74–13.03 g kg−1, NO3− were 2.27–8.79 mg kg−1, 5.07–9.62 mg kg−1, and 5.09–9.52 mg kg−1, respectively (Fig. 1E, F). The changes of SOC and NH4+ with soil depth were significantly different in different extreme drought periods and decreased significantly with the increase of soil depth (Table 1, P  More

  • in

    High-yield dairy cattle breeds improve farmer incomes, curtail greenhouse gas emissions and reduce dairy import dependency in Tanzania

    Meat, Milk and More: Policy Innovations to Shepherd Inclusive and Sustainable Livestock Systems in Africa (Malabo Montpellier Panel, 2020).Value of Agricultural Production (FAO, accessed August 25, 2022); https://www.fao.org/faostat/en/#data/QVJayne, T. & Sanchez, P. A. Agricultural productivity must improve in sub-Saharan Africa. Science 372, 1045–1047 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dangal, S. R. S. et al. Methane emission from global livestock sector during 1890–2014: magnitude, trends and spatiotemporal patterns. Glob. Change Biol. 23, 4147–4161 (2017).Article 
    ADS 

    Google Scholar 
    Mottet, A. et al. Climate change mitigation and productivity gains in livestock supply chains: insights from regional case studies. Reg. Env. Change 17, 129–141 (2016).Article 

    Google Scholar 
    Valin, H. et al. Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security? Environ. Res. Lett. 8, 035019 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    González-Quintero, R. et al. Yield gap analysis to identify attainable milk and meat productivities and the potential for greenhouse gas emissions mitigation in cattle systems of Colombia. Agric. Syst. 195, 103303 (2022).Article 

    Google Scholar 
    Crops and Livestock Products (FAO, accessed August 17,2022); https://www.fao.org/faostat/en/#data/QCLLedo, J. et al. Persistent challenges in safety and hygiene control practices in emerging dairy chains: the case of Tanzania. Food Control 105, 164–173 (2019).Article 

    Google Scholar 
    Häsler, B. et al. Integrated food safety and nutrition assessments in the dairy cattle value chain in Tanzania. Glob. Food Sec. 18, 102–113 (2018).Article 

    Google Scholar 
    Supply Utilization Accounts (FAO, accessed August 26, 2022); https://www.fao.org/faostat/en/#data/SCLMichael, S. et al. Tanzania Livestock Master Plan (International Livestock Research Institute, 2018).Tanzania Livestock Sector Analysis (2016/2017–2030/2031) (United Republic of Tanzania Ministry of Livestock and Fisheries, 2017); https://www.mifugouvuvi.go.tz/uploads/projects/1553602287-LIVESTOCK%20SECTOR%20ANALYSIS.pdfNicholson, C. et al. Assessment of Investment Priorities for Tanzania’s Dairy Sector: Report on Activities and Accomplishments (International Livestock Research Institute, 2021).Chagunda, M. G. C., Romer, D. A. M. & Roberts, D. J. Effect of genotype and feeding regime on enteric methane, non-milk nitrogen and performance of dairy cows during the winter feeding period. Livest. Sci. 122, 323–332 (2009).Article 

    Google Scholar 
    Notenbaert, A. et al. Towards environmentally sound intensification pathways for dairy development in the Tanga region of Tanzania. Reg. Environ. Change 20, 138 (2020).Yesuf, G. A. et al. Embedding stakeholders’ priorities into the low-emission development of the East African dairy sector. Env. Res. Lett. 16, 064032 (2021).Article 
    CAS 

    Google Scholar 
    GLS (Greening Livestock Survey) (International Livestock Research Institute, 2019); https://data.ilri.org/portal/dataset/greeninglivestockIntended Nationally Determined Contributions (United Republic of Tanzania, 2021); https://unfccc.int/sites/default/files/NDC/2022-06/TANZANIA_NDC_SUBMISSION_30%20JULY%202021.pdfNdung’u, P. W. et al. Farm-level emission intensities of smallholder cattle (Bos indicus; B. indicus–B. taurus crosses) production systems in highlands and semi-arid regions. Animal 16, 100445 (2022).Article 
    PubMed 

    Google Scholar 
    Goopy, J. P. et al. Severe below-maintenance feed intake increases methane yield from enteric fermentation in cattle. Br. J. Nutr. 123, 1239–1246 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goopy, J. P. et al. A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa—results for Nyando, Western Kenya. Agric. Syst. 161, 72–80 (2018).Article 

    Google Scholar 
    Supporting Low Emissions Development in the Tanzanian Dairy Cattle Sector—Reducing Enteric Methane for Food Security and Livelihoods (FAO, 2019).Gerssen-Gondelach, S. J. et al. Intensification pathways for beef and dairy cattle production systems: impacts on GHG emissions, land occupation and land use change. Agric. Ecosyst. Environ. 240, 135–147 (2017).Article 

    Google Scholar 
    Havlik, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 6, 452–461 (2016).Article 
    ADS 

    Google Scholar 
    Dizyee, K., Baker, D. & Omore, A. Upgrading the smallholder dairy value chain: a system dynamics ex-ante impact assessment in Tanzania’s Kilosa district. J. Dairy Res. 86, 440–449 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Simões, A. R. P., Nicholson, C. F., Novakovicc, A. M. & Protil, R. M. Dynamic impacts of farm-level technology adoption on the Brazilian dairy supply chain. Int. Food Agribus. Manag. Rev. 23, 71–84 (2020).Article 

    Google Scholar 
    Rahimi, J. et al. Heat stress will detrimentally impact future livestock production in East Africa. Nat. Food. 2, 88–96 (2021).Article 

    Google Scholar 
    Mbululo, Y. & Nyihirani, F. Climate characteristics over southern highlands Tanzania. Atmos. Clim. Sci. 2, 454–463 (2012).
    Google Scholar 
    Kihoro, E. M., Schoneveld, G. C. & Crane, T. A. Pathways toward inclusive low-emission dairy development in Tanzania: producer heterogeneity and implications for intervention design. Agric. Syst. 190, 103073 (2021).Mruttu, H. et al. Animal Genetics Strategy and Vision for Tanzania (Tanzania Ministry of Agriculture, Livestock and Fisheries and ILRI, 2016).Agricultural Sample Survey 2018/19 Report on Livestock and Livestock Characteristics (Private Peasant Holdings) (Central Statistical Agency, 2019).2019/20 National Sample Census of Agriculture Main Report (Tanzania National Bureau of Statistics, 2022).Robinson, T. P. et al. Global Livestock Production Systems (FAO, 2011).Herrero, M. et al. Biomass use, production, feed efficiencies and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baseline Study of the Tanzania Dairy Value Chain (United Republic of Tanzania Ministry of Agriculture, Livestock and Fisheries, 2016).Mbwambo, N., Nandonde, S., Ndomba, C. & Desta, S. Assessment of Animal Feed Resources in Tanzania (Tanzania Ministry of Agriculture, Livestock and Fisheries and ILRI, 2016).Hartung, C., Lerer, A., Anokwa, Y., Tseng, C., Brunette, W., & Borriello, G. Open data kit: tools to build information services for developing regions. Proc. 4th ACM/IEEE International Conference on Information and Communication Technologies and Development (Association for Computing Machinery, 2010).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).https://www.r-project.orgRufino, M. C. et al. Lifetime productivity of dairy cows in smallholder farming systems of the central highlands of Kenya. Animal 3, 1044–1056 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hawkins, J. et al. Feeding efficiency gains can increase the greenhouse gas mitigation potential of the Tanzanian dairy sector. Sci. Rep. 11, 4190 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Python Software Foundation (Python Software Foundation, 2019); https://www.python.org/psf/Kashoma, I. P. B. et al. Predicting body weight of Tanzania shorthorn zebu cattle using heart girth measurements. Livest. Res. Rural. Dev. 23, Table 1 (2011).Galukande, E. B., Mahadevan, P. & Black, J. G. Milk production in East African zebu cattle. Anim. Sci. 4, 329–336 (1962).Article 

    Google Scholar 
    Gillah, K. A., Kifaro, G. C. & Madsen, J. Effects of pre partum supplementation on milk yield, reproduction and milk quality of crossbred dairy cows raised in a peri urban farm of Morogoro town Tanzania. Livest. Res. Rural. Dev. 26 (2014).Njau, F. B. C., Lwelamira, J. & Hyandye, C. Ruminant livestock production and quality of pastures in the communal grazing land of semi-arid central Tanzania. Livest. Res. Rural. Dev. 8, Table 4 (2013).Mwambene, P. L. et al. Selecting indigenous cattle populations for improving dairy production in the Southern Highlands and Eastern Tanzania. Livest. Res. Rural. Dev. 26 (2014).Rege, J. E. O. et al. Cattle of Kenya: Uses, Performance, Farmer Preferences, Measures of Genetic Diversity and Options for Improved Use (International Livestock Research Institute, 2001).Beffa, L. M. Genotype × Environment Interaction in Afrikaner Cattle. PhD thesis, Univ. of the Free State (2005).Meaker, H. J., Coetsee, T. P. N. & Lishman, A. W. The effects of age at 1st calving on the productive and reproductive-performance of beef-cows. S. Afr. J. Anim. Sci. 10, 105–113 (1980).
    Google Scholar 
    Chenyambuga, S. W. & Mseleko, K. F. Reproductive and lactation performances of Ayrshire and Boran crossbred cattle kept in smallholder farms in Mufindi district, Tanzania. Livest. Res. Rural. Dev. 21, 100 (2009).
    Google Scholar 
    Ojango, J. M. K. et al. Dairy production systems and the adoption of genetic and breeding technologies in Tanzania, Kenya, India and Nicaragua. Anim. Genet. Resour. 59, 81–95 (2016).Article 

    Google Scholar 
    Feedipedia—Animal Feed Resources Information System (FAO, accessed 2021); https://www.feedipedia.org/Lukuyu, B. et al. (eds) Feeding Dairy Cattle in East Africa (East Africa Dairy Development Project, 2012).Rubanza, C. D. K. et al. Biomass production and nutritive potential of conserved forages in silvopastoral traditional fodder banks (Ngitiri) of Meatu District of Tanzania. Asian-Aust. J. Anim. Sci. 19, 978–983 (2006).Article 

    Google Scholar 
    Food Balances (2010-) (FAO, accessed September 29, 2021); http://www.fao.org/faostat/en/#data/FBSCrop Data for the United Republic of Tanzania (FAO, accessed September 22, 2021); http://www.fao.org/faost at/en/#data/QCGilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data. 5, 180227 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2014/15 Annual Agricultural Sample Survey Report (The United Republic of Tanzania, 2016).Basic Data for Livestock and Fisheries (The United Republic of Tanzania Ministry of Livestock and Fisheries, 2013).IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 Agriculture, Forestry and Other Land Use (IPCC, 2006).2019 Refinement to the IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2019).Fertilizers by Nutrient (FAO, accessed July 6, 2022); https://www.fao.org/faostat/en/#data/RFNHutton, M. O. et al. Toward a nitrogen footprint calculator for Tanzania. Env. Res. Lett. 12, 034016 (2017).Article 

    Google Scholar 
    Tanzania Fertilizer Assessment (International Fertilizer Development Center, 2012); http://tanzania.countrystat.org/fileadmin/user_upload/countrystat_fenix/congo/docs/Tanzania%20Fertilizer%20Assessment%202012.pdfA Common Carbon Footprint Approach for the Dairy Sector: The IDF Guide to Standard Life Cycle Methodology (International Dairy Federation, 2015); https://www.fil-idf.org/wp-content/uploads/2016/09/Bulletin479-2015_A-common-carbon-footprint-approach-for-the-dairy-sector.CAT.pdfBruzzone, L., Bovolo, F. & Arino, O. European Space Agency land cover climate change initiative. ESA LC CCI data: high resolution land cover data via Centre for Environmental Data Analysis; https://climate.esa.int/en/projects/high-resolution-land-cover/ (2021)Characteristics of Markets for Animal Feeds Raw Materials in the East African Community: Focus on Maize Bran and Sunflower Seed Cake (Kilimo Trust, 2017).Ngunga, D. & Mwendia, S. Forage Seed System in Tanzania: A Review Report (Alliance of Biodiversity and CIAT, 2020).Nkombe, B.M. Investigation of the Potential for Forage Species to Enhance the Sustainability of Degraded Rangeland and Cropland Soils. MSc thesis, Ohio State Univ. (2016).Producer Prices (FAO, accessed 2021); http://www.fao.org/faostat/en/#data/PP More