More stories

  • in

    Special issue: Rising Stars in Polymer Science 2022

    We are pleased to announce the winners of Rising Stars in Polymer Science 2022 as young influential. Polymer Journal has been enriched by the complex of wonderfully talented and diverse groups of these young scholars in addition to outstanding teams of well-established senior researchers. They bring a variety of new insights, both personal and professional, to the task of better understanding polymer science and engineering. Here they provide us with an array of novel observations drawn from such disciplines as synthesis, structure and physical properties and functions and applications. We believe our readers will appreciate the opportunity to learn new voices in this special issue.
    Daisuke Aoki

    Chiba University
    Daisuke Aoki currently serves as an Associate Professor in the Department of Applied Chemistry and Biotechnology, Faculty of Engineering, at Chiba University. He obtained his Ph.D. from Tokyo Institute of Technology in 2014 under the tutelage of Prof. T. Takata. Between 2014 and 2017, he served as a specially appointed Assistant Professor in the group of Prof. T. Takata. From 2017 to 2022, he was an assistant professor at Tokyo Institute of Technology in the group of Prof. H. Otsuka. From 2018 to 2022, he also served as Japan Science and Technology Agency (JST) PRESTO Researcher. In 2022, he was appointed to his current position at Chiba University. His research is focused on the functional polymers with applications in materials science, the topological polymers, and the polymer recycling system. He has received the Award for Encouragement of Research in Polymer Science (2017) and The Young Scientist Lecture Award of the Kansai Regional Chapter (2020) from the Society of Polymer Science, Japan.
    Rajashekar Badam

    Japan Advanced Institute of Science and Technology
    Rajashekar Badam completed M.Sc in Chemistry from Sri Sathya Sai Institute of Higher Learning, India in 2011. He received his Ph.D. in Materials Science from Japan Advanced Institute of Science and Technology (JAIST) with an “outstanding graduate award for the year 2016” in the area of carbon based electrocatalysis. Further he worked at Toyota Technological Institute as Postdoctoral fellow. In April 2018 he joined Matsumi lab, JAIST as Asst. Professor and since Oct 2020 he has been promoted to Sr. Lecturer in the same group. He has around 25 international publications and 10 patents (granted/pending) to his credit. His key research interest lies in organic-inorganic hybrid energy materials as catalysts, cathode material for metal air batteries, anode materials for Li-ion batteries and polymer binder materials for battery application.
    Yu-Cheng Chiu

    National Taiwan University of Science and Technology
    Yu-Cheng Chiu joined the Department of Chemical Engineering at National Taiwan University of Science and Technology (Taiwan Tech). as a tenure-track assistant professor since August 2017. Currently, his major interests are the elastic and self-healing semiconducting materials, soft organic devices including transistor and transistor memory, and morphology characterization by synchrotron technique. Prior to joining the faculty, Yu-Cheng was a postdoc in the Zhenan Bao research group at Stanford University when he devoted on the research of intrinsically stretchable/healable semiconducting polymer and high-performance OFET by solution shearing technique. Before moving to Stanford, he received his Ph.D. degree under the supervision of Prof. Wen-Chang Chen in December 2012 from the Chem. E at National Taiwan University and then stayed in the same group for his first postdoctoral research until Oct. 2014. He also experienced international internship program as a Ph.D. student in 2010 and special appointed assistant professor position in 2018 for polymerization research in the group of Prof. Toyoji Kakuchi and Prof. Toshifumi Satoh at Hokkaido University.
    Nagoya University
    Yuya Doi received his Ph.D. degree under the supervision of Prof. Yushu Matsushita and Assoc. Prof. Atsushi Takano from Nagoya University in 2016. He worked as a Program-Specific Assistant Professor in the group of Prof. Hiroshi Watanabe at Kyoto University in 2016–2017, and was a visiting scholar in the group of Prof. Dimitris Vlassopoulos at FORTH, Greece in 2017. Then, he worked as a postdoctoral researcher at Nagoya University (in the group of Prof. Yushu Matsushita) from 2018, and at Forschungszentrum Jülich, Germany (in the group of Prof. Stephan Förster) from 2019. Since 2020, he has been an Assistant Professor at Nagoya University working with Prof. Yuichi Masubuchi and Assoc. Prof. Takashi Uneyama. His research interest is fundamental physical properties of model polymers studied by rheological and scattering methods.
    Yuuka Fukui

    Keio University
    Yuuka Fukui received Ph.D. degree from Keio University in 2012 under the supervision of Professor Keiji Fujimoto. She was a JSPS research fellow (DC2) from 2010 to 2012. She joined the laboratory of Professor Keiji Fujimoto at Keio university as a research associate in 2012 and was promoted to an assistant professor in 2017. Her research interests focus on the design and synthesis of polymeric materials (particles, porous materials, membranes) and organic–inorganic hybrid materials inspired from biological systems. Her current research also includes development of functional materials to aim for applications in drug and cosmetic delivery systems and tissue engineering.
    Mikihiro Hayashi

    Nagoya institute of technology
    Mikihiro Hayashi received his Ph.D. degree from Nagoya University (Prof. Yushu Matsushita group) in 2015. During his doctor course, he had been selected as a JSPS research fellow (DC2) and experienced researches in ESPCI Paris-Tech (Prof. Ludwik Leibler) and in Shanghai Jiao Tong University (Prof. Xinyuan Zhu). He then re-joined Ludwik Leibler’s group as a postdoc, and experienced another postdoc in Prof. Masatoshi Tokita in Tokyo institute of technology. In 2017, he became an assistant professor in Prof. Akinori Takasu group (Nagoya institute of technology), and currently manages his own laboratory as a PI. His research interest is the design of functional cross-linked materials. As recent awards, he won the SPSJ polymer research encouragement award (year—2019) and SPSJ award for the outstanding paper in Polymer Journal sponsored by ZEON (year—2021).
    Kanazawa University
    Asae Ito is an assistant professor under the Koh-hei Nitta’s laboratory; Polymer Physics Laboratory. She has received her B.S. in Chemistry in Tokyo University of Science in 2010, and M.S. in Tokyo Institute of Technology in 2012. She joined in R&D section of SHARP corporation and engaged in the fabrication of OLED devices (2012–2016). Then, she went on to Japan Advanced Institute of Science and Technology (JAIST) and obtained Ph.D. under the supervision of Prof. M. Yamaguchi in 2019 on polymer rheology. Her major interests are the correlation between structure and mechanical properties in glassy as well as semicrystalline polymeric materials.
    Tomohiro Miyata

    Tohoku University
    Tomohiro Miyata received his B.S. in 2013 and Ph.D. in 2018 from the University of Tokyo. After working as a JSPS postdoctoral researcher at Tohoku University, he got a post of Assistant Professor at Tohoku University in 2019. He received several awards, including Young Scientist Award from the Japanese Society of Polymer Science and Dean’s Award FY2017 for the Best Doctoral Student from the School of Engineering, the University of Tokyo. He has worked on ceramics and liquid analysis using TEM techniques since 2013, and engaged in atomic- and nano-scale analysis on polymeric materials since 2018 in Jinnai group at Tohoku University.
    Yuta Nishina

    Okayama University
    Yuta Nishina obtained his Ph.D. degree in Engineering from Okayama University in 2010. Then, he became an independent assistant professor at Research Core for Interdisciplinary Sciences, Okayama University, and was promoted to associate professor in 2014 and research professor in 2018. He has also been appointed as visiting professor at Florida State University (2011), Nanyang Technological University (2011–2012), University of Strasbourg (2017), and Osaka University (2017–2020). His research activities include JST PRESTO (2013–2017), JST CREST (2018—present and 2020—present), and Adjunct Professor at University of New England. He is currently working in multi-discipline research based on organic chemistry, such as nanocarbon production and functionalization, biomedicals, catalysis, and energy-related devices.
    Yasunari Tamai

    Kyoto University
    Yasunari Tamai received his PhD from Kyoto University in 2013 on the excited state dynamics in nanostructured polymer systems. He joined the Optoelectronics group at the University of Cambridge as a postdoctoral fellow under the supervision of Prof Sir Richard Friend, where he focused on ultrafast charge separation at organic semiconductor heterojunctions. Since 2016, he has been an Assistant Professor at Kyoto University. From 2018 to 2022, he was also a JST PRESTO researcher. His current research interests include exciton and charge dynamics in organic semiconductors, particularly conjugated polymers.
    Nanjing University
    Ye Zhang is currently an associate professor at the College of Engineering and Applied Sciences at the Nanjing University. She received her Ph.D. degree in Macromolecular Chemistry and Physics from the Fudan University in 2018 and then joined the Harvard Medical School as a postdoctoral research fellow. Her research focuses on the development of soft electronics including batteries, sensors, and bioelectronic devices.
    Tohoku University
    Huie Zhu is an assistant professor in Graduate School of Engineering, Tohoku University. She received her B.Eng. (2008) and M.Eng. degrees (2011) from Zhengzhou University, China. Then, she obtained her Ph.D. degree in Applied Chemistry from Tohoku University in 2014 under the supervision of Prof. Masaya Mitsuishi. After that, she worked shortly as a postdoctoral researcher with Prof. Masaya Mitsuishi in Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University until 2015 and then became an assistant professor in the same institute. From 2020, she started her current position. Her research interests are development of siloxane-based hybrid polymer materials under mild conditions for various applications such as adhesives and thermally stable coatings and nanostructure control of ferroelectric polymers at interfaces for improved performance. She has received several awards from academic organizations and conference committees, such as the Promotion and Nurturing of Female Researchers Contribution Award from the Japan Society of Applied Physics (2019) and the Award for Encouragement of Research in Polymer Science from The Society of Polymer Science, Japan (2020).
    Zhejiang Sci-Tech University
    Biao Zuo received all his degrees from Zhejiang Sci-Tech University (Hangzhou, China); Chemistry (BSc, 2008), Physical Chemistry of Polymers (MSc, 2011) and Textile Materials (PhD, 2014). After completing the Ph.D. degree, he took a lecturer position at the Department of Chemistry, ZSTU. In 2017 and 2021, he was promoted to associated professor and full professor, respectively. He has worked for a while at Princeton University (2018–2020) and Kyushu University (2016) as a visiting scholar. He is also a principal investigator (PI) at Key Laboratory of Surface & Interface Science of Polymer Materials (SISPM) of Zhejiang Province. His research focuses mainly on molecular dynamics, glass transition, viscoelastic relaxation, rheology and tribology of polymers at surface, interface and under confinement, e.g., ultra-thin films. He has been awarded Chinese Chemical Society (CCS) Young Chemist Award (2021) for the contribution of “Revealing molecular mechanisms of polymer dynamics at surfaces and interfaces”. He is also a recipient of Excellent Young Investigator of NSFC (2021). More

  • in

    The spread of Carpophilus truncatus is on the razor's edge between an outbreak and a pest invasion

    Paini, D. R. et al. Global threat to agriculture from invasive species. PNAS 113, 7575–7579. https://doi.org/10.1073/pnas.1602205113 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Molfini, M. et al. A preliminary prioritized list of Italian alien terrestrial invertebrate species. Biol. Invasions 22, 2385–2399. https://doi.org/10.1007/s10530-020-02274-w (2020).Article 

    Google Scholar 
    Sweeney, J. et al. Special issue on invasive pests of forests and urban trees: pathways, early detection, and management. J. Pest Sci. 92, 1–2. https://doi.org/10.1007/s10340-018-01073-6 (2019).Article 

    Google Scholar 
    Pace, R. et al. The bugs in the bags : The risk associated with the introduction of small quantities of fruit and plants by airline passengers. Insects 13, 617. https://doi.org/10.3390/insects13070617 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nugnes, F., Russo, E., Viggiani, G. & Bernardo, U. First record of an invasive fruit fly belonging to Bactrocera dorsalis complex (Diptera: Tephritidae) in Europe. Insects 9, 182. https://doi.org/10.3390/insects9040182 (2018).Article 
    PubMed Central 

    Google Scholar 
    Bernardo, U. et al. Characterization, distribution, biology and impact on Italian walnut orchards of the invasive North-American leafminer Coptodisca lucifluella (Lepidoptera: Heliozelidae). Bull. Entomol. Res. 105, 210–224. https://doi.org/10.1017/S0007485314000947 (2015).Article 
    PubMed 
    CAS 

    Google Scholar 
    Saxena, R. C. & Barrion, A. A. Biotypes of insect pests of agricultural crops. Int. J. Trop. Insect Sci. 8, 453–458. https://doi.org/10.1017/s1742758400022475 (1987).Article 

    Google Scholar 
    Bentur, J. S., Cheralu, C. & Rao, P. R. M. Monitoring virulence in Asian rice gall midge populations in India. Entomol. Exp. Appl. 129, 96–106. https://doi.org/10.1111/j.1570-7458.2008.00756.x (2008).Article 

    Google Scholar 
    Lee, C. E. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17, 386–391 (2002).Article 

    Google Scholar 
    Prentis, P. J. et al. Adaptive evolution in invasive species. Trends Plant. Sci. 13, 288–294. https://doi.org/10.1016/j.tplants.2008.03.004 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    Lack, J. B. et al. Comparative phylogeography of invasive Rattus rattus and Rattus norvegicus in the U.S. reveals distinct colonization histories and dispersal. Biol. Invasions 15, 1067–1087. https://doi.org/10.1007/s10530-012-0351-5 (2013).Article 

    Google Scholar 
    Fišer Pečnikar, Ž. & Buzan EV. 20 years since the introduction of DNA barcoding: From theory to application. J. Appl. Genet. 55, 43–52, https://doi.org/10.1007/s13353-013-0180-y (2014).Nugnes, F. et al. Genetic diversity of the invasive Gall Wasp Leptocybe invasa (Hymenoptera: Eulophidae) and of its Rickettsia endosymbiont, and associated sex-ratio differences. PLoS ONE 10, e0124660. https://doi.org/10.1371/journal.pone.0124660 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Nugnes, F., Bernardo, U. & Viggiani, G. An integrative approach to species discrimination in the Anagrus atomus group sensu stricto (Hymenoptera: Mymaridae), with a description of a new species. Syst. Biodivers. 15, 582–599. https://doi.org/10.1080/14772000.2017.1299811 (2017).Article 

    Google Scholar 
    Packer, L., Gibbs, J., Sheffield, C. & Hanner, R. DNA barcoding and the mediocrity of morphology. Mol. Ecol. Resour. 9, 42–50. https://doi.org/10.1111/j.1755-0998.2009.02631.x (2009).Article 
    PubMed 

    Google Scholar 
    Dayrat, B. Towards integrative taxonomy. Biol. J. Linn. Soc. 85, 407–415 (2005).Article 

    Google Scholar 
    Hebert, P. D. N. & Gregory, T. R. The promise of DNA barcoding for taxonomy. Syst. Biol. 54, 852–859. https://doi.org/10.1080/10635150500354886 (2005).Article 
    PubMed 

    Google Scholar 
    Faccoli, M., Simonato, M. & Rassati, D. Life history and geographical distribution of the walnut twig beetle, Pityophthorus juglandis (Coleoptera: Scolytinae), in southern Europe. J. Appl. Entomol. 140, 697–705. https://doi.org/10.1111/jen.12299 (2016).Article 

    Google Scholar 
    Verheggen, F. et al. Walnut husk fly, Rhagoletis completa (Diptera: Tephritidae), invades Europe: Invasion potential and control strategies. Appl. Entomol. Zool. 52, 1–7. https://doi.org/10.1007/s13355-016-0459-7 (2017).Article 

    Google Scholar 
    Gargiulo, S. et al. Insetti endemici e nuove invasioni: il complicato quadro dei fitofagi del noce. Entomata. 15, 73–83 (2021).
    Google Scholar 
    de Benedetta, F. et al. Carpophilus dimidiatus, nuova minaccia per la nocicoltura. Inf. Agr. 17, 57–59 (2020).
    Google Scholar 
    Dobson, R. M. The species of Carpophilus Stephens (Col. Nitidulidae) associated with stored products. Bull. Entomol. Res. 45, 389–402 (1954).Article 

    Google Scholar 
    Audisio, P. Coleoptera: Nitidulidae – Kateretidae. Coleoptera Nitidulidaee Kateretidae Carpophilinae in Fauna d’Italia XXXII 226–269 (Calderini, 1993).Powell, G. S., Cline, A. R., Duffy, A. G. & Zaspel, J. M. Phylogeny and reclassification of Carpophilinae (Coleoptera: Nitidulidae), with insights into the origins of anthophily. Zool. J. Linn. Soc. 189, 1359–1369. https://doi.org/10.1093/zoolinnean/zlaa001 (2020).Article 

    Google Scholar 
    Bartelt, R. & Hossain, M. Chemical ecology of Carpophilus sap beetles (Coleoptera: Nitidulidae) and development of an environmentally friendly method of crop protection. Terr. Arthropod. Rev. 3, 29–61. https://doi.org/10.1163/187498310×489981 (2010).Article 

    Google Scholar 
    Audisio, P. Fauna Europaea: Coleoptera, Carpophilinae, Carpophilus in Fauna Europaea version 2021.07 https://fauna-eu.org/ (2021).Tremblay, E., Espinosa, B. & Baldini, C. Dannosità dei Carpofili (Coleoptera: Nitidulidae) alle pesche in Campania. Inf. Fitopatol. 34, 43–45 (1984).
    Google Scholar 
    Reales, N. et al. Morphological and molecular identification of Carpophilus dimidiatus (Coleoptera: Nitidulidae) associated with stored walnut in Northwestern Argentina. J. Stored Prod. Res. 76, 37–42. https://doi.org/10.1016/j.jspr.2017.12.002 (2018).Article 
    ADS 

    Google Scholar 
    Hossain, M. Management of Carpophilus Beetle in Almonds. Hort Innovation – Final Report Project #A:1–93 (2018).Powell, G. S. & Hamilton, M. L. Notes on the Carpophilus Stephens (Coleoptera: Nitidulidae) of Australia, with a new species from Victoria. Zootaxa 4701, 192–196. https://doi.org/10.1017/S0009840X0002730X (2019).Article 

    Google Scholar 
    Boston, W., Leemon, D. & Cunningham, J. P. Virulence screen of Beauveria bassiana isolates for Australian Carpophilus (Coleoptera: Nitidulidae) beetle biocontrol. Agronomy 10, 1207. https://doi.org/10.3390/agronomy10081207 (2020).Article 

    Google Scholar 
    Connell, W.A. A key to Carpophilus sap beetle associated with stored foods in the United States (Coleoptera: Nitidulidae). Department of Agriculture Cooperative Plant Pest Reports 23, 398–404 (1977).Brown, S. D. J., Armstrong, K. F. & Cruickshank, R. H. Molecular phylogenetics of a South Pacific sap beetle species complex (Carpophilus spp., Coleoptera: Nitidulidae). Mol. Phylogenetics Evol. 64, 428–440. https://doi.org/10.1016/j.ympev.2012.04.018 (2012).Article 

    Google Scholar 
    Leica Application Suite software version 3.8.0; Leica: Switzerland, (2011).Murray, A. X. I. I. I. Monograph of the family of Nitidulariae. Trans. Linn. Soc. Lond. 24, 211–414. https://doi.org/10.1111/j.1096-3642.1863.tb00163.x (1864).Article 

    Google Scholar 
    Gillogly, L. R. Insects of Micronesia Coleoptera: Nitidulidae*. Insects Micronesia 16, 133–188 (1962).
    Google Scholar 
    Connell, W.A. Sap Beetles (Nitidulidae, Coleoptera). in Insect and Mite pests in food, an illustrated key. 151–174 (1991).DiLorenzo, C.L., Powell, G.S., Cline, A.R. & McHugh, J.V. Carpophiline-ID, a taxonomic web resource for the identification of Carpophilinae (Nitidulidae) of eastern North America. (2021a). https://site.caes.uga.edu/carpophiline-id/DiLorenzo, C. L., Powell, G. S., Cline, A. R. & McHugh, J. V. Carpophiline-ID: An interactive matrix-based key to the Carpophiline sap beetles (Coleoptera, Nitidulidae) of Eastern North America. ZooKeys 1028, 85–93. https://doi.org/10.3897/zookeys.1024.59467 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Motschulsky, V. Insectes des Indes orientales. Etudes entomologiques 7, 20–122 (1858).
    Google Scholar 
    Fall, H. C. Miscellaneous notes and descriptions of North American Coleoptera. Am. Entomol. Soc. 36, 89–197 (1910).
    Google Scholar 
    Dobson, R. M. A new species of Carpophilus Stephens (Col. Nitidulidae) found on stored produce. Entomol’s Mon. Mag. 90, 299–300 (1954).
    Google Scholar 
    Connell, W. A. Carpophilus pilosellus Motschulsky, new synonymy and distribution (Coleoptera: Nitidulidae). Coleopt. Bull. 17, 89–90 (1963).
    Google Scholar 
    Kirejtshuk, A.G. Some results of study on the Nitidulidae from Namibia and adjacent territories. Part 1 Coleoptera, Cucujoidea, Nitidulidae. Mitteilungen aus dem Museum für Naturkunde in Berlin Zoologisches Museum und Institut für Spezielle Zoologie (Berlin) 72, 21–52, https://doi.org/10.1002/mmnz.19960720106 (1996).Wang, D., Bai, X., Zhou, Y., Zhao, Y. Illustrated book of stored grain insects in China. 63–66 (China Press, 2008).Brown, S.D.J. Molecular systematics and colour variation of Carpophilus species (Coleoptera: Nitidulidae) of the South Pacific. Dissertation, Lincoln University (2009).Dasgupta, J., Pal, T. K. & Powell, G. S. Taxonomy of Carpophilinae (Coleoptera: Nitidulidae) from Tripura, India with a new species. Annal. Zool. 71, 627–649. https://doi.org/10.3161/00034541ANZ2021.71.3.003 (2021).Article 

    Google Scholar 
    Gebiola, M. et al. Pnigalio agraules (Walker) and Pnigalio mediterraneus Ferrière and Delucchi (Hymenoptera: Eulophidae): Two closely related valid species. J. Nat. Hist. 43, 2465–2480. https://doi.org/10.1080/00222930903105088 (2009).Article 

    Google Scholar 
    Folmer, R. H. A., Nilges, M., Folkers, P. J. M., Konings, R. N. H. & Hilbers, C. W. A model of the complex between single-stranded DNA and the single-stranded DNA binding protein encoded by gene V of filamentous bacteriophage M13. J. Mol. Biol. 240(4), 341–357 (1994).Article 
    PubMed 
    CAS 

    Google Scholar 
    Simon, C. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701. https://doi.org/10.1093/aesa/87.6.651 (1994).Article 
    CAS 

    Google Scholar 
    Schulmeister, S., Wheeler, W. C. & Carpenter, J. M. Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics 18, 455–484. https://doi.org/10.1111/j.1096-0031.2002.tb00287.x (2002).Article 
    PubMed 

    Google Scholar 
    Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 1–11. https://doi.org/10.1186/1471-2105-13-134 (2012).Article 
    CAS 

    Google Scholar 
    Campbell, B. C., Steffen-Campbell, J. D. & Werren, J. H. Phylogeny of the Nasonia species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect. Mol. Biol. 2, 225–237. https://doi.org/10.1111/j.1365-2583.1994.tb00142.x (1994).Article 

    Google Scholar 
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Edler, D., Klein, J., Antonelli, A. & Silvestro, D. RaxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 12, 373–377. https://doi.org/10.1111/2041-210X.13512 (2021).Article 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61(3), 539–542 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods. 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. Partition Finder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).Article 
    PubMed 
    CAS 

    Google Scholar 
    Rambaut, A., FigTree v1.4.2, A Graphical Viewer of Phylogenetic Trees. http://tree.bio.ed.ac.uk/software/figtree/ (2014).Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729. https://doi.org/10.1093/molbev/mst197 (2013).Article 
    CAS 

    Google Scholar 
    Kingman, J. F. C. The coalescent. Stoch. Process. Appl. 13, 235–248. https://doi.org/10.1016/0304-4149(82)90011-4 (1982).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Austerlitz, F. et al. DNA barcode analysis: A comparison of phylogenetic and statistical classification methods. BMC Bioinform. 10, 1–13. https://doi.org/10.1186/1471-2105-10-S14-S10 (2009).Article 
    CAS 

    Google Scholar 
    Grewe, P. M. et al. Mitochondrial DNA variation among lake trout (Salvelinus namaycush) strains stocked into Lake Ontario. Can. J. Fish. Aquat. Sci. 50, 2397–2403. https://doi.org/10.1139/f93-264 (1993).Article 

    Google Scholar 
    Rossmo, D.K. Geographic profiling. CRC press, 1–378 (1999).Le Comber, S. C. et al. Geographic profiling as a novel spatial tool for targeting infectious disease control. Int. J. Health Geogr. 10, 1–8. https://doi.org/10.1186/1476-072X-10-35 (2011).Article 

    Google Scholar 
    Stevenson, M. D., Rossmo, D. K., Knell, R. J. & Le Comber, S. C. Geographic profiling as a novel spatial tool for targeting the control of invasive species. Ecography 35, 704–715. https://doi.org/10.1111/j.1600-0587.2011.07292.x (2012).Article 

    Google Scholar 
    Gutiérrez, D. & Menéndez, R. Patterns in the distribution, abundance and body size of carabid beetles (Coleoptera: Caraboidea) in relation to dispersal ability. J. Biogeogr. 24, 903–914. https://doi.org/10.1046/j.1365-2699.1997.00144.x (1997).Article 

    Google Scholar 
    Canter, D., Coffey, T., Huntley, M. & Missen, C. Predicting serial killers’ home base using a decision support system. J. Quant. Criminol. 16, 457–478. https://doi.org/10.1023/A:1007551316253 (2000).Article 

    Google Scholar 
    Muirhead, J. R. et al. Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America. Divers. Distrib. 12, 71–79. https://doi.org/10.1111/j.1366-9516.2006.00218.x (2006).Article 

    Google Scholar 
    Marchioro, M. & Faccoli, M. Dispersal and colonization risk of the walnut twig beetle, Pityophthorus juglandis, in southern Europe. J. Pest Sci. 95, 303–313. https://doi.org/10.1007/s10340-021-01372-5 (2022).Article 

    Google Scholar 
    Meurisse, N. & Pawson, S. Quantifying dispersal of a non-aggressive saprophytic bark beetle. PLoS ONE 12, 1–24. https://doi.org/10.1371/journal.pone.0174111 (2017).Article 
    CAS 

    Google Scholar 
    Papini, A. et al. The use of jackknifing for the evaluation of geographic profiling reliability. Ecol. Inform. 38, 76–81. https://doi.org/10.1016/j.ecoinf.2017.02.001 (2017).Article 

    Google Scholar 
    Statgraphics Plus Version 3.0; Manugistics: Rockville, MD, USA, (1997).Bagnaia, R. et al. Carta della Natura della Regione Campania: Carta degli habitat alla scala 1:25.000. ISPRA (2017).Martoni, F., Piper, A. M., Rodoni, B. C. & Blacket, M. J. Disentangling bias for non-destructive insect metabarcoding. PeerJ 10, e12981. https://doi.org/10.7717/peerj.12981 (2022).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Jelinek, J. & Audisio, P. Elateroidea, Derodontoidea, Bostrichoidea, Lymexyloidea, Cleroidea and Cucujoidea in Catalogue of Palaearctic Coleoptera. 459–490 (Apollo Books, 2007)Mbenoun, M., Garnas, J. R., Wingfield, M. J., Begoude Boyogueno, A. D. & Roux, J. Metacommunity analyses of Ceratocystidaceae fungi across heterogeneous African savanna landscapes. Fungal Ecol. 28, 76–85. https://doi.org/10.1016/j.funeco.2016.09.007 (2017).Article 

    Google Scholar 
    Norris, L. C. & Norris, D. E. Phylogeny of anopheline (Diptera: Culicidae) species in southern Africa, based on nuclear and mitochondrial genes. J. Vector Ecol. 40, 16–27. https://doi.org/10.1111/jvec.12128 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernardo, U. et al. A new gall midge species of Asphondylia (Diptera: Cecidomyiidae) inducing flower galls on Clinopodium nepeta (Lamiaceae) from Europe, its phenology, and associated fungi. Environ. Entomol. 47, 609–622. https://doi.org/10.1093/ee/nvy028 (2018).Article 
    PubMed 

    Google Scholar 
    Bernardo, U. et al. An integrative study on Asphondylia spp. (Diptera: Cecidomyiidae), causing flower galls on Lamiaceae, with description, phenology, and associated fungi of two new species. Insetcs 12, 958. https://doi.org/10.3390/insects12110958 (2021).Article 

    Google Scholar 
    Wacławik, B. et al. An integrative revision of the subgenus Liophloeodes (Coleoptera: Curculionidae: Entiminae: Polydrusini): taxonomic, systematic, biogeographic and evolutionary insights. Arthropod Syst. Phylogeny. 79, 419–441. https://doi.org/10.3897/asp.79.e64252 (2021).Article 

    Google Scholar 
    Colautti, R. I. & MacIsaac, H. J. A neutral terminology to define ‘invasive’ species. Divers Distrib. 10, 135–141 (2004).Article 

    Google Scholar 
    Crooks, J. A. Lag times and exotic species: The ecology and management of biological invasions in slow-motion. Ecoscience 12, 316–329. https://doi.org/10.2980/i1195-6860-12-3-316.1 (2005).Article 

    Google Scholar 
    Jelínek, J. et al. Epuraea imperialis (Reitter, 1877). New invasive species of Nitidulidae (Coleoptera) in Europe, with a checklist of Sap Beetles introduced to Europe and Mediterranean areas. APP | Physical, Math. Nat. Sci. Accademia Peloritana dei Pericolanti, 94, 1–24, https://doi.org/10.1478/AAPP.942A4 (2016).Benchi, D., Conelli, L. & Bernardo, U. L. mosca delle noci minaccia le produzioni campane. Inf Agr. 66, 74–76 (2010).
    Google Scholar 
    Pollini, A. Entomologia Applicata. (Edagricole, 2013).Van Steenwyk, R.A. et al. Walnut husk fly control with reduced risk insecticides. Acta Hortic 861, 375–382, https://doi.org/10.17660/ActaHortic.2010.861.5 (2010).EU (2019). Commission Implementing Regulation (EU) 2019/2072 of 28 November 2019 establishing uniform conditions for the implementation of Regulation (EU) 2016/2031 of the European Parliament and the Council, as regards protective measures against pests of plants, and repealing Commission Regulation (EC) No 690/2008 and amending Commission Implementing Regulation (EU) 2018/2019. Off. j. Eur. Union, Legis., L 319/1, 1–279. Retrieved from https://eur-lex.europa.eu/eli/reg_impl/2019/2072/ojRusso, E. et al. Biological and molecular characterization of Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae), an emerging pest of stone fruits in Europe. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-020-63959-9 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hsu, F. et al. Introduction of a non-native lineage is linked to the recent black cocoa ant, Dolichoderus thoracicus (Smith, 1860), outbreaks in Taiwan. Taiwania 67, 271–279. https://doi.org/10.6165/tai.2022.67.271 (2022).Article 

    Google Scholar 
    Porter, J. Some studies on the life history and oviposition of Carpophilus dimidiatus (F.) (Coleoptera: Nitidulidae) at various temperatures and humidities. J. Stored Prod. Res. 22, 135–139. https://doi.org/10.1016/0022-474X(86)90006-8 (1986).Article 
    ADS 

    Google Scholar 
    Potter, M. A. et al. A survey of sap beetles (Coleoptera: Nitidulidae) in strawberry fields in West Central Florida. Fla. Entomol. 96, 1188–1189. https://doi.org/10.1653/024.096.0363 (2013).Article 

    Google Scholar 
    Burks, C.S., Yasin, M., El-Shafie, H.A.F. & Wakil, W. Pests of stored dates in Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges (eds Wakil, W., Romeno Faleiro J., Miller, T.A.) 237–286 (Springer, Zürich, Switzerland, 2015). https://doi.org/10.1007/978-3-319-24397-9Akşit, T., Özsemerci, F. & Çakmak, İ. Studies on determination of harmful fauna in the fig orchards in Aydin province (Turkey). Türkiye Entomoloji Dergisi 27, 181–189 (2003).
    Google Scholar  More

  • in

    Carcass appearance does not influence scavenger avoidance of carnivore carrion

    DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
    Google Scholar 
    Wilson, E. E. & Wolkovich, E. M. Scavenging: How carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).PubMed 

    Google Scholar 
    Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).ADS 
    PubMed 

    Google Scholar 
    Benbow, M. E. et al. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol. Monogr. 89, e01331 (2019).
    Google Scholar 
    Carter, D. O., Yellowlees, D. & Tibbett, M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94, 12–24 (2007).ADS 
    PubMed 
    CAS 

    Google Scholar 
    Bump, J. K., Peterson, R. O. & Vucetich, J. A. Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90, 3159–3167 (2009).PubMed 

    Google Scholar 
    Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological role of vertebrate scavengers. In Carrion Ecology, Evolution, and Their Applications (eds Benbow, E. M. et al.) 107–127 (CRC Press, 2015).
    Google Scholar 
    DeVault, T. L., Brisbin, I. L. Jr. & Rhodes, O. E. Jr. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).
    Google Scholar 
    Moleón, M., Sánchez-Zapata, J. A., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403 (2015).
    Google Scholar 
    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed 

    Google Scholar 
    Selva, N. The Role of Scavenging in the Predator Community of Białowieża Primeval Forest (E Poland) (Univeristy of Sevilla, 2004).
    Google Scholar 
    Moleón, M. et al. Carnivore carcasses are avoided by carnivores. J. Anim. Ecol. 86, 1179–1191 (2017).PubMed 

    Google Scholar 
    Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. R. Soc. B Biol. Sci. 274, 1101–1108 (2007).
    Google Scholar 
    Abernethy, E. F. et al. Carcasses of invasive species are predominantly utilized by invasive scavengers in an island ecosystem. Ecosphere 7, e01496 (2016).
    Google Scholar 
    DeVault, T. L., Seamans, T. W., Linnell, K. E., Sparks, D. W. & Beasley, J. C. Scavenger removal of bird carcasses at simulated wind turbines: Does carcass type matter?. Ecosphere 8, e01994 (2017).
    Google Scholar 
    Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, e0147798 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Muñoz-Lozano, C. et al. Avoidance of carnivore carcasses by vertebrate scavengers enables colonization by a diverse community of carrion insects. PLoS ONE 14, e0221890 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Peers, M. J. L. et al. Vertebrate scavenging dynamics differ between carnivore and herbivore carcasses in the northern boreal forest. Ecosphere 12, e03691 (2021).
    Google Scholar 
    Pfennig, D. W. Effect of predator-prey phylogenetic similarity on the fitness consequences of predation: A trade-off between nutrition and disease?. Am. Nat. 155, 335–345 (2000).PubMed 

    Google Scholar 
    Polis, G. A. The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Syst. 12, 225–251 (1981).
    Google Scholar 
    Elgar, M. A. & Crespi, B. J. Cannibalism: Ecology and Evolution Among Diverse Taxa (Oxford University Press, 1992).
    Google Scholar 
    Fouilloux, C., Ringler, E. & Rojas, B. Cannibalism. Curr. Biol. 29, R1295–R1297 (2019).PubMed 
    CAS 

    Google Scholar 
    Oliva-Vidal, P., Tobajas, J. & Margalida, A. Cannibalistic necrophagy in red foxes: Do the nutritional benefits offset the potential costs of disease transmission?. Mamm. Biol. https://doi.org/10.1007/s42991-021-00184-5 (2021).Article 

    Google Scholar 
    Mateo, J. M. Recognition systems and biological organization: The perception component of social recognition. Ann. Zool. Fenn. 41, 729745 (2004).
    Google Scholar 
    Dangles, O., Irschick, D., Chittka, L. & Casas, J. Variability in sensory ecology: Expanding the bridge between physiology and evolutionary biology. Q. Rev. Biol. 84, 51–74 (2009).PubMed 

    Google Scholar 
    Janzen, D. H. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 111, 691–713 (1977).CAS 

    Google Scholar 
    Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).PubMed 
    CAS 

    Google Scholar 
    Gonzálvez, M., Martínez-Carrasco, C., Sánchez-Zapata, J. A. & Moleón, M. Smart carnivores think twice: red fox delays scavenging on conspecific carcasses to reduce parasite risk. Appl. Anim. Behav. Sci. 243, 105462 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Selva, N., Jedrzejewska, B., Jedrzejewski, W. & Wajrak, A. Scavenging on European bison carcasses in Bialowieza Primeval Forest (eastern Poland). Écoscience 10, 303–311 (2003).
    Google Scholar 
    Carr, W. J., Hirsch, J. T., Campellone, B. E. & Marasco, E. Some determinants of a natural food aversion in Norway rats. J. Comp. Physiol. Psychol. 93, 899–906 (1979).
    Google Scholar 
    Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E. & Brashares, J. S. Landscapes of fear: Spatial patterns of risk perception and response. Trends Ecol. Evol. 34, 355–368 (2019).PubMed 

    Google Scholar 
    Moleón, M. & Sánchez-Zapata, J. A. The role of carrion in the landscapes of fear and disgust: a review and prospects. Diversity 13, 28 (2021).
    Google Scholar 
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (Springer, 2022).
    Google Scholar 
    Hothorn, T., Winell, H., Hornik, K., van de Wiel, M. A. & Zeileis, A. Coin: Conditional Inference Procedures in a Permutation Test Framework (Springer, 2021).
    Google Scholar 
    Owings, C. G., Gilhooly, W. P. & Picard, C. J. Blow fly stable isotopes reveal larval diet: A case study in community level anthropogenic effects. PLoS ONE 16, e0249422 (2021).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Matuszewski, S., Konwerski, S., Frątczak, K. & Szafałowicz, M. Effect of body mass and clothing on decomposition of pig carcasses. Int. J. Legal Med. 128, 1039–1048 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Cunningham, C. X. et al. Top carnivore decline has cascading effects on scavengers and carrion persistence. Proc. R. Soc. B. 285, 1–10 (2018).
    Google Scholar 
    Huang, S., Bininda-Emonds, O. R. P., Stephens, P. R., Gittleman, J. L. & Altizer, S. Phylogenetically related and ecologically similar carnivores harbour similar parasite assemblages. J. Anim. Ecol. 83, 671–680 (2014).PubMed 

    Google Scholar 
    Hill, D. E., Chirukandoth, S. & Dubey, J. P. Biology and epidemiology of Toxoplasma gondii in man and animals. Anim. Health Res. Rev. 6, 41–61 (2005).PubMed 

    Google Scholar 
    Hill, D. E. et al. Trichinella murrelli in scavenging mammals from south-central Wisconsin, USA. J. Wildl. Dis. 44, 629–635 (2008).PubMed 
    CAS 

    Google Scholar 
    Sandfoss, M., DePerno, C., Patton, S., Flowers, J. & Kennedy-Stoskopf, S. Prevalence of antibody to Toxoplasma gondii and Trichinella spp. in feral pigs (Sus scrofa) of eastern North Carolina. J. Wildl. Dis. 47, 338–343 (2011).PubMed 

    Google Scholar 
    Butler, J. R. A., du Toit, J. T. & Bingham, J. Free-ranging domestic dogs (Canis familiaris) as predators and prey in rural Zimbabwe: Threats of competition and disease to large wild carnivores. Biol. Conserv. 115, 369–378 (2004).
    Google Scholar 
    Mendenhall, I. H. et al. Evidence of canine parvovirus transmission to a civet cat (Paradoxurus musangus) in Singapore. One Health 2, 122–125 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Han, B. A., Castellanos, A. A., Schmidt, J. P., Fischhoff, I. R. & Drake, J. M. The ecology of zoonotic parasites in the Carnivora. Trends Parasitol. 37, 1096–1110 (2021).PubMed 

    Google Scholar 
    Malmberg, J. L., White, L. A. & VandeWoude, S. Bioaccumulation of pathogen exposure in top predators. Trends Ecol. Evol. 36, 411–420 (2021).PubMed 

    Google Scholar 
    Mammal Diversity Database (Version 1.9). https://doi.org/10.5281/zenodo.6407053 (2022).Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Digby, Z. et al. Evolutionary loss of inflammasomes in the Carnivora and implications for the carriage of zoonotic infections. Cell Rep. 36, 109614 (2021).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Buck, J. C., Weinstein, S. B. & Young, H. S. Ecological and evolutionary consequences of parasite avoidance. Trends Ecol. Evol. 33, 619–632 (2018).PubMed 
    CAS 

    Google Scholar 
    Hart, B. L. & Hart, L. A. How mammals stay healthy in nature: The evolution of behaviours to avoid parasites and pathogens. Philos. Trans. R. Soc. B 373, 20170205 (2018).
    Google Scholar 
    Brown, C. J. & Plug, I. Food choice and diet of the bearded vulture Gypaetus barbatus in southern Africa. S. Afr. J. Zool. 25, 169–177 (1990).
    Google Scholar 
    Rossi, L., Interisano, M., Deksne, G. & Pozio, E. The subnivium, a haven for Trichinella larvae in host carcasses. Int. J. Parasitol. Parasit. Wildl. 8, 229–233 (2019).
    Google Scholar 
    Micozzi, M. S. Experimental study of postmortem change under field conditions: Effects of freezing, thawing, and mechanical injury. J. Forensic Sci. 31, 953–961 (1986).PubMed 
    CAS 

    Google Scholar 
    Mayntz, D. & Toft, S. Nutritional value of cannibalism and the role of starvation and nutrient imbalance for cannibalistic tendencies in a generalist predator. J. Anim. Ecol. 75, 288–297 (2006).PubMed 

    Google Scholar 
    Margalida, A. Bearded vultures (Gypaetus barbatus) prefer fatty bones. Behav. Ecol. Sociobiol. 63, 187–193 (2008).
    Google Scholar 
    Parmenter, R. R. & MacMahon, J. A. Carrion decomposition and nutrient cycling in a semiarid shrub–steppe ecosystem. Ecol. Monogr. 79, 637–661 (2009).
    Google Scholar 
    Evans, B. E., Mosby, C. E. & Mortelliti, A. Assessing arrays of multiple trail cameras to detect North American mammals. PLoS ONE 14, 1–18 (2019).
    Google Scholar 
    Ivan, J. S. & Newkirk, E. S. CPW Photo Warehouse: A custom database to facilitate archiving, identifying, summarizing and managing photo data collected from camera traps. Methods Ecol. Evol. 7, 499–504 (2016).
    Google Scholar 
    Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, 2000).MATH 

    Google Scholar 
    Kassambara, A., Kosinski, M. & Biecek, P. survminer: Drawing Survival Curves Using ‘ggplot2’ (Springer, 2020).
    Google Scholar 
    Nenadic, O. & Greenacre, M. Correspondence analysis in R, with two- and three-dimensional graphics: the ca package. J. Stat. Softw. 20, 1–13 (2007).
    Google Scholar 
    Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses (Springer, 2020).
    Google Scholar 
    Greenacre, M. The contributions of rare objects in correspondence analysis. Ecology 94, 241–249 (2013).PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
    Google Scholar  More

  • in

    First report of glyphosate-resistant downy brome (Bromus tectorum L.) in Canada

    Powles, S. B. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Manage. Sci. 64, 360–365 (2008).CAS 

    Google Scholar 
    Bradshaw, L. D., Padgette, S. R., Kimball, S. L. & Wells, B. J. Perspectives on glyphosate resistance. Weed Technol. 11, 189–198 (1997).CAS 

    Google Scholar 
    Duke, S. O. & Powles, S. B. Glyphosate: A once-in-a-century herbicide. Pest Manage. Sci. 64, 319–325 (2008).CAS 

    Google Scholar 
    Baek, Y., Bobadilla, L. K., Giacomini, D. A., Montgomery, J. S., Murphy, B. P. & Tranel, P. J. Evolution of glyphosate-resistant weeds In Reviews of Environmental Contamination and Toxicology Volume 225 (ed. Knaak, J. B.) 93–128 (Cham, CH: Springer Nature Switzerland AG 2021).Heap, I. The international herbicide-resistant weed database www.weedscience.org (2022).Beckie, H. J. et al. A decade of herbicide-resistant crops in Canada. Can. J. Plant Sci. 61, 1243–1264 (2006).
    Google Scholar 
    Geddes, C. M. Glyphosate overreliance threatens no-till agriculture: Is kochia a canary in the coal mine? In Proceedings of the 2019 ASA-CSSA-SSSA International Annual Meeting https://scisoc.confex.com/scisoc/2019am/meetingapp.cgi/Paper/121120 (San Antonio, TX: ASA-CSSA-SSSA, 2019).Alberta Environment and Parks. Overview of 2018 pesticide sales in Alberta https://open.alberta.ca/publications/9781460148167 (Government of Alberta ISBN 978-1-4601-4816-7, 2020).Statistics Canada. Table 32-10-0359-01: Estimated areas, yield, production, average farm price and total farm value of principal field crops, in metric and imperial units https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210035901 (2022).Brunharo, C. A. C. G. et al. Western United States and Canada perspective: Are herbicide-resistant crops the solution to herbicide-resistant weeds? Weed Sci. 66, 272–286 (2022).
    Google Scholar 
    Canadian Grain Commission. Grain varieties by acreage insured https://www.grainscanada.gc.ca/en/grain-research/statistics/varieties-by-acreage/ (2022).Statistics Canada. Table 32-10-0408-01: Tillage and seeding practices, Census of Agriculture, 2021 and 2016 https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210040801 (2022).Upadhyaya, M. K., McIlvride, D. & Turkington, R. The biology of Canadian weeds: 75. Bromus tectorum L.. Can. J. Plant Sci. 66, 689–709 (1986).
    Google Scholar 
    Hedrick, D. W. History of cheatgrass – present geographical range and importance of cheatgrass in management of rangelands. In Cheatgrass Symposium. 13–16 (Portland, OR: US Dep. Int., Bur. Land Manage., 1965).Mack, R. N. Invasion of Bromus tectorum L. into western North America: An ecological chronicle. Agro-Ecosystems 7, 145–165 (1981).
    Google Scholar 
    Mitich, L. W. Downy brome, Bromus tectorum L. Weed Technol. 13, 664–668 (1999).
    Google Scholar 
    Morrow, L. A. & Stahlman, P. W. The history and distribution of downy brome (Bromus tectorum) in North America. Weed Sci. 32, 2–6 (1984).
    Google Scholar 
    Pellant, M. & Hall, C. Distribution of two exotic grasses on public lands in the Great Basin: status in 1992. In Proceedings–Ecology and Management of Annual Rangelands. (eds. Monsen, S. B. & Kitchen, S. G.) 109–112 (Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Research Station, General Technical Report INT-GTR-313, 1994).Leeson, J. Y., Hall, L. M. Neeser, C., Tidemann, B., & Harker, K. N. Alberta survey of annual crops in 2017. (Saskatoon, SK: Agriculture and Agri-Food Canada Weed Survey Series Publ. 19–1, 2019).Douglas, B., Thomas, A. & Derksen, D. Downy brome (Bromus tectorum) invasion into southwestern Saskatchewan. Can. J. Plant Sci. 70, 1143–1151 (1990).
    Google Scholar 
    Miller, Z. J., Menalled, F. D. & Burrows, M. Winter annual grassy weeds increase over-winter mortality in autumn-sown wheat. Weed Res. 53, 102–109 (2013).
    Google Scholar 
    Rydrych, D. J. & Muzik, T. K. Downy brome competition and control in dryland wheat. Agron. J. 60, 279–280 (1968).
    Google Scholar 
    Stahlman, P. W. & Miller, S. D. Downy brome (Bromus tectorum) interference and economic thresholds in winter wheat (Triticum aestivum). Weed Sci. 38, 224–228 (1990).
    Google Scholar 
    Blackshaw, R. E. Downy brome (Bromus tectorum) density and relative time of emergence affects interference in winter wheat (Triticum aestivum). Weed Sci. 41, 551–556 (1993).
    Google Scholar 
    Johnson, E. N. et al. Pyroxasulfone is effective for management of Bromus spp. in winter wheat in Western Canada. Weed Technol. 32, 739–748 (2018).
    Google Scholar 
    Kumar, V., Jha, P. & Jhala, A. J. Using pyroxasulfone for downy brome (Bromus tectorum L.) control in winter wheat. Am. J. Plant Sci. 8, 2367–2378 (2017).CAS 

    Google Scholar 
    Ostlie, M. H. & Howatt, K. A. Downy brome (Bromus tectorum) competition and control in no-till spring wheat. Weed Technol. 27, 502–508 (2013).CAS 

    Google Scholar 
    Steward, G. & Hull, A. C. Cheatgrass (Bromus tectorum L.) – An ecological intruder in southern Idaho. Ecology 30, 57–74 (1949).
    Google Scholar 
    Hulbert, L. C. Ecological studies of Bromus tectorum and other annual brome grasses. Ecol. Monogr. 25, 181–213 (1955).
    Google Scholar 
    Young, J. A. & Evans, R. A. Population dynamics after wildfires in sagebrush grasslands. J. Range. Manag. 31, 283–289 (1978).
    Google Scholar 
    Mack, R. N. & Pyke, D. A. The demography of Bromus tectorum: Variation in time and space. J. Ecol. 71, 69–93 (1983).
    Google Scholar 
    Pyke, A. P. & Novak, S. J. Cheatgrass demography–establishment attributes, recruitment, ecotypes and genetic variability. In Proceedings–Ecology and Management of Annual Rangelands. (eds. Monsen, S. B. & Kitchen, S. G.) 12–21 (Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Research Station, General Technical Report INT-GTR-313, 1994).Burnside, O. C., Wilson, R. G., Weisberg, S. & Hubbard, K. G. Seed longevity of 41 weed species buried 17 years in eastern and western Nebraska. Weed Sci. 44, 74–86 (1996).CAS 

    Google Scholar 
    Smith, D. C., Meyer, S. E. & Anderson, V. J. Factors affecting Bromus tectorum seed bank carryover in western Utah. Rangel. Ecol. Manag. 61, 430–436 (2008).
    Google Scholar 
    Wicks, G. A. Survival of downy brome (Bromus tectorum) seed in four environments. Weed Sci. 45, 225–228 (1997).CAS 

    Google Scholar 
    Rydrych, D. J. Competition between winter wheat and downy brome. Weed Sci. 22, 211–214 (1974).
    Google Scholar 
    Sebastian, D. J., Nissen, S. J., Sebastian, J. R. & Beck, K. G. Seed bank depletion: The key to long-term downy brome (Bromus tectorum L.) management. Rangel. Ecol. Manage. 70, 477–483 (2017).
    Google Scholar 
    Asthana, P., Zuger, R. J., Brew-Appiah, R., Sanguinet, K. & Burke, I. EPSPS gene amplification confers glyphosate resistance in Bromus tectorum (Downy brome). In Proceedings of the 2020 Weed Science Society of America (WSSA)–Western Society of Weed Science Joint Meeting. 58 (Maui, HI: WSSA, 2020).Zuger, R. J. & Burke, I. C. Testing in Washington identifies widespread postemergence herbicide resistance in annual grasses. Crops Soils Mag. 53, 13–19 (2020).
    Google Scholar 
    Davies, L. R., Hull, R., Moss, S. & Neve, P. The first cases of evolving glyphosate resistance in UK poverty brome (Bromus sterilis) populations. Weed Sci. 67, 41–47 (2019).
    Google Scholar 
    Malone, J. M., Morran, S., Shirley, N., Boutsalis, P. & Preston, C. EPSPS gene amplification in glyphosate-resistant Bromus diandrus. Pest Manage. Sci. 72, 81–88 (2016).CAS 

    Google Scholar 
    Vázquez-García, J. G. et al. Glyphosate resistance confirmation and field management of red brome (Bromus rubens L.) in perennial crops grown in southern Spain. Agronomy 11, 535 (2021).
    Google Scholar 
    Park, K. W. & Mallory-Smith, C. A. Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Res. 44, 71–77 (2004).CAS 

    Google Scholar 
    Kumar, V. & Jha, P. First report of Ser653Asn mutation endowing high-level resistance to imazamox in downy brome (Bromus tectorum L.). Pest Manag. Sci. 73, 2585–2591 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Baerson, G. T. et al. Glyphosate resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129, 1265–1274 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaines, T. A. et al. Mechanism of resistance of evolved glyphosate-resistant palmer amaranth (Amaranthus palmeri). J. Agric. Food Chem. 59, 5886–5889 (2011).CAS 
    PubMed 

    Google Scholar 
    Jugulam, M. et al. Tandem amplification of a chromosomal segment harboring 5-enolpyruvylshikimate-3-phosphate synthase locus confers glyphosate resistance in Kochia scoparia. Plant Physiol. 166, 1200–1207 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Metier, E. P., Lehnhoff, E. A., Mangold, J., Rinella, M. J. & Rew, L. J. Control of downy brome (Bromus tectorum) and Japanese brome (Bromus japonicus) using glyphosate and four graminicides: Effects of herbicide rate, plant size, species, and accession. Weed Technol. 34, 284–291 (2020).
    Google Scholar 
    Reddy, S., Stahlman, P. & Geier, P. Downy brome (Bromus tectorum L.) and broadleaf weed control in winter wheat with acetolactate synthase-inhibiting herbicides. Agronomy 3, 340–348 (2013).CAS 

    Google Scholar 
    Blackshaw, R. E. Differential competitive ability of winter wheat cultivars against downy brome. Agron. J. 86, 649–654 (1994).
    Google Scholar 
    Blackshaw, R. E. Rotation affects downy brome (Bromus tectorum) in winter wheat (Triticum aestivum). Weed Technol. 8, 728–732 (1994).
    Google Scholar 
    Wicks, G. A. Integrated systems for control and management of downy brome (Bromus tectorum) in cropland. Weed Sci. 32, 26–31 (1984).CAS 

    Google Scholar 
    Anderson, R. L. Timing of nitrogen application affects downy brome (Bromus tectorum) growth in winter wheat. Weed Technol. 5, 582–585 (1991).
    Google Scholar 
    Blackshaw, R. E., Larney, F. J., Lindwall, C. W., Watson, P. R. & Derksen, D. A. Tillage intensity and crop rotation affect weed community dynamics in a winter wheat cropping system. Can. J. Plant Sci. 81, 805–813 (2001).
    Google Scholar 
    Evans, R. A. & Young, J. A. Microsite requirements of downy brome (Bromus tectorum) infestation and control on sagebrush rangelands. Weed Sci. 32, 13–17 (1984).
    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project https://qgis.org/en/site/ (2022).Sheldrake, T. Jr. & Boodley, J. W. Plant growing in light-weight artificial mixes. Acta Hortic. 4, 155–157 (1966).
    Google Scholar 
    Canadian Weed Science Society – Société Canadienne de Malherbologie (CWSS-SCM). Description of 0–100 rating scale for herbicide efficacy and phytotoxicity https://weedscience.ca/cwss_scm-rating-scale/ (2018).Littell, R. C., Milken, G. A., Stroup, W. W., Wolfinger, R. R. & Schabenberger, O. SAS for mixed models 2nd edn. (SAS Institute Inc., 2006).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (Vienna, Austria: R Foundation for Statistical Computing, 2019).Ritz, C., Baty, F., Streibig, F. C. & Gerhard, D. Dose-response analysis using R. PLoS ONE 10, e0146021 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Seefeldt, S. S., Jensen, J. E. & Fuerst, E. P. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9, 218–227 (1995).
    Google Scholar  More

  • in

    The diel vertical distribution and carbon biomass of the zooplankton community in the Caroline Seamount area of the western tropical Pacific Ocean

    Roemmich, D. & Mcgowan, J. Climatic warming and the decline of zooplankton in the California current. Science 267(5202), 1324–1326 (1995).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–507 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Irigoien, X., Huisman, J. & Harris, R. P. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–867 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ware, D. M. & Thomson, R. E. Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific. Science 308(5726), 1280–1284 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Beaugrand, G., Edwards, M. & Legendre, L. Marine biodiversity, ecosystem functioning, and carbon cycles. Proc. Natl. Acad. Sci. 107, 10120–10124 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ewald, W. F. Über Orientierung Lokomotion und Lichtreaktionen einiger Cladoceren und deren Bedeutung für die Theorie der Tropismen. Biol. Zentralblatt 30, 1–16 (1910).
    Google Scholar 
    Dam, H. G., Roman, M. R. & Youngbluth, M. J. Downward export of respiratory carbon and dissolved nitrogen by diel-migrant mesozooplankton at the JGOFS Bermuda time-series station. Deep Sea Res. Part I Oceanogr. Res. Pap. 42, 1187–1197 (1995).ADS 
    CAS 

    Google Scholar 
    Morales, C. E. Carbon and nitrogen fluxes in the ocean: the contribution by zooplankton migrants to active transport in the North Atlantic during the Joint Global Flux Study. J. Plankton Res. 21, 1799–1808 (1999).
    Google Scholar 
    Steinberg, D. K., Cope, J. S., Wilson, S. E. & Kobari, T. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 55(14–15), 1615–1635 (2008).ADS 

    Google Scholar 
    Brugnano, C., Granata, A., Guglielmo, L. & Zagami, G. Spring diel vertical distribution of copepod abundances and diversity in the open Central Tyrrhenian Sea (Western Mediterranean). J. Mar. Syst. 105, 207–220 (2012).
    Google Scholar 
    Werner, T. & Buchholz, F. Diel vertical migration behaviour in Euphausiids of the northern Benguela current: seasonal adaptations to food availability and strong gradients of temperature and oxygen. J. Plankton Res. 35(4), 792–812 (2013).CAS 

    Google Scholar 
    Palmer, M. R. & Pearson, P. N. A 23,000-year record of surface water pH and PCO2 in the western equatorial Pacific Ocean. Science 300(5618), 480–482 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Nino. Nat. Geosci. 3(6), 391–397 (2010).ADS 
    CAS 

    Google Scholar 
    Hu, D. et al. Pacific western boundary currents and their roles in climate. Nature 522, 299–308 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Epp, D. & Smoot, N. C. Distribution of seamounts in the North Atlantic. Nature 337, 254–257 (1989).ADS 

    Google Scholar 
    Yesson, C., Clark, M. R., Taylor, M. L. & Rogers, A. D. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep Sea Res. Part I Oceanogr. Res. Pap. 58(4), 442–453 (2011).ADS 

    Google Scholar 
    Rogers, A. D. The biology of seamounts: 25 Years on. Adv. Mar. Biol. 79, 137–224 (2018).PubMed 

    Google Scholar 
    Rowden, A. A., Dower, J. F., Schlacher, T. A., Consalvey, M. & Clark, M. R. Paradigms in seamount ecology: fact, fiction and future. Mar. Ecol. 31, 226–241 (2010).ADS 

    Google Scholar 
    Wilson, R. R. & Kaufmann, R. S. Seamount biota and biogeography. Geophys. Monogr. Ser. 43, 355–377 (2013).ADS 

    Google Scholar 
    Clark, M. R., Schlacher, T. A., Rowden, A. A., Stocks, K. I. & Consalvey, M. Science priorities for seamounts: research links to conservation and management. PLoS ONE 7(1), e29232 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schlacher, T. A., Rowden, A. A., Dower, J. F. & Consalvey, M. Seamount science scales undersea mountains: new research and outlook. Mar. Ecol. 31, 1–13 (2010).ADS 

    Google Scholar 
    Stocks, K. I. et al. CenSeam, an international program on seamounts within the census of marine life: achievements and lessons learned. PLoS ONE 7(2), e32031 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cascao, I., Domokos, R., Lammers, M. O., Santos, R. S. & Silva, M. A. Seamount effects on the diel vertical migration and spatial structure of micronekton. Prog. Oceanogr. 175, 1–13 (2019).ADS 

    Google Scholar 
    Denda, A., Stefanowitsch, B. & Christiansen, B. From the epipelagic zone to the abyss: trophic structure at two seamounts in the subtropical and tropical Eastern Atlantic – Part II Benthopelagic fishes. Deep Sea Res I Oceanogr. Res. Pap. 130, 78–92 (2017).ADS 
    CAS 

    Google Scholar 
    Dai, L. et al. Zooplankton abundance, biovolume and size spectra down to 3000 m depth in the western tropical North Pacific during autumn 2014. Deep Sea Res. Part I Oceanogr. Res. Pap. 121, 1–13 (2017).ADS 

    Google Scholar 
    Sun, D., Zhang, D. S., Zhang, R. Y. & Wang, C. S. Different vertical distribution of zooplankton community between North Pacific Subtropical Gyre and Western Pacific Warm Pool: its implication to carbon flux. Acta Oceanol. Sin. 38(6), 32–45 (2019).CAS 

    Google Scholar 
    Behrenfeld, M. J. et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 576, 257–261 (2019).CAS 
    PubMed 

    Google Scholar 
    Haury, L., Fey, C., Newland, C. & Genin, A. Zooplankton distribution around four eastern North Pacific seamounts. Prog. Oceanogr. 45(1), 69–105 (2000).ADS 

    Google Scholar 
    Genin, A. Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies. J. Mar. Syst. 50(1–2), 3–20 (2004).
    Google Scholar 
    Valle-Levinson, A., Castro, A. T., de Velasco, G. G. & Armas, R. G. Diurnal vertical motions over a seamount of the southern Gulf of California. J. Mar. Syst. 50(1–2), 61–77 (2004).
    Google Scholar 
    Martin, B. & Christiansen, B. Distribution of zooplankton biomass at three seamounts in the NE Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 56, 2671–2682 (2009).ADS 
    CAS 

    Google Scholar 
    Rawlinson, K. A., Davenport, J. & Barnes, D. K. A. Vertical migration strategies with respect to advection and stratification in a semi-enclosed lough: a comparison of mero- and holozooplankton. Mar. Biol. 144, 935–946 (2004).
    Google Scholar 
    Forward, R. B. Diel vertical migration: zooplankton photobiology and behaviour. Oceanogr. Mar. Biol. Ann. Rev. 26, 361–393 (1988).
    Google Scholar 
    Tao, Z. C., Wang, Y. Q., Wang, J. J., Liu, M. T. & Zhang, W. C. Photobehaviors of the calanoid copepod Calanus sinicus from the Yellow Sea to visible and UV-B radiation as a function of wavelength and intensity. J. Oceanol. Limnol. 37(4), 1289–1300 (2019).ADS 

    Google Scholar 
    Fragopoulu, N. & Lykakis, J. J. Vertical distribution and nocturnal migration of zooplankton in relation to the development of the seasonal thermocline in Patraikos Gulf. Mar. Biol. 104(3), 381–387 (1990).
    Google Scholar 
    Lougee, L. A., Bollens, S. M. & Avent, S. R. The effects of haloclines on the vertical distribution and migration of zooplankton. J. Exp. Mar. Biol. Ecol. 278(2), 111–134 (2002).
    Google Scholar 
    Saltzman, J. & Wishner, K. F. Zooplankton ecology in the eastern tropical Pacific oxygen minimum zone above a seamount: 2. Vertical distribution of copepods. Deep Sea Res. Part I Oceanogr. Res. Pap. 44(6), 931–954 (1997).ADS 
    CAS 

    Google Scholar 
    Antezana, T. Species-specific patterns of diel migration into the oxygen minimum zone by euphausiids in the Humboldt Current Ecosystem. Prog. Oceanogr. 83, 228–236 (2009).ADS 

    Google Scholar 
    Johnsen, G. H. & Jakobsen, P. J. The effect of food limitation on vertical migration in Daphnia longispina. Limnol. Oceanogr. 32(4), 873–880 (1987).ADS 

    Google Scholar 
    Spinelli, M. et al. Diel vertical distribution of the larvacean Oikopleura dioica in a North Patagonian tidal frontal system (42 degrees-45 degrees S) of the SW Atlantic Ocean. Mar. Biol. Res. 11(6), 633–643 (2015).
    Google Scholar 
    Guillam, M. et al. Vertical distribution of brittle star larvae in two contrasting coastal embayments: implications for larval transport. Sci. Rep. 10(1), 1–5 (2020).
    Google Scholar 
    Stramma, L. et al. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change 2(1), 33–37 (2012).ADS 
    CAS 

    Google Scholar 
    Ma, J. et al. The OMZ and its influence on POC in the Tropical Western Pacific Ocean: based on the survey in March 2018. Front. Earth Sci. 9, 632229 (2021).
    Google Scholar 
    Sun, Q. Q., Song, J. M., Li, X. G., Yuan, H. M. & Wang, Q. D. The bacterial diversity and community composition altered in the oxygen minimum zone of the Tropical Western Pacific Ocean. J. Oceanol. Limnol. 39(5), 1690–1704 (2021).ADS 
    CAS 

    Google Scholar 
    Wang, Q. D. et al. Characteristics and biogeochemical effects of oxygen minimum zones in typical seamount areas, Tropical Western Pacific. J. Oceanol. Limnol. 39(5), 1651–1661 (2021).ADS 
    CAS 

    Google Scholar 
    Fernández-Álamo, M. A. & Färber-Lorda, J. Zooplankton and the oceanography of the eastern tropical Pacific: a review. Prog. Oceanogr. 69(2–4), 318–359 (2006).ADS 

    Google Scholar 
    Wishner, K. F., Gowing, M. M. & Gelfman, C. Living in suboxia: Ecology of an Arabian Sea oxygen minimum zone copepod. Limnol. Oceanogr. 45(7), 1576–1593 (2000).ADS 

    Google Scholar 
    Wishner, K. F. et al. Vertical zonation and distributions of calanoid copepods through the lower oxycline of the Arabian Sea oxygen minimum zone. Prog. Oceanogr. 78(2), 163–191 (2008).ADS 

    Google Scholar 
    Ekau, W., Auel, H., Portner, H. O. & Gilbert, D. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7(5), 1669–1699 (2010).ADS 
    CAS 

    Google Scholar 
    Hernández-León, S. et al. Zooplankton and micronekton active flux across the tropical and subtropical Atlantic Ocean. Front. Mar. Sci. 6, 535 (2019).
    Google Scholar 
    Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).PubMed 

    Google Scholar 
    Le Borgne, R. & Rodier, M. Net zooplankton and the biological pump: a comparison between the oligotrophic and mesotrophic equatorial Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 44, 2003–2023 (1997).ADS 

    Google Scholar 
    Al-Mutairi, H. & Landry, M. R. Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton. Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 2083–2103 (2001).ADS 
    CAS 

    Google Scholar 
    Ge, R., Chen, H., Zhuang, Y. & Liu, G. Active carbon flux of mesozooplankton in South China Sea and Western Philippine Sea. Front. Mar. Sci. 8, 1324 (2021).
    Google Scholar 
    Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53(4), 1327–1338 (2008).ADS 

    Google Scholar 
    Hirch, S., Martin, B. & Christiansen, B. Zooplankton metabolism and carbon demand at two seamounts in the NE Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 56(25), 2656–2670 (2009).ADS 
    CAS 

    Google Scholar 
    Denda, A. & Christiansen, B. Zooplankton distribution patterns at two seamounts in the subtropical and tropical NE Atlantic. Mar. Ecol. 35(2), 159–179 (2014).ADS 

    Google Scholar 
    Dower, J. F. & Mackas, D. L. “Seamount effects” in the zooplankton community near Cobb Seamount. Deep Sea Res. Part I Oceanogr. Res. Pap. 43, 837–858 (1996).ADS 

    Google Scholar 
    Ma, J. et al. Analysis of differences in nutrients chemistry in seamount seawaters in the Kocebu and M5 seamounts in Western Pacific Ocean. J. Oceanol. Limnol. 39(5), 1662–1674 (2021).ADS 

    Google Scholar 
    Denda, A., Mohn, C., Wehrmann, H. & Christiansen, B. Microzooplankton and meroplanktonic larvae at two seamounts in the subtropical and tropical NE Atlantic. J. Mar. Biol. Assoc. U. K. 97(1), 1–27 (2017).
    Google Scholar 
    Tutasi, P. & Escribano, R. Zooplankton diel vertical migration and downward C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile. Biogeosciences 17(2), 455–473 (2020).ADS 
    CAS 

    Google Scholar 
    Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R. & Huntley, M. ICES Zooplankton Methodology Manual (Academic Press, 2000).
    Google Scholar 
    Zhang, X. & Dam, H. G. Downward export of carbon by diel migrant mesozooplankton in the central equatorial Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 44, 2191–2202 (1997).ADS 
    CAS 

    Google Scholar 
    Isla, A., Scharek, R. & Latasa, M. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. J. Mar. Syst. 143, 86–97 (2015).
    Google Scholar 
    Ikeda, T. Respiration and ammonia excretion by marine metazooplankton taxa: synthesis toward a global-bathymetric model. Mar. Biol. 161(12), 2753–2766 (2014).CAS 

    Google Scholar 
    Steinberg, D. K. et al. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 47(1), 137–158 (2000).ADS 
    CAS 

    Google Scholar 
    Andersen, V. et al. Vertical distributions of zooplankton across the Almeria-Oran frontal zone (Mediterranean Sea). J. Plankton Res. 26(3), 275–293 (2004).
    Google Scholar  More

  • in

    Dryland productivity under a changing climate

    Schimel, D. S. Drylands in the Earth system. Science 327, 418–419 (2010).Article 
    CAS 

    Google Scholar 
    Whitford, W. G. Ecology of Desert Systems (Academic Press, 2002).D’Odorico, P., Porporato, A. & Runyan, C. W. Dryland Ecohydrology Vol. 9 (Springer, 2019). A comprehensive introduction to dryland ecohydrology.Lal, R. Carbon cycling in global drylands. Curr. Clim. Change Rep. 5, 221–232 (2019).Article 

    Google Scholar 
    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015). Illustrates the role drylands play in determining the variability and long-term trend of the terrestrial CO2 sink.Article 

    Google Scholar 
    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014). Illustrates the role drylands play in determining the variability of the terrestrial CO2 sink.Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016). A comprehensive review of dryland structure and functioning.Article 

    Google Scholar 
    Wang, L., Kaseke, K. F. & Seely, M. K. Effects of non-rainfall water inputs on ecosystem functions. WIREs Water 4, e1179 (2017). Highlights the often-ignored role of non-rainfall water inputs to dryland ecosystem dynamics.Article 

    Google Scholar 
    Li, C. et al. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2, 858–873 (2021).Article 

    Google Scholar 
    Thornton, P. K., Ericksen, P. J., Herrero, M. & Challinor, A. J. Climate variability and vulnerability to climate change: a review. Glob. Change Biol. 20, 3313–3328 (2014).Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).Gonsamo, A. et al. Greening drylands despite warming consistent with carbon dioxide fertilization effect. Glob. Change Biol. 27, 3336–3349 (2021).Article 

    Google Scholar 
    Kaptué, A. T., Prihodko, L. & Hanan, N. P. On regreening and degradation in Sahelian watersheds. Proc. Natl Acad. Sci. USA 112, 12133–12138 (2015).Article 

    Google Scholar 
    Brookshire, E. J., Stoy, P. C., Currey, B. & Finney, B. The greening of the Northern Great Plains and its biogeochemical precursors. Glob. Change Biol. 26, 5404–5413 (2020).Article 

    Google Scholar 
    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).Article 
    CAS 

    Google Scholar 
    Ravi, S. et al. Biological invasions and climate change amplify each other’s effects on dryland degradation. Glob. Change Biol. 28, 285–295 (2022).Article 
    CAS 

    Google Scholar 
    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere https://doi.org/10.1890/ES15-00203.1 (2015).Yu, K. et al. The competitive advantage of a constitutive CAM species over a C4 grass species under drought and CO2 enrichment. Ecosphere 10, e02721 (2019).Article 

    Google Scholar 
    Fensholt, R. et al. in Remote Sensing Time Series (eds Kuenzer, C. et al.) 183–292 (Springer, 2015).Andela, N., Liu, Y., Van Dijk, A., De Jeu, R. & McVicar, T. Global changes in dryland vegetation dynamics (1988-2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 10, 6657–6676 (2013).Article 

    Google Scholar 
    Lu, X., Wang, L. & McCabe, M. F. Elevated CO2 as a driver of global dryland greening. Sci. Rep. 6, 20716 (2016).Article 
    CAS 

    Google Scholar 
    Venter, Z., Cramer, M. & Hawkins, H.-J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).Article 
    CAS 

    Google Scholar 
    Ukkola, A. M. et al. Annual precipitation explains variability in dryland vegetation greenness globally but not locally. Glob. Change Biol. 27, 4367–4380 (2021).Article 
    CAS 

    Google Scholar 
    Zhang, W., Brandt, M., Tong, X., Tian, Q. & Fensholt, R. Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel. Biogeosciences 15, 319–330 (2018).Article 

    Google Scholar 
    Fensholt, R. & Rasmussen, K. Analysis of trends in the Sahelian ‘rain-use efficiency’ using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens. Environ. 115, 438–451 (2011).Article 

    Google Scholar 
    Zhang, W. et al. Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas. Nat. Commun. 10, 671 (2019).Article 
    CAS 

    Google Scholar 
    Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).Article 
    CAS 

    Google Scholar 
    Hufkens, K. et al. Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nat. Clim. Change 6, 710–714 (2016).Article 

    Google Scholar 
    Choler, P., Sea, W., Briggs, P., Raupach, M. & Leuning, R. A simple ecohydrological model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands. Biogeosciences 7, 907–920 (2010).Article 

    Google Scholar 
    Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).Article 

    Google Scholar 
    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).Article 

    Google Scholar 
    Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021). Provides a comprehensive analysis on the dryland expansion debates.Article 

    Google Scholar 
    Fatichi, S. et al. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proc. Natl Acad. Sci. USA 113, 12757–12762 (2016).Article 
    CAS 

    Google Scholar 
    Daramola, M. T. & Xu, M. Recent changes in global dryland temperature and precipitation. Int. J. Climatol. 42, 1267–1282 (2022).Article 

    Google Scholar 
    Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Change 11, 331–337 (2021).Article 

    Google Scholar 
    Berg, A. & Sheffield, J. Climate change and drought: the soil moisture perspective. Curr. Clim. Change Rep. 4, 180–191 (2018).Article 

    Google Scholar 
    Jiao, W. et al. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12, 3777 (2021). This study found that vegetation growth in the Northern Hemisphere is becoming increasingly water limited.Article 
    CAS 

    Google Scholar 
    Gherardi, L. A. & Sala, O. E. Effect of interannual precipitation variability on dryland productivity: a global synthesis. Glob. Change Biol. 25, 269–276 (2019).Article 

    Google Scholar 
    D’Odorico, P. & Bhattachan, A. Hydrologic variability in dryland regions: impacts on ecosystem dynamics and food security. Phil. Trans. R. Soc. B 367, 3145–3157 (2012).Article 

    Google Scholar 
    Hou, E. et al. Divergent responses of primary production to increasing precipitation variability in global drylands. Glob. Change Biol. 27, 5225–5237 (2021).Article 
    CAS 

    Google Scholar 
    Ritter, F., Berkelhammer, M. & Garcia-Eidell, C. Distinct response of gross primary productivity in five terrestrial biomes to precipitation variability. Commun. Earth Environ. 1, 34 (2020).Article 

    Google Scholar 
    Ridolfi, L., D’Odorico, P. & Laio, F. Noise-Induced Phenomena in the Environmental Sciences (Cambridge Univ. Press, 2011).Zeng, N. & Neelin, J. D. The role of vegetation–climate interaction and interannual variability in shaping the African savanna. J. Clim. 13, 2665–2670 (2000).Article 

    Google Scholar 
    Borgogno, F., D’Odorico, P., Laio, F. & Ridolfi, L. Mathematical models of vegetation pattern formation in ecohydrology. Rev. Geophysics 47, RG1005 (2009).Article 

    Google Scholar 
    van de Koppel, J. & Rietkerk, M. Spatial interactions and resilience in arid ecosystems. Am. Nat. 163, 113–121 (2004).Article 

    Google Scholar 
    Lefever, R. & Lejeune, O. On the origin of tiger bush. Bull. Math. Biol. 59, 263–294 (1997).Article 

    Google Scholar 
    Gherardi, L. A. & Sala, O. E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Natl Acad. Sci. USA 112, 12735–12740 (2015). Highlights the role of precipitation varibility in plant community composition in drylands.Article 
    CAS 

    Google Scholar 
    Cleland, E. E. et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696 (2013).Article 

    Google Scholar 
    Good, S. P. & Caylor, K. K. Climatological determinants of woody cover in Africa. Proc. Natl Acad. Sci. USA 108, 4902–4907 (2011).Article 
    CAS 

    Google Scholar 
    Lu, X., Wang, L., Pan, M., Kaseke, K. F. & Li, B. A multi-scale analysis of Namibian rainfall over the recent decade—comparing TMPA satellite estimates and ground observations. J. Hydrol. Reg. Stud. 8, 59–68 (2016).Article 

    Google Scholar 
    Franz, T., Caylor, K., Nordbotten, J., Rodriguez-Itubre, I. & Celia, M. An ecohydrological approach to predicting regional woody species distribution patterns in dryland ecosystems. Adv. Water Res. 33, 215–230 (2010).Article 

    Google Scholar 
    Knapp, A. K., Chen, A., Griffin-Nolan, R. J., Baur, L. E. & Smith, M. Resolving the Dust Bowl paradox of grassland responses to extreme drought. Proc. Natl Acad. Sci. USA 117, 201922030 (2020).Article 

    Google Scholar 
    Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2016).Article 

    Google Scholar 
    Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004). Illustrates the close linkage between water pulses and biogeochemical cycles in drylands.Article 

    Google Scholar 
    Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220 (2004).Article 

    Google Scholar 
    Collins, S. L. et al. A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 397–419 (2014).Article 

    Google Scholar 
    Barnard, R. L., Blazewicz, S. J. & Firestone, M. K. Rewetting of soil: revisiting the origin of soil CO2 emissions. Soil Biol. Biochem. 147, 107819 (2020).Article 
    CAS 

    Google Scholar 
    Manzoni, S. et al. Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration. Biogeosciences 17, 4007–4023 (2020).Article 
    CAS 

    Google Scholar 
    Leizeaga, A., Meisner, A., Rousk, J. & Bååth, E. Repeated drying and rewetting cycles accelerate bacterial growth recovery after rewetting. Biol. Fertil. Soils 58, 365–374 (2022).Article 
    CAS 

    Google Scholar 
    Gao, D. et al. Responses of soil nitrogen and phosphorus cycling to drying and rewetting cycles: a meta-analysis. Soil Biol. Biochem. 148, 107896 (2020).Article 
    CAS 

    Google Scholar 
    Homyak, P. M., Allison, S. D., Huxman, T. E., Goulden, M. L. & Treseder, K. K. Effects of drought manipulation on soil nitrogen cycling: a meta-analysis. J. Geophys. Res. Biogeosci. 122, 3260–3272 (2017).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).Article 
    CAS 

    Google Scholar 
    Nippert, J. B., Knapp, A. K. & Briggs, J. M. Intra-annual rainfall variability and grassland productivity: can the past predict the future? Plant Ecol. 184, 65–74 (2006).Article 

    Google Scholar 
    Kaseke, K. F., Wang, L. & Seely, M. K. Nonrainfall water origins and formation mechanisms. Sci. Adv. 3, e1603131 (2017).Article 

    Google Scholar 
    Dawson, T. E. & Goldsmith, G. R. The value of wet leaves. N. Phytol. 219, 1156–1169 (2018).Article 

    Google Scholar 
    Feng, T. et al. Dew formation reduction in global warming experiments and the potential consequences. J. Hydrol. 593, 125819 (2021).Article 

    Google Scholar 
    Gerlein-Safdi, C. et al. Dew deposition suppresses transpiration and carbon uptake in leaves. Agric. For. Meteorol. 259, 305–316 (2018).Article 

    Google Scholar 
    Tomaszkiewicz, M., Abou Najm, M., Beysens, D., Alameddine, I. & El-Fadel, M. Dew as a sustainable non-conventional water resource: a critical review. Environ. Rev. 23, 425–442 (2015).Article 

    Google Scholar 
    Fessehaye, M. et al. Fog-water collection for community use. Renew. Sustain. Energy Rev. 29, 52–62 (2014).Article 

    Google Scholar 
    Kidron, G. J. Angle and aspect dependent dew and fog precipitation in the Negev desert. J. Hydrol. 301, 66–74 (2005).Article 

    Google Scholar 
    Chiodi, A. M., Potter, B. E. & Larkin, N. K. Multi-decadal change in western US nighttime vapor pressure deficit. Geophys. Res. Lett. 48, e2021GL092830 (2021).Article 

    Google Scholar 
    Tomaszkiewicz, M. et al. Projected climate change impacts upon dew yield in the Mediterranean basin. Sci. Total Environ. 566, 1339–1348 (2016).Article 

    Google Scholar 
    Walker, B. H., Ludwig, D., Holling, C. S. & Peterman, R. N. Stability of semi-arid savanna grazing systems. J. Ecol. 69, 473–498 (1981).Article 

    Google Scholar 
    Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science 247, 1043–1048 (1990).Article 
    CAS 

    Google Scholar 
    D’Odorico, P., Bhattachan, A., Davis, K., Ravi, S. & Runyan, C. Global desertification: drivers and feedbacks. Adv. Water Res. 51, 326–344 (2013).Article 

    Google Scholar 
    Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007). Highlights the loss of ecosystem services as a result of dryland desertification.Article 
    CAS 

    Google Scholar 
    Eldridge, D. J. et al. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol. Lett. 14, 709–722 (2011). Provides a compehenseive analysis of the shrub enrochment effects on dryland functions.Article 

    Google Scholar 
    IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (IPCC, 2019).Yang, H. et al. Tropical expansion driven by poleward advancing midlatitude meridional temperature gradients. J. Geophys. Res. Atmos. 125, e2020JD033158 (2020).Article 

    Google Scholar 
    Berghuijs, W. R., Woods, R. A. & Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Change 4, 583–586 (2014).Article 

    Google Scholar 
    Ayyad, M. A., Fakhry, A. M. & Moustafa, A.-R. A. Plant biodiversity in the Saint Catherine area of the Sinai peninsula. Egypt. Biodivers. Conserv. 9, 265–281 (2000).Article 

    Google Scholar 
    Global Land Outlook 2017 (UNCCD, 2017).Van Ittersum, M. K. et al. Can sub-Saharan Africa feed itself? Proc. Natl Acad. Sci. USA 113, 14964–14969 (2016).Article 

    Google Scholar 
    Redo, D., Aide, T. M. & Clark, M. L. Vegetation change in Brazil’s dryland ecoregions and the relationship to crop production and environmental factors: Cerrado, Caatinga, and Mato Grosso, 2001–2009. J. Land Use Sci. 8, 123–153 (2013).Article 

    Google Scholar 
    Meyfroidt, P., Lambin, E. F., Erb, K.-H. & Hertel, T. W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 5, 438–444 (2013).Article 

    Google Scholar 
    Rulli, M. C., Saviori, A. & D’Odorico, P. Global land and water grabbing. Proc. Natl Acad. Sci. USA 110, 892–897 (2013).Article 
    CAS 

    Google Scholar 
    Müller, M. F. et al. Impact of transnational land acquisitions on local food security and dietary diversity. Proc. Natl Acad. Sci. USA 118, e2020535118 (2021).Article 

    Google Scholar 
    Chiarelli, D. D. et al. Competition for water induced by transnational land acquisitions for agriculture. Nat. Commun. 13, 505 (2022).Article 
    CAS 

    Google Scholar 
    Dell’Angelo, J., D’Odorico, P., Rulli, M. C. & Marchand, P. The tragedy of the grabbed commons: coercion and dispossession in the global land rush. World Dev. 92, 1–12 (2017).Article 

    Google Scholar 
    Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).Article 
    CAS 

    Google Scholar 
    Wang, L. & D’Odorico, P. The limits of water pumps. Science 321, 36–37 (2008).Article 
    CAS 

    Google Scholar 
    OECD-FAO Agricultural Outlook 2021–2030 (OECD and FAO, 2021).Qi, J., Xin, X., John, R., Groisman, P. & Chen, J. Understanding livestock production and sustainability of grassland ecosystems in the Asian Dryland Belt. Ecol. Process. 6, 22 (2017).Article 

    Google Scholar 
    Godde, C. M. et al. Global rangeland production systems and livelihoods at threat under climate change and variability. Environ. Res. Lett. 15, 044021 (2020).Article 

    Google Scholar 
    Herrero, M. et al. Exploring future changes in smallholder farming systems by linking socio-economic scenarios with regional and household models. Glob. Environ. Change 24, 165–182 (2014).Article 

    Google Scholar 
    Bannari, A., Morin, D., Bonn, F. & Huete, A. A review of vegetation indices. Remote Sens. Rev. 13, 95–120 (1995).Article 

    Google Scholar 
    Qiu, B. et al. Dense canopies browning overshadowed by global greening dominant in sparse canopies. Sci. Total Environ. 826, 154222 (2022).Article 
    CAS 

    Google Scholar 
    Burrell, A. L., Evans, J. P. & Liu, Y. Detecting dryland degradation using time series segmentation and residual trend analysis (TSS-RESTREND). Remote Sens. Environ. 197, 43–57 (2017).Article 

    Google Scholar 
    Bastin, J.-F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).Article 
    CAS 

    Google Scholar 
    Griffith, D. M. et al. Comment on ‘The extent of forest in dryland biomes’. Science 358, eaao1309 (2017).Article 

    Google Scholar 
    Teckentrup, L. et al. Assessing the representation of the Australian carbon cycle in global vegetation models. Biogeosciences 18, 5639–5668 (2021).Article 
    CAS 

    Google Scholar 
    MacBean, N. et al. Dynamic global vegetation models underestimate net CO2 flux mean and inter-annual variability in dryland ecosystems. Environ. Res. Lett. 16, 094023 (2021). Highlights the often-neglected uncertainties in the prediction of dryland productivity.Paschalis, A. et al. Rainfall manipulation experiments as simulated by terrestrial biosphere models: where do we stand? Glob. Change Biol. 26, 3336–3355 (2020).Article 

    Google Scholar 
    Whitley, R. et al. A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas. Biogeosciences 13, 3245–3265 (2016).Article 

    Google Scholar 
    Hartley, A. J., MacBean, N., Georgievski, G. & Bontemps, S. Uncertainty in plant functional type distributions and its impact on land surface models. Remote Sens. Environ. 203, 71–89 (2017).Article 

    Google Scholar 
    MacBean, N. et al. Testing water fluxes and storage from two hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites. Hydrol. Earth Syst. Sci. 24, 5203–5230 (2020).Article 
    CAS 

    Google Scholar 
    Burrell, A., Evans, J., De & Kauwe, M. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 11, 3853 (2020).Article 
    CAS 

    Google Scholar 
    De Kauwe, M. G., Medlyn, B. E. & Tissue, D. T. To what extent can rising [CO2] ameliorate plant drought stress? N. Phytol. 231, 2118–2124 (2021).Article 

    Google Scholar 
    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).Article 
    CAS 

    Google Scholar 
    Bernacchi, C. J. & VanLoocke, A. Terrestrial ecosystems in a changing environment: a dominant role for water. Annu. Rev. Plant Biol. 66, 599–622 (2015).Article 
    CAS 

    Google Scholar 
    Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015).Article 
    CAS 

    Google Scholar 
    Anderegg, W. R., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).Article 
    CAS 

    Google Scholar 
    Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).Article 
    CAS 

    Google Scholar 
    Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).Article 

    Google Scholar 
    Abdelmoaty, H. M., Papalexiou, S. M., Rajulapati, C. R. & AghaKouchak, A. Biases beyond the mean in CMIP6 extreme precipitation: a global investigation. Earth’s Future 9, e2021EF002196 (2021).Article 

    Google Scholar 
    Dunkerley, D. L. Light and low-intensity rainfalls: a review of their classification, occurrence, and importance in landsurface, ecological and environmental processes. Earth Sci. Rev. 214, 103529 (2021).Article 

    Google Scholar 
    Zhu, Y. & Yang, S. Interdecadal and interannual evolution characteristics of the global surface precipitation anomaly shown by CMIP5 and CMIP6 models. Int. J. Climatol. 41, E1100–E1118 (2021).Article 

    Google Scholar 
    Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230–234 (2019).Article 
    CAS 

    Google Scholar 
    Miguez-Macho, G. & Fan, Y. Spatiotemporal origin of soil water taken up by vegetation. Nature 598, 624–628 (2021).Article 

    Google Scholar 
    Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).Article 

    Google Scholar 
    Trabucco, A. & Zomer, R. Global aridity index and potential evapotranspiration (ET0) climate database v.2. Figshare https://doi.org/10.6084/m9.figshare.7504448.v4 (2019).Paschalis, A., Fatichi, S., Katul, G. G. & Ivanov, V. Y. Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes. J. Geophys. Res. Biogeosci. 120, 1716–1740 (2015).Article 

    Google Scholar  More

  • in

    Using hyrax latrines to investigate climate change

    This might look like an ordinary rock formation, but the black material is actually preserved faeces and urine from a small mammal called a rock hyrax (Procavia capensis).Hyraxes, which are common in Africa and the Middle East, look like groundhogs but are more closely related to manatees and elephants. They live in crevasses and pick one spot to use as a latrine. The use of the same spot over tens of thousands of years creates a layered refuse heap known as a midden that scientists can mine for palaeoclimatic data. I specialize in examining the pollen in these dungheaps for information about the vegetation and climate of the past.Our team found this site in May, in the Cape Fold Belt mountains of South Africa, using a drone to help investigate crevasses. We were excited when we saw the extent of this midden; we think it covers at least 20,000 years. We came back after the winter to take a sample. This photograph was taken in September. My colleague and project leader Brian Chase, who has rock-climbing skills, used a circular saw to extract a wedge that we brought back to the lab for analysis.The team will first look at radioactive carbon to determine the age of the midden layers. Then, we will analyse the stable carbon isotopes to learn what plants the hyraxes were eating, which in turn provides clues to the climate of that time. When I examine the samples, I look for pollen grains, which enter the midden both in the hyrax’s urine and faeces and by being blown in by the wind. I’ll also look for charcoal, to tell how many wildfires occurred in the region over time, and fungal spores, which can reveal which animals were nearby.We now have a much more nuanced and detailed view of climate changes in southern Africa. The fieldwork is very demanding, requiring long days of hiking, but I love it. More

  • in

    High rates of daytime river metabolism are an underestimated component of carbon cycling

    Study sites and data collectionDuring 2017 and 2018, we carried out 14 experiments in rivers located in temperate, tropical, and subarctic biomes to capture a gradient of river productivity and climatic characteristics (Table 1, Fig. 1). Apart from the Mekong and Sekong rivers in Cambodia that were impacted by plantations, rice cultivation, grassland, and urban areas (56% impacted land cover in the Mekong and 38% in the Sekong), the selected rivers were predominantly in pristine areas (impacted land-use ≤ 8%), although two rivers in Mongolia were affected by livestock grazing (with 26% of land cover at the Khovd and 59% in the two Zavkhan rivers).We conducted traditional O2 concentration metabolic assessments, assessments of isotopic fractionation, and 24 h characterization of δ18O2 at each site. We measured changes in dissolved O2 concentrations and temperature every 10 min over at least 24 h with at least one MiniDOT logger (PME, Vista, California, USA). We calibrated for drift using the average measurement values made in 100% saturated water for at least 30 min before and after each deployment to allow adjustment to temperature and placed sensors in the river for at least 30 min prior to using data to allow equilibration to temperature (following methods detailed in ref. 52).We collected δ18O2 samples by hand every 2 h during the same 24-h period of the O2 concentration measurements in pre-evacuated 100 mL vials loaded with 50 µl HgCl2 as a preservative and sealed with septum stoppers (Bellco Glass Inc., Supelco, Vineland NJ). We analyzed samples for δ18O2 at the Nevada Stable Isotope Lab of the University of Nevada, Reno with a Micromass Isoprime (Middlewich, UK) stable isotope ratio mass spectrometer. We followed the method described by ref. 17 and injected 1.0–2.5 mL of headspace gas taken from the serum bottles using a gastight syringe (SGE, Australia) into a Eurovector (Pavia, Italy) elemental analyzer equipped with a septum injector port, and a 1.5 m long molecular sieve gas chromatography column. Water-δ18O was also collected at each site every 2 h and analyses were performed using a Picarro L2130-i cavity ringdown spectrometer at the Nevada Stable Isotope Lab of the University of Nevada, Reno. δ18O2 values are reported in the usual δ notation vs. VSMOW in units of ‰, with an analytical uncertainty of ±0.2‰ for δ18O2, or an analytical uncertainty of ±0.1‰ for water-δ18O.We characterized physical characteristics at each site to provide parameters to estimate whole-system metabolism. We measured conductivity, slope, and flow velocity and depth at ten transects using a flow meter when wadeable or with an Acoustic Doppler Velocimeter (Sontek, Xylem, San Diego, CA) when rivers were not wadeable. At each site, we measured light as photosynthetically active radiation (PAR) every 10 min, using Odyssey PAR loggers (Data Flow Systems, Christchurch, New Zealand) calibrated with a Li-Cor PAR sensor (Lincoln, Nebraska, USA).At each site, we also directly measured biofilm ash-free dry mass (AFDM) from 8 to 12 rocks (53). The material was scrubbed from the rocks, agitated, filtered (Whatman glass microfiber GF/F filters). Rock area was estimated with calibrated pictures processed with the ImageJ processing program (National Institutes of Health and the Laboratory for Optical and Computational Instrumentation LOCI, University of Wisconsin). For AFDM analyses, samples were dried, and weighed before and after combustion.Additionally, we collected data on the percentage of impacted land use in the watershed above each sampling site: for the Mekong and the Sekong we used Landsat satellite imagery from ref. 54, for the US and Mongolian sites land use characteristics were derived from the National Land Cover Database55 and for Patagonia we used the Chilean national land use inventory maps from ref. 56.δ18O2 stable isotope fractionation during respiration in sealed recirculating chambersModels based on oxygen isotopes are sensitive to the oxygen isotope fractionation factor (αR) during respiration used; αR can vary widely among sites and is influenced by temperature and water velocity30. We used in our models the range of αR values measured by30 using sealed Plexiglas recirculating chambers as in ref. 57. These measurements were done at the same time as the 24 h δ18O2 sample collections in the rivers of this study. We placed rocks, sediment, macrophytes (macrophytes dominated in the Zavkhan 1 site) inside the chambers, depending on the site’s dominant substrata (see ref. 30 for more details on chamber measurements). We collected water samples in the chambers for δ18O2 analyses before and after the incubations and the O2 isotope fractionation factor was calculated using Eq. (2).$$delta =(delta i+1000){F}^{left(alpha -1right)}-1000$$
    (2)
    where δ is the O2 isotopic composition of dissolved oxygen at the end of the dark incubation, δi is the O2 isotopic composition of dissolved oxygen at the beginning of the dark incubation, F the fractional abundance of O2 concentration remaining at the end of the dark incubation, and α is the isotopic fractionation factor during respiration.Ecosystem metabolism O2 single station modelingWe modeled metabolism as a function of GPP, ER, and reaeration with the atmosphere, using the single-station open-channel metabolism method4 using the same approach as15, given in Eq. (3).$${O}_{{2}_{(t)}}={O}_{{2}_{(t-1)}}+left(left(frac{{GPP}}{z}xfrac{{{PPFD}}_{left(t-1right)}}{sum {{PPFD}}_{24h}}right)+frac{{ER}}{z}+{K}_{{O}_{2}}left({O}_{{2}_{{sat}left(t-1right)}}-{O}_{{2}_{left(t-1right)}}right)right)triangle t$$
    (3)
    where GPP is gross primary production in g O2 m−2 d−1, ER is ecosystem respiration in g O2 m−2 d−1, ({K}_{{O}_{2}}) is the reaeration coefficient (d−1). PPFD is photosynthetic photon flux density (µmol m−2 s−1), z is mean stream depth (m), and ∆t is time increment between logging intervals (d). We used Bayesian inverse modeling approach to estimate the probability distribution of parameters GPP and ER that produce the best model fit between observed and modeled O2 data. We fixed site-specific ({K}_{{O}_{2}}) estimates using K600 (d−1) (normalized beyond gas-specific Schmidt number conversions among gases58) based on prior work characterizing K using BASE59, and converted these prior estimates of K600 to ({K}_{{O}_{2}})using appropriate temperature corrections. We estimated daily GPP and ER from diel O2 data only (Eq. (3)) to be used as prior estimates of daily GPPO2 and ERO2 in the coupled O2 and δ18O2 model (Eqs. (4a) and (4b))15, where the mean and SD of GPP and ER from the O2 _only method were used as prior estimates of GPPO2 and ERO2 in the dual O2 and δ18O2 model described below.Ecosystem metabolism: Diel δ18O2 modelingWe also modeled metabolism using an updated version of the model developed by ref. 15 coupling high-frequency O2 concentration data with δ18O2 collected every 2 h throughout the same 24 h period of the O2 concentration measurements. With this model, daily rates of ecosystem metabolism are derived from diel changes in δ18O2 and O2, where values of δ18O2 are converted to g 18O m−3 (18O2 in Eq. 4b) and modeled as a function of water isotope values, isotope fractionation, reaeration with the atmosphere, ER, and GPP. As with Eq. 3, the ratio of light at the previous logging time (({{PPFD}}_{left(t-1right)})) relative to the sum of light over 24 h (({sum {PPFD}}_{24h})) is used to characterize times when GPP is zero and only ER is taking place (Eqs. (4a) and (4b)):$${O}_{{2}_{left(tright)}}= , {O}_{{2}_{left(t-1right)}}+left(frac{{{GPP}}_{O2}}{z}xfrac{{{PPFD}}_{left(t-1right)}}{sum {{PPFD}}_{24h}}right)+left(frac{{{ER}}_{O2},xtriangle t}{z}right)\ +left({K}_{{O}_{2}}xleft({O}_{{2}_{{sat}left(t-1right)}}-{O}_{{2}_{left(t-1right)}}right)xtriangle tright)$$
    (4a)
    $${18O}_{{2}_{(t)}}=, {18O}_{{2}_{(t-1)}}+left(frac{left({{GPP}}_{O2}+{dielMET}right)}{z}xfrac{{{PPFD}}_{left(t-1right)}}{{sum {PPFD}}_{24h}}x,{alpha }_{P},x,{{AF}}_{W}right)\ +left(frac{{{ER}}_{O2},xtriangle t}{z}x,{alpha }_{R},x,{{AF}}_{{DO}}left(t-1right)right)\ +left(frac{left(-{dielMET}right)}{z}xfrac{{{PPFD}}_{left(t-1right)}}{sum {{PPFD}}_{24h}}x,{alpha }_{R},x,{{AF}}_{{DO}}left(t-1right)right)\ +left({K}_{{O}_{2}}x,{alpha }_{g}xtriangle t,xleft(left({O}_{{2}_{{sat}left(t-1right)}}x,{alpha }_{g},x,{{AF}}_{{atm}}right)-{18O}_{{2}_{(t-1)}}right)right)$$
    (4b)
    Where GPPO2 and ERO2 (g O2 m−2 d−1) refer to the values obtained from diel O2 only, dielMET (g O2 m−2 d−1) is the diel metabolism term that allows for the estimation of diel ER and GPP from 18O2, KO2 is the O2 gas exchange rate (d−1), z is mean stream depth (m), PPFD is photosynthetic photon flux density (µmol m−2 s−1), Δt is time step between measurements (d), 18O2 is the concentration of 18O in dissolved O2 (g 18O m−3), AFDO is atomic fraction of dissolved O2 (mol18O:mol O2, measured), AFw is atomic fraction of H2O (mol 18O:mol O2, measured), AFatm is atomic fraction of atmospheric air (mol18O:mol O2, literature), αg is the fractionation factor during air–water gas exchange (0.9972, from ref. 60), αR is the fractionation factor during respiration measured in the chambers (varied by site30; Fig. 1), αp is the fractionation factor during photosynthesis (1.0000 from ref. 60).The inverse modeling approach finds the best estimates of parameters to match measured and modeled dissolved O2. The model assumes that the measured changes in O2 concentration represent the actual net diel changes in O2 concentration and uses an additional parameter, dielMET, that is a function of the isotopic enrichment occurring during respiration, derived from diel 18O2. This parameter increases daily ERO2 and GPPO2 of the same amount, adding and subtracting dielMET, to obtain daily δ18O2-ER and δ18O2-GPP, respectively.We estimated the posterior distributions of unknown parameters (ERO2, GPPO2, and dielMET) using a Bayesian inverse modeling approach15 and Markov chain Monte Carlo sampling with the R metrop function in the mcmc package61,62. Each model was run for at least 200,000 iterations using nominally informative priors based on the range of ERO2 and GPPO2. For dielMET, we used a minimally informative uniform prior distribution (0–100 g O2 m−2 d−1). We removed the first 10,000 iterations of model burn-in and assessed quality of model fit. Model runs using the minimum, average, and maximum αR values measured in the field recirculating chambers were also compared, and we selected the αR and report associated model metabolism estimates that generated the lowest sum of squared differences between the observed and modeled O2 and 18O2 diel values.Temperature-normalized comparisonsTo test the effect of temperature from the daily δ18O2-ER and δ18O2-GPP rates and account for daily variations in temperature, we normalized estimates from models to 20 °C (and report them as 20δ18O2-ER and 20δ18O2-GPP) for comparison with O2-derived metabolism estimates following33 with Eq. (5):$${rate},{at},20,{}^circ C=frac{{2.523* e}^{(0.0552* 20)}}{{2.523* e}^{(0.0552* {t}_{1})},* {rate},{at},{t}_{1}}$$
    (5)
    Where t1 is site temperature and rate is the measured rate (i.e., GPP or ER) at t1.Statistical analysesWe used multiple linear regression to find the best predictor of the magnitude of diel 20δ18O2-ER and differences between sites. To select the best model, we performed a stepwise variable selection and selected the best model based on the lowest AIC. Tested variables included percentage of impacted land use (%), 20δ18O2-GPP (g O2 m−2 d−1), conductivity (µS/cm), ash-free dry mass (AFDM, g), slope (%), water depth (m), and flow velocity (m/s) measured in the field. We used ANOVA to test the relative contribution of each variable selected with the AIC to total variance. Analyses were run with the R software61.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More