More stories

  • in

    Site-specific temporal variation of population dynamics in subalpine endemic plant species

    Theurillat, J.-P. & Guisan, A. Potential impact of climate change on vegetation in the European Alps: A review. Clim. Change 50, 77–109 (2001).CAS 

    Google Scholar 
    Diaz, H. F. & Eischeid, J. K. Disappearing “alpine tundra” Köppen climatic type in the western United States. Geophys. Res. Lett. 34, L18707 (2007).ADS 

    Google Scholar 
    Dirnböck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Change Biol. 17, 990–996 (2011).ADS 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pauli, H., Gottfried, M., Dirnböck, T., Dullinger, S. & Grabherr, G. Assessing the long-term dynamics of endemic plants at summit habitats. In Alpine Biodiversity in Europe (eds. Nagy, L., Grabherr, G., Körner, C., & Thompson, D. B.) 195–207 (Springer, 2003).Cogoni, D., Sulis, E., Bacchetta, G. & Fenu, G. The unpredictable fate of the single population of a threatened narrow endemic Mediterranean plant. Biodivers. Conserv. 28, 1799–1813 (2019).
    Google Scholar 
    Cursach, J., Besnard, A., Rita, J. & Fréville, H. Demographic variation and conservation of the narrow endemic plant Ranunculus weyleri. Acta Oecol. 53, 102–109 (2013).ADS 

    Google Scholar 
    Dibner, R. R., DeMarche, M. L., Louthan, A. M. & Doak, D. F. Multiple mechanisms confer stability to isolated populations of a rare endemic plant. Ecol. Monogr. 89, e01360 (2019).
    Google Scholar 
    Boyce, M. S., Haridas, C. V., Lee, C. T., NCEAS Stochastic Demography Working Group. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).PubMed 

    Google Scholar 
    Buckley, Y. M. et al. Causes and consequences of variation in plant population growth rate: A synthesis of matrix population models in a phylogenetic context. Ecol. Lett. 13, 1182–1197 (2010).PubMed 

    Google Scholar 
    Abbott, R. E., Doak, D. F. & DeMarche, M. L. Portfolio effects, climate change, and the persistence of small populations: Analyses on the rare plant Saussurea weberi. Ecology 98, 1071–1081 (2017).PubMed 

    Google Scholar 
    Villellas, J., Doak, D. F., García, M. B. & Morris, W. F. Demographic compensation among populations: What is it, how does it arise and what are its implications?. Ecol. Lett. 18, 1139–1152 (2015).PubMed 

    Google Scholar 
    Doak, D. F. & Morris, W. F. Demographic compensation and tipping points in climate-induced range shifts. Nature 467, 959–962 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    García-Camacho, R., Albert, M. J. & Escudero, A. Small-scale demographic compensation in a high-mountain endemic: The low edge stands still. Plant Ecol. Divers. 5, 37–44 (2012).
    Google Scholar 
    Andrello, M. et al. Accounting for stochasticity in demographic compensation along the elevational range of an alpine plant. Ecol. Lett. 23, 870–880 (2020).PubMed 

    Google Scholar 
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed 

    Google Scholar 
    Ægisdóttir, H. H., Kuss, P. & Stöcklin, J. Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann. Bot. 104, 1313–1322 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Morente-López, J. et al. Geography and environment shape landscape genetics of Mediterranean alpine species Silene ciliata Poiret. (Caryophyllaceae). Front. Plant Sci. 9, 1698 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Franks, S. J., Weber, J. J. & Aitken, S. N. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 7, 123–139 (2014).PubMed 

    Google Scholar 
    Jeong, H., Cho, Y.-C. & Kim, E. Differential plastic responses to temperature and nitrogen deposition in the subalpine plant species, Primula farinosa subsp. modesta. AoB Plants 13, plab061 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sulis, E., Bacchetta, G., Cogoni, D. & Fenu, G. From global to local scale: Where is the best for conservation purpose?. Biodivers. Conserv. 30, 183–200 (2021).
    Google Scholar 
    Hambler, D. & Dixon, J. Primula farinosa L. J. Ecol. 91, 694–705 (2003).
    Google Scholar 
    Arnold, E. & Richards, A. On the occurrence of unilateral incompatibility in Primula section Aleuritia Duby and the origin of Primula scotica Hook. Bot. J. Linn. Soc. 128, 359–368 (1998).
    Google Scholar 
    Tribsch, A. Areas of endemism of vascular plants in the eastern Alps in relation to Pleistocene glaciation. J. Biogeogr. 31, 747–760 (2004).
    Google Scholar 
    Chung, J.-M., Son, S.-W., Kim, S.-Y., Park, G.-W. & Kim, S.-S. Genetic diversity and geographic differentiation in the endangered Primula farinosa subsp. modesta, a subalpine endemic to Korea. Korean J. Plant. Taxon. 43, 236–243 (2013).
    Google Scholar 
    Lindborg, R. & Ehrlén, J. Evaluating the extinction risk of a perennial herb: Demographic data versus historical records. Conserv. Biol. 16, 683–690 (2002).
    Google Scholar 
    Caswell, H. Matrix Population Models, 2nd ed (Sinauer Associates Inc, 2000).Salguero-Gómez, R. & De Kroon, H. Matrix projection models meet variation in the real world. J. Ecol. 98, 250–254 (2010).
    Google Scholar 
    Jongejans, E. et al. Region versus site variation in the population dynamics of three short-lived perennials. J. Ecol. 98, 279–289 (2010).
    Google Scholar 
    Jongejans, E. & De Kroon, H. Space versus time variation in the population dynamics of three co-occurring perennial herbs. J. Ecol. 93, 681–692 (2005).
    Google Scholar 
    Suggitt, A. J. et al. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120, 1–8 (2011).
    Google Scholar 
    Tomimatsu, H. & Ohara, M. Demographic response of plant populations to habitat fragmentation and temporal environmental variability. Oecologia 162, 903–911 (2010).ADS 
    PubMed 

    Google Scholar 
    Kudernatsch, T., Fischer, A., Bernhardt-Römermann, M. & Abs, C. Short-term effects of temperature enhancement on growth and reproduction of alpine grassland species. Basic Appl. Ecol. 9, 263–274 (2008).
    Google Scholar 
    Kim, E. & Donohue, K. Local adaptation and plasticity of Erysimum capitatum to altitude: Its implications for responses to climate change. J. Ecol. 101, 796–805 (2013).
    Google Scholar 
    Forbis, T. A. Seedling demography in an alpine ecosystem. Am. J. Bot. 90, 1197–1206 (2003).PubMed 

    Google Scholar 
    Yenni, G., Adler, P. B. & Ernest, S. M. Strong self-limitation promotes the persistence of rare species. Ecology 93, 456–461 (2012).PubMed 

    Google Scholar 
    Doak, D. F. Source-sink models and the problem of habitat degradation: General models and applications to the Yellowstone grizzly. Conserv. Biol. 9, 1370–1379 (1995).
    Google Scholar 
    Lesica, P. & Crone, E. E. Arctic and boreal plant species decline at their southern range limits in the Rocky Mountains. Ecol. Lett. 20, 166–174 (2017).PubMed 

    Google Scholar 
    Oldfather, M. F. & Ackerly, D. D. Microclimate and demography interact to shape stable population dynamics across the range of an alpine plant. New Phytol. 222, 193–205 (2019).PubMed 

    Google Scholar 
    Ågren, J., Fortunel, C. & Ehrlén, J. Selection on floral display in insect-pollinated Primula farinosa: Effects of vegetation height and litter accumulation. Oecologia 150, 225–232 (2006).ADS 
    PubMed 

    Google Scholar 
    Ehrlén, J., Syrjänen, K., Leimu, R., Begona Garcia, M. & Lehtilä, K. Land use and population growth of Primula veris: An experimental demographic approach. J. Appl. Ecol. 42, 317–326 (2005).
    Google Scholar 
    Ehrlén, J. & Morris, W. F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 18, 303–314 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio package in R. J. Stat. Softw. 22, 1–23 (2007).
    Google Scholar 
    Weiss, N. Package ‘wPerm’. https://cran.r-project.org/web/packages/wPerm/wPerm.pdf. (2015).Frossard, J. & Renaud, O. Permutation tests for regression, ANOVA, and comparison of signals: The permuco package. J. Stat. Softw. 99, 1–32 (2021).
    Google Scholar  More

  • in

    African perspectives on climate change research

    Urbanization is fast progressing in the Global South, requiring new solutions for infrastructure, services, industrial development and land and energy use for these regions. In this context, fast-growing cities in Africa can take on a leadership role in driving climate change mitigation and adaptation, disaster risk reduction and sustainable development.
    Credit: Stefan Rotter / Alamy Stock PhotoCities in Africa and elsewhere in the Global South continue to grapple with the challenge of delivering equitable services, infrastructure, housing and action to respond to climate change extremes and disasters. One well-known problem is a mismatch between the pace of urban growth and the slower development of basic services and critical infrastructure. This results in, for example, deficient sanitation, water supply systems and localized waste management for large parts of the population, which in turn contribute substantially to heightened poverty and inequality. For inclusive, equitable, prosperous and climate-resilient cities, urban management needs to integrate low-income communities into the urban economy by ensuring access to water, sanitation, energy transition, waste management, poverty reduction and by improving resilience through innovative solutions.
    Credit: Patrick J. Endres/Corbis Documentary/GettySuch an equitable urban transition requires changes in the urban infrastructure, and land and energy use, as well as water and ecosystem management. The key research question in this field is to find ways to ensure city-wide access to infrastructure and services, while minimizing emissions and resource use, and building resilience to climate change impacts. In this regard, cities in the Global South and Africa in particular can serve as examples for other parts of the world as they have the potential to adopt disruptive, innovative yet practical solutions to low emissions, resource minimization and resilience building.
    Credit: Nature Picture Library / Alamy Stock PhotoFor example, rapid urbanization creates the opportunity to develop economic structures in African cities that strongly integrate waste by promoting recovery, recycling, re-use and repair for lengthening lifecycles. Such a circular economy can create business opportunities, while also reducing resource use, thus creating a pathway for sustainable development. Another potential solution is hybrid systems for urban water management that are off-grid and utilize multiple water sources and treatment but that can also connect to centralized water systems. Business models for micro-to-medium enterprises have the potential to integrate some of the low-income groups through these kinds of technology and building social resilience.
    Credit: Images of Africa Photobank / Alamy Stock PhotoThese examples are part of a broader assessment of urban infrastructure innovations, their disruption of centralized systems and rethinking of urban form for more compact, walkable, co-located land use for low carbon intensity towards net-zero cities. However, to translate research on these new solutions into action, a shift is necessary in the planning, governing and managing of cities so as to allow for opportunities for leapfrogging to emerge and expand the possibilities of urban development for inclusive and resilient African cities. More

  • in

    Machine learning algorithm for estimating karst rocky desertification in a peak-cluster depression basin in southwest Guangxi, China

    Wang, S., Liu, Q. & Zhang, D. Karst rocky desertification in southwestern China: Geomorphology, landuse, impact and rehabilitation. Land Degrad. Dev. 15(2), 115–121 (2004).
    Google Scholar 
    Jiang, M. et al. Geologic factors leadingly drawing the macroecological pattern of rocky desertification in southwest China. Sci. Total Environ. 458–460, 419–426 (2013).
    Google Scholar 
    Jiang, Z., Lian, Y. & Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 132, 1–12 (2014).ADS 

    Google Scholar 
    Xu, E., Zhang, H. & Li, M. Object-based mapping of karst rocky desertification using a support vector machine. Land Degrad. Dev. 26(2), 158–167 (2012).
    Google Scholar 
    Li, Y., Bai, X., Wang, S. & Tian, Y. Integrating mitigation measures for karst rocky desertification land in the Southwest mountains of China. Carbonates Evaporites 34, 1095–1106 (2018).
    Google Scholar 
    Lan, J. Responses of soil organic carbon components and their sensitivity to karst rocky desertification control measures in Southwest China. J. Soil. Sediment. 21, 978–989 (2020).
    Google Scholar 
    Gao, J., Du, F., Zuo, L. & Jiang, Y. Integrating ecosystem services and rocky desertification into identification of karst ecological security pattern. Landscape Ecol. 36, 2113–2133 (2020).
    Google Scholar 
    Huang, X. et al. Driving factors and prediction of rock desertification of non-tillage lands in a karst basin, Southwest China. Pol. J. Environ. Stud. 30(4), 3627–3635 (2021).CAS 

    Google Scholar 
    Chen, S., Zhou, Z., Yan, L. & Li, B. Quantitative evaluation of ecosystem health in a karst area of South China. Sustain. Basel 8(10), 975 (2016).
    Google Scholar 
    Liu, F., He, B. Y. & Kou, J. F. Landsat thermal remote sensing to investigate the present situation and variation characteristics of karst rocky desertification in Pingguo County of Guangxi, Southwest China. Sci. Soil Water Conserv. 15(02), 125–131 (2017).
    Google Scholar 
    Zhang, X., Shang, K., Cen, Y., Shuai, T. & Sun, Y. Estimating ecological indicators of karst rocky desertification by linear spectral unmixing method. Int. J. Appl. Earth Obs. Geoinf. 31, 86–94 (2014).ADS 
    CAS 

    Google Scholar 
    Zhang, Z., Ouyang, Z., Xiao, Y., Xiao, Y. & Xu, W. Using principal component analysis and annual seasonal trend analysis to assess karst rocky desertification in southwestern China. Environ. Monit. Assess. 189(6), 1–19 (2017).
    Google Scholar 
    Li, S. & Wu, H. Mapping karst rocky desertification using Landsat 8 images. Remote Sens. Lett. 6(9), 657–666 (2015).
    Google Scholar 
    Yang, S. X., Lin, H., Hou, F., Zhang, L. P. & Hu, Z. L. Estimating karst area vegetation coverage by pixel unmixing. Bull. Surv. Mapp. 5, 23–27 (2014).
    Google Scholar 
    Xiong, Y., Yue, Y. M. & Wang, K. L. Comparative study of indicator extraction for assessment of karst rocky desertification based on hyperion and ASTER images. Bull. Soil Water Conserv. 33(03), 186–190 (2013).
    Google Scholar 
    Dai, G., Sun, H., Wang, B., Huang, C., Wang, W., Yao, Y., et al. Assessment of karst rocky desertification from the local to regional scale based on unmanned aerial vehicle images: Acase-study of Shilin County, Yunnan Province, China. Land Degrad. Dev. 1–14 (2021).Pu, J., Zhao, X., Dong, P., Wang, Q. & Yue, Q. Extracting information on rocky desertification from satellite images: A comparative study. Remote Sens. 13(13), 2497 (2021).ADS 

    Google Scholar 
    Yue, Y. M. et al. Remote sensing of indicators for evaluating karst rocky desertification. Procedia Environ. Sci. 15(04), 722–736 (2011).
    Google Scholar 
    Huang, Q. & Cai, Y. Spatial pattern of Karst rock desertification in the middle of Guizhou Province. Southwestern China. Environ. Geol. 52(7), 1325–1330 (2006).MathSciNet 

    Google Scholar 
    Wang, J., Li, S., Li, H., Luo, H. & Wang, M. Classifying indices and remote sensing image characters of rocky desertification lands: a case of karst region in Northern Guangdong Province. J. Desert Res. 5, 765–770 (2007).
    Google Scholar 
    Chen, F. et al. Assessing spatial-temporal evolution processes and driving forces of karst rocky desertification. Geocarto Int. 1–22 (2019).Qi, X., Zhang, C. & Wang, K. Comparing remote sensing methods for monitoring karst rocky desertification at sub-pixel scales in a highly heterogeneous karst region. Sci. Rep-UK https://doi.org/10.1038/s41598-019-49730-9 (2019).Article 

    Google Scholar 
    Yue, Y. et al. Spectral indices for estimating ecological indicators of karst rocky desertification. Int. J. Remote Sens. 31(8), 2115–2122 (2010).
    Google Scholar 
    Yan, Y., Hu, B. Q., Han, Q. Y. & Li, Y. L. Early warning for karst rocky desertification in agricultural land base on the 3S and ANN technique: A case study in Du’an County, Guangxi. Carsologica Sin. 31(01), 52–58 (2012).
    Google Scholar 
    Zhang, J. et al. Spectral analysis of seasonal rock and vegetation changes for detecting karst rocky desertification in southwest China. Int. J. Appl. Earth Obs. Geoinf. https://doi.org/10.1016/j.jag.2021.102337 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Y., Wang, J. & Deng, X. Rocky land desertification and its driving forces in the karst areas of rural Guangxi, Southwest China. J. Mt. Sci-Engl. 5(4), 350–357 (2008).
    Google Scholar 
    Li, Y., Xie, J., Luo, G., Yang, H. & Wang, S. The evolution of a karst rocky desertification land ecosystem and its driving forces in the Houzhaihe Area, China. J. Ecol. 5, 501–512 (2015).
    Google Scholar 
    Zhang, Y. R., Zhou, Z. F. & Ma, S. B. Rocky desertification and climate change characteristics in typical karst area of Guizhou Province over past two decades. Environ. Sci. Technol. 37(09), 192–197 (2014).
    Google Scholar 
    Bai, X. Y., Wang, S. J., Chen, Q. W. & Cheng, A. Y. Constrains of lithological background of carbonate rock on spatio-temporal evolution of karst rocky desertification land. Earth Sci. 35(4), 691–696 (2010).
    Google Scholar 
    Li, L. & Xiong, K. Study on peak-cluster-depression rocky desertification landscape evolution and human activity-influence in South of China. Eur. J. Remote Sens. 1–9 (2020).Yao, Y. H., Shuo, N. D. Z., Zhang, J. Y., Hu, Y. F. & Kou, Z. X. Spatiotemporal characteristics of karst rocky desertification and the impact of human activities from 2010 to 2015 in Guanling County, Guizhou Province. Prog. Geogr. 38(11), 1759–1769 (2019).
    Google Scholar 
    Shi, K., Yang, Q. & Li, Y. Are karst rocky desertification areas affected by increasing human activity in Southern China? An empirical analysis from nighttime light data. Int. J. Environ. Res. Public Health. 16(21), 4175 (2019).PubMed Central 

    Google Scholar 
    Luo, X. L. et al. Analysis on the spatio- temporal evolution process of rocky desertification in Southwest Karst area. Acta Ecol. Sin. 41(02), 680–693 (2021).
    Google Scholar 
    Yang, Q., Jiang, Z., Yuan, D., Ma, Z. & Xie, Y. Temporal and spatial changes of karst rocky desertification in ecological reconstruction region of Southwest China. Envirov. Earth Sci. 72(11), 4483–4489 (2014).
    Google Scholar 
    Zhang, C., Qi, X., Wang, K., Zhang, M. & Yue, Y. The application of geospatial techniques in monitoring karst vegetation recovery in southwest China. Prog. Phys. Geog. 41(4), 450–477 (2017).
    Google Scholar 
    Ying, B., Xiao, S., Xiong, K., Cheng, Q. & Luo, J. Comparative studies of the distribution characteristics of rocky desertification and land use/land cover classes in typical areas of Guizhou province, China. Envirov. Earth Sci. 71(2), 631–645 (2013).
    Google Scholar 
    Luo, X. et al. Analysis on the spatio-temporal evolution process of rocky desertification in Southwest Karst area. Acta Ecol. Sin. 41(2), 680–693 (2021).
    Google Scholar 
    Chong, G. et al. Characteristics of changes in karst rocky desertification in southtern and western china and driving mechanisms. Chin. Geogr. Sci. 31, 1082–1096 (2021).
    Google Scholar 
    Guo, B. et al. A novel-optimal monitoring model of rocky desertification based on feature space models with typical surface parameters derived from LANDSAT_8 OLI. Degrad. Dev. 32(17), 5023–5036 (2021).
    Google Scholar 
    Chen, F. et al. Spatio-temporal evolution and future scenario prediction of karst rocky desertification based on CA–Markov model. Arab. J. Geosci. 14, 1262 (2021).
    Google Scholar 
    Wu, X., Liu, H., Huang, X. & Zhou, T. Human driving forces: Analysis of rocky desertification in karst region in Guanling County, Guizhou Province. Chin. Geogr. Sci. 21(5), 600–608 (2011).
    Google Scholar 
    Chen, H. et al. The evolution of rocky desertification and its response to land use changes in Wanshan Karst area, Tongren City, Guizhou Province, China. J. Agr. Resour. Environ. 37(01), 24–35 (2020).
    Google Scholar 
    Zerrouki, N., Dairi, A., Harrou, F., Zerrouki, Y. & Sun, Y. Efficient land desertification detection using a deep learning-driven generative adversarial network approach: A case study. Concurr. Comp-Pract. E. https://doi.org/10.1002/cpe.6604 (2021).Article 

    Google Scholar 
    Keskin, H., Grunwald, S. & Harris, W. Digital mapping of soil carbon fractions with machine learning. Geoderma 339, 40–58 (2019).ADS 
    CAS 

    Google Scholar 
    Tian, Y. et al. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.146816 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xi, H. et al. Spatio-temporal characteristics of rocky desertification in typical Karst areas of Southwest China: A case study of Puding county, Guizhou province. Acta Ecol. Sin. 38(24), 8919–8933 (2018).
    Google Scholar 
    Deng, Y. et al. Relationship among land surface temperature and LUCC, NDVI in typical karst area. Sci. Rep-UK. 296–306 (2018).Li, S. M., Yu, L. W., Gan, S. & Yang, Y. M. Study on inversion relationship between vegetation lndex and leaf area index of rocky desertification area in southeast Yunnan based on ETM+. J. Kunming Univ. Sci. Technol. (Natl Sci.) 40(06), 31–36 (2015).
    Google Scholar 
    Yan, X. & Cai, Y. Multi-Scale anthropogenic driving forces of karst rocky desertification in Southwest China. Land Degrad. Dev. 26(2), 193–200 (2013).
    Google Scholar 
    Meyer, H., Reudenbach, C., Wollauer, S. & Nauss, T. Importance of spatial predictor variable selection in machine learning applications – Moving from data reproduction to spatial prediction. Ecol. Model. https://doi.org/10.1016/j.ecolmodel.2019.108815 (2019).Article 

    Google Scholar 
    Cracknell, M. & Reading, A. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci-UK 63, 22–33 (2014).
    ADS 

    Google Scholar 
    Feng, K. et al. Monitoring desertification using machine-learning techniques with multiple indicators derived from MODIS images in Mu Us Sandy Land, China. Remote Sens. 14, 2663. https://doi.org/10.3390/rs14112663 (2022).Article 
    ADS 

    Google Scholar 
    Belgiu, M. & Drăguţ, L. Random Forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm 114, 24–31 (2016).
    Google Scholar 
    Chutia, D., Bhattacharyya, D. K., Sarma, K. K., Kalita, R. & Sudhakar, S. Hyperspectral remote sensing classifications: A perspective survey. Trans. GIS https://doi.org/10.1111/tgis.12164 (2015).Article 

    Google Scholar 
    Song, T. Q., Peng, W. X., Du, H., Wang, K. & Zeng, F. Occurrence spatial-temporal dynamics and regulation strategies of karst rocky desertification in southwest China. Acta Ecol. Sin. 34(18), 5328–5341 (2014).
    Google Scholar 
    Zhu, L.F. Study on the Spatial-Temporal Variation of Vegetation Coverage and Karst Rocky Desertification based on MODIS Data. Ph.D. Dissertation, Southwestern University. Chongqing, China (2018).Yang, Q. et al. Spatio-temporal evolution of rocky desertification and its driving forces in karst areas of Northwestern Guangxi, China. Environ. Earth Sci. 64, 383–393 (2011).
    Google Scholar 
    Mishra, N. & Chaudhuri, G. Spatio-temporal analysis of trends in seasonal vegetation productivity across Uttarakhand, Indian Himalayas, 2000–2014. Appl. Geogr. 56, 29–41 (2015).
    Google Scholar 
    Zhang, X., Shang, K., Cen, Y., Shuai, T. & Sun, Y. Estimating ecological indicators of karst rocky desertification by linear spectral unmixing method. Int. J. Appl. Earth. Obs. 31, 86–94 (2014).CAS 

    Google Scholar 
    Reshef, D. et al. Detecting novel associations in large data sets. Science 334(6062), 1518–1524 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Li, W. et al. Concentration estimation of dissolved oxygen in Pearl River Basin using input variable selection and machine learning techniques. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139099 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abdelhakim, A., El, H., Luis, E., Salah, E. & Abdelghani, C. Retrieving crop albedo based on radar sentinel-1 and random forest. Approach. Remote Sens. 13(16), 3181 (2021).ADS 

    Google Scholar 
    Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M. & Rigol-Sanchez, J. P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm 67, 93–104 (2012).
    Google Scholar 
    Dharumarajan, S., Bishop, T., Hegde, R. & Singh, S. Desertification vulnerability index-an effective approach to assess desertification processes: A case study in Anantapur District, Andhra Pradesh, India. Land Degrad. Dev. 29(1), 150–161 (2017).
    Google Scholar 
    Li, P. et al. Dynamic monitoring of desertification in ningdong based on landsat images and machine learning. Sustainability 14, 7470. https://doi.org/10.3390/su14127470 (2022).Article 

    Google Scholar 
    Pacheco, A. D. P., Junior, J. A. D. S., Ruiz-Armenteros, A. M. & Henriques, R. F. F. Assessment of k-nearest neighbor and random forest classifiers for mapping forest fire areas in Central Portugal using landsat-8, sentinel-2, and terra imagery. Remote Sens. 13, 1345. https://doi.org/10.3390/rs13071345 (2021).Article 
    ADS 

    Google Scholar  More

  • in

    Immune-mediated competition benefits protective microbes over pathogens in a novel host species

    Alizon S, de Roode JC, Michalakis Y (2013) Multiple infections and the evolution of virulence. Ecol Lett 16(4):556–67PubMed 

    Google Scholar 
    Bian G, Zhou G, Lu P, Xi Z (2013) Replacing a native Wolbachia with a novel strain results in an increase in endosymbiont load and resistance to dengue virus in a mosquito vector. PLoS Negl Trop Dis 7(6):e2250PubMed 
    PubMed Central 

    Google Scholar 
    Bjørnstad ON, Harvill ET (2005) Evolution and emergence of Bordetella in humans. Trends Microbiol 13(8):355–9PubMed 

    Google Scholar 
    Bosch TC (2013) Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu Rev Microbiol 67:499–518CAS 
    PubMed 

    Google Scholar 
    Bull JJ, Turelli M (2013) Wolbachia versus dengue: Evolutionary forecasts. Evol Med Public Health 2013(1):197–207PubMed 
    PubMed Central 

    Google Scholar 
    Cabreiro F, Gems D (2013) Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO Mol Med 5(9):1300–10CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen F, Krasity BC, Peyer SM, Koehler S, Ruby EG, Zhang X et al. (2017) Bactericidal permeability-increasing proteins shape host-microbe interactions. mBio 8:e00040–17CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chrostek E, Pelz-Stelinski K, Hurst GDD, Hughes GL (2017) Horizontal Transmission of Intracellular Insect Symbionts via Plants. Front Microbiol 8:2237PubMed 
    PubMed Central 

    Google Scholar 
    Chrostek E, Teixeira L (2015) Mutualism breakdown by amplification of Wolbachia genes. PLoS Biol 13(2):e1002065PubMed 
    PubMed Central 

    Google Scholar 
    Cisani G, Varaldo PE, Grazi G, Soro O (1982) High-level potentiation of lysostaphin anti-staphylococcal activity by lysozyme. Antimicrob Agents Chemother 21(4):531–5CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark LC, Hodgkin J (2014) Commensals, probiotics and pathogens in the Caenorhabditis elegans model. Cell Microbiol 16(1):27–38CAS 
    PubMed 

    Google Scholar 
    Coolon JD, Jones KL, Todd TC, Carr BC, Herman MA (2009) Caenorhabditis elegans genomic response to soil bacteria predicts environment-specific genetic effects on life history traits. PLOS Genet 5:e1000503PubMed 
    PubMed Central 

    Google Scholar 
    Dierking K, Yang W, Schulenburg H (2016) Antimicrobial effectors in the nematode Caenorhabditis elegans: an outgroup to the Arthropoda. Philos Trans R Soc Lond B Biol Sci 371:1695
    Google Scholar 
    Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5(5):e1000423PubMed 
    PubMed Central 

    Google Scholar 
    Drew GC, King KC (2022) More or less? The effect of symbiont density in protective mutualisms. Am Nat 199(4):443–54PubMed 

    Google Scholar 
    Ford SA, Kao D, Williams D, King KC (2016) Microbe-mediated host defence drives the evolution of reduced pathogen virulence. Nat Commun 7:13430CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ford SA, King KC (2016) Harnessing the Power of Defensive Microbes: Evolutionary Implications in Nature and Disease Control. PLoS Pathog 12(4):e1005465PubMed 
    PubMed Central 

    Google Scholar 
    Ford SA, King KC (2021) In Vivo Microbial Coevolution Favors Host Protection and Plastic Downregulation of Immunity. Mol Biol Evol 38(4):1330–1338CAS 
    PubMed 

    Google Scholar 
    Frank SA (1996) Models of parasite virulence. Q Rev Biol 71(1):37–78CAS 
    PubMed 

    Google Scholar 
    Félix MA, Braendle C (2010) The natural history of Caenorhabditis elegans. Curr Biol 20(22):R965–9PubMed 

    Google Scholar 
    Garsin DA, Sifri CD, Mylonakis E, Qin X, Singh KV, Murray BE et al. (2001) A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci USA 98(19):10892–7CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gerardo NM, Parker BJ (2014) Mechanisms of symbiont-conferred protection against natural enemies: an ecological and evolutionary framework. Curr Opin Insect Sci 4:8–14PubMed 

    Google Scholar 
    Gravato-Nobre MJ, Hodgkin J (2005) Caenorhabditis elegans as a model for innate immunity to pathogens. Cell Microbiol 7(6):741–51CAS 
    PubMed 

    Google Scholar 
    Habets MG, Rozen DE, Brockhurst MA (2012) Variation in Streptococcus pneumoniae susceptibility to human antimicrobial peptides may mediate intraspecific competition. Proc Biol Sci 279(1743):3803–11CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heath BD, Butcher RD, Whitfield WG, Hubbard SF (1999) Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Curr Biol 9(6):313–6CAS 
    PubMed 

    Google Scholar 
    Heikkilä MP, Saris PE (2003) Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol 95(3):471–8PubMed 

    Google Scholar 
    Hoffmann AA, Ross PA, Rašić G (2015) Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl 8(8):751–68PubMed 
    PubMed Central 

    Google Scholar 
    Hope IA (1999) C. elegans: a practical approach. Oxford University Press, Oxford
    Google Scholar 
    Huigens ME, de Almeida RP, Boons PA, Luck RF, Stouthamer R (2004) Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc Biol Sci 271(1538):509–15CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jaenike J, Polak M, Fiskin A, Helou M, Minhas M (2007) Interspecific transmission of endosymbiotic Spiroplasma by mites. Biol Lett 3(1):23–5CAS 
    PubMed 

    Google Scholar 
    Kaltenpoth M, Engl T (2014) Defensive microbial symbionts in Hymenoptera. Funct Ecol 28(2):315–27
    Google Scholar 
    King KC (2019) Quick guide: defensive symbionts. Curr Biol 29:R78–R80CAS 
    PubMed 

    Google Scholar 
    King KC, Brockhurst MA, Vasieva O, Paterson S, Betts A, Ford SA et al. (2016) Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J 10(8):1915–24CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kong C, Tan MW, Nathan S (2014) Orthosiphon stamineus protects Caenorhabditis elegans against Staphylococcus aureus infection through immunomodulation. Biol Open 3(7):644–55PubMed 
    PubMed Central 

    Google Scholar 
    Kopylova E, Noé L, Touzet H (2012) SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 14(24):3211–17
    Google Scholar 
    Koziel J, Potempa J (2013) Protease-armed bacteria in the skin. Cell Tissue Res 351:325–37CAS 
    PubMed 

    Google Scholar 
    Lysenko ES, Ratner AJ, Nelson AL, Weiser JN (2005) The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLoS Pathog 1(1):e1PubMed 
    PubMed Central 

    Google Scholar 
    Magalhaes T, Bergren NA, Bennett SL, Borland EM, Hartman DA, Lymperopoulos K et al. (2019) Induction of RNA interference to block Zika virus replication and transmission in the mosquito Aedes aegypti. Insect Biochem Mol Biol 111:103169CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Margolis E, Yates A, Levin BR (2010) The ecology of nasal colonization of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus: the role of competition and interactions with host’s immune response. BMC Microbiol 10:59PubMed 
    PubMed Central 

    Google Scholar 
    Marra A, Hanson MA, Kondo S, Erkosar B, Lemaitre B (2021) Drosophila Antimicrobial Peptides and Lysozymes Regulate Gut Microbiota Composition and Abundance. mBio 12(4):e0082421CAS 
    PubMed 

    Google Scholar 
    Martinez J, Cogni R, Cao C, Smith S, Illingworth CJ, Jiggins FM (2016) Addicted? Reduced host resistance in populations with defensive symbionts. Proc Biol Sci 283:1833
    Google Scholar 
    Martín-Platero AM, Valdivia E, Ruíz-Rodríguez M, Soler JJ, Martín-Vivaldi M, Maqueda M et al. (2006) Characterization of antimicrobial substances produced by Enterococcus faecalis MRR 10-3, isolated from the uropygial gland of the hoopoe (Upupa epops). Appl Environ Microbiol 72(6):4245–9PubMed 
    PubMed Central 

    Google Scholar 
    Mason KL, Stepien TA, Blum JE, Holt JF, Labbe NH, Rush JS et al. (2011) From commensal to pathogen: translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. MBio 2(3):e00065–11PubMed 
    PubMed Central 

    Google Scholar 
    Matthews AC, Mikonranta L, Raymond B (2019) Shifts along the parasite-mutualist continuum are opposed by fundamental trade-offs. Proc Biol Sci 286(1900):20190236CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    May G, Nelson P (2014) Defensive mutualisms: do microbial interactions within hosts drive the evolution of defensive traits? Funct Ecol 28(2):356–63
    Google Scholar 
    Mejía LC, Herre EA, Sparks JP, Winter K, García MN, Van Bael SA et al. (2014) Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol 5:479PubMed 
    PubMed Central 

    Google Scholar 
    Mergaert P (2018) Role of antimicrobial peptides in controlling symbiotic bacterial populations. Nat prod Rep. 35(4):336–56CAS 
    PubMed 

    Google Scholar 
    Metcalf CJE, Koskella B (2019) Protective microbiomes can limit the evolution of host pathogen defense. Evol Lett 3:534–43PubMed 
    PubMed Central 

    Google Scholar 
    Montalvo-Katz S, Huang H, Appel MD, Berg M, Shapira M (2013) Association with soil bacteria enhances p38-dependent infection resistance in Caenorhabditis elegans. Infect Immun 81(2):514–20CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM et al. (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139(7):1268–78PubMed 

    Google Scholar 
    O’Neill SL, Ryan PA, Turley AP, Wilson G, Retzki K, Iturbe-Ormaetxe I et al. (2018) Scaled deployment of Wolbachia to protect the community from Aedes transmitted arboviruses. Gates Open Res 2:36PubMed 

    Google Scholar 
    Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc Biol Sci 275(1632):293–9PubMed 

    Google Scholar 
    Oliver KM, Smith AH, Russell JA (2014) Defensive symbiosis in the real world ‘96 advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol 28(2):341–55
    Google Scholar 
    Pan X, Pike A, Joshi D, Bian G, McFadden MJ, Lu P et al. (2018) The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti. ISME J 12(1):277–88CAS 
    PubMed 

    Google Scholar 
    Parker BJ, Barribeau SM, Laughton AM, de Roode JC, Gerardo NM (2011) Non-immunological defense in an evolutionary framework. Trends Ecol Evol 26(5):242–8PubMed 

    Google Scholar 
    Pastar I, O’Neill K, Padula L, Head CR, Burgess JL, Chen V et al. (2020) Staphylococcus epidermidis Boosts Innate Immune Response by Activation of Gamma Delta T Cells and Induction of Perforin-2 in Human Skin. Front Immunol 11:550946CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pees B, Kloock A, Nakad R, Barbosa C, Dierking K (2017) Enhanced behavioral immune defenses in a C. elegans C-type lectin-like domain gene mutant. Dev Comp Immunol 74:237–42CAS 
    PubMed 

    Google Scholar 
    Peleg AY, Tampakakis E, Fuchs BB, Eliopoulos GM, Moellering RC, Mylonakis E (2008) Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc Natl Acad Sci USA 105(38):14585–90CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petersen C, Dirksen P, Schulenburg H (2015) Why we need more ecology for genetic models such as C. elegans. Trends Genet 31(3):120–7CAS 
    PubMed 

    Google Scholar 
    Pimentel H, Bray NL, Puente S, Melsted P, Pachter L (2017) Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods 14(7):687–90CAS 
    PubMed 

    Google Scholar 
    Portal-Celhay C, Blaser MJ (2012) Competition and resilience between founder and introduced bacteria in the Caenorhabditis elegans gut. Infect Immun 80(3):1288–99CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raberg L, de Roode JC, Bell AS, Stamou P, Gray D, Read AF (2006) The role of immune-mediated apparent competition in genetically diverse malaria infections. Am Nat 168(1):41–53PubMed 

    Google Scholar 
    Rafaluk-Mohr C, Ashby B, Dahan DA, King KC (2018) Mutual fitness benefits arise during coevolution in a nematode-defensive microbe model. Evol Lett 2(3):246–56PubMed 
    PubMed Central 

    Google Scholar 
    Ragland SA, Criss AK (2017) From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog 13(9):e1006512PubMed 
    PubMed Central 

    Google Scholar 
    Rancès E, Ye YH, Woolfit M, McGraw EA, O’Neill SL (2012) The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog 8(2):e1002548PubMed 
    PubMed Central 

    Google Scholar 
    Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H et al. (2019) g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47(W1):W191–W198CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raymann K, Shaffer Z, Moran NA (2017) Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol 15(3):e2001861PubMed 
    PubMed Central 

    Google Scholar 
    Rossouw W, Korsten L (2017) Cultivable microbiome of fresh white button mushrooms. Lett Appl Microbiol 64(2):164–70CAS 
    PubMed 

    Google Scholar 
    Russell JA, Moran NA (2005) Horizontal transfer of bacterial symbionts: heritability and fitness effects in a novel aphid host. Appl Environ Microbiol 71(12):7987–94CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryu H, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW et al. (2008) Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 319:777–82CAS 
    PubMed 

    Google Scholar 
    Sellegounder D, Liu Y, Wibisono P, Chen CH, Leap D, Sun J (2019) Neuronal GPCR NPR-8 regulates C. elegans defense against pathogen infection. Sci Adv 5(11):eaaw4717CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sifri CD, Begun J, Ausubel FM, Calderwood SB (2003) Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 71(4):2208–17CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singh UB, Malviya D, Wasiullah, Singh S, Pradhan JK, Singh BP et al. (2016) Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.). Microbiol Res 192:300–12CAS 
    PubMed 

    Google Scholar 
    Trevelline BK, Fontaine SS, Hartup BK, Kohl KD (2019) Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc Biol Sci 286(1895):20182448PubMed 
    PubMed Central 

    Google Scholar 
    Ulrich Y, Schmid-Hempel P (2012) Host modulation of parasite competition in multiple infections. Proc Biol Sci 279(1740):2982–9PubMed 
    PubMed Central 

    Google Scholar 
    Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O et al. (2011) The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334(653):255–8CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varahan S, Iyer VS, Moore WT, Hancock LE (2013) Eep confers lysozyme resistance to enterococcus faecalis via the activation of the extracytoplasmic function sigma factor SigV. J Bacteriol 195(14):3125–34CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Visvikis O, Ihuegbu N, Labed SA, Luhachack LG, Alves AF, Wollenberg AC et al. (2014) Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 40(6):896–909CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vorburger C, Ganesanandamoorthy P, Kwiatkowski M (2013) Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids. Ecol Evol 3(3):706–13PubMed 
    PubMed Central 

    Google Scholar 
    Wang S, Dos-Santos ALA, Huang W, Liu KC, Oshaghi MA, Wei G et al. (2017) Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science 357(6358):1399–1402CAS 
    PubMed 

    Google Scholar 
    Wilke AB, Marrelli MT (2015) Paratransgenesis: a promising new strategy for mosquito vector control. Parasit Vectors 8:342PubMed 
    PubMed Central 

    Google Scholar 
    Wong D, Bazopoulou D, Pujol N, Tavernarakis J, Ewbank J (2007) Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection. Genome Biol 8:R194PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Addressing the dichotomy of fishing and climate in fishery management with the FishClim model

    DataSea Surface temperature (1850–2019)Sea Surface Temperature (SST, °C) from 1850 to 2019 originated from the COBE SST2 1° × 1° gridded dataset74, https://psl.noaa.gov/data/gridded/data.cobe2.html. SST data were interpolated on a 0.25° latitude × 0.25° longitude grid on a monthly scale from 1850 to 2019.BathymetryBathymetry (m) came from GEBCO Bathymetric Compilation Group 2019 (The GEBCO_2019 Grid—a continuous terrain model of the global oceans and land). Data are provided by the British Oceanographic Data Centre, National Oceanography Centre, NERC, UK. doi:10/c33m. (https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e/). These data were interpolated on a 0.25° latitude × 0.25° longitude grid.Biological dataDaily mass concentration of chlorophyll-a in seawater (mg/m3) originated from the Glob Colour project (http://www.globcolour.info/). The product merges together all the daily data from satellites (MODIS, SeaWIFS, VIIRS) available from September 1997 to December 2019, on a 4 km resolution spatial grid. These data were interpolated on a daily scale on a 0.25° latitude × 0.25° longitude grid. These data were only used to map the average maximum standardised SSB (mdSSB) around the North Sea (Fig. 1a). When long-term changes in mdSSB were examined, we used modelled chlorophyll data (see section “Climate projections” below).Cod recrutment at age 1, Spawning Stock Biomass (SSB) and fishing effort F for 1963–2019 originated from ICES35.We used a plankton index of larval cod survival, which was an update of the index proposed by Beaugrand and colleagues33. Based on data from the Continuous Plankton Recorder (CPR)75, the index is based on the simultaneous consideration of six key biological parameters important for the diet and growth of cod larvae and juveniles in the North Sea:76,77 (i) Total calanoid copepod biomass as a quantitative indicator of food for larval cod, (ii) mean size of calanoid copepods as a qualitative indicator of food, (iii-iv) the abundance of the two dominant congeneric species Calanus finmarchicus and C. helgolandicus, (v) the genus Pseudocalanus and (vi) the taxonomic group euphausiids. A standardised Principal Component Analysis (PCA) is performed on the six plankton indicators for each month from March to September for the period 1958–2017 (table 60 years × 7 months-6 indicators). The plankton index is simply the first principal component of the PCA33.Climate projectionsClimate projections for SST and mass concentration of chlorophyll in seawater (kg m−3) originated from the Coupled Model Intercomparison Project Phase 6 (CMIP6)5 and were provided by the Earth System Grid Federation (ESGF). We used the projections known as Shared Socioeconomic Pathways (SSP) 245 and 585 corresponding respectively to a medium and a high radiative forcing by 2100 (2.5 W m−2 and 8.5 W m−2)78. The daily simulations of four different models (i.e. CNRM-ESM2-1, GFDL-ESM4, IPSL-CM6A-LR, and UKESM1-0-LL) covering the time period 1850–2014 (historical simulation) and 2015–2100 (future projections for the two SSPs scenarios) were used. All the data were interpolated on a 0.25° by 0.25° regular grid. Key references (i.e. DOI and dataset version) are provided in Supplementary Text 1. Long-term changes in modelled SSB were based on these data (including modelled daily chlorophyll data).The FishClim modelLet Kt be the maximum standardised Spawning Stock Biomass (mdSSB hereafter) that can be reached by a fish stock at time t for a given environmental regime φt. Xt+1, standardised SSB (dSSB hereafter) at time t+1 was calculated from dSSB at time t as follows:$${X}_{t+1}={X}_{t}+r{X}_{t}left(1-frac{{X}_{t}}{{K}_{t}}right)-alpha {X}_{t}$$
    (1)
    α is the fishing intensity that varies between 0 (i.e. no fishing) and 1 (i.e. 100% of SSB fished in a year). It is important to note that α (see Eq. (10)) should not be mistaken with ICES fishing effort F79 (calculated from SSB). The second term of Eq. (1) is the intrinsic growth rate of the fish stock that is a function of both Kt and the population growth rate r (r was fixed to 0.5 in most analyses, but see Fig. 3d however where r varied from 0.25 to 0.75). The population growth rate r is highly influenced by the life history traits of a species80 but also by environmental variability54,55,81. Here, the population growth rate was assumed to be constant in space and time and the influence of environmental variability occurred exclusively through its effects on Kt. We made this choice to not multiply the sources of complexity and errors (i.e. population growth rate is very difficult to assess and varies with age80). The third term reflects the part of dSSB that is lost by fishing. Note that natural mortality is not explicitly integrated in Eq. (1) because this process is difficult to assess with confidence at the scale of our study. Here, we assumed that the second term of Eq. (1) implicitly considered this process; when K increases, it is likely that natural mortality diminishes, especially at age 134. We tested this assumption below. Most of the time when fishing occurs, Xt {y}_{{{{rm{opt}}}}}$$
    (3)
    Here yopt= 5.4 °C and t1 and t2 were fixed to 5.7 °C and 4 °C, respectively, so that the thermal niche was close to that assessed by Beaugrand and colleagues31 (Supplementary Fig. 2). This Supplementary Figure compares the thermal response curve we chose in the present study with the data analysed in Beaugrand and colleagues31. The figure shows that the response curve (red curve) is close to the histogram showing the number of geographical cells with a cod occurrence as a function of temperature varying between −2 °C (frozen seawater) and 20 °C.Because t1  > t2, the niche was slightly negative asymmetrical (Supplementary Fig. 1). U1(y) was the first component of mdSSB along the thermal gradient y. c was the maximum value of mdSSB; c was fixed to 1 so that mdSSB varied between 0 and 184,85. y was the value of SST. Slight variations in the different parameters of the niche did not alter either the spatial patterns in the distribution of mdSSB nor the correlations with recruitment.To model the bathymetric niche of cod, we used a trapezoidal function. Changes in mdSSB, U2, along bathymetry, were assessed using four points (θ1, θ2, θ3, θ4):$$begin{array}{cc}{{U}}_2({{z}})=0 & {{{{{{{rm{When}}}}}}; z}}le {{{{rm{theta }}}}}_{1}end{array}$$
    (4)
    $$begin{array}{cc}{{U}}_2({{z}})=frac{z-{theta }_{1}}{{theta }_{2}-{theta }_{1}}c & {{{{{rm{When}}}}}},{{{{rm{theta }}}}}_{1} < {{z}}le {{{{rm{theta }}}}}_{2}end{array}$$ (5) $$begin{array}{cc}{{U}}_2({{z}})={{c}} & {{{rm{When}}}},{{{{rm{theta }}}}}_{2} < {{z}} < {{{{rm{theta }}}}}_{3}end{array}$$ (6) $${{U}}_2begin{array}{cc}(z)=frac{{theta }_{4}-z}{{theta }_{4}-{theta }_{3}}c & {{{rm{When}}}},{{{{rm{theta }}}}}_{3}le {{z}} < {{{{rm{theta }}}}}_{4}end{array}$$ (7) $$begin{array}{cc}{{{rm{U}}}}_2({{z}})=0 & {{{rm{When}}}}; {{{rm{z}}}}ge {{{theta }}}_{4}end{array}$$ (8) With θ2 ≥ θ1, θ3 ≥ θ2 and θ4≥ θ3 and y the bathymetry; θ1 = 0, θ2 = 10−4, θ3 = 200 and θ4 = 600 m (Supplementary Fig. 1). These parameters were retrieved from the litterature86,87. Here also c, the maximum abundance reached by the target species was fixed to 1 and U2 varied between 0 and 1. Trapezoidal niches have been used frequently to model the spatial distribution of fish and marine mammals88,89.The trophic niche was modelled by a rectangular function on a daily basis. To the best of our knowledge, no information on the trophic niche is available. We modelled the trophic niche by fixing U3 to 1 when chlorophyll-a concentration was higher than 0.05 mg m−3 during a minimum period of 15 days and 0 otherwise (Supplementary Fig. 1). This minimum of chlorophyll was implemented as a proxy for suitable food, which has been shown to be important in the North Atlantic for cod recruitment and distribution6,33.There exists two ways to combine the different ecological dimensions of a niche: (i) use an additive or (ii) a multiplicative model82,90. We used a multiplicative model because when one dimension is associated to a nil abundance, the resulting abundance combining all dimensions is also nil in contrast to an additive model; therefore only one unsuitable environmental value may explain a nil abundance. All dimensions were associated to abundance values that varied between 0 and 190.Therefore, maximum dSSB, K, for a given environmental regime E was given by multiplying the three niches (thermal, bathymetric and trophic):$$K=mathop{prod }limits_{i=1}^{p}{U}_{i}$$ (9) where p = 3, the three dimensions of the niche.AnalysesMapping of maximum standardised SSBmdSSB is close to the “dynamic B0” approach; B0 is the SSB in the absence of fishing (generally expressed in tonnes)51 whereas mdSSB is the SSB in the absence of fishing standardised between 0 and 1 and assessed from the knowledge of the niche of the species. We first assessed mdSSB in the North-east Atlantic (around UK) at a spatial resolution of 0.25° latitude × 0.25° longitude on a daily basis from 1850 to 2019. For this analysis, FishClim was run on monthly COBE SST (1850–2019), mean bathymetry and a climatology of daily mass concentration of chlorophyll-a in seawater from the Glob Colour project (see Data section). We then calculated an annual average based on the main seasonal productive period around UK, i.e. from March to October90. Finally, we averaged all years to examine spatial patterns in mean mdSSB (Fig. 1a).Temporal changes in maximum standardised SSBWe assessed average long-term changes in mdSSB in the North Sea (51°N–62°N and 3°W–9.5°E); the annual average was calculated from March to October because this is a period of high production90 . We compared long-term changes in mdSSB with cod recruitment at age 1, a plankton index of larval cod survival based on the period March to October33, and ICES-based SSB35 for 1963-2019 (Fig. 1b–d).Correlation analyses with modelled maximum standardised SSBPearson correlations between long-term changes in mdSSB (average for the North Sea, 51°N–62°N and 3°W–9.5°E) and cod recruitment at age 1 in decimal logarithm35, a plankton index of larval cod survival in the North Sea33, and observed ICES SSB in decimal logarithm35 for the period 1963–2019 were calculated (Fig. 1b–d). The same analysis was performed between assessed fishing intensity α from our FishClim model and fishing effort F35 in the North Sea (Fig. 1e). The probability of significance of the coefficients of correlation was adjusted to correct for temporal autocorrelation91.Assessment of fishing intensity from ICES spawning stock biomassUsing North Sea ICES SSB, we applied Eq. (1) to assess fishing intensity α:$$alpha =1+rleft(1-frac{{X}_{t}}{{K}_{t}}right)-frac{{X}_{t+1}}{{X}_{t}}$$ (10) With Xt+1 and Xt the ICES dSSB (in decimal logarithm). Standardisation of ICES SSB, necessary for this analysis, was complicated because many different kinds of standardisation were achievable so long as X remained strictly above 0 (i.e. full cod extirpation, not observed so far35) and strictly below min(K) (i.e. all black curves always below all points of the blue curve were possible, Supplementary Fig. 3). Indeed, ICES SSB includes exploitation and environmental fluctuations whereas K (i.e. mdSSB) integrates only environmental forcing; the difference is mainly caused by the negative influence of fishing. We chose the black curve (ICES SSB) that maximised the correlation between α (fishing intensity in the FishClim model) and F (ICES fishing effort)35.Reconstruction of long-term changes in ICES spawning stock biomassThe estimation of α allowed us to reconstruct long-term changes in cod (ICES) dSSB and to examine the respective influence of fishing and CIEC by means of Eq. (1) (“Methods”) using four hypothetical scenarios (Fig. 1f). First, we fixed fishing intensity and considered exclusively environmental variations through its influence on dSSB. (i–ii) We assessed long-term changes in dSSB from long-term variation in observed mdSSB (called Kt in Eq. (1)) with a constant level of exploitation fixed to (i) minimum (upper blue curve, i.e. the lowest fishing intensity observed in 1963–2019) or (ii) maximum (lower blue curve, i.e. the highest fishing intensity observed in 1963–2019).Second, we fixed the environmental influence on dSSB and considered variations in fishing intensity. We estimated long-term changes in dSSB from long-term variation in estimated α with a constant mdSSB fixed to (iii) minimum (lower red curve, i.e. the lowest mdSSB observed in 1963–2019) or (iv) maximum (upper red curve, i.e. the highest mdSSB observed in 1963–2019). It was possible to compare long-term changes in reconstructed (ICES) dSSB (thick black curve in Fig. 1f) with these four hypothetical scenarios (Fig. 1f); note that these comparisons were not affected by the choice we made earlier on the standardisation of (ICES) SSB.Quantification of the respective influence of fishing and climate/environment on spawning stock biomassUsing the previous curves, we examined the respective influence of fishing and CIEC on reconstructed (ICES) dSSB (Fig. 2). First, the influence of fishing was investigated by estimating the residuals between reconstructed (ICES) dSSB based on long-term changes in mdSSB (i.e. Kt in Eq. (1)) and α (thick black curves in Fig. 1f) and modelled dSSB based on fluctuating fishing intensity α and invariant K (average of the two red curves in Fig. 1f). This calculation led to the red curve in Fig. 2b. Next, we performed the opposite procedure to examine the influence of CIEC on dSSB (i.e. invariant fishing intensity α based on the two blue curves in Fig. 1f). This calculation led to the blue curve in Fig. 2b.A cluster analysis, based on a matrix years × three time series with (i) long-term changes in reconstructed standardised (ICES) SSBs, (ii) fishing and (iii) CIEC, was performed to identify key periods (vertical dashed lines in Fig. 2). We standardised each variable between 0 and 1 and used an Euclidean distance to assess the year (1963–2019) × year (1963–2019) square matrix so that each variable contributed equally to each association coefficient. We used an agglomerative hierarchical clustering technique using average linkage, which was a good compromise between the two extreme single and complete clustering techniques92. In this paper, we were only interested in the timing between the different time periods (i.e. the groups of years) revealed by the cluster analysis (Fig. 2).We also calculated an index of fishing influence (ε, expressed in percentage) by means of two indicators γ and δ, which were slightly different to the ones we used above. The first one, γ, was modelled dSSB with fluctuating fishing intensity and a constant mdSSB based on the best suitable environment observed during 1963–2019 (only the upper red curve in Fig. 1f; fishing influence). The second one, δ, was modelled dSSB based on fluctuating environment and fishing intensity (black curve in Fig. 1f) on modelled dSSB based on a fluctuating environment but a constant fishing intensity fixed to the lowest value of the time series (only the upper blue curve in Fig. 1f; environmental influence). The index of fishing influence (ε, expressed in percentage) was calculated as follows:$$varepsilon =frac{100gamma }{gamma +delta }$$ (11) For each period of 1963–2019 identified by the cluster analysis, we quantified the influence of fishing (and therefore the environment) using a Jackknife procedure93,94. The resampling procedure recalculated ε by removing each time 1 year of the time period, which allowed us to provide a range of values (i.e. minimum and maximum) in addition to the average value (bar{varepsilon }) calculated for each interval, including the whole period (Fig. 2c).Long-term changes in modelled spawning stock biomass (1850–2019, 2020–2100 and 2020-2300)We modelled mdSSB (Kt in Eq. (1)) using outputs from four Earth System models (ESMs) based on two scenarios of SST/Chlorophyll changes (i.e. SSP245 and SSP585) for the period 1850–2100 (and for one scenario and one ESM until 2300; Fig. 3).For the period 1850–2019, we used daily SST/Chlorophyll changes from the four ESMs to estimate potential changes in mdSSB (thin dashed black curves in Fig. 3a). An average of mdSSB was also calculated (thick green curve in Fig. 3a).For the period 2020–2100, we showed all potential changes in mdSSB based on the four ESMs and both scenarios SSP245 (thin dashed blue curves in Fig. 3a) and SSP585 (thin dashed red curves). An average of mdSSB was also calculated for scenarios SSP245 (thick continuous blue curve) and SSP585 (thick continuous red curve). In addition, we assessed dSSB based on a constant standardised catch fixed to the average of 2008–2019, the last period identified by the cluster analysis (G5, i.e. (alpha X) = 0.03 in Eq. (1)), and the average values of all ESMs for SSP245 (thick dashed blue curve in Fig. 3a) and SSP585 (thick dashed red curve). This analysis was performed to show how a constant catch might alter long-term changes in mdSSB. When Xt (Eq. (1)) reached 0.1, the stock was considered as fully extirpated.Understanding how fishing and climate/environment interact now and in the futureWe modelled dSSB as a function of fishing intensity α and CIEC to show how fishing and the environment interact (Fig. 3b, c). We calculated dSSB for fishing intensity between α = 0 and α = 0.5 every step Ɵ = 0.001 and for mdSSB between K = 0 and K = 1 every step Ɵ = 0.001 to represent values of dSSB as a function of fishing and CIEC. We then superimposed reconstructed ICES dSSB (1963–2019) on the diagram for three periods: 1963–1985 (high SSB), 1986–1999 (pronounced reduction in SSB), and 2000–2019 (low SSB). Maximum standardised SSB for 2020–2100 (or 2300 exclusively for Scenario SSP 585 of IPSL ESM) assessed from four ESMs and scenarios SSP245 and SSP585 were also superimposed. Fishing intensity is unpredictable for 2020–2100 and so we arbitrarily fixed it constant between 0.08 and 0.17 in increments of 0.1 for display purposes, starting by ESMs based on scenario SSP 245 followed by scenario SSP 585 (Fig. 3b). When Xt (Eq. (1)) reached 0.1, the stock was considered as fully extirpated.We calculated an index of sensitivity of dSSB as a function of fishing intensity and CIEC. To do so, we first calculated sensitivity of dSSB to fishing intensity α. Index ζi was calculated at point i from dSSB X and fishing intensity α at i−1 and i+1 (see also Eq. (1)):$$begin{array}{cc}{zeta }_{i}=frac{left|{X}_{i+1}-{X}_{i-1}right|}{left|{alpha }_{i+1}-{alpha }_{i-1}right|} & {{{rm{with}}}},{{{rm{min }}}}(alpha )+{{uptheta }}le ile {{{rm{max }}}}(alpha )-{{uptheta }}end{array}$$ (12) With min(α) = 0, max(α) = 0.5 and Ɵ = 0.001.Similarly, we calculated sensitivity of dSSB to K. Index ηj was calculated at point j from dSSB X and mdSSB K at j−1 and j+1 (see also Eq. (1)):$$begin{array}{cc}{eta }_{j}=frac{left|{X}_{j+1}-{X}_{j-1}right|}{left|{K}_{j+1}-{K}_{j-1}right|} & {{{rm{with}}}},{{{rm{min }}}}left(Kright)+{{{rm{theta }}}}le {{j}}le {{{rm{max }}}}({{{rm{K}}}})-{{uptheta }}end{array}$$ (13) With min(K) = 0, max(K) = 1 and Ɵ = 0.001.Then, we summed the two indices to assess the joint sensitivity of dSSB to fishing intensity Z and mdSSB H:$${{{{bf{I}}}}}_{{{i}},{{j}}}={{{bf{Z}}}}({{{{rm{zeta }}}}}_{{{i}}})+{{{bf{H}}}}({eta }_{{{j}}})$$ (14) Matrix I was subsequently standardised between 0 and 1:$${{{{boldsymbol{I}}}}}^{{{{boldsymbol{* }}}}}=frac{{{{boldsymbol{I}}}}-min ({{{boldsymbol{I}}}})}{max left({{{boldsymbol{I}}}}right)-min ({{{boldsymbol{I}}}})}$$ (15) With I* the matrix of sensitivity of dSSB to fishing intensity and mdSSB standardised between 0 and 1 (Fig. 3c).Number of years needed for recovery after stock collapseWe investigated how the number of years needed for a stock to recover after stock collapse (i.e. dSSB=0.05 in Eq. (1); i.e. 10% of mdSSB) varied as a function of mdSSB (between 0 and 1 by increment of 0.001); this was only influenced by the environmental regime φt and population growth rate r. For this analysis, we fixed a target dSSB of 0.4 (vertical dashed green vertical line in Fig. 3d) and three different values of r: 0.25, 0.5 and 0.75. We simulated a hypothetical moratorium with a fishing intensity α = 0 in Eq. (1).Here, stock collapse was defined as dSSB ≤ 0.1 × mdSSB, i.e. when the dSSB reached less than 10% of the unfished biomass mdSSB. This threshold corresponds to values usually defined in the literature; e.g. Pinsky and colleagues95 defined a collapse when landings are below 10% the average of the five highest landings recorded for more than 2 years, Worm and colleagues69 defined stock collapse when the biomass becomes lower than 10% of the unfished biomass, Andersen96 when it is lower than 20% and Thorpe and De Oliveira67 when it is lower than 10–20%.Potential consequences of fisheries management and climate-induced environmental changesWe examined how fishing and CIEC may affect cod stocks and their exploitation around UK with a focus in the North Sea (Figs. 4, 5). For these analyses, we averaged long-term changes in modelled dSSB corresponding to each scenario (all thin dashed blue and thin red curves in Fig. 3a for SSP245 and 585, respectively). In these analyses, the stock was considered fully extirpated when Xt (Eq. (1)) reached 0.1.Year of cod extirpation for 2020–2100 We estimated year of cod extirpation from 2020 to 2100 in each geographical cell based on (i) a constant fishing intensity (α = 0.04) in time and space, and (ii) an adjusted fishing intensity using the concept of Mean Sustainable Yield (MSY). The choice of α = 0.04 did not alter our conclusions; a lower or a higher value delayed or speed cod extirpation in a predictable way, respectively. In fisheries, MSY is defined as the maximum catch (abundance or biomass) that can be removed from a population over an indefinite period with dX/dt = 0, with X for dSSB and t for time. Despite some criticisms about MSY66, the concept remains a key paradigm in fisheries management35,63. We used this concept to show that controlling fishing intensity delayed cod extirpation. From Eq. (1), we calculated fishing intensity, called αMSYt, so that X remained above XMSYt at all time t:$${alpha }_{{{{{rm{MSY}}}}t}}=rleft(1-frac{{X}_{{{{{rm{MSY}}}}t}}}{{K}_{t}}right)$$ (16) In this analysis, we fixed XMSY t = Kt/2. We assessed ({alpha }_{{{{{rm{MSY}}}}t}}) from Eq. (16) and then estimated dSSB from ({alpha }_{{{{{rm{MSY}}}}t}}) and Kt (based on averaged SSP245 and SSP585) by means of Eq. (1). Although results were displayed at the scale of the north-east Atlantic (around UK), we calculated the difference in year of cod extirpation between scenarios of warming (SSP245 and SSP585) and between scenarios of cod management (constant versus adjusted—MSY— fishing intensity). Differences were presented by means of histograms (Fig. 4). From each histogram, we calculated the median of the differences in year of cod extirpation E97. Pooled standardised catch by 2100 (2020–2100) In term of fishing exploitation, we assessed pooled standardised catch (i.e. pooled dSSB) in 2100 (2020–2100), again for two scenarios of CIEC (SSP245 and 585) and two scenarios of cod management (constant versus adjusted—MSY—fishing intensity; Fig. 5). We then calculated the percentage of reduction in pooled standardised catch caused by fishing or the intensity of warming. Finally, we assessed the median of the percentage of reduction in pooled standardised catch for the North Sea area (51°N–62°N and 3°W–9.5°E). The goal of this analysis was to demonstrate that controlling fishing intensity optimises cod exploitation. Statistics and reproducibilityAll statistical analyses can be reproduced from the equations provided in the text, the cited references or the data available in Supplementary Data.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Genotyping-by-sequencing reveals range expansion of Adonis vernalis (Ranunculaceae) from Southeastern Europe into the zonal Euro-Siberian steppe

    Wesche, K. et al. The Palaearctic steppe biome: A new synthesis. Biodivers. Conserv. 25, 2197–2231 (2016).
    Google Scholar 
    Hurka, H. et al. The Eurasian steppe belt: Status quo, origin and evolutionary history. Turczaninowia 22, 5–71 (2019).
    Google Scholar 
    Willner, W. et al. Formalized classification of semi-dry grasslands in central and eastern Europe. Preslia 91, 25–49 (2019).
    Google Scholar 
    Willis, K. J. & McElwain, J. C. The Evolution Of Plants (Oxford University Press, Oxford, 2002).Suc, J.-P. et al. Reconstruction of Mediterranean flora, vegetation and climate for the last 23 million years based on an extensive pollen dataset. Ecol. Mediterr. 44, 53–85 (2018).
    Google Scholar 
    Strani, F. Impact of Early and Middle Pleistocene major climatic events on the palaeoecology of Southern European ungulates. Hist. Biol. 33, 2260–2275 (2021).
    Google Scholar 
    Chytrý, M. et al. A modern analogue of the Pleistocene steppe-tundra ecosystem in southern Siberia. Boreas 48, 36–56 (2019).
    Google Scholar 
    Manafzadeh, S., Staedler, Y. M. & Conti, E. Visions of the past and dreams of the future in the orient: The Irano–Turanian region from classical botany to evolutionary studies. Biol. Rev. 92, 1365–1388 (2017).PubMed 

    Google Scholar 
    Seregin, A. P., Anačkov, G. & Friesen, N. Molecular and morphological revision of the Allium saxatile group (Amaryllidaceae): Geographical isolation as the driving force of underestimated speciation. Bot. J. Linn. Soc. 178, 67–101 (2015).
    Google Scholar 
    Friesen, N. et al. Dated phylogenies and historical biogeography of Dontostemon and Clausia (Brassicaceae) mirror the palaeogeographical history of the Eurasian steppe. J. Biogeogr. 43, 738–749 (2016).
    Google Scholar 
    Seidl, A. et al. Phylogeny and biogeography of the Pleistocene Holarctic steppe and semi-desert goosefoot plant. Krascheninnikovia ceratoides. Flora 262, 151504 (2020).
    Google Scholar 
    Seidl, A. et al. The phylogeographic history of Krascheninnikovia reflects the development of dry steppes and semi-deserts in Eurasia. Sci. Rep. 11, 6645 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Žerdoner Čalasan, A., Seregin, A. P., Hurka, H., Hofford, N. P. & Neuffer, B. The Eurasian steppe belt in time and space: Phylogeny and historical biogeography of the false flax (Camelina Crantz, Camelineae, Brassicaceae). Flora 260, 151477 (2019).
    Google Scholar 
    Žerdoner Čalasan, A. et al. Pleistocene dynamics of the Eurasian steppe as a driving force of evolution: Phylogenetic history of the genus Capsella (Brassicaceae). Ecol. Evol. 11, 12697–12713 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Žerdoner Čalasan, A., German, D. A., Hurka, H. & Neuffer, B. A story from the Miocene: Clock-dated phylogeny of Sisymbrium L. (Sisymbrieae, Brassicaceae). Ecol. Evol. 11, 2573–2595 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Zaveská, E. et al. Multiple auto- and allopolyploidisations marked the Pleistocene history of the widespread Eurasian steppe plant Astragalus onobrychis (Fabaceae). Mol. Phylogenet. Evol. 139, 106572 (2019).PubMed 

    Google Scholar 
    Franzke, A. et al. Molecular signals for Late Tertiary/Early Quaternary range splits of an Eurasian steppe plant: Clausia aprica (Brassicaceae). Mol. Ecol. 13, 2789–2795 (2004).CAS 
    PubMed 

    Google Scholar 
    Friesen, N. et al. Evolutionary history of the Eurasian steppe plant Schivereckia podolica (Brassicaceae) and its close relatives. Flora 268, 151602 (2020).
    Google Scholar 
    Walter, H. & Straka, H. Arealkunde (Floristisch-Historische Geobotanik), second edition (Ulmer, 1970).Zimmermann, W. 50c. Familie Ranunculáceae in Gustav Hegi, Illustrierte Flora Von Mitteleuropa, Band III, Teil 3, second edition (eds. Rechinger, K. H. & Damboldt, J.) 53–341 (Parey, 1965–1974).Meusel, H., Jäger, E. & Weinert, E. Vergleichende Chorologie Der Zentraleuropäischen Flora, Band I (Gustav Fischer, 1965).Hoffmann, M. H. Ecogeographical differentiation patterns in Adonis sect. Consiligo (Ranunculaceae). Plant Syst. Evol. 211, 43–56 (1998).
    Google Scholar 
    Willner, W. et al. A higher-level classification of the Pannonian and western Pontic steppe grasslands (Central and Eastern Europe). Appl. Veg. Sci. 20, 143–158 (2017).PubMed 

    Google Scholar 
    Lange, D. Conservation and Sustainable Use of Adonis vernalis, a Medicinal Plant in International Trade (Landwirtschaftsverlag, Münster, 2000).Denisow, B., Wrzesień, M. & Cwener, A. Pollination and floral biology of Adonis vernalis L. (Ranunculaceae)—A case study of threatened species. Acta Soc. Bot. Pol. 83, 29–37 (2014).
    Google Scholar 
    Mitrenina, E. Y. et al. Karyotype and genome size in Adonis vernalis and Adonis volgensis. Turczaninowia 25, 5–15 (2022).
    Google Scholar 
    Zhai, W. et al. Chloroplast genomic data provide new and robust insights into the phylogeny and evolution of the Ranunculaceae. Mol. Phylogenet. Evol. 135, 12–21 (2019).CAS 
    PubMed 

    Google Scholar 
    Bobrov, E. G. Genus 540. ADONIS L. In Flora Of The U.S.S.R., Volume VII, Ranales And Rhoeadales (ed. Komarov, V. L.) pp. 403–411 (Academy of Sciences of the U.S.S.R., 1970).Pisareva, V. V. et al. Changes in the landscape and climate of Eastern Europe in the Early Pleistocene. Stratigr. Geol. Correl. 27, 475–497 (2019).ADS 

    Google Scholar 
    Vislobokova, I., Tesakov, A. Early And Middle Pleistocene Of Northern Eurasia. In Encyclopedia Of Quaternary Science, Vol 4, 2nd edn (ed. Elias, S. A.) pp. 605–614 (Elsevier, Amsterdam, 2013).Hirsch, H. et al. High genetic diversity declines towards the geographic range periphery of Adonis vernalis, a Eurasian dry grassland plant. Plant Biol. 17, 1233–1241 (2015).CAS 
    PubMed 

    Google Scholar 
    Kirschner, P. et al. Long-term isolation of European steppe outposts boosts the biome’s conservation value. Nat. Commun. 11, 1968 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Willner, W. et al. Long-term continuity of steppe grasslands in eastern Central Europe: Evidence from species distribution patterns and chloroplast haplotypes. J. Biogeogr. 48, 3104–3117 (2021).
    Google Scholar 
    Molnár, Z., Biró, M., Bartha, S. & Fekete, G. Past trends, present state and future prospects of Hungarian forest-steppes. In Eurasian Steppes. Ecological Problems And Livelihoods In A Changing World (eds Werger, M. J. A. & van Staalduinen, M. A.) pp. 209–252 (Springer, Dordrecht, 2012).
    Google Scholar 
    Liedtke, H. Die Nordischen Vereisungen in Mitteleuropa, 2nd edn. (Zentralausschuß für deutsche Landeskunde, Trier, 1981).Sizikova, A. O. & Zykina, V. S. The dynamics of the Late Pleistocene loess formation, Lozhok section, Ob loess Plateau, SW Siberia. Quat. Int. 365, 4–14 (2015).
    Google Scholar 
    Zykina, V. S. & Zykin, V. S. Pleistocene warming stages in Southern West Siberia: Soils, environment, and climate evolution. Quat. Int. 106–107, 233–243 (2003).
    Google Scholar 
    Shumilovskikh, L., Sannikov, P., Efimik, E., Shestakov, I. & Mingalev, V. V. Long-term ecology and conservation of the Kungur forest-steppe (pre-Urals, Russia): Case study Spasskaya Gora. Biodivers. Conserv. 30, 4061–4087 (2021).
    Google Scholar 
    Markova, A. & Puzachenko, A. Vertebrate records/Late Pleistocene of Northern Asia. In Encyclopedia of Quaternary Science Vol. 4 (ed. Elias, S. A.) 3158–3175 (Elsevier, Amsterdam, 2007).Gómez, C. & Espadaler, X. An update of the world survey of myrmecochorous dispersal distances. Ecography 36, 1193–1201 (2013).
    Google Scholar 
    Albert, A. et al. Seed dispersal by ungulates as an ecological filter: A trait-based meta-analysis. Oikos 124, 1109–1120 (2015).
    Google Scholar 
    Albert, A., Mårell, A., Picard, M. & Baltzinger, C. Using basic plant traits to predict ungulate seed dispersal potential. Ecography 38, 440–449 (2015).
    Google Scholar 
    Popescu, S.-M. et al. Late Quaternary vegetation and climate of SE Europe–NW Asia according to pollen records in three offshore cores from the Black and Marmara seas. Paleobiodivers. Paleoenviron. 101, 197–212 (2021).
    Google Scholar 
    Markova, A. K., Simakova, A. N. & Puzachenko, A. Y. Ecosystems of Eastern Europe at the time of maximum cooling of the Valdai glaciation (24–18 kyr BP) inferred from data on plant communities and mammal assemblages. Quat. Int. 201, 53–59 (2009).
    Google Scholar 
    Kajtoch, Ł et al. Phylogeographic patterns of steppe species in Eastern Central Europe: A review and the implications for conservation. Biodivers. Conserv. 25, 2309–2339 (2016).
    Google Scholar 
    Kropf, M., Bardy, K., Höhn, M. & Plenk, K. Phylogeographical structure and genetic diversity of Adonis vernalis L. (Ranunculaceae) across and beyond the Pannonian region. Flora 262, 151497 (2020).
    Google Scholar 
    Plenk, K., Bardy, K., Höhn, M., Thiv, M. & Kropf, M. No obvious genetic erosion, but evident relict status at the westernmost range edge of the Pontic-Pannonian steppe plant Linum flavum L. (Linaceae) in Central Europe. Ecol. Evol. 7, 6527–6539 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Magyari, E. K. et al. Late Pleniglacial vegetation in eastern-central Europe: Are there modern analogues in Siberia? Quat. Sci. Rev. 95, 60–79 (2014).ADS 

    Google Scholar 
    Doležel, J., Greilhuber, J. & Suda, J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233–2244 (2007).PubMed 

    Google Scholar 
    Shaw, J., Lickey, E. B., Schilling, E. E. & Small, R. L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am. J. Bot. 94, 275–288 (2007).CAS 
    PubMed 

    Google Scholar 
    Shaw, J. et al. The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am. J. Bot. 92, 142–166 (2005).CAS 
    PubMed 

    Google Scholar 
    Heckenhauer, J., Barfuss, M. H. J. & Samuel, R. Universal multiplexable matK primers for DNA barcoding of angiosperms. Appl. Plant Sci. 4, 1500137 (2016).
    Google Scholar 
    White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.) pp. 315–322 (Academic Press, Cambridge, 1990).
    Google Scholar 
    Simmons, M. P. & Ochoterena, H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381 (2000).CAS 
    PubMed 

    Google Scholar 
    Müller, K. SeqState: Primer design and sequence statistics for phylogenetic DNA datasets. Appl. Bioinformat. 4, 65–69 (2005).
    Google Scholar 
    Swofford, D. L. PAUP*. Software. https://paup.phylosolutions.com/.Kozlov, A., Darriba, D., Flouri, T., Morel, B. & A.,. Stamatakis RAxML-NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heled, J. & Drummond, A. J. Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst. Biol. 61, 138–149 (2012).PubMed 

    Google Scholar 
    Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A. FigTree. Software. http://tree.bio.ed.ac.uk/software/figtree/.Wendler, N. et al. Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnol. J. 12, 1122–1131 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Eaton, D. A. R. & Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 2592–2594 (2020).CAS 
    PubMed 

    Google Scholar 
    Weiß, C. L., Pais, M., Cano, L. M., Kamoun, S. & Burbano, H. A. nQuire: A statistical framework for ploidy estimation using next generation sequencing. BMC Bioinform. 19, 122 (2018).
    Google Scholar 
    Corrêa dos Santos, R. A., Goldman, G. H. & Riaño-Pachón, D. M. ploidyNGS: Visually exploring ploidy with next generation sequencing data. Bioinformatics 33, 2575–2576 (2017).
    Google Scholar 
    Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
    Google Scholar 
    R Core Team. R. A language and environment for statistical computing. Software. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.Gruber, B., Unmack, P. J., Berry, O. F. & Georges, A. dartR: An R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18, 691–699 (2018).PubMed 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS 
    PubMed 

    Google Scholar 
    Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2005).PubMed 

    Google Scholar 
    Kalinowski, S. T. HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).CAS 

    Google Scholar  More

  • in

    The African Development Corridors Database: a new tool to assess the impacts of infrastructure investments

    The African Development Corridors database is publicly available. The visualisation of the database that can be explored interactively here: https://dcp-unep-wcmc.opendata.arcgis.com/. The data is deposited in the Dryad Digital Repository referenced as Thorn, J. P.R., Mwangi, B.; Juffe Bignoli, D., The African Development Corridors Database, Dryad, Dataset, https://doi.org/10.5061/dryad.9kd51c5hw (2022)43. The final data were compiled into an online Master database spreadsheet, using the project code data as the merging attribute of the spatial and tabular database (AfricanDevelopmentCorridorsDatabase2022.csv). The African Development Corridor Database is presented as a GeoPackage file (.gpkg) and ESRI file Geodatabase (.gdb) composed by line and point feature datasets with the 22 associated attributes for all mapped corridors, a table with corridors that could not be mapped (also with the attributes), and a table with all sources consulted for each project code.We created a data standard to ensure a systematic and standardised data collection (Supplementary Table 2). Each data record in the database represents a project within a development corridor. To group all projects within the same development corridor we used a unique identifier composed by three letters that identified the corridor plus a number unique for each project or record. For example, the Lamu port project in Kenya within the Lamu Port South Sudan Ethiopia Transport Corridor (LAPSSET) was represented as LAP000. In this corridor we identified 20 projects, from LAP0001 which is the Lamu Port to LAP0020 which is the Isiolo-Lokichar-Lodwar-Nadapal Highway in Kenya. In addition to the unique identifier for each project, the data standard includes data attributes that provide detailed information about each project. Table 1 describes the attributes included in the database. Supplementary Table 3 summarises the 79 corridors included in the database.Table 1 List of the attributes included in the African Development Corridors Database.Full size tableInfrastructure types and status of development corridors in AfricaThe data consists of a total of 79 corridors consisting of 184 projects (Fig. 2). Of the 12 infrastructure types, the most predominant form of infrastructure in Africa’s development corridors is roads (n = 64, 34.8%), followed by wet ports (n = 38, 20.7%), passenger and freight railways (n = 33, 17.9%), and airports (n = 14, 7.6%). Fewer resort cities, electricity transmission lines, dry ports, industrial parks, and water pipelines comprise development corridors (all ≤ n = 3, 1.6%) (Fig. 3). We acknowledge our study might not include many infrastructure developments that are components projects of larger programmes but are not yet labelled as corridors. A total of 107 (58.7%) projects are operational, 35 (19%) are in progress, 25 (13.6%) are planned, 25 (13.9%) are being upgraded, and 2(1%) are on hold.Fig. 2Map showing the distribution of all the development corridors included in the African Development Corridors Database and their infrastructure type.Full size imageFig. 3Subset of highest frequencies of key attributes captured in the database.Full size imageSpatial distributionThe linear distance of development corridors in Africa is 122,294 km – which approximates to three times the Earth’s circumference, with an average of 1703.84 ± 213.19 km (mean, SE), ranging from 4–11,141 km. In terms of number of projects per country, Kenya has the most projects (n = 34, 18.5%), followed by Tanzania (n = 18, 9.8%), South Africa and Democratic Republic of the Congo (n = 17, 9.2% ea.), Ethiopia (n = 15, 8.2%), Mozambique and Zambia (n = 14, 7.6%), Angola, Uganda, Guinea and Cameroon (n = 12, 6.5%), Namibia (n = 11, 6.0%), Republic of Congo (n = 10, 5.4%), Burundi and Chad (n = 9, 4.9%), Malawi, Senegal, and Zimbabwe (n = 8, 4.4%), and Burkina Faso and Ghana (n = 7, 3.8%). Due to differences in the frequency and quality that countries publish data on infrastructure and development corridor investments, coverage may be lower for some regions, or some periods (i.e., recent, or further in the past).Investments in development corridorsAdjusting for inflation, the total investment of development corridors that is captured in the database ranges between USD 547.29–658.62 billion. The average cost of a corridor ranges between USD 3.46 ± 1.92 billion and USD 4.17 ± 2.04 billion. This is a notable sum, considering the average GDP in sub-Saharan Africa is USD 1.48 billion44. The most expensive development corridor project is the first of the nine Trans African Highway projects at USD 78.20 billion (when adjusted for inflation) – comprising transcontinental roads across Africa. We were able to capture the budget (or at least a proportion of the budget) for 84.7% of all projects.Temporal evolution of growth of development corridorsInvestments started in the 1800s and have increased exponentially (Fig. 4). Over a fifty-year period, the greatest number of investments took place between 1950 and 2000. Spikes in investments occurred particularly around 1900, which was when there was a wave of new imperialism across the continent, followed in the 1960s when many countries across sub-Saharan Africa gained independence. The third spike in investment was in the last decade, particularly since 2013, when we have seen rapid growth in foreign direct investment in Africa under initiatives such as the Belt and Road Initiative. According to the Ernst and Young Africa Attractiveness Survey (2019)45, the largest foreign direct investment (in terms of capital) between 2014–2018 came from China (USD 72,235 million), France (USD 34,172 million), USA (USD 30,885 million), the United Arab Emirates (USD 25,278 million) and the United Kingdom (USD 17,768 million).Fig. 4(a) Temporal evolution of investment in development corridors in Africa. (b) Annual investments per annum in development corridors in Africa (USD maximum, before adjusting for inflation).Full size imageDonors that are funding development corridorsAcross Africa, regional development banks invested the most in development corridors (30.8%), with the African Development Bank funding the majority (24.3%) of all projects. Outside of Africa, the regional development banks that invested in the most projects are the Export-Import Bank of China (n = 13, 3.8%), the European Investment Bank (n = 10, 2.8%) and the Arab Bank for Economic Development in Africa (n = 4, 1.2% ea.). National governments funded about 29.8% of all projects. The Government of Kenya funded the most projects (n = 26; 7.5%), followed by the Governments of Tanzania (n = 7, 2.0%) and South Africa (n = 4, 1.2%). Multilateral banks funded 10.9% of projects – mostly from the World Bank (n = 33, 9.54%) and a few from the International Finance Corporation (n = 4, 1.6%). The international development community funded only 6.1% – of which the OPEC Fund for International Development funded four projects. Private companies continue to invest in a small percentage of development corridors (3.5%), but this is higher than national banks that invest in 3.2%. Regional Economic Community bodies have invested in 15 (4.8%) of all 184 projects. The average number of donors per corridor ranged from one to 12.Weighting of investments by donor typeIn terms capital funded per donor type, Regional Development Banks invested the most (totalling USD 30.72 billion), followed by national governments (USD 20.45 billion). The figure then drops substantially to international development agencies (USD6.17 billion) and multilateral banks (USD 3.76 billion). These results are limited by the fact that we were only able to capture the amount funded delineated by donor type for 22.58% (or USD 70.24 billion) of the minimum of all investments (USD 311.14 billion) before adjusting for inflation.Commodities transportedA total of 147 commodities were captured. The top twenty commodities traded were rice (n = 52, 28.7% of all projects), sugar (27.0%), fish and petroleum (24.3% ea.), passengers (21.6%), textiles (21.1%), maize (19.5%), coffee (18.9%), cement and timber (17.8% ea.) followed by cotton, crude petroleum, vehicle spare parts, beverages, copper, fruit, fertilisers, gold, pharmaceutical products, and tobacco.Beneficiaries and net supplier or receiverApproximately 213 different beneficiaries were identified – predominantly local communities (n = 134 of projects, 72.8%), followed by national and local governments (63.0%), traders (51.1%), agricultural farmers and livestock producers (27.7%), ports (27.2%), industries (25.5%), truck drivers (22.3%), tourists (17.4%), entrepreneurs (12.0%), and logistics companies (11.4%). Almost all (89.1%) of corridors are net receivers and suppliers of commodities, while only 13 (7.1%) are net suppliers and seven are net receivers (3.8%). More

  • in

    An isolated population reveals greater genetic structuring of the Australian dingo

    Alvares, F. et al. Old Wolrd Canis spp. with taxonomic ambiguity: Workshop conclusions and recommendations Vairao, Portugal, 28th–30th May 2019. Canid News (Online Edition) (2019).Jackson, S. M. et al. Taxonomy of the dingo: It’s an ancient dog. Aust. Zool. 41, 347–357 (2021).
    Google Scholar 
    Stephens, D., Wilton, A. N., Fleming, P. J. S. & Berry, O. Death by sex in an Australian icon: A continent-wide survey reveals extensive hybridization between dingoes and domestic dogs. Mol. Ecol. 24, 5643–5656 (2015).CAS 
    PubMed 

    Google Scholar 
    Cairns, K. M., Shannon, L. M., Koler-Matznick, J., Ballard, J. W. O. & Boyko, A. R. Elucidating biogeographical patterns in Australian native canids using genome wide SNPs. PLoS ONE 13, e0198754 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Fleming, P. J. S., Ballard, G. & Cutter, N. There is no Dingo dilemma: legislation facilitates culling, containment and conservation of Dingoes in New South Wales. Aust. Zool. 41, 408–416 (2021).
    Google Scholar 
    Corbett, L. K. The Dingo in Australia and Asia. Second edn, (JB Books Australia, 2001).Newsome, T. M. et al. Making a new dog?. Bioscience 67, 374–381 (2017).
    Google Scholar 
    Wang, G.-D. et al. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res. 26, 21–33 (2016).PubMed 

    Google Scholar 
    Smith, B. The Dingo Debate: Origins, Behaviour and Conservation. (CSIRO Publishing, 2015).Jackson, S. M. et al. The dogma of dingoes-taxonomic status of the dingo: A reply to Smith et al. Zootaxa 4564, 198–212 (2019).
    Google Scholar 
    Zhang, S. J. et al. Genomic regions under selection in the feralization of the dingoes. Nat. Commun. 11, 671 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Balme, J. & O’Connor, S. Dingoes and Aboriginal social organization in Holocene Australia. J. Archaeol. Sci. Rep. 7, 775–781 (2016).
    Google Scholar 
    Cairns, K. M. What is a dingo – origins, hybridisation and identity. Aust. Zool. 41(3), 322–337 (2021).
    Google Scholar 
    Allen, B. L. & West, P. Influence of dingoes on sheep distribution in Australia. Aust. Vet. J. 91, 261–267 (2013).CAS 
    PubMed 

    Google Scholar 
    Fleming, P. J. S. in Carnivores of Australia: Past, Present and Future (eds A.S. Glen & C.R. Dickman) Ch. 6, 105–149 (CSIRO Publishing, 2014).Stephens, D. The molecular ecology of Australian wild dogs: hybridisation, gene flow and genetic structure at multiple geographic scales, The University of Western Australia, (2011).Cairns, K. M., Nesbitt, B. J., Laffan, S. W., Letnic, M. & Crowther, M. S. Geographic hot spots of dingo genetic ancestry in southeastern Australia despite hybridisation with domestic dogs. Conserv. Genet. 21, 77–90 (2020).CAS 

    Google Scholar 
    Wilton, A. N., Steward, D. J. & Zafiris, K. Microsatellite variation in the Australian dingo. J. Hered. 90, 108–111 (1999).CAS 
    PubMed 

    Google Scholar 
    Allendorf, F. W., Leary, R. F., Spruell, P. & Wenburg, J. K. The problems with hybrids: Setting conservation guidelines. Trends Ecol. Evol. 16, 613–622 (2001).
    Google Scholar 
    Atkinson, J. An account of the state of agriculture & grazing in New South Wales. (J. Cross, 1826).Massy, C. The Australian Merino: The Story of a Nation (Revised and updated). xxii,1262 (Random House Australia, 2007).Cairns, K. M., Brown, S. K., Sacks, B. N. & Ballard, J. W. O. Conservation implications for dingoes from the maternal and paternal genome: Multiple populations, dog introgression, and demography. Ecol. Evol. 7, 9787–9807 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Driscoll, C., Yamaguchi, N., O’Brien, S. J. & Macdonald, D. W. A suite of genetic markers useful in assessing wildcat (Felis silvestris ssp.)-domestic cat (Felis silvestris catus) admixture. J. Hered. 102(1), S87–S90 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Bohling, J. H. & Waits, L. P. Factors influencing red wolf–coyote hybridization in eastern North Carolina USA. Biol. Conserv. 184, 108–116 (2015).
    Google Scholar 
    Fleming, P., Corbett, L., Harden, R. & Thomson, P. in Managing the Impacts of Dingoes and Other Wild Dogs. (Bureau of Rural Sciences, Canberra, 2001).Van Veldhuisen, R. Pipe dreams: A history of water supply in the Wimmera-Mallee (Wimmera Mallee Water, 2001).Newsome, A. The distribution of red kangaroos, Megaleia rufa (Desmarest), about sources of persistent food and water in central Australia. Aust. J. Zool. 13, 289–300 (1965).
    Google Scholar 
    James, C. D., Landsberg, J. & Morton, S. R. Provision of watering points in the Australian arid zone: A review of effects on biota. J. Arid Environ. 41, 87–121 (1999).ADS 

    Google Scholar 
    Robinson, J. A., Brown, C., Kim, B. Y., Lohmueller, K. E. & Wayne, R. K. Purging of strongly deleterious mutations explains long-term persistence and absence of inbreeding depression in island foxes. Curr. Biol. 28, 3487-3494.e3484 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benazzo, A. et al. Survival and divergence in a small group: The extraordinary genomic history of the endangered Apennine brown bear stragglers. PNAS 114, E9589–E9597 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mattucci, F. et al. Genomic approaches to identify hybrids and estimate admixture times in European wildcat populations. Sci. Rep. 9, 11612 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomson, P. C., Rose, K. & Kok, N. E. The behavioural ecology of dingoes in north-western Australia. VI. Temporary extra-terrestrial movements and dispersal. Wildl. Res. 19, 585–595 (1992).
    Google Scholar 
    Newsome, T. M., Ballard, G.-A., Dickman, C. R., Fleming, P. J. S. & van de Ven, R. Home range, activity and sociality of a top predator, the dingo: A test of the Resource Dispersion Hypothesis. Ecography 36, 914–925 (2013).
    Google Scholar 
    Giglio, R. M., Rocke, T. E., Osorio, J. E. & Latch, E. K. Characterizing patterns of genomic variation in the threatened Utah prairie dog: Implications for conservation and management. Evol. Appl. 14, 1036–1051 (2021).PubMed 

    Google Scholar 
    Conroy, G. C. et al. Conservation concerns associated with low genetic diversity for K’gari–Fraser Island dingoes. Sci. Rep. 11, 9503 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frankham, R. Do island populations have less genetic variation than mainland populations?. Heredity 78, 311–327 (1997).PubMed 

    Google Scholar 
    Funk, W. C. et al. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Mol. Ecol. 25, 2176–2194 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Behrendorff, L. Best-practice dingo management: six lessons from K’gari (Fraser Island). Aust. Zool. 41, 521–533 (2021).
    Google Scholar 
    van Eeden, L. M., Smith, B. P., Crowther, M. S., Dickman, C. R. & Newsome, T. M. ‘The dingo menace’: An historic survey on graziers’ management of an Australian carnivore. Pac. Conserv. Biol. 25, 245–256 (2019).
    Google Scholar 
    Whiting, S. D., Long, J. L., Hadden, K. M., Lauder, A. D. K. & Koch, A. U. Insights into size, seasonality and biology of a nesting population of the Olive Ridley turtle in northern Australia. Wildl. Res. 34, 200–210 (2007).
    Google Scholar 
    Banks, S. C., Hoyle, S. D., Horsup, A., Sunnucks, P. & Taylor, A. C. Demographic monitoring of an entire species (the northern hairy-nosed wombat, Lasiorhinus krefftii) by genetic analysis of non-invasively collected material. Anim. Conserv. 6, 101–107 (2003).
    Google Scholar 
    Parker, H. G. et al. Genomic analyses reveal the influence of geographic origin, migration, and hybridization on modern dog breed development. Cell Rep. 19, 697–708 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thackway, R. & Cresswell, I. An Interim Biogeographic Regionalisation for Australia: A Framework for Setting Priorities in the National Reserves System Cooperative Program. Version 4, (Australian Nature Conservation Agency, Reserve Systems Unit, 1995).Bureau of Meteorology & CSIRO. (Bureau of Meteorology, CSIRO and Farmlink, http://www.bom.gov.au/climate/climate-guides/guides/01-Mallee-VIC-Climate-Guide.pdf, 2019).Rowan, J. N. & Downes, R. G. in Soil Conservation Authority of Victoria (ed Brookes, A.C.) 1–55 (Govt. Printer, Melbourne, 1963).Longmire, J. L., Maltbie, M. & Baker, R. J. Use of “lysis buffer” in DNA isolation and its implications for museum collections. Occas. Pap. Mus. Tex. Tech. Univ. 163, 1–3 (1997).
    Google Scholar 
    Tatler, J., Prowse, T. A. A., Roshier, D. A., Cairns, K. M. & Cassey, P. Phenotypic variation and promiscuity in a wild population of pure dingoes (Canis dingo). J. Zool. Syst. Evol. Res. 59, 311–322 (2020).
    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Francis, R. M. pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32 (2017).CAS 
    PubMed 

    Google Scholar 
    Wang, J. The computer program structure for assigning individuals to populations: Easy to use but easier to misuse. Mol. Ecol. Resour. 17, 981–990 (2017).CAS 
    PubMed 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 

    Google Scholar 
    Earl, D. A. & von Holdt, B. M. Structure harvester: A website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Google Scholar 
    Verity, R. & Nichols, R. A. Estimating the number of subpopulations (K) in structured populations. Genetics 203, 1827–1839 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 

    Google Scholar 
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Keenan, K. et al. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).
    Google Scholar 
    Peakall, R. & Smouse, P. E. genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).
    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lynch, M. & Ritland, K. Estimation of pairwise relatedness with molecular markers. Genetics 152, 1753–1766 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).CAS 
    PubMed 

    Google Scholar 
    Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).PubMed 

    Google Scholar 
    Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).CAS 
    PubMed 

    Google Scholar 
    Shirk, A. J. & Cushman, S. A. sGD: Software for estimating spatially explicit indices of genetic diversity. Mol. Ecol. Resour. 11, 922–934 (2011).CAS 
    PubMed 

    Google Scholar 
    Schnute, J., Boers, N., Haigh, R. & Couture-Beil, A. Introduction to PBSmapping. (2016). More