More stories

  • in

    Some hope and many concerns on the future of the vaquita

    Davies EK, Peters AD, Keightley PD (1999) High frequency of cryptic deleterious mutations in Caenorhabditis elegans. Science 285:1748–1751Article 
    CAS 
    PubMed 

    Google Scholar 
    Eyre-Walker A, Keightley PD (2007) The distribution of fitness effects of new mutations. Nat Rev Genet 8:610–618Article 
    CAS 
    PubMed 

    Google Scholar 
    Eyre-Walker A, Keightley PD (2013) A comparison of models to infer the distribution of fitness effects of new mutations. Genetics 193:1197–1208Article 

    Google Scholar 
    Fry JD, Keightley PD, Heinsohn SL, Nuzhdi SV (1999) New estimates of the rates and effects of mildly deleterious mutation in Drosophila melanogaster. Proc Natl Acad Sci 96:574–579Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Dorado A (2007) Shortcut predictions for fitness properties at the mutation-selection-drift balance and for its buildup after size reduction under different management strategies. Genetics 176:983–997Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Dorado A (2012) Understanding and predicting the fitness decline of shrunk populations: inbreeding, purging, mutation, and standard selection. Genetics 190:1461–1476Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Dorado A (2015) On the consequences of ignoring purging on genetic recommendations for minimum viable population rules. Heredity 115:185–187Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Dorado A, Caballero A (2021) Neutral genetic diversity as a useful tool for conservation biology. Conserv Genet 22:541–545Article 

    Google Scholar 
    Garner BA, Hoban S, Luikart G (2020) IUCN Red List and the value of integrating genetics. Conserv Genet 21:795–801Article 

    Google Scholar 
    Hedrick PW, García-Dorado A (2016) Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol Evol 31:940–952Article 
    PubMed 

    Google Scholar 
    Kardos M, Armstrong EE, Fitzpatrick SW, Hauser S, Hedrick PW, Miller J et al. (2021) The crucial role of genome-wide genetic variation in conservation. Proc Natl Acad Sci USA 118:e2104642118Khan A, Patel A, Shukla H, Viswanathan A, van der Valk T, Borthakur U, … & Ramakrishnan U (2021) Genomic evidence for inbreeding depression and purging of deleterious genetic variation in Indian tigers. Proc. Natl. Acad. Sci. 118Kimura M, Maruyama T, Crow JF (1963) The mutation load in small populations. Genetics 48:1303–1312Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kimura M (1980) Average time until fixation of a mutant allele in a finite population under continued mutation pressure: Studies by analytical, numerical, and pseudo-sampling methods. Proc Natl Acad Sci 77:522–526Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morin PA, Archer FI, Avila CD, Balacco JR, Bukhman YV, Chow, W, … & Jarvis ED (2021) Reference genome and demographic history of the most endangered marine mammal, the vaquita. Mol Ecol Resour 21:1008–1020Mukai T (1964) The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50:1–19Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nietlisbach P, Muff S, Reid JM, Whitlock MC, Keller LF (2019) Nonequivalent lethal equivalents: Models and inbreeding metrics for unbiased estimation of inbreeding load. Evol Applic 12:266–279Article 

    Google Scholar 
    O’Grady JJ, Brook BW, Reed DH, Ballou JD, Tonkyn DW, Frankham R (2006) Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol Conserv 133:42–51Article 

    Google Scholar 
    Pérez-Pereira N, Caballero A, García-Dorado A (2021) Reviewing the consequences of genetic purging on the success of rescue programs. Conserv Gen 23:1–17Article 

    Google Scholar 
    Pérez-Pereira N, Wang J, Quesada H, Caballero A (2022). Prediction of the minimum effective size of a population viable in the long term. Biodivers Conserv https://doi.org/10.1007/s10531-022-02456-zRobinson JA, Kyriazis CC, Nigenda-Morales SF, Beichman AC, Rojas-Bracho L, Robertson KM et al. (2022) The critically endangered vaquita is not doomed to extinction by inbreeding depression. Science 376:635–639Article 
    CAS 
    PubMed 

    Google Scholar 
    Teixeira JC, Huber CD (2021) The inflated significance of neutral genetic diversity in conservation genetics. Proc Natl Acad Sci USA 118:e2015096118Wade EE, Kyriazis C, Cavassim MIA, Lohmueller KE (2022) Quantifying the fraction of new mutations that are recessive lethal. bioRxiv 1–24, https://www.biorxiv.org/content/10.1101/2022.04.22.489225v1 More

  • in

    Sampling from four geographically divergent young female populations demonstrates forensic geolocation potential in microbiomes

    Cohort demographicsA total of 206 female participants were enrolled in the study and passed our quality control standards. All participants were required to be between the ages of 18–26 years old (22.5 ± 2.1) and to be born and at the time living in one of four geographically distinct regions of the world: Barbados; Santiago, Chile; Pretoria, S. Africa; and Bangkok, Thailand. The regions do, however, differ by an order of magnitude in their geographic spread as the intra-distance separating the residence neighborhood of participants ranged from 34 (Barbados) to 681 km (Pretoria, S. Africa) (Fig. S2). The Chilean and the South African datasets are further divided into two contiguous sub-regions, or neighborhoods, to allow for a micro-geographic analysis. The study population is largely dominated by individuals with self-identified Thai heritage (33%), followed by Black African (16%), Afro-Caribbean (14%) and white (14%) descent, although 19% of the Chilean population did not report ethnicity.Study participants, despite the divergent geographies, mostly have similar dietary and lifestyle habits (Table S1). Over half the study population (62%) have a normal BMI, with the mean BMI in this range (22.6 ± 5.5). The diets of the different cohorts are also similar as of the total cohort, 78% consume a starch heavy diet (≥ 4 days a week) of rice, bread and pasta, followed by 66% who frequently consume (≥ 4 days a week) vegetables and fruit and 49% who frequently consume dairy products. The study population is split by level of tobacco exposure, with 51% of the population having never smoked, and 43% being exposed to second-hand smoke through living with a smoker. Over half (56%) of the study population own one or more pets.Stool microbiomeThe OTUs identified using the UPARSE pipeline17 were used to compute the alpha diversity of the microbial communities using the Chao1 (species richness) and Shannon (species evenness) indices. The mean Shannon indices reveal that the microbiota diversity is only significant between Thailand-Chile with FDR  More

  • in

    Mixotrophy in depth

    Rippka, R. et al. J. Gen. Microbiol. https://doi.org/10.1099/00221287-111-1-1 (1979).Article 

    Google Scholar 
    Muñoz-Marín, M. C. et al. ISME J. 14, 1065–1073 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yelton, A. P. et al. ISME J. 10, 2946–2957 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, B. A. & Follows, M. J. Proc. Natl Acad. Sci. USA 113, 2958–2963 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, Z. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01250-5 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flombaum, P. et al. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zubkov, M. et al. Appl. Environ. Microbiol. 69, 1299–1304 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vila-Costa, M. et al. Science 314, 652–654 (2006).Article 
    PubMed 

    Google Scholar 
    Muñoz-Marín, M. C. et al. Proc. Natl Acad. Sci. USA 110, 8597–8602 (2013).Article 
    PubMed Central 

    Google Scholar 
    Gómez-Baena, G. et al. PLoS ONE 3, e3416 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coe, A. et al. Limnol. Oceanogr. 71, 1375–1388 (2016).Article 

    Google Scholar 
    Muñoz-Marín, M. C. et al. Microbiol. Spectr. https://doi.org/10.1101/2021.10.04.462702 (2022).Article 
    PubMed 

    Google Scholar  More

  • in

    Low levels of sibship encourage use of larvae in western Atlantic bluefin tuna abundance estimation by close-kin mark-recapture

    Our results show that GoM BFT larval survey samples can provide the crucial mark events for eventual CKMR estimates of adult abundance. The adult parents marked by larval samples can be directly recaptured in the fishery many years later as POPs, and indirectly through their progeny in future samples of larvae, as evidenced by the two cross-cohort HSPs (XHSPs) recovered in this study, which imply that a parent survived and spawned in the GoM in consecutive years. As more cohorts are sampled in future, the growing number of XHSPs could be used to estimate average adult survival rates, in addition to helping with the estimation of adult abundance31, as is now done for southern blue tuna40.There is a modest level of sibship within our 2016 samples, and a high level (involving over half the samples) in 2017, but it turns out not to be high enough to cause serious problems for POP-based CKMR. High sibship per se does not lead to bias in CKMR by virtue of the statistical construction of the estimate, but it does increase variance, which can be summarized through a reduction in effective sample size. In a POP-based CKMR model, our effective sample size would be about 75% of nominal for the two years combined, or 66% of nominal for the targeted sampling of 2017. Since it is actually the product of adult and juvenile sample sizes which drives precision in CKMR14, one way to think about the 75% is that we will need about 33% more adult samples to achieve a given precision on abundance estimates than if we had somehow been able to collect the same number of “independent” juvenile samples (i.e. without oversampling siblings). That increase is appreciable but entirely achievable; for WBFT, it is logistically much easier to collect more feeding-ground adult samples than to collect more larvae, and at present there is no known practical way to collect large numbers of older, more dispersed, and thus more independent, juvenile western origin bluefin tuna (WBFT).This study was motivated by the concern that sibship might be a serious impediment to use of WBFT larvae for CKMR. High levels of sibship have been found in larval collections for other taxa despite a pelagic larval phase, suggesting that abiotic factors can impede random mixing of larvae after a spawning event41. Our larval samples were only a few days old (4–11) and thus had little time to disperse since fertilization; our concern beforehand was that each tow might sample the offspring of a very small number of adults (one spawning group in one night), and in 2017 that repeatedly towing the same water mass might simply be resampling the same “family”. In practice, though, the cumulative effect was limited. Samples were not dominated by progeny from just a few adults; the maximum DPG size (i.e., number of offspring from any one adult) was 5, which is under 2% of the larval sample size. There are several possible reasons for this finding. First, plankton sample tows are typically standardized to a ten-minute duration, covering on average about 0.3 nautical miles. Based on continuous plankton cameras42, each tow is likely to tow through multiple patches of zooplankton, and therefore potentially multiple patches of BFT larvae. Second, spawning aggregations of BFT may contain many adults. For example, on the spawning grounds near the Balearic Islands in the Mediterranean, purse seine fisheries target spawning fish and individual net sets routinely capture upwards of 500 mature individuals43. These numbers suggest that BFT spawner aggregations can be quite large, although the number of individuals that contribute gametes to a single spawning event may be lower. The results of this study pose intriguing scenarios for understanding BFT larval ecology and spawning behavior, which could be explored with larger sample sizes paired with data on oceanographic conditions, direct observation of spawning aggregations, and modeling to compare observed and predicted dispersal. The results of this study are based on just two years of sampling, and numerous practical and theoretical challenges remain to fully understand BFT reproduction in the GoM.Our sibship impact calculations assume use of an unmodified adult-size-based CKMR POP model, where each juvenile is compared to each adult taking into account the latter’s size (e.g.,14). That will give unbiased estimates, which we regard as essential in a CKMR model. However, for WBFT the estimates are not fully statistically efficient, in that some adults receive more statistical weight than others because they are marked more often (by having a large DPG), and thus variance might not be the lowest achievable. Modifying the model to fix that would be simple in a “cartoon” CKMR setting where all adults are identical (e.g., Fig. 1 of14), simply by first condensing each DPG to a single representative, then only using those representatives (rather than all the larvae) in POP comparisons. Each marked parent then receives the same weight, giving maximum efficiency. For the cartoon, this condensed-DPG model still gives an unbiased estimate of abundance, because each DPG has one parent of given sex, and the chance of any sampled cartoon adult of that sex being that parent is 1/N. The DPG-condensed effective sample size is simply half the number of distinct parents, which would be a little larger than the effective sample sizes for the unmodified model shown in Table 3; e.g., in 2017, 504/2 = 252 versus 209. However, no such straightforward improvement is available for an adult-size-based CKMR model such as is needed for WABFT. Using condensed DPGs directly would bias the juvenile sampling against larger more-fecund adults, whose DPGs will tend on average to be larger and thus to experience disproportionate condensation. Those adults would be marked less often by the DPG-condensed juveniles than the model assumes, violating the basic requirements for unbiased CKMR in14. A more sophisticated model might be able to combine unbiasedness with higher efficiency but, since the unmodified adult-size-based POP model that we expect to use is unbiased and only mildly inefficient (at worst 209/252 = 83% efficient, in 2017) there seems no particular need for extra complications at present. However, that may not hold true if we eventually move to a POP + XHSP model, where the impact on unmodified CKMR variance is worse (though there is still no bias, for the same reason as with POPs). Intuitively, the biggest impact that a DPG of size 5 can have in a POP model is to suddenly raise the number of POPs by 5 if its parent happens to be sampled; within a useful total of, say, 75 POPs, the influence is not that large. But if two DPGs both of size 5 in different cohorts happen to share a parent, then the total of XHSPs suddenly jumps by 25— likely a substantial proportion of total XHSPs. Supplementary Material B also includes effective sample size formulae for a simplified XHSP-only model, which demonstrate the increased impact of within-cohort sibship; for our WBFT samples, it turns out that the XHSP-effective size is slightly lower for the targeted 2017 samples (110) than for the 2016 samples (130), unlike the POP-only effective size. Dropping from a maximum theoretical effective sample size of 252 (half the number of DPGs) down to 110 would be rather inefficient and would increase the number of years of sampling required to yield a useful XHSP dataset. This motivates developing a modified POP + XHSP model that retains unbiasedness without sacrificing too much efficiency. In principle, that can be done by condensing each DPG but then conditioning its comparison probabilities on the DPG’s original size, in accordance with the framework in14. This is a topic for subsequent research, and the results will inform future sampling strategy decisions for WBFT.One potential difficulty for western BFT CKMR might occur if a substantial proportion of animals reaching maturity are the offspring of “Western” (in genetic terms) adults who persistently spawn in the western North Atlantic but outside the GoM. However, as long as the adults marked by GoM larvae are well mixed at the time of sampling with any western adults that do spawn outside of the GoM, the total POP-based population estimate of genetically-western BFT from CKMR will remain unbiased. Given evidence from tagging of widespread adult movements within the western North Atlantic2, good mixing in the sampled feeding grounds seems likely; so, even if successful non-GoM western BFT spawning really is commonplace, there should not be a problem with relying on GoM larvae for at least the POP component of CKMR14.Studies of fish early life history have long been considered to have great potential to provide novel insight into the unique population dynamics of fishes44,45,46. Sampling efforts aimed at estimating fish recruitment dynamics have spawned a diversity of larval survey programs. Examples of these long-term programs include the California Cooperative Oceanic Fisheries Investigations, International Council for the Exploration of the Sea (ICES) surveys in the North Atlantic and adjacent areas, Southeast Monitoring and Assessment Program (SEAMAP) in the GoM, Ecosystem Monitoring (EcoMon) in the Northeast U.S., and numerous others, many of which provide indices of larval abundance widely used in fisheries and ecosystem assessments. Yet, as a result of the inherent patchiness of larvae42, sampling variability, and highly variable density dependent mortality45, fisheries scientists have often struggled to determine how larval surveys relate to the adult fish populations. Inclusion of estimates of sibship among larvae collected in surveys could refine estimates of adult spawning stock biomass estimated from these surveys.The results of this study also represent products of decades of work and coordination in obtaining high-quality DNA from larval specimens. Key steps to successful genotyping of larvae include ensuring that larvae are preserved, sorted, and handled in 95% non-denatured ethanol. In addition, strict instrument cleaning protocols must be followed, and stomachs should be removed or avoided (this study used larval tails and, when possible, eyes to avoid cross contamination of prey contents, including possible congeners and other BFT individuals). Exposure to hot lamps during the sorting and dissection processes should also be minimized to ensure that DNA quality is sufficiently high for genotyping-by-sequencing. Although the tissues available for genetic analysis were limited by the needs of other experiments that required BFT tissues, otoliths, gut contents, and other information from the same larvae, we were able to successfully genotype most larvae greater than 6 mm SL and identify thousands of informative SNPs. The lower size limit of larvae could likely be decreased if whole specimens were available for genotyping, although the use of younger larvae could increase the incidence of sibship.In summary, while we observed both FSPs and HSPs in larval collections, with elevated sibship overall and with siblings being more prevalent within tows and in nearby tows, the level of sibship was sufficiently low that collections of GoM BFT larvae can still provide the critical genetic mark of parental genotypes required for CKMR. Our results demonstrate a crucial proof of concept and are the first step towards an operational CKMR modelling estimate of spawning stock abundance for western BFT. More

  • in

    Effects of different pioneer and exotic species on the changes of degraded soils

    Sacristán, D., Peñarroya, B., Recatalá, L. Increasing the Knowledge on the Management of Cu-Contaminated Agricultural Soils by Cropping Tomato (Solanum Lycopersicum L.). Land Degrad. Dev. 26, 587–595 (2015).FAO. Land Degradation Assessment in Drylands. Manual for Local Level Assessment of Land Degradation and Sustainable Land Management. Part 1: Planning and Methodological Approach, Analysis and Reporting. https://www.fao.org/3/i6362e/i6362e.pdf (Food and Agriculture Organization of the United Nations, 2011).Vlachodimos, K., Papatheodorou, E. M., Diamantopoulos, J. & Monokrousos, N. Assessment of Robinia pseudoacacia cultivations as a restoration strategy for reclaimed mine spoil heaps. Environ Monit. Assess. 185, 6921–6932 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Misano, G. & Di Pietro, R. Habitat 9250 “Quercus trojana woods” in Italy. Fitosociologia 44, 235–238 (2007).
    Google Scholar 
    Biondi, E. et al. A contribution towards the knowledge of semideciduous and evergreen woods of Apulia (south-eastern Italy). Fitosociologia 41(1), 3–28 (2004).MathSciNet 

    Google Scholar 
    Brunetti, G. et al. Remediation of a heavy metals contaminated soil using mycorrhized and non-mycorrhized Helichrysum italicum (Roth) Don. Land Degrad. Dev. 29, 91–104 (2017).Article 

    Google Scholar 
    Poblador, S. et al. The influence of the invasive alien nitrogen-fixing Robinia pseudoacacia L. on soil nitrogen availability in a mixed Mediterranean riparian forest. Eur. J. For. Res. 138, 1083–1093 (2019).Article 
    CAS 

    Google Scholar 
    Vítková, M., Müllerová, J., Sádlo, J., Pergl, J. & Pyšek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag. 384, 287–302 (2017).Article 

    Google Scholar 
    Doran, J.W., Parkin, T.B. Quantitative indicators of soil quality: a minimum data set. in Methods for Assessing Soil Quality (eds. Doran, J.W., Jones, A.J.). 25–37 (Soil Science Society of America, 1996).Gil-Sotres, F., Trasar-Cepeda, C., Leirós, M. C. & Seoane, S. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 37, 877–887 (2005).Article 
    CAS 

    Google Scholar 
    Andriani, G. F. & Walsh, N. An example of the effects of anthropogenic changes on natural environment in the Apulian karst (southern Italy). Environ. Geol. 58, 313–325 (2009).Article 
    ADS 

    Google Scholar 
    Bisantino, T., Pizzo, V., Polemio, M. & Gentile, F. Analysis of the flooding event of October 22–23, 2005 in a small basin in the province of Bari (Southern Italy). J. Agric. Eng. 531, 197–204 (2016).Article 

    Google Scholar 
    Soil Survey Staff. Keys to Soil Taxonomy 12th edn. (USDA-Natural Resources Conservation Service, 2014).
    Google Scholar 
    Tartarino, P. Inventario dei Boschi Spontanei e dei Rimboschimenti delle Provincie BAT e Bari e Stima del Loro Volume Legnoso e della sua Frazione Prelevabile nel Prossimo Ventennio. (Rapporto Tecnico Scientifico, 2011).Ismail, A. et al. Chemical composition and biological activities of Tunisian Cupressus arizonica Greene essential oils. Chem. Biodivers. 11, 150–160 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Navarro, A. et al. Feasibility of SRC Species for growing in Mediterranean conditions. Bioenerg. Res. 9, 208–223 (2015).Article 

    Google Scholar 
    Perrino, E. V., Brunetti, G. & Farrag, K. Plant communities in multi-metal contaminated soils: A case study in the National Park of Alta Murgia (Apulia Region-Southern Italy). Int. J. Phytoremediat. 16, 871–888 (2014).Article 
    CAS 

    Google Scholar 
    VV AA Perizia Studi per il Riequilibrio Socio-Economico dell’area Interessata dall’invaso sul Torrente Locone. Consorzio Di Bonifica Apulo Lucano (1986).Lavarra, P. et al. Il Sistema Carta della Natura della Regione Puglia. (ISPRA, Serie Rapporti 204, 2014).Sparks, D. L. et al. Method of Soil Analysis: Part 3 (American Society of Agronomy Inc, 1996).Book 

    Google Scholar 
    Brink, R. H. Jr., Dubach, P. & Lynch, D. L. Measurement of carbohydrates in soil hydrolyzates with anthrone. Soil Sci. 89, 157–166 (1960).Article 
    ADS 
    CAS 

    Google Scholar 
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).Article 
    CAS 
    PubMed 

    Google Scholar 
    García, C., Hernandez, T. & Costa, F. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Commun. Soil Sci. Plant Anal. 28, 123–134 (1997).Article 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).Article 
    CAS 

    Google Scholar 
    Gregorich, E. G., Wen, G., Voroney, R. P. & Kachanoski, R. G. Calibration of a rapid direct chloroform extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 22, 1009–1011 (1990).Article 
    CAS 

    Google Scholar 
    Nannipieri, P., Ceccanti, B., Cervelli, S. & Matarese, E. Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Sci. Soc. Am. J. 44, 1011–1016 (1980).Article 
    ADS 
    CAS 

    Google Scholar 
    Tabatabai, M.A. (1994) Soil enzymes. in Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties (eds. Weaver, R.W. et al.). 775–833 (Soil Science Society of America, Inc., 1996)Traversa, A., Said-Pullicino, D., D’Orazio, V., Gigliotti, G., & Senesi, N. Properties of humic acids in Mediterranean forest soils (Southern Italy): Influence of different plant covering. Eur. J. For. Res. 130, 1045–1054 (2011)De Marco, A. et al. Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy. Soil Biol. Biochem. 51, 1–15 (2012).Article 
    CAS 

    Google Scholar 
    Wei, G. et al. Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobium and Sinorhizobium species that share similar nodulation genes with native American symbionts. FEMS Microbiol. Ecol. 68, 320–328 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulze, E. D., Gebauer, G., Ziegler, H. & Lange, O. L. Estimates of nitrogen fixation by trees on an aridity gradient in Namibia. Oecologia 88, 451–455 (1991).Article 
    ADS 
    PubMed 

    Google Scholar 
    Zahran, H. H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63, 968–989 (1999).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Veste, M. & Kriebitzsch, W. U. Influence of drought stress on photosynthesis, transpiration, and growth of juvenile black locust (Robinia pseudoacacia L.). Forstarchiv 84, 35–42 (2013).
    Google Scholar 
    Nicolescu, V. N. et al. Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. J. For. Res. 31, 1081–1101 (2020).Article 
    CAS 

    Google Scholar 
    Sposito, G. The Chemistry of Soil (Oxford University Press, 2008).
    Google Scholar 
    Margalef, O. et al. Global patterns of phosphatase activity in natural soils. Sci. Rep. 7, 1337. https://doi.org/10.1038/s41598-017-01418-8 (2017).Prescott, C. E. & Grayston, S. J. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. For. Ecol. Manag. 309, 19–27 (2013).Article 

    Google Scholar 
    Frankenberger, W. T. & Dick, W. A. Relationships between enzyme, activities and microbial growth and activity indices in soil. Soil Sci. Soc. Am. J. 47, 945–951 (1983).Article 
    ADS 
    CAS 

    Google Scholar 
    Frankenberger, W.T., Tabatabai, M.A. Amidase activity in soils III. Stability and distribution. Soil Sci. Soc. Am. J. 45, 333–338 (1981).Nannipieri, P., Trasar-Cepeda, C. & Dick, R. P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 54, 11–19 (2018).Article 
    CAS 

    Google Scholar 
    Pascual, J. A., Garcia, C., Hernandez, T., Moreno, J. L. & Ros, M. Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biol. Biochem. 32, 1877–1883 (2000).Article 
    CAS 

    Google Scholar 
    García-Gil, J. C., Plaza, C., Solker-Rovira, P. & Polo, A. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 32, 1907–1913 (2000).Article 

    Google Scholar 
    Insam, H. & Domsch, K. H. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb. Ecol. 15, 177–188 (1988).Article 
    CAS 
    PubMed 

    Google Scholar 
    Acosta-Martinez, V. & Tabatabai, M. Enzyme activities in a limed agricultural soil. Biol. Fertil. Soils 31, 85–91 (2000).Article 
    CAS 

    Google Scholar 
    Uselman, S. M., Qualls, R. G. & Thomas, R. B. A test of a potential short cut in the nitrogen cycle: the role of exudation of symbiotically fixed nitrogen from the roots of a N-fixing tree and the effects of increased atmospheric CO2 and temperature. Plant Soil 210, 21–32 (1999).Article 
    CAS 

    Google Scholar 
    De Marco, A., Esposito, F., Berg, B., Zarrelli, A. & Virzo De Santo, A. Litter inhibitory effects on soil microbial biomass activity, and catabolic diversity in two paired stands of Robinia pseudoacacia L. and Pinus nigra Arn. Forest 9, 766. https://doi.org/10.3390/f9120766 (2018).Article 

    Google Scholar 
    Haghverdi, K. & Kooch, Y. Effects of diversity of tree species on nutrient cycling and soil-related processes. CATENA 178, 335–344 (2019).Article 
    CAS 

    Google Scholar 
    Anderson, H. T. Microbial eco-physiological indicators to assess soil quality. Agric. Ecosyst. Environ. 98, 285–293 (2003).Article 

    Google Scholar 
    Jenkinson, D.S., Ladd, J.N. Microbial biomass in soil: Measurement and turnover. in Soil Biochemistry (eds. Paul, E.A., Ladd, J.N.). 415–471 (Marcel Dekker Inc., 1981) More

  • in

    Single-cell measurements and modelling reveal substantial organic carbon acquisition by Prochlorococcus

    Isotope labelling and phylogenetic analysis of a natural marine bacterioplankton population at seaMediterranean seawater was collected during August 2017 (station N1200, 32.45° N, 34.37 °E) from 11 depths by Niskin bottles and divided into triplicate 250 ml polycarbonate bottles. Two bottles from each depth were labelled with 1 mM sodium bicarbonate-13C and 1 mM ammonium-15N chloride (Sigma-Aldrich), and all three bottles (two labelled and one control) were incubated at the original depth and station at sea for 3.5 h around mid-day. The stable isotopes were chosen to enable direct comparison of C and N uptake in single cells, and the short incubation time was chosen to minimize isotope dilution and potential recycling and transfer of 13C and 15N between community members25. After incubation, bottles were brought back on board and the incubations were stopped by fixing with 2× electron-microscopy-grade glutaraldehyde (2.5% final concentration) and stored at 4 °C until sorting analysis. Cell sorting, NanoSIMS analyses and the calculation of uptake rates were performed as described in Roth-Rosenberg et al.26.DNA collection and extraction from seawaterSamples for DNA were collected on 0.22 µm Sterivex filters (Millipore). Excess water was removed using a syringe, 1 ml lysis buffer (40 mM EDTA, 50 mM Tris pH 8.3, and 0.75 M sucrose) was added and both ends of the filter were closed with parafilm. Samples were kept at −80 °C until extraction. DNA was extracted by using a semi-automated protocol including manual chemical cell lysis before automated steps using the QIAamp DNA Mini Protocol: DNA Purification from Blood or Body Fluids (Spin Protocol, starting from step 6, at the BioRap unit, Faculty of Medicine, Technion). The manual protocol began with thawing the samples, then the storage buffer was removed using a syringe and 170 µl lysis buffer added to the filters. Thirty microlitres of Lysozyme (20 mg ml−1) were added to the filters and incubated at 37 °C for 30 min. After incubation, 20 µl proteinase K and 200 µl buffer AL (from the Qiagen kit) were added to the tube for 1 h at 56 °C (with agitation). The supernatant was transferred to a new tube, and DNA was extracted using the QIAcube automated system. All DNA samples were eluted in 100 μl DNA-free distilled water.ITS PCR amplificationPCR amplification of the ITS was carried out with specific primers for Prochlorococcus CS1_16S_1247F (5′-ACACTGACGACATGGTTCTACACGTACTACAATGCTACGG) and Cs2_ITS_Ar (5′-TACGGTAGCAGAGACTTGGTCTGGACCTCACCCTTATCAGGG)21,22. The first PCR was performed in triplicate in a total volume of 25 μl containing 0.5 ng of template, 12.5 μl of MyTaq Red Mix (Bioline) and 0.5 μl of 10 μM of each primer. The amplification conditions comprised steps at 95 °C for 5 min, 28/25 (16 S/ITS) cycles at 95 °C for 30 s, 50 °C for 30 s and 72 °C for 1 min followed by one step of 5 min at 72 °C. All PCR products were validated on a 1% agarose gel, and triplicates were pooled. Subsequently, a second PCR amplification was performed to prepare libraries. These were pooled and after a quality control sequenced (2 × 250 paired-end reads) using an Illumina MiSeq sequencer. Library preparation and pooling were performed at the DNA Services facility, Research Resources Center, University of Illinois at Chicago. MiSeq sequencing was performed at the W.M. Keck Center for Comparative and Functional Genomics at the University of Illinois at Urbana-Champaign.ITS sequence processingPaired-end reads were analysed using the Dada2 pipeline46. The quality of the sequences per sample was examined using the Dada2 ‘plotQualityProfile’ command. Quality filtering was performed using the Dada2 ‘filterAndTrim’ command with parameters for quality filtering truncLen=c(290,260), maxN=0, maxEE=c(2,2), truncQ=2, rm.phix=TRUE, trimLeft=c(20,20). Following error estimation and dereplication, the Dada2 algorithm was used to correct sequences. Merging of the forward and reverse reads was done with minimum overlap of 4 bp. Detection and removal of suspected chimaeras was done with command ‘removeBimeraDenovo’. In total, 388,417 sequences in 484 amplicon sequence variants were counted. The amplicon sequence variants were aligned in MEGA6 (ref. 47), and the first ~295 nucleotides, corresponding to the 16S gene, were trimmed. The ITS sequences were then classified using BLASTn against a custom database of ITS sequences from cultured Prochlorococcus and Synechococcus strains as well as from uncultured HL and LL clades.Individual-based modelPlanktonIndividuals.jl (v0.1.9) was used to run the individual-based simulations48. Briefly, the cells fix inorganic carbon through photosynthesis and nitrogen, phosphorus and DOC from the water column into intracellular quotas and grow until division or grazing. Cell division is modelled as a probabilistic function of cell size. Grazing is represented by a quadratic probabilistic function of cell population. Cells consume nutrient resources, which are represented as Eulerian, density-based tracers. A full documentation of state variables and model equations are available online at https://juliaocean.github.io/PlanktonIndividuals.jl/dev/. Equations related to mixotrophy are shown below as an addition to the online documentation.$$V_{{mathrm{DOC}}} = V_{{mathrm{DOC}}}^{{mathrm{max}}} cdot {{mathrm{max}}}left( {0.0,{{mathrm{min}}}left( {1.0,,frac{{q_{mathrm{C}}^{{mathrm{max}}} – q_{mathrm{C}}}}{{q_{mathrm{C}}^{{mathrm{max}}} – q_{mathrm{C}}^{{mathrm{min}}}}}} right)} right) cdot frac{{{mathrm{DOC}}}}{{{mathrm{DOC}} + K_{{mathrm{DOC}}}^{{mathrm{sat}}}}}$$
    (1)
    $$f_{{mathrm{PS}}} = frac{{P_{mathrm{S}}}}{{P_{mathrm{S}} + V_{{mathrm{DOC}}}}}$$
    (2)
    $$V_{{mathrm{DOC}}} = 0,,{mathrm{if}},f_{{mathrm{PS}}} < f_{{mathrm{PS}}}^{{mathrm{min}}}$$ (3) where VDOC is the cell-specific DOC uptake rate (mol C cell−1 s−1), (V_{{mathrm{DOC}}}^{{mathrm{max}}}) is the maximum cell-specific DOC uptake rate (mol C cell−1 s−1), (q_{mathrm{C}}^{{mathrm{max}}}) is the maximum cell carbon quota (mol C cell−1), (q_{mathrm{C}}^{{mathrm{min}}}) is the minimum cell carbon quota (mol C cell−1). The maximum and minimum functions here is used to keep qC between (q_{mathrm{C}}^{{mathrm{min}}}) and (q_{mathrm{C}}^{{mathrm{max}}}). (K_{{mathrm{DOC}}}^{{mathrm{sat}}}) is the half-saturation constant for DOC uptake (mol C m−3). fPS is the fraction of fixed C originating from photosynthesis (PS, mol C cell−1 s−1). DOC uptake stops when fPS is smaller than (f_{{mathrm{PS}}}^{{mathrm{min}}})(minimum fraction of fixed C originating form photosynthesis, 1% by default) according to laboratory studies of Prochlorococcus that showed that they cannot survive long exposure to darkness (beyond several days) even when supplied with organic carbon sources13. (1 − fPS) is also shown in Fig. 3 as the contribution of DOC uptake.We set up two separate simulations; each of them has a population of either an obligate photo-autotroph or a mixotroph that also consumes DOC. The initial conditions and parameters (Supplementary Table 3) are the same for the two simulations except the ability of mixotrophy. The simulations were run with a timestep of 1 min for 360 simulated days to achieve a steady state. We run the two simulations for multiple times in order to get the range of the stochastic processes.Evaluation of autotrophic growth ratesWe evaluated the carbon-specific, daily-averaged carbon fixation rate, ℙ as a function of light intensity (I, µE), following Platt et al.33:$${Bbb P} = frac{1}{{Delta t}}{int}_0^{Delta t} {frac{{q_{{mathrm{Chl}}}}}{{q_{mathrm{C}}}}} P_{mathrm{S}}^{{mathrm{Chl}}}left( {1 - e^{ - alpha _{{mathrm{Chl}}}I/P_{mathrm{S}}^{{mathrm{Chl}}}}} right)e^{ - beta _{{mathrm{Chl}}}I/P_{mathrm{S}}^{{mathrm{Chl}}}}Delta t$$ (4) Here, (P_{mathrm{S}}^{{mathrm{Chl}}}), αChl and βChl are empirically determined coefficients representing the chlorophyll-a-specific carbon fixation rate (mol C (mol Chl)−1 s−1), the initial slope of the photosynthesis–light relationship and photo-inhibition effects at high photon fluxes, respectively. We impose empirically determined values for (P_{mathrm{S}}^{{mathrm{Chl}}}), αChl and βChl from the published study of Moore and Chisholm24. The natural Prochlorococcus community comprises HL and LL ecotypes, which have different values of (P_{mathrm{S}}^{{mathrm{Chl}}}), αChl and βChl, and the community growth rate is expected to be between that of HL extremes and LL extremes. Therefore, we use photo-physiological parameters for an HL-adapted ecotype (MIT9215), acclimated at 70 µmol photons m−2 s−1 and an LL-adapted ecotype (MIT9211), acclimated 9 µmol photons m−2 s−1. The models with these values are shown as the different lines in Fig. 2b,d. I is the hourly PAR, estimated by scaling the observed noon value at each depth with a diurnal variation evaluated from astronomical formulae based on geographic location and time of year37,38.(frac{{q_{{mathrm{Chl}}}}}{{q_{mathrm{C}}}}) is the molar chlorophyll-a to carbon ratio, which is modelled as a function of growth rate and light intensity using the Inomura34 model (equation 17 therein) where parameters were calibrated with laboratory data from Healey49. In addition, the maximum growth rate ((mu _{{mathrm{max}}}^I)) based on macromolecular allocation is also estimated using the Inomura model (equation 30 therein). An initial guess of the growth rate and the empirically informed light intensity are used to estimate (frac{{q_{{mathrm{Chl}}}}}{{q_{mathrm{C}}}}), which is then used to evaluate the light-limited, photoautotrophic growth rate$${Bbb V}_{mathrm{C}}^{{mathrm{auto}}} = min left( {{Bbb P} - K_{mathrm{R}},mu _{{mathrm{max}}}^I} right)$$ (5) from which the (frac{{q_{{mathrm{Chl}}}}}{{q_{mathrm{C}}}}) is again updated. The light-limited growth rate is used to re-evaluate the (frac{{q_{{mathrm{Chl}}}}}{{q_{mathrm{C}}}}). Repeating this sequence until the values converge, ({Bbb V}_{mathrm{C}}^{{mathrm{auto}}}) and (frac{{q_{{mathrm{Chl}}}}}{{q_{mathrm{C}}}}) are solved iteratively.The nitrogen-specific uptake rate of fixed nitrogen (day−1) is modelled as$${Bbb V}_{{{mathrm{N}}}} = {Bbb V}_{mathrm{N}}^{{mathrm{max}}}frac{1}{{Q_{mathrm{N}}}}frac{N}{{N + K_{{{mathrm{N}}}}}}$$ (6) where values of the maximum uptake rate, ({Bbb V}_{mathrm{N}}^{{mathrm{max}}}), and half-saturation, KN, are determined from empirical allometric scalings35, along with a nitrogen cell quota QN from Bertilsson et al.39.The P-limited growth rate, or the phosphorus-specific uptake rate of phosphate (day−1), is modelled as$${Bbb V}_{mathrm{P}} = {Bbb V}_{mathrm{P}}^{{mathrm{max}}}frac{1}{{Q_{mathrm{P}}}}frac{{{mathrm{PO}_{4}}^{3 - }}}{{{mathrm{PO}_{4}}^{3 - } + K_{mathrm{P}}}}$$ (7) where values of the maximum uptake rate, ({Bbb V}_{mathrm{P}}^{{mathrm{max}}}). and half-saturation, KP, are determined from empirical allometric scalings35, along with a nitrogen cell quota QP from Bertilsson et al.39.Iron uptake is modelled as a linear function of cell surface area (SA), with rate constant ((k_{{mathrm{Fe}}}^{{mathrm{SA}}})) following Lis et al.36.$${Bbb V}_{{mathrm{Fe}}} = k_{{mathrm{Fe}}}^{{mathrm{SA}}} cdot {mathrm{SA}}frac{1}{{Q_{{mathrm{Fe}}}}}{mathrm{Fe}}$$ (8) The potential light-, nitrogen-, phosphorus- and iron-limited growth rates (({Bbb V}_{mathrm{C}},{Bbb V}_{mathrm{N}},{Bbb V}_{mathrm{P}},{Bbb V}_{{mathrm{Fe}}})) were evaluated at each depth in the water column and the minimum is the local modelled photo-autotrophic growth rate estimate, assuming no mixotrophy (Fig. 2b,d, blue lines). Parameters used in this evaluation are listed in Supplementary Table 2.An important premise of this study is that heterotrophy is providing for the shortfall in carbon under very low light conditions, but not nitrogen. It is known that Prochlorococcus can assimilate amino acids9 and therefore the stoichiometry of the heterotrophic contribution might alter the interpretations. However, it is also known that Prochlorococcus can exude amino acids40, which might cancel out the effects on the stoichiometry of Prochlorococcus.For the estimates of phototrophic growth rate from local environmental conditions (Fig. 2) we employed photo-physiological parameters from laboratory cultures of Prochlorococcus24. For the purposes of this study, we have assumed that the photosynthetic rates predicted are net primary production, which means that autotrophic respiration has been accounted for in the measurement. However, the incubations in that study were of relatively short timescale (45 min), which might suggest they are perhaps more representative of gross primary production. If this is the case, our estimates of photo-autotrophic would be even lower after accounting for autotrophic respiration, and thus would demand a higher contribution from heterotrophic carbon uptake. In this regard, our estimates might be considered a lower bound for organic carbon assimilation.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Improving quantitative synthesis to achieve generality in ecology

    Houlahan, J. E., McKinney, S. T., Anderson, T. M. & McGill, B. J. The priority of prediction in ecological understanding. Oikos 126, 1–7 (2017).Article 

    Google Scholar 
    Lawton, J. H. Are there general laws in ecology? Oikos 84, 177–192 (1999).Article 

    Google Scholar 
    Elliott-Graves, A. Generality and causal interdependence in ecology. Philos. Sci. 85, 1102–1114 (2018).Article 

    Google Scholar 
    Fox, J. W. The many roads to generality in ecology. Philos. Top. 9, 83–104 (2019).Article 

    Google Scholar 
    McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).Article 
    PubMed 

    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1963).Article 

    Google Scholar 
    Gurevitch, J., Fox, G. A., Wardle, G. M., Inderjit & Taub, D. Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol. Lett. 14, 407–418 (2011).Article 
    PubMed 
    CAS 

    Google Scholar 
    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).Article 

    Google Scholar 
    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    Anderson, S. C. et al. Trends in ecology and conservation over eight decades. Front. Ecol. Environ. 19, 274–282 (2021).Article 

    Google Scholar 
    Kneale, D., Thomas, J., O’Mara-Eves, A. & Wiggins, R. How can additional secondary data analysis of observational data enhance the generalisability of meta-analytic evidence for local public health decision making? Res. Synth. Methods 10, 44–56 (2019).Article 
    PubMed 

    Google Scholar 
    Aguinis, H., Pierce, C. A., Bosco, F. A., Dalton, D. R. & Dalton, C. M. Debunking myths and urban legends about meta-analysis. Organ. Res. Methods 14, 306–331 (2011).Article 

    Google Scholar 
    Polit, D. F. & Beck, C. T. Generalization in quantitative and qualitative research: myths and strategies. Int. J. Nurs. Stud. 47, 1451–1458 (2010).Article 
    PubMed 

    Google Scholar 
    Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).Article 

    Google Scholar 
    Lundberg, I., Johnson, R. & Stewart, B. M. What is your estimand? Defining the target quantity connects statistical evidence to theory. Am. Sociol. Rev. 86, 532–565 (2021).Article 

    Google Scholar 
    Lawrance, R. et al. What is an estimand & how does it relate to quantifying the effect of treatment on patient-reported quality of life outcomes in clinical trials? J. Patient-Rep. Outcomes 4, 68 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Findley, M. G., Kikuta, K. & Denly, M. External validity. Annu. Rev. Polit. Sci. 24, 365–393 (2021).Article 

    Google Scholar 
    Pearl, J. & Bareinboim, E. External validity: from do-calculus to transportability across populations. Stat. Sci. 29, 579–595 (2014).Article 

    Google Scholar 
    Westreich, D., Edwards, J. K., Lesko, C. R., Cole, S. R. & Stuart, E. A. Target validity and the hierarchy of study designs. Am. J. Epidemiol. 188, 438–443 (2019).Article 
    PubMed 

    Google Scholar 
    Carpenter, C. J. Meta-analyzing apples and oranges: how to make applesauce instead of fruit salad. Hum. Commun. Res. 46, 322–333 (2020).Article 

    Google Scholar 
    Rohrer, J. M. & Arslan, R. C. Precise answers to vague questions: issues with interactions. Adv. Methods Pract. Psychol. Sci. 4, 1–19 (2021).
    Google Scholar 
    Breslow, N. E. & Clayton, D. G. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88, 9–25 (1993).
    Google Scholar 
    Koricheva, J. & Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844 (2014).Article 

    Google Scholar 
    Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).Article 
    PubMed 

    Google Scholar 
    Konno, K. et al. Ignoring non-English-language studies may bias ecological meta-analyses. Ecol. Evol. 10, 6373–6384 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022).Article 

    Google Scholar 
    Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 86, 638–641 (1979).Article 

    Google Scholar 
    Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).Article 
    PubMed 
    CAS 

    Google Scholar 
    Rothman, K. J., Gallacher, J. E. J. & Hatch, E. E. Why representativeness should be avoided. Int. J. Epidemiol. 42, 1012–1014 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spake, R. et al. Implications of scale dependence for cross-study syntheses of biodiversity differences. Ecol. Lett. 24, 374–390 (2021).Article 
    PubMed 

    Google Scholar 
    Spake, R. & Doncaster, C. P. Use of meta-analysis in forest biodiversity research: key challenges and considerations. For. Ecol. Manag. 400, 429–437 (2017).Article 

    Google Scholar 
    Christie, A. P. et al. Simple study designs in ecology produce inaccurate estimates of biodiversity responses. J. Appl. Ecol. 56, 2742–2754 (2019).Article 

    Google Scholar 
    Nakagawa, S., Noble, D. W. A., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Higgins, J. P. T. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).Article 
    PubMed 

    Google Scholar 
    Schielzeth, H. & Nakagawa, S. Conditional repeatability and the variance explained by reaction norm variation in random slope models. Methods Ecol. Evol. 13, 1214–1223 (2022).Article 

    Google Scholar 
    Nakagawa, S. et al. The orchard plot: cultivating a forest plot for use in ecology, evolution, and beyond. Res. Synth. Methods 12, 4–12 (2021).Article 
    PubMed 

    Google Scholar 
    Lorah, J. Effect size measures for multilevel models: definition, interpretation, and TIMSS example. Large-Scale Assess. Educ. 6, 8 (2018).Article 

    Google Scholar 
    O’Connor, M. I. et al. A general biodiversity–function relationship is mediated by trophic level. Oikos 126, 18–31 (2017).Article 

    Google Scholar 
    Ojha, M., Naidu, D. G. T. & Bagchi, S. Meta-analysis of induced anti-herbivore defence traits in plants from 647 manipulative experiments with natural and simulated herbivory. J. Ecol. 110, 799–816 (2022).Dodds, K. C. et al. Material type influences the abundance but not richness of colonising organisms on marine structures. J. Environ. Manag. 307, 114549 (2022).Article 

    Google Scholar 
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    Senior, A. M. et al. Heterogeneity in ecological and evolutionary meta- analyses: its magnitude and implications. Ecology 97, 3293–3299 (2016).Article 
    PubMed 

    Google Scholar 
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).Article 
    PubMed 
    CAS 

    Google Scholar 
    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).Article 
    PubMed 

    Google Scholar 
    Glass, G. V. Primary, secondary, and meta-analysis of research. Educ. Res. 5, 3–8 (1976).Article 

    Google Scholar 
    Glass, G. V. Meta‐analysis at 25: a personal history. Education in Two Worlds https://ed2worlds.blogspot.com/2022/07/meta-analysis-at-25-personal-history.html (2000).Cooper, H. M. Organizing knowledge syntheses: a taxonomy of literature reviews. Knowl. Soc. 1, 104–126 (1988).
    Google Scholar 
    Soranno, P. A. et al. Cross-scale interactions: quantifying multi-scaled cause-effect relationships in macrosystems. Front. Ecol. Environ. 12, 65–73 (2014).Article 

    Google Scholar 
    Gerstner, K. et al. Will your paper be used in a meta-analysis? Make the reach of your research broader and longer lasting. Methods Ecol. Evol. 8, 777–784 (2017).Article 

    Google Scholar 
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article 

    Google Scholar 
    Simons, D. J., Shoda, Y. & Lindsay, D. S. Constraints on Generality (CoG): a proposed addition to all empirical papers. Perspect. Psychol. Sci. 12, 1123–1128 (2017).Article 
    PubMed 

    Google Scholar 
    Yarkoni, T. The generalizability crisis. Behav. Brain Sci. https://doi.org/10.1017/S0140525X20001685 (2020).Lopez, P. M., Subramanian, S. V. & Schooling, C. M. Effect measure modification conceptualized using selection diagrams as mediation by mechanisms of varying population-level relevance. J. Clin. Epidemiol. 113, 123–128 (2019).Article 
    PubMed 

    Google Scholar 
    Campbell, D. T. in Advances in QuasiExperimental Design and Analysis (ed. Trochim, W.) 67–77 (Jossey-Bass, 1986).Spake, R. et al. Meta‐analysis of management effects on biodiversity in plantation and secondary forests of Japan. Conserv. Sci. Pract. 1, e14 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Forest Ecosystem Diversity Basic Survey (in Japanese) (Forestry Agency of Japan, 2019); https://www.rinya.maff.go.jp/j/keikaku/tayouseichousa/index.htmlIto, S., Ishigamia, S., Mizoue, N. & Buckley, G. P. Maintaining plant species composition and diversity of understory vegetation under strip-clearcutting forestry in conifer plantations in Kyushu, southern Japan. For. Ecol. Manag. 231, 234–241 (2006).Article 

    Google Scholar 
    Utsugi, E. et al. Hardwood recruitment into conifer plantations in Japan: effects of thinning and distance from neighboring hardwood forests. For. Ecol. Manag. 237, 15–28 (2006).Article 

    Google Scholar 
    Kominami, Y. et al. Classification of bird-dispersed plants by fruiting phenology, fruit size, and growth form in a primary lucidophyllous forest: an analysis, with implications for the conservation of fruit–bird interactions. Ornthological Sci. 2, 3–23 (2003).Article 

    Google Scholar 
    Tsujino, R. & Matsui, K. Forest regeneration inhibition in a mixed broadleaf-conifer forest under sika deer pressure. J. For. Res. 27, 230–235 (2021).Article 

    Google Scholar 
    Spake, R., Soga, M., Catford, J. A. & Eigenbrod, F. Applying the stress-gradient hypothesis to curb the spread of invasive bamboo. J. Appl. Ecol. 58, 1993–2003 (2021).Article 

    Google Scholar 
    Mize, T. D. Best practices for estimating, interpreting, and presenting nonlinear interaction effects. Sociol. Sci. 6, 81–117 (2019).Article 

    Google Scholar 
    Karaca-Mandic, P., Norton, E. C. & Dowd, B. Interaction terms in nonlinear models. Health Serv. Res. 47, 255–274 (2012).Article 
    PubMed 

    Google Scholar 
    Spake, R. et al. Forest damage by deer depends on cross-scale interactions between climate, deer density and landscape structure. J. Appl. Ecol. 57, 1376–1390 (2020).McCabe, C. J., Kim, D. S. & King, K. M. Improving present practices in the visual display of interactions. Adv. Methods Pract. Psychol. Sci. 1, 147–165 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shackelford, G. E. et al. Dynamic meta-analysis: a method of using global evidence for local decision making. BMC Biol. 19, 33 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Christie, A. P. et al. Innovation and forward‐thinking are needed to improve traditional synthesis methods: a response to Pescott and Stewart. J. Appl. Ecol. 59, 1191–1197 (2022).Article 

    Google Scholar 
    Haddaway, N. R. et al. EviAtlas: a tool for visualising evidence synthesis databases. Environ. Evid. 8, 22 (2019).Delory, B. M., Li, M., Topp, C. N. & Lobet, G. archiDART v3.0: a new data analysis pipeline allowing the topological analysis of plant root systems. F1000Research 7, 22 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perkel, J. M. The future of scientific figures. Nature 554, 133–134 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    Weaver, S. & Gleeson, M. P. The importance of the domain of applicability in QSAR modeling. J. Mol. Graph. Model. 26, 1315–1326 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    Sutton, C. et al. Identifying domains of applicability of machine learning models for materials science. Nat. Commun. 11, 4428 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633 (2021).Article 

    Google Scholar 
    Pearl, J. & Bareinboim, E. Transportability of causal and statistical relations: a formal approach. In 2011 IEEE 11th International Conference on Data Mining Workshops https://doi.org/10.1109/ICDMW.2011.169 (IEEE, 2011).Munthe-Kaas, H., Nøkleby, H. & Nguyen, L. Systematic mapping of checklists for assessing transferability. Syst. Rev. 8, 22 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dekkers, O. M., von Elm, E., Algra, A., Romijn, J. A. & Vandenbroucke, J. P. How to assess the external validity of therapeutic trials: a conceptual approach. Int. J. Epidemiol. 39, 89–94 (2010).Article 
    PubMed 
    CAS 

    Google Scholar 
    Schloemer, T. & Schröder-Bäck, P. Criteria for evaluating transferability of health interventions: a systematic review and thematic synthesis. Implement. Sci. 13, 88 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernandez-Hermida, J. R., Calafat, A., Becoña, E., Tsertsvadze, A. & Foxcroft, D. R. Assessment of generalizability, applicability and predictability (GAP) for evaluating external validity in studies of universal family-based prevention of alcohol misuse in young people: systematic methodological review of randomized controlled trials. Addiction 107, 1570–1579 (2012).Article 
    PubMed 

    Google Scholar 
    Avellar, S. A. et al. External validity: the next step for systematic reviews? Eval. Rev. 41, 283–325 (2017).Article 
    PubMed 

    Google Scholar 
    Bareinboim, E. & Pearl, J. A general algorithm for deciding transportability of experimental results. J. Causal Inference 1, 107–134 (2013).Article 

    Google Scholar 
    Degtiar, I. & Rose, S. A review of generalizability and transportability. Preprint at https://doi.org/10.48550/arXiv.2102.11904 (2021).Bareinboim, E. & Pearl, J. Meta-transportability of causal effects: a formal approach. J. Mach. Learn. Res. 31, 135–143 (2013).
    Google Scholar 
    Jamieson, D. Scientific uncertainty: how do we know when to communicate research findings to the public? Sci. Total Environ. 184, 103–107 (1996).Article 
    CAS 

    Google Scholar 
    Burchett, H. E. D., Mayhew, S. H., Lavis, J. N. & Dobrow, M. J. When can research from one setting be useful in another? Understanding perceptions of the applicability and transferability of research. Health Promot. Int. 28, 418–430 (2013).Article 
    PubMed 

    Google Scholar 
    Forscher, P. et al. Build up big-team science. Nature 601, 505–507 (2022).Article 

    Google Scholar 
    Whalen, M. A. et al. Climate drives the geography of marine consumption by changing predator communities. Proc. Natl Acad. Sci. USA 117, 28160–28166 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Moshontz, H. et al. The Psychological Science Accelerator: advancing psychology through a distributed collaborative network. Adv. Methods Pract. Psychol. Sci. 1, 501–515 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marschner, I. C. A general framework for the analysis of adaptive experiments. Stat. Sci. 36, 465–492 (2021).Article 

    Google Scholar 
    Clark, M. Shrinkage in Mixed Effects Models https://m-clark.github.io/posts/2019-05-14-shrinkage-in-mixed-models/ (2019).Gurevitch, J. & Hedges, L. V. Statistical issues in ecological meta-analyses. Ecology 80, 1142–1149 (1999).Article 

    Google Scholar 
    Mengersen, K., Gurevitch, J. & Schmid, C. H. in Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, U. et al.) 300–312 (Princeton Univ. Press, 2013).Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).Article 
    PubMed 

    Google Scholar 
    Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salguero-Gómez, R. et al. The COMPADRE Plant Matrix Database: an open online repository for plant demography. J. Ecol. 103, 202–218 (2015).Article 

    Google Scholar 
    Salguero-Gómez, R. et al. COMADRE: a global data base of animal demography. J. Anim. Ecol. 85, 371–384 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pastor, D. A. & Lazowski, R. A. On the multilevel nature of meta-analysis: a tutorial, comparison of software programs, and discussion of analytic choices. Multivar. Behav. Res. 53, 74–89 (2018).Article 

    Google Scholar  More

  • in

    Humid tropical vertebrates are at lower risk of extinction and population decline in forests with higher structural integrity

    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).Article 
    PubMed 

    Google Scholar 
    Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Environ. 20, 10–15 (2022).Article 
    PubMed 

    Google Scholar 
    Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).Article 

    Google Scholar 
    Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).Article 
    PubMed 

    Google Scholar 
    Hansen, A. et al. Global humid tropics forest structural condition and forest structural integrity maps. Sci. Data 6, 232 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hansen, A. J. et al. A policy-driven framework for conserving the best of Earth’s remaining moist tropical forests. Nat. Ecol. Evol. 4, 1377–1384 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    COP 11 Decision X/2. Strategic Plan for Biodiversity 2011–2020 (Convention on Biological Diversity, 2010).New York Declaration on Forests (UN, 2014).Transforming our World: The 2030 Agenda for Sustainable Development. A/RES/70/1 Resolution Adopted by the United Nations General Assembly (UN, 2015).Adoption of the Paris Agreement. Proposal by the President. Draft Decision -/CP.21 (UNFCCC, 2015).Hansen, A. J. et al. Toward monitoring forest ecosystem integrity within the post-2020 Global Biodiversity Framework. Conserv. Lett. 14, e12822 (2021).Article 

    Google Scholar 
    Scholes, R. et al. (eds) Summary for Policymakers of the Assessment Report on Land Degradation and Restoration (IPBES, 2018).First Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2021).Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).Article 

    Google Scholar 
    The IUCN Red List of Threatened Species Version 2020–1 (IUCN, 2020).Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ives, A. R. & Garland, T. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59, 9–26 (2010).Article 
    PubMed 

    Google Scholar 
    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).Article 
    PubMed 

    Google Scholar 
    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fletcher, R. & Fortin, M.-J. Spatial Ecology and Conservation Modeling: Applications with R (Springer, 2018). https://doi.org/10.1007/978-3-030-01989-1Briant, G., Gond, V. & Laurance, S. G. W. Habitat fragmentation and the desiccation of forest canopies: a case study from eastern Amazonia. Biol. Conserv. 143, 2763–2769 (2010).Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pillay, R. et al. Using interview surveys and multispecies occupancy models to inform vertebrate conservation. Conserv. Biol. 36, e13832 (2022).Article 
    PubMed 

    Google Scholar 
    Agresti, A. Categorical Data Analysis (John Wiley and Sons, 2002).Smith, A. C., Koper, N., Francis, C. M. & Fahrig, L. Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landsc. Ecol. 24, 1271–1285 (2009).Article 

    Google Scholar 
    Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl Acad. Sci. USA 18, 10309–10313 (2003).Article 

    Google Scholar 
    Turner, I. M. & Corlett, R. T. The conservation value of small, isolated fragments of lowland tropical rain forest. Trends Ecol. Evol. 11, 330–333 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tulloch, A. I. T., Barnes, M. D., Ringma, J., Fuller, R. A. & Watson, J. E. M. Understanding the importance of small patches of habitat for conservation. J. Appl. Ecol. 53, 418–429 (2016).Article 

    Google Scholar 
    Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl Acad. Sci. USA 116, 909–914 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6, eaax8574 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prugh, L. R., Hodges, K. E., Sinclair, A. R. E. & Brashares, J. S. Effect of habitat area and isolation on fragmented animal populations. Proc. Natl Acad. Sci. USA 105, 20770–20775 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 13, e12692 (2020).Article 

    Google Scholar 
    Ehbrecht, M. et al. Global patterns and climatic controls of forest structural complexity. Nat. Commun. 12, 519 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    França, F. et al. Do space-for-time assessments underestimate the impacts of logging on tropical biodiversity? An Amazonian case study using dung beetles. J. Appl. Ecol. 53, 1098–1105 (2016).Article 

    Google Scholar 
    Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinction risk. Nat. Commun. 9, 4621 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Betts, M. G. et al. Forest degradation drives widespread avian habitat and population declines. Nat. Ecol. Evol. 6, 709–719 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Basset, Y. et al. Arthropod diversity in a tropical forest. Science 338, 1481–1484 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Newbold, T. et al. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. R. Soc. B 280, 20122131 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).Article 
    PubMed 

    Google Scholar 
    Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).Article 
    PubMed 

    Google Scholar 
    Bird Species Distribution Maps of the World Version 2018.1 (BirdLife International, accessed 16 August 2019).Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).Article 
    PubMed 

    Google Scholar 
    González-del-Pliego, P. et al. Phylogenetic and trait-based prediction of extinction risk for data-deficient amphibians. Curr. Biol. 29, 1557–1563 (2019).Article 
    PubMed 

    Google Scholar 
    IUCN Habitats Classification Scheme Version 3.1 (IUCN, 2012).Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, M. C. et al. Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data. Remote Sens. Environ. 185, 221–232 (2016).Article 

    Google Scholar 
    Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904 (2002).Article 

    Google Scholar 
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Di Marco, M., Watson, J. E. M., Possingham, H. P. & Venter, O. Limitations and trade-offs in the use of species distribution maps for protected area planning. J. Appl. Ecol. 54, 402–411 (2017).Article 

    Google Scholar 
    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2603–E2610 (2013).Article 

    Google Scholar 
    Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 116, G04021 (2011).Article 

    Google Scholar 
    Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth 6, 427–448 (2013).Article 

    Google Scholar 
    Potapov, P. et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165 (2021).Article 

    Google Scholar 
    Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204, 23–31 (2016).Article 

    Google Scholar 
    Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).Article 
    PubMed 

    Google Scholar 
    Ho, L. S. T. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).Article 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Verhoeven, K. J. F., Simonsen, K. L. & McIntyre, L. M. Implementing false discovery rate control: increasing your power. Oikos 108, 643–647 (2005).Article 

    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar 
    Bivand, R. et al. spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.7-4 (2017).Bjornstad, O. N. ncf: Spatial covariance functions. R package version 1.2-1 (2018). More