Microbiome diversity and metabolic capacity determines the trophic ecology of the holobiont in Caribbean sponges
Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR. Long-term region-wide declines in Caribbean corals. Science. 2003;301:958–60.CAS
PubMed
Google Scholar
Knowlton N. The future of coral reefs. Proc Natl Acad Sci USA. 2001;98:5419–25.CAS
PubMed
PubMed Central
Google Scholar
Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, et al. Impacts of biodiversity loss on ocean ecosystem services. Science. 2006;314:787–90.CAS
PubMed
Google Scholar
Dudgeon SR, Aronson RB, Bruno JF, Precht WF. Phase shifts and stable states on coral reefs. Mar Ecol Prog Ser. 2010;413:201–16.
Google Scholar
Bell JJ, Davy SK, Jones T, Taylor MW, Webster NS. Could some coral reefs become sponge reefs as our climate changes? Glob Climate Change. 2013;19:2613–24.
Google Scholar
McMurray SE, Henkel TP, Pawlik JR. Demographics of increasing populations of the giant barrel sponge Xestospongia muta in the Florida Keys. Ecology. 2010;91:560–70.PubMed
Google Scholar
Bell JJ. The functional roles of marine sponges. Est Coast Shelf Sci. 2008;79:341–53.
Google Scholar
Lesser MP, Slattery M. Will coral reef sponges be winners in the Anthropocene? Glob Change Biol. 2020;26:3202–11.
Google Scholar
Pankey MS, Plachetzki DC, Macartney KJ, Gastaldi M, Slattery M, Gochfeld DJ, et al. Co-phylogeny and convergence shape holobiont evolution in sponge-microbe symbioses. Nat Ecol Evol. 2022;6:750–62.
Google Scholar
Lesser MP, Slattery M, Mobley CD. Biodiversity and functional ecology of mesophotic coral reefs. Ann Rev Ecol Syst. 2018;49:49–71.
Google Scholar
Diaz MC, Rützler K. Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci. 2001;69:535–46.
Google Scholar
Wulff JL. Ecological interactions and the distribution, abundance, and diversity of sponges. Adv Mar Biol. 2012;61:273–344.PubMed
Google Scholar
Lesser MP. Benthic-pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. J Exp Mar Biol Ecol. 2006;328:277–88.
Google Scholar
Perea-Blazquez A, Davy SK, Bell JJ. Estimates of particulate organic carbon flowing from the pelagic environment to the benthos through sponge assemblages. PLoS One. 2012;7:e29569.CAS
PubMed
PubMed Central
Google Scholar
Lesser MP, Slattery M. Ecology of Caribbean sponges: are top-down or bottom-up processes more important? PLoS One. 2013;8:e79799.CAS
PubMed
PubMed Central
Google Scholar
Pawlik JR. The chemical ecology of sponges on Caribbean reefs: natural products shape natural systems. BioScience. 2011;61:888–98.
Google Scholar
Slattery M, Gochfeld DJ. Chemical interactions among marine competitors, and host-pathogens. In: Fattorusso, E, Gerwick, WH, Taglialatela-Scafati, O (eds). Handbook of Marine Natural Products. Springer, 2012. pp. 824–59.Thacker RW, Freeman CJ. Sponge-microbe symbioses: recent advances and new directions. Adv Mar Biol. 2012;62:57–112.PubMed
Google Scholar
Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Biol Rev. 2007;71:295–347.CAS
Google Scholar
Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, et al. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J. 2012;6:564–76.CAS
PubMed
Google Scholar
Gloeckner V, Wehrl M, Moitinho-Silva L, Gernert C, Schupp P, Pawlik JR, et al. The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol Bull. 2014;227:78–88.PubMed
Google Scholar
Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, et al. Microbial diversity of marine sponges. Prog Mol Subcell Biol. 2003;37:59–88.CAS
PubMed
Google Scholar
Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformation in marine symbioses. Trends Microbiol. 2010;18:455–63.CAS
PubMed
Google Scholar
Zhang F, Jonas L, Lin H, Hill RT. Microbially mediated nutrient cycles in marine sponges. FEMS Microbiol Ecol. 2019;95:115.
Google Scholar
Schläppy M-L, Schöttner SI, Lavik G, Kuypers MMM, de Beer D, Hoffmann F. Evidence of nitrification and denitrification in high and low microbial abundance sponges. Mar Biol. 2010;157:593–602.PubMed
Google Scholar
Giles EC, Kamke J, Moitinho-Silva L, Taylor MW, Hentschel U, Ravasi T, et al. Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol Ecol. 2013;83:232–41.CAS
PubMed
Google Scholar
Weisz JB, Lindquist N, Martens CS. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities. Oecologia. 2008;155:367–76.PubMed
Google Scholar
de Goeij JM, van Oevelen D, Vermiej MJA, Osinga R, Middelburg JJ, de Goeij AFPM, et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science. 2013;342:108–10.PubMed
Google Scholar
de Goeij JM, Lesser MP, Pawlik JR. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In: Carballo, J, Bell, J eds. Climate Change, Ocean Acidification and Sponges. Springer, 2017. pp 373–410.Tanaka Y, Miyajima T, Wtanabe A, Nadaoka K, Yamamoto T, Ogawa H. Distribution of dissolved organic carbon and nitrogen in a coral reef. Coral Reefs. 2011;30:533–41.
Google Scholar
Lesser MP, Slattery M, Laverick JH, Macartney KJ, Bridge TC. Global community breaks at 61 m on mesophotic coral reefs. Global Ecol Biogeogr. 2019;28:1403–16.
Google Scholar
Lønborg C, Álvarez-Salgado XA, Duggan S, Carreira C. Organic matter bioavailability in tropical coastal waters: The Great Barrier Reef. Limnol Oceanogr. 2018;63:1015–35.
Google Scholar
Macartney KJ, Abraham AC, Slattery M, Lesser MP. Growth and feeding in the sponge Agelas tubulata from shallow to mesophotic depths on Grand Cayman Island. Ecosphere. 2021;12:e03764.
Google Scholar
Ribes M, Coma R, Atkinson MJ, Kinzie RA. Particle removal by coral reef communities: picoplankton is a major source of nitrogen. Mar Ecol Prog Ser. 2003;257:13–23.
Google Scholar
Ribes M, Coma R, Atkinson MJ, Kinzie RA. Sponges and ascidians control removal of particulate organic nitrogen from coral reef water. Limnol Oceanogr. 2005;50:1480–9.CAS
Google Scholar
Maldonado M, Ribes M, van Duyl FC. Nutrient fluxes through sponges: biology, budgets, and ecological implications. Adv Mar Biol. 2012;62:113–82.PubMed
Google Scholar
Seutin G, White BN, Boag PT. Preservation of avian blood and tissue samples for DNA analyses. Can J Zool. 1991;69:82–90.CAS
Google Scholar
Abraham AC, Gochfeld DJ, Macartney K, Mellow A, Lesser MP, Slattery M. Biochemical variability in sponges across the Caribbean basin. Invertebr Biol. 2021;140:e12341.
Google Scholar
Sunagawa S, Woodley CM, Medina M. Threatened corals provide underexplored microbial habitats. PLoS One. 2010;5:e9554.PubMed
PubMed Central
Google Scholar
Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS
PubMed
Google Scholar
Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37.
Google Scholar
Simion P, Phillippe H, Baurain D, Jager M, Richter RJ, Di Franco A, et al. A Large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr Biol. 2017;27:958–67.CAS
PubMed
Google Scholar
Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CAS
PubMed
PubMed Central
Google Scholar
Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al. vegan: Community Ecology Package. R package version 2.5-5. https://CRAN.R-project.org/package=vegan. Released May, 2019.Pinheiro J, Bates D, DebRoy S, Sarkar D, EISPACK Authors, Heisterkamp S, et al. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-155. https://svn.r-project.org/R-packages/trunk/nlme/. Released Jan, 2022.Kindt R, Coe R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre, ICRAF, 2005. https://www.worldagroforestry.org/publication/tree-diversity-analysis-manual-and-software-common-statistical-methods-ecological-and.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS
PubMed
PubMed Central
Google Scholar
Westbrook A, Ramsdell J, Schuelke T, Normington L, Bergeron RD, Thomas WK, et al. PALADIN: protein alignment for functional profiling whole metagenome shotgun data. Bioinformatics. 2017;33:1473–8.CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DG, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CAS
PubMed
Google Scholar
Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.CAS
PubMed
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.CAS
PubMed
PubMed Central
Google Scholar
Blin K, Shaw S, Kautsar SA, Medema MH, Weber T. The antiSMASH database version 3: increased taxonomic coverage and new query features for modular enzymes. Nucleic Acids Res. 2009;49:D639–43.
Google Scholar
Conte-Jerpe IE, Thompson PD, Wong CWM, Oliveira NL, Duprey NN, Moynihan MA, et al. Trophic strategy and bleaching resistance in reef-building corals. Sci Adv. 2020;6:eaaz5443.
Google Scholar
Jackson AL, Inger R, Parnell AC, Bearhop S. Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses. Anim Ecol. 2011;80:595–602.
Google Scholar
Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-Garcia C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Comm. 2016;7:11870.CAS
Google Scholar
Erwin PM, Coma R, López-Sendino P, Serrano E, Ribes M. Stable symbionts across the HMA-LMA dichotomy: low seasonal and inter-annual variation in sponge-associated bacteria from taxonomically diverse hosts. FEMS Microbiol Ecol. 2015;91:fiv115.PubMed
Google Scholar
Moitinho-Silva L, Steinert G, Nielsen S, Hardoim CCP, Wu Y-C, McCormack GP. Predicting the HMA-LMA status in marine sponges by machine learning. Front Microbiol. 2017;8:752.PubMed
PubMed Central
Google Scholar
Campana S, Demey C, Busch K, Hentschel U, Muyzer G, de Goeij J. Marine sponges maintain stable bacterial communities between reef sites with different coral to algae cover ratios. FEMS Microbiol Ecol. 2021;97:fiab115.CAS
PubMed
PubMed Central
Google Scholar
Freeman CJ, Thacker RW. Complex interactions between marine sponges and their symbiotic microbial communities. Limnol Oceanogr. 2011;56:1577–86.
Google Scholar
Siegel A, Kamke J, Hochmuth T, Piel J, Richter M, Liang C, et al. Single-cell genomic reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J. 2011;5:61–70.
Google Scholar
Bayer K, Jahn MT, Slaby BM, Moitinho-Silva L, Hentschel U. Marine sponges as Chloroflexi hot spots: genomic insights and high resolution visualization of an abundant and diverse symbiotic clade. mSystems. 2018;3:e00150–18.CAS
PubMed
PubMed Central
Google Scholar
Fan L, Reynolds D, Liu M, Thomas T. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci USA. 2012;109:1878–87.
Google Scholar
Ribes M, Jiménez E, Yahel G, López-Sendino P, Diez B, Massana R, et al. Functional convergence of microbes associated with temperate marine sponges. Environ Microbiol. 2012;14:1224–39.CAS
PubMed
Google Scholar
Thomas T, Rusch D, DeMaere MZ, Yung PY, Lewis M, Halpern A, et al. Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J. 2010;4:1557–67.CAS
PubMed
Google Scholar
Fiore CL, Labrie M, Jarett JK, Lesser MP. Transcriptional activity of the giant barrel sponge, Xestospongia muta holobiont: molecular evidence for metabolic interchange. Front Microbiol. 2015;6:364.PubMed
PubMed Central
Google Scholar
Engel S, Pawlik JR. Allelopathic activities of sponge extracts. Mar Ecol Prog Ser. 2000;207:273–82.
Google Scholar
Gochfeld DJ, Kamel HN, Olson JB, Thacker RW. Trade-offs in defensive metabolite production but not ecological function in healthy and diseased sponges. J Chem Ecol. 2012;38:451–62.CAS
PubMed
Google Scholar
van Duyl FC, Mueller B, Meesters EH. Spatio-temporal variation in stable isotopic signatures (δ13C and δ15N) of sponges on the Saba Bank. PeerJ. 2018;6:e5460.PubMed
PubMed Central
Google Scholar
Fiore CL, Baker DM, Lesser MP. Nitrogen biogeochemistry in the Caribbean sponge, Xestospongia muta: a source or sink of dissolved inorganic nitrogen? PLoS One. 2013;8:e72961.CAS
PubMed
PubMed Central
Google Scholar
Hudspith M, de Goeij JM, Streekstra M, Kornder NA, Bougoure J, Guagliardo P, et al. Harnessing solar power: photoautotrophy supplements the diet of a low-light dwelling sponge. ISME J. 2022; https://doi.org/10.1038/s41396-022-01254-3.Shih JL, Selph KE, Wall CB, Wallsgrove NJ, Lesser MP, Popp BN. Trophic ecology of the tropical Pacific sponge Mycale gradis inferred from amino acid compound-specific isotopic analyses. Microb Ecol. 2020;79:495–510.CAS
PubMed
Google Scholar
Macartney KJ, Slattery M, Lesser MP. Trophic ecology of Caribbean sponges in the mesophotic zone. Limnol Oceanogr. 2021;66:1113–24.CAS
Google Scholar
Southwell MW, Popp BN, Martens CS. Nitrification controls on fluxes and isotopic composition of nitrate from Florida Keys sponges. Mar Chem. 2008;108:96–108.CAS
Google Scholar
Lamb K, Swart PK. The carbon and nitrogen isotopic values of particulate organic material from the Florida Keys: a temporal and spatial study. Coral Reefs. 2008;27:351–62.
Google Scholar
Ferrier-Pagès C, Leal MG. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol Evol. 2019;9:723–40.PubMed
Google Scholar
McMurray SE, Stubler AD, Erwin PM, Finelli CM, Pawlik JR. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar Ecol Prog Ser. 2018;588:1–14.CAS
Google Scholar
Freeman CJ, Easson CG, Baker DM. Metabolic diversity and niche structure in sponges from the Miskito Cays, Honduras. PeerJ. 2014;2:e695.PubMed
PubMed Central
Google Scholar
Freeman CJ, Easson CG, Matterson KO, Thacker RW, Baker DM, Paul VJ. Microbial symbionts and ecological divergence of Caribbean sponges: a new perspective on an ancient association. ISME J. 2020;14:1571–83.PubMed
PubMed Central
Google Scholar
Poppell E, Weisz J, Spicer L, Massaro A, Hill A, Hill M. Sponge heterotrophic capacity and bacterial community structure in high‐and low‐microbial abundance sponges. Mar Ecol. 2014;35:414–24.
Google Scholar
Morganti TM, Ribes M, Yahel G, Coma R. Size is the major determinant of pumping rates in marine sponges. Front Physiol. 2019;10:1474.PubMed
PubMed Central
Google Scholar
Rix L, Ribes M, Coma R, Jahn MT, de Goeij JM, van Oevelen D, et al. Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. ISME J. 2020;14:2554–67.CAS
PubMed
PubMed Central
Google Scholar
O’Brien PA, Tan S, Yang C, Frade PR, Andreakis N, Smith HA, et al. Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME J. 2020;14:2211–22.PubMed
PubMed Central
Google Scholar
Erwin PM, Thacker RW. Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. J Mar Biol Assoc UK. 2007;87:1683–92.CAS
Google Scholar
Palumbi SR. Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science. 1984;225:1478–80.CAS
PubMed
Google Scholar
Slattery M, Gochfeld DJ, Diaz MC, Thacker RW, Lesser MP. Variability in chemical defense across a shallow to mesophotic depth gradient in the Caribbean sponge Plakortis angulospiculatus. Coral Reefs. 2016;35:11–22.
Google Scholar
Morganti T, Coma R, Yahel G, Ribes M. Trophic niche separation that facilitates co‐existence of high and low microbial abundance sponges is revealed by in situ study of carbon and nitrogen fluxes. Limnol Oceanogr. 2017;62:1963–83.CAS
Google Scholar
Maldonado M. Sponge waste that fuels marine oligotrophic food webs: a re-assessment of its origin and nature. Mar Ecol. 2016;37:477–91.
Google Scholar More