More stories

  • in

    Building a truly diverse biodiversity science

    npj Biodiversity aims to be a common forum where discoveries in all areas of biodiversity science can be discussed, so that the research in specific topics with broad implications for other disciplines permeates the whole community. This requires that scientific debates are made in egalitarian terms between people with different backgrounds and points of view. We will strive to provide safe spaces where all biodiversity research can be showcased without bias, and theoretical and practical advances can be subject to calm and civil debate. As journal editors we will implement measures to work towards a fairer and more inclusive science, such as giving proper recognition to all researchers involved in the research published13, or ensuring in revisions that former research made by different identity groups and local scientists is adequately acknowledged14. We will also acknowledge diversity by maintaining a diverse editorial board15 and engaging external peer-reviewers16 that represent local specialists, the diversity of approaches in each field, as well as early-career researchers across demographic groups. We will also encourage access to research and engage in the FAIR principles for data management and sharing17. Here, good practice includes making data available for reanalysis or compilation in larger databases by researchers anywhere in the world, promoting open software, and sharing reproducible code18,19. Our hope is that this extends the capacity of developing meta-analyses and macroecological and macroevolutionary research beyond the borders of high-income countries.npj Biodiversity seeks to promote scientific discussion and synthesis. As editors, we will act as guides and moderators rather than as gatekeepers that merely decide which papers are above the threshold of publication20. Thus, we encourage debate as a central part of the editorial process, allowing well-grounded and clearly-identified speculation and policy-related statements in published papers when appropriate. This may include publishing non-conventional papers that foster discussion in established topics or open new research avenues21, if and only if they are well supported by data or published evidence. In this sense, we welcome Comments on areas currently under discussion, as well as Reviews and Perspectives that allow synthesis in theoretical and practical topics that are not necessarily general, but can help advance specific subdisciplines or topics. Last but not least, we want to facilitate communication between basic research and applied practitioners through Perspectives that translate the implications of recent research for management, conservation and adaptation to global change, or that identify which theoretical advances or additional empirical evidence would be needed to tackle specific problems.Creating the appropriate publishing environment for journals to be true forums for debate and provide value to the scientific community is a challenging enterprise. Above all, it requires escaping from the haste imposed by the “publish or perish model”, and making an explicit effort to raise the quality of the editorial process. In npj Biodiversity we will seek to follow ‘slow publishing’ principles, putting emphasis on meaningful debate between authors, editors and reviewers22. Current research environments can prevent researchers from having time to think, but true advance stems from digesting ideas and discussing them with the detail, depth and time they may need (http://slow-science.org/)23,24,25. Therefore, to contribute to a healthier, gentler and more thoughtful approach to biodiversity science, we will provide thorough and thoughtful reviews. We will make editorial decisions that, when paired with equally thorough and thoughtful work by authors, can reduce the number of times a paper bounces back and forth in successive rounds of peer review and revision. Note that this does not necessarily mean longer editorial times! Paradoxically, when authors, reviewers and editors commit to these “slow” publishing principles, the publication process can speed up. And most importantly, it will promote the spirit of productive debate that we aim for in npj Biodiversity. More

  • in

    Coastal upwelling generates cryptic temperature refugia

    Ackerly, D. D. et al. The geography of climate change: Implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).
    Google Scholar 
    Lawton, J. H. Are there general laws in ecology?. Oikos 84, 177–192 (1999).
    Google Scholar 
    Simberloff, D. Community ecology: Is it time to move on?. Am. Nat. 163, 787–799 (2004).PubMed 

    Google Scholar 
    Ricklefs, R. E. Disintegration of the ecological community. Am. Nat. 172, 741–750 (2008).PubMed 

    Google Scholar 
    McGill, B. J. et al. Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).PubMed 

    Google Scholar 
    Paine, R. T. The Pisaster-Tegula interaction: Prey patches, predator food preference, and intertidal community structure. Ecology 50, 950–961 (1969).
    Google Scholar 
    Dayton, P. K. Competition, disturbance, and community organization: The provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 41, 351–389 (1971).
    Google Scholar 
    Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).
    Google Scholar 
    Brose, U., Berlow, E. L. & Martinez, N. D. Scaling up keystone effects from simple to complex ecological networks. Ecol. Lett. 8, 1317–1325 (2005).
    Google Scholar 
    Stouffer, D. B. & Bascompte, J. Understanding food-web persistence from local to global scales. Ecol. Lett. 13, 154–161 (2010).PubMed 

    Google Scholar 
    Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. 100, 12765–12770 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).
    Google Scholar 
    Holyoak, M., Leibold, M. A. & Holt, R. D. Metacommunities: Spatial Dynamics and Ecological Communities (University of Chicago Press, 2005).
    Google Scholar 
    Gotelli, N. J. Macroecological signals of species interactions in the Danish avifauna. Proc. Natl. Acad. Sci. USA. 107, 5030–5035 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gouhier, T. C., Guichard, F. & Menge, B. A. Ecological processes can synchronize marine population dynamics over continental scales. Proc. Natl. Acad. Sci. 107, 8281–8286 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salois, S. L., Gouhier, T. C. & Menge, B. A. The multifactorial effects of dispersal on biodiversity in environmentally forced metacommunities. Ecosphere 9, e02357 (2018).
    Google Scholar 
    Helmuth, B. et al. Beyond long-term averages: Making biological sense of a rapidly changing world. Clim. Change Responses 1, 6 (2014).
    Google Scholar 
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215 (2015).ADS 

    Google Scholar 
    Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: The need for an improved perspective on physiological responses to the dynamic marine environment. Annu. Rev. Mar. Sci. 8, 357–378 (2016).ADS 

    Google Scholar 
    Rilov, G. et al. Adaptive marine conservation planning in the face of climate change: What can we learn from physiological, ecological and genetic studies?. Glob. Ecol. Conserv. 17, e00566 (2019).
    Google Scholar 
    Hampe, A. Bioclimate envelope models: What they detect and what they hide. Glob. Ecol. Biogeogr. 13, 469–471 (2004).
    Google Scholar 
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).
    Google Scholar 
    Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).PubMed 

    Google Scholar 
    Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783–786 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Araújo, M. B. & Peterson, A. T. Uses and misuses of bioclimatic envelope modeling. Ecology 93, 1527–1539 (2012).PubMed 

    Google Scholar 
    Helmuth, B. et al. Mosaic patterns of thermal stress in the rocky intertidal zone: Implications for climate change. Ecol. Monogr. 76, 461–479 (2006).
    Google Scholar 
    Helmuth, B., Mieszkowska, N., Moore, P. & Hawkins, S. J. Living on the edge of two changing worlds: Forecasting the responses of rocky intertidal ecosystems to climate change. Annu. Rev. Ecol. Evol. Syst. 37, 373–404 (2006).
    Google Scholar 
    Vasseur, D. A. et al. Synchronous dynamics of zooplankton competitors prevail in temperate lake ecosystems. Proc. R. Soc. B Biol. Sci. 281, 20140633 (2014).
    Google Scholar 
    Dillon, M. E. et al. Life in the frequency domain: The biological impacts of changes in climate variability at multiple time scales. Integr. Comp. Biol. icw024 (2016).Kroeker, K. J. et al. Interacting environmental mosaics drive geographic variation in mussel performance and predation vulnerability. Ecol. Lett. 19, 771–779 (2016).PubMed 

    Google Scholar 
    Seabra, R., Wethey, D. S., Santos, A. M. & Lima, F. P. Understanding complex biogeographic responses to climate change. Sci. Rep. 5, (2015).Di Cecco, G. J. & Gouhier, T. C. Increased spatial and temporal autocorrelation of temperature under climate change. Sci. Rep. 8, 14850 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).
    Google Scholar 
    Morelli, T. L. et al. Climate change refugia and habitat connectivity promote species persistence. Clim. Change Responses 4, 8 (2017).
    Google Scholar 
    Bates, A. E. et al. Biologists ignore ocean weather at their peril. Nature 560, 299–301 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Molinos, J. G. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change (2015).Levins, R. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15, 237–240 (1969).
    Google Scholar 
    Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology 58, 445–449 (1977).
    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).
    Google Scholar 
    Hannah, L. et al. Fine-grain modeling of species’ response to climate change: Holdouts, stepping-stones, and microrefugia. Trends Ecol. Evol. 29, 390–397 (2014).PubMed 

    Google Scholar 
    Barceló, C., Ciannelli, L. & Brodeur, R. D. Pelagic marine refugia and climatically sensitive areas in an eastern boundary current upwelling system. Glob. Change Biol. 24, 668–680 (2018).ADS 

    Google Scholar 
    Dong, Y. et al. Untangling the roles of microclimate, behaviour and physiological polymorphism in governing vulnerability of intertidal snails to heat stress. Proc. R. Soc. B Biol. Sci. 284, 20162367 (2017).
    Google Scholar 
    Smit, A. J. et al. A coastal seawater temperature dataset for biogeographical studies: large biases between in situ and remotely-sensed data sets around the Coast of South Africa. PLoS ONE 8, e81944 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castro, S. L., Monzon, L. A., Wick, G. A., Lewis, R. D. & Beylkin, G. Subpixel variability and quality assessment of satellite sea surface temperature data using a novel High Resolution Multistage Spectral Interpolation (HRMSI) technique. Remote Sens. Environ. 217, 292–308 (2018).ADS 

    Google Scholar 
    Rahaghi, A. I., Lemmin, U. & Barry, D. A. Surface water temperature heterogeneity at subpixel satellite scales and its effect on the surface cooling estimates of a large lake: Airborne remote sensing results from Lake Geneva. J. Geophys. Res. Oceans 124, 635–651 (2019).ADS 

    Google Scholar 
    Pfister, C. A., Wootton, J. T. & Neufeld, C. J. The relative roles of coastal and oceanic processes in determining physical and chemical characteristics of an intensively sampled nearshore system. Limnol. Oceanogr. 52, 1767–1775 (2007).ADS 
    CAS 

    Google Scholar 
    Meneghesso, C. et al. Remotely-sensed L4 SST underestimates the thermal fingerprint of coastal upwelling. Remote Sens. Environ. 237, 111588 (2020).ADS 

    Google Scholar 
    Leichter, J. J., Helmuth, B. & Fischer, A. M. Variation beneath the surface: Quantifying complex thermal environments on coral reefs in the Caribbean, Bahamas and Florida. J. Mar. Res. 64, 563–588 (2006).
    Google Scholar 
    Castillo, K. D. & Lima, F. P. Comparison of in situ and satellite-derived (MODIS-Aqua/Terra) methods for assessing temperatures on coral reefs. Limnol. Oceanogr. Methods 8, 107–117 (2010).
    Google Scholar 
    Wyatt, A. S. J. et al. Heat accumulation on coral reefs mitigated by internal waves. Nat. Geosci. 13, 28–34 (2020).ADS 
    CAS 

    Google Scholar 
    Lourenço, C. R. et al. Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. J. Biogeogr. 43, 1595–1607 (2016).
    Google Scholar 
    Seabra, R. et al. Reduced nearshore warming associated with eastern boundary upwelling systems. Front. Mar. Sci. 6, (2019).Randall, C. J., Toth, L. T., Leichter, J. J., Maté, J. L. & Aronson, R. B. Upwelling buffers climate change impacts on coral reefs of the eastern tropical Pacific. Ecology 101, (2020).Varela, R., Lima, F. P., Seabra, R., Meneghesso, C. & Gómez-Gesteira, M. Coastal warming and wind-driven upwelling: A global analysis. Sci. Total Environ. 639, 1501–1511 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Schulz, K. G., Hartley, S. & Eyre, B. Upwelling amplifies ocean acidification on the east Australian shelf: Implications for marine ecosystems. Front. Mar. Sci. 6, (2019).Connell, J. H. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42, 710–723 (1961).
    Google Scholar 
    Somero, G. N. Linking biogeography to physiology: Evolutionary and acclimatory adjustments of thermal limits. Front. Zool. 2, 1 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    Sydeman, W. J. et al. Climate change and wind intensification in coastal upwelling ecosystems. Science 345, 77–80 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sweijd, N. A. & Smit, A. J. Trends in sea surface temperature and chlorophyll-a in the seven African Large Marine Ecosystems. Environ. Dev. 36, 100585 (2020).
    Google Scholar 
    Wang, D., Gouhier, T. C., Menge, B. A. & Ganguly, A. R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lima, F. P. & Wethey, D. S. Robolimpets: measuring intertidal body temperatures using biomimetic loggers: Biomimetic loggers for intertidal temperatures. Limnol. Oceanogr. Methods 7, 347–353 (2009).
    Google Scholar 
    Judge, R., Choi, F. & Helmuth, B. Recent advances in data logging for intertidal ecology. Front. Ecol. Evol. 6, (2018).Harley, C. D. G. & Helmuth, B. S. T. Local- and regional-scale effects of wave exposure, thermal stress, and absolute versus effective shore level on patterns of intertidal zonation. Limnol. Oceanogr. 48, 1498–1508 (2003).ADS 

    Google Scholar 
    Seabra, R., Wethey, D. S., Santos, A. M., Gomes, F. & Lima, F. P. Equatorial range limits of an intertidal ectotherm are more linked to water than air temperature. Glob. Change Biol. 22, 3320–3331 (2016).ADS 

    Google Scholar 
    Lima, F. P. et al. Loss of thermal refugia near equatorial range limits. Glob. Change Biol. 22, 254–263 (2016).ADS 

    Google Scholar 
    Tapia, F. J. et al. Thermal indices of upwelling effects on inner-shelf habitats. Prog. Oceanogr. 83, 278–287 (2009).ADS 

    Google Scholar 
    Freeman, E. et al. ICOADS release 3.0: A major update to the historical marine climate record. Int. J. Climatol. 37, 2211–2232 (2017).
    Google Scholar 
    Lemos, R. T. & Pires, H. O. The upwelling regime off the West Portuguese Coast, 1941–2000. Int. J. Climatol. 24, 511–524 (2004).
    Google Scholar 
    Seabra, R., Wethey, D. S., Santos, A. M. & Lima, F. P. Side matters: Microhabitat influence on intertidal heat stress over a large geographical scale. J. Exp. Mar. Biol. Ecol. 400, 200–208 (2011).
    Google Scholar 
    Legendre, P. Species associations: The Kendall coefficient of concordance revisited. J. Agric. Biol. Environ. Stat. 10, 226–245 (2005).
    Google Scholar 
    Gouhier, T. C. & Guichard, F. Synchrony: Quantifying variability in space and time. Methods Ecol. Evol. 5, 524–533 (2014).
    Google Scholar 
    Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).ADS 

    Google Scholar 
    Cazelles, B. et al. Wavelet analysis of ecological time series. Oecologia 156, 287–304 (2008).ADS 
    PubMed 

    Google Scholar 
    Recknagel, F., Ostrovsky, I., Cao, H., Zohary, T. & Zhang, X. Ecological relationships, thresholds and time-lags determining phytoplankton community dynamics of Lake Kinneret, Israel elucidated by evolutionary computation and wavelets. Ecol. Model. 255, 70–86 (2013).CAS 

    Google Scholar 
    Mislan, K. A. S., Helmuth, B. & Wethey, D. S. Geographical variation in climatic sensitivity of intertidal mussel zonation: Biogeography of climatic sensitivity. Glob. Ecol. Biogeogr. 23, 744–756 (2014).
    Google Scholar 
    Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).ADS 

    Google Scholar 
    Cazelles, B. & Stone, L. Detection of imperfect population synchrony in an uncertain world. J. Anim. Ecol. 72, 953–968 (2003).
    Google Scholar 
    Keppel, G. et al. The capacity of refugia for conservation planning under climate change. Front. Ecol. Environ. 13, 106–112 (2015).
    Google Scholar 
    Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B Biol. Sci. 281, 20132612–20132612 (2014).
    Google Scholar 
    Potter, K. A., Woods, H. A. & Pincebourde, S. Microclimatic challenges in global change biology. Glob. Change Biol. 19, 2932–2939 (2013).ADS 

    Google Scholar 
    Sandel, B. et al. The influence of late quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16, 743–753 (2007).
    Google Scholar 
    Morelli, T. L. et al. Managing climate change refugia for climate adaptation. PLoS ONE 11, e0159909 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Stenseth, N. Ecological effects of climate fluctuations. Science 297, 1292–1296 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327–341 (2019).PubMed 

    Google Scholar 
    Helmuth, B. et al. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors. Sci. Data 3, 160087 (2016).MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wikelski, M. & Cooke, S. J. Conservation physiology. Trends Ecol. Evol. 21, 38–46 (2006).PubMed 

    Google Scholar 
    Helmuth, B. S. T. & Hofmann, G. E. Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Biol. Bull. 201, 374–384 (2001).CAS 
    PubMed 

    Google Scholar 
    Kearney, M. Habitat, environment and niche: What are we modelling?. Oikos 115, 186–191 (2006).
    Google Scholar 
    Ashcroft, M. B. Identifying refugia from climate change. J. Biogeogr. 37, 1407–1413 (2010).
    Google Scholar 
    Maggs, C. A. et al. Evaluating signatures of glacial refugia for North Atlantic Benthic Marine Taxa. Ecology 89, S108–S122 (2008).PubMed 

    Google Scholar 
    Bennett, K. & Provan, J. What do we mean by ‘refugia’?. Quat. Sci. Rev. 27, 2449–2455 (2008).ADS 

    Google Scholar 
    Ashcroft, M. B., Chisholm, L. A. & French, K. O. Climate change at the landscape scale: predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Glob. Change Biol. 15, 656–667 (2009).ADS 

    Google Scholar 
    Hofmann, G. E. et al. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bakun, A. et al. Anticipated Effects of Climate Change on Coastal Upwelling Ecosystems. Curr. Clim. Change Rep. 1, 85–93 (2015).
    Google Scholar 
    Iles, A. C. et al. Climate-driven trends and ecological implications of event-scale upwelling in the California Current System. Glob. Change Biol. 18, 783–796 (2012).ADS 

    Google Scholar 
    García-Reyes, M. et al. Under pressure: Climate change, upwelling, and eastern boundary upwelling ecosystems. Front. Mar. Sci. 2, (2015).Liebhold, A., Koenig, W. D. & Bjørnstad, O. N. Spatial synchrony in population dynamics. Annu. Rev. Ecol. Evol. Syst. 467–490 (2004).Amarasekare, P. & Nisbet, R. M. Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. Am. Nat. 158, 572–584 (2001).CAS 
    PubMed 

    Google Scholar 
    Adler, F. R. & Nuernberger, B. Persistence in patchy irregular landscapes. Theor. Popul. Biol. 45, 41–75 (1994).MATH 

    Google Scholar 
    Rykaczewski, R. R. et al. Poleward displacement of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys. Res. Lett. 42, 6424–6431 (2015).ADS 

    Google Scholar 
    Varela, R., Rodríguez-Díaz, L., de Castro, M. & Gómez-Gesteira, M. Influence of Canary upwelling system on coastal SST warming along the 21st century using CMIP6 GCMs. Glob. Planet. Change 208, 103692 (2022).
    Google Scholar 
    Ocean deoxygenation: everyone’s problem. Causes, impacts, consequences and solutions. (IUCN, International Union for Conservation of Nature, 2019). https://doi.org/10.2305/IUCN.CH.2019.13.en.Howard, E. M. et al. Climate-driven aerobic habitat loss in the California Current System. Sci. Adv. 6, eaay3188 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iles, A. C. Toward predicting community-level effects of climate: Relative temperature scaling of metabolic and ingestion rates. Ecology 95, 2657–2668 (2014).
    Google Scholar 
    Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579 (2018).ADS 

    Google Scholar 
    Salinas, S., Irvine, S. E., Schertzing, C. L., Golden, S. Q. & Munch, S. B. Trait variation in extreme thermal environments under constant and fluctuating temperatures. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180177 (2019).
    Google Scholar 
    Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 560–564 (2015).ADS 

    Google Scholar 
    Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Change Biol. 22, 3829–3842 (2016).ADS 

    Google Scholar  More

  • in

    Temporal and functional interrelationships between bacterioplankton communities and the development of a toxigenic Microcystis bloom in a lowland European reservoir

    Paerl, H. W. Mitigating toxic planktonic cyanobacterial blooms in aquatic ecosystems facing increasing anthropogenic and climatic pressures. Toxins. 10, 1–16 (2018).
    Google Scholar 
    Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium Microcystis spp. Harmful Algae 54, 4–20. https://doi.org/10.1016/j.hal.2015.12.007 (2016).Article 
    PubMed 

    Google Scholar 
    Paerl, H. W. & Barnard, M. A. Mitigating the global expansion of harmful cyanobacterial blooms: Moving targets in a human- and climatically-altered world. Harmful Algae 96, 101845. https://doi.org/10.1016/j.hal.2020.101845 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paerl, H. W. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life. 4, 988–1012 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Burford, M. A. et al. Perspective: Advancing the research agenda for improving understanding of cyanobacteria in a future of global change. Harmful Algae 91, 101601. https://doi.org/10.1016/j.hal.2019.04.004 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Havens, K. E., James, R. T., East, T. L. & Smith, V. H. N: P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environ. Pollut. 122, 379–390 (2003).CAS 
    PubMed 

    Google Scholar 
    Bernard, C. Cyanobacteria and cyanotoxins. Rev. Franç. Lab. 2014, 53–68 (2014).
    Google Scholar 
    Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 65, 995–1010 (2013).CAS 
    PubMed 

    Google Scholar 
    Dolman, A. M. et al. Cyanobacteria and cyanotoxins: The influence of nitrogen versus phosphorus. PLoS ONE 7, 38575 (2012).
    Google Scholar 
    Svirčev, Z. et al. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. https://doi.org/10.1007/s00204-019-02524-4 (2019).Article 
    PubMed 

    Google Scholar 
    Massey, I. Y. & Yang, F. A mini review on microcystins and bacterial degradation. Toxins 12, 268 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Paerl, H. W. et al. Mitigating eutrophication and toxic cyanobacterial blooms in large lakes: The evolution of a dual nutrient (N and P) reduction paradigm. Hydrobiologia 847, 4359–4375. https://doi.org/10.1007/s10750-019-04087-y (2020).Article 
    CAS 

    Google Scholar 
    Sapp, M. et al. Species-specific bacterial communities in the phycosphere of microalgae?. Microb. Ecol. 53, 683–699 (2007).PubMed 

    Google Scholar 
    Cai, H., Jiang, H., Krumholz, L. R. & Yang, Z. Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake. PLoS ONE 9, 102879 (2014).ADS 

    Google Scholar 
    Grant, M. A. A., Kazamia, E., Cicuta, P. & Smith, A. G. Direct exchange of vitamin B 12 is demonstrated by modelling the growth dynamics of algal-bacterial cocultures. ISME J. Nat. Publ. Group 8, 1418–1427 (2014).CAS 

    Google Scholar 
    Shi, L., Cai, Y., Kong, F. & Yu, Y. Specific association between bacteria and buoyant Microcystis colonies compared with other bulk bacterial communities in the eutrophic Lake Taihu, China. Environ. Microbiol. Rep. 4, 669–678 (2012).CAS 
    PubMed 

    Google Scholar 
    Brunberg, A. K. Contribution of bacteria in the mucilage of Microcystis spp (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiol. Ecol. 29, 13–22 (1999).CAS 

    Google Scholar 
    Shao, K. et al. The responses of the taxa composition of particle-attached bacterial community to the decomposition of Microcystis blooms. Sci. Total. Environ. 488–489, 236–242. https://doi.org/10.1016/j.scitotenv.2014.04.101 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jankowiak, J. G. & Gobler, C. J. The composition and function of microbiomes within microcystis colonies are significantly different than native bacterial assemblages in two North American lakes. Front. Microbiol. 11, 1–26 (2020).
    Google Scholar 
    Bauer, A. & Forchhammer, K. Bacterial predation on cyanobacteria. Microb. Physiol. 99, 108 (2021).
    Google Scholar 
    Ndlela, L. L., Oberholster, P. J., Van Wyk, J. H. & Cheng, P. H. Bacteria as biological control agents of freshwater cyanobacteria: Is it feasible beyond the laboratory?. Appl. Microbiol. Biotechnol. 102, 9911–9923 (2018).CAS 
    PubMed 

    Google Scholar 
    Yang, C. et al. Distinct network interactions in particle-associated and free-living bacterial communities during a Microcystis aeruginosa bloom in a plateau lake. Front. Microbiol. 8, 1–15 (2017).
    Google Scholar 
    Xu, H. et al. Contrasting network features between free-living and particle-attached bacterial communities in Taihu Lake. Microb. Ecol. 76, 303–313 (2018).PubMed 

    Google Scholar 
    Liu, M. et al. Community dynamics of free-living and particle-attached bacteria following a reservoir Microcystis bloom. Sci. Total Environ. 660, 501–511. https://doi.org/10.1016/j.scitotenv.2018.12.414 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parveen, B. et al. Bacterial communities associated with Microcystis colonies differ from free-living communities living in the same ecosystem. Environ. Microbiol. Rep. 5, 716–724 (2013).CAS 
    PubMed 

    Google Scholar 
    Louati, I. et al. Structural diversity of bacterial communities associated with bloom-forming freshwater cyanobacteria differs according to the cyanobacterial genus. PLoS ONE 10, 0140614 (2015).
    Google Scholar 
    Zwirglmaier, K., Keiz, K., Engel, M., Geist, J. & Raeder, U. Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria. Front. Microbiol. 6, 1–18 (2015).
    Google Scholar 
    Scherer, P. I. et al. Temporal dynamics of the microbial community composition with a focus on toxic cyanobacteria and toxin presence during harmful algal blooms in two South German lakes. Front. Microbiol. 8, 1–17 (2017).
    Google Scholar 
    Kokocinski, M., Dziga, D., Antosiak, A. & Soininen, J. Are bacterio- and phytoplankton community compositions related in lakes differing in their cyanobacteria contribution and physico-chemical properties?. Genes 12, 855 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dziga, D. et al. Correlation between specific groups of heterotrophic bacteria and microcystin biodegradation in freshwater bodies of central Europe. FEMS Microbiol. Ecol. https://doi.org/10.1111/j.1574-6941.1999.tb00594.x (2019).Article 
    PubMed 

    Google Scholar 
    Jurczak, T. et al. Elimination of microcystins by water treatment processes: Examples from Sulejow Reservoir, Poland. Water Res. 39, 2394–2406 (2005).CAS 
    PubMed 

    Google Scholar 
    Mankiewicz-Boczek, J. et al. Detection and monitoring toxigenicity of cyanobacteria by application of molecular methods. Environ Toxicol. 21, 380–387 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rajaniemi-Wacklin, P. et al. Correspondence between phylogeny and morphology of Snowella spp. and Woronichinia naegeliana, cyanobacteria commonly occurring in lakes. J. Phycol. 42, 226–232 (2006).
    Google Scholar 
    DrobacBacković, D. et al. Cyanobacteria, cyanotoxins, and their histopathological effects on fish tissues in Fehérvárcsurgó reservoir Hungary. Environ. Monit. Assess. https://doi.org/10.1007/s10661-021-09324-3 (2021).Article 

    Google Scholar 
    Kallscheuer, N. et al. Analysis of bacterial communities in a municipal duck pond during a phytoplankton bloom and isolation of Anatilimnocola aggregata gen. nov., sp. Nov., Lacipirellula limnantheis sp. Nov. and Urbifossiella limnaea gen. nov. sp. nov. belonging to the phylum. Environ. Microbiol. 23, 1379–1396 (2021).CAS 
    PubMed 

    Google Scholar 
    Davis, T. W. et al. Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Aquat. Microb. Ecol. 61, 149–162 (2010).
    Google Scholar 
    Gobler, C. J., Davis, T. W., Coyne, K. J. & Boyer, G. L. Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York lake. Harmful Algae 6, 119–133 (2007).CAS 

    Google Scholar 
    Mankiewicz-Boczek, J. et al. Cyanophages infection of microcystis bloom in lowland dam reservoir of Sulejów, Poland. Microb. Ecol. 71, 315–325 (2016).CAS 
    PubMed 

    Google Scholar 
    Davis, T. W., Berry, D. L., Boyer, G. L. & Gobler, C. J. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8, 715–725 (2009).CAS 

    Google Scholar 
    Yoshida, M., Yoshida, T., Takashima, Y., Hosoda, N. & Hiroishi, S. Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. FEMS Microbiol. Lett. 266, 49–53 (2007).CAS 
    PubMed 

    Google Scholar 
    Sezenna, M. L. Proteobacteria: Phylogeny, Metabolic Diversity and Ecological Effects (Nova Science Publishers, Inc., 2011).
    Google Scholar 
    Rilling, J. I., Acuña, J. J., Sadowsky, M. J. & Jorquera, M. A. Putative nitrogen-fixing bacteria associated with the rhizosphere and root endosphere of wheat plants grown in an andisol from southern Chile. Front. Microbiol. 9, 1–13 (2018).
    Google Scholar 
    Lukumbuzya, M. et al. A refined set of rRNA-targeted oligonucleotide probes for in situ detection and quantification of ammonia-oxidizing bacteria. Water Res. 186, 116375 (2020).
    Google Scholar 
    Prosser, J. I., Head, I. M. & Stein, L. Y. The family Nitrosomonadaceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria (eds Rosenberg, E. et al.) 901–918 (Springer, 2014). https://doi.org/10.1007/978-3-642-30197-1_372.Chapter 

    Google Scholar 
    Jia, L., Jiang, B., Huang, F. & Hu, X. Nitrogen removal mechanism and microbial community changes of bioaugmentation subsurface wastewater infiltration system. Bioresour. Technol. 294, 122140. https://doi.org/10.1016/j.biortech.2019.122140 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Daft, M. J. & Stewart, W. D. P. Bacterial pathogens of freshwater blue-green algae. New Phytol. 70, 819–829 (1971).
    Google Scholar 
    Chun, S. J. et al. Network analysis reveals succession of Microcystis genotypes accompanying distinctive microbial modules with recurrent patterns. Water Res. 170, 115326. https://doi.org/10.1016/j.watres.2019.115326 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Parulekar, N. N. et al. Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis. PLoS ONE 12, 1–22 (2017).
    Google Scholar 
    Guedes, I. A. et al. Close link between harmful cyanobacterial dominance and associated bacterioplankton in a tropical eutrophic reservoir. Front. Microbiol. 9, 424 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Allgaier, M. & Grossart, H. P. Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in northeastern Germany. Aquat. Microb. Ecol. 45, 115–128 (2006).
    Google Scholar 
    Chen, S. et al. Disentangling the drivers of Microcystis decomposition: Metabolic profile and co-occurrence of bacterial community. Sci. Total Environ. 739, 140062. https://doi.org/10.1016/j.scitotenv.2020.140062 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Leflaive, J. & Ten-Hage, L. Algal and cyanobacterial secondary metabolites in freshwaters: A comparison of allelopathic compounds and toxins. Freshw. Biol. 52, 199–214 (2007).CAS 

    Google Scholar 
    Song, H. et al. Biological and chemical factors driving the temporal distribution of cyanobacteria and heterotrophic bacteria in a eutrophic lake (West Lake, China). Appl. Microbiol. Biotechnol. 101, 1685–1696. https://doi.org/10.1007/s00253-016-7968-8 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bagatini, I. L. et al. Host-specificity and dynamics in bacterial communities associated with bloom-forming freshwater phytoplankton. PLoS ONE 9, 85957 (2014).ADS 

    Google Scholar 
    Kohler, E. et al. Biodegradation of microcystins during gravity-driven membrane (GDM) ultrafiltration. PLoS ONE 9, 111794 (2014).ADS 

    Google Scholar 
    Wu, X. et al. Culturing of “unculturable” subsurface microbes: Natural organic carbon source fuels the growth of diverse and distinct bacteria from groundwater. Front. Microbiol. 11, 1–10 (2020).CAS 

    Google Scholar 
    Morotomi, M., Nagai, F. & Watanabe, Y. Parasutterella secunda sp. no., isolated from human faeces and proposal of Sutterellaceae fam. nov. in the order Burkholderiales. Int. J. Syst. Evol. Microbiol. 61, 637–643 (2011).CAS 
    PubMed 

    Google Scholar 
    Kiedrzyńska, E. et al. Point sources of nutrient pollution in the lowland river catchment in the context of the baltic Sea eutrophication. Ecol. Eng. 70, 337–348 (2014).
    Google Scholar 
    Hwang, W. M., Ko, Y., Kim, J. H. & Kang, K. Ahniella affigens gen Nov, sp. nov., a gammaproteobacterium isolated from sandy soil near a stream. Int. J. Syst. Evol. Microbiol. 68, 2478–2484 (2018).CAS 
    PubMed 

    Google Scholar 
    Qian, H. et al. Spatial variability of cyanobacteria and heterotrophic bacteria in Lake Taihu (China). Bull. Environ. Contam. Toxicol. 99, 380–384 (2017).CAS 
    PubMed 

    Google Scholar 
    Humbert, J. F. et al. Comparison of the structure and composition of bacterial communities from temperate and tropical freshwater ecosystems. Environ. Microbiol. 11, 2339–2350 (2009).CAS 
    PubMed 

    Google Scholar 
    Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A guide to the natural history of freshwater lake Bacteria. Microbiol. Mol. Biol. Rev. 1, 1–10 (2011).
    Google Scholar 
    Parveen, B., Mary, I., Vellet, A., Ravet, V. & Debroas, D. Temporal dynamics and phylogenetic diversity of free-living and particle-associated Verrucomicrobia communities in relation to environmental variables in a mesotrophic lake. FEMS Microbiol. Ecol. 83, 189–201 (2013).CAS 
    PubMed 

    Google Scholar 
    Henson, M. W., Lanclos, V. C., Faircloth, B. C. & Thrash, J. C. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J. 12, 1846–1860 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, C. et al. The characteristics and algicidal mechanisms of cyanobactericidal bacteria, a review. World J. Microbiol. Biotechnol. 36, 1–10. https://doi.org/10.1007/s11274-020-02965-5 (2020).Article 

    Google Scholar 
    Izydorczyk, K. et al. Influence of abiotic and biotic factors on microcystin content in Microcystis aeruginosa cells in a eutrophic temperate reservoir. J. Plankton Res. 30, 393–400 (2008).CAS 

    Google Scholar 
    Mankiewicz-Boczek, J. et al. Bacteria homologus to Aeromonas capable of microcystin degradation. Open Life Sci. 10, 106–116 (2015).CAS 

    Google Scholar 
    Jaskulska, A., Font Nájera, A., Czarny, P., Serwecińska, L. & Mankiewicz-boczek, J. Daily dynamic of transcripts abundance of Ma-LMM01-like cyanophages in two lowland European reservoirs. Ecohydrol. Hydrobiol. 21, 543–548 (2021).
    Google Scholar 
    Gągała, I. et al. Role of environmental factors and toxic genotypes in the regulation of microcystins-producing cyanobacterial blooms. Microb. Ecol. 67, 465–479 (2014).PubMed 

    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, 1–11 (2013).
    Google Scholar 
    Illumina. 16S Metagenomic Sequencing Library Preparation. (2013). http://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf.Frangeul, L. et al. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics 9, 1–20 (2008).
    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. Past: Paleontological statistics software package for education and data analysis even a cursory glance at the recent paleontological literature should convince anyone tha. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    Suzuki, M. T., Taylor, L. T. & DeLong, E. F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5’-nuclease assays. Appl. Environ. Microbiol. 66, 4605–4614. https://doi.org/10.1128/AEM.66.11.4605-4614.2000 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neilan B. A et al. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis Int J Syst Bacteriol 47(3), 693–697, https://doi.org/10.1099/00207713-47-3-693 (1997).
    Google Scholar  More

  • in

    Mixtures of genotypes increase disease resistance in a coral nursery

    Vega Thurber, R. et al. Deciphering coral disease dynamics: Integrating host, microbiome, and the changing environment. Front. Ecol. Evol. 2020, 8 (2020).
    Google Scholar 
    Groner, M. L. et al. Managing marine disease emergencies in an era of rapid change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 1689 (2016).
    Google Scholar 
    Richardson, L. L. Coral diseases: What is really known?. Trends Ecol. Evol. 13, 438–443 (1998).CAS 
    PubMed 

    Google Scholar 
    Miller, M. W., Lohr, K. E., Cameron, C. M., Williams, D. E. & Peters, E. C. Disease dynamics and potential mitigation among restored and wild staghorn coral, Acropora cervicornis. PeerJ https://doi.org/10.7287/peerj.preprints.328 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teplitski, M. & Ritchie, K. How feasible is the biological control of coral diseases?. Trends Ecol. Evol. 24, 378–385 (2009).PubMed 

    Google Scholar 
    Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Altermatt, F. & Ebert, D. Genetic diversity of Daphnia magna populations enhances resistance to parasites. Ecol. Lett. 11, 918–928 (2008).PubMed 

    Google Scholar 
    Aronson, R. B. & Precht, W. F. White-band disease and the changing face of Caribbean coral reefs. In (ed Porter, J. W.) The Ecology and Etiology of Newly Emerging Marine Diseases 25–38 (Springer Netherlands, 2001).Ruiz-Moreno, D. et al. Global coral disease prevalence associated with sea temperature anomalies and local factors. Dis. Aquat. Organ. 100, 249–261 (2012).PubMed 

    Google Scholar 
    Precht, W. F., Gintert, B. E., Robbart, M. L., Fura, R. & van Woesik, R. Unprecedented disease-related coral mortality in Southeastern Florida. Sci. Rep. 6, 31374 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gignoux-Wolfsohn, S. A., Marks, C. J. & Vollmer, S. V. White Band Disease transmission in the threatened coral, Acropora cervicornis. Sci. Rep. 2, 804 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aronson, R., Bruckner, A., Moore, J., Precht, B. & Weil, E. Acropora cervicornis. IUCN Red List of Threatened Species https://doi.org/10.2305/iucn.uk.2008.rlts.t133381a3716457.en (2008).Alvarez-Filip, L., González-Barrios, F. J., Pérez-Cervantes, E., Molina-Hernández, A. & Estrada-Saldívar, N. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Commun. Biol. 5, 440 (2022).PubMed 
    PubMed Central 

    Google Scholar 
    Heres, M. M., Farmer, B. H., Elmer, F. & Hertler, H. Ecological consequences of Stony Coral Tissue Loss Disease in the Turks and Caicos Islands. Coral Reefs 40, 609–624 (2021).
    Google Scholar 
    Neely, K. L., Shea, C. P., Macaulay, K. A., Hower, E. K. & Dobler, M. A. Short- and long-term effectiveness of coral disease treatments. Front. Mar. Sci. 2021, 8 (2021).
    Google Scholar 
    Neely, K. L., Macaulay, K. A., Hower, E. K. & Dobler, M. A. Effectiveness of topical antibiotics in treating corals affected by stony coral tissue loss disease. PeerJ 8, e9289 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Shilling, E. N., Combs, I. R. & Voss, J. D. Assessing the effectiveness of two intervention methods for stony coral tissue loss disease on Montastraea cavernosa. Sci. Rep. 11, 8566 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker, B. K., Turner, N. R., Noren, H. K. G., Buckley, S. F. & Pitts, K. A. Optimizing stony coral tissue loss disease (SCTLD) intervention treatments on Montastraea cavernosa in an Endemic Zone. Front. Mar. Sci. 8, 666224 (2021).
    Google Scholar 
    Forrester, G. E., Arton, L., Horton, A., Nickles, K. & Forrester, L. M. Antibiotic treatment ameliorates the impact of stony coral tissue loss disease (SCTLD) on coral communities. Front. Mar. Sci. 2022, 9 (2022).
    Google Scholar 
    Lee-Hing, C. et al. Management responses in Belize and Honduras, as stony coral tissue loss disease expands its prevalence in the Mesoamerican reef. Front. Mar. Sci. 9, 1 (2022).ADS 

    Google Scholar 
    Young, C. N., Schopmeyer, S. A. & Lirman, D. A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and Western Atlantic. Bull. Mar. Sci. 88, 1075–1098 (2012).
    Google Scholar 
    Lirman, D. & Schopmeyer, S. Ecological solutions to reef degradation: Optimizing coral reef restoration in the Caribbean and Western Atlantic. PeerJ 4, e2597 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, e01978 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Rosales, S. M. et al. Microbiome differences in disease-resistant vs susceptible Acropora corals subjected to disease challenge assays. Sci. Rep. 9, 18279 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pinzón, C. J. H., Beach-Letendre, J., Weil, E. & Mydlarz, L. D. Relationship between phylogeny and immunity suggests older caribbean coral lineages are more resistant to disease. PLoS ONE 9, e104787. https://doi.org/10.1371/journal.pone.0104787 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Drury, C. et al. Genomic patterns in Acropora cervicornis show extensive population structure and variable genetic diversity. Ecol. Evol. 7, 6188–6200 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Maneval, P., Jacoby, C. A., Harris, H. E. & Frazer, T. K. Genotype, nursery design, and depth influence the growth of Acropora cervicornis fragments. Front. Mar. Sci. 8, 1 (2021).
    Google Scholar 
    Wright, R. M. et al. Intraspecific differences in molecular stress responses and coral pathobiome contribute to mortality under bacterial challenge in Acropora millepora. Sci. Rep. 7, 2609 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vollmer, S. V. & Kline, D. I. Natural disease resistance in threatened staghorn corals. PLoS ONE 3, e3718 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, N., Maneval, P., Manfrino, C., Frazer, T. K. & Meyer, J. L. Spatial distribution of microbial communities among colonies and genotypes in nursery-reared Acropora cervicornis. PeerJ 8, e9635 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Klinges, G., Maher, R. L., Vega-Thurber, R. L. & Muller, E. M. Parasitic, “Candidatus Aquarickettsia rohweri” is a marker of disease susceptibility in Acropora cervicornis but is lost during thermal stress. Environ. Microbiol. 22, 5341–5355 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, M. W. et al. Genotypic variation in disease susceptibility among cultured stocks of elkhorn and staghorn corals. PeerJ 7, e6751 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Rohr, J. R. et al. Towards common ground in the biodiversity-disease debate. Nat. Ecol. Evol. 4, 24–33 (2020).PubMed 

    Google Scholar 
    Shearer, T. L., Porto, I. & Zubillaga, A. L. Restoration of coral populations in light of genetic diversity estimates. Coral Reefs 28, 727–733 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ostfeld, R. S. & Keesing, F. Biodiversity and disease risk: The case of lyme disease. Conserv. Biol. 14, 722–728 (2000).
    Google Scholar 
    Lively, C. M. The effect of host genetic diversity on disease spread. Am. Nat. 175, E149–E152 (2010).PubMed 

    Google Scholar 
    Ostfeld, R. S. & Keesing, F. Effects of host diversity on infectious disease. Annu. Rev. Ecol. Evol. Syst. 43, 157–182 (2012).
    Google Scholar 
    King, K. C. & Lively, C. M. Does genetic diversity limit disease spread in natural host populations?. Heredity 109, 199–203 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Acevedo-Whitehouse, K., Gulland, F., Greig, D. & Amos, W. Inbreeding: Disease susceptibility in California sea lions. Nature 422, 35 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    O’Brien, S. J. et al. Genetic basis for species vulnerability in the cheetah. Science 227, 1428–1434 (1985).ADS 
    PubMed 

    Google Scholar 
    Pearman, P. B. & Garner, T. W. J. Susceptibility of Italian agile frog populations to an emerging strain of Ranavirus parallels population genetic diversity. Ecol. Lett. 8, 401–408 (2005).
    Google Scholar 
    Reber, A., Castella, G., Christe, P. & Chapuisat, M. Experimentally increased group diversity improves disease resistance in an ant species. Ecol. Lett. 11, 682–689 (2008).PubMed 

    Google Scholar 
    Mundt, C. C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 40, 381–410 (2002).CAS 
    PubMed 

    Google Scholar 
    Elton, C. S. The Ecology of Invasions by Animals and Plants (University of Chicago Press, 2000).
    Google Scholar 
    Schopmeyer, S. A. et al. Regional restoration benchmarks for Acropora cervicornis. Coral Reefs 36, 1047–1057 (2017).ADS 

    Google Scholar 
    Baums, I. B., Miller, M. W. & Hellberg, M. E. Geographic variation in clonal structure in a reef-building Caribbean coral, Acropora palmata. Ecol. Monogr. 76, 503–519 (2006).
    Google Scholar 
    Gignoux-Wolfsohn, S. A., Precht, W. F., Peters, E. C., Gintert, B. E. & Kaufman, L. S. Ecology, histopathology, and microbial ecology of a white-band disease outbreak in the threatened staghorn coral Acropora cervicornis. Dis. Aquat. Organ. 137, 217–237 (2020).PubMed 

    Google Scholar 
    Gignoux-Wolfsohn, S. A. & Vollmer, S. V. Identification of candidate coral pathogens on white band disease-infected staghorn coral. PLoS ONE 10, e0134416 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Brooks, M. et al. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Google Scholar 
    Fox, J. & Weisburg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).
    Google Scholar  More

  • in

    Living on the sea-coast: ranging and habitat distribution of Asiatic lions

    Study areaSituated in western India’s southwestern part of the Gujarat state, the Saurashtra region typically represents the semi-arid Gujarat-Rajputana province 4B23, which covers 11 out of 33 districts of the state. The region forms a rocky tableland (altitude 300–600 m) fringed by coastal plains with an undulating central plain broken by hills and dissected by various rivers that flow in all directions24. With the longest coastline (~ 1600 km) in India, Gujarat is endowed with rich coastal biodiversity25,26. The Saurashtra coast in Gujarat is encircled by the open sea between two Gulfs (68° 58′–71° 30′ N and 22° 15′–20° 50′ E) and divided into two segments, viz. the southwestern coast from Dwarka to Diu (~ 300 km stretch) and south-eastern coast from Diu to Bhavnagar (~ 250 km stretch)26.The Asiatic Lion Landscape covers an area of ~ 30,000 km2 (permanent lion distribution range: ~ 16,000 km2; visitation record range: ~ 14,000 km2) of varied habitat types within Saurashtra. The landscape includes five protected areas (Gir National Park, Gir Wildlife Sanctuary, Paniya Wildlife Sanctuary, Mitiyala Wildlife Sanctuary, and Girnar Wildlife Sanctuary) and other forest classes (reserved forests, protected forests, and unclassed forests).The coastal habitats extend across the districts of Bhavnagar, Amreli, Gir-Somnath, and Junagadh (Fig. 1). Within these districts (Fig. 1), the tehsils (sub-divisions/taluka) of Mangrol, Malia, Patan-Veraval, Sutrapada, Kodinar and Una are categorized under the southwestern coast (hereafter western coastal habitat), Jafrabad, Rajula, form the south-eastern coast and Mahuva and Talaja constitute the Bhavnagar coast and represent distinct lion range units (Fig. 1). The total area covered in the study is 2843 km2 on the eastern coast and 1413 km2 on the western coast (Fig. 1).The Saurashtra region is bestowed with three distinct seasons, viz. dry and hot summer (March–June), monsoon (July–October), and primarily dry winter (November–February). It receives a mean annual rainfall of ~ 600 mm, with most rainfall during the southwest monsoon27. The mean maximum and minimum temperatures are 34 °C and 19 °C, respectively28. There is a 110 km2 stretch of forests along the coast. The rest of the areas are multi-use consisting of private, industrial, pastoral and wastelands of varied ownerships. The natural vegetation primarily consists of Prosopis juliflora and Casuarina equistsetifolia. On the beach and dune areas, vegetation such as Ipomea pescaprae, Sporobolus trinules, Fimrystylis sp., Crotalaria sp., and Euphorbia nivuleria29. The mudflats along the coast are restricted to Talaja, Mahuva, Pipavav Port, Jafrabad creek, and Porbandar, sparsely covered by the Avicennia marina29. Fisheries, agriculture, horticulture, livestock rearing, and some large- and small-scale industries are the leading economies in the coastal belt.Coastal segments are characterized by the variety of vegetation, sandy beaches, small cliffs, wave-cut platforms, open and submerged dunes, minor estuaries, embankments, and transition from the open sea to gulf environment with tidal mud26,29 and also support a diverse assemblage of biodiversity25. This biodiversity is further enriched by several perennial/ephemeral rivers originating from the Gir PA (Shetrunji, Machundari, Raval, Ardak, Bhuvatirth, Shinghoda, Hiran, Saraswati, etc.)12. These rivers meet the sea at different sections of the coast, forming prominent coastal ecosystems25. The riverine tracts act as important corridors for wildlife movement9,12,30. Dispersing through these corridors, lions have started inhabiting these coastal habitats30,31.MethodsAll the research activities involved in this study on Asiatic lions were carried out after taking due permission from the Ministry of Environment, Forests & Climate Change (MoEF&CC), Government of India (Letter No.: F. No. 1-50/2018 WL) and Principal Chief Conservator of Forests (Wildlife) & Chief Wildlife Warden, Gujarat State, Gandhinagar (Letter No.: WLP 26B 781-83/2019-20). Procedures and protocols were followed as per the Standard Operating Procedures of the Gujarat Forest Department, Government of Gujarat, concerning the handling of wild animals. Qualified and experienced veterinarians and their team carried out all procedures related to radio-collaring. Moreover, the study is reported in accordance with ‘Animal Research: Reporting of In Vivo Experiments’ (ARRIVE) guidelines as applicable.A long-term lion monitoring project was initiated in 2019 by the Gujarat Forest Department to understand the movement patterns and ecology of lions in the Asiatic Lion Landscape. Looking at the heterogeneity and vastness of the coastal areas, ten individuals were carefully selected for satellite radio-collaring based on their frequent movement in different coastal habitats and monitored from 2019 to 2021.The lions were deployed with Vertex Plus GPS Collars (Vectronics Aerospace GmbH, Berlin, Germany) that weighed less than three per cent of the individual’s body weight, irrespective of age and sex. The lions were immobilized using a combination of Ketamine hydrochloride (2.2 mg per kg body weight; Ketamine, Biowet, Pulawy) and Xylazine hydrochloride (1.1 mg per kg body weight; Xylaxil, Brilliant Bio Pharma Pvt. Ltd., Telangana)32 administered intramuscularly using a gas-powered Telinject™ G.U.T 50 (Telinject Inc., Dudenhofen, Germany) dart delivery system. A blindfold was placed to protect the eyes and decrease visual stimuli33,34. Each sedated individual was sexed, aged, and measured as per the standard operating procedure (SOP) of the Gujarat Forest Department, Government of Gujarat, and recorded the data in the trapping datasheet. The radio-collars were deployed considering the neck girth of the individual, ensuring free movement of it so as not to hamper the individual’s routine activities. After deploying the radio-collar, we used the specific antidote for Xylazine, i.e., Yohimbine hydrochloride (0.1–0.15 mg per kg body weight; Yohimbe, Equimed, USA) intravenously, resulting in the total recovery of immobilized individuals32 within 5–10 min. The individuals were intensively monitored for 72 h and, after that, regularly monitored throughout the functional period of the radio-collars. The entire radio-collaring exercise was carried out by trained and experienced veterinary officers and their teams that constituted wildlife health care personnel and field staff.Each collar had a unique VHF and UHF frequency. The radio-collars were equipped with a programmable GPS schedule and configured to record the location fixes at every hour and provided the data through the constellation of low-earth-orbit Iridium satellite data service (Iridium Communications Inc., Virginia, USA) at four-hour intervals after getting activated. The data logs included location fixes in degree decimal format (latitude/longitude), speed (km/hour), altitude (meters above mean sea level), UTC timestamp (dd-mm-yyyy h:m:s), direction (degrees), and temperature (Celsius). Radio-collars were equipped with mortality sensors and a programmable drop-off activation system. Gir Hi-Tech Monitoring Unit, Sasan-Gir, Gujarat, monitored and coordinated these activities. The location data from each radio-collar was downloaded using the GPS Plus X software (Vectronics Aerospace GmbH, Berlin, Germany) in the Gir Hi-Tech Monitoring Unit (a technology-driven scientific monitoring initiative in the landscape established in 2019 at Sasan-Gir, Gujarat).Data analysisIn this study, we calculated the home range of lions resident in the coastal region using the Fixed Kernel method. We expressed them as 90% and 50% Fixed Kernel (FK) to summarize the overall home range and core area, respectively35,36,37. Additionally, the home range of lions categorized as “link lions” and lions of the protected area was summarized for comparison (Table 1).MaxEnt (version 3.4.1) stand-alone software38 was applied for fine-scaled lion distribution modelling39,40. The logistic output format was set for the MaxEnt output. 30% random lion occurrence points were used as test data to evaluate model performance. The area under the receiver operating characteristic curve (AUC) was used to evaluate the discriminative ability of the model based on the values of sensitivity (correct discrimination of true positive location points) and specificity (correct discrimination of true negative absence points)41. The Jackknife regularised training gain for the species was used to understand the effect of each variable in model building. The logical output by the MaxEnt was presented in a table format as “percent contribution” and “permutation importance” values (from 0 to 100%). Spatial inputs were prepared on the GIS platform using ArcMap (version 10.8.1, ESRI, Redlands, USA)42. Input data for MaxEnt were categorized as (i) lion occurrence data, (ii) model variables were prepared as described below:

    i.

    Occurrence data
    At the first level, inconsistent location fixes (records with missing coordinates, time stamps, and elevation) and outliers were filtered out. Next, each lion’s hourly GPS location fixes obtained from remotely monitored radio-telemetry data were randomized to overcome spatial and temporal biases. The data was reduced by taking every three-hour location fix43,44. The data was further categorized season-wise, viz. summer, monsoon and winter. This consolidated data was then subject to spatial thinning of one kilometre using SDMtoolbox (version 2.0)45,46.

    ii.

    Model variables

    The variables used for distribution modelling broadly included different categories of land use, including both natural habitats and anthropogenic factors, namely, roads and human settlement areas. All variables were rasterized at 10 m spatial resolution.Land Use Land Cover (LULC) data of Saurashtra was obtained from Bhaskaracharya National Institute for Space Applications and Geo-informatics (BISAG-N), Gandhinagar, Gujarat. The data was then further classified into 18 sub-classes—Forest, Sandy areas, Salt-affected, Saltpan, open scrub, dense scrub (Wastelands), Waterlogged, River/Stream/Drain, Lakes and Ponds, Mining/Industrial areas, Reservoir/Tanks, Mangrove/Swamp Area, Crop Land, Agriculture Plantation (horticulture and agro-forestry), Core urban, Mixed settlement, Peri-urban, Village (Fig. 2).Roads and highways were also analyzed as separate variables in the model. Roads were classified as village roads, major district roads, and state and national highways and digitized individually to estimate Euclidean distance further (Table 2). Euclidean distance from the human settlement (Core-urban, Peri-urban, villages and mixed settlement) was analyzed and taken as a separate input variable for the model. More

  • in

    Stacked distribution models predict climate-driven loss of variation in leaf phenology at continental scales

    Wright, S. Evolution in Mendelian Populations. Genetics 16, 97–159 (1931).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    DiBattista, J. D. Patterns of genetic variation in anthropogenically impacted populations. Conserv. Genet. 9, 141–156 (2008).
    Google Scholar 
    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).CAS 
    PubMed 

    Google Scholar 
    Nei, M., Maruyama, T. & Chakraborty, R. The Bottleneck Effect and Genetic Variability in Populations. Evolution 29, 1–10 (1975).PubMed 

    Google Scholar 
    Frankham, R. Stress and adaptation in conservation genetics. J. Evol. Biol. 18, 750–755 (2005).CAS 
    PubMed 

    Google Scholar 
    Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2017).PubMed 

    Google Scholar 
    Whitham, T. G. et al. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 7, 510–523 (2006).CAS 
    PubMed 

    Google Scholar 
    Hughes, A., Inouye, B., Johnson, M., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623 (2008).PubMed 

    Google Scholar 
    Hughes, A. R., Stachowicz, J. J. & Williams, S. L. Morphological and physiological variation among seagrass (Zostera marina) genotypes. Oecologia 159, 725–733 (2009).PubMed 

    Google Scholar 
    Schweitzer, J. A. et al. Genetically based trait in a dominant tree affects ecosystem processes: Plant genetics impact ecosystems. Ecol. Lett. 7, 127–134 (2004).
    Google Scholar 
    Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl Acad. Sci. USA 101, 8998–9002 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wimp, G. M. et al. Conserving plant genetic diversity for dependent animal communities. Ecol. Lett. 7, 776–780 (2004).
    Google Scholar 
    Reusch, T. B. H., Ehlers, A., Hämmerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl Acad. Sci. 102, 2826–2831 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 

    Google Scholar 
    Salo, T. & Gustafsson, C. The Effect of Genetic Diversity on Ecosystem Functioning in Vegetated Coastal Ecosystems. Ecosystems 19, 1429–1444 (2016).
    Google Scholar 
    Zettlemoyer, M. A. & Peterson, M. L. Does Phenological Plasticity Help or Hinder Range Shifts Under Climate Change? Front. Ecol. Evol. 9, 392 (2021).
    Google Scholar 
    Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Yiming, L. et al. Latitudinal gradients in genetic diversity and natural selection at a highly adaptive gene in terrestrial mammals. Ecography 44, 206–218 (2021).
    Google Scholar 
    Excoffier, L., Foll, M. & Petit, R. J. Genetic Consequences of Range Expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501 (2009).
    Google Scholar 
    Alsos, I. G. et al. Genetic consequences of climate change for northern plants. Proc. R. Soc. B Biol. Sci. 279, 2042–2051 (2012).
    Google Scholar 
    Stahl, U., Reu, B. & Wirth, C. Predicting species’ range limits from functional traits for the tree flora of North America. Proc. Natl Acad. Sci. 111, 13739–13744 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Nuland, M. E. et al. Intraspecific trait variation across elevation predicts a widespread tree species’ climate niche and range limits. Ecol. Evol. 10, 3856–3867 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Peterson, M. L., Angert, A. L. & Kay, K. M. Experimental migration upward in elevation is associated with strong selection on life history traits. Ecol. Evol. 10, 612–625 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. 115, 1004–1008 (2018).CAS 
    PubMed 

    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
    Google Scholar 
    Chen, I.-C., Hill, J., Ohlemüller, R., Roy, D. B. & Thomas, C. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 333, 1024–6 (2011).CAS 
    PubMed 

    Google Scholar 
    Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946 (2013).PubMed 

    Google Scholar 
    De Kort, H. et al. Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat. Commun. 12, 516 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467 (2005).PubMed 

    Google Scholar 
    DeMarche, M. L., Doak, D. F. & Morris, W. F. Incorporating local adaptation into forecasts of species’ distribution and abundance under climate change. Glob. Change Biol. 25, 775–793 (2019).
    Google Scholar 
    Bothwell, H. M. et al. Genetic data improves niche model discrimination and alters the direction and magnitude of climate change forecasts. Ecol. Appl. 31, e02254 (2021).Syfert, M. M., Brummitt, N. A., Coomes, D. A., Bystriakova, N. & Smith, M. J. Inferring diversity patterns along an elevation gradient from stacked SDMs: A case study on Mesoamerican ferns. Glob. Ecol. Conserv. 16, e00433 (2018).
    Google Scholar 
    Mateo, R. G., Felicísimo, Á. M., Pottier, J., Guisan, A. & Muñoz, J. Do Stacked Species Distribution Models Reflect Altitudinal Diversity Patterns? PLOS ONE 7, e32586 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferrier, S. & Guisan, A. Spatial modelling of biodiversity at the community level. J. Appl. Ecol. 43, 393–404 (2006).
    Google Scholar 
    Ware, I. M. et al. Climate-driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. Glob. Change Biol. 25, 1514–1528 (2019).
    Google Scholar 
    Endler, J. A. Geographic variation, speciation, and clines (Princeton University Press, 1977).May, R. M. & Godfrey, J. Biological Diversity: Differences between Land and Sea [and Discussion]. Philos. Trans. Biol. Sci. 343, 105–111 (1994).
    Google Scholar 
    Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).PubMed 

    Google Scholar 
    Van Nuland, M. E., Bailey, J. K. & Schweitzer, J. A. Divergent plant–soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nat. Ecol. Evol. 1, 0150 (2017).
    Google Scholar 
    Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B Biol. Sci. 365, 3227–3246 (2010).
    Google Scholar 
    Richardson, A. D. et al. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol. 29, 321–321 (2009).CAS 
    PubMed 

    Google Scholar 
    Huntington, T. G. CO2-induced suppression of transpiration cannot explain increasing runoff. Hydrol. Process. 22, 311–314 (2008).
    Google Scholar 
    Kim, J. H. et al. Warming-Induced Earlier Greenup Leads to Reduced Stream Discharge in a Temperate Mixed Forest Catchment. J. Geophys. Res. Biogeosciences 123, 1960–1975 (2018).
    Google Scholar 
    Ware, I. M. et al. Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology. Commun. Biol. 4, 748 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Mori, A. S. et al. Biodiversity–productivity relationships are key to nature-based climate solutions. Nat. Clim. Change 11, 543–550 (2021).
    Google Scholar 
    Woolbright, S. A., Whitham, T. G., Gehring, C. A., Allan, G. J. & Bailey, J. K. Climate relicts and their associated communities as natural ecology and evolution laboratories. Trends Ecol. Evol. 29, 406–416 (2014).PubMed 

    Google Scholar 
    Naiman, R. J., Décamps, H. & McClain, M. E. Riparia: ecology, conservation, and management of streamside communities (Elsevier Academic Press, 2005).Bayliss, S. L. J., Mueller, L. O., Ware, I. M., Schweitzer, J. A. & Bailey, J. K. Plant genetic variation drives geographic differences in atmosphere–plant–ecosystem feedbacks. Plant-Environ. Interact. 1, 166–180 (2020).
    Google Scholar 
    Cooke, J. E. K. & Rood, S. B. Trees of the people: the growing science of poplars in Canada and worldwide. This commentary is one of a selection of papers published in the Special Issue on Poplar Research in Canada. Can. J. Bot. 85, 1103–1110 (2007).
    Google Scholar 
    Evans, L. M., Allan, G. J., Meneses, N., Max, T. L. & Whitham, T. G. Herbivore host- associated genetic differentiation depends on the scale of plant genetic variation examined. Evol. Ecol. 27, 65–81 (2013).
    Google Scholar 
    Evans, L. M. et al. Geographical barriers and climate influence demographic history in narrowleaf cottonwoods. Heredity 114, 387–396 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hargreaves, A. L., Samis, K. E., Eckert, C. G., Schmitz, A. E. O. J. & Bronstein, E. J. L. Are Species’ Range Limits Simply Niche Limits Writ Large? A Review of Transplant Experiments beyond the Range. Am. Nat. 183, 157–173 (2014).PubMed 

    Google Scholar 
    Gotelli, N. J. & Stanton-Geddes, J. Climate change, genetic markers and species distribution modelling. J. Biogeogr. 42, 1577–1585 (2015).
    Google Scholar 
    Cushman, S. A. et al. Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks. Ecol. Appl. 24, 1000–1014 (2014).PubMed 

    Google Scholar 
    Bothwell, H. M. et al. Conserving threatened riparian ecosystems in the American West: Precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (Populus angustifolia). Mol. Ecol. 26, 5114–5132 (2017).PubMed 

    Google Scholar 
    Jimenez-Valverde, A. Sample Size for the evaluation of presence-absence models. Ecol. Indic. 114, 106289 (2020).
    Google Scholar 
    Hamann, A., Wang, T., Spittlehouse, D. L. & Murdock, T. Q. A Comprehensive, High-Resolution Database of Historical and Projected Climate Surfaces for Western North America. Bull. Am. Meteorol. Soc. 94, 1307–1309 (2013).
    Google Scholar 
    Lucinda. M. et al. NHDPlus version 2: user guide (Horizon Systems Corporation, 2012).ESRI. ArcMap (ESRI, 2018).Bayliss, S. L. J., Papeş, M., Schweitzer, J. A. & Bailey, J. K. Aggregate population-level models informed by genetics predict more suitable habitat than traditional species-level model across the range of a widespread riparian tree. PLoS One. 17, e0274892 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Google Scholar 
    Franklin, J. Mapping species distributions: spatial inference and prediction (Cambridge University Press, 2009).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015). (1).
    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).
    Google Scholar 
    Swets, J. A. Measuring the Accuracy of Diagnostic Systems. Science 240, 1285–1293 (1988).CAS 
    PubMed 

    Google Scholar 
    Engler, R. et al. 21st century climate change threatens mountain flora unequally across Europe. Glob. Change Biol. 17, 2330–2341 (2011).
    Google Scholar 
    Randin, C. F. et al. Climate change and plant distribution: local models predict high-elevation persistence. Glob. Change Biol. 15, 1557–1569 (2009).
    Google Scholar 
    Knutti, R., Masson, D. & Gettelman, A. Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett. 40, 1194–1199 (2013).
    Google Scholar 
    Mateo, R. G., Mokany, K. & Guisan, A. Biodiversity Models: What If Unsaturation Is the Rule? Trends Ecol. Evol. 32, 556–566 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    R. Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).Oksanen, J. et al. vegan: community ecology package (2020) http://CRAN.R-project.org/package=vegan. More

  • in

    Site-specific temporal variation of population dynamics in subalpine endemic plant species

    Theurillat, J.-P. & Guisan, A. Potential impact of climate change on vegetation in the European Alps: A review. Clim. Change 50, 77–109 (2001).CAS 

    Google Scholar 
    Diaz, H. F. & Eischeid, J. K. Disappearing “alpine tundra” Köppen climatic type in the western United States. Geophys. Res. Lett. 34, L18707 (2007).ADS 

    Google Scholar 
    Dirnböck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Change Biol. 17, 990–996 (2011).ADS 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pauli, H., Gottfried, M., Dirnböck, T., Dullinger, S. & Grabherr, G. Assessing the long-term dynamics of endemic plants at summit habitats. In Alpine Biodiversity in Europe (eds. Nagy, L., Grabherr, G., Körner, C., & Thompson, D. B.) 195–207 (Springer, 2003).Cogoni, D., Sulis, E., Bacchetta, G. & Fenu, G. The unpredictable fate of the single population of a threatened narrow endemic Mediterranean plant. Biodivers. Conserv. 28, 1799–1813 (2019).
    Google Scholar 
    Cursach, J., Besnard, A., Rita, J. & Fréville, H. Demographic variation and conservation of the narrow endemic plant Ranunculus weyleri. Acta Oecol. 53, 102–109 (2013).ADS 

    Google Scholar 
    Dibner, R. R., DeMarche, M. L., Louthan, A. M. & Doak, D. F. Multiple mechanisms confer stability to isolated populations of a rare endemic plant. Ecol. Monogr. 89, e01360 (2019).
    Google Scholar 
    Boyce, M. S., Haridas, C. V., Lee, C. T., NCEAS Stochastic Demography Working Group. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).PubMed 

    Google Scholar 
    Buckley, Y. M. et al. Causes and consequences of variation in plant population growth rate: A synthesis of matrix population models in a phylogenetic context. Ecol. Lett. 13, 1182–1197 (2010).PubMed 

    Google Scholar 
    Abbott, R. E., Doak, D. F. & DeMarche, M. L. Portfolio effects, climate change, and the persistence of small populations: Analyses on the rare plant Saussurea weberi. Ecology 98, 1071–1081 (2017).PubMed 

    Google Scholar 
    Villellas, J., Doak, D. F., García, M. B. & Morris, W. F. Demographic compensation among populations: What is it, how does it arise and what are its implications?. Ecol. Lett. 18, 1139–1152 (2015).PubMed 

    Google Scholar 
    Doak, D. F. & Morris, W. F. Demographic compensation and tipping points in climate-induced range shifts. Nature 467, 959–962 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    García-Camacho, R., Albert, M. J. & Escudero, A. Small-scale demographic compensation in a high-mountain endemic: The low edge stands still. Plant Ecol. Divers. 5, 37–44 (2012).
    Google Scholar 
    Andrello, M. et al. Accounting for stochasticity in demographic compensation along the elevational range of an alpine plant. Ecol. Lett. 23, 870–880 (2020).PubMed 

    Google Scholar 
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed 

    Google Scholar 
    Ægisdóttir, H. H., Kuss, P. & Stöcklin, J. Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann. Bot. 104, 1313–1322 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Morente-López, J. et al. Geography and environment shape landscape genetics of Mediterranean alpine species Silene ciliata Poiret. (Caryophyllaceae). Front. Plant Sci. 9, 1698 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Franks, S. J., Weber, J. J. & Aitken, S. N. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 7, 123–139 (2014).PubMed 

    Google Scholar 
    Jeong, H., Cho, Y.-C. & Kim, E. Differential plastic responses to temperature and nitrogen deposition in the subalpine plant species, Primula farinosa subsp. modesta. AoB Plants 13, plab061 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sulis, E., Bacchetta, G., Cogoni, D. & Fenu, G. From global to local scale: Where is the best for conservation purpose?. Biodivers. Conserv. 30, 183–200 (2021).
    Google Scholar 
    Hambler, D. & Dixon, J. Primula farinosa L. J. Ecol. 91, 694–705 (2003).
    Google Scholar 
    Arnold, E. & Richards, A. On the occurrence of unilateral incompatibility in Primula section Aleuritia Duby and the origin of Primula scotica Hook. Bot. J. Linn. Soc. 128, 359–368 (1998).
    Google Scholar 
    Tribsch, A. Areas of endemism of vascular plants in the eastern Alps in relation to Pleistocene glaciation. J. Biogeogr. 31, 747–760 (2004).
    Google Scholar 
    Chung, J.-M., Son, S.-W., Kim, S.-Y., Park, G.-W. & Kim, S.-S. Genetic diversity and geographic differentiation in the endangered Primula farinosa subsp. modesta, a subalpine endemic to Korea. Korean J. Plant. Taxon. 43, 236–243 (2013).
    Google Scholar 
    Lindborg, R. & Ehrlén, J. Evaluating the extinction risk of a perennial herb: Demographic data versus historical records. Conserv. Biol. 16, 683–690 (2002).
    Google Scholar 
    Caswell, H. Matrix Population Models, 2nd ed (Sinauer Associates Inc, 2000).Salguero-Gómez, R. & De Kroon, H. Matrix projection models meet variation in the real world. J. Ecol. 98, 250–254 (2010).
    Google Scholar 
    Jongejans, E. et al. Region versus site variation in the population dynamics of three short-lived perennials. J. Ecol. 98, 279–289 (2010).
    Google Scholar 
    Jongejans, E. & De Kroon, H. Space versus time variation in the population dynamics of three co-occurring perennial herbs. J. Ecol. 93, 681–692 (2005).
    Google Scholar 
    Suggitt, A. J. et al. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120, 1–8 (2011).
    Google Scholar 
    Tomimatsu, H. & Ohara, M. Demographic response of plant populations to habitat fragmentation and temporal environmental variability. Oecologia 162, 903–911 (2010).ADS 
    PubMed 

    Google Scholar 
    Kudernatsch, T., Fischer, A., Bernhardt-Römermann, M. & Abs, C. Short-term effects of temperature enhancement on growth and reproduction of alpine grassland species. Basic Appl. Ecol. 9, 263–274 (2008).
    Google Scholar 
    Kim, E. & Donohue, K. Local adaptation and plasticity of Erysimum capitatum to altitude: Its implications for responses to climate change. J. Ecol. 101, 796–805 (2013).
    Google Scholar 
    Forbis, T. A. Seedling demography in an alpine ecosystem. Am. J. Bot. 90, 1197–1206 (2003).PubMed 

    Google Scholar 
    Yenni, G., Adler, P. B. & Ernest, S. M. Strong self-limitation promotes the persistence of rare species. Ecology 93, 456–461 (2012).PubMed 

    Google Scholar 
    Doak, D. F. Source-sink models and the problem of habitat degradation: General models and applications to the Yellowstone grizzly. Conserv. Biol. 9, 1370–1379 (1995).
    Google Scholar 
    Lesica, P. & Crone, E. E. Arctic and boreal plant species decline at their southern range limits in the Rocky Mountains. Ecol. Lett. 20, 166–174 (2017).PubMed 

    Google Scholar 
    Oldfather, M. F. & Ackerly, D. D. Microclimate and demography interact to shape stable population dynamics across the range of an alpine plant. New Phytol. 222, 193–205 (2019).PubMed 

    Google Scholar 
    Ågren, J., Fortunel, C. & Ehrlén, J. Selection on floral display in insect-pollinated Primula farinosa: Effects of vegetation height and litter accumulation. Oecologia 150, 225–232 (2006).ADS 
    PubMed 

    Google Scholar 
    Ehrlén, J., Syrjänen, K., Leimu, R., Begona Garcia, M. & Lehtilä, K. Land use and population growth of Primula veris: An experimental demographic approach. J. Appl. Ecol. 42, 317–326 (2005).
    Google Scholar 
    Ehrlén, J. & Morris, W. F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 18, 303–314 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio package in R. J. Stat. Softw. 22, 1–23 (2007).
    Google Scholar 
    Weiss, N. Package ‘wPerm’. https://cran.r-project.org/web/packages/wPerm/wPerm.pdf. (2015).Frossard, J. & Renaud, O. Permutation tests for regression, ANOVA, and comparison of signals: The permuco package. J. Stat. Softw. 99, 1–32 (2021).
    Google Scholar  More

  • in

    Abundant and cosmopolitan lineage of cyanopodoviruses lacking a DNA polymerase gene

    Suttle CA. Marine viruses-major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    PubMed 

    Google Scholar 
    Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature 1999;399:541–8.CAS 
    PubMed 

    Google Scholar 
    Rohwer F, Thurber RV. Viruses manipulate the marine environment. Nature 2009;459:207–12.CAS 
    PubMed 

    Google Scholar 
    Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.CAS 
    PubMed 

    Google Scholar 
    Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18:21–34.CAS 
    PubMed 

    Google Scholar 
    Rosenwasser S, Ziv C, Creveld SGV, Vardi A. Virocell metabolism: metabolic innovations during host-virus interactions in the ocean. Trends Microbiol. 2016;24:821–32.CAS 
    PubMed 

    Google Scholar 
    Fuchsman CA, Carlson MCG, Garcia Prieto D, Hays MD, Rocap G. Cyanophage host-derived genes reflect contrasting selective pressures with depth in the oxic and anoxic water column of the Eastern Tropical North Pacific. Environ Microbiol. 2021;23:2782–2800.CAS 
    PubMed 

    Google Scholar 
    Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 2016;537:689–93.CAS 
    PubMed 

    Google Scholar 
    Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro-and microdiversity from pole to pole. Cell 2019;177:1109–23.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Patterns and ecological drivers of ocean viral communities. Science 2015;348:1261498.PubMed 

    Google Scholar 
    Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol. 2020;18:125–38.CAS 
    PubMed 

    Google Scholar 
    Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 2003;424:1047–51.CAS 
    PubMed 

    Google Scholar 
    Mann NH. Phages of the marine cyanobacterial picophytoplankton. FEMS Microbiol Rev. 2003;27:17–34.CAS 
    PubMed 

    Google Scholar 
    Ni T, Zeng Q. Diel infection of cyanobacteria by cyanophages. Front Mar Sci. 2016;2:123.
    Google Scholar 
    Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA 2013;110:9824–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol 2015;13:13–27.CAS 
    PubMed 

    Google Scholar 
    Proctor LM, Fuhrman JA. Viral mortality of marine-bacteria and cyanobacteria. Nature 1990;343:60–62.
    Google Scholar 
    Carlson MCG, Ribalet F, Maidanik I, Durham BP, Hulata Y, Ferron S, et al. Viruses affect picocyanobacterial abundance and biogeography in the North Pacific Ocean. Nat Microbiol 2022;7:570–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matteson AR, Loar SN, Pickmere S, DeBruyn JM, Ellwood MJ, Boyd PW, et al. Production of viruses during a spring phytoplankton bloom in the South Pacific Ocean near of New Zealand. FEMS Microbiol Ecol 2012;79:709–19.CAS 
    PubMed 

    Google Scholar 
    Ribalet F, Swalwell J, Clayton S, Jimenez V, Sudek S, Lin Y, et al. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc Natl Acad Sci USA. 2015;112:8008–12.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Demory D, Liu R, Chen Y, Zhao F, Coenen AR, Zeng Q, et al. Linking light-dependent life history traits with population dynamics for Prochlorococcus and cyanophage. mSystems 2020;5:e00586–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D. Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature 2011;474:604–8.CAS 
    PubMed 

    Google Scholar 
    Marston MF, Pierciey FJ Jr, Shepard A, Gearin G, Qi J, Yandava C, et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci USA 2012;109:4544–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiao X, Guo W, Li X, Wang C, Chen X, Lin X, et al. Viral lysis alters the optical properties and biological availability of dissolved organic matter derived from Prochlorococcus picocyanobacteria. Appl Environ Microbiol. 2021;87:e02271–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiao X, Zeng Q, Zhang R, Jiao N. Prochlorococcus viruses—From biodiversity to biogeochemical cycles. Sci China Earth Sci. 2018;61:1728–36.
    Google Scholar 
    Jover LF, Effler TC, Buchan A, Wilhelm SW, Weitz JS. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat Rev Microbiol. 2014;12:519–28.CAS 
    PubMed 

    Google Scholar 
    Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Viruses inhibit CO2 fixation in the most abundant phototrophs on earth. Curr Biol 2016;26:1585–9.CAS 
    PubMed 

    Google Scholar 
    Weitz JS, Stock CA, Wilhelm SW, Bourouiba L, Coleman ML, Buchan A, et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 2015;9:1352–64.PubMed 
    PubMed Central 

    Google Scholar 
    Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 2005;3:e144.PubMed 
    PubMed Central 

    Google Scholar 
    Sullivan MB, Krastins B, Hughes JL, Kelly L, Chase M, Sarracino D, et al. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial ‘mobilome’. Environ Microbiol. 2009;11:2935–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–56.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sabehi G, Shaulov L, Silver DH, Yanai I, Harel A, Lindell D. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans. Proc Natl Acad Sci USA 2012;109:2037–42.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang S, Wang K, Jiao N, Chen F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol. 2012;14:540–58.CAS 
    PubMed 

    Google Scholar 
    Labrie SJ, Frois-Moniz K, Osburne MS, Kelly L, Roggensack SE, Sullivan MB, et al. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol. 2013;15:1356–76.CAS 
    PubMed 

    Google Scholar 
    Dekel-Bird NP, Avrani S, Sabehi G, Pekarsky I, Marston MF, Kirzner S, et al. Diversity and evolutionary relationships of T7-like podoviruses infecting marine cyanobacteria. Environ Microbiol. 2013;15:1476–91.CAS 
    PubMed 

    Google Scholar 
    Huang S, Wilhelm SW, Jiao N, Chen F. Ubiquitous cyanobacterial podoviruses in the global oceans unveiled through viral DNA polymerase gene sequences. ISME J. 2010;4:1243–51.PubMed 

    Google Scholar 
    Baran N, Goldin S, Maidanik I, Lindell D. Quantification of diverse virus populations in the environment using the polony method. Nat Microbiol. 2018;3:62–72.CAS 
    PubMed 

    Google Scholar 
    Chow C-ET, Suttle CA. Biogeography of viruses in the sea. Annu Rev Virol. 2015;2:41–66.CAS 
    PubMed 

    Google Scholar 
    Chen F, Lu JR. Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phages. Appl Environ Microbiol. 2002;68:2589–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang S, Zhang S, Jiao N, Chen F. Comparative genomic and phylogenomic analyses reveal a conserved core genome shared by estuarine and oceanic cyanopodoviruses. PLoS One. 2015;10:e0142962.PubMed 
    PubMed Central 

    Google Scholar 
    Pope WH, Weigele PR, Chang J, Pedulla ML, Ford ME, Houtz JM, et al. Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: A “horned’ bacteriophage of marine Synechococcus. J Mol Biol. 2007;368:966–81.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang S, Sun Y, Zhang S, Long L. Temporal transcriptomes of a marine cyanopodovirus and its Synechococcus host during infection. Microbiologyopen 2021;10:e1150.CAS 
    PubMed 

    Google Scholar 
    Wang K, Chen F. Prevalence of highly host-specific cyanophages in the estuarine environment. Environ Microbiol. 2008;10:300–12.CAS 
    PubMed 

    Google Scholar 
    Chen F, Wang K, Huang S, Cai H, Zhao M, Jiao N, et al. Diverse and dynamic populations of cyanobacterial podoviruses in the Chesapeake Bay unveiled through DNA polymerase gene sequences. Environ Microbiol. 2009;11:2884–92.PubMed 

    Google Scholar 
    Goldin S, Hulata Y, Baran N, Lindell D. Quantification of T4-like and T7-like cyanophages using the polony method show they are significant members of the virioplankton in the North Pacific Subtropical Gyre. Front Microbiol. 2020;11:1210.PubMed 
    PubMed Central 

    Google Scholar 
    Nasko DJ, Chopyk J, Sakowski EG, Ferrell BD, Polson SW, Wommack KE. Family A DNA polymerase phylogeny uncovers diversity and replication gene organization in the virioplankton. Front Microbiol. 2018;9:3053.PubMed 
    PubMed Central 

    Google Scholar 
    Dekel-Bird NP, Sabehi G, Mosevitzky B, Lindell D. Host-dependent differences in abundance, composition and host range of cyanophages from the Red Sea. Environ Microbiol. 2015;17:1286–99.CAS 
    PubMed 

    Google Scholar 
    Hanson CA, Marston MF, Martiny JBH. Biogeographic variation in host range phenotypes and taxonomic composition of marine cyanophage isolates. Front Microbiol. 2016;7:983.PubMed 
    PubMed Central 

    Google Scholar 
    Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 2003;424:1042–7.CAS 
    PubMed 

    Google Scholar 
    Chen B, Wang L, Song S, Huang B, Sun J, Liu H. Comparisons of picophytoplankton abundance, size, and fluorescence between summer and winter in northern South China Sea. Cont Shelf Res. 2011;31:1527–40.
    Google Scholar 
    Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM, Rector T, et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 2007;449:83–86.CAS 
    PubMed 

    Google Scholar 
    Zhao Y, Qin F, Zhang R, Giovannoni SJ, Zhang Z, Sun J, et al. Pelagiphages in the Podoviridae family integrate into host genomes. Environ Microbiol. 2019;21:1989–2001.CAS 
    PubMed 

    Google Scholar 
    Leptihn S, Gottschalk J, Kuhn A. T7 ejectosome assembly: A story unfolds. Bacteriophage 2016;6:e1128513.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci USA 2011;108:E757–64.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zeng Q, Chisholm SW. Marine viruses exploit their host’s two-component regulatory system in response to resource limitation. Curr Biol 2012;22:124–8.CAS 
    PubMed 

    Google Scholar 
    Zeng Q, Bonocora RP, Shub DA. A free-standing homing endonuclease targets an intron insertion site in the psbA gene of cyanophages. Curr Biol. 2009;19:218–22.CAS 
    PubMed 

    Google Scholar 
    Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 2005;438:86–89.CAS 
    PubMed 

    Google Scholar 
    Breitbart M, Thompson LR, Suttle CA, Sullivan MB. Exploring the vast diversity of marine viruses. Oceanography. 2007;20:135–9.
    Google Scholar 
    Kazlauskas D, Venclovas C. Computational analysis of DNA replicases in double-stranded DNA viruses: relationship with the genome size. Nucleic Acids Res. 2011;39:8291–305.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu X, Zhang Q, Murata K, Baker ML, Sullivan MB, Fu C, et al. Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus. Nat Struct Mol Biol. 2010;17:830–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dai W, Fu C, Raytcheva D, Flanagan J, Khant HA, Liu XG, et al. Visualizing virus assembly intermediates inside marine cyanobacteria. Nature 2013;502:707–10.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu R, Liu Y, Chen Y, Zhan Y, Zeng Q. Cyanobacterial viruses exhibit diurnal rhythms during infection. Proc Natl Acad Sci USA 2019;116:14077–82.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maidanik I, Kirzner S, Pekarski I, Arsenieff L, Tahan R, Carlson MCG, et al. Cyanophages from a less virulent clade dominate over their sister clade in global oceans. ISME J. 2022;16:2169–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shitrit D, Hackl T, Laurenceau R, Raho N, Carlson MCG, Sabehi G, et al. Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages. ISME J. 2022;16:488–99.CAS 
    PubMed 

    Google Scholar 
    Liang Y, Wang L, Wang Z, Zhao J, Yang Q, Wang M, et al. Metagenomic analysis of the diversity of DNA viruses in the surface and deep sea of the South China Sea. Front Microbiol. 2019;10:1951.PubMed 
    PubMed Central 

    Google Scholar 
    Pedrós-Alió C, Potvin M, Lovejoy C. Diversity of planktonic microorganisms in the Arctic Ocean. Prog Oceanogr. 2015;139:233–43.
    Google Scholar 
    Luo E, Eppley JM, Romano AE, Mende DR, DeLong EF. Double-stranded DNA virioplankton dynamics and reproductive strategies in the oligotrophic open ocean water column. ISME J. 2020;14:1304–15.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steidinger BS, Crowther TW, Liang J, Van Nuland ME, Werner GDA, Reich PB, et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 2019;569:404–8.CAS 
    PubMed 

    Google Scholar 
    Xie X, Wu T, Zhu M, Jiang G, Xu Y, Wang X, et al. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol Indic. 2021;120:106925.CAS 

    Google Scholar 
    Lee SJ, Richardson CC. Choreography of bacteriophage T7 DNA replication. Curr Opin Chem Biol. 2011;15:580–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kulczyk AW, Richardson CC. The replication system of bacteriophage T7. Enzymes. 2016;39:89–136.CAS 
    PubMed 

    Google Scholar 
    Benkovic SJ, Valentine AM, Salinas F. Replisome-mediated DNA replication. Annu Rev Biochem. 2001;70:181–208.CAS 
    PubMed 

    Google Scholar 
    Johnson A, O’Donnell M. Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem. 2005;74:283–315.CAS 
    PubMed 

    Google Scholar 
    Seco EM, Zinder JC, Manhart CM, Lo Piano A, McHenry CS, Ayora S. Bacteriophage SPP1 DNA replication strategies promote viral and disable host replication in vitro. Nucleic Acids Res. 2013;41:1711–21.CAS 
    PubMed 

    Google Scholar 
    Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 2021;15:41–54.CAS 
    PubMed 

    Google Scholar 
    Moore LR, Rocap G, Chisholm SW. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 1998;393:464–7.CAS 
    PubMed 

    Google Scholar 
    Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light on viral photosynthesis. Photosynth Res. 2015;126:71–97.CAS 
    PubMed 

    Google Scholar 
    Edwards KF, Steward GF, Schvarcz CR. Making sense of virus size and the tradeoffs shaping viral fitness. Ecol Lett. 2021;24:363–73.PubMed 

    Google Scholar 
    Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, et al. Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr Methods. 2007;5:353–62.CAS 

    Google Scholar 
    Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol. 2010;70:217–48.CAS 
    PubMed 

    Google Scholar 
    Fridman S, Flores-Uribe J, Larom S, Alalouf O, Liran O, Yacoby I, et al. A myovirus encoding both photosystem I and II proteins enhances cyclic electron flow in infected Prochlorococcus cells. Nat Microbiol. 2017;2:1350–7.CAS 
    PubMed 

    Google Scholar 
    Fang X, Liu Y, Zhao Y, Chen Y, Liu R, Qin QL, et al. Transcriptomic responses of the marine cyanobacterium Prochlorococcus to viral lysis products. Environ Microbiol. 2019;21:2015–28.CAS 
    PubMed 

    Google Scholar 
    John SG, Mendez CB, Deng L, Poulos B, Kauffman AK, Kern S, et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ Microbiol Rep. 2011;3:195–202.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011;27:863–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:1–10.
    Google Scholar 
    Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.CAS 
    PubMed 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–9.CAS 
    PubMed 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic Inference in the genomic era. Mol Biol Evol. 2020;37:2461–2461.PubMed 
    PubMed Central 

    Google Scholar 
    Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22.CAS 
    PubMed 

    Google Scholar 
    Martinez-Hernandez F, Fornas O, Lluesma Gomez M, Bolduc B, de la Cruz Pena MJ, Martinez JM, et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat Commun. 2017;8:15892.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang Z, Qin F, Chen F, Chu X, Luo H, Zhang R, et al. Culturing novel and abundant pelagiphages in the ocean. Environ Microbiol 2021;23:1145–61.CAS 
    PubMed 

    Google Scholar 
    Buchholz HH, Michelsen ML, Bolanos LM, Browne E, Allen MJ, Temperton B. Efficient dilution-to-extinction isolation of novel virus-host model systems for fastidious heterotrophic bacteria. ISME J. 2021;15:1585–98.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Qin F, Du S, Zhang Z, Ying H, Wu Y, Zhao G, et al. Newly identified HMO-2011-type phages reveal genomic diversity and biogeographic distributions of this marine viral group. ISME J. 2022;16:1363–75.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More