More stories

  • in

    High resolution ancient sedimentary DNA shows that alpine plant diversity is associated with human land use and climate change

    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Schwörer, C. et al. Holocene climate, fire and vegetation dynamics at the treeline in the Northwestern Swiss Alps. Veg. Hist. Archaeobot. 23, 479–496 (2014).Article 

    Google Scholar 
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Grabherr, G., Gottfried, M. & Pauli, H. Climate effects on mountain plants. Nature 369, 448 (1994).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bennett, K. D. & Willis, K. J. Pollen. Tracking Environmental Change Using Lake Sediments (eds Smol, J. P., Birks, H. J. B., Last, W. M., Bradley, R. S. & Alverson, K.) 5–32 (Kluwer Academic Publishers, 2002).Liu, S. et al. Sedimentary ancient DNA reveals a threat of warming-induced alpine habitat loss to Tibetan Plateau plant diversity. Nat. Commun. 12, 2995 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rijal, D. P. et al. Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern Fennoscandia. Sci. Adv. 7, eabf9557 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giguet-Covex, C. et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat. Commun. 5, 3211 (2014).Article 
    ADS 
    PubMed 

    Google Scholar 
    Väre, H., Lampinen, R., Humphries, C. & Williams, P. Taxonomic diversity of vascular plants in the European alpine areas. in Alpine biodiversity in Europe (eds Nagy, L., Grabherr, G., Körner, C. & Thompson, D. B. A.) 133–148 (Springer Berlin Heidelberg, 2003).Theurillat, J.-P. & Guisan, A. Potential impact of climate change on vegetation in the European alps: A Review. Climatic Change 50, 77–109 (2001).Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tribsch, A. & Schönswetter, P. Patterns of endemism and comparative phylogeography confirm palaeo-environmental evidence for Pleistocene refugia in the Eastern Alps. Taxon 52, 477–497 (2003).Article 

    Google Scholar 
    Rudmann-Maurer, K., Weyand, A., Fischer, M. & Stöcklin, J. The role of landuse and natural determinants for grassland vegetation composition in the Swiss Alps. Basic Appl. Ecol. 9, 494–503 (2008).Article 

    Google Scholar 
    Walsh, K. et al. A historical ecology of the Ecrins (Southern French Alps): Archaeology and palaeoecology of the Mesolithic to the Medieval period. Quat. Int. 353, 52–73 (2014).Article 

    Google Scholar 
    Walsh, K. & Giguet-Covex, C. Encyclopedia of the World’s Biomes 555–573 (Elsevier, 2020).Schwörer, C., Henne, P. D. & Tinner, W. A model-data comparison of Holocene timberline changes in the Swiss Alps reveals past and future drivers of mountain forest dynamics. Glob. Chang. Biol. 20, 1512–1526 (2014).Article 
    ADS 
    PubMed 

    Google Scholar 
    Henne, P. D. et al. An empirical perspective for understanding climate change impacts in Switzerland. Reg. Environ. Change 18, 1–17 (2017).
    Google Scholar 
    Niedrist, G., Tasser, E., Lüth, C., Dalla Via, J. & Tappeiner, U. Plant diversity declines with recent land use changes in European Alps. Plant Ecol. 202, 195–210 (2009).Article 

    Google Scholar 
    Lasanta-Martínez, T., Vicente-Serrano, S. M. & Cuadrat-Prats, J. M. Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: A study of the Spanish Central Pyrenees. Appl. Geogr. 25, 47–65 (2005).Article 

    Google Scholar 
    Nautiyal, S. & Kaechele, H. Adverse impacts of pasture abandonment in Himalayan protected areas: Testing the efficiency of a Natural Resource Management Plan (NRMP). Environ. Impact Assess. Rev. 27, 109–125 (2007).Article 

    Google Scholar 
    Karger, D. N., Nobis, M. P. & Normand, S. CHELSA-TraCE21k v1. 0. Downscaled transient temperature and precipitation data since the last glacial maximum. Climate of the Past (2021).Landolt, E. et al. Flora indicativa: Okologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).Heiri, O., Brooks, S. J., Birks, H. J. B. & Lotter, A. F. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat. Sci. Rev. 30, 3445–3456 (2011).Article 
    ADS 

    Google Scholar 
    Heiri, O., Ilyashuk, B., Millet, L., Samartin, S. & Lotter, A. F. Stacking of discontinuous regional palaeoclimate records: Chironomid-based summer temperatures from the Alpine region. Holocene 25, 137–149 (2015).Article 
    ADS 

    Google Scholar 
    Ivy-Ochs, S. et al. Latest Pleistocene and Holocene glacier variations in the European Alps. Quat. Sci. Rev. 28, 2137–2149 (2009).Article 
    ADS 

    Google Scholar 
    Finsinger, W. & Tinner, W. Pollen and plant macrofossils at Lac de Fully (2135 m a.s.l.): Holocene forest dynamics on a highland plateau in the Valais, Switzerland. Holocene 17, 1119–1127 (2007).Article 
    ADS 

    Google Scholar 
    Baroni, C. et al. Last Lateglacial glacier advance in the Gran Paradiso Group reveals relatively drier climatic conditions established in the Western Alps since at least the Younger Dryas. Quat. Sci. Rev. 255, 106815 (2021).Article 

    Google Scholar 
    Schibler, J., Elsner, J. & Schlumbaum, A. Incorporation of aurochs into a cattle herd in Neolithic Europe: Single event or breeding? Sci. Rep. 4, 5798 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schimmelpfennig, I. et al. A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating. Earth Planet. Sci. Lett. 393, 220–230 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ilyashuk, E. A., Heiri, O., Ilyashuk, B. P., Koinig, K. A. & Psenner, R. The Little Ice Age signature in a 700-year high-resolution chironomid record of summer temperatures in the Central Eastern Alps. Clim. Dyn. 52, 1–15 (2018).
    Google Scholar 
    Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Alsos, I. G. et al. Ancient sedimentary DNA shows rapid post-glacial colonisation of Iceland followed by relatively stable vegetation until the Norse settlement (Landnám) AD 870. Quat. Sci. Rev. 259, 106903 (2021).Article 

    Google Scholar 
    Pansu, J. et al. Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA. Mol. Ecol. 24, 1485–1498 (2015).Article 
    PubMed 

    Google Scholar 
    Varotto, C. et al. A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy). Sci. Rep. 11, 1208 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parducci, L. et al. Proxy comparison in ancient peat sediments: Pollen, macrofossil and plant DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130382 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clarke, C. L. et al. A 24,000-year ancient DNA and pollen record from the Polar Urals reveals temporal dynamics of arctic and boreal plant communities. Quat. Sci. Rev. 247, 106564 (2020).Article 

    Google Scholar 
    Niemeyer, B., Epp, L. S., Stoof-Leichsenring, K. R., Pestryakova, L. A. & Herzschuh, U. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Mol. Ecol. Resour. 17, e46–e62 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wilson, J. B., Peet, R. K., Dengler, J. & Pärtel, M. Plant species richness: the world records. J. Veg. Sci. 23, 796–802 (2012).Article 

    Google Scholar 
    Wick, L., van Leeuwen, J. F. N., van der Knaap, W. O. & Lotter, A. F. Holocene vegetation development in the catchment of Sägistalsee (1935 m asl), a small lake in the Swiss Alps. J. Paleolimnol. 30, 261–272 (2003).Article 
    ADS 

    Google Scholar 
    Lotter, A. F. et al. Holocene timber-line dynamics at Bachalpsee, a lake at 2265 m a.s.l. in the northern Swiss Alps. Veg. Hist. Archaeobot. 15, 295–307 (2006).Article 

    Google Scholar 
    Thöle, L. et al. Reconstruction of Holocene vegetation dynamics at Lac de Bretaye, a high-mountain lake in the Swiss Alps. Holocene 26, 380–396 (2016).Article 
    ADS 

    Google Scholar 
    Heiri, O., Lotter, A. F., Hausmann, S. & Kienast, F. A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 13, 477–484 (2003).Article 
    ADS 

    Google Scholar 
    Garcés-Pastor, S., Cañellas-Boltà, N., Clavaguera, A., Calero, M. A. & Vegas-Vilarrúbia, T. Vegetation shifts, human impact and peat bog development in Bassa Nera pond (Central Pyrenees) during the last millennium. Holocene 27, 553–565 (2017).Article 
    ADS 

    Google Scholar 
    Aeschimann, D., Lauber, K., Moser, D. M. & Theurillat, J. P. Flora Alpina: Atlas des 4500 Plantes Vasculaires des Alpes (Belin, 2004).Sønstebø, J. H. et al. Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate. Mol. Ecol. Resour. 10, 1009–1018 (2010).Article 
    PubMed 

    Google Scholar 
    Diekmann, M. Species indicator values as an important tool in applied plant ecology—a review. Basic Appl. Ecol. 4, 493–506 (2003).Article 

    Google Scholar 
    Giesecke, T. et al. Postglacial change of the floristic diversity gradient in Europe. Nat. Commun. 10, 5422 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Colombaroli, D. & Tinner, W. Determining the long-term changes in biodiversity and provisioning services along a transect from Central Europe to the Mediterranean. Holocene 23, 1625–1634 (2013).Article 
    ADS 

    Google Scholar 
    Schwörer, C., Colombaroli, D., Kaltenrieder, P., Rey, F. & Tinner, W. Early human impact (5000–3000 BC) affects mountain forest dynamics in the Alps. J. Ecol. 103, 281–295 (2015).Article 

    Google Scholar 
    Furtwängler, A. et al. Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland. Nat. Commun. 11, 1915 (2020).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilck, F. & Poschlod, P. The origin of alpine farming: A review of archaeological, linguistic and archaeobotanical studies in the Alps. Holocene 29, 1503–1511 (2019).Article 
    ADS 

    Google Scholar 
    Tinner, W., Nielsen, E. H. & Lotter, A. F. Mesolithic agriculture in Switzerland? A critical review of the evidence. Quat. Sci. Rev. 26, 1416–1431 (2007).Article 
    ADS 

    Google Scholar 
    Berthel, N., Schwörer, C. & Tinner, W. Impact of Holocene climate changes on alpine and treeline vegetation at Sanetsch Pass, Bernese Alps, Switzerland. Rev. Palaeobot. Palynol. 174, 91–100 (2012).Article 

    Google Scholar 
    Hafner, A. & Schwörer, C. Vertical mobility around the high-alpine Schnidejoch Pass. Indications of Neolithic and Bronze Age pastoralism in the Swiss Alps from paleoecological and archaeological sources. Quat. Int. https://doi.org/10.1016/j.quaint.2016.12.049 (2017).Oveisi, M. et al. Potential for endozoochorous seed dispersal by sheep and goats: Risk of weed seed transport via animal faeces. Weed Res. 61, 1–12 (2021).Article 

    Google Scholar 
    Bardgett, R. D. & Wardle, D. A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84, 2258–2268 (2003).Article 

    Google Scholar 
    Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).Article 

    Google Scholar 
    Giguet-Covex, C. et al. New insights on lake sediment DNA from the catchment: Importance of taphonomic and analytical issues on the record quality. Sci. Rep. 9, 14676 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andres, B. Alpine settlement remains in the Bernese Alps (Switzerland) in medieval and modern times. Historical Archaeologies of Transhumance across Europe (eds Costello, E. & Svensson, E.) 155–169 (Routledge, 2018).eTopoi. Journal for Ancient Studies. 3, 279–283 (2012).Grime, J. P. Competitive exclusion in herbaceous vegetation. Nature 242, 344–347 (1973).Article 
    ADS 

    Google Scholar 
    Yuan, Z. Y., Jiao, F., Li, Y. H. & Kallenbach, R. L. Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep. 6, 22132 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spiegelberger, T., Matthies, D., Müller-Schärer, H. & Schaffner, U. Scale-dependent effects of land use on plant species richness of mountain grassland in the European Alps. Ecography 29, 541–548 (2006).Article 

    Google Scholar 
    Maurer, K., Weyand, A., Fischer, M. & Stöcklin, J. Old cultural traditions, in addition to land use and topography, are shaping plant diversity of grasslands in the Alps. Biol. Conserv. 130, 438–446 (2006).Article 

    Google Scholar 
    Kampmann, D. et al. Mountain grassland biodiversity: Impact of site conditions versus management type. J. Nat. Conserv. 16, 12–25 (2008).Article 

    Google Scholar 
    Pellegrini, E., Buccheri, M., Martini, F. & Boscutti, F. Agricultural land use curbs exotic invasion but sustains native plant diversity at intermediate levels. Sci. Rep. 11, 8385 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. H. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780–788 (2006).Article 
    PubMed 

    Google Scholar 
    Speed, J. D. M., Austrheim, G., Hester, A. J. & Mysterud, A. Elevational advance of alpine plant communities is buffered by herbivory. J. Veg. Sci. 23, 617–625 (2012).Article 

    Google Scholar 
    Filazzola, A. et al. The effects of livestock grazing on biodiversity are multi-trophic: A meta-analysis. Ecol. Lett. 23, 1298–1309 (2020).Article 
    PubMed 

    Google Scholar 
    Evans, D. M. et al. The cascading impacts of livestock grazing in upland ecosystems: A 10-year experiment. Ecosphere 6, art42 (2015).Article 

    Google Scholar 
    Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mathieu, J. Eine Agrargeschichte der inneren Alpen. Graubünden, Tessin, Wallis 1500–1800 (Chronos, 1992).Aerni, K, Egli, H. R & Fehn, K. Siedlungsprozesse an der Höhengrenze der Ökumene: am Beispiel der Alpen: Referate der 16 Tagung des” Arbeitskreises für genetische Siedlungsforschung in Mitteleuropa” vom 20.−23. (Siedlungsforschung: Spiez, 1991).Brugger, S. O. et al. Alpine glacier reveals ecosystem impacts of Europe’s prosperity and peril over the last millennium. Geophys. Res. Lett. 48, e2021GL095039 (2021).Merkt, J. & Streif, H. Stechrohr-Bohrgeräte für limnische und marine Lockersedimente. Geologisches Jahrbuch 88, 137–148 (1970).Lamb, A. L. Determination of organic and carbonate content in soils and sediments by loss on ignition (LOI), NERC Isotope Geosciences Laboratory Report, 197 (2004).Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon https://doi.org/10.1017/RDC.2020.41 (2020).Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Brooks, S. J., Langdon, P. G. & Heiri, O. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. Quat. Res. Assoc. i-vi, 1-276 (2007).Schulze, E. A Key to the Larval Chironomidae and their Instars from Austrian Danube Region Streams and Rivers with Particular Reference to a Numerical Taxonomic Approach. Part I. In: Wasser und Abwasser, Supplementband 3/93. Hrsg.: Bundesamt für Wassergüte, Wien-Kaisermühlen. Schriftenleitung: Werner Kohl. Selbstverlag, 1993, 514 S., öS 562. Acta Hydrochim. Hydrobiol. 22, 191–191 (1994).Article 

    Google Scholar 
    Juggins, S. C2: Software for ecological and palaeoecological data analysis and visualisation (user guide version 1.5). Newcastle upon Tyne: Newcastle University (2007). https://www.staff.ncl.ac.uk/stephen.juggins/software/code/C2.pdf.Moore, P. D., Webb, J. A. & Collison, M. E. Pollen Analysis, edn 2 (Blackwell, 1991).Stockmarr & Ja Tabletes with spores used in absolute pollen analysis. Pollen Spores 13, 615–621 (1971).
    Google Scholar 
    Reille, M. Pollen et spores d’Europe et d’Afrique du Nord (Laboratoire de Botanique historique et Palynologie, Marseille, 1992).van Geel, B. et al. Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J. Archaeol. Sci. 30, 873–883 (2003).Article 

    Google Scholar 
    Bennett, K. D. Determination of the number of zones in a biostratigraphical sequence. N. Phytol. 132, 155–170 (1996).Article 
    CAS 

    Google Scholar 
    Tinner, W. et al. Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920. Holocene 8, 31–42 (1998).Article 
    ADS 

    Google Scholar 
    Adolf, C. et al. The sedimentary and remote-sensing reflection of biomass burning in Europe. Glob. Ecol. Biogeogr. 27, 199–212 (2018).Article 

    Google Scholar 
    Tinner, W. & Hu, F. S. Size parameters, size-class distribution and area-number relationship of microscopic charcoal: Relevance for fire reconstruction. Holocene 13, 499–505 (2003).Article 
    ADS 

    Google Scholar 
    Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytol. 214, 924–942 (2017).Article 
    CAS 

    Google Scholar 
    Alsos, I. G. et al. The treasure vault can be opened: Large-scale genome skimming works well using herbarium and silica gel dried material. Plants 9, 432 (2020).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14 (2007).Article 
    PubMed 

    Google Scholar 
    Voldstad, L. H. et al. A complete Holocene lake sediment ancient DNA record reveals long-standing high Arctic plant diversity hotspot in northern Svalbard. Quat. Sci. Rev. 234, 106207 (2020).Article 

    Google Scholar 
    Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ficetola, G. F. et al. An in silico approach for the evaluation of DNA barcodes. BMC Genomics 11, 434 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soininen, E. M. et al. Highly overlapping winter diet in two sympatric lemming species revealed by DNA metabarcoding. PLoS One 10, e0115335 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boratyn, G. M. et al. BLAST: A more efficient report with usability improvements. Nucleic Acids Res. 41, W29–W33 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leonard, J. A. et al. Animal DNA in PCR reagents plagues ancient DNA research. J. Archaeol. Sci. 34, 1361–1366 (2007).Article 

    Google Scholar 
    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).Article 
    PubMed 

    Google Scholar 
    Ter Braak, C. J. F. & Prentice, I. C. A theory of gradient analysis. Adv. Ecol. Res. 18, 271–317 (Elsevier, 1988).Vieira, D. C., Brustolin, M. C., Ferreira, F. C. & Fonseca, G. segRDA: Anr package for performing piecewise redundancy analysis. Methods Ecol. Evol. 10, 2189–2194 (2019).Article 

    Google Scholar 
    Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 149 (2018).Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling inr for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Chen, W. & Ficetola, G. F. Numerical methods for sedimentary‐ancient‐DNA‐based study on past biodiversity and ecosystem functioning. Environ. DNA 2, 115–129 (2020).Article 

    Google Scholar 
    Juggins, S. Rioja: Analysis of Quaternary Science Data. R package version 0.9-26. https://cran.r-project.org/web/packages/rioja/index.html (2020).Oksanen, J. et al. vegan: Community Ecology Package. Software http://CRAN.R-project.org/package=vegan (2012).Wickham, H. ggplot2-Elegant Graphics for Data Analysis (Springer, 2016).Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).Tinner, W. & Ammann, B. Long-term responses of mountain ecosystems to environmental changes: Resilience, adjustment, and vulnerability. In Global change and mountain regions. 133–143 (Springer, Dordrecht; 2005). More

  • in

    Longitudinal analysis of the Five Sisters hot springs in Yellowstone National Park reveals a dynamic thermoalkaline environment

    Mueller, R. C. et al. An emerging view of the diversity, ecology, and function of Archaea in alkaline hydrothermal environments. FEMS Microbiol. Ecol. 97, fiaa246 (2020).
    Google Scholar 
    López-López, O., Cerdán, M.-E. & González-Siso, M.-I. Thermus thermophilus as a source of thermostable lipolytic enzymes. Microorganisms 3, 792–808 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Sahay, H. et al. Hot springs of Indian Himalayas: Potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7, 118 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Patel, A. K., Singhania, R. R., Sim, S. J. & Pandey, A. Thermostable cellulases: Current status and perspectives. Bioresour Technol 279, 385–392 (2019).CAS 
    PubMed 

    Google Scholar 
    Decastro, M.-E., Rodríguez-Belmonte, E. & González-Siso, M.-I. Metagenomics of thermophiles with a focus on discovery of novel thermozymes. Front. Microbiol. 7, 1521–1521 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Meslé, M. M. et al. Isolation and characterization of lignocellulose-degrading geobacillus thermoleovorans from Yellowstone National Park. Appl. Environ. Microbiol. 88, e0095821 (2022).PubMed 

    Google Scholar 
    Verma, P., Yadav, A. N., Shukla, L., Saxena, A. K. & Suman, A. Hydrolytic enzymes production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 isolated from Manikaran hot springs. Int. J. Adv. Res. 3, 1241–1250 (2015).CAS 

    Google Scholar 
    Wu, B. et al. Microbial sulfur metabolism and environmental implications. Sci. Total Environ. 778, 146085 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lavrentyeva, E. V. et al. Bacterial diversity and functional activity of microbial communities in hot springs of the Baikal Rift Zone. Microbiology 87, 272–281 (2018).CAS 

    Google Scholar 
    Miller Scott, R., Strong Aaron, L., Jones Kenneth, L. & Ungerer Mark, C. Bar-Coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl. Environ. Microbiol. 75, 4565–4572 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharp, C. E. et al. Humboldt’s spa: Microbial diversity is controlled by temperature in geothermal environments. ISME J. 8, 1166–1174 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stefanova, K. et al. Archaeal and bacterial diversity in two hot springs from geothermal regions in Bulgaria as demostrated by 16S rRNA and GH-57 genes. Int. Microbiol. 18, 217–223 (2015).CAS 
    PubMed 

    Google Scholar 
    Hou, W. et al. A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PLoS ONE 8, e53350 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sahm, K. et al. High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17, 649–662 (2013).CAS 
    PubMed 

    Google Scholar 
    Purcell, D. et al. The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand. FEMS Microbiol. Ecol. 60, 456–466 (2007).CAS 
    PubMed 

    Google Scholar 
    Meyer-Dombard, D. R. & Amend, J. P. Geochemistry and microbial ecology in alkaline hot springs of Ambitle Island, Papua New Guinea. Extremophiles 18, 763–778 (2014).CAS 
    PubMed 

    Google Scholar 
    de Leon, K. B., Gerlach, R., Peyton, B. M. & Fields, M. W. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park. Front. Microbiol. 4, 10 (2013).
    Google Scholar 
    Boomer, S. M., Noll, K. L., Geesey, G. G. & Dutton, B. E. Formation of multilayered photosynthetic biofilms in an alkaline thermal spring in Yellowstone National Park, Wyoming. Appl. Environ. Microbiol. 75, 2464–2475 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, S. et al. Greater temporal changes of sediment microbial community than its waterborne counterpart in Tengchong hot springs, Yunnan Province, China. Sci. Rep. 4, 7479 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sun, Y., Liu, Y., Pan, J., Wang, F. & Li, M. Perspectives on cultivation strategies of archaea. Microb. Ecol. 79, 770–784 (2020).PubMed 

    Google Scholar 
    Brock, T. D. Life at high temperatures. Science 158, 1012 (1967).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Christiansen, R. L. The Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana. Professional Paper (2001).Rowe, J. J., Fournier, R. & Morey, G. Chemical analysis of thermal waters in Yellowstone National Park, Wyoming, 1960–65. USGS https://doi.org/10.3133/b1303 (1973).Article 

    Google Scholar 
    Fournier, R., Thompson, M. J. & Hutchinson, R. A. The geochemistry of hot spring waters at Norris Geyser Basin, Yellowstone National Park. International symposium on water-rock interactions (1992).Podar, P. T., Yang, Z., Björnsdóttir, S. H. & Podar, M. Comparative analysis of microbial diversity across temperature gradients in hot springs from Yellowstone and Iceland. Front. Microbiol. 11, 1625 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Pala, C. et al. Environmental drivers controlling bacterial and archaeal abundance in the sediments of a Mediterranean lagoon ecosystem. Curr. Microbiol. 75, 1147–1155 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foyer, C. H., Noctor, G. & Hodges, M. Respiration and nitrogen assimilation: Targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. J. Exp. Bot. 62, 1467–1482 (2011).CAS 
    PubMed 

    Google Scholar 
    Ershanovich, V. N. et al. Nitrogen assimilation enzymes in Bacillus subtilis mutants with hyperproduction of riboflavin. Mol. Gen. Mikrobiol. Virusol. 2005(3), 29–34 (2005).
    Google Scholar 
    Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu Rev Microbiol 67, 437–457 (2013).CAS 
    PubMed 

    Google Scholar 
    Cabello, P., Roldán, M. D. & Moreno-Vivián, C. Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150, 3527–3546 (2004).CAS 
    PubMed 

    Google Scholar 
    Graupner, M., Xu, H. & White, R. H. The pyrimidine nucleotide reductase step in riboflavin and F(420) biosynthesis in archaea proceeds by the eukaryotic route to riboflavin. J. Bacteriol. 184, 1952–1957 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chernyh, N. A. et al. Dissimilatory sulfate reduction in the archaeon “Candidatus Vulcanisaeta moutnovskia” sheds light on the evolution of sulfur metabolism. Nat. Microbiol. 5, 1428–1438 (2020).CAS 
    PubMed 

    Google Scholar 
    Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172, 1181–1197 (2018).CAS 
    PubMed 

    Google Scholar 
    Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl. Acad. Sci. U.S.A. 114, E4602–E4611 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guy, L. & Ettema, T. J. G. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587 (2011).CAS 
    PubMed 

    Google Scholar 
    Wang, Y., Wegener, G., Hou, J., Wang, F. & Xiao, X. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat. Microbiol. 4, 595–602 (2019).CAS 
    PubMed 

    Google Scholar 
    Hedlund, B. P. et al. Uncultivated thermophiles: Current status and spotlight on ‘Aigarchaeota’. Curr. Opin. Microbiol. 25, 136–145 (2015).CAS 
    PubMed 

    Google Scholar 
    Reichart, N. J. et al. Activity-based cell sorting reveals responses of uncultured archaea and bacteria to substrate amendment. ISME J. 14, 2851–2861 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hua, Z.-S. et al. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat. Commun. 9, 2832 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beam, J. P. et al. Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous “streamer” community. ISME J. 10, 210–224 (2016).CAS 
    PubMed 

    Google Scholar 
    Gonsior, M. et al. Yellowstone hot springs are organic chemodiversity hot spots. Sci. Rep. 8, 14155 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibson, M. L. & Hinman, N. W. Mixing of hydrothermal water and groundwater near hot springs, Yellowstone National Park (USA): Hydrology and geochemistry. Hydrogeol. J. 21, 919–933 (2013).ADS 
    CAS 

    Google Scholar 
    Campbell, K. M. et al. Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs. Environ. Microbiol. 19, 2334–2347 (2017).PubMed 

    Google Scholar 
    Thiel, V. et al. The dark side of the mushroom spring microbial mat: Life in the shadow of chlorophototrophs. I. Microbial diversity based on 16S rRNA gene amplicons and metagenomic sequencing. Front. Microbiol. 7, 919 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U.S.A. 108, 4516–4522 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 

    Google Scholar 
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 555, 457–463 (2017).ADS 

    Google Scholar 
    Eloe-Fadrosh, E. A., Ivanova, N. N., Woyke, T. & Kyrpides, N. C. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nat. Microbiol. 1, 15032 (2016).CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv https://doi.org/10.1101/081257 (2016).Article 

    Google Scholar 
    Murali, A., Bhargava, A. & Wright, E. S. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6, 140 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).CAS 
    PubMed 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: Linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).
    Google Scholar 
    Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821 (2020).CAS 
    PubMed 

    Google Scholar 
    Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 11, 395 (2010).
    Google Scholar 
    Patiny, L. & Borel, A. ChemCalc: A building block for tomorrow’s chemical infrastructure. J. Chem. Inf. Model. 53, 1223–1228 (2013).CAS 
    PubMed 

    Google Scholar 
    Chong, J., Wishart, D. S. & Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinform. 68, e86 (2019).
    Google Scholar 
    Liu, G., Lee, D. P., Schmidt, E. & Prasad, G. L. Pathway analysis of global metabolomic profiles identified enrichment of caffeine, energy, and arginine metabolism in smokers but not moist snuff consumers. Bioinform. Biol. Insights 13, 1177932219882961–1177932219882961 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Xia, J. & Wishart, D. S. MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26, 2342–2344 (2010).CAS 
    PubMed 

    Google Scholar 
    Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12, 115–121 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rohart, F., Gautier, B., Singh, A. & Lé Cao, K.-A. mixOmics: An R package for ’omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752–e1005752 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Ornamental roses for conservation of leafcutter bee pollinators

    Potts, S. G. et al. (eds.). IPBES: The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany) (2016).Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).PubMed 

    Google Scholar 
    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).PubMed 

    Google Scholar 
    Majewska, A. A. & Altizer, S. Planting gardens to support insect pollinators. Conserv. Biol. 34, 15–25 (2020).PubMed 

    Google Scholar 
    Image, M. et al. Does agri-environment scheme participation in England increase pollinator populations and crop pollination services?. Agric. Ecosyst. Environ. 325, 107755 (2022).
    Google Scholar 
    Vaissière, B., Freitas, B. M. & Gemmill-Herren, B. Protocol to Detect and Assess Pollination Deficits in Crops: A Handbook for Its Use (FAO, 2011).
    Google Scholar 
    Archer, C. R., Pirk, C. W. W., Carvalheiro, L. G. & Nicolson, S. W. Economic and ecological implications of geographic bias in pollinator ecology in the light of pollinator declines. Oikos 123, 401–407 (2014).
    Google Scholar 
    M’Gonigle, L. K., Ponisio, L. C., Cutler, K. & Kremen, C. Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture. Ecol. Appl. 25, 1557–1565 (2015).PubMed 

    Google Scholar 
    Garbuzov, M. & Ratnieks, F. L. W. Listmania: The strengths and weaknesses of lists of garden plants to help pollinators. Bioscience 64, 1019–1026 (2014).
    Google Scholar 
    Garbuzov, M. & Ratnieks, F. L. W. Quantifying variation among garden plants in attractiveness to bees and other flower-visiting insects. Funct. Ecol. 28, 364–374 (2014).
    Google Scholar 
    Garbuzov, M., Alton, K. & Ratnieks, F. L. W. Most ornamental plants on sale in garden centres are unattractive to flower-visiting insects. PeerJ 5, e3066 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Nichols, R. N., Goulson, D. & Holland, J. M. The best wildflowers for wild bees. J. Insect Conserv. 23, 819–830 (2019).
    Google Scholar 
    Harmon-Threatt, A. Influence of nesting characteristics on health of wild bee communities. Annu. Rev. Entomol. 65, 39–56 (2020).CAS 
    PubMed 

    Google Scholar 
    Requier, F. & Leonhardt, S. D. Beyond flowers: Including non-floral resources in bee conservation schemes. J. Insect Conserv. 24, 5–16 (2020).
    Google Scholar 
    Sinu, P. A. & Bronstein, J. L. Foraging preferences of leafcutter bees in three contrasting geographical zones. Divers. Distrib. 24, 621–628 (2018).
    Google Scholar 
    Cecala, J. M. & Rankin, E. E. Pollinators and plant nurseries: How irrigation and pesticide treatment of native ornamental plants impact solitary bees. Proc. R. Soc. B Biol. Sci. 288, 20211287 (2021).
    CAS 

    Google Scholar 
    Gonzalez, V. H., Gustafson, G. T. & Engel, M. S. Morphological phylogeny of Megachilini and the evolution of leaf-cutter behavior in bees (Hymenoptera: Megachilidae). J. Melittology 85, 1–123 (2019).
    Google Scholar 
    Kambli̇, S. S. et al. M. S. Aiswarya, K. Manoj, S. Varma, G. Asha, T. P. Rajesh, P. A. Sinu, Leaf foraging sources of leafcutter bees in a tropical environment: Implications for conservation. Apidologie 48, 473–482 (2017).Ascher, J. S. & Pickering, J. Discover Life Bee Species Guide and World Checklist (Hymenoptera: Apoidea: Anthophila) (2019).McCabe, L. M., Aslan, S. E. & Cobb, N. S. Decreased bee emergence along an elevation gradient: implications for climate change revealed by a transplant experiment. Ecology 103, e03598 (2021).PubMed 

    Google Scholar 
    Pitts-Singer, T. L. & Cane, J. H. The Alfalfa leafcutting bee, Megachile rotundata: The worlds most intensively managed solitary bee. Annu. Rev. Entomol. 56, 221–237 (2011).CAS 
    PubMed 

    Google Scholar 
    MacIvor, J. S. & Packer, L. “Bee hotels” as tools for native pollinator conservation: A premature verdict?. PLoS ONE 10, e0122126 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Maclvor, J. S. DNA barcoding to identify leaf preference of leafcutting bees. R. Soc. Open Sci. 3, 150623 (2016).ADS 

    Google Scholar 
    Wissemann, V. & Ritz, C. M. The genus Rosa (Rosoideae, Rosaceae) revisited: Molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy. Botanical J. Linn. Soc. 147, 275–290 (2005).
    Google Scholar 
    Wang, G. Study on the history of Chinese roses from ancient works and images. Acta Hort. 751, 347–356 (2007).
    Google Scholar 
    Nybom, H. & Werlemark, G. Realizing the potential of health-promoting rosehips from dogroses (Rosa sect. Caninae). Curr. Bioact. Compd. 13, 3–17 (2016).
    Google Scholar 
    Chang, Y. Z., Chen, H. M. & Qi, R. S. Ornamental pest—studies on leafcutting bees Megachile subtranquilla Yasumatsu. Acta Agriculturae Universitatis Pekinensis 15, 208–213 (1989).
    Google Scholar 
    Stroom, K., Fetzer, J. & Krischik, V. Insect Pests of Roses. 1–12 (Minnesota Extension Service, University of Minnesota, 1997).Knox, G. W., Paret, M. & Mizell, R. F. III. Pests of roses in Florida (2008).Hayward, A. et al. The leafcutter bee, Megachile rotundata, is more sensitive to N-cyanoamidine neonicotinoid and butenolide insecticides than other managed bees. Nat. Ecol. Evol. 3, 1521–1524 (2019).PubMed 

    Google Scholar 
    Fox, J. et al. Package ‘car’, Vol. 16, (R Foundation for Statistical Computing, 2012).K. Barton, Package Multi-Model Inference (MuMIn). https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf (2013).Hartig, F. & Hartig M. F. Package ‘DHARMa’:R package (2017).R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).Boff, S., Raizer, J. & Lupi, D. Environmental display can buffer the effect of pesticides on solitary bees. Insects. 11, 1–15 (2020).
    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA. 108, 662–667 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232 (2020).CAS 
    PubMed 

    Google Scholar 
    Kopit, A. M. & Pitts-Singer, T. L. Routes of pesticide exposure in solitary, cavity-nesting bees. Environ. Entomol. 47, 499–510 (2018).CAS 

    Google Scholar 
    Pitts-Singer, T. L. & Barbour, J. D. Effects of residual novaluron on reproduction in alfalfa leafcutting bees, Megachile rotundata F. (Megachilidae). Pest Manag. Sci. 73, 153–159 (2017).CAS 
    PubMed 

    Google Scholar 
    McKinney, M. L. Urbanization, biodiversity, and conservation. Bioscience 52, 883–890 (2002).
    Google Scholar 
    Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Choate, B. A., Hickman, P. L. & Moretti, E. A. Wild bee species abundance and richness across an urban–rural gradient. J. Insect Conserv. 22, 391–403 (2018).
    Google Scholar 
    Theodorou, P. et al. Pollination services enhanced with urbanization despite increasing pollinator parasitism. Proc. R. Soc. B Biol. Sci. 283, 20160561 (2016).
    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 1–13 (2020).
    Google Scholar 
    Rocha-Filho, L. C., Martins, A. C. & Marchi, P. Notes on a nest of Megachile (Moureapis) apicipennis Schrottky (Megachilidae) constructed in an abandoned gallery of Xylocopa frontalis (Olivier) (Apidae). Sociobiology 64, 442–450 (2017).
    Google Scholar 
    Sheffield, C. S. Unusual nesting behavior in Megachile (Eutricharaea) rotundata (Hymenoptera: Megachilidae). J. Melittol. 69, 1–6 (2017).
    Google Scholar 
    Krischik, V., Rogers, M., Gupta, G. & Varshney, A. Soil-applied imidacloprid translocates to ornamental flowers and reduces survival of adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens lady beetles, and larval Danaus plexippus and Vanessa cardui butterflies. PLoS ONE 10, e0119133 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Senapathi, D. et al. The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proc. R. Soc. B Biol. Sci. 282, 20150294 (2015).
    Google Scholar 
    Potts, S. G. et al. Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol. Entomol. 30, 78–85 (2005).
    Google Scholar 
    Acar, C., Acar, H. & Eroǧlu, E. Evaluation of ornamental plant resources to urban biodiversity and cultural changing: A case study of residential landscapes in Trabzon city (Turkey). Build. Environ. 42, 218–229 (2007).
    Google Scholar 
    Wang, H. F., Qureshi, S., Knapp, S., Friedman, C. R. & Hubacek, K. A basic assessment of residential plant diversity and its ecosystem services and disservices in Beijing, China. Appl. Geogr. 64, 121–131 (2015).
    Google Scholar 
    Pergl, J. et al. Dark side of the fence: ornamental plants as a source of wildgrowing flora in the Czech Republic. Preslia 88, 163–184 (2016).
    Google Scholar 
    Avolio, M. et al. Urban plant diversity in Los Angeles, California: Species and functional type turnover in cultivated landscapes. Plants People Planet. 2, 144–156 (2020).
    Google Scholar 
    Orr, M. C. et al. Global patterns and drivers of bee distribution. Curr. Biol. 31, 451–458 (2021).CAS 
    PubMed 

    Google Scholar 
    Sinu, P. A., Kuriakose, G. & Shivanna, K. R. Is the bumblebee (Bombus haemorrhoidalis) the only pollinator of large cardamom in central Himalayas, India?. Apidologie 42, 690–695 (2012).
    Google Scholar 
    Veereshkumar, V. V. & Gupta, A. Parasitisation of leaf-cutter bees (Megachilidae: Apoidea) by Melittobia. Entomon 40, 105–112 (2015).
    Google Scholar 
    Cecala, J. M. & Wilson Rankin, E. E. Petals and leaves: Quantifying the use of nest building materials by the world’s most valuable solitary bee. Ecology 103, e03584 (2021).PubMed 

    Google Scholar 
    Soh, E. J. Y., Soh, Z. W. W., Ascher, J. S. & Tan, H. T. W. Diversity of plants with leaves cut by bees of the genus Megachile in Singapore. Nat. Singap. 12, 63–74 (2019).
    Google Scholar 
    MacIvor, J. S. & Moore, A. E. Bees collect polyurethane and polyethylene plastics as novel nest materials. Ecosphere 4, 155 (2013).
    Google Scholar 
    Allasino, M. L., Marrero, H. J., Dorado, J. & Torretta, J. P. Scientific note: First global report of a bee nest built only with plastic. Apidologie 50, 230–233 (2019).
    Google Scholar  More

  • in

    The dominant mesopredator and savanna formations shape the distribution of the rare northern tiger cat (Leopardus tigrinus) in the Amazon

    Most records of N-tiger cats were from savanna environments, and it was not surprising that this vegetative formation has a key influence on the N-tiger cat range in the Amazon. The bulk of the L. t. tigrinus distribution lies in the savannas, dry forests and shrublands of the Cerrado and Caatinga biomes. These are also the areas with the vast majority of records for this lowland subspecies (Supplemental Fig. S5). Hence, L. t. tigrinus is more associated with savannas and savanna-like environments than with rainforests. In fact, more than 80% of the records in the Amazon were within 100 km of a savanna patch. Colonization of the northern savanna formations of the Amazon by the N-tiger cat likely occurred during the forest-savanna shifts of the glacial period18, and the cat currently shows a patchy distribution. Strong evidence of established biogeographic corridor connections between the savannas of the Cerrado and those of the Amazon exists, suggesting northward expansion of the former during glacial periods, perhaps predating the Last Glacial Maximum19,20,21. Further corroborating this evidence, tiger cat ‘gene flow’ niche modelling showed prior connectivity between the Guiana population and that of Central Brazil and no connectivity with the Andean population22. Additionally, Guianan tiger cat skin patterns are found in savanna and transitional savanna/Amazon areas and in the semiarid shrub-woodland of Brazil and are very distinct from the patterns of the tiger cats from the Andes of northwestern South America and Central America (Supplementary Information Fig. S6).The bioclimatic variables in the best model also supported the cat’s preference for savanna areas. The best model indicated a positive effect of precipitation in the driest month on the probability of the presence of the N-tiger cat, likely indicating the Aw/As climates of tropical savannas23. These climates are marked by seasonal variation in rainfall, with a pronounced dry season. Higher rainfall during the dry season favors the growth of vegetation, which results in some tree cover within the savannas. Thus, our results agree with previous research suggesting that tiger cats avoid open savanna formations24. Similarly, the species had a significant negative response to net primary productivity. This also supports the species’ avoidance of dense lowland rainforests, which are the most productive habitats. In the Amazon biome, the least productive areas are found in more open landscapes25.The N-tiger cat’s range considered from an ecoregion perspective12 could biogeographically explain its distribution in the Amazon. All records but 2 fell within Guiana savannas, Guiana highland forest, Guiana rainforest, part of the Uatumã-Trombetas rainforest bordering the Guianas or all of it connecting to Gurupá and Monte Alegre varzea forests, as well as Marajó varzeas, the interfluve Tocantins-Araguaia/Maranhão, and the southern block of the interfluve Xingu/Tocantins-Araguaia. There were two records from the Negro-Branco moist forest, which also includes savanna-like “campinarana” formations. The range also reaches the transitional babaçu palm forests of Maranhão and the Mato Grosso seasonal forests (Supplementary Information Fig. S7, Table S3). The N-tiger cat’s range in the Amazon was determined by combining records with species distribution modeling, also matching the ecoregion perspective.Outside the Guiana Shield and likely the savanna patches of the region of the Upper Negro River, in other parts of the Amazon, the N-tiger cat seems to be restricted to the forests of the eastern Amazon, along the arc of deforestation and to transitional areas with savanna formations. The presence and absence points at camera-trapping sites could explain the N-tiger cat’s range in the Amazon and define its distribution range in the biome. Absence points, for instance, were usually located in dense rainforest habitats throughout the Amazon biome.The species may occasionally occupy rainforests, such as those of the Guianas, where it tends to be very rare. At a site in central Suriname, after an enormous trapping effort of  > 20,000 trap days in four years by cat specialists, over an area  > 1100 km2, no records of the N-tiger cat were found (Supplementary Information Table S2), although its presence is expected in that area26. This finding attests to the inherent rarity of this felid in its limited range within the Amazon. However, could its association with the arc of deforestation be related to the replacement of forest by bushy savanna-like vegetation that succeeds abandoned pastures? The other currently recognized subspecies, L. t. pardinoides (the Andean tiger cat) and L. t. oncilla (the oncilla), and the recently split southern tiger cat L. guttulus are all associated with forested areas. Conversely, L. t. tigrinus has higher abundance and is mostly found in the nonforested habitats of the Cerrado and Caatinga domains of Brazil and only rarely in rainforests. Thus, L. t. tigrinus may be an open-habitat (sub)species. However, within savannas, N-tiger cats are restricted to denser savanna formations, with open savannas deemed unsuitable24. In the semiarid Caatinga, the N-tiger cat also prefers denser formations27,28.One of the most interesting findings was the clear relationship between the ranges of the dominant mesopredator and subordinate species. The ranges of ocelots and N-tiger cats in the Amazon were diametrically opposite (Fig. 1), a finding never recorded for felids. The reported ocelot densities and relative abundance indexes (RAIs) in the Amazon range from 0.29 to 0.95 ind/km2 and 0.07–13.2 ind/100 trap-days, respectively7,29. Thus, the expected ocelot density found using modeling that allows for N-tiger cat presence is very low (Fig. 2A). In the Rupununi, the ocelot:N-tiger cat RAI ratio was roughly 10:1, with a very low RAI and expected density for N-tiger cats (see Supplementary Material). The only other relative abundance estimate of tiger cats presented for the Amazon30 was not confirmed as an estimate of tiger cats following inspection of the original records by the authors but as an estimate of margays or ocelots. This antagonistic relationship between ocelots and all other small cat species in their area of sympatry is quite impressive. It is density-dependent, as it seems to take effect only above an ocelot density threshold of 0.12 ind./km231. The influence can range from patterns of density, distribution, and occupancy to spatial and temporal use. Conversely, such an impact was not detected when either the small cats or ocelots were compared to the larger cats31,32,33,34,35.In view of the Red List assessments and applying the limited estimates presented, the expected total population size for N-tiger cats in the Amazon would be approximately 150 and 1622 individuals, considering their AOO or EOO, respectively. Applying the IUCN’s formula for mature individuals8, these numbers would be 45 and 487 individuals for the AOO and EOO, respectively.The ocelot’s preference for very dense rainforests may explain the low probability of N-tiger cat occurrence within the Amazon biome. Notably, most tiger cat records from rainforests and all those from premontane forests came from the Guiana Shield, a region where tropical grasslands and savannas dot more forested landscapes. The Guiana Highlands and Pantepui ecoregions, which make up a considerable portion of the shield, tend to have low ocelot densities (below 0.30 ind/km2), although they do contain some rainforest. Ocelot densities reach some of their lowest values in the Guianan savanna ecoregion (mean ocelot density of 0.029 in the savanna formations), where the N-tiger cat probability of occurrence was highest. At the Karanambu site in the Rupununi, all ocelot records came from either gallery forests or forest patches embedded in the savanna. Although the data did not allow us to test further hypotheses, it is likely that spatial partitioning occurs in the Guiana Shield, with N-tiger cats favoring habitats that are more open. Conversely, areas farther west in the Amazon biome, other than the predicted area, do not have any major savanna patches and are covered mostly by lowland tropical rainforest formations, where ocelots can potentially reach densities in excess of 0.7 ind/km2. Of all Amazonian records of N-tiger cats, only one came from west of the 68th meridian: a preserved specimen from Puerto Leguizamo on the Putumayo River in Colombia. The specimen was identified as L. t. pardinoides by its collector, so it most likely represents an individual that came down from the foothills of the Andes. Alternatively, it could have been caught in the Andean foothills but labeled generally as from Puerto Leguizamo, as museum records do not always present precise locations, like most of those from our dataset; thus, they could represent a broader region, not a single collection location.The records of L. t. tigrinus in the Monte-Alegre Várzea ecoregion and Tapajós-Xingu Moist Forest ecoregion (which shares a border with the Amazon River) are actually from the small savanna patches of Terra Santa and Alter do Chão, respectively, which are imbedded within the forests of these ecoregions. Similarly, the Negro-Branco Moist Forest ecoregion includes open-canopy white sand forests with savanna-like vegetation, known as ‘campinaranas’36.Although our model predicted a high probability of N-tiger cat presence in the Marajó Várzea ecoregion, the records from the island came from savanna patches and not from flooded forests and mangroves. Hence, we did not include such large areas in the AOO for the subspecies. It is likely that the highly predicted probability of presence there is an artifact of low predicted ocelot density. Nevertheless, the environment there is not suitable for either cat. Our ocelot density model was highly significant and explained almost 50% of the variation in ocelot density. The remaining variation was related to either other variables that could not be measured via satellite imagery (such as prey availability) or the sampling design of the different studies. Nonetheless, ocelot densities predicted from our model across the Amazon were within the expected range for the species29.Why are N-tiger cats absent in camera-trapping studies in Amazonian forests throughout the biome? The most straightforward answer seems to be because they simply are not there (central and western Amazon) or, where present, their numbers are extremely low (Guianas and eastern Amazon). The lack of surveys cannot be cited as a potential reason for their apparent absence because the studies that did not detect the species were conducted throughout the Amazon biome, in all nine Amazonian countries. Some of the areas have been surveyed for several years—or decades in some cases—and have failed to record a single individual (Supplementary Information Table S2). Typically, N-tiger cats appear, even prominently, on cameras in other biomes, such as in the savannas of the Cerrado and semiarid scrub of the Caatinga domain in Brazil, including sites where ocelots are present24,27,37. Clouded tiger cats (L. t. pardinoides) have also been frequently recorded on cameras in the Andes, higher than 1500 m above sea level34,38, but not in lowland Amazonian forests. This finding indicates that the N-tiger cat is not camera-shy. In northern Brazilian savannas, its density can reach 0.25 ind/km2 24. Coincidentally, this highest density estimate of the N-tiger cat is the same as the lowest ocelot density estimate for Amazonian forests24,29.Tiger cats and margays show high similarity, making misidentifications relatively common39. However, the evaluation of  > 3000 camera trap images of small-medium felids in the Amazon revealed that only one mildly resembled a tiger cat, a finding that supports the species being absent there and does not represent a case of mistaken identity with margays or even ocelots7.The Amazonian range of L. tigrinus is very limited, and populations are expected to be very small. With the upcoming split of L. t. tigrinus and L. t. pardinoides into two different species40, this situation would have serious implications for the conservation of the former. Thus, L. t. tigrinus conservation lies outside the “Amazonian safe haven” of most other carnivore species found there7. The Brazilian drylands Cerrado and Caatinga represent such places for L. t. tigrinus populations. Unfortunately, these biomes have had  > 50% of their cover completely removed41. Very importantly, besides being extremely rare in the Amazonian savannas, this rather limited vegetative formation is also considered highly threatened and of conservation priority42. Therefore, the tiger cat could become an emblematic flagship species representing the uniqueness of this vegetative formation in dire need of protection.In short, the picture that emerges is that although the N-tiger cat uses both rainforests and deciduous forests in the Amazon, it seems to be mostly associated with savanna formations and that its distribution in the Amazon is highly influenced by the ocelot, the dominant mesopredator. The N-tiger cat’s inherent rarity, expected population size, and restricted range in the Amazon suggest that this biome does not in fact represent a safe haven for the global conservation of this small felid. In addition to shedding light on and refining the N-tiger cat distribution in the Amazon, this paper highlights the importance of including biological variables, such as the potential impacts of competitors and predators on species presence and distribution, in SDMs. More

  • in

    Zebras of all stripes repel biting flies at close range

    The evolutionary origins of zebra stripes have been investigated—and debated—for centuries. The trait is rare, conspicuous, and intensely expressed, and thus appears to beg an adaptationist explanation. However, the utility of a complete coat of densely packed, starkly contrasting black-and-white stripes is not immediately apparent. Unlike many conspicuous visual traits, striped pelage is expressed with comparable intensity in both sexes and is thus unlikely to have arisen through sexual selection alone (although in plains zebras, Equus quagga, males have stripes closer to true black than females). Stripes are clearly not aposematic warning signals, nor do they provide camouflage in either the woodland or savannah habitats common across zebra ranges1,2. So, striping presents an ideal evolutionary puzzle: a trait so refined it seems it must be “for” something, but one that confers no clear advantage upon its bearers and imposes apparent costs (conspicuousness) that cannot be explained in Zahavian terms.Scientists have proposed and investigated several possible explanations for the evolution of zebra stripes (reviewed in3). The hypotheses suggest various ways in which stripes may provide a social function (species or individual recognition or social cohesion1,4), a temperature-regulation benefit5,6, an anti-predator effect7,8, or an anti-parasite effect9,10. There is continued debate over both the merits of individual hypotheses and the likelihood of stripes having arisen via a single driver vs. a confluence or alternation of multiple selective pressures6,11.The present study addresses the hypothesis that has thus far received the most empirical support: the anti-parasite hypothesis (also known as the ectoparasite hypothesis12). Zebras, like most ungulates, are harassed by tabanid, glossinid and Stomoxys species of biting flies, which can inflict significant blood loss, transmit disease, and weaken hosts when fly-avoidance behaviors reduce the host’s feeding rate9,13,14. Yet zebras are attacked far less than sympatric ungulates across their African range15,16, and also less than other equids9,17. Zebras also produce odors that may augment their anti-fly defenses18, but so do other sympatric ungulate species18,19, and a host of observations and experiments have demonstrated that black-and-white stripes alone are unattractive, or actively repellent to tabanid, glossinid, and Stomoxys flies17,20,21,22,23.Though the effect of stripes on flies is well-established, the source of the effect remains unexplained. Since Waage’s foundational studies in the 1970s and 1980s9,24 most hypotheses have suggested ways that stripes might interfere with the visual and navigational systems of flies, making it harder for them to locate, identify, or successfully land on striped targets. These hypothetical mechanisms can be roughly grouped by the distance (and the attendant phase of a fly’s orientation and landing behavior) at which they would likely operate:

    From afar: stripes might make it harder for flies to locate and distinguish zebras from background vegetation, perhaps by breaking up their outline9 or varying the way they polarize or reflect light17,31 especially from distances at which composite eyes support only low-resolution vision and cannot resolve zebra stripes as clear bands of alternating color on a single host (estimated at  > 2.0 m22,  > 4.4 m24, and even  > 20 m25).

    At close range (estimates range from 0.5 to 4.0 m26): stripes might interfere with orientation or landing behavior via any of several disruptive or ‘dazzle’-related visual effects27. For example, stripes might affect ‘optic flow’, or the fly’s perceived relative motion to its target as it approaches, by creating an illusion of false direction or speed of motion (e.g., via variants of the ‘barber pole’ or ‘wagon wheel’ effects28). Alternatively, relative motion to a striped pattern within the visual field may create the perception of self-rotation, inducing the fly’s involuntary ‘optomotor response’ and resulting in an avoidance turn in an effort to stay on a straight course29.

    Finally, stripes might cause confusion in the transition between long- and short-distance orientation. If zebras appear as blurred gray from a distance and then, at closer range, suddenly resolve into a sequence of floating black and white bars, this abrupt ‘visual transformation’26 might disrupt the behavioral sequence that facilitates landing.

    Within these categories, hypotheses have proliferated faster than experimental tests of many of the proposed mechanisms. The very active literature on this question has grown in somewhat haphazard fashion, as curious researchers test new possibilities without eliminating old ones6. Importantly, few experiments have controlled the distance from which flies are first able to view potential landing sites (but see23). While growing evidence supports a mechanism operating at close range22,26, failing to restrict the starting distance of the fly means that the full set of possible mechanisms outlined above all remain plausible contributors to most previous results.Additionally, while many studies have, appropriately, used artificial stimuli to isolate basic effects of color, pattern, brightness, and light polarization of (usually flat) test surfaces, possible contributions of several aspects of natural zebra pelage remain untested. Controlled experiments have used various landing substrates, including striped and solid oil tray traps, sticky plastic, smooth plastic17, cloth (Experiment 2 in22), horse blankets or sheets26, and paint on live animals30. These have all clearly demonstrated a broadly replicable visual effect: stripes, and some other juxtapositions of black and white (e.g., checkerboard patterns26), repel flies. However, insofar as specific features of zebra pelage factor into proposed mechanisms of fly repellence—the reflective properties of “smooth, shiny” coats31; the orientation of the stripes17,32; the light-polarizing effects of black and white hair vs. background vegetation25; and the complex structure of hair25—there is a need for more experiments that present natural targets to wild flies (but see22,33). Similarly, most experiments have compared landing preferences between black-and-white striped, solid black, solid white, and occasionally solid grey substrates, which have served as important controls for determining that light polarization, rather than a combination of polarization and brightness, is sufficient to induce the effect of stripe avoidance17. However, it is now time to refocus on the original question by presenting flies with more realistic choices. Since biting flies seeking a bloodmeal on the African savannah seldom encounter solid black hosts, and even more rarely solid white hosts, landing choices should be compared between zebra stripes and common coat colors of sympatric mammals, namely various shades of brown. Further, tabanid, glossinid, and Stomoxys flies all avoid landing on stripes that are the same width or narrower than the widest zebra stripes 17,23, and there is some evidence that narrower stripes are even more repellent to tabanids17. This pattern is potentially significant in the application of the anti-parasite hypothesis to an adaptive explanation for the striking variation in stripe width across zebra species and between the different areas of the body on individual zebras22, but must first be confirmed with experiments using real zebra pelage.Here, we present a simple experiment designed to address each of these gaps in the literature on the anti-fly benefits of zebra stripes. In this field experiment, the landing choices of flies were tested entirely within the range at which all estimates agree flies should be able to perceive the presented stripes ( More

  • in

    Humid tropical vertebrates are at lower risk of extinction and population decline in forests with higher structural integrity

    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).Article 
    PubMed 

    Google Scholar 
    Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Environ. 20, 10–15 (2022).Article 
    PubMed 

    Google Scholar 
    Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).Article 

    Google Scholar 
    Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).Article 
    PubMed 

    Google Scholar 
    Hansen, A. et al. Global humid tropics forest structural condition and forest structural integrity maps. Sci. Data 6, 232 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hansen, A. J. et al. A policy-driven framework for conserving the best of Earth’s remaining moist tropical forests. Nat. Ecol. Evol. 4, 1377–1384 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    COP 11 Decision X/2. Strategic Plan for Biodiversity 2011–2020 (Convention on Biological Diversity, 2010).New York Declaration on Forests (UN, 2014).Transforming our World: The 2030 Agenda for Sustainable Development. A/RES/70/1 Resolution Adopted by the United Nations General Assembly (UN, 2015).Adoption of the Paris Agreement. Proposal by the President. Draft Decision -/CP.21 (UNFCCC, 2015).Hansen, A. J. et al. Toward monitoring forest ecosystem integrity within the post-2020 Global Biodiversity Framework. Conserv. Lett. 14, e12822 (2021).Article 

    Google Scholar 
    Scholes, R. et al. (eds) Summary for Policymakers of the Assessment Report on Land Degradation and Restoration (IPBES, 2018).First Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2021).Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).Article 

    Google Scholar 
    The IUCN Red List of Threatened Species Version 2020–1 (IUCN, 2020).Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ives, A. R. & Garland, T. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59, 9–26 (2010).Article 
    PubMed 

    Google Scholar 
    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).Article 
    PubMed 

    Google Scholar 
    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fletcher, R. & Fortin, M.-J. Spatial Ecology and Conservation Modeling: Applications with R (Springer, 2018). https://doi.org/10.1007/978-3-030-01989-1Briant, G., Gond, V. & Laurance, S. G. W. Habitat fragmentation and the desiccation of forest canopies: a case study from eastern Amazonia. Biol. Conserv. 143, 2763–2769 (2010).Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pillay, R. et al. Using interview surveys and multispecies occupancy models to inform vertebrate conservation. Conserv. Biol. 36, e13832 (2022).Article 
    PubMed 

    Google Scholar 
    Agresti, A. Categorical Data Analysis (John Wiley and Sons, 2002).Smith, A. C., Koper, N., Francis, C. M. & Fahrig, L. Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landsc. Ecol. 24, 1271–1285 (2009).Article 

    Google Scholar 
    Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl Acad. Sci. USA 18, 10309–10313 (2003).Article 

    Google Scholar 
    Turner, I. M. & Corlett, R. T. The conservation value of small, isolated fragments of lowland tropical rain forest. Trends Ecol. Evol. 11, 330–333 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tulloch, A. I. T., Barnes, M. D., Ringma, J., Fuller, R. A. & Watson, J. E. M. Understanding the importance of small patches of habitat for conservation. J. Appl. Ecol. 53, 418–429 (2016).Article 

    Google Scholar 
    Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl Acad. Sci. USA 116, 909–914 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6, eaax8574 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prugh, L. R., Hodges, K. E., Sinclair, A. R. E. & Brashares, J. S. Effect of habitat area and isolation on fragmented animal populations. Proc. Natl Acad. Sci. USA 105, 20770–20775 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 13, e12692 (2020).Article 

    Google Scholar 
    Ehbrecht, M. et al. Global patterns and climatic controls of forest structural complexity. Nat. Commun. 12, 519 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    França, F. et al. Do space-for-time assessments underestimate the impacts of logging on tropical biodiversity? An Amazonian case study using dung beetles. J. Appl. Ecol. 53, 1098–1105 (2016).Article 

    Google Scholar 
    Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinction risk. Nat. Commun. 9, 4621 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Betts, M. G. et al. Forest degradation drives widespread avian habitat and population declines. Nat. Ecol. Evol. 6, 709–719 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Basset, Y. et al. Arthropod diversity in a tropical forest. Science 338, 1481–1484 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Newbold, T. et al. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. R. Soc. B 280, 20122131 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).Article 
    PubMed 

    Google Scholar 
    Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).Article 
    PubMed 

    Google Scholar 
    Bird Species Distribution Maps of the World Version 2018.1 (BirdLife International, accessed 16 August 2019).Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).Article 
    PubMed 

    Google Scholar 
    González-del-Pliego, P. et al. Phylogenetic and trait-based prediction of extinction risk for data-deficient amphibians. Curr. Biol. 29, 1557–1563 (2019).Article 
    PubMed 

    Google Scholar 
    IUCN Habitats Classification Scheme Version 3.1 (IUCN, 2012).Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, M. C. et al. Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data. Remote Sens. Environ. 185, 221–232 (2016).Article 

    Google Scholar 
    Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904 (2002).Article 

    Google Scholar 
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Di Marco, M., Watson, J. E. M., Possingham, H. P. & Venter, O. Limitations and trade-offs in the use of species distribution maps for protected area planning. J. Appl. Ecol. 54, 402–411 (2017).Article 

    Google Scholar 
    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2603–E2610 (2013).Article 

    Google Scholar 
    Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 116, G04021 (2011).Article 

    Google Scholar 
    Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth 6, 427–448 (2013).Article 

    Google Scholar 
    Potapov, P. et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165 (2021).Article 

    Google Scholar 
    Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204, 23–31 (2016).Article 

    Google Scholar 
    Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).Article 
    PubMed 

    Google Scholar 
    Ho, L. S. T. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).Article 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Verhoeven, K. J. F., Simonsen, K. L. & McIntyre, L. M. Implementing false discovery rate control: increasing your power. Oikos 108, 643–647 (2005).Article 

    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar 
    Bivand, R. et al. spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.7-4 (2017).Bjornstad, O. N. ncf: Spatial covariance functions. R package version 1.2-1 (2018). More

  • in

    Low levels of sibship encourage use of larvae in western Atlantic bluefin tuna abundance estimation by close-kin mark-recapture

    Our results show that GoM BFT larval survey samples can provide the crucial mark events for eventual CKMR estimates of adult abundance. The adult parents marked by larval samples can be directly recaptured in the fishery many years later as POPs, and indirectly through their progeny in future samples of larvae, as evidenced by the two cross-cohort HSPs (XHSPs) recovered in this study, which imply that a parent survived and spawned in the GoM in consecutive years. As more cohorts are sampled in future, the growing number of XHSPs could be used to estimate average adult survival rates, in addition to helping with the estimation of adult abundance31, as is now done for southern blue tuna40.There is a modest level of sibship within our 2016 samples, and a high level (involving over half the samples) in 2017, but it turns out not to be high enough to cause serious problems for POP-based CKMR. High sibship per se does not lead to bias in CKMR by virtue of the statistical construction of the estimate, but it does increase variance, which can be summarized through a reduction in effective sample size. In a POP-based CKMR model, our effective sample size would be about 75% of nominal for the two years combined, or 66% of nominal for the targeted sampling of 2017. Since it is actually the product of adult and juvenile sample sizes which drives precision in CKMR14, one way to think about the 75% is that we will need about 33% more adult samples to achieve a given precision on abundance estimates than if we had somehow been able to collect the same number of “independent” juvenile samples (i.e. without oversampling siblings). That increase is appreciable but entirely achievable; for WBFT, it is logistically much easier to collect more feeding-ground adult samples than to collect more larvae, and at present there is no known practical way to collect large numbers of older, more dispersed, and thus more independent, juvenile western origin bluefin tuna (WBFT).This study was motivated by the concern that sibship might be a serious impediment to use of WBFT larvae for CKMR. High levels of sibship have been found in larval collections for other taxa despite a pelagic larval phase, suggesting that abiotic factors can impede random mixing of larvae after a spawning event41. Our larval samples were only a few days old (4–11) and thus had little time to disperse since fertilization; our concern beforehand was that each tow might sample the offspring of a very small number of adults (one spawning group in one night), and in 2017 that repeatedly towing the same water mass might simply be resampling the same “family”. In practice, though, the cumulative effect was limited. Samples were not dominated by progeny from just a few adults; the maximum DPG size (i.e., number of offspring from any one adult) was 5, which is under 2% of the larval sample size. There are several possible reasons for this finding. First, plankton sample tows are typically standardized to a ten-minute duration, covering on average about 0.3 nautical miles. Based on continuous plankton cameras42, each tow is likely to tow through multiple patches of zooplankton, and therefore potentially multiple patches of BFT larvae. Second, spawning aggregations of BFT may contain many adults. For example, on the spawning grounds near the Balearic Islands in the Mediterranean, purse seine fisheries target spawning fish and individual net sets routinely capture upwards of 500 mature individuals43. These numbers suggest that BFT spawner aggregations can be quite large, although the number of individuals that contribute gametes to a single spawning event may be lower. The results of this study pose intriguing scenarios for understanding BFT larval ecology and spawning behavior, which could be explored with larger sample sizes paired with data on oceanographic conditions, direct observation of spawning aggregations, and modeling to compare observed and predicted dispersal. The results of this study are based on just two years of sampling, and numerous practical and theoretical challenges remain to fully understand BFT reproduction in the GoM.Our sibship impact calculations assume use of an unmodified adult-size-based CKMR POP model, where each juvenile is compared to each adult taking into account the latter’s size (e.g.,14). That will give unbiased estimates, which we regard as essential in a CKMR model. However, for WBFT the estimates are not fully statistically efficient, in that some adults receive more statistical weight than others because they are marked more often (by having a large DPG), and thus variance might not be the lowest achievable. Modifying the model to fix that would be simple in a “cartoon” CKMR setting where all adults are identical (e.g., Fig. 1 of14), simply by first condensing each DPG to a single representative, then only using those representatives (rather than all the larvae) in POP comparisons. Each marked parent then receives the same weight, giving maximum efficiency. For the cartoon, this condensed-DPG model still gives an unbiased estimate of abundance, because each DPG has one parent of given sex, and the chance of any sampled cartoon adult of that sex being that parent is 1/N. The DPG-condensed effective sample size is simply half the number of distinct parents, which would be a little larger than the effective sample sizes for the unmodified model shown in Table 3; e.g., in 2017, 504/2 = 252 versus 209. However, no such straightforward improvement is available for an adult-size-based CKMR model such as is needed for WABFT. Using condensed DPGs directly would bias the juvenile sampling against larger more-fecund adults, whose DPGs will tend on average to be larger and thus to experience disproportionate condensation. Those adults would be marked less often by the DPG-condensed juveniles than the model assumes, violating the basic requirements for unbiased CKMR in14. A more sophisticated model might be able to combine unbiasedness with higher efficiency but, since the unmodified adult-size-based POP model that we expect to use is unbiased and only mildly inefficient (at worst 209/252 = 83% efficient, in 2017) there seems no particular need for extra complications at present. However, that may not hold true if we eventually move to a POP + XHSP model, where the impact on unmodified CKMR variance is worse (though there is still no bias, for the same reason as with POPs). Intuitively, the biggest impact that a DPG of size 5 can have in a POP model is to suddenly raise the number of POPs by 5 if its parent happens to be sampled; within a useful total of, say, 75 POPs, the influence is not that large. But if two DPGs both of size 5 in different cohorts happen to share a parent, then the total of XHSPs suddenly jumps by 25— likely a substantial proportion of total XHSPs. Supplementary Material B also includes effective sample size formulae for a simplified XHSP-only model, which demonstrate the increased impact of within-cohort sibship; for our WBFT samples, it turns out that the XHSP-effective size is slightly lower for the targeted 2017 samples (110) than for the 2016 samples (130), unlike the POP-only effective size. Dropping from a maximum theoretical effective sample size of 252 (half the number of DPGs) down to 110 would be rather inefficient and would increase the number of years of sampling required to yield a useful XHSP dataset. This motivates developing a modified POP + XHSP model that retains unbiasedness without sacrificing too much efficiency. In principle, that can be done by condensing each DPG but then conditioning its comparison probabilities on the DPG’s original size, in accordance with the framework in14. This is a topic for subsequent research, and the results will inform future sampling strategy decisions for WBFT.One potential difficulty for western BFT CKMR might occur if a substantial proportion of animals reaching maturity are the offspring of “Western” (in genetic terms) adults who persistently spawn in the western North Atlantic but outside the GoM. However, as long as the adults marked by GoM larvae are well mixed at the time of sampling with any western adults that do spawn outside of the GoM, the total POP-based population estimate of genetically-western BFT from CKMR will remain unbiased. Given evidence from tagging of widespread adult movements within the western North Atlantic2, good mixing in the sampled feeding grounds seems likely; so, even if successful non-GoM western BFT spawning really is commonplace, there should not be a problem with relying on GoM larvae for at least the POP component of CKMR14.Studies of fish early life history have long been considered to have great potential to provide novel insight into the unique population dynamics of fishes44,45,46. Sampling efforts aimed at estimating fish recruitment dynamics have spawned a diversity of larval survey programs. Examples of these long-term programs include the California Cooperative Oceanic Fisheries Investigations, International Council for the Exploration of the Sea (ICES) surveys in the North Atlantic and adjacent areas, Southeast Monitoring and Assessment Program (SEAMAP) in the GoM, Ecosystem Monitoring (EcoMon) in the Northeast U.S., and numerous others, many of which provide indices of larval abundance widely used in fisheries and ecosystem assessments. Yet, as a result of the inherent patchiness of larvae42, sampling variability, and highly variable density dependent mortality45, fisheries scientists have often struggled to determine how larval surveys relate to the adult fish populations. Inclusion of estimates of sibship among larvae collected in surveys could refine estimates of adult spawning stock biomass estimated from these surveys.The results of this study also represent products of decades of work and coordination in obtaining high-quality DNA from larval specimens. Key steps to successful genotyping of larvae include ensuring that larvae are preserved, sorted, and handled in 95% non-denatured ethanol. In addition, strict instrument cleaning protocols must be followed, and stomachs should be removed or avoided (this study used larval tails and, when possible, eyes to avoid cross contamination of prey contents, including possible congeners and other BFT individuals). Exposure to hot lamps during the sorting and dissection processes should also be minimized to ensure that DNA quality is sufficiently high for genotyping-by-sequencing. Although the tissues available for genetic analysis were limited by the needs of other experiments that required BFT tissues, otoliths, gut contents, and other information from the same larvae, we were able to successfully genotype most larvae greater than 6 mm SL and identify thousands of informative SNPs. The lower size limit of larvae could likely be decreased if whole specimens were available for genotyping, although the use of younger larvae could increase the incidence of sibship.In summary, while we observed both FSPs and HSPs in larval collections, with elevated sibship overall and with siblings being more prevalent within tows and in nearby tows, the level of sibship was sufficiently low that collections of GoM BFT larvae can still provide the critical genetic mark of parental genotypes required for CKMR. Our results demonstrate a crucial proof of concept and are the first step towards an operational CKMR modelling estimate of spawning stock abundance for western BFT. More

  • in

    The red harvester ant

    Gordon, D. M. Anim. Behav. 49, 649–659 (1995).Article 

    Google Scholar 
    Gordon, D. M. The Ecology of Collective Behavior (Princeton Univ. Press, in the press).Gordon, D. M. Anim. Behav. 38, 194–204 (1989).Article 

    Google Scholar 
    Greene, M. J. & Gordon, D. M. Nature 423, 32 (2003).Article 
    CAS 

    Google Scholar 
    Pinter-Wollman, N. et al. Anim. Behav. 86, 197–207 (2013).Article 

    Google Scholar 
    Gordon, D. M., Guetz, A., Greene, M. J. & Holmes, S. Behav. Ecol. 22, 429–435 (2011).Article 

    Google Scholar 
    Prabhakar, B., Dektar, K. N. & Gordon, D. M. PLOS Comput. Biol. 8, e1002670 (2012).Article 
    CAS 

    Google Scholar 
    Davidson, J. D., Arauco-Aliaga, R. P., Crow, S., Gordon, D. M. & Goldman, M. S. Front. Ecol. Evol. 4, 115 (2016).Article 

    Google Scholar 
    Pagliara, R., Gordon, D. M. & Leonard, N. E. PLOS Comput. Biol. 14, e1006200 (2018).Article 

    Google Scholar 
    Friedman, D. A. et al. iScience 8, 283–294 (2018).Article 
    CAS 

    Google Scholar 
    Gordon, D. M. Ant Encounters: Interaction Networks and Colony Behavior (Princeton Univ. Press, 2010).Sundaram, M., Steiner, E. & Gordon, D. M. Ecol. Monogr. 92, e1503 (2022).Article 

    Google Scholar 
    Ingram, K. K., Pilko, A., Heer, J. & Gordon, D. M. J. Anim. Ecol. 82, 540–550 (2013).Article 

    Google Scholar 
    Gordon, D. M. Nature 498, 91–93 (2013).Article 
    CAS 

    Google Scholar  More