Humid tropical vertebrates are at lower risk of extinction and population decline in forests with higher structural integrity
Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).Article
PubMed
Google Scholar
Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Environ. 20, 10–15 (2022).Article
PubMed
Google Scholar
Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).Article
Google Scholar
Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).Article
CAS
PubMed
Google Scholar
Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).Article
CAS
PubMed
Google Scholar
Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).Article
CAS
PubMed
Google Scholar
Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).Article
PubMed
Google Scholar
Hansen, A. et al. Global humid tropics forest structural condition and forest structural integrity maps. Sci. Data 6, 232 (2019).Article
PubMed
PubMed Central
Google Scholar
Hansen, A. J. et al. A policy-driven framework for conserving the best of Earth’s remaining moist tropical forests. Nat. Ecol. Evol. 4, 1377–1384 (2020).Article
PubMed
PubMed Central
Google Scholar
COP 11 Decision X/2. Strategic Plan for Biodiversity 2011–2020 (Convention on Biological Diversity, 2010).New York Declaration on Forests (UN, 2014).Transforming our World: The 2030 Agenda for Sustainable Development. A/RES/70/1 Resolution Adopted by the United Nations General Assembly (UN, 2015).Adoption of the Paris Agreement. Proposal by the President. Draft Decision -/CP.21 (UNFCCC, 2015).Hansen, A. J. et al. Toward monitoring forest ecosystem integrity within the post-2020 Global Biodiversity Framework. Conserv. Lett. 14, e12822 (2021).Article
Google Scholar
Scholes, R. et al. (eds) Summary for Policymakers of the Assessment Report on Land Degradation and Restoration (IPBES, 2018).First Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2021).Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).Article
Google Scholar
The IUCN Red List of Threatened Species Version 2020–1 (IUCN, 2020).Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).Article
PubMed
PubMed Central
Google Scholar
Ives, A. R. & Garland, T. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59, 9–26 (2010).Article
PubMed
Google Scholar
Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).Article
PubMed
Google Scholar
Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).Article
CAS
PubMed
Google Scholar
Fletcher, R. & Fortin, M.-J. Spatial Ecology and Conservation Modeling: Applications with R (Springer, 2018). https://doi.org/10.1007/978-3-030-01989-1Briant, G., Gond, V. & Laurance, S. G. W. Habitat fragmentation and the desiccation of forest canopies: a case study from eastern Amazonia. Biol. Conserv. 143, 2763–2769 (2010).Article
Google Scholar
Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).Article
CAS
PubMed
Google Scholar
Pillay, R. et al. Using interview surveys and multispecies occupancy models to inform vertebrate conservation. Conserv. Biol. 36, e13832 (2022).Article
PubMed
Google Scholar
Agresti, A. Categorical Data Analysis (John Wiley and Sons, 2002).Smith, A. C., Koper, N., Francis, C. M. & Fahrig, L. Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landsc. Ecol. 24, 1271–1285 (2009).Article
Google Scholar
Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl Acad. Sci. USA 18, 10309–10313 (2003).Article
Google Scholar
Turner, I. M. & Corlett, R. T. The conservation value of small, isolated fragments of lowland tropical rain forest. Trends Ecol. Evol. 11, 330–333 (1996).Article
CAS
PubMed
Google Scholar
Tulloch, A. I. T., Barnes, M. D., Ringma, J., Fuller, R. A. & Watson, J. E. M. Understanding the importance of small patches of habitat for conservation. J. Appl. Ecol. 53, 418–429 (2016).Article
Google Scholar
Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl Acad. Sci. USA 116, 909–914 (2019).Article
CAS
PubMed
Google Scholar
Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6, eaax8574 (2020).Article
PubMed
PubMed Central
Google Scholar
Prugh, L. R., Hodges, K. E., Sinclair, A. R. E. & Brashares, J. S. Effect of habitat area and isolation on fragmented animal populations. Proc. Natl Acad. Sci. USA 105, 20770–20775 (2008).Article
CAS
PubMed
PubMed Central
Google Scholar
Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 13, e12692 (2020).Article
Google Scholar
Ehbrecht, M. et al. Global patterns and climatic controls of forest structural complexity. Nat. Commun. 12, 519 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
França, F. et al. Do space-for-time assessments underestimate the impacts of logging on tropical biodiversity? An Amazonian case study using dung beetles. J. Appl. Ecol. 53, 1098–1105 (2016).Article
Google Scholar
Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinction risk. Nat. Commun. 9, 4621 (2018).Article
PubMed
PubMed Central
Google Scholar
Betts, M. G. et al. Forest degradation drives widespread avian habitat and population declines. Nat. Ecol. Evol. 6, 709–719 (2022).Article
PubMed
PubMed Central
Google Scholar
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Basset, Y. et al. Arthropod diversity in a tropical forest. Science 338, 1481–1484 (2012).Article
CAS
PubMed
Google Scholar
Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).Article
CAS
PubMed
Google Scholar
Newbold, T. et al. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. R. Soc. B 280, 20122131 (2013).Article
PubMed
PubMed Central
Google Scholar
Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).Article
PubMed
Google Scholar
Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).Article
PubMed
Google Scholar
Bird Species Distribution Maps of the World Version 2018.1 (BirdLife International, accessed 16 August 2019).Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).Article
PubMed
Google Scholar
González-del-Pliego, P. et al. Phylogenetic and trait-based prediction of extinction risk for data-deficient amphibians. Curr. Biol. 29, 1557–1563 (2019).Article
PubMed
Google Scholar
IUCN Habitats Classification Scheme Version 3.1 (IUCN, 2012).Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article
CAS
PubMed
Google Scholar
Hansen, M. C. et al. Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data. Remote Sens. Environ. 185, 221–232 (2016).Article
Google Scholar
Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904 (2002).Article
Google Scholar
Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Di Marco, M., Watson, J. E. M., Possingham, H. P. & Venter, O. Limitations and trade-offs in the use of species distribution maps for protected area planning. J. Appl. Ecol. 54, 402–411 (2017).Article
Google Scholar
Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2603–E2610 (2013).Article
Google Scholar
Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 116, G04021 (2011).Article
Google Scholar
Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth 6, 427–448 (2013).Article
Google Scholar
Potapov, P. et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165 (2021).Article
Google Scholar
Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).Article
CAS
PubMed
PubMed Central
Google Scholar
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article
CAS
PubMed
Google Scholar
Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204, 23–31 (2016).Article
Google Scholar
Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).Article
PubMed
Google Scholar
Ho, L. S. T. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).Article
PubMed
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Verhoeven, K. J. F., Simonsen, K. L. & McIntyre, L. M. Implementing false discovery rate control: increasing your power. Oikos 108, 643–647 (2005).Article
Google Scholar
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
Google Scholar
Bivand, R. et al. spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.7-4 (2017).Bjornstad, O. N. ncf: Spatial covariance functions. R package version 1.2-1 (2018). More