More stories

  • in

    High-yield dairy cattle breeds improve farmer incomes, curtail greenhouse gas emissions and reduce dairy import dependency in Tanzania

    Meat, Milk and More: Policy Innovations to Shepherd Inclusive and Sustainable Livestock Systems in Africa (Malabo Montpellier Panel, 2020).Value of Agricultural Production (FAO, accessed August 25, 2022); https://www.fao.org/faostat/en/#data/QVJayne, T. & Sanchez, P. A. Agricultural productivity must improve in sub-Saharan Africa. Science 372, 1045–1047 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dangal, S. R. S. et al. Methane emission from global livestock sector during 1890–2014: magnitude, trends and spatiotemporal patterns. Glob. Change Biol. 23, 4147–4161 (2017).Article 
    ADS 

    Google Scholar 
    Mottet, A. et al. Climate change mitigation and productivity gains in livestock supply chains: insights from regional case studies. Reg. Env. Change 17, 129–141 (2016).Article 

    Google Scholar 
    Valin, H. et al. Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security? Environ. Res. Lett. 8, 035019 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    González-Quintero, R. et al. Yield gap analysis to identify attainable milk and meat productivities and the potential for greenhouse gas emissions mitigation in cattle systems of Colombia. Agric. Syst. 195, 103303 (2022).Article 

    Google Scholar 
    Crops and Livestock Products (FAO, accessed August 17,2022); https://www.fao.org/faostat/en/#data/QCLLedo, J. et al. Persistent challenges in safety and hygiene control practices in emerging dairy chains: the case of Tanzania. Food Control 105, 164–173 (2019).Article 

    Google Scholar 
    Häsler, B. et al. Integrated food safety and nutrition assessments in the dairy cattle value chain in Tanzania. Glob. Food Sec. 18, 102–113 (2018).Article 

    Google Scholar 
    Supply Utilization Accounts (FAO, accessed August 26, 2022); https://www.fao.org/faostat/en/#data/SCLMichael, S. et al. Tanzania Livestock Master Plan (International Livestock Research Institute, 2018).Tanzania Livestock Sector Analysis (2016/2017–2030/2031) (United Republic of Tanzania Ministry of Livestock and Fisheries, 2017); https://www.mifugouvuvi.go.tz/uploads/projects/1553602287-LIVESTOCK%20SECTOR%20ANALYSIS.pdfNicholson, C. et al. Assessment of Investment Priorities for Tanzania’s Dairy Sector: Report on Activities and Accomplishments (International Livestock Research Institute, 2021).Chagunda, M. G. C., Romer, D. A. M. & Roberts, D. J. Effect of genotype and feeding regime on enteric methane, non-milk nitrogen and performance of dairy cows during the winter feeding period. Livest. Sci. 122, 323–332 (2009).Article 

    Google Scholar 
    Notenbaert, A. et al. Towards environmentally sound intensification pathways for dairy development in the Tanga region of Tanzania. Reg. Environ. Change 20, 138 (2020).Yesuf, G. A. et al. Embedding stakeholders’ priorities into the low-emission development of the East African dairy sector. Env. Res. Lett. 16, 064032 (2021).Article 
    CAS 

    Google Scholar 
    GLS (Greening Livestock Survey) (International Livestock Research Institute, 2019); https://data.ilri.org/portal/dataset/greeninglivestockIntended Nationally Determined Contributions (United Republic of Tanzania, 2021); https://unfccc.int/sites/default/files/NDC/2022-06/TANZANIA_NDC_SUBMISSION_30%20JULY%202021.pdfNdung’u, P. W. et al. Farm-level emission intensities of smallholder cattle (Bos indicus; B. indicus–B. taurus crosses) production systems in highlands and semi-arid regions. Animal 16, 100445 (2022).Article 
    PubMed 

    Google Scholar 
    Goopy, J. P. et al. Severe below-maintenance feed intake increases methane yield from enteric fermentation in cattle. Br. J. Nutr. 123, 1239–1246 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goopy, J. P. et al. A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa—results for Nyando, Western Kenya. Agric. Syst. 161, 72–80 (2018).Article 

    Google Scholar 
    Supporting Low Emissions Development in the Tanzanian Dairy Cattle Sector—Reducing Enteric Methane for Food Security and Livelihoods (FAO, 2019).Gerssen-Gondelach, S. J. et al. Intensification pathways for beef and dairy cattle production systems: impacts on GHG emissions, land occupation and land use change. Agric. Ecosyst. Environ. 240, 135–147 (2017).Article 

    Google Scholar 
    Havlik, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 6, 452–461 (2016).Article 
    ADS 

    Google Scholar 
    Dizyee, K., Baker, D. & Omore, A. Upgrading the smallholder dairy value chain: a system dynamics ex-ante impact assessment in Tanzania’s Kilosa district. J. Dairy Res. 86, 440–449 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Simões, A. R. P., Nicholson, C. F., Novakovicc, A. M. & Protil, R. M. Dynamic impacts of farm-level technology adoption on the Brazilian dairy supply chain. Int. Food Agribus. Manag. Rev. 23, 71–84 (2020).Article 

    Google Scholar 
    Rahimi, J. et al. Heat stress will detrimentally impact future livestock production in East Africa. Nat. Food. 2, 88–96 (2021).Article 

    Google Scholar 
    Mbululo, Y. & Nyihirani, F. Climate characteristics over southern highlands Tanzania. Atmos. Clim. Sci. 2, 454–463 (2012).
    Google Scholar 
    Kihoro, E. M., Schoneveld, G. C. & Crane, T. A. Pathways toward inclusive low-emission dairy development in Tanzania: producer heterogeneity and implications for intervention design. Agric. Syst. 190, 103073 (2021).Mruttu, H. et al. Animal Genetics Strategy and Vision for Tanzania (Tanzania Ministry of Agriculture, Livestock and Fisheries and ILRI, 2016).Agricultural Sample Survey 2018/19 Report on Livestock and Livestock Characteristics (Private Peasant Holdings) (Central Statistical Agency, 2019).2019/20 National Sample Census of Agriculture Main Report (Tanzania National Bureau of Statistics, 2022).Robinson, T. P. et al. Global Livestock Production Systems (FAO, 2011).Herrero, M. et al. Biomass use, production, feed efficiencies and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baseline Study of the Tanzania Dairy Value Chain (United Republic of Tanzania Ministry of Agriculture, Livestock and Fisheries, 2016).Mbwambo, N., Nandonde, S., Ndomba, C. & Desta, S. Assessment of Animal Feed Resources in Tanzania (Tanzania Ministry of Agriculture, Livestock and Fisheries and ILRI, 2016).Hartung, C., Lerer, A., Anokwa, Y., Tseng, C., Brunette, W., & Borriello, G. Open data kit: tools to build information services for developing regions. Proc. 4th ACM/IEEE International Conference on Information and Communication Technologies and Development (Association for Computing Machinery, 2010).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).https://www.r-project.orgRufino, M. C. et al. Lifetime productivity of dairy cows in smallholder farming systems of the central highlands of Kenya. Animal 3, 1044–1056 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hawkins, J. et al. Feeding efficiency gains can increase the greenhouse gas mitigation potential of the Tanzanian dairy sector. Sci. Rep. 11, 4190 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Python Software Foundation (Python Software Foundation, 2019); https://www.python.org/psf/Kashoma, I. P. B. et al. Predicting body weight of Tanzania shorthorn zebu cattle using heart girth measurements. Livest. Res. Rural. Dev. 23, Table 1 (2011).Galukande, E. B., Mahadevan, P. & Black, J. G. Milk production in East African zebu cattle. Anim. Sci. 4, 329–336 (1962).Article 

    Google Scholar 
    Gillah, K. A., Kifaro, G. C. & Madsen, J. Effects of pre partum supplementation on milk yield, reproduction and milk quality of crossbred dairy cows raised in a peri urban farm of Morogoro town Tanzania. Livest. Res. Rural. Dev. 26 (2014).Njau, F. B. C., Lwelamira, J. & Hyandye, C. Ruminant livestock production and quality of pastures in the communal grazing land of semi-arid central Tanzania. Livest. Res. Rural. Dev. 8, Table 4 (2013).Mwambene, P. L. et al. Selecting indigenous cattle populations for improving dairy production in the Southern Highlands and Eastern Tanzania. Livest. Res. Rural. Dev. 26 (2014).Rege, J. E. O. et al. Cattle of Kenya: Uses, Performance, Farmer Preferences, Measures of Genetic Diversity and Options for Improved Use (International Livestock Research Institute, 2001).Beffa, L. M. Genotype × Environment Interaction in Afrikaner Cattle. PhD thesis, Univ. of the Free State (2005).Meaker, H. J., Coetsee, T. P. N. & Lishman, A. W. The effects of age at 1st calving on the productive and reproductive-performance of beef-cows. S. Afr. J. Anim. Sci. 10, 105–113 (1980).
    Google Scholar 
    Chenyambuga, S. W. & Mseleko, K. F. Reproductive and lactation performances of Ayrshire and Boran crossbred cattle kept in smallholder farms in Mufindi district, Tanzania. Livest. Res. Rural. Dev. 21, 100 (2009).
    Google Scholar 
    Ojango, J. M. K. et al. Dairy production systems and the adoption of genetic and breeding technologies in Tanzania, Kenya, India and Nicaragua. Anim. Genet. Resour. 59, 81–95 (2016).Article 

    Google Scholar 
    Feedipedia—Animal Feed Resources Information System (FAO, accessed 2021); https://www.feedipedia.org/Lukuyu, B. et al. (eds) Feeding Dairy Cattle in East Africa (East Africa Dairy Development Project, 2012).Rubanza, C. D. K. et al. Biomass production and nutritive potential of conserved forages in silvopastoral traditional fodder banks (Ngitiri) of Meatu District of Tanzania. Asian-Aust. J. Anim. Sci. 19, 978–983 (2006).Article 

    Google Scholar 
    Food Balances (2010-) (FAO, accessed September 29, 2021); http://www.fao.org/faostat/en/#data/FBSCrop Data for the United Republic of Tanzania (FAO, accessed September 22, 2021); http://www.fao.org/faost at/en/#data/QCGilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data. 5, 180227 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2014/15 Annual Agricultural Sample Survey Report (The United Republic of Tanzania, 2016).Basic Data for Livestock and Fisheries (The United Republic of Tanzania Ministry of Livestock and Fisheries, 2013).IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 Agriculture, Forestry and Other Land Use (IPCC, 2006).2019 Refinement to the IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2019).Fertilizers by Nutrient (FAO, accessed July 6, 2022); https://www.fao.org/faostat/en/#data/RFNHutton, M. O. et al. Toward a nitrogen footprint calculator for Tanzania. Env. Res. Lett. 12, 034016 (2017).Article 

    Google Scholar 
    Tanzania Fertilizer Assessment (International Fertilizer Development Center, 2012); http://tanzania.countrystat.org/fileadmin/user_upload/countrystat_fenix/congo/docs/Tanzania%20Fertilizer%20Assessment%202012.pdfA Common Carbon Footprint Approach for the Dairy Sector: The IDF Guide to Standard Life Cycle Methodology (International Dairy Federation, 2015); https://www.fil-idf.org/wp-content/uploads/2016/09/Bulletin479-2015_A-common-carbon-footprint-approach-for-the-dairy-sector.CAT.pdfBruzzone, L., Bovolo, F. & Arino, O. European Space Agency land cover climate change initiative. ESA LC CCI data: high resolution land cover data via Centre for Environmental Data Analysis; https://climate.esa.int/en/projects/high-resolution-land-cover/ (2021)Characteristics of Markets for Animal Feeds Raw Materials in the East African Community: Focus on Maize Bran and Sunflower Seed Cake (Kilimo Trust, 2017).Ngunga, D. & Mwendia, S. Forage Seed System in Tanzania: A Review Report (Alliance of Biodiversity and CIAT, 2020).Nkombe, B.M. Investigation of the Potential for Forage Species to Enhance the Sustainability of Degraded Rangeland and Cropland Soils. MSc thesis, Ohio State Univ. (2016).Producer Prices (FAO, accessed 2021); http://www.fao.org/faostat/en/#data/PP More

  • in

    Asynchronous responses of microbial CAZymes genes and the net CO2 exchange in alpine peatland following 5 years of continuous extreme drought events

    The effects of extreme drought on soil biochemical propertiesAs shown in Fig. 1A, the range of SOC during the early, midterm and late extreme drought experiments, were 73.53–251.44 g kg−1, 54.75–256.16 g kg−1, and 66.37–282.16 g kg−1, respectively. Concomitantly, DOC was 171.85–323.74 mg kg−1, 158.15 – 504.62 mg kg−1, and 166.63–418.43 mg kg−1, MBC was 247.80 – 461.69 mg kg−1, 257.90–450.98 mg kg−1, and 264.10–458.15 mg kg−1, respectively (Fig. 1B, C). The variation ranges of soil TN were 3.50–16.60 g kg−1, 4.70–34.5 g kg−1, and 6.70–32.50 g kg−1, respectively (Fig. 1D). Similarly, the variation ranges of NH4+ were 5.96–12.03 g kg−1, 5.39–12.59 g kg−1, and 5.74–13.03 g kg−1, NO3− were 2.27–8.79 mg kg−1, 5.07–9.62 mg kg−1, and 5.09–9.52 mg kg−1, respectively (Fig. 1E, F). The changes of SOC and NH4+ with soil depth were significantly different in different extreme drought periods and decreased significantly with the increase of soil depth (Table 1, P  More

  • in

    The effects of visitors and social isolation from a peer on the behavior of a mixed-species pair of captive gibbons

    Kazarov, E. The Role of Zoos in Creating a Conservation Ethic in Visitors. SIT Digital Collections (2022). at https://digitalcollections.sit.edu/isp_collection/584.Hosey, G. How does the zoo environment affect the behaviour of captive primates?. Appl. Anim. Behav. Sci. 90, 107–129 (2005).
    Google Scholar 
    Morgan, K. & Tromborg, C. Sources of stress in captivity. Appl. Anim. Behav. Sci. 102, 262–302 (2007).
    Google Scholar 
    Sherwen, S. & Hemsworth, P. The visitor effect on zoo animals: Implications and opportunities for zoo animal welfare. Animals 9, 366 (2019).PubMed Central 

    Google Scholar 
    Chamove, A., Hosey, G. & Schaetzel, P. Visitors excite primates in zoos. Zoo Biol. 7, 359–369 (1988).
    Google Scholar 
    Tetley, C. L. & O’Hara, S. J. Ratings of animal personality as a tool for improving the breeding, management and welfare of zoo mammals. Anim. Welf. UFAW J. 21(4), 463 (2012).CAS 

    Google Scholar 
    Stoinski, T. S., Jaicks, H. F. & Drayton, L. A. Visitor effects on the behavior of captive western lowland gorillas: The importance of individual differences in examining welfare. Zoo Biol. 31(5), 586–599 (2012).PubMed 

    Google Scholar 
    Queiroz, M. B. & Young, R. J. The different physical and behavioural characteristics of zoo mammals that influence their response to visitors. Animals 8(8), 139 (2018).PubMed Central 

    Google Scholar 
    Fanson, K. V. & Wielebnowski, N. C. Effect of housing and husbandry practices on adrenocortical activity in captive Canada lynx (Lynx canadensis). Anim. Welf. 22, 159–165 (2013).CAS 

    Google Scholar 
    Pirovino, M. et al. Fecal glucocorticoid measurements and their relation to rearing, behavior, and environmental factors in the population of pileated gibbons (Hylobates pileatus) held in European zoos. Int. J. Primatol. 32(5), 1161–1178 (2011).
    Google Scholar 
    Williams, I., Hoppitt, W. & Grant, R. The effect of auditory enrichment, rearing method and social environment on the behavior of zoo-housed psittacines (Aves: Psittaciformes); implications for welfare. Appl. Anim. Behav. Sci. 186, 85–92 (2017).
    Google Scholar 
    Fernandez, E., Tamborski, M., Pickens, S. & Timberlake, W. Animal–visitor interactions in the modern zoo: Conflicts and interventions. Appl. Anim. Behav. Sci. 120, 1–8 (2009).
    Google Scholar 
    Hosey, G. & Skyner, L. Self-injurious behavior in zoo primates. Int. J. Primatol. 28, 1431–1437 (2007).
    Google Scholar 
    Mallapur, A., Sinha, A. & Waran, N. Influence of visitor presence on the behaviour of captive lion-tailed macaques (Macaca silenus) housed in Indian zoos. Appl. Anim. Behav. Sci. 94, 341–352 (2005).
    Google Scholar 
    Davey, G. Visitors’ Effects on the Welfare of Animals in the Zoo: A Review. J. Appl. Anim. Welf. Sci. 10, 169–183 (2007).CAS 
    PubMed 

    Google Scholar 
    Jones, H., McGregor, P., Farmer, H. & Baker, K. The influence of visitor interaction on the behavior of captive crowned lemurs (Eulemur coronatus) and implications for welfare. Zoo Biol. 35, 222–227 (2016).CAS 
    PubMed 

    Google Scholar 
    Cook, S. & Hosey, G. R. Interaction sequences between chimpanzees and human visitors at the zoo. Zoo Biol. 14(5), 431–440 (1995).
    Google Scholar 
    Baker, K. C. Benefits of positive human interaction for socially-housed chimpanzees. Anim. Welf. (South Mimms, Engl.nd) 13(2), 239 (2004).CAS 

    Google Scholar 
    Carder, G. & Semple, S. Visitor effects on anxiety in two captive groups of western lowland gorillas. Appl. Anim. Behav. Sci. 115, 211–220 (2008).
    Google Scholar 
    Wood, W. Interactions among environmental enrichment, viewing crowds, and zoo chimpanzees (Pantroglodytes). Zoo Biol. 17, 211–230 (1998).
    Google Scholar 
    Todd, P., Macdonald, C. & Coleman, D. Visitor-associated variation in captive Diana monkey (Cercopithecus diana diana) behaviour. Appl. Anim. Behav. Sci. 107, 162–165 (2007).
    Google Scholar 
    Davis, N., Schaffner, C. & Smith, T. Evidence that zoo visitors influence HPA activity in spider monkeys (Ateles geoffroyii rufiventris). Appl. Anim. Behav. Sci. 90, 131–141 (2005).
    Google Scholar 
    Sherwen, S. L. et al. Effects of visual contact with zoo visitors on black-capped capuchin welfare. Appl. Anim. Behav. Sci. 167, 65–73 (2015).
    Google Scholar 
    Choo, Y., Todd, P. & Li, D. Visitor effects on zoo orangutans in two novel, naturalistic enclosures. Appl. Anim. Behav. Sci. 133, 78–86 (2011).
    Google Scholar 
    Sherwen, S., Magrath, M., Butler, K., Phillips, C. & Hemsworth, P. A multi-enclosure study investigating the behavioural response of meerkats to zoo visitors. Appl. Anim. Behav. Sci. 156, 70–77 (2014).
    Google Scholar 
    Hosey, G. & Druck, P. The influence of zoo visitors on the behaviour of captive primates. Appl. Anim. Behav. Sci. 18, 19–29 (1987).
    Google Scholar 
    Mitchell, G. et al. More on the ‘influence’of zoo visitors on the behaviour of captive primates. Appl. Anim. Behav. Sci. 35(2), 189–198 (1992).
    Google Scholar 
    Sellinger, R. & Ha, J. The effects of visitor density and intensity on the behavior of two captive jaguars (Panthera onca). J. Appl. Anim. Welfare Sci. 8, 233–244 (2005).CAS 

    Google Scholar 
    Azevedo, C., Lima, M., Silva, V., Young, R. & Rodrigues, M. Visitor Influence on the Behavior of Captive Greater Rheas (Rhea americana, Rheidae Aves). J. Appl. Anim. Welfare Sci. 15, 113–125 (2012).
    Google Scholar 
    Das Gupta, M., Das, A., Sumy, M. C. & Islam, M. M. An explorative study on visitor’s behaviour and their effect on the behaviour of primates at Chittagong zoo. Bangladesh J. Vet. Anim. Sci. 5(2), 24–32 (2017).
    Google Scholar 
    Hemsworth, P. Human–animal interactions in livestock production. Appl. Anim. Behav. Sci. 81, 185–198 (2003).
    Google Scholar 
    Stoinski, T., Czekala, N., Lukas, K. & Maple, T. Urinary androgen and corticoid levels in captive, male Western lowland gorillas (Gorilla g. gorilla): Age- and social group-related differences. Am. J. Primatol. 56, 73–87 (2002).CAS 
    PubMed 

    Google Scholar 
    Stoinski, T., Lukas, K., Kuhar, C. & Maple, T. Factors influencing the formation and maintenance of all-male gorilla groups in captivity. Zoo Biol. 23, 189–203 (2004).
    Google Scholar 
    Olsson, I. & Westlund, K. More than numbers matter: The effect of social factors on behaviour and welfare of laboratory rodents and non-human primates. Appl. Anim. Behav. Sci. 103, 229–254 (2007).
    Google Scholar 
    Martin, J. E. Early life experiences: Activity levels and abnormal behaviours in resocialised chimpanzees. Anim Welf. 11(4), 419–436 (2002).CAS 

    Google Scholar 
    Birkett, L. P. & Newton-Fisher, N. E. How abnormal is the behaviour of captive, zoo-living chimpanzees?. PLoS ONE 6(6), e20101 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ballen, C., Shine, R. & Olsson, M. Effects of early social isolation on the behaviour and performance of juvenile lizards Chamaeleo calyptratus. Anim. Behav. 88, 1–6 (2014).
    Google Scholar 
    Coe, C., Mendoza, S., Smotherman, W. & Levine, S. Mother-infant attachment in the squirrel monkey: Adrenal response to separation. Behav. Biol. 22, 256–263 (1978).CAS 
    PubMed 

    Google Scholar 
    Mendoza, S., Smotherman, W., Miner, M., Kaplan, J. & Levine, S. Pituitary-adrenal response to separation in mother and infant squirrel monkeys. Dev. Psychobiol. 11, 169–175 (1978).CAS 
    PubMed 

    Google Scholar 
    Gilbert, M. & Baker, K. Social buffering in adult male rhesus macaques (Macaca mulatta): Effects of stressful events in single vs. pair housing. J. Med. Primatol. 40, 71–78 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Schapiro, S. Effects of social manipulations and environmental enrichment on behavior and cell-mediated immune responses in rhesus macaques. Pharmacol. Biochem. Behav. 73, 271–278 (2002).CAS 
    PubMed 

    Google Scholar 
    Chen, W. et al. Effects of social isolation and re-socialization on cognition and ADAR1 (p110) expression in mice. PeerJ 4, e2306 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Glatston, A., Geilvoet-Soeteman, E., Hora-Pecek, E. & Van Hooff, J. The influence of the zoo environment on social behavior of groups of cotton-topped tamarins Saguinus oedipus oedipus. Zoo Biol. 3, 241–253 (1984).
    Google Scholar 
    Mitchell, G. et al. Effects of visitors and cage changes on the behaviors of mangabeys. Zoo Biol. 10, 417–423 (1991).
    Google Scholar 
    Geissmann, T. & Orgeldinger, M. The relationship between duet songs and pair bonds in siamangs Hylobates syndactylus. Anim. Behav. 60, 805–809 (2000).CAS 
    PubMed 

    Google Scholar 
    Palombit, R. Pair bonds in monogamous apes: A comparison of the siamang hylobates syndactylus and the white-handed gibbon hylobates lar. Behaviour 133, 321–356 (1996).
    Google Scholar 
    Rutberg, A. The evolution of monogamy in primates. J. Theor. Biol. 104, 93–112 (1983).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Giorgi, A., Montebovi, G., Vitale, A. & Alleva, E. A behavioural case study of early social isolation of a subadult white-handed gibbon (Hylobates lar). Folia Primatol. 89, 287–294 (2018).
    Google Scholar 
    Skynner, L. A., Amory, J. R. & Hosey, G. The effect of visitors on the self-injurious behaviour of a male pileated gibbon (Hylobates pileatus). Zool. Garten 74(1), 38–41 (2004).
    Google Scholar 
    Smith, K. & Kuhar, C. Siamangs (Hylobates syndactylus) and white-cheeked gibbons (Hylobates leucogenys) show few behavioral differences related to zoo attendance. J. Appl. Anim. Welfare Sci. 13, 154–163 (2010).CAS 

    Google Scholar 
    Lukas, K. E. et al. Longitudinal study of delayed reproductive success in a pair of white-cheeked gibbons (Hylobates leucogenys). Zoo Biol. 21, 413–434 (2002).
    Google Scholar 
    Cooke, C. & Schillaci, M. Behavioral responses to the zoo environment by white handed gibbons. Appl. Anim. Behav. Sci. 106, 125–133 (2007).
    Google Scholar 
    Mootnick, A. & Baker, E. Masturbation in captiveHylobates (gibbons). Zoo Biol. 13, 345–353 (1994).
    Google Scholar 
    Geissmann, T. Reassessment of age of sexual maturity in gibbons (hylobates spp.). American Journal of Primatology 23, 11–22 (1991).Altmann, J. Observational study of behavior: Sampling methods. Behaviour 49(3–4), 227–266 (1974).CAS 
    PubMed 

    Google Scholar 
    Pomerantz, O. & Terkel, J. Effects of positive reinforcement training techniques on the psychological welfare of zoo-housed chimpanzees (Pan troglodytes). Am. J. Primatol. 71, 687–695 (2009).PubMed 

    Google Scholar 
    Orgeldinger, M. Protective and territorial behavior in captive siamangs (Hylobates syndactylus). Zoo Biol. 16, 309–325 (1997).
    Google Scholar 
    Fox, J. et al. Package ‘car’. Vienna: R Foundation for Statistical Computing, 16 https://cran.uni-muenster.de/web/packages/car/car.pdf (2012).Magnusson, A., Skaug, H., Nielsen, A., Berg, C., Kristensen, K., Maechler, M., van Bentham, K., Bolker, B., Brooks, M. & Brooks, M. M. Package ‘glmmtmb’. R Package Version 0.2. 0 (2017).Hartig, F., & Hartig, M. F. Package ‘DHARMa’. Vienna, Austria: R Development Core Team (2017).Troisi, A. Displacement activities as a behavioral measure of stress in nonhuman primates and human subjects. Stress 5, 47–54 (2002).PubMed 

    Google Scholar 
    Baker, K. & Aureli, F. Behavioural indicators of anxiety: An empirical test in chimpanzees. Behaviour 134, 1031–1050 (1997).
    Google Scholar 
    Vick, S. J. & Paukner, A. Variation and context of yawns in captive chimpanzees (Pan troglodytes). Am. J. Primatol. Off. J. Am. Soc. Primatol. 72(3), 262–269 (2010).
    Google Scholar 
    Norscia, I. & Palagi, E. When play is a family business: Adult play, hierarchy, and possible stress reduction in common marmosets. Primates 52, 101–104 (2010).PubMed 

    Google Scholar 
    Held, S. & Špinka, M. Animal play and animal welfare. Anim. Behav. 81, 891–899 (2011).
    Google Scholar 
    Davey, G. Visitor behavior in zoos: A review. Anthrozoös 19, 143–157 (2006).
    Google Scholar 
    Nimon, A. & Dalziel, F. Cross-species interaction and communication: a study method applied to captive siamang (Hylobates syndactylus) and long-billed corella (Cacatua tenuirostris) contacts with humans. Appl. Anim. Behav. Sci. 33, 261–272 (1992).
    Google Scholar 
    Suomi, S. Early determinants of behaviour: Evidence from primate studies. Br. Med. Bull. 53, 170–184 (1997).CAS 
    PubMed 

    Google Scholar 
    Anderson, J. & Chamove, A. Self-aggression and social aggression in laboratory-reared macaques. J. Abnorm. Psychol. 89, 539–550 (1980).CAS 
    PubMed 

    Google Scholar 
    Mallapur, A. & Choudhury, B. Behavioral abnormalities in captive nonhuman primates. J. Appl. Anim. Welfare Sci. 6, 275–284 (2003).CAS 

    Google Scholar 
    Barlow, C., Caldwell, C. & Lee, P. Individual differences and response to visitors in zoo-housed diana monkeys (Cercopithecus diana diana). Cabdirect.org (2022). at https://www.cabdirect.org/cabdirect/abstract/20123180753.Gartner, M. & Weiss, A. Studying primate personality in zoos: Implications for the management, welfare and conservation of great apes. International Zoo Yearbook 52, 79–91 (2018).
    Google Scholar 
    Mitchell, G., Raymond, E., Ruppenthal, G. & Harlow, H. Long-term effects of total social isolation upon behavior of rhesus monkeys. Psychol. Rep. 18, 567–580 (1966).
    Google Scholar 
    Martín, O., Vinyoles, D., García-Galea, E. & Maté, C. Improving the welfare of a zoo-housed male drill (Mandrillus leucophaeus poensis) aggressive toward visitors. J. Appl. Anim. Welfare Sci. 19, 323–334 (2016).
    Google Scholar 
    Ross, S., Melber, L., Gillespie, K. & Lukas, K. The impact of a modern, naturalistic exhibit design on visitor behavior: A cross-facility comparison. Visitor Stud. 15, 3–15 (2012).
    Google Scholar 
    Quadros, S., Goulart, V., Passos, L., Vecci, M. & Young, R. Zoo visitor effect on mammal behaviour: Does noise matter?. Appl. Anim. Behav. Sci. 156, 78–84 (2014).
    Google Scholar 
    Bonnie, K., Ang, M. & Ross, S. Effects of crowd size on exhibit use by and behavior of chimpanzees (Pan troglodytes) and Western lowland gorillas (Gorilla gorilla) at a zoo. Appl. Anim. Behav. Sci. 178, 102–110 (2016).
    Google Scholar  More

  • in

    Intensive grassland management disrupts below-ground multi-trophic resource transfer in response to drought

    Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021)Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Seneviratne, S. I. et al. Weather and climate extreme events in a changing climate. In Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021).Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain 1, 441–446 (2018).
    Google Scholar 
    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Bardgett, R. D. & Cook, R. Functional aspects of soil animal diversity in agricultural grasslands. Appl. Soil Ecol. 10, 263–276 (1998).
    Google Scholar 
    Postma-Blaauw, M. B., de Goede, R. G. M., Bloem, J., Faber, J. H. & Brussaard, L. Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91, 460–473 (2010).PubMed 

    Google Scholar 
    Vályi, K., Rillig, M. C. & Hempel, S. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants. N. Phytologist 205, 1577–1586 (2015).
    Google Scholar 
    de Vries, F. T., Hoffland, E., van Eekeren, N., Brussaard, L. & Bloem, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. Biochem. 38, 2092–2103 (2006).
    Google Scholar 
    de Vries, F. T. et al. Extensive Management Promotes Plant and Microbial Nitrogen Retention in Temperate Grassland. PLoS ONE 7, e51201 (2012).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Vries, F. T., van Groenigen, J. W., Hoffland, E. & Bloem, J. Nitrogen losses from two grassland soils with different fungal biomass. Soil Biol. Biochem. 43, 997–1005 (2011).
    Google Scholar 
    Malik, A. A. et al. Soil fungal: bacterial ratios are linked to altered carbon cycling. Front. Microbiol. 7, 1247 (2016).Bardgett, R. D., Streeter, T. C. & Bol, R. Soil Microbes Compete Effectively with Plants for Organic-Nitrogen Inputs to Temperate Grasslands. Ecology 84, 1277–1287 (2003).
    Google Scholar 
    Bardgett, R. D. & McAlister, E. The measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fertil. Soils 29, 282–290 (1999).
    Google Scholar 
    Gordon, H., Haygarth, P. M. & Bardgett, R. D. Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biol. Biochem. 40, 302–311 (2008).CAS 

    Google Scholar 
    Duffy, J. E. et al. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol. Lett. 10, 522–538 (2007).PubMed 

    Google Scholar 
    Wang, S. & Brose, U. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecol. Lett. 21, 9–20 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ruf, A., Kuzyakov, Y. & Lopatovskaya, O. Carbon fluxes in soil food webs of increasing complexity revealed by C-14 labelling and C-13 natural abundance. Soil Biol. Biochem. 38, 2390–2400 (2006).CAS 

    Google Scholar 
    Pollierer, M. M., Langel, R., Koerner, C., Maraun, M. & Scheu, S. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol. Lett. 10, 729–736 (2007).PubMed 

    Google Scholar 
    Eissfeller, V. et al. Incorporation of plant carbon and microbial nitrogen into the rhizosphere food web of beech and ash. Soil Biol. Biochem. 62, 76–81 (2013).CAS 

    Google Scholar 
    Gilbert, K. J. et al. Exploring carbon flow through the root channel in a temperate forest soil food web. Soil Biol. Biochem. 76, 45–52 (2014).CAS 

    Google Scholar 
    Goncharov, A. A., Tsurikov, S. M., Potapov, A. M. & Tiunov, A. V. Short-term incorporation of freshly fixed plant carbon into the soil animal food web: field study in a spruce forest. Ecol. Res. 31, 923–933 (2016).CAS 

    Google Scholar 
    Chomel, M. et al. Drought decreases incorporation of recent plant photosynthate into soil food webs regardless of their trophic complexity. Glob. Change Biol. 25, 3549–3561 (2019).ADS 

    Google Scholar 
    Moore, J. C., de Ruiter, P. C. & Hunt, H. W. Influence of productivity on the stability of real and model ecosystems. Science 261, 906–908 (1993).ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, Patterns of Interaction Strengths, and Stability in Real Ecosystems. Science 269, 1257–1260 (1995).ADS 
    PubMed 

    Google Scholar 
    Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rooney, N. & McCann, K. S. Integrating food web diversity, structure and stability. Trends Ecol. Evolution 27, 40–46 (2012).
    Google Scholar 
    de Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change 2, 276 (2012).ADS 

    Google Scholar 
    Ingrisch, J. et al. Land Use Alters the Drought Responses of Productivity and CO2 Fluxes in Mountain Grassland. Ecosystems 21, 689–703 (2018).PubMed 

    Google Scholar 
    Karlowsky, S. et al. Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant‐microbial interactions. J. Ecol. 106, 1230–1243 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Vilonen, L., Ross, M. & Smith, M. D. What happens after drought ends: synthesizing terms and definitions. N. Phytologist 235, 420–431 (2022).
    Google Scholar 
    Ingrisch, J., Karlowsky, S., Hasibeder, R., Gleixner, G. & Bahn, M. Drought and recovery effects on belowground respiration dynamics and the partitioning of recent carbon in managed and abandoned grassland. Glob. Change Biol. 26, 4366–4378 (2020).ADS 

    Google Scholar 
    Ward, S. E. et al. Legacy effects of grassland management on soil carbon to depth. Glob. Change Biol. 22, 2929–2938 (2016).ADS 

    Google Scholar 
    Henry, C. et al. A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nat. Commun. 10, 3398 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baptist, F. et al. 13C and 15N allocations of two alpine species from early and late snowmelt locations reflect their different growth strategies. J. Exp. Bot. 60, 2725–2735 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, A. et al. Root functional traits explain root exudation rate and composition across a range of grassland species. J. Ecol. 110, 21–33 (2022).
    Google Scholar 
    Deyn, G. B. D., Quirk, H., Oakley, S., Ostle, N. J. & Bartgett, R. D. Rapid transfer of photosynthetic carbon through the plant-soil system in differently managed species-rich grasslands. Biogeosciences 8, 1131–1139 (2011).Pausch, J. et al. Small but active – pool size does not matter for carbon incorporation in below‐ground food webs.Functional Ecol. 30, 479–489 (2016).
    Google Scholar 
    Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Z. et al. The flux of root-derived carbon via fungi and bacteria into soil microarthropods (Collembola) differs markedly between cropping systems. Soil Biol. Biochem. 160, 108336 (2021).CAS 

    Google Scholar 
    Joergensen, R. Ergosterol and microbial biomass in the rhizosphere of grassland soils. Soil Biol. Biogeochemistry 32, 647–652 (2000).CAS 

    Google Scholar 
    Staddon, P. L., Ramsey, C. B., Ostle, N., Ineson, P. & Fitter, A. H. Rapid Turnover of Hyphae of Mycorrhizal Fungi Determined by AMS Microanalysis of 14C. Science 300, 1138–1140 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Johnson, D., Leake, J. R., Ostle, N., Ineson, P. & Read, D. J. In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. N. Phytologist 153, 327–334 (2002).CAS 

    Google Scholar 
    Johnson, D., Leake, J. R. & Read, D. J. Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of C-14. Soil Biol. Biochem. 34, 1521–1524 (2002).CAS 

    Google Scholar 
    Schimel, J., Balser, T. C. & Wallenstein, M. Microbial Stress-Response Physiology and Its Implications for Ecosystem Function. Ecology 88, 1386–1394 (2007).PubMed 

    Google Scholar 
    Strickland, M. S. & Rousk, J. Considering fungal:bacterial dominance in soils – Methods, controls, and ecosystem implications. Soil Biol. Biochem. 42, 1385–1395 (2010).CAS 

    Google Scholar 
    Manzoni, S., Schimel, J. P. & Porporato, A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93, 930–938 (2012).PubMed 

    Google Scholar 
    Holden, S. R. & Treseder, K. K. A meta-analysis of soil microbial biomass responses to forest disturbances. Front Microbiol 4, 163 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Guhr, A., Borken, W., Spohn, M. & Matzner, E. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. PNAS 112, 14647–14651 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allen, M. F. Mycorrhizal Fungi: Highways for Water and Nutrients in Arid Soils. Vadose Zone J. 6, 291–297 (2007).
    Google Scholar 
    Kakouridis, A. et al. Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. bioRxiv https://doi.org/10.1101/2020.09.21.305409 (2020).Leake, J. R., Ostle, N. J., Rangel-Castro, J. I. & Johnson, D. Carbon fluxes from plants through soil organisms determined by field 13CO2 pulse-labelling in an upland grassland. Appl. Soil Ecol. 33, 152–175 (2006).
    Google Scholar 
    Maaß, S., Migliorini, M., Rillig, M. C. & Caruso, T. Disturbance, neutral theory, and patterns of beta diversity in soil communities. Ecol. Evolution 4, 4766–4774 (2014).
    Google Scholar 
    Barnard, R. L., Osborne, C. A. & Firestone, M. K. Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate. ISME J. 9, 946–957 (2015).CAS 
    PubMed 

    Google Scholar 
    Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol 9, 119–130 (2011).CAS 
    PubMed 

    Google Scholar 
    Meisner, A., Bååth, E. & Rousk, J. Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biol. Biochem. 66, 188–192 (2013).CAS 

    Google Scholar 
    Meisner, A., Rousk, J. & Bååth, E. Prolonged drought changes the bacterial growth response to rewetting. Soil Biol. Biochem. 88, 314–322 (2015).CAS 

    Google Scholar 
    Blazewicz, S. J., Schwartz, E. & Firestone, M. K. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology 95, 1162–1172 (2014).PubMed 

    Google Scholar 
    Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos. Trans. R. Soc. B: Biol. Sci. 368, 20130122 (2013).
    Google Scholar 
    Baggs, E. M., Rees, R. M., Smith, K. A. & Vinten, A. J. A. Nitrous oxide emission from soils after incorporating crop residues. Soil Use & Manag. 16, 82–87 (2000).
    Google Scholar 
    Le Roux, X., Bardy, M., Loiseau, P. & Louault, F. Stimulation of soil nitrification and denitrification by grazing in grasslands: do changes in plant species composition matter? Oecologia 137, 417–425 (2003).ADS 
    PubMed 

    Google Scholar 
    Morley, N. & Baggs, E. M. Carbon and oxygen controls on N2O and N2 production during nitrate reduction. Soil Biol. Biochem. 42, 1864–1871 (2010).CAS 

    Google Scholar 
    Davidson, E. A. & Kanter, D. Inventories and scenarios of nitrous oxide emissions. Environ. Res. Lett. 9, 105012 (2014).ADS 

    Google Scholar 
    Bateman, E. J. & Baggs, E. M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 41, 379–388 (2005).CAS 

    Google Scholar 
    Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knapp, A. K. et al. Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. Glob. Change Biol. 23, 1774–1782 (2017).ADS 

    Google Scholar 
    Cole, A. J. et al. Grassland biodiversity restoration increases resistance of carbon fluxes to drought. J. Appl. Ecol. 56, 1806–1816 (2019).CAS 

    Google Scholar 
    Fuchslueger, L., Bahn, M., Fritz, K., Hasibeder, R. & Richter, A. Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. N. Phytologist 201, 916–927 (2014).CAS 

    Google Scholar 
    Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 61, 127–130 (2012).
    Google Scholar 
    Frostegård, Å., Bååth, E. & Tunlio, A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol. Biochem. 25, 723–730 (1993).
    Google Scholar 
    Olsson, P. A., Thingstrup, I., Jakobsen, I. & Bååth, E. Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol. Biochem. 31, 1879–1887 (1999).CAS 

    Google Scholar 
    Hopkin, S. P. A key to the Collembola (springtails) of Britain and Ireland (FSC, 2007).Krantz, G. W. & Walter, D. E. A manual of acarology (Texas Tech Universty Press, 2009).Caruso, T. & Migliorini, M. Euclidean geometry explains why lengths allow precise body mass estimates in terrestrial invertebrates: The case of oribatid mites. J. Theor. Biol. 256, 436–440 (2009).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Ganihar, S. R. Biomass estimates of terrestrial arthropods based on body length. J. Biosci. 22, 219–224 (1997).
    Google Scholar 
    Johnson, D., Vachon, J., Britton, A. J. & Helliwell, R. C. Drought alters carbon fluxes in alpine snowbed ecosystems through contrasting impacts on graminoids and forbs. N. Phytologist 190, 740–749 (2011).CAS 

    Google Scholar 
    Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).ADS 
    PubMed 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    Anderson, M. J. Distance-Based Tests for Homogeneity of Multivariate Dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed effects models and extensions in ecology with R. (Springer, 2009). More

  • in

    Tidal effects on periodical variations in the occurrence of singing humpback whales in coastal waters of Chichijima Island, Ogasawara, Japan

    Morrison, M. A., Francis, M. P., Hartill, B. W. & Parkinson, D. M. Diurnal and tidal variation in the abundance of the fish fauna of a temperate tidal mudflat. Estuar. Coast. Shelf Sci. 54, 793–807 (2002).Article 
    ADS 

    Google Scholar 
    Ribeiro, J. et al. Seasonal, tidal and diurnal changes in fish assemblages in the Ria Formosa lagoon (Portugal). Estuar. Coast. Shelf Sci. 67, 461–474 (2006).Article 
    ADS 

    Google Scholar 
    Takemura, A., Rahman, M. S. & Park, Y. J. External and internal controls of lunar-related reproductive rhythms in fishes. J. Fish Biol. 76, 7–26 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mendes, S., Turrell, W., Lütkebohle, T. & Thompson, P. Influence of the tidal cycle and a tidal intrusion front on the spatio-temporal distribution of coastal bottlenose dolphins. Mar. Ecol. Prog. Ser. 239, 221–229 (2002).Article 
    ADS 

    Google Scholar 
    Johnston, D. W., Thorne, L. H. & Read, A. J. Fin whales Balaenoptera physalus and minke whales Balaenoptera acutorostrata exploit a tidally driven island wake ecosystem in the Bay of Fundy. Mar. Ecol. Prog. Ser. 305, 287–295 (2005).Article 
    ADS 

    Google Scholar 
    Ichikawa, K. et al. Dugong (Dugong dugon) vocalization patterns recorded by automatic underwater sound monitoring systems. J. Acoust. Soc. Am. 119, 3726–3733 (2006).Article 
    ADS 
    PubMed 

    Google Scholar 
    Akamatsu, T. et al. Seasonal and diurnal presence of finless porpoises at a corridor to the ocean from their habitat. Mar. Biol. 157, 1879–1887 (2010).Article 

    Google Scholar 
    Li, S. et al. Seasonal, lunar and tidal influences on habitat use of indo-pacific humpback dolphins in Beibu gulf, China. Zool. Stud. https://doi.org/10.6620/ZS.2018.57-01 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zamon, J. E. Seal predation on salmon and forage fish schools as a function of tidal currents in the San Juan Islands, Washington, USA. Fish. Oceanogr. 10, 353–366 (2001).Article 

    Google Scholar 
    Van Parijs, S. M., Hastie, G. D. & Thompson, P. M. Geographical variation in temporal and spatial vocalization patterns of male harbour seals in the mating season. Anim. Behav. 58, 1231–1239 (1999).Article 
    PubMed 

    Google Scholar 
    Bortolotto, G. A., Danilewicz, D., Hammond, P. S., Thomas, L. & Zerbini, A. N. Whale distribution in a breeding area: Spatial models of habitat use and abundance of western South Atlantic humpback whales. Mar. Ecol. Prog. Ser. 585, 213–227 (2017).Article 
    ADS 

    Google Scholar 
    Johnson, J. H. & Wolman, A. A. The humpback whale, Megaptera novaeangliae. Mar. Fish. Rev. 46, 30–37 (1984).
    Google Scholar 
    Kobayashi, N. et al. Spatial distribution and habitat use patterns of humpback whales in Okinawa, Japan. Mammal Study 41, 207–214 (2016).Article 

    Google Scholar 
    Mori, K., Sata, F., Yamaguchi, M., Suganuma, H. & Ueyanagi, S. Distribution, migration and local movements of humpback whale (Megaptera novaeangliae) in the adjacent waters of the Ogasawara (Bonin) Islands Japan. J. Fac. Mar. Sci. Technol. Tokai Univ. 45, 197–213 (1998).
    Google Scholar 
    Rasmussen, K., Calambokidis, J. & Steiger, G. H. Distribution and migratory destinations of humpback whales off the Pacific coast of Central America during the boreal winters of 1996–2003. Mar. Mammal Sci. 28, 1–13 (2012).Article 

    Google Scholar 
    Calambokidis, J. et al. SPLASH: structure of populations, levels of abuncance and status of humpback whales in the North Pacific. Final report for Contract AB133F-03-RP-00078, to U.S. Dept. of Comm. Western Administrative Center, Seattle, WA. https://cascadiaresearch.org/files/SPLASH-contract-Report-May08.pdf (2008).Hill, M. et al. Found: A missing breeding ground for endangered western North Pacific humpback whales in the Mariana Archipelago. Endanger. Species Res. 41, 91–103 (2020).Article 

    Google Scholar 
    Payne, R. S. & McVay, S. Songs of humpback whales. Science 173, 585–597 (1971).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Winn, H. E. & Winn, L. The song of the humpback whale Megaptera novaeangliae in the West Indies. Mar. Biol. 47, 97–114 (1978).Article 

    Google Scholar 
    Tyack, P. Interactions between singing Hawaiian humpback whales and conspecifics nearby. Behav. Ecol. Sociobiol. 8, 105–116 (1981).Article 

    Google Scholar 
    Herman, L. M. The multiple functions of male song within the humpback whale (Megaptera novaeangliae) mating system: Review, evaluation, and synthesis. Biol. Rev. 92, 1795–1818 (2017).Article 
    PubMed 

    Google Scholar 
    Au, W. W. L., Mobley, J., Burgess, W. C., Lammers, M. O. & Nachtigall, P. E. Seasonal and diurnal trends of chorusing humpback whales wintering in waters off western Maui. Mar. Mammal Sci. 16, 530–544 (2000).Article 

    Google Scholar 
    Cerchio, S., Collins, T., Strindberg, S., Bennett, C. & Rosenbaum, H. Humpback whale singing activity off northern Angola: An indication of the migratory cycle, breeding habitat and impact of seismic surveys on singer number in Breeding. Int. Whal. Comm. P. SC/62/SH12 (2010).Kobayashi, N., Okabe, H., Higashi, N., Miyahara, H. & Uchida, S. Diel patterns in singing activity of humpback whales in a winter breeding area in Okinawan (Ryukyuan) waters. Mar. Mammal Sci. 37, 982–992 (2021).Article 

    Google Scholar 
    Munger, L. M., Lammers, M. O., Fisher-Pool, P. & Wong, K. Humpback whale (Megaptera novaeangliae) song occurrence at American Samoa in long-term passive acoustic recordings, 2008–2009. J. Acoust. Soc. Am. 132, 2265–2272 (2012).Article 
    ADS 
    PubMed 

    Google Scholar 
    Barlow, D. R., Fournet, M. & Sharpe, F. Incorporating tides into the acoustic ecology of humpback whales. Mar. Mammal Sci. 35, 234–251 (2019).Article 

    Google Scholar 
    Chenoweth, E., Gabriele, C. & Hill, D. Tidal influences on humpback whale habitat selection near headlands. Mar. Ecol. Prog. Ser. 423, 279–289 (2011).Article 
    ADS 

    Google Scholar 
    Sousa-Lima, R. S., Clark, C. W. & Road, S. W. Modeling the effect of boat traffic on singing activity of humpback whales (Megaptera novaeangliae) in the abrolhos national marine park, Brazil. Can. Acoust 36, 174–181 (2008).
    Google Scholar 
    Cerchio, S., Strindberg, S., Collins, T., Bennett, C. & Rosenbaum, H. Seismic surveys negatively affect humpback whale singing activity off Northern Angola. PLoS ONE 9, e86464. https://doi.org/10.1371/journal.pone.0086464 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Darling, J. D. & Mori, K. Recent observations of humpback whales (Megaptera novaeangliae) in Japanese waters off Ogasawara and Okinawa. Can. J. Zool. 71, 325–333 (1993).Article 

    Google Scholar 
    Calambokidis, J. et al. Movements and population structure of humpback whales in the North Pacific. Mar. Mammal Sci. 17, 769–794 (2001).Article 

    Google Scholar 
    Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. & Wobbe, F. Generic mapping tools: Improved version released. Eos Trans. Am. Geophys. Union 94, 409–410 (2013).Article 
    ADS 

    Google Scholar 
    Helweg, D. A. & Herman, L. M. Diurnal patterns of behaviour and group membership of humpback whales (Megaptera novaeangliae) wintering in Hawaiian waters. Ethology 98, 298–311 (1994).Article 

    Google Scholar 
    Darling, J. D. & Berube, M. Interactions of singing humpback whales with other males. Mar. Mammal Sci. 17, 570–584 (2001).Article 

    Google Scholar 
    Whitlow, W. L. et al. Acoustic properties of humpback whale songs. J. Acoust. Soc. Am. 120, 1103–1110 (2006).Article 

    Google Scholar 
    Japan Coast Guard. Sailing Directions for South and East Coasts of Honshu. (1981).Tsujii, K. et al. Change in singing behavior of humpback whales caused by shipping noise. PLoS ONE 13, e0204112. https://doi.org/10.1371/journal.pone.0204112 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryan, J. P. et al. Humpback whale song occurrence reflects ecosystem variability in feeding and migratory habitat of the northeast Pacific. PLoS ONE 14, e0222456. https://doi.org/10.1371/journal.pone.0222456 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. 4.0.0 version. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2020).Wood, S.N. Generalized Additive Models: An Introduction with R 2nd edn, (Chapman and Hall/CRC, 2017). More

  • in

    In vitro study of the modulatory effects of heat-killed bacterial biomass on aquaculture bacterioplankton communities

    Ringø, E. et al. Probiotics, lactic acid bacteria and bacilli: Interesting supplementation for aquaculture. J. Appl. Microbiol. 129, 116–136 (2020).PubMed 

    Google Scholar 
    Borges, N. et al. Bacteriome structure, function, and probiotics in fish larviculture: The good, the bad, and the gaps. Annu. Rev. Anim. Biosci. 9, 423–452 (2021).CAS 
    PubMed 

    Google Scholar 
    Aguilar-Toalá, J. E. et al. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 75, 105–114 (2018).
    Google Scholar 
    Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Dash, G. et al. Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish Shellf. Immunol. 43, 167–174 (2015).CAS 

    Google Scholar 
    Dawood, M. A. O., Koshio, S., Ishikawa, M. & Yokoyama, S. Effects of partial substitution of fish meal by soybean meal with or without heat-killed Lactobacillus plantarum (LP20) on growth performance, digestibility, and immune response of Amberjack, Seriola dumerili Juveniles. Biomed. Res. Int. 2015, 514196 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Dawood, M. A. O., Koshio, S., Ishikawa, M. & Yokoyama, S. Immune responses and stress resistance in red sea bream, Pagrus major, after oral administration of heat-killed Lactobacillus plantarum and vitamin C. Fish Shellf. Immunol. 54, 266–275 (2016).CAS 

    Google Scholar 
    Dawood, M. A. O., Koshio, S., Ishikawa, M. & Yokoyama, S. Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish Shellf. Immunol. 45, 33–42 (2015).CAS 

    Google Scholar 
    Tung, H. T. et al. Effects of heat-killed Lactobacillus plantarum supplemental diets on growth performance, stress resistance and immune response of juvenile Kuruma shrimp Marsupenaeus japonicus bate. Aquac. Sci. 57, 175–184 (2009).CAS 

    Google Scholar 
    Van Nguyen, N. et al. Evaluation of dietary heat-killed Lactobacillus plantarum strain L-137 supplementation on growth performance, immunity and stress resistance of Nile tilapia (Oreochromis niloticus). Aquaculture 498, 371–379 (2019).
    Google Scholar 
    Yang, H. et al. Effects of dietary heat-killed Lactobacillus plantarum L-137 (HK L-137) on the growth performance, digestive enzymes and selected non-specific immune responses in sea cucumber, Apostichopus japonicus Selenka. Aquac. Res. 47, 2814–2824 (2016).CAS 

    Google Scholar 
    Singh, S. T., Kamilya, D., Kheti, B., Bordoloi, B. & Parhi, J. Paraprobiotic preparation from Bacillus amyloliquefaciens FPTB16 modulates immune response and immune relevant gene expression in Catla catla (Hamilton, 1822). Fish Shelf. Immunol. 66, 35–42 (2017).CAS 

    Google Scholar 
    Kamilya, D., Baruah, A., Sangma, T., Chowdhury, S. & Pal, P. Inactivated probiotic bacteria stimulate cellular immune responses of catla, Catla catla (Hamilton) in vitro. Probiot. Antimicrob. Proteins 7, 101–106 (2015).CAS 

    Google Scholar 
    Wang, J. et al. Supplementation of heat-inactivated Bacillus clausii DE 5 in diets for grouper, Epinephelus coioides, improves feed utilization, intestinal and systemic immune responses and not growth performance. Aquac. Nutr. 24, 821–831 (2018).CAS 

    Google Scholar 
    Giri, S. S. et al. Effects of dietary heat-killed Pseudomonas aeruginosa strain VSG2 on immune functions, antioxidant efficacy, and disease resistance in Cyprinus carpio. Aquaculture 514, 734489 (2020).CAS 

    Google Scholar 
    Shabanzadeh, S. et al. Growth performance, intestinal histology, and biochemical parameters of rainbow trout (Oncorhynchus mykiss) in response to dietary inclusion of heat-killed Gordonia bronchialis. Fish Physiol. Biochem. 42, 65–71 (2016).CAS 
    PubMed 

    Google Scholar 
    Wu, X. et al. Use of a paraprobiotic and postbiotic feed supplement (HWF™) improves the growth performance, composition and function of gut microbiota in hybrid sturgeon (Acipenser baerii × Acipenser schrenckii). Fish Shelf. Immunol. 104, 36–45 (2020).CAS 

    Google Scholar 
    Mora-Sánchez, B., Balcázar, J. L. & Pérez-Sánchez, T. Effect of a novel postbiotic containing lactic acid bacteria on the intestinal microbiota and disease resistance of rainbow trout (Oncorhynchus mykiss). Biotechnol. Lett. 42, 1957–1962 (2020).PubMed 

    Google Scholar 
    Xiong, J. et al. The temporal scaling of bacterioplankton composition: High turnover and predictability during shrimp cultivation. Microb. Ecol. 67, 256–264 (2014).PubMed 

    Google Scholar 
    Martins, P. et al. Seasonal patterns of bacterioplankton composition in a semi-intensive European seabass (Dicentrarchus labrax) aquaculture system. Aquaculture 490, 240–250 (2018).
    Google Scholar 
    Offret, C. et al. Protective efficacy of a Pseudoalteromonas strain in European abalone, Haliotis tuberculata, infected with Vibrio harveyi ORM4. Probiot. Antimicrob. Proteins 11, 239–247 (2019).
    Google Scholar 
    Richards, G. P. et al. Mechanisms for Pseudoalteromonas piscicida-induced killing of vibrios and other bacterial pathogens. Appl. Environ. Microbiol. 83, e00175-e217 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, S.-R., Chen, Y.-H., Tseng, F.-J. & Weng, C.-F. The production and bioactivity of prodigiosin: Quo vadis?. Drug Discov. Today 25, 828–836 (2020).CAS 
    PubMed 

    Google Scholar 
    Vynne, N. G., Månsson, M., Nielsen, K. F. & Gram, L. Bioactivity, chemical profiling, and 16S rRNA-based phylogeny of Pseudoalteromonas strains collected on a global research cruise. Mar. Biotechnol. 13, 1062–1073 (2011).CAS 

    Google Scholar 
    Lovejoy, C., Bowman, J. P. & Hallegraeff, G. M. Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl. Environ. Microbiol. 64, 2806–2813 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Franks, A. et al. Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization. Appl. Environ. Microbiol. 72, 6079–6087 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hjelm, M. et al. Selection and identification of autochthonous potential probiotic bacteria from turbot larvae (Scophthalmus maximus) rearing units. Syst. Appl. Microbiol. 27, 360–371 (2004).PubMed 

    Google Scholar 
    Sorieul, L. et al. Survival improvement conferred by the Pseudoalteromonas sp. NC201 probiotic in Litopenaeus stylirostris exposed to Vibrio nigripulchritudo infection and salinity stress. Aquaculture 495, 888–898 (2018).
    Google Scholar 
    Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, D501–D504 (2005).CAS 
    PubMed 

    Google Scholar 
    Yan, Y.-Y., Xia, H.-Q., Yang, H.-L., Hoseinifar, S. H. & Sun, Y.-Z. Effects of dietary live or heat-inactivated autochthonous Bacillus pumilus SE5 on growth performance, immune responses and immune gene expression in grouper Epinephelus coioides. Aquac. Nutr. 22, 698–707 (2016).CAS 

    Google Scholar 
    Louvado, A. et al. Humic substances modulate fish bacterial communities in a marine recirculating aquaculture system. Aquaculture 544, 737121 (2021).CAS 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 1, 5 (2019).
    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. 2019. (2020).R. Core Team. R: A Language and Environment for Statistical Computing (Version 2120) (R Foundation for Statistical Computing, 2012).
    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wemheuer, F. et al. Tax4Fun2: Prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ. Microbiome 15, 11 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Setiyono, E. et al. An Indonesian marine bacterium, Pseudoalteromonas rubra, produces antimicrobial prodiginine pigments. ACS Omega 5, 4626–4635 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).CAS 
    PubMed 

    Google Scholar 
    Bakenhus, I. et al. Composition of total and cell-proliferating bacterioplankton community in early summer in the North Sea—roseobacters are the most active component. Front. Microbiol. 8, 1771 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Sieber, C. M. K. et al. Unusual metabolism and hypervariation in the genome of a gracilibacterium (BD1-5) from an oil-degrading community. MBio 10, e02128-e2219 (2022).
    Google Scholar 
    Jaffe, A. L., Castelle, C. J., Matheus Carnevali, P. B., Gribaldo, S. & Banfield, J. F. The rise of diversity in metabolic platforms across the Candidate Phyla Radiation. BMC Biol. 18, 69 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, H. N. & Piñeiro, S. Ecology of the predatory Bdellovibrio and like organisms. In Predatory Prokaryotes 213–248 (Springer, 2006).
    Google Scholar 
    Johnke, J. et al. Multiple micro-predators controlling bacterial communities in the environment. Curr. Opin. Biotechnol. 27, 185–190 (2014).CAS 
    PubMed 

    Google Scholar 
    Rice, T. D., Williams, H. N. & Turng, B.-F. Susceptibility of bacteria in estuarine environments to autochthonous bdellovibrios. Microb. Ecol. 35, 256–264 (1998).CAS 
    PubMed 

    Google Scholar 
    Feng, S. et al. Predation by Bdellovibrio bacteriovorus significantly reduces viability and alters the microbial community composition of activated sludge flocs and granules. FEMS Microbiol. Ecol. 93, fix020 (2017).
    Google Scholar 
    Duarte, L. N. et al. Bacterial and microeukaryotic plankton communities in a semi-intensive aquaculture system of sea bass (Dicentrarchus labrax): A seasonal survey. Aquaculture 503, 59–69 (2019).
    Google Scholar 
    Hu, L. et al. Reclassification of the taxonomic framework of orders cellvibrionales, oceanospirillales, pseudomonadales, and alteromonadales in class gammaproteobacteria through phylogenomic tree analysis. mSystems 5, e00543-e620 (2021).
    Google Scholar 
    Garrity, G. M., Bell, J. A. & Lilburn, T. Oceanospirillalesord. Nov. in Bergey’s Manual® of Systematic Bacteriology 270–323 (Springer, 2005).
    Google Scholar 
    Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M. & Michel, G. Environmental and gut bacteroidetes: The food connection. Front. Microbiol. 2, 93 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Rajilić-Stojanović, M. & De Vos, W. M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38, 996–1047 (2014).PubMed 

    Google Scholar 
    Rosenberg, E. The family Chitinophagaceae. In The Prokaryotes: Other Major Lineages of Bacteria and The Archaea (eds Rosenberg, E. et al.) (Springer, 2014).
    Google Scholar 
    Beckmann, A., Hüttel, S., Schmitt, V., Müller, R. & Stadler, M. Optimization of the biotechnological production of a novel class of anti-MRSA antibiotics from Chitinophaga sancti. Microb. Cell Fact. 16, 1–10 (2017).
    Google Scholar 
    Loudon, A. H. et al. Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front. Microbiol. 5, 441 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Taylor, J. D. & Cunliffe, M. Coastal bacterioplankton community response to diatom-derived polysaccharide microgels. Environ. Microbiol. Rep. 9, 151–157 (2017).CAS 
    PubMed 

    Google Scholar 
    González, J. M. & Whitman, W. B. Oceanospirillum and related genera. In The Prokaryotes: A Handbook on the Biology of Bacteria Volume 6: Proteobacteria: Gamma Subclass (eds Dworkin, M. et al.) 887–915 (Springer, 2006).
    Google Scholar 
    Kleindienst, S., Paul, J. H. & Joye, S. B. Using dispersants after oil spills: Impacts on the composition and activity of microbial communities. Nat. Rev. Microbiol. 13, 388–396 (2015).CAS 
    PubMed 

    Google Scholar 
    Williams, T. J. et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ. Microbiol. 15, 1302–1317 (2013).CAS 
    PubMed 

    Google Scholar 
    Gobet, A. et al. Evolutionary evidence of algal polysaccharide degradation acquisition by Pseudoalteromonas carrageenovora 9T to adapt to macroalgal niches. Front. Microbiol. 10, 2740 (2018).
    Google Scholar 
    Beier, S., Rivers, A. R., Moran, M. A. & Obernosterer, I. The transcriptional response of prokaryotes to phytoplankton-derived dissolved organic matter in seawater. Environ. Microbiol. 17, 3466–3480 (2015).CAS 
    PubMed 

    Google Scholar 
    Müller, O., Seuthe, L., Bratbak, G. & Paulsen, M. L. Bacterial response to permafrost derived organic matter input in an Arctic fjord. Front. Mar. Sci. 5, 263 (2018).
    Google Scholar 
    Fernández-Álvarez, C. & Santos, Y. Identification and typing of fish pathogenic species of the genus Tenacibaculum. Appl. Microbiol. Biotechnol. 102, 9973–9989 (2018).PubMed 

    Google Scholar 
    Wirth, J. S. & Whitman, W. B. Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal. Int. J. Syst. Evol. Microbiol. 68, 2393–2411 (2018).CAS 
    PubMed 

    Google Scholar 
    Luo, H. & Moran, M. A. Evolutionary ecology of the marine Roseobacter clade. Microbiol. Mol. Biol. Rev. 78, 573–587 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Shahina, M. et al. Luteibaculum oceani gen. nov., sp. Nov., a carotenoid-producing, lipolytic bacterium isolated from surface seawater, and emended description of the genus Owenweeksia Lau et al. 2005. Int. J. Syst. Evol. Microbiol. 63, 4765–4770 (2013).CAS 
    PubMed 

    Google Scholar 
    Davidov, Y. & Jurkevitch, E. Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax–Peredibacter clade as Bacteriovoracaceae fam. nov. Int. J. Syst. Evol. Microbiol. 54, 1439–1452 (2004).CAS 
    PubMed 

    Google Scholar 
    Müller, F. D., Beck, S., Strauch, E. & Linscheid, M. W. Bacterial predators possess unique membrane lipid structures. Lipids 46, 1129–1140 (2011).PubMed 

    Google Scholar 
    Kandel, P. P., Pasternak, Z., van Rijn, J., Nahum, O. & Jurkevitch, E. Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol. Ecol. 89, 149–161 (2014).CAS 
    PubMed 

    Google Scholar 
    Cao, H., Wang, H., Yu, J., An, J. & Chen, J. Encapsulated bdellovibrio powder as a potential bio-disinfectant against whiteleg shrimp-pathogenic vibrios. Microorganisms 7, 25 (2019).
    Google Scholar 
    Jafarian, N., Sepahi, A. A., Naghavi, N. S., Hosseini, F. & Nowroozi, J. Using autochthonous Bdellovibrio as a predatory bacterium for reduction of Gram-negative pathogenic bacteria in urban wastewater and reuse it. Iran. J. Microbiol. 12, 556–564 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Cosgrove, L., McGeechan, P. L., Handley, P. S. & Robson, G. D. Effect of biostimulation and bioaugmentation on degradation of polyurethane buried in soil. Appl. Environ. Microbiol. 76, 810–819 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cruz, A. et al. Microbial remediation of organometals and oil hydrocarbons in the marine environment. In Marine Pollution and Microbial Remediation 41–66 (Springer, 2017).
    Google Scholar 
    Zhao, J., Chen, M., Quan, C. S. & Fan, S. D. Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens. J. Fish Dis. 38, 771–786 (2015).CAS 
    PubMed 

    Google Scholar 
    Tyc, O., Song, C., Dickschat, J. S., Vos, M. & Garbeva, P. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 25, 280–292 (2017).CAS 
    PubMed 

    Google Scholar  More

  • in

    Climate change alters impacts of extreme climate events on a tropical perennial tree crop

    Using a robust recent dataset, our analyses show that cocoa production is significantly affected by the maximum magnitude of ENSO phase during the current and previous purchase years (Fig. 2). The instantaneous effect is negative, followed by delayed positive effects in the two following years and negative in the third following year, combining to give a picture of multi-year fluctuations in cocoa production as a result of El Niño/La Niña events. Using a 70-year dataset, we show significant changes in these instantaneous and delayed ENSO-production relationships between recent and past time periods (Fig. 3). Using ERA5 data for the cocoa production area of Ghana, summarised at the same temporal resolution as the production data, we demonstrate significant relationships between ENSO phase and climate, with significant changes in mean climate and in ENSO-climate relationships (Fig. 4) between recent and past time periods. This agrees with prior work suggesting that ENSO may impact West Africa5,15, despite no current evidence of teleconnections between ENSO phase and West African climate17.Our 70-year production dataset represents a temporal extent unmatched by other research, however was aggregated to fewer replicates than the 21-year analysis (6 regions vs 68 districts). While this may represent reduced power, results from the overlapping time period of the two datasets strongly agree. The computation of yield, a more comparable metric between different-sized areas than total production, was not possible because data on area under production (AUP) were not available. However, the detrending process employed successfully eliminated variation between districts or regions (of which AUP is likely a substantial component) and long-term technological trends that would otherwise confound our ability to isolate the ENSO signal (Supplementary results).Perennial crops have multi-year growing patterns, with allocation of resources to growth, development and reproduction driven by climate in ways that are not fully understood29. ENSO generally peaks between October and December, also the busiest cocoa purchase period: thus we observe a relatively instantaneous apparent effect of ENSO phase on cocoa production. This reduction in cocoa production under El Niño inis consistent with results from farm monitoring8 and large-scale farm surveys30 evidencing production declines in from other regions (where teleconnections are understood), and with analyses of production data from West Africa31. During the main cocoa purchase period, coinciding with the minor wet and major dry seasons, we observe increases in water deficit during El Niño, leading to drought stress conditions. In small-scale cocoa studies, drought stress is correlated with reduction in pod production and increased tree mortality8,32, and in similar studies of other tree crops drought is directly linked to reduction in fruit or nut production33, although in all cases the mechanisms are unclear. Drought may generally create unfavourable conditions for growth and reproduction through reduced availability of water for vital processes, or more specifically by promoting disease incidence and pod rot8, increasing the chance of fire, increasing competition for soil moisture32, and/or reducing pollinator populations34. Alternatively, cocoa may respond to reduced water availability by reallocation of resources away from energetically expensive reproduction: rainfall exclusion experiments suggest that in the medium term, while bean production drops, vegetative growth is not significantly reduced during drought32.The significant increases in mean temperature and average drought stress we observed in some seasons over time is such that the climate experienced during El Niño events in recent decades represent novel extreme conditions for Ghana’s cocoa agriculture. This causes significant changes in the responses of cocoa production to ENSO phase over the same time period. One explanation for this may be that the warm, dry El Niño conditions in Ghana in the past were within the environmental tolerance of cocoa, leading to allocation of resources to reproduction in response to drought, increasing cocoa bean production and resulting in less severe instantaneous and delayed responses to ENSO phase (Fig. 3a–d) However, in recent decades this level or greater drought stress has become the norm (Fig. 4i–l), with El Niño conditions apparently triggering a different response mode, allocating resources away from reproduction in the short term and creating oscillating resource allocation over the following years.However, understanding the delayed responses of cocoa is challenging, especially as these represent a novel finding. There is little research that explores multi-annual physiological or ecological responses of cocoa to drought, and the explanation is likely to be a combination of both residual/delayed climatic responses to ENSO phase, and of life history strategies. The observed increase in production during the two years following El Niño may be explained by post-drought reallocation of resources to reproduction as remediation for lost reproductive output in the instantaneous response, or a shift to a ‘faster’ strategy by allocating resources to reproduction over the longer term, becoming evident in the data in subsequent years. Alternatively, this may be explained by favourable climatic conditions occurring during an El Niño event that impact the following years’ crop. March and April is a crucial time for cocoa pod development in Ghana and in recent years El Niño appears to bring greater rainfall during these months. Given the 6–9 months development of cocoa beans, the effects of this increased rainfall and reduced water deficit on cocoa production will be seen in the delayed response. We see evidence of this in the climate-change driven reversal of March–April rainfall patterns: while in the past El Niño has consistently resulted in drought stress, this reversal provides a respite from drought, buffering trees from reduced rainfall during the major wet season and giving sufficient resources for improved production in the following year.The robustness of our results provide evidence that may aid development of resilience strategies for ENSO-driven cocoa production variation in Ghana, but we may also consider whether these results can be generalised to the production of cocoa and/or perennial tree crops globally. The climatic impact of ENSO observed in Ghana is broadly consistent with many regions of the tropics2, the instantaneous cocoa production responses to El Niño are consistent with findings in these regions, and so we may expect these regions to see a similar pattern of multi-annual cocoa production variation in response to ENSO phase. However, there is considerable variation in ENSO responses among and within other perennial tree crops in regions where climatic responses to ENSO are similar to Ghana. Oil palm yields have been negatively associated with ENSO phase in Malaysia9, as have olive yields in Morocco (delayed by a year)33. Conversely, apple yields have been positively associated with ENSO phase in China10, as have coffee yields in Brazil35; however, no effect at all is seen in coffee in India over a 35-year time series7. Most of these analyses considered only a single ENSO phase (usually El Niño), and most considered only instantaneous impacts. However, it is clear that most of these crops do respond to ENSO, and given the shared biology it is reasonable to assume that delayed effects of ENSO phase are likely and should be considered to understand the full picture of ENSO impacts on perennial tree crops.The larger body of research into ENSO impacts on annual crops includes many studies using long time series, reporting high heterogeneity in space and among crops11,36,37. However, there appears to be little examination of changes in the direction and magnitude of ENSO responses over time; thus our findings are timely and signal that further research is needed to examine how changing climates may force novel extreme climatic conditions and shift response patterns to ENSO phase. Given that perennial tree crops are generally cash crops, and the utility of these crops to farmers are to a greater or lesser extent mediated by market forces, there is a need for improved forecasting of yield in response to changing climate and ENSO patterns to withstand production fluctuations. The low perishability of many perennial tree crops means that with accurate forecasting, supply may be managed or even exploited to ensure consistency of income both for farmers and those whose livelihoods depend on related food manufacturing industries.Our approach to understanding the responses of a perennial tree crop to ENSO phase and anthropogenic climate change exploited existing global, national and subnational datasets for climate and production with appropriate spatial and temporal resolution. We use freely available geographic and climate data, and employ highly replicable methods: a simple pipeline of climate data aggregation and summary computation, coupled with standard detrending and straightforward analytical methods with a relatively small computational requirement. This “big data” approach to agriculture-climate research demonstrates a relatively straightforward framework for understanding responses of agricultural productivity to climate and identifying temporal changes in these relationships. While small-scale studies examine the mechanisms of climate impacts through the interacting effects of agricultural practices, abiotic conditions, disease incidence and multi-trophic interactions, large-scale studies across regions and over time scales encompassing many ENSO oscillations are required to understand the global picture of perennial tree crop production security. Combined with local context-specific studies on governance arrangements16, such approaches could be crucial for reducing future vulnerability of these industries to increasing volatility under anthropogenic climate change. The main barrier to this research is the availability of production data from state or commercial entities. More

  • in

    Manatee calf call contour and acoustic structure varies by species and body size

    Podos, J. Correlated evolution of morphology and vocal signal structure in Darwin’s finches. Nature 409, 185–188 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bradbury, J. W. & Vehrencamp, S. Principles of Animal Communication (Sinauer Associated, 1998).
    Google Scholar 
    Podos, J. & Warren, P. S. The evolution of geographic variation in birdsong. Adv. Study Behav. 37, 403–458 (2007).
    Google Scholar 
    Charlton, B. D., Owen, M. A. & Swaisgood, R. R. Coevolution of vocal signal characteristics and hearing sensitivity in forest mammals. Nat. Commun. 10, 1–7 (2019).CAS 

    Google Scholar 
    Soltis, J. Vocal communication in African elephants (Loxodonta africana). Zoo Biol. 29, 192–209 (2010).PubMed 

    Google Scholar 
    King, S. L. & Janik, V. M. Bottlenose dolphins can use learned vocal labels to address each other. Proc. Natl. Acad. Sci. 110, 13216–13221 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ravignani, A. et al. Ontogeny of vocal rhythms in harbor seal pups: An exploratory study. Curr. Zool. 65, 107–120 (2019).PubMed 

    Google Scholar 
    Rauber, R. & Manser, M. B. Effect of group size and experience on the ontogeny of sentinel calling behaviour in meerkats. Anim. Behav. 171, 129–138 (2021).
    Google Scholar 
    Janik, V. M. & Slater, P. J. Vocal learning in mammals. Adv. Study Behav. 26, 59–100 (1997).
    Google Scholar 
    Fitch, W. T. Production of vocalizations in mammals. In Encyclopedia of Language and Linguistics 2nd edn, Vol. 1 115–121 (Elsevier, 2006).
    Google Scholar 
    Fletcher, N. H. A frequency scaling rule in mammalian vocalization. In Handbook of Behavioral Neuroscience Vol. 19 51–56 (Elsevier, 2010).
    Google Scholar 
    Fant, G. Acoustic Theory of Speech Production (Mouton, 1960).
    Google Scholar 
    Taylor, A. & Reby, D. The contribution of source–filter theory to mammal vocal communication research. J. Zool. 280, 221–236 (2010).
    Google Scholar 
    Fitch, W. T., Neubauer, J. & Herzel, H. Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Anim. Behav. 63, 407–418 (2002).
    Google Scholar 
    Domning, D. P. & Hayek, L. A. C. Interspecific and intraspecific morphological variation in manatees (Sirenia: Trichechus). Mar. Mamm. Sci. 2, 87–144 (1986).
    Google Scholar 
    Anderson, P. K. & Barclay, R. M. R. Acoustic signals of solitary Dugongs: Physical characteristics and behavioral correlates. J. Mamm. 76, 1226–1237 (1995).
    Google Scholar 
    Sousa-Lima, R., Paglia, A. P. & Da Fonseca, G. Signature information and individual recognition in the isolation calls of Amazonian manatees, Trichechus inunguis (Mammalia: Sirenia). Anim. Behav. 63, 301–310 (2002).
    Google Scholar 
    Sousa-Lima, R. S., Paglia, A. P. & Fonseca, G. A. B. Gender, age, and identity in the isolation calls of Antillean manatees (Trichechus manatus manatus). Aquat. Mamm. 34, 109–122 (2008).
    Google Scholar 
    O’Shea, T. J. & Poché, L. B. Aspects of underwater sound communication in Florida manatees (Trichechus manatus latirostris). J. Mamm. 87, 1061–1071 (2006).
    Google Scholar 
    Rosas, F. C. W. Biology, conservation and status of the Amazonian manatee Trichechus inunguis. Mamm. Rev. 24, 49–59 (1994).
    Google Scholar 
    Meirelles, A. C. O. & Carvalho, V. L. Peixe-boi marinho: biologia e conservação no Brasil. Aquasis, Bambu Editora e Artes Gráficas, São Paulo (2016).Alvarez-Alemán, A., Beck, C. A. & Powell, J. A. First report of a Florida manatee (Trichechus manatus latirostris) in Cuba. Aquat. Mamm. 36, 148 (2010).
    Google Scholar 
    Castelblanco-Martínez, D. N. et al. First documentation of long-distance travel by a Florida manatee to the Mexican Caribbean. Ethol. Ecol. Evol. 1–12 (2021).Packard, J. M. & Wetterqvist, O. F. Evaluation of manatee habitat systems on the northwestern Florida coast. Coast. Manag. 14, 279–310 (1986).
    Google Scholar 
    Luna, F. D. O. et al. Genetic connectivity of the West Indian manatee in the southern range and limited evidence of hybridization with Amazonian manatees. Front. Mar. Sci. 7, 1089 (2021).
    Google Scholar 
    Hartman, D. Ecology and behavior of the manatee (Trichechus manatus) in Florida. Spec. Publ. Am. Soc. Mammal. 5, 153 (1979).
    Google Scholar 
    D’AffonsecaNeto, J. A. & Vergara-Parente, J. E. Sirenia (peixe-boi-da-Amazônia, Peixe-boi-marinho). In Tratado de Animais Selvagens: medicina veterinária (eds Cubas, Z. S. et al.) 701–714 (Roca, 2006).
    Google Scholar 
    Deutsch, C. J., Reid, J. P., Bonde, R. K., Easton, D. E., Kochman, H. I. & O’Shea, T. J. Seasonal movements, migratory behavior, and site fidelity of West Indian manatees along the Atlantic coast of the United States. Wildl. Monogr. 1–77 (2003).Laist, D. W. & Reynolds, J. E. III. Influence of power plants and other warm-water refuges on Florida manatees. Mar. Mamm. Sci. 21, 739–764 (2005).
    Google Scholar 
    Reynolds, J. E. Aspects of the social behaviour and herd structure of a semi-isolated colony of West Indian manatees, Trichechus manatus. Mammalia 45, 431–452 (1981).
    Google Scholar 
    Dantas, G. A. Ontogenia do padrão vocal individual do peixe-boi da Amazônia Trichechus inunguis (Sirenia, trichechidae). Dissertação (Instituto Nacional de Pesquisas da Amazônia, 2009).
    Google Scholar 
    Brady, B., Moore, J. & Love, K. Behavior related vocalizations of the Florida manatee (Trichechus manatus latirostris). Mar. Mamm. Sci. 1–15 (2021).Nowacek, D. P., Casper, B. M., Wells, R. S., Nowacek, S. M. & Mann, D. A. Intraspecific and geographic variation of West Indian manatee (Trichechus manatus spp.) vocalizations. J. Acoust. Soc. Am. 114, 66–69 (2003).ADS 
    PubMed 

    Google Scholar 
    Rycyk, A. M. et al. First characterization of vocalizations and passive acoustic monitoring of the vulnerable African manatee (Trichechus senegalensis). J. Acoust. Soc. Am. 150, 3028–3037 (2021).ADS 
    PubMed 

    Google Scholar 
    Landrau-Giovannetti, N., Mignucci-Giannoni, A. A. & Reidenberg, J. S. Acoustical and anatomical determination of sound production and transmission in West Indian (Trichechus manatus) and Amazonian (T. inunguis) manatees. Anat. Rec. 297, 1896–1907 (2014).
    Google Scholar 
    Morton, E. On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. Am. Nat. 111, 855–869 (1977).
    Google Scholar 
    Borges, J. C. et al. Growth pattern differences of captive born Antillean manatee (Trichechus manatus) calves and those rescued in the Brazilian northeastern coast. J. Zoo Wildl. Med. 43, 494–500 (2012).PubMed 

    Google Scholar 
    Lima, D. S., Vergara-Parente, J. E., Young, R. J. & Paszkiewicz, E. Training of Antillean manatee Trichechus manatus manatus Linnaeus, 1758 as a management technique for individual welfare. Lat. Am. J. Mar. Mamm. 4, 61–68 (2005).
    Google Scholar 
    K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab of Ornithology. Raven Pro: Interactive Sound Analysis Software (Version 1.5) [Computer software]. https://ravensoundsoftware.com/ (The Cornell Lab of Ornithology, 2022).Zollinger, S. A., Podos, J., Nemeth, E., Goller, F. & Brumm, H. On the relationship between, and measurement of, amplitude and frequency in birdsong. Anim. Behav. 84, e1–e9 (2012).
    Google Scholar 
    Sokal, R. R. & Rohlf, F. J. Biometry (W. H. Freeman and Co., 1995).MATH 

    Google Scholar 
    Charrier, I. & Harcourt, R. G. Individual vocal identity in mother and pup Australian sea lions (Neophoca cinerea). J. Mamm. 87, 929–938 (2006).
    Google Scholar 
    Green, S. & Salkind, N. J. Using SPSS for Windows and Macintosh: Analyzing and Understanding Data 4th edn. (Prentice Hall, 2003).
    Google Scholar 
    Charlton, B. D. et al. Cues to body size in the formant spacing of male koala (Phascolarctos cinereus) bellows: Honesty in an exaggerated trait. J. Exp. Biol. 214(20), 3414–3422 (2011).PubMed 

    Google Scholar 
    IBM Corp. Released 2020. IBM SPSS Statistics for Windows, Version 27.0.Best, R. C. The aquatic mammals and reptiles of the Amazon. In The Amazon 371–412 (Springer, 1984).
    Google Scholar 
    Gerhardt, H. C. The evolution of vocalization in frogs and toads. Annu. Rev. Ecol. Syst. 25, 293–324 (1994).
    Google Scholar 
    Mendoza, P. et al. Growth curve of Amazonian manatee (Trichechus inunguis) in captivity. Aquat. Mamm. 45 (2019).Schwarz, L. K. Methods and models to determine perinatal status of Florida manatee carcasses. Mar. Mamm. Sci. 24, 881–898 (2008).
    Google Scholar 
    Hauser, M. D., Chomsky, N. & Fitch, W. T. The faculty of language: What is it, who has it, and how did it evolve?. Science 298, 1569–1579 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Marler, P. & Peters, S. Developmental overproduction and selective attrition: New processes in the epigenesis of birdsong. Dev. Psychol. J. Int. Soc. Dev. Psychol. 15.4, 369–378 (1982).
    Google Scholar 
    Casey, C., Reichmuth, C., Costa, D. P. & Le Boeuf, B. The rise and fall of dialects in northern elephant seals. Proc. R. Soc. B 285, 2018–2176 (2018).
    Google Scholar 
    Hunter, M. E. et al. Puerto Rico and Florida manatees represent genetically distinct groups. Conserv. Genet. 13, 1623–1635 (2012).
    Google Scholar 
    Castelblanco-Martínez, D. N. et al. Analysis of body condition indices reveals different ecotypes of the Antillean manatee. Sci. Rep. 11, 1–14 (2021).
    Google Scholar 
    McCracken, K. G. & Sheldon, F. H. Avian vocalizations and phylogenetic signal. Proc. Natl. Acad. Sci. 94, 3833–3836 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moron, J. R. et al. Whistle variability of Guiana dolphins in South America: Latitudinal variation or acoustic adaptation? Mar. Mamm. Sci. 1–32 (2018)Luís, A. R. et al. Vocal universals and geographic variations in the acoustic repertoire of the common bottlenose dolphin. Sci. Rep. 11, 1–9 (2021).
    Google Scholar 
    Ey, E. & Fisher, J. The ‘Acoustic adaptations hypothesis’ a review of the evidence from birds, anurans and mammals. Bioacoustics 19, 21–48 (2009).
    Google Scholar 
    Miksis-Olds, J. L. & Tyack, P. L. Manatee (Trichechus manatus) vocalization usage in relation to environmental noise levels. J. Acoust. Soc. Am. 125, 1806–1815 (2009).ADS 
    PubMed 

    Google Scholar 
    Sun, W., Wang, Z., Jamalabdollahi, M. & Reza Zekavat, S. A. Experimental study on the difference between acoustic communication channels in freshwater rivers/lakes and in oceans. In 2014 48th Asilomar Conference on Signals, Systems and Computers, 333–337 (2004)Rivera Chavarría, M., Castro, J. & Camacho, A. The relationship between acoustic habitat, hearing and tonal vocalizations in the Antillean manatee (Trichechus manatus manatus, Linnaeus, 1758). Biol. Open 4, 1237–1242 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gaspard, J. C. III. et al. Audiogram and auditory critical ratios of two Florida manatees (Trichechus manatus latirostris). J. Exp. Biol. 215, 1442–1447 (2012).PubMed 

    Google Scholar 
    Gerstein, E. R., Gerstein, L., Forsythe, S. E. & Blue, J. E. The underwater audiogram of the West Indian manatee (Trichechus manatus). J. Acoust. Soc. Am. 105, 3575–3583 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Klishin, V., Pezo, R., Popov, V., Ya, A. & Supin. Some characteristics of hearing of the Brazilian manatee, Trichechus inunguis. Aquat. Mamm. 16 (1990).Johnson, M., de Soto, N. A. & Madsen, P. T. Studying the behaviour and sensory ecology of marine mammals using acoustic recording tags: A review. Mar. Ecol. Prog. Ser. 395, 55–73 (2009).ADS 

    Google Scholar  More