More stories

  • in

    Factors underlying bird community assembly in anthropogenic habitats depend on the biome

    Hobbs, R. J. et al. Novel ecosystems: Theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 15, 1–7 (2006).
    Google Scholar 
    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
    Google Scholar 
    Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).
    Google Scholar 
    Zobel, M. The species pool concept as a framework for studying patterns of plant diversity. J. Veg. Sci. 27, 8–18 (2016).
    Google Scholar 
    Birkhofer, K. et al. Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities. J. Anim. Ecol. 86, 511–520 (2017).PubMed 

    Google Scholar 
    Temperton, V. M. Assembly Rules and Restoration Ecology: Bridging the Gap Between Theory and Practice (Island Press, 2004).
    Google Scholar 
    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).PubMed 

    Google Scholar 
    Gascon, C. et al. Matrix habitat and species richness in tropical forest remnants. Biol. Conserv. 91, 223–229 (1999).
    Google Scholar 
    Filloy, J., Zurita, G. A., Corbelli, J. M. & Bellocq, M. I. On the similarity among bird communities: Testing the influence of distance and land use. Acta Oecol. 36, 333–338 (2010).ADS 

    Google Scholar 
    Vaccaro, A., Filloy, J. & Bellocq, M. What land use better preserves the functional and taxonomic diversity of birds in a grassland biome?. Avian Conserv. Ecol. 14, 1 (2019).
    Google Scholar 
    Vaccaro, A. S. & Bellocq, M. I. Diversidad taxonómica y funcional de aves: Diferencias entre hábitats antrópicos en un bosque subtropical. Ecol. Austral 29, 391–404 (2019).
    Google Scholar 
    Sekercioglu, C. H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 153, 153–161 (2012).
    Google Scholar 
    Zurita, G. A. & Bellocq, M. I. Bird assemblages in anthropogenic habitats: Identifying a suitability gradient for native species in the Atlantic Forest. Biotropica 44, 412–419 (2012).
    Google Scholar 
    Azpiroz, A. B. et al. Ecology and conservation of grassland birds in southeastern South America: A review. J. Field Ornithol. 83, 217–246 (2012).
    Google Scholar 
    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).PubMed 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
    Google Scholar 
    Corbelli, J. M. et al. Integrating taxonomic, functional and phylogenetic beta diversities: Interactive effects with the biome and land use across taxa. PLoS ONE 10, 1–17 (2015).
    Google Scholar 
    Purschke, O. et al. Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: Insights into assembly processes. J. Ecol. 101, 857–866 (2013).
    Google Scholar 
    Srivastava, D. S., Cadotte, M. W., Macdonald, A. A. M., Marushia, R. G. & Mirotchnick, N. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648 (2012).PubMed 

    Google Scholar 
    Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).PubMed 

    Google Scholar 
    Mouquet, N. et al. Ecophylogenetics: Advances and perspectives. Biol. Rev. 87, 769–785 (2012).PubMed 

    Google Scholar 
    Ackerly, D. D., Schwilk, D. W. & Webb, C. O. Niche evolution and adaptive radiation: Testing the order of trait divergence. Ecology 87, S50–S61 (2006).CAS 
    PubMed 

    Google Scholar 
    Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843 (2004).CAS 
    PubMed 

    Google Scholar 
    Losos, J. B. et al. Niche lability in the evolution of a Caribbean lizard community. Nature 424, 542–545 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stevens, R. D., Gavilanez, M. M., Tello, J. S. & Ray, D. A. Phylogenetic structure illuminates the mechanistic role of environmental heterogeneity in community organization. J. Anim. Ecol. 81, 455–462 (2012).PubMed 

    Google Scholar 
    García-Navas, V. & Thuiller, W. Farmland bird assemblages exhibit higher functional and phylogenetic diversity than forest assemblages in France. J. Biogeogr. 47, 2392–2404 (2020).
    Google Scholar 
    Henwood, W. D. Toward a strategy for the conservation and protection of the world’s temperate grasslands. Univ. Neb. Press 20, 121–134 (2010).ADS 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Landi, M., Oesterheld, M. & Deregibus, V. A. Manual de especies forrajeras de los pastizales naturales de Entre Ríos (1987).Viglizzo, E. F. et al. Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agric. Ecosyst. Environ. 83, 65–81 (2001).
    Google Scholar 
    Galindo Leal, C. & de Gusmão Câmara, I. The Atlantic Forest of South America: Biodiversity Status, Threats and Outlook (Island Press, 2003).
    Google Scholar 
    Oliveira-Filho, A. T. & Fontes, M. A. L. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32, 793–810 (2000).
    Google Scholar 
    DeGraaf, R. M., Geis, A. D. & Healy, P. A. Bird population and habitat surveys in urban areas. Landsc. Urban Plan. 21, 181–188 (1991).
    Google Scholar 
    Ralph, C. J. et al. Manual de métodos de campo para el monitoreo de aves terrestres. Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, Albany, CA 46 http://www.srs.fs.usda.gov/pubs/31462. https://doi.org/10.3145/epi.2006.jan.15 (1996).Bibby, C., Jones, M. & Marsden, S. Expedition field techniques: Bird surveys. in (ed. Society, R. G.) (1998).Zurita, G. A. & Bellocq, M. I. Spatial patterns of bird community similarity: Bird responses to landscape composition and configuration in the Atlantic forest. Landsc. Ecol. 25, 147–158 (2010).
    Google Scholar 
    Koper, N. & Schmiegelow, F. K. K. A multi-scaled analysis of avian response to habitat amount and fragmentation in the Canadian dry mixed-grass prairie. Landsc. Ecol. 21, 1045 (2006).
    Google Scholar 
    Xeno-canto-Foundation. Xeno-canto website. https://www.xeno-canto.org (2018).Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).
    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org (2018).Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    PubMed 

    Google Scholar 
    Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100 (2008).CAS 
    PubMed 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Core Team. nlme: Linear and Nonlinear mixed effects models. R package version 3.1–117. (2014).Lenth, R. V. Least-Squares Means: The R Package lsmeans. J. Stat. Softw. https://doi.org/10.18637/jss.v069.i01 (2016).Article 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32, 429–437 (2017).PubMed 

    Google Scholar 
    Concepción, E. D. et al. Contrasting trait assembly patterns in plant and bird communities along environmental and human-induced land-use gradients. Ecography 40, 753–763 (2016).
    Google Scholar 
    Cerezo, A., Conde, M. C. & Poggio, S. L. Pasture area and landscape heterogeneity are key determinants of bird diversity in intensively managed farmland. Biodivers. Conserv. 20, 2649–2667 (2011).
    Google Scholar 
    Pretelli, M. G., Isacch, J. P. & Cardoni, D. A. Year-round abundance, richness and nesting of the bird assemblage of tall grasslands in the south-east Pampas region, Argentina. Ardeola 60, 327–343 (2013).
    Google Scholar 
    Molinari, R. L. Biografía de la Pampa: 4 siglos de historia del campo argentino (Fundación Colombina “V Centenario,” 1987).
    Google Scholar 
    Filloy, J. & Bellocq, M. I. Patterns of bird abundance along the agricultural gradient of the Pampean region. Agric. Ecosyst. Environ. 120, 291–298 (2007).
    Google Scholar 
    Le Viol, I. et al. More and more generalists: Two decades of changes in the European avifauna. Biol. Lett. 8, 780–782 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Concepción, E. D., Moretti, M., Altermatt, F., Nobis, M. P. & Obrist, M. K. Impacts of urbanisation on biodiversity: The role of species mobility, degree of specialisation and spatial scale. Oikos 124, 1571–1582 (2015).
    Google Scholar 
    Emerson, B. C. & Gillespie, R. G. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23, 619–630 (2008).PubMed 

    Google Scholar 
    Morse, N. B. et al. Novel ecosystems in the Anthropocene: A revision of the novel ecosystem concept for pragmatic applications. Ecol. Soc. 19, 12 (2014).
    Google Scholar 
    Loyn, R. H., McNabb, E. G., Macak, P. & Noble, P. Eucalypt plantations as habitat for birds on previously cleared farmland in south-eastern Australia. Biol. Conserv. 137, 533–548 (2007).
    Google Scholar 
    Marsden, S., Whiffin, M. & Galetti, M. Bird diversity and abundance in forest fragments and Eucalyptus plantations around an Atlantic forest reserve, Brazil. Biodivers. Conserv. 10, 737–751 (2001).
    Google Scholar 
    Zurita, G. A., Rey, N., Varela, D. M., Villagra, M. & Bellocq, M. I. Conversion of the Atlantic Forest into native and exotic tree plantations: Effects on bird communities from the local and regional perspectives. For. Ecol. Manag. 235, 164–173 (2006).
    Google Scholar 
    Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity ecosystem-function. Ecology 92, 1573–1581 (2011).PubMed 

    Google Scholar 
    Sol, D. et al. The worldwide impact of urbanisation on avian functional diversity. Ecol. Lett. 23, 962–972 (2020).PubMed 

    Google Scholar 
    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
    Google Scholar 
    Palacio, F. X., Ibañez, L. M., Maragliano, R. E. & Montalti, D. Urbanization as a driver of taxonomic, functional, and phylogenetic diversity losses in bird communities. Can. J. Zool. 96, 1114–1121 (2018).
    Google Scholar 
    Sol, D., Bartomeus, I., González-Lagos, C. & Pavoine, S. Urbanisation and the loss of phylogenetic diversity in birds. Ecol. Lett. 20, 721–729 (2017).PubMed 

    Google Scholar 
    Luck, G. W., Carter, A. & Smallbone, L. Changes in bird functional diversity across multiple land uses: Interpretations of functional redundancy depend on functional group identity. PLoS ONE 8, e63671 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coetzee, B. W. T. & Chown, S. L. Land-use change promotes avian diversity at the expense of species with unique traits. Ecol. Evol. 6, 7610–7622 (2016).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Transposable elements maintain genome-wide heterozygosity in inbred populations

    Kristensen, T. N. et al. A test of quantitative genetic theory using Drosophila- effects of inbreeding and rate of inbreeding on heritabilities and variance components. J. Evol. Biol. 18, 763–770 (2005).CAS 
    PubMed 

    Google Scholar 
    Angeloni, F., Ouborg, N. J. & Leimu, R. Meta-analysis on the association of population size and life history with inbreeding depression in plants. Biol. Conserv. 144, 35–43 (2011).
    Google Scholar 
    Caballero, A., Bravo, I. & Wang, J. Inbreeding load and purging: implications for the short-term survival and the conservation management of small populations. Heredity 118, 177–185 (2017).CAS 
    PubMed 

    Google Scholar 
    Park, D. S., Ellison, A. M. & Davis, C. C. Mating system does not predict niche breath. Glob. Ecol. Biogeogr. 27, 804–813 (2018).
    Google Scholar 
    Buckley, J., Daly, R., Cobbold, C. A., Burgess, K. & Mable, B. K. Changing environments and genetic variation: natural variation in inbreeding does not compromise short-term physiological responses. Proc. R. Soc. B Biol. Sci. 286, 20192109 (2019).
    Google Scholar 
    Grossenbacher, D., Briscoe Runquist, R., Goldberg, E. E. & Brandvain, Y. Geographic range size is predicted by plant mating system. Ecol. Lett. 18, 706–713 (2015).PubMed 

    Google Scholar 
    Wright, S. I., Lauga, B. & Charlesworth, D. Rates and patterns of molecular evolution in inbred and outbred arabidopsis. Mol. Biol. Evol. 19, 1407–1420 (2002).CAS 
    PubMed 

    Google Scholar 
    Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Platt, A. et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 6, e1000843 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Lynch, M., Conery, J. & Burger, R. Mutation accumulation and the extinction of small populations. Am. Nat. 146, 489–518 (1995).
    Google Scholar 
    Willis, J. H. The role of genes of large effect on inbreeding depression in Mimulus guttatus. Evolution 53, 1678–1691 (1999).CAS 
    PubMed 

    Google Scholar 
    Coron, C., Méléard, S., Porcher, E. & Robert, A. Quantifying the mutational meltdown in diploid populations. Am. Nat. 181, 623–636 (2013).PubMed 

    Google Scholar 
    Kyriazis, C. C., Wayne, R. K. & Lohmueller, K. E. Strongly deleterious mutations are a primary determinant of extinction risk due to inbreeding depression. Evol. Lett. https://doi.org/10.1002/evl3.209 (2020).Barrett, S. C. H. & Charlesworth, D. Effects of a change in the level of inbreeding on the genetic load. Nature 352, 522–524 (1991).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hedrick, P. W. & Garcia-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 31, 940–952 (2016).PubMed 

    Google Scholar 
    Robinson, J. A., Brown, C., Kim, B. Y., Lohmueller, K. E. & Wayne, R. K. Purging of strongly deleterious mutations explains long-term persistence and absence of inbreeding depression in island foxes. Curr. Biol. 28, 3487–3494.e4 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khan, A. et al. Genomic evidence for inbreeding depression and purging of deleterious genetic variation in Indian tigers. Proc. Natl. Acad. Sci. USA 118, e2023018118 (2021).Byers, D. L. & Waller, D. M. Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu. Rev. Ecol. Syst. 30, 479–513 (1999).
    Google Scholar 
    Goodwillie, C., Kalisz, S. & Eckert, C. G. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 36, 47–79 (2005).
    Google Scholar 
    Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. 8, 269–294 (1966).CAS 
    PubMed 

    Google Scholar 
    Covert, A. W. III, Lenski, R. E., Wilke, C. O. & Ofria, C. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution. Proc. Natl Acad. Sci. USA 110, E3171–E3178 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castellano, D., Coronado-Zamora, M., Campos, J. L., Barbadilla, A. & Eyre-Walker, A. Adaptive evolution is substantially impeded by hill–robertson interference in Drosophila. Mol. Biol. Evol. 33, 442–455 (2016).CAS 
    PubMed 

    Google Scholar 
    Anderson, J. T., Lee, C.-R., Rushworth, C. A., Colautti, R. I. & Mitchell-Olds, T. Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol. Ecol. 22, 699–708 (2013).PubMed 

    Google Scholar 
    Hämälä, T. & Savolainen, O. Genomic patterns of local adaptation under gene flow in arabidopsis lyrata. Mol. Biol. Evol. 36, 2557–2571 (2019).
    Google Scholar 
    Taylor, M. A. et al. Large-effect flowering time mutations reveal conditionally adaptive paths through fitness landscapes in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 116, 17890–17899 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Storz, J. F. Causes of molecular convergence and parallelism in protein evolution. Nat. Rev. Genet. 17, 239–250 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mimura, M. & Aitken, S. N. Local adaptation at the range peripheries of Sitka spruce. J. Evol. Biol. 23, 249–258 (2010).CAS 
    PubMed 

    Google Scholar 
    Stanton-Geddes, J., Tiffin, P. & Shaw, R. G. Role of climate and competitors in limiting fitness across range edges of an annual plant. Ecology 93, 1604–1613 (2012).PubMed 

    Google Scholar 
    Vergeer, P. & Kunin, W. E. Adaptation at range margins: common garden trials and the performance of Arabidopsis lyrata across its northwestern European range. N. Phytol. 197, 989–1001 (2013).
    Google Scholar 
    Volis, S., Ormanbekova, D. & Shulgina, I. Role of selection and gene flow in population differentiation at the edge vs. interior of the species range differing in climatic conditions. Mol. Ecol. 25, 1449–1464 (2016).CAS 
    PubMed 

    Google Scholar 
    Glémin, S., Bazin, E. & Charlesworth, D. Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proc. R. Soc. B Biol. Sci. 273, 3011–3019 (2006).
    Google Scholar 
    Almeida‐Rocha, J. M., Soares, L. A. S. S., Andrade, E. R., Gaiotto, F. A. & Cazetta, E. The impact of anthropogenic disturbances on the genetic diversity of terrestrial species: A global meta‐analysis. Mol. Ecol. 29, 4812–4822 (2020).PubMed 

    Google Scholar 
    Schrader, L. et al. Transposable element islands facilitate adaptation to novel environments in an invasive species. Nat. Commun. 5, 5495 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lu, L. et al. Tracking the genome-wide outcomes of a transposable element burst over decades of amplification. Proc. Natl Acad. Sci. USA 114, E10550–E10559 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schrader, L. & Schmitz, J. The impact of transposable elements in adaptive evolution. Mol. Ecol. 28, 1537–1549 (2019).PubMed 

    Google Scholar 
    Habig, M., Lorrain, C., Feurtey, A., Komluski, J. & Stukenbrock, E. H. Epigenetic modifications affect the rate of spontaneous mutations in a pathogenic fungus. Nat. Commun. 12, 1–13 (2021).
    Google Scholar 
    Wicker, T. et al. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses. Nat. Commun. 7, 1–9 (2016).
    Google Scholar 
    Dubin, M. J., Mittelsten Scheid, O. & Becker, C. Transposons: a blessing curse. Curr. Opin. Plant Biol. 42, 23–29 (2018).CAS 
    PubMed 

    Google Scholar 
    Stapley, J., Santure, A. W. & Dennis, S. R. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol. Ecol. 24, 2241–2252 (2015).CAS 
    PubMed 

    Google Scholar 
    Sultana, T., Zamborlini, A., Cristofari, G. & Lesage, P. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat. Rev. Genet. 18, 292–308 (2017).CAS 
    PubMed 

    Google Scholar 
    Baduel, P. et al. Genetic and environmental modulation of transposition shapes the evolutionary potential of Arabidopsis thaliana. Genome Biol. 22, 1–26 (2021).
    Google Scholar 
    Quesneville, H. Twenty years of transposable element analysis in the Arabidopsis thaliana genome. Mob. DNA 11, 28 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ossowski, S. et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Coulondre, C., Miller, J. H., Farabaugh, P. J. & Gilbert, W. Molecular basis of base substitution hotspots in Escherichia coli. Nature 274, 775–780 (1978).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Duncan, B. K. & Miller, J. H. Mutagenic deamination of cytosine residues in DNA. Nature 287, 560–561 (1980).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Linquist, S. et al. Distinguishing ecological from evolutionary approaches to transposable elements. Biol. Rev. 88, 573–584 (2013).PubMed 

    Google Scholar 
    Dupeyron, M., Singh, K. S., Bass, C. & Hayward, A. Evolution of Mutator transposable elements across eukaryotic diversity. Mob. DNA 10, 1–14 (2019).
    Google Scholar 
    Batstone, R. T. Genomes within genomes: nested symbiosis and its implications for plant evolution. New Phytol. https://doi.org/10.1111/nph.17847 (2021).Pietzenuk, B. et al. Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements. Genome Biol. 17, 209 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Horváth, V., Merenciano, M. & González, J. Revisiting the relationship between transposable elements and the eukaryotic stress response. Trends Genet. 33, 832–841 (2017).PubMed 

    Google Scholar 
    Liu, S. et al. Role of H1 and DNA methylation in selective regulation of transposable elements during heat stress. N. Phytol. 229, 2238–2250 (2021).CAS 

    Google Scholar 
    Mao, H. et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat. Commun. 6, 1–13 (2015).ADS 
    CAS 

    Google Scholar 
    Castelletti, S., Tuberosa, R., Pindo, M. & Salvi, S. A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL vgt1. G3 Genes, Genomes, Genet. 4, 805–812 (2014).CAS 

    Google Scholar 
    Legrand, S. et al. Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mob. DNA 10, 30 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Quadrana, L. et al. Transposition favors the generation of large effect mutations that may facilitate rapid adaption. Nat. Commun. 10, 1–10 (2019).CAS 

    Google Scholar 
    Teschendorf, A. E. & Relton, C. L. Statistical and integrative system-level analysis of DNA methylation data. Nat. Rev. Genet. 19, 129–147 (2019).
    Google Scholar 
    Bonchev, G. & Willi, Y. Accumulation of transposable elements in selfing populations of Arabidopsis lyrata supports the ectopic recombination model of transposon evolution. N. Phytol. 219, 767–778 (2018).CAS 

    Google Scholar 
    Lockton, S., Ross-Ibarra, J. & Gaut, B. S. Demography and weak selection drive patterns of transposable element diversity in natural populations of Arabidopsis lyrata. Proc. Natl Acad. Sci. USA 105, 13965–13970 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lockton, S. & Gaut, B. S. The evolution of transposable elements in natural populations of self-fertilizing Arabidopsis thaliana and its outcrossing relative Arabidopsis lyrata. BMC Evol. Biol. 10, 10 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Mable, B. K., Dart, A. V. R., Berardo, C., Di & Witham, L. Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution 59, 1437–1448 (2005).PubMed 

    Google Scholar 
    Foxe, J. P. et al. Reconstructing origins of loss of self-incompatibility and selfing in North American Arabidopsis lyrata: a population genetic context. Evolution 64, 3495–3510 (2010).PubMed 

    Google Scholar 
    Quadrana, L. et al. The Arabidopsis thaliana mobilome and its impact at the species level. Elife 5, e15716 (2016).Stuart, T. et al. Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation. Elife 5, e20777 (2016).Willi, Y. Mutational meltdown in selfing Arabidopsis lyrata. Evolution 67, 806–815 (2013).PubMed 

    Google Scholar 
    Joschinski, J., van Kleunen, M. & Stift, M. Costs associated with the evolution of selfing in North American populations of Arabidopsis lyrata? Evol. Ecol. 29, 749–764 (2015).
    Google Scholar 
    Koonin, E. V. & Krupovic, M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat. Rev. Genet. 16, 184–192 (2015).CAS 
    PubMed 

    Google Scholar 
    Li, Z.-W. et al. Transposable elements contribute to the adaptation of Arabidopsis thaliana. Genome Biol. Evol. 10, 2140–2150 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Catlin, N. S. & Josephs, E. B. The important contribution of transposable elements to phenotypic variation and evolution. Curr. Opin. Plant Biol. 65, 102140 (2022).CAS 
    PubMed 

    Google Scholar 
    Casacuberta, E. & González, J. The impact of transposable elements in environmental adaptation. Mol. Ecol. 22, 1503–1517 (2013).CAS 
    PubMed 

    Google Scholar 
    Baduel, P., Quadrana, L., Hunter, B., Bomblies, K. & Colot, V. Relaxed purifying selection in autopolyploids drives transposable element over-accumulation which provides variants for local adaptation. Nat. Commun. 10, 1–10 (2019).
    Google Scholar 
    Wos, G., Choudhury, R. R., Kolář, F. & Parisod, C. Transcriptional activity of transposable elements along an elevational gradient in Arabidopsis arenosa. Mob. DNA 12, 7 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stebbins, G. L. Self fertilization and population variability in the higher plants. Am. Nat. 91, 337–354 (1957).
    Google Scholar 
    Takebayashi, N. & Morrell, P. L. Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. Am. J. Bot. 88, 1143–1150 (2001).CAS 
    PubMed 

    Google Scholar 
    Igic, B. & Busch, J. W. Is self‐fertilization an evolutionary dead end? N. Phytol. 198, 386–397 (2013).
    Google Scholar 
    Goldberg, E. E. et al. Species selection maintains self-incompatibility. Science 330, 493–495 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Abu Awad, D. & Billiard, S. The double edged sword: The demographic consequences of the evolution of self-fertilization. Evolution 71, 1178–1190 (2017).PubMed 

    Google Scholar 
    Fijarczyk, A. & Babik, W. Detecting balancing selection in genomes: limits and prospects. Mol. Ecol. 24, 3529–3545 (2015).CAS 
    PubMed 

    Google Scholar 
    Wu, Q. et al. Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives. Genome Biol. 18, 1–15 (2017).CAS 

    Google Scholar 
    Kerwin, R. et al. Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness. Elife 2015, 1–28 (2015).
    Google Scholar 
    Waller, D. M. Addressing Darwin’s dilemma: can pseudo-overdominance explain persistent inbreeding depression and load? Evolution 75, 779–793 (2021).CAS 
    PubMed 

    Google Scholar 
    Gilbert, K. J., Pouyet, F., Excoffier, L. & Peischl, S. Transition from background selection to associative overdominance promotes diversity in regions of low recombination. Curr. Biol. 30, 101–107.e3 (2020).CAS 
    PubMed 

    Google Scholar 
    Buckley, J. et al. R-gene variation across Arabidopsis lyrata subspecies: effects of population structure, selection and mating system. BMC Evol. Biol. 16, 93 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Schmickl, R., Jørgensen, M. H., Brysting, A. K. & Koch, M. A. Phylogeographic implications for the north american boreal-arctic Arabidopsis lyrata complex. Plant Ecol. Divers. 1, 245–254 (2008).
    Google Scholar 
    Buckley, J., Holub, E. B., Koch, M. A., Vergeer, P. & Mable, B. K. Restriction associated DNA-genotyping at multiple spatial scales in Arabidopsis lyrata reveals signatures of pathogen-mediated selection. BMC Genomics 19, 1–21 (2018).
    Google Scholar 
    Flutre, T., Duprat, E., Feuillet, C. & Quesneville, H. Considering transposable element diversification in de novo annotation approaches. PLoS ONE 6, e16526 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: an R package to perform genome scans for selection based on principal component analysis. in. Mol. Ecol. Resour. 17, 67–77 (2017).CAS 
    PubMed 

    Google Scholar 
    Privé, F., Luu, K., Vilhjálmsson, B. J. & Blum, M. G. B. Performing highly efficient genome scans for local adaptation with R Package pcadapt Version 4. Mol. Biol. Evol. 37, 2153–2154 (2020).PubMed 

    Google Scholar 
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Charlesworth, J. & Eyre-Walker, A. The McDonald-Kreitman test and slightly deleterious mutations. Mol. Biol. Evol. 25, 1007–1015 (2008).CAS 
    PubMed 

    Google Scholar 
    Hernandez, R. D. et al. Ultrarare variants drive substantial cis heritability of human gene expression. Nat. Genet. 51, 1349–1355 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williamson, R. J. et al. Evidence for widespread positive and negative selection in coding and conserved noncoding regions of capsella grandiflora. PLoS Genet. 10, e1004622 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).
    Google Scholar 
    Mattila, T. M., Tyrmi, J., Pyhäjärvi, T. & Savolainen, O. Genome-wide analysis of colonization history and concomitant selection in Arabidopsis lyrata. Mol. Biol. Evol. 34, 2665–2677 (2017).CAS 
    PubMed 

    Google Scholar  More

  • in

    Host biology, ecology and the environment influence microbial biomass and diversity in 101 marine fish species

    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed 

    Google Scholar 
    Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).CAS 
    PubMed 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song, S. J. et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. MBio 11, e02901-19 (2020).Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McDonald, D. et al. American Gut: an open platform for citizen science microbiome research. mSystems 3, e00031-18 (2018).Minich, J. J. et al. Temporal, environmental, and biological drivers of the mucosal microbiome in a wild marine fish, Scomber japonicus. mSphere 5, e00401-20 (2020).Sullam, K. E. et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol. Ecol. 21, 3363–3378 (2012).PubMed 

    Google Scholar 
    Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bosco, N. & Noti, M. The aging gut microbiome and its impact on host immunity. Genes Immun. 22, 289–303 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, 14319 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ross, A. A., Müller, K. M., Weese, J. S. & Neufeld, J. D. Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class Mammalia. Proc. Natl Acad. Sci. USA 115, E5786–E5795 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hobbie, J. E., Daley, R. J. & Jasper, S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225–1228 (1977).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prussin, A. J. 2nd, Garcia, E. B. & Marr, L. C. Total virus and bacteria concentrations in indoor and outdoor air. Environ. Sci. Technol. Lett. 2, 84–88 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gomez, D., Sunyer, J. O. & Salinas, I. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish. Shellfish Immunol. 35, 1729–1739 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lowrey, L., Woodhams, D. C., Tacchi, L. & Salinas, I. Topographical mapping of the Rainbow Trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl. Environ. Microbiol. 81, 6915–6925 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minich, J. J. et al. Microbial ecology of Atlantic Salmon (Salmo salar) hatcheries: impacts of the built environment on fish mucosal microbiota. Appl. Environ. Microbiol. 86, 20 (2020).Minich, J. J. et al. Impacts of the marine hatchery built environment, water and feed on mucosal microbiome colonization across ontogeny in Yellowtail Kingfish, Seriola lalandi. Front. Mar. Sci. 0, 676731 (2021).Minich, J. J. et al. The Southern Bluefin Tuna mucosal microbiome is influenced by husbandry method, net pen location, and anti-parasite treatment. Front. Microbiol. 11, 2015 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ruiz-Rodríguez, M. et al. Host species and body site explain the variation in the microbiota associated to wild sympatric Mediterranean teleost fishes. Microb. Ecol. 80, 212–222 (2020).PubMed 

    Google Scholar 
    Tarnecki, A. M., Burgos, F. A., Ray, C. L. & Arias, C. R. Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J. Appl. Microbiol. 123, 2–17 (2017).CAS 
    PubMed 

    Google Scholar 
    Liu, H. et al. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci. Rep. 6, 24340 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Egerton, S., Culloty, S., Whooley, J., Stanton, C. & Ross, R. P. The gut microbiota of marine fish. Front. Microbiol. 9, 873 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Woodhams, D. C. et al. Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol. 21, 23 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Karachle, P. K. & Stergiou, K. I. Gut length for several marine fish: relationships with body length and trophic implications. Mar. Biodivers. Rec. 3, 1–10 (2010).Ghilardi, M. et al. Phylogeny, body morphology, and trophic level shape intestinal traits in coral reef fishes. Ecol. Evol. 11, 13218–13231 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Clements, K. D., Angert, E. R., Linn Montgomery, W. & Howard Choat, J. Intestinal microbiota in fishes: what’s known and what’s not. Mol. Ecol. 23, 1891–1898 (2014).PubMed 

    Google Scholar 
    Zhu, D., Delgado-Baquerizo, M., Ding, J., Gillings, M. R. & Zhu, Y.-G. Trophic level drives the host microbiome of soil invertebrates at a continental scale. Microbiome 9, 189 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minich, J. J. et al. KatharoSeq enables high-throughput microbiome analysis from low-biomass samples. mSystems 3, e00218-17 (2018).Davis, C. Enumeration of probiotic strains: review of culture-dependent and alternative techniques to quantify viable bacteria. J. Microbiol. Methods 103, 9–17 (2014).CAS 
    PubMed 

    Google Scholar 
    Rastogi, G., Tech, J. J., Coaker, G. L. & Leveau, J. H. J. A PCR-based toolbox for the culture-independent quantification of total bacterial abundances in plant environments. J. Microbiol. Methods 83, 127–132 (2010).CAS 
    PubMed 

    Google Scholar 
    Stämmler, F. et al. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome 4, 28 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Tourlousse, D. M. et al. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Res. 45, e23 (2017).PubMed 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Louca, S., Doebeli, M. & Parfrey, L. W. Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome 6, 41 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, N. C., Rise, M. L. & Christian, S. L. A comparison of the innate and adaptive immune systems in cartilaginous fish, ray-finned fish, and lobe-finned fish. Front. Immunol. 10, 2292 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).ADS 

    Google Scholar 
    Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).CAS 
    PubMed 

    Google Scholar 
    Chong-Seng, K. M., Mannering, T. D., Pratchett, M. S., Bellwood, D. R. & Graham, N. A. J. The influence of coral reef benthic condition on associated fish assemblages. PLoS ONE 7, e42167 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yahel, G. et al. Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments. Mar. Ecol. Prog. Ser. 372, 195–209 (2008).ADS 
    CAS 

    Google Scholar 
    Glover, C. N., Bucking, C. & Wood, C. M. The skin of fish as a transport epithelium: a review. J. Comp. Physiol. B 183, 877–891 (2013).CAS 
    PubMed 

    Google Scholar 
    León-Zayas, R., McCargar, M., Drew, J. A. & Biddle, J. F. Microbiomes of fish, sediment and seagrass suggest connectivity of coral reef microbial populations. PeerJ 8, e10026 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Hess, S., Wenger, A. S., Ainsworth, T. D. & Rummer, J. L. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: impacts on gill structure and microbiome. Sci. Rep. 5, 10561 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sparagon, W. J. et al. Fine scale transitions of the microbiota and metabolome along the gastrointestinal tract of herbivorous fishes. Anim. Microbiome 4, 33 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edward Stevens, C. & Hume, I. D. Comparative Physiology of the Vertebrate Digestive System (Cambridge University Press, 2004).Wilson, J. M. & Castro, L. F. C. Morphological diversity of the gastrointestinal tract in fishes. Fish Physiol. 1–55 https://doi.org/10.1016/s1546-5098(10)03001-3 (2010).Shirakashi, S. et al. Morphology and distribution of blood fluke eggs and associated pathology in the gills of cultured Pacific bluefin tuna, Thunnus orientalis. Parasitol. Int. 61, 242–249 (2012).PubMed 

    Google Scholar 
    Ogawa, K. & Fukudome, M. Mass mortality caused by Blood Fluke(Paradeontacylix) among Amberjack(Seriola dumeili) imported to Japan. Fish. Pathol. 29, 265–269 (1994).
    Google Scholar 
    Wilson, J. M. & Laurent, P. Fish gill morphology: inside out. J. Exp. Zool. 293, 192–213 (2002).PubMed 

    Google Scholar 
    Huang, Q. et al. Diversity of gut microbiomes in marine fishes is shaped by host-related factors. Mol. Ecol. 29, 5019–5034 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kohl, K. D., Amaya, J., Passement, C. A., Dearing, M. D. & McCue, M. D. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol. Ecol. 90, 883–894 (2014).CAS 
    PubMed 

    Google Scholar 
    Lall, S. P. & Tibbetts, S. M. Nutrition, feeding, and behavior of fish. Vet. Clin. North Am. Exot. Anim. Pract. 12, 361–372 (2009). xi.PubMed 

    Google Scholar 
    Hacquard, S. et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17, 603–616 (2015).CAS 
    PubMed 

    Google Scholar 
    Day, R. D., German, D. P. & Tibbetts, I. R. Why can’t young fish eat plants? Neither digestive enzymes nor gut development preclude herbivory in the young of a stomachless marine herbivorous fish. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 158, 23–29 (2011).
    Google Scholar 
    Lim, S. J. & Bordenstein, S. R. An introduction to phylosymbiosis. Proc. Biol. Sci. 287, 20192900 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Brucker, R. M. & Bordenstein, S. R. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341, 667–669 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mazel, F. et al. Is host filtering the main driver of phylosymbiosis across the tree of life? mSystems 3, e00097-18 (2018).Ross, A. A., Rodrigues Hoffmann, A. & Neufeld, J. D. The skin microbiome of vertebrates. Microbiome 7, 79 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Javůrková, V. G. et al. Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria. ISME J. 13, 2363–2376 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Doane, M. P. et al. The skin microbiome of elasmobranchs follows phylosymbiosis, but in teleost fishes, the microbiomes converge. Microbiome 8, 93 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Chiarello, M. et al. Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome 6, 147 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Sylvain, F.-É. et al. Fish skin and gut microbiomes show contrasting signatures of host species and habitat. Appl. Environ. Microbiol. 86, e00789-20 (2020).Smith, C. C. R., Snowberg, L. K., Gregory Caporaso, J., Knight, R. & Bolnick, D. I. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J. 9, 2515–2526 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).ADS 

    Google Scholar 
    Choat, J. H. & Clements, K. D. Vertebrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Annu. Rev. Ecol. Syst. 29, 375–403 (1998).
    Google Scholar 
    Sale, P. F. Reef fish communities: open nonequilibrial systems. In The Ecology of Fishes on Coral Reefs. 564–598. https://doi.org/10.1016/b978-0-08-092551-6.50024-6 (Academic Press Inc., San Diego, 1991).Reese, A. T. & Dunn, R. R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. MBio 9, e01294-18 (2018).Press, C. McL & Evensen, Ø. The morphology of the immune system in teleost fishes. Fish Shellfish Immunol. 9, 309–318 (1999).Koppang, E. O., Kvellestad, A. & Fischer, U. Fish mucosal immunity: gill. In Mucosal Health in Aquaculture (eds Beck, B. & Peatman, E.) 93–133. https://doi.org/10.1016/b978-0-12-417186-2.00005-4 (Elsevier Inc., 2015).Esteban, M. Á. & Cerezuela, R. Fish mucosal immunity: skin. In Mucosal Health in Aquaculture (eds Beck, B. & Peatman, E.) 67–92. https://doi.org/10.1016/b978-0-12-417186-2.00004-2 (Elsevier Inc., 2015).Song, S. J. et al. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems 1, e00021-16 (2016).Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Love, M. S., Bizzarro, J. J., Maria Cornthwaite, A., Frable, B. W. & Maslenikov, K. P. Checklist of marine and estuarine fishes from the Alaska–Yukon Border, Beaufort Sea, to Cabo San Lucas, Mexico. Zootaxa 5053, 1–285 (2021).PubMed 

    Google Scholar 
    Allen, L. G. & Horn, M. H. The Ecology of Marine Fishes: California and Adjacent Waters (University of California Press, 2006).Al-Hussaini, A. H. On the functional morphology of the alimentary tract of some fish in relation to differences in their feeding habits; anatomy and histology. Q. J. Microsc. Sci. 90(Pt. 2), 109–139 (1949).PubMed 

    Google Scholar 
    Maddock, L., Bone, Q. & Rayner, J. M. V. (eds). In Mechanics and Physiology of Animal Swimming (Press Syndicate-of the University of Cambridge, 1994).Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 15, 796–798 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cruz, G. N. F., Christoff, A. P. & de Oliveira, L. F. V. Equivolumetric protocol generates library sizes proportional to total microbial load in 16S amplicon sequencing. Front. Microbiol. 12, 638231 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Minich, J. J. et al. Quantifying and understanding well-to-well contamination in microbiome research. mSystems 4, e00186-19 (2019).Minich, J. J. et al. High-throughput miniaturized 16S rRNA amplicon library preparation reduces costs while preserving microbiome integrity. mSystems 3, e00166-18 (2018).Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009-15 (2016).Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-16 (2017).Whittaker, R. J., Willis, K. J. & Field, R. Scale and species richness: towards a general, hierarchical theory of species diversity. J. Biogeogr. 28, 453–470 (2001).
    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).PubMed 

    Google Scholar 
    McDonald, D. et al. Striped UniFrac: enabling microbiome analysis at unprecedented scale. Nat. Methods 15, 847–848 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Janssen, S. et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems 3, e00021-18 (2018).Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    Minich, J. J. et al. Microbial effects of livestock manure fertilization on freshwater aquaculture ponds rearing tilapia (Oreochromis shiranus) and North African catfish (Clarias gariepinus). Microbiologyopen 7, e00716 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Van Doan, H. et al. Host-associated probiotics: a key factor in sustainable aquaculture. Rev. Fish. Sci. Aquac. 28, 16–42 (2020).
    Google Scholar 
    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).CAS 
    PubMed 

    Google Scholar  More

  • in

    The impact of environmental and climatic variables on genetic diversity and plant functional traits of the endangered tuberous orchid (Orchis mascula L.)

    Read, Q. D., Moorhead, L. C., Swenson, N. G., Bailey, J. K. & Sanders, N. J. Convergent effects of elevation on functional leaf traits within and among species. Funct. Ecol. 28, 37–45. https://doi.org/10.1111/1365-2435.12162 (2014).Article 

    Google Scholar 
    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577. https://doi.org/10.1038/nature15374 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Vellend, M. & Geber, M. A. Connections between species diversity and genetic diversity. Ecol. Lett. 8, 767–781. https://doi.org/10.1111/j.1461-0248.2005.00775.x (2005).Article 

    Google Scholar 
    Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. 19, 825–838. https://doi.org/10.1111/ele.12618 (2016).Article 
    PubMed 

    Google Scholar 
    Paschke, M. C. & Schmid, B. Relationship between population size, allozyme variation, and plant performance in the narrow endemic Cochlearia bavarica. Conserv. Genet. 3, 131–144 (2002).Article 
    CAS 

    Google Scholar 
    Soleimani, V., Baum, B. & Johnson, D. A. AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.]. Theor. Appl. Genet. 104, 350–357. https://doi.org/10.1007/s001220100714 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hughes, A. R., Inouye, B. D., Johnson, M. T., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623. https://doi.org/10.1111/j.1461-0248.2008.01179.x (2008).Article 
    PubMed 

    Google Scholar 
    Prati, D., Peintinger, M. & Fischer, M. Genetic composition, genetic diversity and small-scale environmental variation matter for the experimental reintroduction of a rare plant. J. Plant Ecol. https://doi.org/10.1093/jpe/rtv067 (2016).Article 

    Google Scholar 
    Barrett, R. D. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44. https://doi.org/10.1016/j.tree.2007.09.008 (2008).Article 
    PubMed 

    Google Scholar 
    Atwater, D. Z. & Callaway, R. M. Testing the mechanisms of diversity-dependent overyielding in a grass species. Ecology 96, 3332–3342. https://doi.org/10.1890/15-0889.1 (2015).Article 
    PubMed 

    Google Scholar 
    Cook-Patton, S. C., McArt, S. H., Parachnowitsch, A. L., Thaler, J. S. & Agrawal, A. A. A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. Ecology 92, 915–923. https://doi.org/10.1890/10-0999.1 (2011).Article 
    PubMed 

    Google Scholar 
    Whitney, K. D. et al. Experimental drought reduces genetic diversity in the grassland foundation species Bouteloua eriopoda. Oecologia 189, 1107–1120. https://doi.org/10.1007/s00442-019-04371-7 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x (2007).Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188. https://doi.org/10.1111/gcb.14904 (2020).Article 
    ADS 

    Google Scholar 
    König, P. et al. Advances in flowering phenology across the Northern Hemisphere are explained by functional traits. Glob. Ecol. Biogeogr. 27, 310–321 (2018).Article 

    Google Scholar 
    Robinson, K. M., Ingvarsson, P. K., Jansson, S. & Albrectsen, B. R. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L.). PLoS ONE 7, e37679. https://doi.org/10.1371/journal.pone.0037679 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karbstein, K., Prinz, K., Hellwig, F. & Römermann, C. Plant intraspecific functional trait variation is related to within-habitat heterogeneity and genetic diversity in Trifolium montanum L. Ecol. Evol. 10, 5015–5033. https://doi.org/10.1002/ece3.6255 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaya, S. & Tekin, A. R. The effect of salep content on the rheological characteristics of a typical ice-cream mix. J. Food Eng. 47, 59–62. https://doi.org/10.1016/S0260-8774(00)00093-5 (2001).Article 

    Google Scholar 
    Ktistis, G. & Georgakopoulos, P. P. Rheology of salep mucilages. Pharmazie 46, 55–56 (1991).CAS 

    Google Scholar 
    Kayacier, A. & Dogan, M. Rheological properties of some gums-salep mixed solutions. J. Food Eng. 72, 261–265. https://doi.org/10.1016/j.jfoodeng.2004.12.005 (2006).Article 
    CAS 

    Google Scholar 
    Sen, M. A., Palabiyik, I. & Kurultay, S. The effect of saleps obtained from various Orchidacease species on some physical and sensory properties of ice cream. Food Sci. Technol. 39, 82–87. https://doi.org/10.1590/fst.26017 (2019).Article 

    Google Scholar 
    Farhoosh, R. & Riazi, A. A compositional study on two current types of salep in Iran and their rheological properties as a function of concentration and temperature. Food Hydrocoll. 21, 660–666. https://doi.org/10.1016/j.foodhyd.2006.07.021 (2007).Article 
    CAS 

    Google Scholar 
    Ghorbani, A., Zarre, S., Gravendeel, B. & de Boer, H. J. Illegal wild collection and international trade of CITES-listed terrestrial orchid tubers in Iran. Traffic Bullet. 26, 52–58 (2014).
    Google Scholar 
    Lenoir, J., Gégout, J.-C., Marquet, P., De Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771. https://doi.org/10.1126/science.1156831 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chen, Z.-Q., Algeo, T. J. & Fraiser, M. L. Organism-environment interactions during the Permian-Triassic mass extinction and its aftermath. Palaios 28, 661–663. https://doi.org/10.2110/palo.2012.p12-102r (2013).Article 
    ADS 

    Google Scholar 
    Ebrahimi, A. et al. Evaluation of phenotypic diversity of the endangered orchid (Orchis mascula): Emphasizing on breeding, conservation and development. S. Afr. J. Bot. 132, 304–315. https://doi.org/10.1016/j.sajb.2020.05.013 (2020).Article 

    Google Scholar 
    Ghorbani, A., Gravendeel, B., Naghibi, F. & de Boer, H. Wild orchid tuber collection in Iran: A wake-up call for conservation. Biodivers. Conserv. 23, 2749–2760. https://doi.org/10.1007/s10531-014-0746-y (2014).Article 

    Google Scholar 
    Barrett, S. C. & Kohn, J. R. The application of minimum viable population theory to plants. Genetics and conservation of rare plants 3–1 (Oxford University Press, 1991).
    Google Scholar 
    Yun, S. A., Son, H.-D., Im, H.-T. & Kim, S.-C. Genetic diversity and population structure of the endangered orchid Pelatantheria scolopendrifolia (Orchidaceae) in Korea. PLoS ONE 15, e0237546. https://doi.org/10.1371/journal.pone.0237546 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gholami, S., Vafaee, Y., Nazari, F. & Ghorbani, A. Exploring genetic variations in threatened medicinal orchids using start codon targeted (SCoT) polymorphism and marker-association with seed morphometric traits. Physiol. Mol. Biol. Plants 27, 769–785. https://doi.org/10.1007/s12298-021-00978-4 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gholami, S., Vafaee, Y., Nazari, F. & Ghorbani, A. Molecular characterization of endangered Iranian terrestrial orchids using ISSR markers and association with floral and tuber-related phenotypic traits. Physiol. Mol. Biol. Plants 27, 53–68. https://doi.org/10.1007/s12298-020-00920-0 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaki, A., Vafaee, Y. & Khadivi, A. Genetic variation of Anacamptis coriophora, Dactylorhiza umbrosa, Himantoglossum affine, Orchis mascula, and Ophrys schulzei in the western parts of Iran. Ind. Crops Prod. 156, 112854. https://doi.org/10.1016/j.indcrop.2020.112854 (2020).Article 
    CAS 

    Google Scholar 
    Falk, D., & Holsinger, K. E. Genetic sampling guidelines for conservation collections of endangered plants (1991).Dempewolf, H. et al. Past and future use of wild relatives in crop breeding. Crop Sci. 57, 1070–1082. https://doi.org/10.2135/cropsci2016.10.0885 (2017).Article 

    Google Scholar 
    Renz, J. Flora Iranica. Part 126: Orchidaceae (1978).Shahsavari, A. Flora of Iran. Part 57: Orchidaceae (2008).Boulila, A., Béjaoui, A., Messaoud, C. & Boussaid, M. Genetic diversity and population structure of Teucrium polium (Lamiaceae) in Tunisia. Biochem. Gen. 48, 57–70. https://doi.org/10.1007/s10528-009-9295-6 (2010).Article 
    CAS 

    Google Scholar 
    Zannou, A., Struik, P., Richards, P., Zoundjih, E. & Yam, J. (Dioscorea spp.) responses to the environmental variability in the Guinea Sudan zone of Benin. Afr. J. Agric. Res. 10, 4913–4925. https://doi.org/10.5897/AJAR2013.8099 (2015).Article 

    Google Scholar 
    Sujii, P. et al. Morphological and molecular characteristics do not confirm popular classification of the Brazil nut tree in Acre, Brazil. Genet. Mol. Res. https://doi.org/10.4238/2013.september.27.3 (2013).Article 
    PubMed 

    Google Scholar 
    Nadeem, M. A. et al. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 32, 261–285. https://doi.org/10.1080/13102818.2017.1400401 (2018).Article 
    CAS 

    Google Scholar 
    Jacquemyn, H., Brys, R., Adriaens, D., Honnay, O. & Roldán-Ruiz, I. Effects of population size and forest management on genetic diversity and structure of the tuberous orchid Orchis mascula. Conserv. Genet. 10, 161–168. https://doi.org/10.1007/s10592-008-9543-z (2009).Article 

    Google Scholar 
    Mitchell, P. & Woodward, F. Responses of three woodland herbs to reduced photosynthetically active radiation and low red to far-red ratio in shade. J. Ecol. https://doi.org/10.2307/2260575 (1988).Article 

    Google Scholar 
    Likens, G. E., Bormann, F. H., Johnson, N. M., Fisher, D. & Pierce, R. S. Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol. Monog. 40, 23–47. https://doi.org/10.2307/1942440 (1970).Article 

    Google Scholar 
    Jacquemyn, H. & Brys, R. Lack of strong selection pressures maintains wide variation in floral traits in a food-deceptive orchid. Ann. Bot. 126, 445–453. https://doi.org/10.1093/aob/mcaa080 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olaya-Arenas, P., Meléndez-Ackerman, E. J., Pérez, M. E. & Tremblay, R. Demographic response by a small epiphytic orchid. Am. J. Bot. 98, 2040–2048. https://doi.org/10.3732/ajb.1100223 (2011).Article 
    PubMed 

    Google Scholar 
    Primack, R. B., Miao, S. & Becker, K. R. Costs of reproduction in the pink lady’s slipper orchid (Cypripedium acaule): Defoliation, increased fruit production, and fire. Am. J. Bot. 81, 1083–1090. https://doi.org/10.2307/2446500 (1994).Article 

    Google Scholar 
    Whigham, D. F. & O’Neill, J. P. Dynamics of flowering and fruit production in two eastern North American terrestrial orchids. In Tipularia Discolor and Liparis Lilifolia in Population Ecology of Terrestrial Orchids (eds Wells, T. C. E. & Willems, J. H.) 89–101 (SPB Academic Publishers, 1991).
    Google Scholar 
    Tekinşen, K. K. & Güner, A. Chemical composition and physicochemical properties of tubera salep produced from some Orchidaceae species. Food Chem. 121, 468–471. https://doi.org/10.1016/j.foodchem.2009.12.066 (2010).Article 
    CAS 

    Google Scholar 
    Whigham, D. F. Biomass and nutrient allocation of Tipularia discolor (Orchidaceae). Oikos https://doi.org/10.2307/3544398 (1984).Article 

    Google Scholar 
    Mattila, E. & Kuitunen, M. T. Nutrient versus pollination limitation in Platanthera bifolia and Dactylorhiza incarnata (Orchidaceae). Oikos 89, 360–366. https://doi.org/10.1034/j.1600-0706.2000.890217.x (2000).Article 

    Google Scholar 
    Xu, W. et al. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiol. Plant. 37, 9. https://doi.org/10.1007/s11738-014-1760-0 (2015).Article 
    CAS 

    Google Scholar 
    March-Salas, M., Fandos, G. & Fitze, P. S. Effects of intrinsic environmental predictability on intra-individual and intra-population variability of plant reproductive traits and eco-evolutionary consequences. Ann. Bot. 127, 413–423. https://doi.org/10.1093/aob/mcaa096 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jump, A. S., Marchant, R. & Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14, 51–58. https://doi.org/10.1016/j.tplants.2008.10.002 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Huang, J. et al. Global semi-arid climate change over last 60 years. Clim. Dyn. 46, 1131–1150. https://doi.org/10.1007/s00382-015-2636-8 (2016).Article 

    Google Scholar 
    Crémieux, L., Bischoff, A., Müller-Schärer, H. & Steinger, T. Gene flow from foreign provenances into local plant populations: Fitness consequences and implications for biodiversity restoration. Am. J. Bot. 97, 94–100. https://doi.org/10.3732/ajb.0900103 (2010).Article 
    PubMed 

    Google Scholar 
    Garant, D., Forde, S. E. & Hendry, A. P. The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct. Ecol. 21, 434–443. https://doi.org/10.1111/j.1365-2435.2006.01228.x (2007).Article 

    Google Scholar 
    Jacquemyn, H. et al. Multigenerational analysis of spatial structure in the terrestrial, food-deceptive orchid Orchis mascula. J. Ecol. 97, 206–216. https://doi.org/10.1111/j.1365-2745.2008.01464.x (2009).Article 

    Google Scholar 
    Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962. https://doi.org/10.1126/science.aag2773 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ene, C. O., Ogbonna, P. E., Agbo, C. U. & Chukwudi, U. P. Studies of phenotypic and genotypic variation in sixteen cucumber genotypes. Chilean J. Agric. Res. 76, 307–313. https://doi.org/10.4067/S0718-58392016000300007 (2016).Article 

    Google Scholar 
    Pradhan, S. K. et al. Population structure, genetic diversity and molecular marker-trait association analysis for high temperature stress tolerance in rice. PLoS ONE 11, e0160027. https://doi.org/10.1371/journal.pone.0160027 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Swarup, S. et al. Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci. 61, 839–852. https://doi.org/10.1002/csc2.20377 (2021).Article 

    Google Scholar 
    Patzak, A. Plantaginaceae in KH Rechinger Flora Iranica 15: 1–21 (Academische Druck und Verlagsantalt, 1965).
    Google Scholar 
    Mehrvarz Saeidi, S. Plantaginaceae Family Vol. 14 (Research Institute of Forests and Rangelands, 1995).
    Google Scholar 
    Limited, M. I. I. Glucomannan assay procedure KGLUM 10/04. Ireland (2004).Limited, M. I. I. Total starch assay procedure (amyloglucosidase/a-Amylase Method) AA/AMG 11/01. AOAC Method 996.11.Ireland (2004).Bradshaw, H., Otto, K. G., Frewen, B. E., McKay, J. K. & Schemske, D. W. Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus). Genetics 149, 367–382. https://doi.org/10.1093/genetics/149.1.367 (1998).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Del Sal, G., Manfioletti, G. & Schneider, C. The CTAB-DNA precipitation method: A common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Biotechniques 7, 514–520 (1989).PubMed 

    Google Scholar 
    Vos, P. et al. AFLP: A new technique for DNA fingerprinting. Nucl. Acid Res. 23, 4407–4414. https://doi.org/10.1093/nar/23.21.4407 (1995).Article 
    CAS 

    Google Scholar 
    Bassam, B. J., Caetano-Anollés, G. & Gresshoff, P. M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196, 80–83. https://doi.org/10.1016/0003-2697(91)90120-I (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Husson, F., Josse, J., Le, S., Mazet, J. & Husson, M. F. Package ‘FactoMineR’. An R package 96, 698 (2016).
    Google Scholar 
    Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).Article 

    Google Scholar 
    Galili, T. in The R User Conference, useR! 2017 July 4–7 2017 Brussels, Belgium. 219.Wei, T. et al. Package ‘corrplot’. 56, e24 (2017).Yeh, F. POPGENE (version 1.3. 1). Microsoft Window-Bases Freeware for Population Genetic Analysis. http://www.ualbertaca/~fyeh/ (1999).Wickham, H. & Chang, W. URL: http://CRAN.R-project.org/package=ggplot2.ggplot2: An implementation of the Grammar of Graphics. 3 (2008).Kolde, R. & Kolde, M. R. Package’ pheatmap’. R package 1, 790 (2015).
    Google Scholar 
    Landgraf, A. J. & Lee, Y. Dimensionality reduction for binary data through the projection of natural parameters. J. Mult. Anal. 180, 104668. https://doi.org/10.1016/j.jmva.2020.104668 (2020).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959. https://doi.org/10.1093/genetics/155.2.945 (2000).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Biol. J. Linn. Soc. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.4-3 (2016).Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. Peer. J. 2, e281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vavrek, M. J. Fossil: Palaeoecological and palaeogeographical analysis tools. Palaeontol. Electron. 14, 16. https://doi.org/10.7717/peerj.281 (2011).Article 

    Google Scholar 
    Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635. https://doi.org/10.1093/bioinformatics/btm308 (2007).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    As elephant poaching falls in Africa, instate more ivory bans

    The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) last month released its annual report on elephant poaching. It reveals a downward trend across African range states, based on data from its Monitoring the Illegal Killing of Elephants programme. The decline correlates with reduced ivory trading over the period, particularly in the Chinese market.
    Competing Interests
    The author declares no competing interests. More

  • in

    Aquaculture rearing systems induce no legacy effects in Atlantic cod larvae or their rearing water bacterial communities

    Bacterial density and growth potential in the rearing water were related to the microbial carrying capacityQuantifying the bacterial density in each tank verified that we obtained a higher bacterial load in the systems with added organic material. The bacterial density was, on average, 7.8× higher in the systems with high compared to low bacterial carrying capacity. This difference was particularly evident at 2 (34.8×, Kruskal–Wallis p = 0.0008) and 9 DPH (9.1×, Kruskal–Wallis p = 0.0007) (Fig. 1). The bacterial density increased throughout the experiment for the tanks with low microbial carrying capacity (treatment group MMS−, FTS−), reflecting increased larval feeding and defecation. Contrastingly, the bacterial density was relatively stable over time in the MMS+ treatment and even decreased over time in the FTS+ treatment. When averaging the densities at 11 and 15 DPH within each rearing treatment, we observed that the ‘MMS+ to FTS+’ had a considerable difference in the bacterial density between incoming and rearing water (24.2×). In contrast, this difference was below 8.2× in all other treatment tanks. Such differences in density indicated that some communities were below the microbial carrying capacity of the systems. We thus investigated the growth potential to determine if carrying capacity was reached in the rearing water.Figure 1Bacterial density (million bacterial cells mL−1) at various days post-hatching (DPH) in incoming and rearing tank water. Note that the y-axis is log scaled. Colours indicate the rearing treatment, and shape signifies rearing (filled circle) and incoming water (filled triangle).Full size imageThe bacterial net growth potential in the intake and rearing water was quantified as the number of cell doublings after incubation for 3 days11. Generally, the FTS− and MMS− rearing water had net growth potential with an average of 0.2 and 0.1, respectively (Supplementary Fig. 2). In contrast, the rearing water of the FTS+ and MMS+ had a negative net growth potential with averages of −0.2 and −0.06, respectively. In the case of negative net growth potential, the bacterial density decreased during the incubation. A negative net growth potential suggested that the rearing water bacterial communities were at the tank’s microbial carrying capacity at the time of sampling. Thus, the bacterial communities were at the carrying capacity of the high (+) carrying capacity systems and below in the low (−) systems. To gain a deeper understanding of the bacterial community characteristics the 16S rRNA gene of the bacterial community was sequenced at 1 and 9 DPH.Initial rearing condition did not leave a legacy effect on bacterial α-diversityThe bacterial α-diversity of the rearing water was investigated at 1 and 12 DPH (Fig. 2). At 1 DPH, the richness was comparable between the FTS−, FTS+ and MMS+ treatments, but on average, 1.5× higher for the MMS− treatment (307 vs 205 ASVs, Tukey’s test p  More

  • in

    Record-breaking fires in the Brazilian Amazon associated with uncontrolled deforestation

    G.M., L.O.A., L.V.G. and L.E.O.C.A. thank the São Paulo Research Foundation (FAPESP) for funding (grants 2019/25701-8, 2020/08916-8, 2016/02018-2 and 2020/15230-5, respectively). L.O.A. and L.E.O.C.A. thank the National Council for Scientific and Technological Development (CNPq) for funding (grants 314473/2020-3 and 314416/2020-0, respectively). G.d.O. thanks the University of South Alabama Faculty Development Council Grant for funding (grant 279600-2022). More

  • in

    Influence of tillage systems and sowing dates on the incidence of leaf spot disease in Telfairia occidentalis caused by Phoma sorghina in Cameroon

    ResultsSoil physiochemical propertiesThe preliminary status of the soil analyzed before the commencement of the field preparatory activities revealed that the soil was subtlety fertile with regard to the physical and chemical properties (Table 1).Table 1 Physicochemical properties of the soil.Full size tableAssessment of disease incidence at sowing dates during each year in the trial studyIn the trial study, very low and statistically significant (p  More