More stories

  • in

    Population status, distribution and trophic implications of Pinna nobilis along the South-eastern Italian coast

    According to the target of the present study, the mortality incidence on P. nobilis in local populations along the Apulia peninsula (the Southeast coast of Italy) following the MME was assessed. In addition, an investigation on the species distribution and densities in the Adriatic and the Ionian Sea was carried out, which allowed us to build a picture of species populations before the MME.Concerning the P. nobilis distribution in the Apulia region before the MME, unfortunately, there is a lack of information at the wide scale, and literature reports only concern semi-enclosed systems such as the Taranto basins17,18,19 and the Aquatina lagoon20. No large-scale monitoring program on P. nobilis, in fact, has been carried out previously along the Apulian coast, although this kind of surveys is indispensable for the management of a protected species and must become mandatory for a critically endangered species such has become P. nobilis. The present data-gathering, that is aimed to partially address this information gap, based on the monitoring of recently dead specimens, allowed to realize a plausible map of P. nobilis distribution and densities before the MME in 30 areas distributed along the entire Apulian region coast.Along the Ionian coast, recently dead P. nobilis were detected in all the areas studied, highlighting a continuous distribution of the species prior to the MME, differently from the not continuous distribution along the Adriatic coast. The occurrence of P. nobilis was recorded in the areas surveyed in the south, from A7 to A17, but no traces were found along the northernmost areas except for the Tremiti archipelago, suggesting that the northernmost Adriatic coast of the region does not meet the environmental conditions suitable for hosting this species. Nevertheless, in the Gulf of Manfredonia multiple reports from fisherman indicating the presence of the species in a local Cymodocea nodosa meadow before the 1980s, suggest that this area may have been an exception in the past. Therefore, we can assume that excessive fishing and anthropogenic activities in this area are likely to have caused the species to disappear many decades ago.Data regarding the mortality incidence after the MME in Apulian populations is scarce. Panarese et al.11 reported the advent of the disease in Mar Piccolo di Taranto but without describing the disease incidence. In this study, a mortality incidence of 100% in all basins, bathymetric (down to 15 m) and habitat types, was recorded, demonstrating the severity of the situation along the entire Apulian coast, both inshore and offshore, and in lagoon and marine-protected areas.Although the availability of nutrients and the trophic conditions are assumed to be very different between offshore, inshore, and transitional systems, the archipelago of Tremiti islands, located 13 miles away from the coast, showed no differences in mortality incidence from sites along the coast, evidencing the same critical conditions in all environments.Many Mediterranean lagoon systems, including the Ebro Delta, Mar Menor Lagoon in Spain21, the Rhone delta, Leucate and Thau in France22,23,24, Venice, Grado-Marano and Faro in Italy25,26,27, Bizerte in Tunisia24 are considered the last healthy shelters for P. nobilis populations in the Mediterranean Sea22. These systems seem to offer a degree of resistance against the disease and are all characterized by high seasonal fluctuations of environmental parameters, such as temperature and salinity. It has been supposed that the effect of these fluctuations could make these environments less suitable for the spread of the disease and reduce the rate of transmission21,22. In the present study, two lagoon systems were also investigated, but no live specimens were found. These systems are strongly affected by the saltwater intrusion and the freshwater inputs became very low during the dry season. Hence, we can assume that during the summer season, when P. nobilis become susceptible to the disease, no salinity barrier against the pathogen spread persists in these lagoons systems.Considering that the lagoon refuges currently represent the main source of larval production for P. nobilis recruitment22,28, the collapse of these populations confirms the severity of the situation for species conservation. For the Italian coast, the last live populations are those in the lagoons located in the northen Adriatic Sea (Venice and Grado-Marano lagoon). These environments can act as larval exporters for the Adriatic Sea taking advantage of the mobility of the larvae that can spread over hundreds of kms28.Regarding the timeframe of the spread of the MME along the Apulian coast, the first report of the infection dates back to 201818, in the Mar Piccolo di Taranto. Compared to the first MME event observed in the Spanish coast in 20165,7, the disease has spread from the western to the eastern basin of the Mediterranean Sea over a period of 2 years. Our surveys, carried out in 2020, showed that 91% of the shells were still undamaged and with joined valves. Based on the state of conservation of the shells29 it is possible to hypothesize that the death of the specimens was a recent phenomenon that had occurred in Apulia in the two years preceding our surveys, and most probably it should be dated back to 2019.Kersting and Ballesteros30 have suggested that other species, such as P. rudis, could benefit from the collapse of the P. nobilis population. During our surveys, only 5 specimens of P. rudis were found, located in 2 sites, but it must be considered that the survey was carried out only a short time after the MME of P. nobilis. Further studies aimed at assessing an increase in P. rudis in the investigated areas would be of great interest to corroborate this hypothesis.In these surveys, P. nobilis showed transverse distribution among habitat types occurring both in marine and lagoon systems, inside and outside seagrass meadows, on sandy, rocky, and maerl beds substrate. Nevertheless, on a spatial macro (from a few kilometers to tens of kilometers) and mesoscale (from hundreds to thousands of meters), an overlap with the distributional range of seagrass meadows emerges. A clear cross-boundary subsidy trend was evidenced by the data collected on P. nobilis distribution in association with seagrasses. The specimens inside seagrass meadows were almost double than those detected nearby and a gradual decrease was observed with the increase of the distance from the seagrass patches (Fig. 2). This is particularly evident along the northern Adriatic coast of the region, where extended seagrass meadows are absent and, no trace of P. nobilis was encountered, except in the Tremiti archipelago where both P. oceanica meadows and pen shells were found. By contrast, present data reporting P. nobilis as associated with various seagrass species, such as P. oceanica, C. nodosa, and Zostera sp., are consistent with the macroscale and mesoscale association between P. nobilis and seagrass meadows sensu lato and most literature reporting ubiquitous distribution of P. nobilis both in lagoon-estuarine21,22,24,25,26,31 and in marine ecosystems4,7,9,14,16,24.However, regarding their microscale distribution, the pen shells in our surveys were recorded also outside the seagrass meadows boundaries, at times up to 1 km away. Hence, seagrass sheltering can potentially be ruled out as the sole explanatory factor for the distribution pattern of the species. The pattern emerging from this study led us to hypothesize that a trophic link with the seagrass detritus food-chain may explain both the macroscale–mesoscale association with seagrass species and the microscale cross-boundary distribution. In fact, seagrass detritus is highly refractory, since it is largely exported to the nearby areas where it can represent the major food source for other invertebrates32,33,34. This hypothesis is consistent with the stomach contents observations reported by Davenport et al.3 indicating detritus as the bulk component, accounting for 95% of the total ingested material.One of the main factors underlying the distribution pattern in benthic invertebrates is indeed food availability35,36. According to the Ideal Free Distribution (IFD) theory, the individuals in a population disperse to different resource patches within their environment, minimizing competition and maximizing fitness37. When the IFD assumptions are met, the number of individuals who aggregate in patches is proportional to the amount of food resource available in each one. Accordingly, the distribution of large, long life, and sessile organisms such as P. nobilis would be expected to depict the species trophic supply, by analyzing the resources available in those patches.Studies on the seagrass system energy flow have shown that seagrass debris must be fractionated before entering the food chain33. In this way, plant material becomes fine particulates moving in the boundary layer over the sediment–water interface38,39. These processes take time, and while the matter is transported, heterotrophic bacteria grow exponentially, turning it into a high quality and protein-enriched food for consumers. Hence, bacteria adhering to seagrass detritus may play a key role in this benthic food chain and sediment–water interface consumers may incorporate more energy from associated microbes than from the detritus itself32,38. On the basis of these considerations, it is reasonable to hypothesize that the quantity, composition and origin of the suspended particles are regulated by a drift mechanism and that this mechanism may explain local densities of P. nobilis as a response to sinking rates and resuspension effects. This hypothesis explain also the species distribution in systems, characterized by strong dominant current and shallow seabeds where the seagrass detritus can be spread/drift several kilometers away from the meadows. An example of this condition is encountered in the north Adriatic Sea (e.g., Gulf of Trieste) where extensive population of P. nobilis develops on several sink areas even kilometers downstream from the meadows. The assumption of the species’ ability to feed on seagrass detritus, together with the high biomasses reached (large size specimens and high density), lead us to suppose that P. nobilis may play a key role in the processing of matter and in the energy pathway deriving from seagrass detritus in Mediterranean coastal areas. This makes the repercussions of the MME not only a problem of conservation, but also and above all, an ecological-functional issue.We can, therefore, conclude that Mediterranean seagrass meadows not only constitute a habitat for P. nobilis, but probably also a food source through refractory detritus generation which is transferred and transformed outside the meadows. Unfortunately, literature is lacking on this topic and further investigations are needed to define the trophic role and function of these filter feeders in the different seagrass meadows.The density values that emerged were significantly different among basins. In the Adriatic Sea, where all the coastal values were recorded, the densities were consistently lower than those reported in the Ionian Sea, except for the two southernmost areas. In the Adriatic basin, it was also possible to recognize a north-south trend when considering the densities of pen shells in the coastal areas. Although the values recorded along the southern coast of the region were much greater than those recorded in the central coast, they were far lower than those reported by Čižmek et al.40 in the Croatian coast (North Adriatic Sea). Similar values to ours within the same basin were reported by Celebicic et al.41 in Bosnian waters (0.12 individuals/100 m2).On the other hand, in the Ionian areas, the values recorded were consistently >0.1 individuals/100 m2. The values recorded in the Mar Grande di Taranto were higher than those reported by Centoducati et al.17 (0.1–0.7 ind/ha2). From interviews with fishermen, it emerged that illegal trawling in this area has strongly impacted the natural populations of the Mar Grande di Taranto, and a partial reduction of this activity, in recent years could explain the slight increase in density compared to the 2004 survey data17.In interpreting our data, it should be considered that the surveys were carried out employing an extensive sampling protocol conceived to assess wide surface densities on coastal areas investigating across several habitat types. Therefore, literature density values focused only on local areas or habitat patchiness that were not randomly selected must be contextualized when compared with these data. In addition, given the scale of the presented surveys, emphasis must be given to P. nobilis absence data of which the literature appears poor. Indeed, contrary to the data on presence, reliable absence data are difficult to obtain requiring much greater effort to rule out a rare occurrence42. The absence data obtained in this study derive from the merger of two different data types. The first come from the local ecological knowledge obtained from interviews with the local fishermen, which allowed us to confirm our data, excluding spot occurrences in the same areas. Furthermore the interviews allowed us to collect information on a historical series of species presence/absence in the areas, which was helpful to confirm local absence when no P. nobilis specimens were recorded in our surveys. The second derives from the complete vision of divers during the field surveys. Indeed the scuba diver’s view was at least 10 times wider than 50 cm from the side around the rope and hence, the perception of absence can be extended over a much larger surface area investigated. By merging these two sources of information, we can assume that the absence data collected in exhaustive and complete.In conclusion, this study investigated different basins, habitat types, and bathymetries along the Apulian coast. The shells spatial distribution that arise from this study allowed to obtain important information on the species trophic ecology. Indeed, the species distributional pattern showed a strong overlap with seagrass meadows on meso and macro geographical scale, however this was not the case on a micro scale. This result indicates that although there is a strong relationship between P. nobilis and seagrass meadows, it is not limited to the habitat patch but crosses the boundaries of seagrass. This result led us to hypothesize that the distribution of P. nobilis displays a trophic link through the cross-boundary subsidy occurring from seagrass meadows to the nearby habitat, by means of the refractory detrital pathway. However, further investigations taking into account other factors such as hydrodynamics, are needed to investigate this topic.No live specimens of P. nobilis were found in >800 km of coastal line, leading us to the conclusion that the coastal and lagoon population had totally collapsed in the region after the MME. The seriousness of the situation on the Apulian coasts, just as in the other Mediterranean ecoregions, indicates that the MME that began in 2016 is still in progress, and no local population can be considered safe. Given the gravity of the current situation, it is vital for species preservation to extend the survey across the entire Italian coast to gain a overall picture of the status of the P. nobilis population on a national scale. Indeed, other regions may reveal the existence of natural shelters, where live populations of P. nobilis may still persist. If this is the case, it is essential to identify and protect them in time. As already suggested by Kersting et al.9, this initiative should be conducted in parallel by all the nations of the Mediterranean basin to implement standard guidelines for the monitoring, protection, and recovery of this critically endangered species. More

  • in

    Factors underlying bird community assembly in anthropogenic habitats depend on the biome

    Hobbs, R. J. et al. Novel ecosystems: Theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 15, 1–7 (2006).
    Google Scholar 
    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
    Google Scholar 
    Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).
    Google Scholar 
    Zobel, M. The species pool concept as a framework for studying patterns of plant diversity. J. Veg. Sci. 27, 8–18 (2016).
    Google Scholar 
    Birkhofer, K. et al. Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities. J. Anim. Ecol. 86, 511–520 (2017).PubMed 

    Google Scholar 
    Temperton, V. M. Assembly Rules and Restoration Ecology: Bridging the Gap Between Theory and Practice (Island Press, 2004).
    Google Scholar 
    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).PubMed 

    Google Scholar 
    Gascon, C. et al. Matrix habitat and species richness in tropical forest remnants. Biol. Conserv. 91, 223–229 (1999).
    Google Scholar 
    Filloy, J., Zurita, G. A., Corbelli, J. M. & Bellocq, M. I. On the similarity among bird communities: Testing the influence of distance and land use. Acta Oecol. 36, 333–338 (2010).ADS 

    Google Scholar 
    Vaccaro, A., Filloy, J. & Bellocq, M. What land use better preserves the functional and taxonomic diversity of birds in a grassland biome?. Avian Conserv. Ecol. 14, 1 (2019).
    Google Scholar 
    Vaccaro, A. S. & Bellocq, M. I. Diversidad taxonómica y funcional de aves: Diferencias entre hábitats antrópicos en un bosque subtropical. Ecol. Austral 29, 391–404 (2019).
    Google Scholar 
    Sekercioglu, C. H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 153, 153–161 (2012).
    Google Scholar 
    Zurita, G. A. & Bellocq, M. I. Bird assemblages in anthropogenic habitats: Identifying a suitability gradient for native species in the Atlantic Forest. Biotropica 44, 412–419 (2012).
    Google Scholar 
    Azpiroz, A. B. et al. Ecology and conservation of grassland birds in southeastern South America: A review. J. Field Ornithol. 83, 217–246 (2012).
    Google Scholar 
    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).PubMed 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
    Google Scholar 
    Corbelli, J. M. et al. Integrating taxonomic, functional and phylogenetic beta diversities: Interactive effects with the biome and land use across taxa. PLoS ONE 10, 1–17 (2015).
    Google Scholar 
    Purschke, O. et al. Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: Insights into assembly processes. J. Ecol. 101, 857–866 (2013).
    Google Scholar 
    Srivastava, D. S., Cadotte, M. W., Macdonald, A. A. M., Marushia, R. G. & Mirotchnick, N. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648 (2012).PubMed 

    Google Scholar 
    Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).PubMed 

    Google Scholar 
    Mouquet, N. et al. Ecophylogenetics: Advances and perspectives. Biol. Rev. 87, 769–785 (2012).PubMed 

    Google Scholar 
    Ackerly, D. D., Schwilk, D. W. & Webb, C. O. Niche evolution and adaptive radiation: Testing the order of trait divergence. Ecology 87, S50–S61 (2006).CAS 
    PubMed 

    Google Scholar 
    Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843 (2004).CAS 
    PubMed 

    Google Scholar 
    Losos, J. B. et al. Niche lability in the evolution of a Caribbean lizard community. Nature 424, 542–545 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stevens, R. D., Gavilanez, M. M., Tello, J. S. & Ray, D. A. Phylogenetic structure illuminates the mechanistic role of environmental heterogeneity in community organization. J. Anim. Ecol. 81, 455–462 (2012).PubMed 

    Google Scholar 
    García-Navas, V. & Thuiller, W. Farmland bird assemblages exhibit higher functional and phylogenetic diversity than forest assemblages in France. J. Biogeogr. 47, 2392–2404 (2020).
    Google Scholar 
    Henwood, W. D. Toward a strategy for the conservation and protection of the world’s temperate grasslands. Univ. Neb. Press 20, 121–134 (2010).ADS 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Landi, M., Oesterheld, M. & Deregibus, V. A. Manual de especies forrajeras de los pastizales naturales de Entre Ríos (1987).Viglizzo, E. F. et al. Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agric. Ecosyst. Environ. 83, 65–81 (2001).
    Google Scholar 
    Galindo Leal, C. & de Gusmão Câmara, I. The Atlantic Forest of South America: Biodiversity Status, Threats and Outlook (Island Press, 2003).
    Google Scholar 
    Oliveira-Filho, A. T. & Fontes, M. A. L. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32, 793–810 (2000).
    Google Scholar 
    DeGraaf, R. M., Geis, A. D. & Healy, P. A. Bird population and habitat surveys in urban areas. Landsc. Urban Plan. 21, 181–188 (1991).
    Google Scholar 
    Ralph, C. J. et al. Manual de métodos de campo para el monitoreo de aves terrestres. Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, Albany, CA 46 http://www.srs.fs.usda.gov/pubs/31462. https://doi.org/10.3145/epi.2006.jan.15 (1996).Bibby, C., Jones, M. & Marsden, S. Expedition field techniques: Bird surveys. in (ed. Society, R. G.) (1998).Zurita, G. A. & Bellocq, M. I. Spatial patterns of bird community similarity: Bird responses to landscape composition and configuration in the Atlantic forest. Landsc. Ecol. 25, 147–158 (2010).
    Google Scholar 
    Koper, N. & Schmiegelow, F. K. K. A multi-scaled analysis of avian response to habitat amount and fragmentation in the Canadian dry mixed-grass prairie. Landsc. Ecol. 21, 1045 (2006).
    Google Scholar 
    Xeno-canto-Foundation. Xeno-canto website. https://www.xeno-canto.org (2018).Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).
    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org (2018).Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    PubMed 

    Google Scholar 
    Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100 (2008).CAS 
    PubMed 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Core Team. nlme: Linear and Nonlinear mixed effects models. R package version 3.1–117. (2014).Lenth, R. V. Least-Squares Means: The R Package lsmeans. J. Stat. Softw. https://doi.org/10.18637/jss.v069.i01 (2016).Article 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32, 429–437 (2017).PubMed 

    Google Scholar 
    Concepción, E. D. et al. Contrasting trait assembly patterns in plant and bird communities along environmental and human-induced land-use gradients. Ecography 40, 753–763 (2016).
    Google Scholar 
    Cerezo, A., Conde, M. C. & Poggio, S. L. Pasture area and landscape heterogeneity are key determinants of bird diversity in intensively managed farmland. Biodivers. Conserv. 20, 2649–2667 (2011).
    Google Scholar 
    Pretelli, M. G., Isacch, J. P. & Cardoni, D. A. Year-round abundance, richness and nesting of the bird assemblage of tall grasslands in the south-east Pampas region, Argentina. Ardeola 60, 327–343 (2013).
    Google Scholar 
    Molinari, R. L. Biografía de la Pampa: 4 siglos de historia del campo argentino (Fundación Colombina “V Centenario,” 1987).
    Google Scholar 
    Filloy, J. & Bellocq, M. I. Patterns of bird abundance along the agricultural gradient of the Pampean region. Agric. Ecosyst. Environ. 120, 291–298 (2007).
    Google Scholar 
    Le Viol, I. et al. More and more generalists: Two decades of changes in the European avifauna. Biol. Lett. 8, 780–782 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Concepción, E. D., Moretti, M., Altermatt, F., Nobis, M. P. & Obrist, M. K. Impacts of urbanisation on biodiversity: The role of species mobility, degree of specialisation and spatial scale. Oikos 124, 1571–1582 (2015).
    Google Scholar 
    Emerson, B. C. & Gillespie, R. G. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23, 619–630 (2008).PubMed 

    Google Scholar 
    Morse, N. B. et al. Novel ecosystems in the Anthropocene: A revision of the novel ecosystem concept for pragmatic applications. Ecol. Soc. 19, 12 (2014).
    Google Scholar 
    Loyn, R. H., McNabb, E. G., Macak, P. & Noble, P. Eucalypt plantations as habitat for birds on previously cleared farmland in south-eastern Australia. Biol. Conserv. 137, 533–548 (2007).
    Google Scholar 
    Marsden, S., Whiffin, M. & Galetti, M. Bird diversity and abundance in forest fragments and Eucalyptus plantations around an Atlantic forest reserve, Brazil. Biodivers. Conserv. 10, 737–751 (2001).
    Google Scholar 
    Zurita, G. A., Rey, N., Varela, D. M., Villagra, M. & Bellocq, M. I. Conversion of the Atlantic Forest into native and exotic tree plantations: Effects on bird communities from the local and regional perspectives. For. Ecol. Manag. 235, 164–173 (2006).
    Google Scholar 
    Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity ecosystem-function. Ecology 92, 1573–1581 (2011).PubMed 

    Google Scholar 
    Sol, D. et al. The worldwide impact of urbanisation on avian functional diversity. Ecol. Lett. 23, 962–972 (2020).PubMed 

    Google Scholar 
    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
    Google Scholar 
    Palacio, F. X., Ibañez, L. M., Maragliano, R. E. & Montalti, D. Urbanization as a driver of taxonomic, functional, and phylogenetic diversity losses in bird communities. Can. J. Zool. 96, 1114–1121 (2018).
    Google Scholar 
    Sol, D., Bartomeus, I., González-Lagos, C. & Pavoine, S. Urbanisation and the loss of phylogenetic diversity in birds. Ecol. Lett. 20, 721–729 (2017).PubMed 

    Google Scholar 
    Luck, G. W., Carter, A. & Smallbone, L. Changes in bird functional diversity across multiple land uses: Interpretations of functional redundancy depend on functional group identity. PLoS ONE 8, e63671 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coetzee, B. W. T. & Chown, S. L. Land-use change promotes avian diversity at the expense of species with unique traits. Ecol. Evol. 6, 7610–7622 (2016).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Aquaculture rearing systems induce no legacy effects in Atlantic cod larvae or their rearing water bacterial communities

    Bacterial density and growth potential in the rearing water were related to the microbial carrying capacityQuantifying the bacterial density in each tank verified that we obtained a higher bacterial load in the systems with added organic material. The bacterial density was, on average, 7.8× higher in the systems with high compared to low bacterial carrying capacity. This difference was particularly evident at 2 (34.8×, Kruskal–Wallis p = 0.0008) and 9 DPH (9.1×, Kruskal–Wallis p = 0.0007) (Fig. 1). The bacterial density increased throughout the experiment for the tanks with low microbial carrying capacity (treatment group MMS−, FTS−), reflecting increased larval feeding and defecation. Contrastingly, the bacterial density was relatively stable over time in the MMS+ treatment and even decreased over time in the FTS+ treatment. When averaging the densities at 11 and 15 DPH within each rearing treatment, we observed that the ‘MMS+ to FTS+’ had a considerable difference in the bacterial density between incoming and rearing water (24.2×). In contrast, this difference was below 8.2× in all other treatment tanks. Such differences in density indicated that some communities were below the microbial carrying capacity of the systems. We thus investigated the growth potential to determine if carrying capacity was reached in the rearing water.Figure 1Bacterial density (million bacterial cells mL−1) at various days post-hatching (DPH) in incoming and rearing tank water. Note that the y-axis is log scaled. Colours indicate the rearing treatment, and shape signifies rearing (filled circle) and incoming water (filled triangle).Full size imageThe bacterial net growth potential in the intake and rearing water was quantified as the number of cell doublings after incubation for 3 days11. Generally, the FTS− and MMS− rearing water had net growth potential with an average of 0.2 and 0.1, respectively (Supplementary Fig. 2). In contrast, the rearing water of the FTS+ and MMS+ had a negative net growth potential with averages of −0.2 and −0.06, respectively. In the case of negative net growth potential, the bacterial density decreased during the incubation. A negative net growth potential suggested that the rearing water bacterial communities were at the tank’s microbial carrying capacity at the time of sampling. Thus, the bacterial communities were at the carrying capacity of the high (+) carrying capacity systems and below in the low (−) systems. To gain a deeper understanding of the bacterial community characteristics the 16S rRNA gene of the bacterial community was sequenced at 1 and 9 DPH.Initial rearing condition did not leave a legacy effect on bacterial α-diversityThe bacterial α-diversity of the rearing water was investigated at 1 and 12 DPH (Fig. 2). At 1 DPH, the richness was comparable between the FTS−, FTS+ and MMS+ treatments, but on average, 1.5× higher for the MMS− treatment (307 vs 205 ASVs, Tukey’s test p  More

  • in

    Host biology, ecology and the environment influence microbial biomass and diversity in 101 marine fish species

    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed 

    Google Scholar 
    Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).CAS 
    PubMed 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song, S. J. et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. MBio 11, e02901-19 (2020).Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McDonald, D. et al. American Gut: an open platform for citizen science microbiome research. mSystems 3, e00031-18 (2018).Minich, J. J. et al. Temporal, environmental, and biological drivers of the mucosal microbiome in a wild marine fish, Scomber japonicus. mSphere 5, e00401-20 (2020).Sullam, K. E. et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol. Ecol. 21, 3363–3378 (2012).PubMed 

    Google Scholar 
    Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bosco, N. & Noti, M. The aging gut microbiome and its impact on host immunity. Genes Immun. 22, 289–303 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, 14319 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ross, A. A., Müller, K. M., Weese, J. S. & Neufeld, J. D. Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class Mammalia. Proc. Natl Acad. Sci. USA 115, E5786–E5795 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hobbie, J. E., Daley, R. J. & Jasper, S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225–1228 (1977).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prussin, A. J. 2nd, Garcia, E. B. & Marr, L. C. Total virus and bacteria concentrations in indoor and outdoor air. Environ. Sci. Technol. Lett. 2, 84–88 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gomez, D., Sunyer, J. O. & Salinas, I. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish. Shellfish Immunol. 35, 1729–1739 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lowrey, L., Woodhams, D. C., Tacchi, L. & Salinas, I. Topographical mapping of the Rainbow Trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl. Environ. Microbiol. 81, 6915–6925 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minich, J. J. et al. Microbial ecology of Atlantic Salmon (Salmo salar) hatcheries: impacts of the built environment on fish mucosal microbiota. Appl. Environ. Microbiol. 86, 20 (2020).Minich, J. J. et al. Impacts of the marine hatchery built environment, water and feed on mucosal microbiome colonization across ontogeny in Yellowtail Kingfish, Seriola lalandi. Front. Mar. Sci. 0, 676731 (2021).Minich, J. J. et al. The Southern Bluefin Tuna mucosal microbiome is influenced by husbandry method, net pen location, and anti-parasite treatment. Front. Microbiol. 11, 2015 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ruiz-Rodríguez, M. et al. Host species and body site explain the variation in the microbiota associated to wild sympatric Mediterranean teleost fishes. Microb. Ecol. 80, 212–222 (2020).PubMed 

    Google Scholar 
    Tarnecki, A. M., Burgos, F. A., Ray, C. L. & Arias, C. R. Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J. Appl. Microbiol. 123, 2–17 (2017).CAS 
    PubMed 

    Google Scholar 
    Liu, H. et al. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci. Rep. 6, 24340 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Egerton, S., Culloty, S., Whooley, J., Stanton, C. & Ross, R. P. The gut microbiota of marine fish. Front. Microbiol. 9, 873 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Woodhams, D. C. et al. Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol. 21, 23 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Karachle, P. K. & Stergiou, K. I. Gut length for several marine fish: relationships with body length and trophic implications. Mar. Biodivers. Rec. 3, 1–10 (2010).Ghilardi, M. et al. Phylogeny, body morphology, and trophic level shape intestinal traits in coral reef fishes. Ecol. Evol. 11, 13218–13231 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Clements, K. D., Angert, E. R., Linn Montgomery, W. & Howard Choat, J. Intestinal microbiota in fishes: what’s known and what’s not. Mol. Ecol. 23, 1891–1898 (2014).PubMed 

    Google Scholar 
    Zhu, D., Delgado-Baquerizo, M., Ding, J., Gillings, M. R. & Zhu, Y.-G. Trophic level drives the host microbiome of soil invertebrates at a continental scale. Microbiome 9, 189 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minich, J. J. et al. KatharoSeq enables high-throughput microbiome analysis from low-biomass samples. mSystems 3, e00218-17 (2018).Davis, C. Enumeration of probiotic strains: review of culture-dependent and alternative techniques to quantify viable bacteria. J. Microbiol. Methods 103, 9–17 (2014).CAS 
    PubMed 

    Google Scholar 
    Rastogi, G., Tech, J. J., Coaker, G. L. & Leveau, J. H. J. A PCR-based toolbox for the culture-independent quantification of total bacterial abundances in plant environments. J. Microbiol. Methods 83, 127–132 (2010).CAS 
    PubMed 

    Google Scholar 
    Stämmler, F. et al. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome 4, 28 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Tourlousse, D. M. et al. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Res. 45, e23 (2017).PubMed 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Louca, S., Doebeli, M. & Parfrey, L. W. Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome 6, 41 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, N. C., Rise, M. L. & Christian, S. L. A comparison of the innate and adaptive immune systems in cartilaginous fish, ray-finned fish, and lobe-finned fish. Front. Immunol. 10, 2292 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).ADS 

    Google Scholar 
    Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).CAS 
    PubMed 

    Google Scholar 
    Chong-Seng, K. M., Mannering, T. D., Pratchett, M. S., Bellwood, D. R. & Graham, N. A. J. The influence of coral reef benthic condition on associated fish assemblages. PLoS ONE 7, e42167 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yahel, G. et al. Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments. Mar. Ecol. Prog. Ser. 372, 195–209 (2008).ADS 
    CAS 

    Google Scholar 
    Glover, C. N., Bucking, C. & Wood, C. M. The skin of fish as a transport epithelium: a review. J. Comp. Physiol. B 183, 877–891 (2013).CAS 
    PubMed 

    Google Scholar 
    León-Zayas, R., McCargar, M., Drew, J. A. & Biddle, J. F. Microbiomes of fish, sediment and seagrass suggest connectivity of coral reef microbial populations. PeerJ 8, e10026 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Hess, S., Wenger, A. S., Ainsworth, T. D. & Rummer, J. L. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: impacts on gill structure and microbiome. Sci. Rep. 5, 10561 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sparagon, W. J. et al. Fine scale transitions of the microbiota and metabolome along the gastrointestinal tract of herbivorous fishes. Anim. Microbiome 4, 33 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edward Stevens, C. & Hume, I. D. Comparative Physiology of the Vertebrate Digestive System (Cambridge University Press, 2004).Wilson, J. M. & Castro, L. F. C. Morphological diversity of the gastrointestinal tract in fishes. Fish Physiol. 1–55 https://doi.org/10.1016/s1546-5098(10)03001-3 (2010).Shirakashi, S. et al. Morphology and distribution of blood fluke eggs and associated pathology in the gills of cultured Pacific bluefin tuna, Thunnus orientalis. Parasitol. Int. 61, 242–249 (2012).PubMed 

    Google Scholar 
    Ogawa, K. & Fukudome, M. Mass mortality caused by Blood Fluke(Paradeontacylix) among Amberjack(Seriola dumeili) imported to Japan. Fish. Pathol. 29, 265–269 (1994).
    Google Scholar 
    Wilson, J. M. & Laurent, P. Fish gill morphology: inside out. J. Exp. Zool. 293, 192–213 (2002).PubMed 

    Google Scholar 
    Huang, Q. et al. Diversity of gut microbiomes in marine fishes is shaped by host-related factors. Mol. Ecol. 29, 5019–5034 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kohl, K. D., Amaya, J., Passement, C. A., Dearing, M. D. & McCue, M. D. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol. Ecol. 90, 883–894 (2014).CAS 
    PubMed 

    Google Scholar 
    Lall, S. P. & Tibbetts, S. M. Nutrition, feeding, and behavior of fish. Vet. Clin. North Am. Exot. Anim. Pract. 12, 361–372 (2009). xi.PubMed 

    Google Scholar 
    Hacquard, S. et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17, 603–616 (2015).CAS 
    PubMed 

    Google Scholar 
    Day, R. D., German, D. P. & Tibbetts, I. R. Why can’t young fish eat plants? Neither digestive enzymes nor gut development preclude herbivory in the young of a stomachless marine herbivorous fish. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 158, 23–29 (2011).
    Google Scholar 
    Lim, S. J. & Bordenstein, S. R. An introduction to phylosymbiosis. Proc. Biol. Sci. 287, 20192900 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Brucker, R. M. & Bordenstein, S. R. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341, 667–669 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mazel, F. et al. Is host filtering the main driver of phylosymbiosis across the tree of life? mSystems 3, e00097-18 (2018).Ross, A. A., Rodrigues Hoffmann, A. & Neufeld, J. D. The skin microbiome of vertebrates. Microbiome 7, 79 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Javůrková, V. G. et al. Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria. ISME J. 13, 2363–2376 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Doane, M. P. et al. The skin microbiome of elasmobranchs follows phylosymbiosis, but in teleost fishes, the microbiomes converge. Microbiome 8, 93 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Chiarello, M. et al. Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome 6, 147 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Sylvain, F.-É. et al. Fish skin and gut microbiomes show contrasting signatures of host species and habitat. Appl. Environ. Microbiol. 86, e00789-20 (2020).Smith, C. C. R., Snowberg, L. K., Gregory Caporaso, J., Knight, R. & Bolnick, D. I. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J. 9, 2515–2526 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).ADS 

    Google Scholar 
    Choat, J. H. & Clements, K. D. Vertebrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Annu. Rev. Ecol. Syst. 29, 375–403 (1998).
    Google Scholar 
    Sale, P. F. Reef fish communities: open nonequilibrial systems. In The Ecology of Fishes on Coral Reefs. 564–598. https://doi.org/10.1016/b978-0-08-092551-6.50024-6 (Academic Press Inc., San Diego, 1991).Reese, A. T. & Dunn, R. R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. MBio 9, e01294-18 (2018).Press, C. McL & Evensen, Ø. The morphology of the immune system in teleost fishes. Fish Shellfish Immunol. 9, 309–318 (1999).Koppang, E. O., Kvellestad, A. & Fischer, U. Fish mucosal immunity: gill. In Mucosal Health in Aquaculture (eds Beck, B. & Peatman, E.) 93–133. https://doi.org/10.1016/b978-0-12-417186-2.00005-4 (Elsevier Inc., 2015).Esteban, M. Á. & Cerezuela, R. Fish mucosal immunity: skin. In Mucosal Health in Aquaculture (eds Beck, B. & Peatman, E.) 67–92. https://doi.org/10.1016/b978-0-12-417186-2.00004-2 (Elsevier Inc., 2015).Song, S. J. et al. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems 1, e00021-16 (2016).Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Love, M. S., Bizzarro, J. J., Maria Cornthwaite, A., Frable, B. W. & Maslenikov, K. P. Checklist of marine and estuarine fishes from the Alaska–Yukon Border, Beaufort Sea, to Cabo San Lucas, Mexico. Zootaxa 5053, 1–285 (2021).PubMed 

    Google Scholar 
    Allen, L. G. & Horn, M. H. The Ecology of Marine Fishes: California and Adjacent Waters (University of California Press, 2006).Al-Hussaini, A. H. On the functional morphology of the alimentary tract of some fish in relation to differences in their feeding habits; anatomy and histology. Q. J. Microsc. Sci. 90(Pt. 2), 109–139 (1949).PubMed 

    Google Scholar 
    Maddock, L., Bone, Q. & Rayner, J. M. V. (eds). In Mechanics and Physiology of Animal Swimming (Press Syndicate-of the University of Cambridge, 1994).Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 15, 796–798 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cruz, G. N. F., Christoff, A. P. & de Oliveira, L. F. V. Equivolumetric protocol generates library sizes proportional to total microbial load in 16S amplicon sequencing. Front. Microbiol. 12, 638231 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Minich, J. J. et al. Quantifying and understanding well-to-well contamination in microbiome research. mSystems 4, e00186-19 (2019).Minich, J. J. et al. High-throughput miniaturized 16S rRNA amplicon library preparation reduces costs while preserving microbiome integrity. mSystems 3, e00166-18 (2018).Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009-15 (2016).Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-16 (2017).Whittaker, R. J., Willis, K. J. & Field, R. Scale and species richness: towards a general, hierarchical theory of species diversity. J. Biogeogr. 28, 453–470 (2001).
    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).PubMed 

    Google Scholar 
    McDonald, D. et al. Striped UniFrac: enabling microbiome analysis at unprecedented scale. Nat. Methods 15, 847–848 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Janssen, S. et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems 3, e00021-18 (2018).Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    Minich, J. J. et al. Microbial effects of livestock manure fertilization on freshwater aquaculture ponds rearing tilapia (Oreochromis shiranus) and North African catfish (Clarias gariepinus). Microbiologyopen 7, e00716 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Van Doan, H. et al. Host-associated probiotics: a key factor in sustainable aquaculture. Rev. Fish. Sci. Aquac. 28, 16–42 (2020).
    Google Scholar 
    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).CAS 
    PubMed 

    Google Scholar  More

  • in

    Senescence of the immune defences and reproductive trade-offs in females of the mealworm beetle, Tenebrio molitor

    Williams, G. C. Natural selection, the costs of reproduction, and a refinement of lack’s principle. Am. Nat. 100, 687–690 (1966).
    Google Scholar 
    Stearns, S. C. The evolution of life histories. (Oxford University Press, 1992).Kirkwood, T. B. L. Evolution of ageing. Nature 270, 301–304 (1977).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Partridge, L., Prowse, N. & Pignatelli, P. Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster. Proc. R. Soc. B. 266, 255–261 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Metcalfe, N. Growth versus lifespan: Perspectives from evolutionary ecology. Exp. Gerontol. 38, 935–940 (2003).PubMed 

    Google Scholar 
    Lee, W.-S., Monaghan, P. & Metcalfe, N. B. Experimental demonstration of the growth rate–lifespan trade-off. Proc. R. Soc. B. 280, 20122370 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Lemaître, J.-F. et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc. R. Soc. B. 282, 20150209 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Jehan, C., Sabarly, C., Rigaud, T. & Moret, Y. Late-life reproduction in an insect: Terminal investment, reproductive restraint or senescence. J. Anim. Ecol. 90, 282–297 (2021).PubMed 

    Google Scholar 
    Pawelec, G. Age and immunity: What is “immunosenescence”?. Exp. Gerontol. 105, 4–9 (2018).CAS 
    PubMed 

    Google Scholar 
    Schwenke, R. A., Lazzaro, B. P. & Wolfner, M. F. Reproduction–immunity trade-offs in insects. Annu. Rev. Entomol. 61, 239–256 (2016).CAS 
    PubMed 

    Google Scholar 
    Maklakov, A. A. & Chapman, T. Evolution of ageing as a tangle of trade-offs: Energy versus function. Proc. R. Soc. B. 286, 20191604 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamel, S. et al. Fitness costs of reproduction depend on life speed: empirical evidence from mammalian populations: Fitness costs of reproduction in mammals. Ecol. Lett. 13, 915–935 (2010).PubMed 

    Google Scholar 
    Graham, A. L., Allen, J. E. & Read, A. F. Evolutionary causes and consequences of immunopathology. Annu. Rev. Ecol. Evol. Syst. 36, 373–397 (2005).
    Google Scholar 
    Sorci, G. & Faivre, B. Inflammation and oxidative stress in vertebrate host–parasite systems. Phil. Trans. R. Soc. B. 364, 71–83 (2009).PubMed 

    Google Scholar 
    Ashley, N. T., Weil, Z. M. & Nelson, R. J. Inflammation: Mechanisms, costs, and natural variation. Annu. Rev. Ecol. Evol. Syst. 43, 385–406 (2012).
    Google Scholar 
    Babin, A., Moreau, J. & Moret, Y. Storage of carotenoids in crustaceans as an adaptation to modulate immunopathology and optimize immunological and life history strategies. BioEssays 41, 1800254 (2019).
    Google Scholar 
    Vasto, S. et al. Inflammatory networks in ageing, age-related diseases and longevity. Mech. Ageing Dev. 128, 83–91 (2007).CAS 
    PubMed 

    Google Scholar 
    Finch, C. E. & Crimmins, E. M. Inflammatory exposure and historical changes in human life-spans. Science 305, 1736–1739 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Licastro, F. et al. Innate immunity and inflammation in ageing: A key for understanding age-related diseases. Immun. Ageing 2, 8 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    Pawelec, G., Goldeck, D. & Derhovanessian, E. Inflammation, ageing and chronic disease. Curr. Opin. Immunol. 29, 23–28 (2014).CAS 
    PubMed 

    Google Scholar 
    Pursall, E. R. & Rolff, J. Immune responses accelerate ageing: Proof-of-principle in an insect model. PLoS ONE 6, e19972 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khan, I., Agashe, D. & Rolff, J. Early-life inflammation, immune response and ageing. Proc. R. Soc. B. 284, 20170125 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Vigneron, A., Jehan, C., Rigaud, T. & Moret, Y. Immune defenses of a beneficial pest: The mealworm beetle, Tenebrio molitor. Front. Physiol. 10, 138 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Jehan, C., Chogne, M., Rigaud, T. & Moret, Y. Sex-specific patterns of senescence in artificial insect populations varying in sex-ratio to manipulate reproductive effort. BMC Evol. Biol. 20, 18 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Jehan, C., Sabarly, C., Rigaud, T. & Moret, Y. Age-specific fecundity under pathogenic threat in an insect: Terminal investment versus reproductive restraint. J. Anim. Ecol. 91, 101–111 (2022).PubMed 

    Google Scholar 
    Chung, K.-H. & Moon, M.-J. Fine structure of the hemopoietic tissues in the mealworm beetle, Tenebrio molitor. Entomol. Res. 34, 131–138 (2004).
    Google Scholar 
    Urbański, A., Adamski, Z. & Rosiński, G. Developmental changes in haemocyte morphology in response to Staphylococcus aureus and latex beads in the beetle Tenebrio molitor L.. Micron 104, 8–20 (2018).PubMed 

    Google Scholar 
    Vommaro, M. L., Kurtz, J. & Giglio, A. Morphological characterisation of haemocytes in the mealworm beetle Tenebrio molitor (Coleoptera, Tenebrionidae). Insects 12, 423 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Söderhäll, K. & Cerenius, L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 10, 23–28 (1998).PubMed 

    Google Scholar 
    Siva-Jothy, M. T., Moret, Y. & Rolff, J. Insect immunity: an evolutionary ecology perspective. in Advances in Insect Physiology vol. 32 1–48 (Elsevier, 2005).Nappi, A. J. & Ottaviani, E. Cytotoxicity and cytotoxic molecules in invertebrates. BioEssays 22, 469–480 (2000).CAS 
    PubMed 

    Google Scholar 
    Sadd, B. M. & Siva-Jothy, M. T. Self-harm caused by an insect’s innate immunity. Proc. R. Soc. B. 273, 2571–2574 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Daukšte, J., Kivleniece, I., Krama, T., Rantala, M. J. & Krams, I. Senescence in immune priming and attractiveness in a beetle: Immunosenescence in a beetle. J. Evol. Biol. 25, 1298–1304 (2012).PubMed 

    Google Scholar 
    Krams, I. et al. Trade-off between cellular immunity and life span in mealworm beetles Tenebrio molitor. Curr. Zool. 59, 340–346 (2013).
    Google Scholar 
    Moon, H. J., Lee, S. Y., Kurata, S., Natori, S. & Lee, B. L. Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran, Tenebrio molitor. J. Biochem. 116, 53–58 (1994).CAS 
    PubMed 

    Google Scholar 
    Lee, Y. J. et al. Structure and expression of the tenecin 3 gene in Tenebrio molitor. Biochem. Biophys. Res. Comm. 218, 6–11 (1996).CAS 
    PubMed 

    Google Scholar 
    Kim, D. H. et al. Bacterial expression of tenecin 3, an insect antifungal protein isolated from Tenebrio molitor, and its efficient purification. Mol. Cells 8, 786–789 (1998).CAS 
    PubMed 

    Google Scholar 
    Roh, K.-B. et al. Proteolytic cascade for the activation of the insect toll pathway induced by the fungal cell wall component. J. Biol. Chem. 284, 19474–19481 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Park, J.-W. et al. Beetle Immunity. in Invertebrate Immunity (ed. Söderhäll, K.) vol. 708 163–180 (Springer US, 2010).Chae, J.-H. et al. Purification and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor. Dev. Comp. Immunol. 36, 540–546 (2012).CAS 
    PubMed 

    Google Scholar 
    Haine, E. R., Pollitt, L. C., Moret, Y., Siva-Jothy, M. T. & Rolff, J. Temporal patterns in immune responses to a range of microbial insults (Tenebrio molitor). J. Insect Physiol. 54, 1090–1097 (2008).CAS 
    PubMed 

    Google Scholar 
    Dhinaut, J., Chogne, M. & Moret, Y. Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect. J. Anim. Ecol. 87, 448–463 (2018).PubMed 

    Google Scholar 
    Hoffmann, J. A., Reichhart, J.-M. & Hetru, C. Innate immunity in higher insects. Curr. Opin. Immunol. 8, 8–13 (1996).CAS 
    PubMed 

    Google Scholar 
    Moret, Y. Explaining variable costs of the immune response: selection for specific versus non-specific immunity and facultative life history change. Oikos 102, 213–216 (2003).
    Google Scholar 
    Khan, I., Prakash, A. & Agashe, D. Immunosenescence and the ability to survive bacterial infection in the red flour beetle Tribolium castaneum. J. Anim. Ecol. 85, 291–301 (2016).PubMed 

    Google Scholar 
    Rolff, J. Effects of age and gender on immune function of dragonflies (Odonata, Lestidae) from a wild population. Can. J. Zool. 79, 2176–2180 (2001).
    Google Scholar 
    Doums, C., Moret, Y., Benelli, E. & Schmid-Hempel, P. Senescence of immune defence in Bombus workers. Ecol. Entomol. 27, 138–144 (2002).
    Google Scholar 
    Schmid, M. R., Brockmann, A., Pirk, C. W. W., Stanley, D. W. & Tautz, J. Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. J. Insect Physiol. 54, 439–444 (2008).CAS 
    PubMed 

    Google Scholar 
    Moret, Y. & Schmid-Hempel, P. Immune responses of bumblebee workers as a function of individual and colony age: senescence versus plastic adjustment of the immune function. Oikos 118, 371–378 (2009).
    Google Scholar 
    Armitage, S. A. O. & Boomsma, J. J. The effects of age and social interactions on innate immunity in a leaf-cutting ant. J. Insect Physiol. 56, 780–787 (2010).CAS 
    PubMed 

    Google Scholar 
    Korner, P. & Schmid-Hempel, P. In vivo dynamics of an immune response in the bumble bee Bombus terrestris. J. Invert. Pathol. 87, 59–66 (2004).CAS 

    Google Scholar 
    Li, T., Yan, D., Wang, X., Zhang, L. & Chen, P. Hemocyte changes during immune melanization in Bombyx Mori infected with Escherichia coli. Insects 10, 301 (2019).PubMed Central 

    Google Scholar 
    Chase, M. R., Raina, K., Bruno, J. & Sugumaran, M. Purification, characterization and molecular cloning of prophenoloxidases from Sarcophaga bullata. Insect Biochem. Mol. Biol. 30, 953–967 (2000).CAS 
    PubMed 

    Google Scholar 
    Kanost, M. R. & Gorman, M. J. Phenoloxidases in insect immunity. in Insect Immunology 69–96 (Elsevier, 2008).Sadd, B. M. et al. Modulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor L.): Evidence for terminal investment and dishonesty. J. Evol. Biol. 19, 321–325 (2006).CAS 
    PubMed 

    Google Scholar 
    Gálvez, D. & Chapuisat, M. Immune priming and pathogen resistance in ant queens. Ecol. Evol. 4, 1761–1767 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Armitage, S. A. O. & Siva-Jothy, M. T. Immune function responds to selection for cuticular colour in Tenebrio molitor. Heredity 94, 650–656 (2005).CAS 
    PubMed 

    Google Scholar 
    Armitage, S. A. O., Thompson, J. J. W., Rolff, J. & Siva-Jothy, M. T. Examining costs of induced and constitutive immune investment in Tenebrio molitor. J. Evol. Biol. 16, 1038–1044 (2003).CAS 
    PubMed 

    Google Scholar 
    Kokoza, V. A. et al. Transcriptional regulation of the mosquito vitellogenin gene via a blood meal-triggered cascade. Gene 274, 47–65 (2001).CAS 
    PubMed 

    Google Scholar 
    Isaac, P. G. & Bownes, M. Ovarian and fat-body vitellogenin synthesis in Drosophila melanogaster. Europ. J. Biochem. 123, 527–534 (2005).
    Google Scholar 
    Hoffmann, J. A. The immune response of Drosophila. Nature 426, 33–38 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737–748 (2000).CAS 
    PubMed 

    Google Scholar 
    Haine, E. R., Moret, Y., Siva-Jothy, M. T. & Rolff, J. Antimicrobial defense and persistent infection in insects. Science 322, 1257–1259 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Moret, Y. & Siva-Jothy, M. T. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proc. R. Soc. B. 270, 2475–2480 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Du Rand, N. & Laing, M. D. Determination of insecticidal toxicity of three species of entomopathogenic spore-forming bacterial isolates against Tenebrio molitor L. (Coleoptera: Tenebrionidae). Afr. J. Microbiol. Res. 5, 2222–2228 (2011).
    Google Scholar 
    Jurat-Fuentes, J. L. & Jackson, T. Bacterial entomopathogens. In Insect Pathology 2nd edn (eds Kaya, H. & Vera, F.) 265–349 (Elsevier Academic Press, Cambridge, Mass, 2012).
    Google Scholar 
    Dhinaut, J., Balourdet, A., Teixeira, M., Chogne, M. & Moret, Y. A dietary carotenoid reduces immunopathology and enhances longevity through an immune depressive effect in an insect model. Sci. Rep. 7, 12429 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moreau, J., Martinaud, G., Troussard, J.-P., Zanchi, C. & Moret, Y. Trans-generational immune priming is constrained by the maternal immune response in an insect. Oikos 121, 1828–1832 (2012).
    Google Scholar 
    Lee, H. S. et al. The pro-phenoloxidase of coleopteran insect, Tenebrio molitor, larvae was activated during cell clump/cell adhesion of insect cellular defense reactions. FEBS Lett. 444, 255–259 (1999).CAS 
    PubMed 

    Google Scholar 
    Zanchi, C., Troussard, J.-P., Martinaud, G., Moreau, J. & Moret, Y. Differential expression and costs between maternally and paternally derived immune priming for offspring in an insect. J. Anim. Ecol. 80, 1174–1183 (2011).PubMed 

    Google Scholar 
    Moret, Y. ‘Trans-generational immune priming’: Specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor. Proc. R. Soc. B. 273, 1399–1405 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dubuffet, A. et al. Trans-generational immune priming protects the eggs only against gram-positive bacteria in the mealworm beetle. PLoS Pathog. 11, e1005178 (2015).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Health risk assessment and source apportionment of potentially toxic metal(loid)s in windowsill dust of a rapidly growing urban settlement, Iran

    PTM concentrationsIn Table 1, the descriptive statistics of PTMs in 50 dust samples from Qom city are described. The background values were used based on the concentrations of metals in the Upper Continental Crust. The mean concentration of As, Cd, Cu, Mo, Pb, Sb, and, Zn exceeded the background value. Also, Cd, Cu, Mo, Pb, Sb, and, Zn had a coefficient of variation (C.V.) greater than 50%, indicating a severe variability in PTMs concentrations in the atmospheric dust of the studied area2. Metals with C.V.  Pb  > Zn  > As  > Cd  > Cu  > Mo  > Cr  > Mn  > Ni = Co. Antimony (38.55) and Pb (35.13) had the highest average EF values, which means they were enriched very high in the windowsill dust. Also, they had a wide range of EF values in the 50 stations: from 4.0 to 227.0 for Sb, and from 8.3 to 140.8 for Pb which might reflect the existence of discrete multiple sources in the studied area. The degree of enrichment for Pb and Sb in the industrial sector was extreme and in the commercial sector was very high; also, the other sectors were significantly enriched. Zinc and As had a more homogenous enrichment in the area. In all the functional sectors, 95% and 84% of stations were significantly enriched by As and Zn, respectively. Copper, Cd, and Mo were moderately enriched in all functional sectors, but the greenspace sector had minimal enrichment by these elements. Some areas in the industrial sector had significant to very high enrichment of Cd. The EF value indicated Co, Cr, Mn, and Ni were minimally enriched in all the stations.Figure 2Box plot of the (a) enrichment factor (EF), and (b) geo accumulation index (Igeo) for the dust samples in the studied area.Full size imageThe highest average values of Igeo were obtained in the order of Pb  > Sb  > As  > Zn. PTMs included Co, Cr, Ni, Fe, and Mn were categorized as unpolluted and Cd, Cu, and Mo were in the category of unpolluted to moderately polluted. In the industrial zone, the windowsill dust was extremely polluted with Sb and Pb. The sequence of contamination intensity with Pb, Zn and Sb according to land use was: industrial  > commercial  > residential  > greenspace. The highest concentration of arsenic in the study area belongs to the industrial area.To evaluate the pollution level based on land use, PLI and mCd indices were utilized (Fig. 3). These cumulative indices showed that the dust in Qom city is considerably contaminated with PTMs. According to the PLI index, all the stations were categorized as polluted sites. The PLIzone values were in the order of industrial (3.77)  > commercial (2.05)  > residential (1.67)  > green space (1.38). This pattern was also repeated with the mCd index. The mCd for the industrial sector ranged from 6.98 (high contamination level) to 39.60 (ultra-high contamination level). In the commercial sector, fifty percent of dust samples were classified as having a high degree of contamination. All the greenspace stations were in the moderate pollution category. This shows the possible effect of tree density in diminishing the risk of dust pollution to the receptors.Figure 3Pollution level indexes (a) mCd and (b) PLI, based on four functional areas.Full size imageSpatial distribution of PTMsThe As, Cd, Cu, Sb, Pb, and Zn content in 100% of the dust samples exceeded the background value. Spatial distribution maps were generated for the hotspot PTMs (As, Sb, Pb, Cd, Cu, Mo and Zn) by applying the inverse distance weighted (IDW) interpolation method (ArcGIS 10.3). Figure 4 demonstrates that PTMs dispersions were slightly influenced by the prevailing wind direction (from the west), suggesting they came from the point- or area- sources. On the other hand, the K–S test showed that the overall distribution of PTMs was not normal in the studied region. This might signify the influence of industrial activities and the presence of multiple sources of dust.Figure 4Spatial distribution maps of seven PTMs in windowsill dusts of Qom, Iran. This map was constructed using ArcGIS version 10.3. (https://www.esri.com/en-us/arcgis/products/arcgisdesktop/overview).Full size imageThe highest pollution load of PTMs belonged to the industrial section. The level of pollution gradually decreased from Shokouhieh to Mahmoudabad industrial zones. The reason is related to more active industries, a closed environment, and more construction existing in Shokouhieh industrial town than in Mahmoudabad industrial town.There is a clear decreasing trend from the central part to southern (downtown area) and southwestern (suburb area) parts of the city. In fact, these parts are diffusely populated and the southwestern part is almost new with lots of barren lands. Copper, Mo, and Cd show high concentrations toward the central part of the city. Educational, cultural and commercial activities are mainly located in the central part of the city. Also, historical and religious districts in the city center are accompanied by a huge influx of tourists throughout the year. For this reason, the central part of the city has various public transportations such as bus stands and taxi stations, and is dominated by a high load of motorcycles.In the eastern part of the city, some hotspots can be observed (Fig. 4). This part includes an important transportation system (like highways and a complex interchange) where exhaust traffic emissions might be a probable source of As, Sb, Pb, and Zn. Unlike Pb and Zn, several peaks of As are scattered in the western part, suggesting an area source might exist in the region. It is noteworthy that the western area is densely populated with lots of residential buildings. Bisht et al. (2022)35 also observed hotspots of As in the residential area of Dehradun, India.PTM potential sourcesTo evaluate the relationship between PTMs in dust samples, the Spearman correlation and PCA were developed (Fig. 5) and more details are given in Table S7. Statistical analysis can help to identify the potential source of contamination in urban dust. The Spearman correlation was significant at p  residential ≈ greenspace. The five PTMs with the highest overall HI are ranked as follows: Pb  > As  > Cr  > Mn  > Sb (Fig. 7). The HI values in all the sections were lower than the permissible level (1.00), except for Pb. In the industrial section, Pb recorded the highest HI value for children (HI = 1.73) which exceeded the acceptable value. The HI values were 10 times higher for children than adults indicating they are more susceptible to PTMs in the dust.The dominant pathway for noncancerous risk was ingestion followed by dermal contact and inhalation. The trend is in line with previous research25,51,52. However, for Co and Mn, the descending order was different as follows ingestion  > inhalation  > dermal contact. The highest contribution of HQinh and HQderm to HI was measured for Co (34.0%) and Cd (29.0%), respectively.In this study, the carcinogenic risk from windowsill dust was estimated for the carcinogens including Cd, Co, Cr and Ni, Pb, and As through the possible routes (Fig. 8, Table S9). The contribution of PTMs to CR decreased in the order of Cr (3.24E−05)  > As (2.05E−05)  > Pb (2.52E−06)  > Co (6.91E−09)  > Ni (1.72E−09)  > Cd (2.58E−10). The average CR values for target PTMs through inhalation ranged from 7.9E−10 to 1.7E−07, which remained in the safety zone (CR  inhalation  > dermal (Fig. 8). While the contribution of Cr to carcinogenic risk was higher through inhalation than ingestion. The reports concluded that the primary exposure route of Cr is inhalation54. Considering the predominant forms of Cr in the environment, CrVI is more toxic than CrIII. Exposure to CrVI can cause immunological diseases, dental effects and carcinogenic effects (lung cancer, nose and nasal sinus cancer, suspected laryngeal and stomach cancers)54,55.The result of health risk from target PTMs in windowsills of Qom indicates significant chronic exposure to Pb can take place for children in the industrial zone. The ingestion route is the most probable pathway for children due to their hand–to–mouth behavior56. Lead can bio-accumulate in the body without any obvious symptoms of toxicity56. The total CR values for Pb, Cr and As in different land-use types were in the range of tolerable carcinogenic risk (1 × 10−4  More

  • in

    Influence of urbanisation on phytodiversity and some soil properties in riverine wetlands of Bamenda municipality, Cameroon

    Description of the study areaThe study covers urban, peri-urban and rural wetlands in the Bamenda Municipality of the North West Region of Cameroon that have evolved concomitantly with different stages of urbanization (Fig. 1). In this study, urbanisation is considered a loose term that is aimed at giving a geographical expression to the variation in the economic, social and cultural practices in the milieu. The central town with many economic activities is termed the urban, the fringe area with sprawls is termed peri-urban while the rural has typical peasant activities and make-shift structures. From the variation of human activities in the three sub-zones, a variety of chemical substances are discharged into drains, playing a substantial role in soil quality, and therefore plant macrophyte diversity. The Plants studied were ubiquitous in the area and verification of their IUCN conservation status in the red data book of plants of Cameroon confirmed their abundance14. Information on protected sites in Cameroon does not place the study area under conservation status. In line with that, permits are not required to undertake academic and research studies as well as do a responsible collection of plants in the study area. The urbanization rate of Bamenda is 42%, and the population grew from 48,111 inhabitants in 1976 to 488,883 inhabitants in 201015, with 150–200 inhabitants/km2.Figure 1Relief Map of Bamenda showing the Bamenda escarpment, topography and the location for quadrat sites.Full size imageThe study area is part of the Bamenda escarpment that is located between latitudes 5° 55″ N and 6° 30″ N and longitudes 10° 25″ E and 10° 67″ E. The town shows an altitudinal range of 1200–1700 m and is divided into two parts by escarpments—a low-lying and gently undulating part with altitudes ranging from 1200 to 1400 m, with many flat areas that are usually inundated for most parts of the year, and an elevated part that range from 1400 to 1700 m altitude. Most of the streams take their rise from this elevated part (Fig. 1).This area experiences two seasons—a rainy season (mid-March to mid-October) and a short dry season (mid-October to mid-March). The thermic and hyperthermic temperature regimes dominate in the area. The mean annual temperature stands at 19.9 °C. January and February are the hottest months with mean monthly temperatures of 29.1 and 29.7 °C, respectively. This area is dominated by the Ustic and Udic moisture regimes with the Udic extending to the south9. Annual rainfall ranges from 1300 to 3000 mm16. The area has a rich hydrographical network with intense human activities and a dense population along different water courses in the watershed. The area is bounded on the West, North and East by the Cameroon Volcanic Line (made up of basalts, trachytes, rhyolites and numerous salt springs). The geologic history of this area originates from the Precambrian era when there was a vast formation of geosynclinal complexes, which became filled with clay-calcareous, and sandstone sediments9. These materials, crossed by intrusions of crystalline rocks, were folded in a generally NE-SW direction and underwent variable metamorphism9. The Rocks in the area are thus of igneous (granitic and volcanic) and metamorphic (migmatites) origin17, which gives rise to ferralitic soils18.Agriculture is the principal human activity in and around this region18. The area equally harbours the commercial center that has factories ranging from soap production, and mechanic workshops to metallurgy, which may be potential sources of pollutants that can influence wetland Geochemistry. Raffia farinifera bush, which is largely limited to the wetlands, is an important vegetation type in this area. R. farinifera provides raffia wine, a vital economic resource to the inhabitants who are fighting against the cultivation of these wetlands by vegetable farmers.Methods of the studyMacrophyte diversity studyThe plant diversity of the wetlands was evaluated using quadrats in the dry season for accessibility reasons. For each of the three wetlands (the urban, peri-urban and rural areas), three transects were established on which representative quadrats, each measuring 10 m × 10 m, were mapped out in uncultivated areas for the determination of plant species cover-abundance and diversity. It is perceived that the different zones receive different mixtures of chemical substances and thus influence macrophyte diversity differently.According to a publication by14 on the vascular plants of Cameroon and a taxonomic checklist with IUCN assessment, the plants of the area are placed under the Least Concern Category(LC), and therefore not in the risky category. Diversity studies involved the identification of a specific area called “relevé” by progressively increasing test quadrat size and sampling for specific diversity until the smallest area with adequate species representation was reached. The relevé size determined here was 1 m2, making a total of 300 sub-quadrats (relevé) in the entire study ie. 100 in each main quadrat). For each site (main quadrat), 10 representative relevés were sampled and all plant species were enumerated. Most plant species in each of them were identified in the field by the Botanist, Dr Ndam Lawrence Monah using visual observation of the morphology of the leaves and flowers, a self-made field guide, the Flora of West Africa and the Flora of Cameroon. 10 unidentified plants were appropriately collected where there were in abundance, placed onto a conventional plant press and dried in the field. Voucher specimens were tagged and transported to the Limbe Botanic Gardens (SCA: Southern Cameroon, the code of the Limbe Botanic Gardens Herbarium) for identification. Mr Elias Ndive, the Taxonomist of the Limbe Botanic Gardens compared unidentified specimens with authentic herbarium specimens and other taxonomic guides and finally identified them. Voucher specimens of the 10 plants were given identification numbers and deposited in the Herbarium of the Limbe Botanic Gardens.The Braun–Banquet method was used19 for the assessment of species cover abundance. Relative abundance and abundance ratings were determined using the Braun–Banquet rating scheme (Table 1).Table 1 Braun-Blanquet rating scheme for vegetation cover-abundance, Source19.Full size tableSimpson’s diversity indexSpecies richness was evaluated using Simpson’s diversity index (D), which takes into account both species richness and the Braun-Blanquet rating scheme for vegetation cover abundance and evenness of abundance among the species present. In essence, D measures the probability that two individuals that are randomly selected from an area will belong to the same species. The formula for calculating D is presented as:$${text{D}} = frac{{sum {{text{n}}_{i} left( {{text{n}}_{i} – 1} right)} }}{{{text{N}}({text{N}} – 1)}}$$where ni = the total number of each species; N = the total number of individuals of all species.The value of D ranges from 0 to 1. With this index, 0 represents infinite diversity and 1 represents no diversity. That is, the larger the value the lower the diversity.Alternatively, Simpson’s Diversity Index, = 1–D,1-D was used as a measure of diversity because it is more logical and less likely to cause confusion. The scale then gives a score from 0 to 1 with higher scores showing higher diversity (instead of being associated with low scores).The Simpson index is a dominance index because it gives more weight to common or dominant species. In this case, a few rare species with only a few representatives will not affect the diversity.
    Soil sampling and analysisSoil sampling was done in and around the three quadrats laid in the urban, peri-urban and rural wetlands for macrophytes sampling. Twenty-one (21) composite samples (0–25 cm) were randomly collected (Fig. 2) and taken to the laboratory in black plastic bags. Each composite sample was a collection of 5 dried core soil samples. Due to the observed greater heterogeneity in the urban sector, the sampling density was intensified. The soil samples were air-dried and screened through a 2-mm sieve. They were analyzed in duplicate for their physicochemical properties in the Environmental and Analytical Chemistry Laboratory of the University of Dschang, Cameroon. Particle size distribution, cation exchange capacity (CEC), exchangeable bases, electrical conductivity (EC) and pH were determined by standard procedures20. Soil pH was measured both in water and KCl (1:2.5 soil/water mixture) using a glass electrode pH meter. Part of the soil was ball-milled for organic carbon (Walkley–Black method) and total nitrogen (Macro-Kjeldahl method) as largely described by20. Available phosphorus (P) was determined by Bray I method. Exchangeable cations were extracted using 1 N ammonium acetate at pH 7. Potassium (K) and sodium (Na) in the extract were determined using a flame photometer and magnesium (Mg) and calcium (Ca) were determined by complexiometric titration. Exchange acidity was extracted with 1 M KCl followed by quantification of Al and H by titration20. Effective cation exchange capacity (ECEC) was determined as the sum of bases and exchanged acidity.Figure 2Adapted from the 1980 land use map of the Bamenda City Area showing soil sampling points: Source Bamenda City Council.Map of the study area in freshwater wetlands of Bamenda Municipality.Full size imageApparent CEC (CEC at pH 7) was determined directly as outlined by20. Based on critical values of nutrients established for vegetables, nutrients were declared sufficient or deficient.
    Statistical analysisThe data were subjected to statistical analysis using Microsoft Excel 2007 and SPSS statistical package 20.0. Soil properties were assessed for their variability using the coefficient of variation (CV) and compared with variability classes (Table 2).$$CV=frac{Sd}{X}X 100$$where: Sd = standard deviation; = X arithmetic mean of soil properties.Table 2 Grouping coefficient of variation into variability classes.Full size tableThe hierarchical cluster analysis (HCA) was used to group the area under managing units. The main goal of the hierarchical agglomerative cluster analysis is to spontaneously classify the data into groups of similarity (clusters). This is done by searching objects in the n-dimensional space that is located in the closest neighborhood and separating a stable cluster from other clusters. The sampling sites were considered objects for classification. Each object was determined by a set of variables (chemical concentrations of the soils in this case). More

  • in

    Author Correction: Climate change reshuffles northern species within their niches

    These authors contributed equally: Laura H. Antão, Benjamin Weigel.These authors jointly supervised this work: Tomas Roslin, Anna-Liisa Laine.Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, FinlandLaura H. Antão, Benjamin Weigel, Giovanni Strona, Maria Hällfors, Elina Kaarlejärvi, Otso Ovaskainen, Marjo Saastamoinen, Jarno Vanhatalo, Tomas Roslin & Anna-Liisa LaineDepartment of Biological Sciences, University of South Carolina, Columbia, SC, USATad DallasDepartment of Biology, Lund University, Lund, SwedenØystein H. OpedalFinnish Environment Institute (SYKE), Helsinki, FinlandJanne Heliölä, Mikko Kuussaari, Juha Pöyry & Kristiina VuorioNatural Resources Institute Finland (Luke), Helsinki, FinlandHeikki Henttonen, Otso Huitu, Andreas Lindén, Päivi Merilä, Maija Salemaa & Tiina TonteriSection of Ecology, Department of Biology, University of Turku, Turku, FinlandErkki KorpimäkiFinnish Museum of Natural History, University of Helsinki, Helsinki, FinlandAleksi LehikoinenKainuu Centre for Economic Development, Transport and the Environment, Kajaani, FinlandReima LeinonenUniversity of Helsinki, Helsinki, FinlandHannu PietiäinenDepartment of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FinlandOtso OvaskainenCentre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, NorwayOtso OvaskainenHelsinki Institute of Life Science, University of Helsinki, Helsinki, FinlandMarjo SaastamoinenDepartment of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, FinlandJarno VanhataloSpatial Foodweb Ecology Group, Department of Agricultural Sciences, University of Helsinki, Helsinki, FinlandTomas RoslinSpatial Foodweb Ecology Group, Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, SwedenTomas RoslinDepartment of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, SwitzerlandAnna-Liisa Laine More