More stories

  • in

    The red harvester ant

    Gordon, D. M. Anim. Behav. 49, 649–659 (1995).Article 

    Google Scholar 
    Gordon, D. M. The Ecology of Collective Behavior (Princeton Univ. Press, in the press).Gordon, D. M. Anim. Behav. 38, 194–204 (1989).Article 

    Google Scholar 
    Greene, M. J. & Gordon, D. M. Nature 423, 32 (2003).Article 
    CAS 

    Google Scholar 
    Pinter-Wollman, N. et al. Anim. Behav. 86, 197–207 (2013).Article 

    Google Scholar 
    Gordon, D. M., Guetz, A., Greene, M. J. & Holmes, S. Behav. Ecol. 22, 429–435 (2011).Article 

    Google Scholar 
    Prabhakar, B., Dektar, K. N. & Gordon, D. M. PLOS Comput. Biol. 8, e1002670 (2012).Article 
    CAS 

    Google Scholar 
    Davidson, J. D., Arauco-Aliaga, R. P., Crow, S., Gordon, D. M. & Goldman, M. S. Front. Ecol. Evol. 4, 115 (2016).Article 

    Google Scholar 
    Pagliara, R., Gordon, D. M. & Leonard, N. E. PLOS Comput. Biol. 14, e1006200 (2018).Article 

    Google Scholar 
    Friedman, D. A. et al. iScience 8, 283–294 (2018).Article 
    CAS 

    Google Scholar 
    Gordon, D. M. Ant Encounters: Interaction Networks and Colony Behavior (Princeton Univ. Press, 2010).Sundaram, M., Steiner, E. & Gordon, D. M. Ecol. Monogr. 92, e1503 (2022).Article 

    Google Scholar 
    Ingram, K. K., Pilko, A., Heer, J. & Gordon, D. M. J. Anim. Ecol. 82, 540–550 (2013).Article 

    Google Scholar 
    Gordon, D. M. Nature 498, 91–93 (2013).Article 
    CAS 

    Google Scholar  More

  • in

    Ensembles of data-efficient vision transformers as a new paradigm for automated classification in ecology

    DataWe tested our models on ten publicly available datasets. In Fig. 4 we show examples of images from each of the datasets. When applicable, the training and test splits were kept the same as in the original dataset. For example, the ZooScan, Kaggle, EILAT, and RSMAS datasets lack a specific training and test set; in these cases, benchmarks come from k-fold cross-validation51,52, and we followed the exact same procedures in order to allow for a fair comparison.Figure 4Examples of images from each of the datasets.(a) RSMAS (b) EILAT (c) ZooLake (d) WHOI (e) Kaggle (f) ZooScan (g) NA-Birds (h) Stanford dogs (i) SriLankan Beetles (j) Florida Wildtrap.Full size imageRSMAS This is a small coral dataset of 766 RGB image patches with a size of (256times 256) pixels each53. The patches were cropped out of bigger images obtained by the University of Miami’s Rosenstiel School of Marine and Atmospheric Sciences. These images were captured using various cameras in various locations. The data is separated into 14 unbalanced groups and whose labels correspond to the names of the coral species in Latin. The current SOTA for the classification of this dataset is by52. They use the ensemble of best performing 11 CNN models. The best models were chosen based on sequential forward feature selection (SFFS) approach. Since an independent test is not available, they make use of 5-fold cross-validation for benchmarking the performances.EILAT This is a coral dataset of 1123 64-pixel RGB image patches53 that were created from larger images that were taken from coral reefs near Eilat in the Red sea. The image dataset is partitioned into eight classes, with an unequal distribution of data. The names of the classes correspond to the shorter version of the scientific names of the coral species. The current SOTA52 for the classification of this dataset uses the ensemble of best performing 11 CNN models similar to RSMAS dataset and 5-fold cross-validation for benchmarking the performances.ZooLake This dataset consists of 17943 images of lake plankton from 35 classes, acquired using a Dual-magnification Scripps Plankton Camera (DSPC) in Lake Greifensee (Switzerland) between 2018 and 2020 14,54. The images are colored, with a black background and an uneven class distribution. The current SOTA22 on this dataset is based on a stacking ensemble of 6 CNN models on an independent test set.WHOI This dataset 55 contains images of marine plankton acquired by Image FlowCytobot56, from Woods Hole Harbor water. The sampling was done between late fall and early spring in 2004 and 2005. It contains 6600 greyscale images of different sizes, from 22 manually categorized plankton classes with an equal number of samples for each class. The majority of the classes belonging to phytoplankton at genus level. This dataset was later extended to include 3.4M images and 103 classes. The WHOI subset that we use was previously used for benchmarking plankton classification models51,52. The current SOTA22 on this dataset is based on average ensemble of 6 CNN models on an independent test set.Kaggle-plankton The original Kaggle-plankton dataset consists of plankton images that were acquired by In-situ Ichthyoplankton Imaging System (ISIIS) technology from May to June 2014 in the Straits of Florida. The dataset was published on Kaggle (https://www.kaggle.com/c/datasciencebowl) with images originating from the Hatfield Marine Science Center at Oregon State University. A subset of the original Kaggle-plankton dataset was published by51 to benchmark the plankton classification tasks. This subset comprises of 14,374 greyscale images from 38 classes, and the distribution among classes is not uniform, but each class has at least 100 samples. The current SOTA22 uses average ensemble of 6 CNN models and benchmarks the performance using 5-fold cross-validation.ZooScan The ZooScan dataset consists of 3771 greyscale plankton images acquired using the Zooscan technology from the Bay of Villefranche-sur-mer57. This dataset was used for benchmarking the classification models in previous plankton recognition papers51,52. The dataset consists of 20 classes with a variable number of samples for each class ranging from 28 to 427. The current SOTA22 uses average ensemble of 6 CNN models and benchmarks the performance using 2-fold cross-validation.NA-Birds NA-Birds58 is a collection of 48,000 captioned pictures of North America’s 400 most often seen bird species. For each species, there are over 100 images accessible, with distinct annotations for males, females, and juveniles, totaling 555 visual categories. The current SOTA59 called TransFG modifies the pure ViT model by adding contrastive feature learning and part selection module that replaces the original input sequence to the transformer layer with tokens corresponding to informative regions such that the distance of representations between confusing subcategories can be enlarged. They make use of an independent test set for benchmarking the model performances.Stanford Dogs The Stanford Dogs dataset comprises 20,580 color images of 120 different dog breeds from all around the globe, separated into 12,000 training images and 8,580 testing images60. The current SOTA59 makes use of modified ViT model called TransFG as explained above in NA-Birds dataset. They make use of an independent test set for benchmarking the model performances.Sri Lankan Beetles The arboreal tiger beetle data61 consists of 380 images that were taken between August 2017 and September 2020 from 22 places in Sri Lanka, including all climatic zones and provinces, as well as 14 districts. Tricondyla (3 species), Derocrania (5 species), and Neocollyris (1 species) were among the nine species discovered, with six of them being endemic . The current SOTA61 makes use of CNN-based SqueezeNet architecture and was trained using pre-trained weights of ImageNet. The benchmarking of the model performances was done on an independent test set.Florida Wild Traps The wildlife camera trap62 classification dataset comprises 104,495 images with visually similar species, varied lighting conditions, skewed class distribution, and samples of endangered species, such as Florida panthers. These were collected from two locations in Southwestern Florida. These images are categorized in to 22 classes. The current SOTA62 makes use of CNN-based ResNet-50 architecture and the performance of the model was benchmarked on an independent test set.ModelsVision transformers (ViTs)31 are an adaptation to computer vision of the Transformers, which were originally developed for natural language processing30. Their distinguishing feature is that, instead of exploiting translational symmetry, as CNNs do, they have an attention mechanism which identifies the most relevant part of an image. ViTs have recently outperformed CNNs in image classification tasks where vast amounts of training data and processing resources are available30,63. However, for the vast majority of use cases and consumers, where data and/or computational resources are limiting, ViTs are essentially untrainable, even when the network architecture is defined and no architectural optimization is required. To settle this issue, Data-efficient Image Transformers (DeiTs) were proposed32. These are transformer models that are designed to be trained with much less data and with far less computing resources32. In DeiTs, the transformer architecture has been modified to allow native distillation64, in which a student neural network learns from the results of a teacher model. Here, a CNN is used as the teacher model, and the pure vision transformer is used as the student network. All the DeiT models we report on here are DeiT-Base models32. The ViTs are ViT-B16, ViT-B32, and ViT-L32 models31.ImplementationTo train our models, we used transfer learning65: we took a model that was already pre-trained on the ImageNet43 dataset, changed the last layers depending on the number of classes, and then fine-tuned the whole network with a very low learning rate. All the models were trained with two Nvidia GTX 2080Ti GPUs.DeiTs We used DeiT-Base32 architecture, using the Python package TIMM66, which includes many of the well-known deep learning architectures, along with their pre-trained weights computed from the ImageNet dataset43. We resized the input images to 224 x 224 pixels and then, to prevent the model from overfitting at the pixel level and help it generalize better, we employed typical image augmentations during training such as horizontal and vertical flips, rotations up to 180 degrees, small zoom up’s to 20%, a small Gaussian blur, and shearing up to 10%. To handle class imbalance, we used class reweighting, which reweights errors on each example by how present that class is in the dataset67. We used sklearn utilities68 to calculate the class weights which we employed during the training phase.The training phase started with a default pytorch69 initial conditions (Kaiming uniform initializer), an AdamW optimizer with cosine annealing70, with a base learning rate of (10^{-4}), and a weight decay value of 0.03, batch size of 32 and was supervised using cross-entropy loss. We trained with early stopping, interrupting training if the validation F1-score did not improve for 5 epochs. The learning rate was then dropped by a factor of 10. We iterated until the learning rate reached its final value of (10^{-6}). This procedure amounted to around 100 epochs in total, independent of the dataset. The training time varied depending on the size of the datasets. It ranged between 20min (SriLankan Beetles) to 9h (Florida Wildtrap). We used the same procedure for all the datasets: no extra time was needed for hyperparameter tuning.ViTs We implemented the ViT-B16, ViT-B32 and ViT-L32 models using the Python package vit-keras (https://github.com/faustomorales/vit-keras), which includes pre-trained weights computed from the ImageNet43 dataset and the Tensorflow library71.First, we resized input images to 128 × 128 and employed typical image augmentations during training such as horizontal and vertical flips, rotations up to 180 degrees, small zooms up to 20%, small Gaussian blur, and shearing up to 10%. To handle class imbalance, we calculated the class weights and use them during the training phase.Using transfer learning, we imported the pre-trained model and froze all of the layers to train the model. We removed the last layer, and in its place we added a dense layer with (n_c) outputs (being (n_c) the number of classes), was preceded and followed by a dropout layer. We used the Keras-tuner72 with Bayesian optimization search73 to determine the best set of hyperparameters, which included the dropout rate, learning-rate, and dense layer parameters (10 trials and 100 epochs). After that, the model with the best hyperparameters was trained with a default tensorflow71 initial condition (Glorot uniform initializer) for 150 epochs using early stopping, which involved halting the training if the validation loss did not decrease after 50 epochs and retaining the model parameters that had the lowest validation loss.CNNs CNNs included DenseNet38, MobileNet39, EfficientNet-B240, EfficientNet-B540, EfficientNet-B640, and EfficientNet-B740 architectures. We followed the training procedure described in Ref.22, and carried out the training in tensorflow.Ensemble learningWe adopted average ensembling, which takes the confidence vectors of different learners, and produces a prediction based on the average among the confidence vectors. With this procedure, all the individual models contribute equally to the final prediction, irrespective of their validation performance. Ensembling usually results in superior overall classification metrics and model robustness74,75.Given a set of n models, with prediction vectors (vec c_i~(i=1,ldots ,n)), these are typically aggregated through an arithmetic average. The components of the ensembled confidence vector (vec c_{AA}), related to each class (alpha ) are then$$begin{aligned} c_{AA,alpha } = frac{1}{n}sum _{i=1}^n c_{i,alpha },. end{aligned}$$
    (2)
    Another option is to use a geometric average,$$begin{aligned} c_{GA,alpha } = root n of {prod _{i=1}^n c_{i,alpha }},. end{aligned}$$
    (3)
    We can normalize the vector (vec c_g), but this is not relevant, since we are interested in its largest component, (displaystyle max _alpha (c_{GA,alpha })), and normalization affects all the components in the same way. As a matter of fact, also the nth root does not change the relative magnitude of the components, so instead of (vec c_{GA}) we can use a product rule: (displaystyle max _alpha (c_{GA,alpha })=max _alpha (c_{PROD,alpha })), with (displaystyle c_{PROD,alpha } = prod _{i=1}^n c_{i,alpha }).While these two kinds of averaging are equivalent in the case of two models and two classes, they are generally different in any other case33. For example, it can easily be seen that the geometric average penalizes more strongly the classes for which at least one learner has a very low confidence value, a property that was termed veto mechanism36 (note that, while in Ref.36 the term veto is used when the confidence value is exactly zero, here we use this term in a slightly looser way). More

  • in

    Low levels of sibship encourage use of larvae in western Atlantic bluefin tuna abundance estimation by close-kin mark-recapture

    Our results show that GoM BFT larval survey samples can provide the crucial mark events for eventual CKMR estimates of adult abundance. The adult parents marked by larval samples can be directly recaptured in the fishery many years later as POPs, and indirectly through their progeny in future samples of larvae, as evidenced by the two cross-cohort HSPs (XHSPs) recovered in this study, which imply that a parent survived and spawned in the GoM in consecutive years. As more cohorts are sampled in future, the growing number of XHSPs could be used to estimate average adult survival rates, in addition to helping with the estimation of adult abundance31, as is now done for southern blue tuna40.There is a modest level of sibship within our 2016 samples, and a high level (involving over half the samples) in 2017, but it turns out not to be high enough to cause serious problems for POP-based CKMR. High sibship per se does not lead to bias in CKMR by virtue of the statistical construction of the estimate, but it does increase variance, which can be summarized through a reduction in effective sample size. In a POP-based CKMR model, our effective sample size would be about 75% of nominal for the two years combined, or 66% of nominal for the targeted sampling of 2017. Since it is actually the product of adult and juvenile sample sizes which drives precision in CKMR14, one way to think about the 75% is that we will need about 33% more adult samples to achieve a given precision on abundance estimates than if we had somehow been able to collect the same number of “independent” juvenile samples (i.e. without oversampling siblings). That increase is appreciable but entirely achievable; for WBFT, it is logistically much easier to collect more feeding-ground adult samples than to collect more larvae, and at present there is no known practical way to collect large numbers of older, more dispersed, and thus more independent, juvenile western origin bluefin tuna (WBFT).This study was motivated by the concern that sibship might be a serious impediment to use of WBFT larvae for CKMR. High levels of sibship have been found in larval collections for other taxa despite a pelagic larval phase, suggesting that abiotic factors can impede random mixing of larvae after a spawning event41. Our larval samples were only a few days old (4–11) and thus had little time to disperse since fertilization; our concern beforehand was that each tow might sample the offspring of a very small number of adults (one spawning group in one night), and in 2017 that repeatedly towing the same water mass might simply be resampling the same “family”. In practice, though, the cumulative effect was limited. Samples were not dominated by progeny from just a few adults; the maximum DPG size (i.e., number of offspring from any one adult) was 5, which is under 2% of the larval sample size. There are several possible reasons for this finding. First, plankton sample tows are typically standardized to a ten-minute duration, covering on average about 0.3 nautical miles. Based on continuous plankton cameras42, each tow is likely to tow through multiple patches of zooplankton, and therefore potentially multiple patches of BFT larvae. Second, spawning aggregations of BFT may contain many adults. For example, on the spawning grounds near the Balearic Islands in the Mediterranean, purse seine fisheries target spawning fish and individual net sets routinely capture upwards of 500 mature individuals43. These numbers suggest that BFT spawner aggregations can be quite large, although the number of individuals that contribute gametes to a single spawning event may be lower. The results of this study pose intriguing scenarios for understanding BFT larval ecology and spawning behavior, which could be explored with larger sample sizes paired with data on oceanographic conditions, direct observation of spawning aggregations, and modeling to compare observed and predicted dispersal. The results of this study are based on just two years of sampling, and numerous practical and theoretical challenges remain to fully understand BFT reproduction in the GoM.Our sibship impact calculations assume use of an unmodified adult-size-based CKMR POP model, where each juvenile is compared to each adult taking into account the latter’s size (e.g.,14). That will give unbiased estimates, which we regard as essential in a CKMR model. However, for WBFT the estimates are not fully statistically efficient, in that some adults receive more statistical weight than others because they are marked more often (by having a large DPG), and thus variance might not be the lowest achievable. Modifying the model to fix that would be simple in a “cartoon” CKMR setting where all adults are identical (e.g., Fig. 1 of14), simply by first condensing each DPG to a single representative, then only using those representatives (rather than all the larvae) in POP comparisons. Each marked parent then receives the same weight, giving maximum efficiency. For the cartoon, this condensed-DPG model still gives an unbiased estimate of abundance, because each DPG has one parent of given sex, and the chance of any sampled cartoon adult of that sex being that parent is 1/N. The DPG-condensed effective sample size is simply half the number of distinct parents, which would be a little larger than the effective sample sizes for the unmodified model shown in Table 3; e.g., in 2017, 504/2 = 252 versus 209. However, no such straightforward improvement is available for an adult-size-based CKMR model such as is needed for WABFT. Using condensed DPGs directly would bias the juvenile sampling against larger more-fecund adults, whose DPGs will tend on average to be larger and thus to experience disproportionate condensation. Those adults would be marked less often by the DPG-condensed juveniles than the model assumes, violating the basic requirements for unbiased CKMR in14. A more sophisticated model might be able to combine unbiasedness with higher efficiency but, since the unmodified adult-size-based POP model that we expect to use is unbiased and only mildly inefficient (at worst 209/252 = 83% efficient, in 2017) there seems no particular need for extra complications at present. However, that may not hold true if we eventually move to a POP + XHSP model, where the impact on unmodified CKMR variance is worse (though there is still no bias, for the same reason as with POPs). Intuitively, the biggest impact that a DPG of size 5 can have in a POP model is to suddenly raise the number of POPs by 5 if its parent happens to be sampled; within a useful total of, say, 75 POPs, the influence is not that large. But if two DPGs both of size 5 in different cohorts happen to share a parent, then the total of XHSPs suddenly jumps by 25— likely a substantial proportion of total XHSPs. Supplementary Material B also includes effective sample size formulae for a simplified XHSP-only model, which demonstrate the increased impact of within-cohort sibship; for our WBFT samples, it turns out that the XHSP-effective size is slightly lower for the targeted 2017 samples (110) than for the 2016 samples (130), unlike the POP-only effective size. Dropping from a maximum theoretical effective sample size of 252 (half the number of DPGs) down to 110 would be rather inefficient and would increase the number of years of sampling required to yield a useful XHSP dataset. This motivates developing a modified POP + XHSP model that retains unbiasedness without sacrificing too much efficiency. In principle, that can be done by condensing each DPG but then conditioning its comparison probabilities on the DPG’s original size, in accordance with the framework in14. This is a topic for subsequent research, and the results will inform future sampling strategy decisions for WBFT.One potential difficulty for western BFT CKMR might occur if a substantial proportion of animals reaching maturity are the offspring of “Western” (in genetic terms) adults who persistently spawn in the western North Atlantic but outside the GoM. However, as long as the adults marked by GoM larvae are well mixed at the time of sampling with any western adults that do spawn outside of the GoM, the total POP-based population estimate of genetically-western BFT from CKMR will remain unbiased. Given evidence from tagging of widespread adult movements within the western North Atlantic2, good mixing in the sampled feeding grounds seems likely; so, even if successful non-GoM western BFT spawning really is commonplace, there should not be a problem with relying on GoM larvae for at least the POP component of CKMR14.Studies of fish early life history have long been considered to have great potential to provide novel insight into the unique population dynamics of fishes44,45,46. Sampling efforts aimed at estimating fish recruitment dynamics have spawned a diversity of larval survey programs. Examples of these long-term programs include the California Cooperative Oceanic Fisheries Investigations, International Council for the Exploration of the Sea (ICES) surveys in the North Atlantic and adjacent areas, Southeast Monitoring and Assessment Program (SEAMAP) in the GoM, Ecosystem Monitoring (EcoMon) in the Northeast U.S., and numerous others, many of which provide indices of larval abundance widely used in fisheries and ecosystem assessments. Yet, as a result of the inherent patchiness of larvae42, sampling variability, and highly variable density dependent mortality45, fisheries scientists have often struggled to determine how larval surveys relate to the adult fish populations. Inclusion of estimates of sibship among larvae collected in surveys could refine estimates of adult spawning stock biomass estimated from these surveys.The results of this study also represent products of decades of work and coordination in obtaining high-quality DNA from larval specimens. Key steps to successful genotyping of larvae include ensuring that larvae are preserved, sorted, and handled in 95% non-denatured ethanol. In addition, strict instrument cleaning protocols must be followed, and stomachs should be removed or avoided (this study used larval tails and, when possible, eyes to avoid cross contamination of prey contents, including possible congeners and other BFT individuals). Exposure to hot lamps during the sorting and dissection processes should also be minimized to ensure that DNA quality is sufficiently high for genotyping-by-sequencing. Although the tissues available for genetic analysis were limited by the needs of other experiments that required BFT tissues, otoliths, gut contents, and other information from the same larvae, we were able to successfully genotype most larvae greater than 6 mm SL and identify thousands of informative SNPs. The lower size limit of larvae could likely be decreased if whole specimens were available for genotyping, although the use of younger larvae could increase the incidence of sibship.In summary, while we observed both FSPs and HSPs in larval collections, with elevated sibship overall and with siblings being more prevalent within tows and in nearby tows, the level of sibship was sufficiently low that collections of GoM BFT larvae can still provide the critical genetic mark of parental genotypes required for CKMR. Our results demonstrate a crucial proof of concept and are the first step towards an operational CKMR modelling estimate of spawning stock abundance for western BFT. More

  • in

    Fragmentation by major dams and implications for the future viability of platypus populations

    Zhou, Y. et al. Platypus and echidna genomes reveal mammalian biology and evolution. Nature 592, 756–762 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bino, G. et al. The platypus: evolutionary history, biology, and an uncertain future. J. Mammal. 100, 308–327 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Veyrunes, F. et al. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res. 18, 965–973 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anich, P. S. et al. Biofluorescence in the platypus (Ornithorhynchus anatinus). Mammalia 85, 179–181 (2021).Article 

    Google Scholar 
    Pavoine, S., Ollier, S. & Dufour, A. B. Is the originality of a species measurable? Ecol. Lett. 8, 579–586 (2005).Article 

    Google Scholar 
    Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. M. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woinarski, J. & Burbidge, A. In The IUCN Red List of Threatened Species 2016: e. T40488A21964009 (IUCN, 2016).Victoria Government Gazette. Authority of Victorian Government Printer (2021).Hawke, T., Bino, G. & Kingsford, R. T. A silent demise: Historical insights into population changes of the iconic platypus (Ornithorhynchus anatinus). Glob. Ecol. Conserv. 20, e00720 (2019).Article 

    Google Scholar 
    Grant, T. R. & Fanning, D. Platypus (CSIRO PUBLISHING, 2007).Bino, G., Kingsford, R. T. & Wintle, B. A. A stitch in time–Synergistic impacts to platypus metapopulation extinction risk. Biol. Conserv. 242, 108399 (2020).Article 

    Google Scholar 
    Hawke, T., Bino, G. & Kingsford, R. A National Assessment of the Conservation Status of the Platypus (University of New South Wales, 2021).Bino, G., Hawke, T. & Kingsford, R. T. Synergistic effects of a severe drought and fire on platypuses. Sci. Total Environ. 777, 146137 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Klamt, M., Thompson, R. & Davis, J. Early response of the platypus to climate warming. Glob. Change Biol. 17, 3011–3018 (2011).Article 

    Google Scholar 
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).Article 
    PubMed 

    Google Scholar 
    Grill, G. et al. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 10, 015001 (2015).Article 

    Google Scholar 
    Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dugan, P. J. et al. Fish migration, dams, and loss of ecosystem services in the Mekong basin. Ambio 39, 344–348 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Timpe, K. & Kaplan, D. The changing hydrology of a dammed Amazon. Sci. Adv. 3, e1700611 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grant, T. R. & Temple-Smith, P. D. Conservation of the platypus, Ornithorhynchus anatinus: threats and challenges. Aquat. Ecosyst. Health Manag. 6, 5–18 (2003).Article 

    Google Scholar 
    Hawke, T., Bino, G. & Kingsford, R. T. Damming insights: variable impacts and implications of river regulation on platypus populations. Aquat. Conserv.: Mar. Freshw. Ecosyst. 31, 504–519 (2021).Article 

    Google Scholar 
    Bethge, P., Munks, S., Otley, H. & Nicol, S. Diving behaviour, dive cycles and aerobic dive limit in the platypus Ornithorhynchus anatinus. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 136, 799–809 (2003).Article 

    Google Scholar 
    Grant, T. & Llewellyn, L. C. The Biology and Management of the Platypus (Ornithorhynchus anatinus) in NSW (NSW National Parks and Wildlife Service, 1991).Grant, T. R. Captures, Capture Mortality, Age and Sex Ratios of Platypuses, Ornithorhynchus Anatinus, during Studies over 30 Years in the Upper Shoalhaven River in New South Wales (Linnean Society of New South Wales, 2004).Marchant, R. & Grant, T. The productivity of the macroinvertebrate prey of the platypus in the upper Shoalhaven River, New South Wales. Mar. Freshw. Res. 66, 1128–1137 (2015).Article 

    Google Scholar 
    Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M. & Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 88, 310–326 (2013).Article 
    PubMed 

    Google Scholar 
    Frankham, R. et al. Genetic Management of Fragmented Animal and Plant Populations (Oxford University Press, 2017).Frankham, R. Genetic rescue of small inbred populations: meta‐analysis reveals large and consistent benefits of gene flow. Mol. Ecol. 24, 2610–2618 (2015).Article 
    PubMed 

    Google Scholar 
    Garant, D., Forde, S. E. & Hendry, A. P. The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct. Ecol. 21, 434–443 (2007).Article 

    Google Scholar 
    Tigano, A. & Friesen, V. L. Genomics of local adaptation with gene flow. Mol. Ecol. 25, 2144–2164 (2016).Article 
    PubMed 

    Google Scholar 
    Kolomyjec, S. H. The History and Relationships of Northern Platypus (Ornithorhynchus Anatinus) Populations: A Molecular Approach (James Cook University, 2010).Furlan, E. M. et al. Dispersal patterns and population structuring among platypuses, Ornithorhynchus anatinus, throughout south-eastern Australia. Conserv. Genet. 14, 837–853 (2013).Article 
    CAS 

    Google Scholar 
    Balkenhol, N., Cushman, S., Storfer, A. & Waits, L. Landscape Genetics: Concepts, Methods, Applications (John Wiley & Sons, 2015).Ramachandran, S. et al. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc. Natl Acad. Sci. USA 102, 15942–15947 (2005).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Landguth, E. L. et al. Quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 19, 4179–4191 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hoffman, J. R., Willoughby, J. R., Swanson, B. J., Pangle, K. L. & Zanatta, D. T. Detection of barriers to dispersal is masked by long lifespans and large population sizes. Ecol. Evolution 7, 9613–9623 (2017).Article 

    Google Scholar 
    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: F-ST and related measures. Mol. Ecol. Resour. 11, 5–18 (2011).Article 
    PubMed 

    Google Scholar 
    Lehner, B. et al. High‐resolution mapping of the world’s reservoirs and dams for sustainable river‐flow management. Front. Ecol. Environ. 9, 494–502 (2011).Article 

    Google Scholar 
    Lemopoulos, A. et al. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness—implications for brown trout conservation. Ecol. Evolution 9, 2106–2120 (2019).Article 

    Google Scholar 
    Sunde, J., Yıldırım, Y., Tibblin, P. & Forsman, A. Comparing the performance of microsatellites and RADseq in population genetic studies: Analysis of data for pike (Esox lucius) and a synthesis of previous studies. Front. Genet. 11, 218 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sherwin, W. B., Chao, A., Jost, L. & Smouse, P. E. Information theory broadens the spectrum of molecular ecology and evolution. Trends Ecol. Evol. 32, 948–963 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Serena, M. & Williams, G. Movements and cumulative range size of the platypus (Ornithorhynchus anatinus) inferred from mark–recapture studies. Aust. J. Zool. 60, 352–359 (2013).Article 

    Google Scholar 
    Hawke, T. et al. Fine‐scale movements and interactions of platypuses, and the impact of an environmental flushing flow. Freshw. Biol. 66, 177–188 (2021).Article 

    Google Scholar 
    Hawke, T. et al. Long-term movements and activity patterns of platypus on regulated rivers. Sci. Rep. 11, 1–11 (2021).Article 

    Google Scholar 
    Nislow, K. H., Hudy, M., Letcher, B. H. & Smith, E. P. Variation in local abundance and species richness of stream fishes in relation to dispersal barriers: implications for management and conservation. Freshw. Biol. 56, 2135–2144 (2011).Article 

    Google Scholar 
    Søndergaard, M. & Jeppesen, E. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. J. Appl. Ecol. 44, 1089–1094 (2007).Hoffmann, A. A., Miller, A. D. & Weeks, A. R. Genetic mixing for population management: From genetic rescue to provenancing. Evol. Appl. 14, 634–652 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mills, L. S. & Allendorf, F. W. The one-migrant-per-generation rule in conservation and management. Conserv. Biol. 10, 1509–1518 (1996).Article 

    Google Scholar 
    Brown, J. J. et al. Fish and hydropower on the US Atlantic coast: failed fisheries policies from half‐way technologies. Conserv. Lett. 6, 280–286 (2013).Article 

    Google Scholar 
    Silva, A. T. et al. The future of fish passage science, engineering, and practice. Fish. Fish. 19, 340–362 (2018).Article 

    Google Scholar 
    Broadhurst, B., Ebner, B., Lintermans, M., Thiem, J. & Clear, R. Jailbreak: a fishway releases the endangered Macquarie perch from confinement below an anthropogenic barrier. Mar. Freshw. Res. 64, 900–908 (2013).Article 

    Google Scholar 
    Sainsbury, A. W. & Vaughan‐Higgins, R. J. Analyzing disease risks associated with translocations. Conserv. Biol. 26, 442–452 (2012).Article 
    PubMed 

    Google Scholar 
    Kolomyjec, S. H., Grant, T. R., Johnson, C. N. & Blair, D. Regional population structuring and conservation units in the platypus (Ornithorhynchus anatinus). Aust. J. Zool. 61, 378–385 (2014).Article 

    Google Scholar 
    Drechsler, M. & Burgman, M. A. Combining population viability analysis with decision analysis. Biodivers. Conserv. 13, 115–139 (2004).Article 

    Google Scholar 
    Kolomyjec, S. H. et al. Population genetics of the platypus (Ornithorhynchus anatinus): a fine-scale look at adjacent river systems. Aust. J. Zool. 57, 225–234 (2009).Article 

    Google Scholar 
    Kolomyjec, S. H., Grant, T. R. & Blair, D. Ten polymorphic microsatellite DNA markers for the platypus, Ornithorhynchus anatinus. Mol. Ecol. Resour. 8, 1133–1135 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Martin, H. C. et al. Insights into platypus population structure and history from whole-genome sequencing. Mol. Biol. Evol. 35, 1238–1252 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bino, G., Kingsford, R. T., Grant, T., Taylor, M. D. & Vogelnest, L. Use of implanted acoustic tags to assess platypus movement behaviour across spatial and temporal scales. Sci. Rep. 8, 1–12 (2018).Article 
    CAS 

    Google Scholar 
    Kilian, A. et al. Diversity arrays technology: a generic genome profiling technology on open platforms. Methods Mol. Biol. 888, 67–89 (2012).Article 
    PubMed 

    Google Scholar 
    Georges, A. et al. Genomewide SNP markers breathe new life into phylogeography and species delimitation for the problematic short‐necked turtles (Chelidae: Emydura) of eastern Australia. Mol. Ecol. 27, 5195–5213 (2018).Article 
    PubMed 

    Google Scholar 
    Steane, D. A. et al. Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Mol. Phylogenet. Evol. 59, 206–224 (2011).Article 
    PubMed 

    Google Scholar 
    Sunnucks, P. & Hales, D. F. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol. Biol. Evol. 13, 510–524 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schmidt, T. L., Jasper, M. E., Weeks, A. R. & Hoffmann, A. A. Unbiased population heterozygosity estimates from genome‐wide sequence data. Methods Ecol. Evolution 12, 1888–1898 (2021).Article 

    Google Scholar 
    Pew, J., Muir, P. H., Wang, J. & Frasier, T. R. related: an R package for analysing pairwise relatedness from codominant molecular markers. Mol. Ecol. Resour. 15, 557–561 (2015).Article 
    PubMed 

    Google Scholar 
    Goudet, J. Hierfstat, a package for R to compute and test hierarchical F‐statistics. Mol. Ecol. Notes 5, 184–186 (2005).Article 

    Google Scholar 
    Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).Article 
    PubMed 

    Google Scholar 
    Pacifici, M. et al. Generation length for mammals. Nat. Conserv. 5, 89 (2013).Article 

    Google Scholar 
    Mijangos, J. L., Gruber, B., Berry, O., Pacioni, C. & Georges, A. dartR v2: an accessible genetic analysis platform for conservation, ecology, and agriculture. Methods Ecol. Evol. 13, 2150–2158 (2022).McVean, G. A genealogical interpretation of principal components analysis. PLoS Genet. 5, e1000686 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).Mijangos, J. et al. Datasets and R scripts for Fragmentation by major dams and implications for the future viability of platypus populations (2022).IUCN (International Union for Conservation of Nature) 2008. Ornithorhynchus anatinus. The IUCN Red List of Threatened Species. Version 2022-1. https://www.iucnredlist.org (2022).Crossman, S. & Li, O. Surface Hydrology Lines (National) (2015).Crossman, S. & Li, O. Surface Hydrology Polygons (National) (2015).Australian Bureau of Statistics (2021). States and Territories – 2021 – Shapefile [https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files] [Shapefile], Digital boundary files (2022).Australian National Committee on Large Dams Incorporated (ANCOLD). Register of Large Dams Australia (2022). More

  • in

    Tree diversity in a tropical agricultural-forest mosaic landscape in Honduras

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381. https://doi.org/10.1038/nature10425 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pimm, S. L. & Raven, P. Extinction by numbers. Nature 403, 843–845. https://doi.org/10.1038/35002708 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    ​FAO. Global Forest Resources Assessment 2020: Main report. 184p (Rome, Italy, 2020).Harvey, C. A. et al. Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv Biol 22, 8–15 (2008).Article 
    PubMed 

    Google Scholar 
    Brouwer, F. & McCarl, B. Agriculture and climate beyond 2015: A New Perspective on Future Land Use Patterns. (2006).Redo, D. J., Grau, H. R., Aide, T. M. & Clark, M. L. Asymmetric forest transition driven by the interaction of socioeconomic development and environmental heterogeneity in Central America. Proc. Natl. Acad. Sci. 109, 8839–8844. https://doi.org/10.1073/pnas.1201664109 (2012).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. https://doi.org/10.1038/35002501 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Declerck, F. et al. Biodiversity conservation in human-modified landscapes of Mesoamerica: Past, present and future. Biol. Conserv. 143, 2301–2313. https://doi.org/10.1016/j.biocon.2010.03.026 (2010).Article 

    Google Scholar 
    Miller, K., Chang, E. & Johnson, N. Defining Common Ground for the Mesoamerican Biological Corridor (World Resources Institute, Washington, 2001).
    Google Scholar 
    Fischer, J. et al. Conservation: Limits of land sparing. Science 334, 593–593. https://doi.org/10.1126/science.334.6056.593-a (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Morecroft, M. D. et al. Agricultural lands key to mitigation and adaptation—Response. Science 367, 518–519. https://doi.org/10.1126/science.aba7577 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Vidal, A., Kumar, C., Zinngrebe, Y., Dobie, P. & Gassner, A. Trees on farms as a nature-based solution for
    biodiversity conservation in agricultural landscapes. Report number: ICRAF Policy brief No 47. 12p. World
    Agroforestry Centre. https://doi.org/10.13140/RG.2.2.14852.07045 (2020).César, R. et al. Forest and landscape restoration: A review emphasizing principles, concepts, and practices. Land 10, 28. https://doi.org/10.3390/land10010028 (2020).Article 

    Google Scholar 
    Stanturf, J. A. et al. Implementing forest landscape restoration under the Bonn Challenge: A systematic approach. Ann. For. Sci. https://doi.org/10.1007/s13595-019-0833-z (2019).Article 

    Google Scholar 
    VilchezMendoza, S. et al. Consistency in bird use of tree cover across tropical agricultural landscapes. Ecol. Appl. Publ. Ecol. Soc. Am. 24, 158–168. https://doi.org/10.1890/13-0585.1 (2014).Article 

    Google Scholar 
    Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020. https://doi.org/10.1126/science.aau6020 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shaver, I. et al. Coupled social and ecological outcomes of agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions. Glob. Environ. Change 32, 74–86. https://doi.org/10.1016/j.gloenvcha.2015.02.006 (2015).Article 

    Google Scholar 
    Zermeño-Hernández, I., Pingarroni, A. & Martínez-Ramos, M. Agricultural land-use diversity and forest regeneration potential in human- modified tropical landscapes. Agric. Ecosyst. Environ. 230, 210–220. https://doi.org/10.1016/j.agee.2016.06.007 (2016).Article 

    Google Scholar 
    Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773. https://doi.org/10.1111/conl.12773 (2021).Article 

    Google Scholar 
    Estrada-Carmona, N., Martínez-Salinas, A., DeClerck, F. A. J., Vílchez-Mendoza, S. & Garbach, K. Managing the farmscape for connectivity increases conservation value for tropical bird species with different forest-dependencies. J. Environ. Manag. 250, 109504. https://doi.org/10.1016/j.jenvman.2019.109504 (2019).Article 
    CAS 

    Google Scholar 
    Vandermeer, J. & Perfecto, I. The agroecosystem: A need for the conservation biologist’s lens. Conserv. Biol. 11, 591–592 (1997).Article 

    Google Scholar 
    Pardon, P. et al. Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agr. Ecosyst. Environ. 247, 98–111. https://doi.org/10.1016/j.agee.2017.06.018 (2017).Article 
    CAS 

    Google Scholar 
    Nair, P. R. The coming of age of agroforestry. J. Sci. Food Agric. 87, 1613–1619. https://doi.org/10.1002/jsfa.2897 (2007).Article 
    CAS 

    Google Scholar 
    Chatterjee, N., Nair, P. K. R., Chakraborty, S. & Nair, V. D. Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: A meta-analysis. Agric. Ecosyst. Environ. 266, 55–67. https://doi.org/10.1016/j.agee.2018.07.014 (2018).Article 

    Google Scholar 
    Toledo-Hernández, M., Wanger, T. C. & Tscharntke, T. Neglected pollinators: Can enhanced pollination services improve cocoa yields? A review. Agr. Ecosyst. Environ. 247, 137–148. https://doi.org/10.1016/j.agee.2017.05.021 (2017).Article 

    Google Scholar 
    Pumariño, L. et al. Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic Appl. Ecol. 16, 573–582. https://doi.org/10.1016/j.baae.2015.08.006 (2015).Article 

    Google Scholar 
    Tscharntke, T. et al. Multifunctional shade-tree management in tropical agroforestry landscapes—A review. J. Appl. Ecol. 48, 619–629. https://doi.org/10.1111/j.1365-2664.2010.01939.x (2011).Article 

    Google Scholar 
    Martínez-Fonseca, J. G., Chávez-Velásquez, M., Williams-Guillen, K. & Chambers, C. L. Bats use live fences to move between tropical dry forest remnants. Biotropica 52, 5–10. https://doi.org/10.1111/btp.12751 (2020).Article 

    Google Scholar 
    Prevedello, J. A., Almeida-Gomes, M. & Lindenmayer, D. B. The importance of scattered trees for biodiversity conservation: A global meta-analysis. J. Appl. Ecol. 55, 205–214. https://doi.org/10.1111/1365-2664.12943 (2018).Article 

    Google Scholar 
    INE. Ministerio de Agricultura, Pesca y Alimentación (MAPA)- Gobierno de España-. 2021. Ficha de sectores. Sectores Agricultura y Pesquero. Honduras (2022).MinAmbiente-ICF. Tipologías de Bosques de Honduras. Programa ONU-REDD. Forest Carbon Partnership Facility. Tegucigalpa, Honduras. Secretaria de Energía, Recursos Naturales, Ambiente y Minas (Min Ambiente)/Instituto Nacional de Conservación y Desarrollo Forestal, Areas Protegidas y Vida Silvestre (ICF). (2017).Godinot, F., Somarriba, E., Finegan, B. & Delgado-Rodríguez, D. Secondary tropical dry forests are important to cattle ranchers in Northwestern Costa Rica. Trop. J. Environ. Sci. 54, 20–50 (2020).
    Google Scholar 
    Zahawi, R. A. Establishment and growth of living fence species: An overlooked tool for the restoration of degraded Areas in the Tropics. Restor. Ecol. 13, 92–102. https://doi.org/10.1111/j.1526-100X.2005.00011.x (2005).Article 

    Google Scholar 
    Harvey, C. A. et al. Patterns of animal diversity in different forms of tree cover in agricultural landscapes. Ecol. Appl. Publ. Ecol. Soc. Am. 16, 1986–1999. https://doi.org/10.1890/1051-0761(2006)016[1986:poadid]2.0.co;2 (2006).Article 

    Google Scholar 
    Miceli-Mèndez, C. L., Ferguson, B. G. & Ramìrez-Marcial, N. in Post-Agricultural Succession in the Neotropics (ed Randall W. Myster) 165–191 (Springer New York, 2008).Gaoue, O. G. & Ticktin, T. Patterns of harvesting foliage and bark from the multipurpose tree Khaya senegalensis in Benin: Variation across ecological regions and its impacts on population structure. Biol. Conserv. 137, 424–436. https://doi.org/10.1016/j.biocon.2007.02.020 (2007).Article 

    Google Scholar 
    Daily, G., Ceballos, G., Pacheco, J., Suzan, G. & Anchez-Azofeifa, A. Countryside biogeography of neotropical mammals: Conservation opportunities in agricultural landscapes of Costa Rica. Conserv. Biol. https://doi.org/10.1111/j.1523-1739.2003.00298.x (2003).Article 

    Google Scholar 
    Mayfield, M. M. & Daily, G. C. Countryside biogeography of neotropical herbaceous and shrubby plants. Ecol. Appl. 15, 423–439. https://doi.org/10.1890/03-5369 (2005).Article 

    Google Scholar 
    Sánchez-Merlos, D. et al. Diversidad, composición y estructura de la vegetación en un agropaisaje ganadero en Matiguás, Nicaragua. Rev. Biol. Trop. https://doi.org/10.15517/rbt.v53i3-4.14601 (2005).Article 

    Google Scholar 
    Sekercioglu, C. H., Loarie, S. R., Oviedo Brenes, F., Ehrlich, P. R. & Daily, G. C. Persistence of forest birds in the Costa Rican agricultural countryside. Conserv. Biol. 21, 482–494. https://doi.org/10.1111/j.1523-1739.2007.00655.x (2007).Article 
    PubMed 

    Google Scholar 
    Wallace, G., Barborak, J. & MacFarland, C. Land use planning and regulation in and around protected areas: A study of best practices and capacity building needs in Mexico and Central America. Nat Conserv 3 (2005).
    Rozendaal Danaë, M. A. et al. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 5, eaau3114. https://doi.org/10.1126/sciadv.aau3114 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Souza Oliveira, M. et al. Biomass of timber species in Central American secondary forests:
    Towards climate change mitigation through sustainable timber harvesting. Forest Ecology and Management 496,
    119439. https://doi.org/10.1016/j.foreco.2021.119439 (2021).Article 

    Google Scholar 
    Gillespie, T. W., Grijalva, A. & Farris, C. N. Diversity, composition, and structure of tropical dry forests in Central America. Plant Ecol. 147, 37–47. https://doi.org/10.1023/A:1009848525399 (2000).Article 

    Google Scholar 
    Ngo Bieng, M. A. et al. Relevance of secondary tropical forest for landscape restoration. For. Ecol. Manag. 493, 119265. https://doi.org/10.1016/j.foreco.2021.119265 (2021).Article 

    Google Scholar 
    Souza Oliveira, M. et al. Biomass of timber species in Central American secondary forests: Towards climate change mitigation through sustainable timber harvesting. For. Ecol. Manag. 496, 119439. https://doi.org/10.1016/j.foreco.2021.119439 (2021).Article 

    Google Scholar 
    Chacón, L. M. & Harvey, C. A. Live fences and landscape connectivity in a neotropical agricultural landscape. Agrofor. Syst. 68, 15. https://doi.org/10.1007/s10457-005-5831-5 (2006).Article 

    Google Scholar 
    Harvey, C. A. et al. Conservation value of dispersed tree cover threatened by pasture management. For. Ecol. Manag. 261, 1664–1674. https://doi.org/10.1016/j.foreco.2010.11.004 (2011).Article 

    Google Scholar 
    Suding, K. N. Toward an Era of restoration in ecology: Successes, failures, and opportunities ahead. Annu. Rev. Ecol. Evol. Syst. 42, 465–487. https://doi.org/10.1146/annurev-ecolsys-102710-145115 (2011).Article 

    Google Scholar 
    Moguel, P. & Toledo, V. M. Biodiversity conservation in traditional coffee systems of Mexico. Conserv. Biol. 13, 11–21. https://doi.org/10.1046/j.1523-1739.1999.97153.x (1999).Article 

    Google Scholar 
    Harrison, R. D., Harrison, S., Laumonier, Y., Somarriba, E. & Suber, M. Biodiversity monitoring for agricultural landscapes. A protocol using biodiversity metrics to monitor agricultural sustainability under Aichi Target 7. (2019).Heck, K. L. Jr., van Belle, G. & Simberloff, D. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56, 1459–1461. https://doi.org/10.2307/1934716 (1975).Article 

    Google Scholar 
    Magurran, A. E. Measuring Biological Diversity (Wiley-Blackwell, New Jersey, 2004).
    Google Scholar 
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. https://doi.org/10.1890/13-0133.1 (2014).Article 

    Google Scholar 
    Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439. https://doi.org/10.1890/06-1736.1 (2007).Article 
    PubMed 

    Google Scholar 
    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x (2001).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. XXII, 574 (Springer New York, NY, 2009).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2021).Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 2.2-1 2, 1–2 (2015).Hsieh, T. C., Ma, K. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12613 (2016).Article 

    Google Scholar 
    Venables, W. N & Ripley, B. D Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-
    95457-0 (2002)Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, 2009).Book 
    MATH 

    Google Scholar 
    gridExtra: Miscellaneous Functions for “Grid” Graphics. R package version 2.3. (2017). More

  • in

    Improving quantitative synthesis to achieve generality in ecology

    Houlahan, J. E., McKinney, S. T., Anderson, T. M. & McGill, B. J. The priority of prediction in ecological understanding. Oikos 126, 1–7 (2017).Article 

    Google Scholar 
    Lawton, J. H. Are there general laws in ecology? Oikos 84, 177–192 (1999).Article 

    Google Scholar 
    Elliott-Graves, A. Generality and causal interdependence in ecology. Philos. Sci. 85, 1102–1114 (2018).Article 

    Google Scholar 
    Fox, J. W. The many roads to generality in ecology. Philos. Top. 9, 83–104 (2019).Article 

    Google Scholar 
    McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).Article 
    PubMed 

    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1963).Article 

    Google Scholar 
    Gurevitch, J., Fox, G. A., Wardle, G. M., Inderjit & Taub, D. Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol. Lett. 14, 407–418 (2011).Article 
    PubMed 
    CAS 

    Google Scholar 
    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).Article 

    Google Scholar 
    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    Anderson, S. C. et al. Trends in ecology and conservation over eight decades. Front. Ecol. Environ. 19, 274–282 (2021).Article 

    Google Scholar 
    Kneale, D., Thomas, J., O’Mara-Eves, A. & Wiggins, R. How can additional secondary data analysis of observational data enhance the generalisability of meta-analytic evidence for local public health decision making? Res. Synth. Methods 10, 44–56 (2019).Article 
    PubMed 

    Google Scholar 
    Aguinis, H., Pierce, C. A., Bosco, F. A., Dalton, D. R. & Dalton, C. M. Debunking myths and urban legends about meta-analysis. Organ. Res. Methods 14, 306–331 (2011).Article 

    Google Scholar 
    Polit, D. F. & Beck, C. T. Generalization in quantitative and qualitative research: myths and strategies. Int. J. Nurs. Stud. 47, 1451–1458 (2010).Article 
    PubMed 

    Google Scholar 
    Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).Article 

    Google Scholar 
    Lundberg, I., Johnson, R. & Stewart, B. M. What is your estimand? Defining the target quantity connects statistical evidence to theory. Am. Sociol. Rev. 86, 532–565 (2021).Article 

    Google Scholar 
    Lawrance, R. et al. What is an estimand & how does it relate to quantifying the effect of treatment on patient-reported quality of life outcomes in clinical trials? J. Patient-Rep. Outcomes 4, 68 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Findley, M. G., Kikuta, K. & Denly, M. External validity. Annu. Rev. Polit. Sci. 24, 365–393 (2021).Article 

    Google Scholar 
    Pearl, J. & Bareinboim, E. External validity: from do-calculus to transportability across populations. Stat. Sci. 29, 579–595 (2014).Article 

    Google Scholar 
    Westreich, D., Edwards, J. K., Lesko, C. R., Cole, S. R. & Stuart, E. A. Target validity and the hierarchy of study designs. Am. J. Epidemiol. 188, 438–443 (2019).Article 
    PubMed 

    Google Scholar 
    Carpenter, C. J. Meta-analyzing apples and oranges: how to make applesauce instead of fruit salad. Hum. Commun. Res. 46, 322–333 (2020).Article 

    Google Scholar 
    Rohrer, J. M. & Arslan, R. C. Precise answers to vague questions: issues with interactions. Adv. Methods Pract. Psychol. Sci. 4, 1–19 (2021).
    Google Scholar 
    Breslow, N. E. & Clayton, D. G. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88, 9–25 (1993).
    Google Scholar 
    Koricheva, J. & Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844 (2014).Article 

    Google Scholar 
    Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).Article 
    PubMed 

    Google Scholar 
    Konno, K. et al. Ignoring non-English-language studies may bias ecological meta-analyses. Ecol. Evol. 10, 6373–6384 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022).Article 

    Google Scholar 
    Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 86, 638–641 (1979).Article 

    Google Scholar 
    Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).Article 
    PubMed 
    CAS 

    Google Scholar 
    Rothman, K. J., Gallacher, J. E. J. & Hatch, E. E. Why representativeness should be avoided. Int. J. Epidemiol. 42, 1012–1014 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spake, R. et al. Implications of scale dependence for cross-study syntheses of biodiversity differences. Ecol. Lett. 24, 374–390 (2021).Article 
    PubMed 

    Google Scholar 
    Spake, R. & Doncaster, C. P. Use of meta-analysis in forest biodiversity research: key challenges and considerations. For. Ecol. Manag. 400, 429–437 (2017).Article 

    Google Scholar 
    Christie, A. P. et al. Simple study designs in ecology produce inaccurate estimates of biodiversity responses. J. Appl. Ecol. 56, 2742–2754 (2019).Article 

    Google Scholar 
    Nakagawa, S., Noble, D. W. A., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Higgins, J. P. T. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).Article 
    PubMed 

    Google Scholar 
    Schielzeth, H. & Nakagawa, S. Conditional repeatability and the variance explained by reaction norm variation in random slope models. Methods Ecol. Evol. 13, 1214–1223 (2022).Article 

    Google Scholar 
    Nakagawa, S. et al. The orchard plot: cultivating a forest plot for use in ecology, evolution, and beyond. Res. Synth. Methods 12, 4–12 (2021).Article 
    PubMed 

    Google Scholar 
    Lorah, J. Effect size measures for multilevel models: definition, interpretation, and TIMSS example. Large-Scale Assess. Educ. 6, 8 (2018).Article 

    Google Scholar 
    O’Connor, M. I. et al. A general biodiversity–function relationship is mediated by trophic level. Oikos 126, 18–31 (2017).Article 

    Google Scholar 
    Ojha, M., Naidu, D. G. T. & Bagchi, S. Meta-analysis of induced anti-herbivore defence traits in plants from 647 manipulative experiments with natural and simulated herbivory. J. Ecol. 110, 799–816 (2022).Dodds, K. C. et al. Material type influences the abundance but not richness of colonising organisms on marine structures. J. Environ. Manag. 307, 114549 (2022).Article 

    Google Scholar 
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    Senior, A. M. et al. Heterogeneity in ecological and evolutionary meta- analyses: its magnitude and implications. Ecology 97, 3293–3299 (2016).Article 
    PubMed 

    Google Scholar 
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).Article 
    PubMed 
    CAS 

    Google Scholar 
    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).Article 
    PubMed 

    Google Scholar 
    Glass, G. V. Primary, secondary, and meta-analysis of research. Educ. Res. 5, 3–8 (1976).Article 

    Google Scholar 
    Glass, G. V. Meta‐analysis at 25: a personal history. Education in Two Worlds https://ed2worlds.blogspot.com/2022/07/meta-analysis-at-25-personal-history.html (2000).Cooper, H. M. Organizing knowledge syntheses: a taxonomy of literature reviews. Knowl. Soc. 1, 104–126 (1988).
    Google Scholar 
    Soranno, P. A. et al. Cross-scale interactions: quantifying multi-scaled cause-effect relationships in macrosystems. Front. Ecol. Environ. 12, 65–73 (2014).Article 

    Google Scholar 
    Gerstner, K. et al. Will your paper be used in a meta-analysis? Make the reach of your research broader and longer lasting. Methods Ecol. Evol. 8, 777–784 (2017).Article 

    Google Scholar 
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article 

    Google Scholar 
    Simons, D. J., Shoda, Y. & Lindsay, D. S. Constraints on Generality (CoG): a proposed addition to all empirical papers. Perspect. Psychol. Sci. 12, 1123–1128 (2017).Article 
    PubMed 

    Google Scholar 
    Yarkoni, T. The generalizability crisis. Behav. Brain Sci. https://doi.org/10.1017/S0140525X20001685 (2020).Lopez, P. M., Subramanian, S. V. & Schooling, C. M. Effect measure modification conceptualized using selection diagrams as mediation by mechanisms of varying population-level relevance. J. Clin. Epidemiol. 113, 123–128 (2019).Article 
    PubMed 

    Google Scholar 
    Campbell, D. T. in Advances in QuasiExperimental Design and Analysis (ed. Trochim, W.) 67–77 (Jossey-Bass, 1986).Spake, R. et al. Meta‐analysis of management effects on biodiversity in plantation and secondary forests of Japan. Conserv. Sci. Pract. 1, e14 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Forest Ecosystem Diversity Basic Survey (in Japanese) (Forestry Agency of Japan, 2019); https://www.rinya.maff.go.jp/j/keikaku/tayouseichousa/index.htmlIto, S., Ishigamia, S., Mizoue, N. & Buckley, G. P. Maintaining plant species composition and diversity of understory vegetation under strip-clearcutting forestry in conifer plantations in Kyushu, southern Japan. For. Ecol. Manag. 231, 234–241 (2006).Article 

    Google Scholar 
    Utsugi, E. et al. Hardwood recruitment into conifer plantations in Japan: effects of thinning and distance from neighboring hardwood forests. For. Ecol. Manag. 237, 15–28 (2006).Article 

    Google Scholar 
    Kominami, Y. et al. Classification of bird-dispersed plants by fruiting phenology, fruit size, and growth form in a primary lucidophyllous forest: an analysis, with implications for the conservation of fruit–bird interactions. Ornthological Sci. 2, 3–23 (2003).Article 

    Google Scholar 
    Tsujino, R. & Matsui, K. Forest regeneration inhibition in a mixed broadleaf-conifer forest under sika deer pressure. J. For. Res. 27, 230–235 (2021).Article 

    Google Scholar 
    Spake, R., Soga, M., Catford, J. A. & Eigenbrod, F. Applying the stress-gradient hypothesis to curb the spread of invasive bamboo. J. Appl. Ecol. 58, 1993–2003 (2021).Article 

    Google Scholar 
    Mize, T. D. Best practices for estimating, interpreting, and presenting nonlinear interaction effects. Sociol. Sci. 6, 81–117 (2019).Article 

    Google Scholar 
    Karaca-Mandic, P., Norton, E. C. & Dowd, B. Interaction terms in nonlinear models. Health Serv. Res. 47, 255–274 (2012).Article 
    PubMed 

    Google Scholar 
    Spake, R. et al. Forest damage by deer depends on cross-scale interactions between climate, deer density and landscape structure. J. Appl. Ecol. 57, 1376–1390 (2020).McCabe, C. J., Kim, D. S. & King, K. M. Improving present practices in the visual display of interactions. Adv. Methods Pract. Psychol. Sci. 1, 147–165 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shackelford, G. E. et al. Dynamic meta-analysis: a method of using global evidence for local decision making. BMC Biol. 19, 33 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Christie, A. P. et al. Innovation and forward‐thinking are needed to improve traditional synthesis methods: a response to Pescott and Stewart. J. Appl. Ecol. 59, 1191–1197 (2022).Article 

    Google Scholar 
    Haddaway, N. R. et al. EviAtlas: a tool for visualising evidence synthesis databases. Environ. Evid. 8, 22 (2019).Delory, B. M., Li, M., Topp, C. N. & Lobet, G. archiDART v3.0: a new data analysis pipeline allowing the topological analysis of plant root systems. F1000Research 7, 22 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perkel, J. M. The future of scientific figures. Nature 554, 133–134 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    Weaver, S. & Gleeson, M. P. The importance of the domain of applicability in QSAR modeling. J. Mol. Graph. Model. 26, 1315–1326 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    Sutton, C. et al. Identifying domains of applicability of machine learning models for materials science. Nat. Commun. 11, 4428 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633 (2021).Article 

    Google Scholar 
    Pearl, J. & Bareinboim, E. Transportability of causal and statistical relations: a formal approach. In 2011 IEEE 11th International Conference on Data Mining Workshops https://doi.org/10.1109/ICDMW.2011.169 (IEEE, 2011).Munthe-Kaas, H., Nøkleby, H. & Nguyen, L. Systematic mapping of checklists for assessing transferability. Syst. Rev. 8, 22 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dekkers, O. M., von Elm, E., Algra, A., Romijn, J. A. & Vandenbroucke, J. P. How to assess the external validity of therapeutic trials: a conceptual approach. Int. J. Epidemiol. 39, 89–94 (2010).Article 
    PubMed 
    CAS 

    Google Scholar 
    Schloemer, T. & Schröder-Bäck, P. Criteria for evaluating transferability of health interventions: a systematic review and thematic synthesis. Implement. Sci. 13, 88 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernandez-Hermida, J. R., Calafat, A., Becoña, E., Tsertsvadze, A. & Foxcroft, D. R. Assessment of generalizability, applicability and predictability (GAP) for evaluating external validity in studies of universal family-based prevention of alcohol misuse in young people: systematic methodological review of randomized controlled trials. Addiction 107, 1570–1579 (2012).Article 
    PubMed 

    Google Scholar 
    Avellar, S. A. et al. External validity: the next step for systematic reviews? Eval. Rev. 41, 283–325 (2017).Article 
    PubMed 

    Google Scholar 
    Bareinboim, E. & Pearl, J. A general algorithm for deciding transportability of experimental results. J. Causal Inference 1, 107–134 (2013).Article 

    Google Scholar 
    Degtiar, I. & Rose, S. A review of generalizability and transportability. Preprint at https://doi.org/10.48550/arXiv.2102.11904 (2021).Bareinboim, E. & Pearl, J. Meta-transportability of causal effects: a formal approach. J. Mach. Learn. Res. 31, 135–143 (2013).
    Google Scholar 
    Jamieson, D. Scientific uncertainty: how do we know when to communicate research findings to the public? Sci. Total Environ. 184, 103–107 (1996).Article 
    CAS 

    Google Scholar 
    Burchett, H. E. D., Mayhew, S. H., Lavis, J. N. & Dobrow, M. J. When can research from one setting be useful in another? Understanding perceptions of the applicability and transferability of research. Health Promot. Int. 28, 418–430 (2013).Article 
    PubMed 

    Google Scholar 
    Forscher, P. et al. Build up big-team science. Nature 601, 505–507 (2022).Article 

    Google Scholar 
    Whalen, M. A. et al. Climate drives the geography of marine consumption by changing predator communities. Proc. Natl Acad. Sci. USA 117, 28160–28166 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Moshontz, H. et al. The Psychological Science Accelerator: advancing psychology through a distributed collaborative network. Adv. Methods Pract. Psychol. Sci. 1, 501–515 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marschner, I. C. A general framework for the analysis of adaptive experiments. Stat. Sci. 36, 465–492 (2021).Article 

    Google Scholar 
    Clark, M. Shrinkage in Mixed Effects Models https://m-clark.github.io/posts/2019-05-14-shrinkage-in-mixed-models/ (2019).Gurevitch, J. & Hedges, L. V. Statistical issues in ecological meta-analyses. Ecology 80, 1142–1149 (1999).Article 

    Google Scholar 
    Mengersen, K., Gurevitch, J. & Schmid, C. H. in Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, U. et al.) 300–312 (Princeton Univ. Press, 2013).Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).Article 
    PubMed 

    Google Scholar 
    Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salguero-Gómez, R. et al. The COMPADRE Plant Matrix Database: an open online repository for plant demography. J. Ecol. 103, 202–218 (2015).Article 

    Google Scholar 
    Salguero-Gómez, R. et al. COMADRE: a global data base of animal demography. J. Anim. Ecol. 85, 371–384 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pastor, D. A. & Lazowski, R. A. On the multilevel nature of meta-analysis: a tutorial, comparison of software programs, and discussion of analytic choices. Multivar. Behav. Res. 53, 74–89 (2018).Article 

    Google Scholar  More

  • in

    Single-cell measurements and modelling reveal substantial organic carbon acquisition by Prochlorococcus

    Isotope labelling and phylogenetic analysis of a natural marine bacterioplankton population at seaMediterranean seawater was collected during August 2017 (station N1200, 32.45° N, 34.37 °E) from 11 depths by Niskin bottles and divided into triplicate 250 ml polycarbonate bottles. Two bottles from each depth were labelled with 1 mM sodium bicarbonate-13C and 1 mM ammonium-15N chloride (Sigma-Aldrich), and all three bottles (two labelled and one control) were incubated at the original depth and station at sea for 3.5 h around mid-day. The stable isotopes were chosen to enable direct comparison of C and N uptake in single cells, and the short incubation time was chosen to minimize isotope dilution and potential recycling and transfer of 13C and 15N between community members25. After incubation, bottles were brought back on board and the incubations were stopped by fixing with 2× electron-microscopy-grade glutaraldehyde (2.5% final concentration) and stored at 4 °C until sorting analysis. Cell sorting, NanoSIMS analyses and the calculation of uptake rates were performed as described in Roth-Rosenberg et al.26.DNA collection and extraction from seawaterSamples for DNA were collected on 0.22 µm Sterivex filters (Millipore). Excess water was removed using a syringe, 1 ml lysis buffer (40 mM EDTA, 50 mM Tris pH 8.3, and 0.75 M sucrose) was added and both ends of the filter were closed with parafilm. Samples were kept at −80 °C until extraction. DNA was extracted by using a semi-automated protocol including manual chemical cell lysis before automated steps using the QIAamp DNA Mini Protocol: DNA Purification from Blood or Body Fluids (Spin Protocol, starting from step 6, at the BioRap unit, Faculty of Medicine, Technion). The manual protocol began with thawing the samples, then the storage buffer was removed using a syringe and 170 µl lysis buffer added to the filters. Thirty microlitres of Lysozyme (20 mg ml−1) were added to the filters and incubated at 37 °C for 30 min. After incubation, 20 µl proteinase K and 200 µl buffer AL (from the Qiagen kit) were added to the tube for 1 h at 56 °C (with agitation). The supernatant was transferred to a new tube, and DNA was extracted using the QIAcube automated system. All DNA samples were eluted in 100 μl DNA-free distilled water.ITS PCR amplificationPCR amplification of the ITS was carried out with specific primers for Prochlorococcus CS1_16S_1247F (5′-ACACTGACGACATGGTTCTACACGTACTACAATGCTACGG) and Cs2_ITS_Ar (5′-TACGGTAGCAGAGACTTGGTCTGGACCTCACCCTTATCAGGG)21,22. The first PCR was performed in triplicate in a total volume of 25 μl containing 0.5 ng of template, 12.5 μl of MyTaq Red Mix (Bioline) and 0.5 μl of 10 μM of each primer. The amplification conditions comprised steps at 95 °C for 5 min, 28/25 (16 S/ITS) cycles at 95 °C for 30 s, 50 °C for 30 s and 72 °C for 1 min followed by one step of 5 min at 72 °C. All PCR products were validated on a 1% agarose gel, and triplicates were pooled. Subsequently, a second PCR amplification was performed to prepare libraries. These were pooled and after a quality control sequenced (2 × 250 paired-end reads) using an Illumina MiSeq sequencer. Library preparation and pooling were performed at the DNA Services facility, Research Resources Center, University of Illinois at Chicago. MiSeq sequencing was performed at the W.M. Keck Center for Comparative and Functional Genomics at the University of Illinois at Urbana-Champaign.ITS sequence processingPaired-end reads were analysed using the Dada2 pipeline46. The quality of the sequences per sample was examined using the Dada2 ‘plotQualityProfile’ command. Quality filtering was performed using the Dada2 ‘filterAndTrim’ command with parameters for quality filtering truncLen=c(290,260), maxN=0, maxEE=c(2,2), truncQ=2, rm.phix=TRUE, trimLeft=c(20,20). Following error estimation and dereplication, the Dada2 algorithm was used to correct sequences. Merging of the forward and reverse reads was done with minimum overlap of 4 bp. Detection and removal of suspected chimaeras was done with command ‘removeBimeraDenovo’. In total, 388,417 sequences in 484 amplicon sequence variants were counted. The amplicon sequence variants were aligned in MEGA6 (ref. 47), and the first ~295 nucleotides, corresponding to the 16S gene, were trimmed. The ITS sequences were then classified using BLASTn against a custom database of ITS sequences from cultured Prochlorococcus and Synechococcus strains as well as from uncultured HL and LL clades.Individual-based modelPlanktonIndividuals.jl (v0.1.9) was used to run the individual-based simulations48. Briefly, the cells fix inorganic carbon through photosynthesis and nitrogen, phosphorus and DOC from the water column into intracellular quotas and grow until division or grazing. Cell division is modelled as a probabilistic function of cell size. Grazing is represented by a quadratic probabilistic function of cell population. Cells consume nutrient resources, which are represented as Eulerian, density-based tracers. A full documentation of state variables and model equations are available online at https://juliaocean.github.io/PlanktonIndividuals.jl/dev/. Equations related to mixotrophy are shown below as an addition to the online documentation.$$V_{{mathrm{DOC}}} = V_{{mathrm{DOC}}}^{{mathrm{max}}} cdot {{mathrm{max}}}left( {0.0,{{mathrm{min}}}left( {1.0,,frac{{q_{mathrm{C}}^{{mathrm{max}}} – q_{mathrm{C}}}}{{q_{mathrm{C}}^{{mathrm{max}}} – q_{mathrm{C}}^{{mathrm{min}}}}}} right)} right) cdot frac{{{mathrm{DOC}}}}{{{mathrm{DOC}} + K_{{mathrm{DOC}}}^{{mathrm{sat}}}}}$$
    (1)
    $$f_{{mathrm{PS}}} = frac{{P_{mathrm{S}}}}{{P_{mathrm{S}} + V_{{mathrm{DOC}}}}}$$
    (2)
    $$V_{{mathrm{DOC}}} = 0,,{mathrm{if}},f_{{mathrm{PS}}} < f_{{mathrm{PS}}}^{{mathrm{min}}}$$ (3) where VDOC is the cell-specific DOC uptake rate (mol C cell−1 s−1), (V_{{mathrm{DOC}}}^{{mathrm{max}}}) is the maximum cell-specific DOC uptake rate (mol C cell−1 s−1), (q_{mathrm{C}}^{{mathrm{max}}}) is the maximum cell carbon quota (mol C cell−1), (q_{mathrm{C}}^{{mathrm{min}}}) is the minimum cell carbon quota (mol C cell−1). The maximum and minimum functions here is used to keep qC between (q_{mathrm{C}}^{{mathrm{min}}}) and (q_{mathrm{C}}^{{mathrm{max}}}). (K_{{mathrm{DOC}}}^{{mathrm{sat}}}) is the half-saturation constant for DOC uptake (mol C m−3). fPS is the fraction of fixed C originating from photosynthesis (PS, mol C cell−1 s−1). DOC uptake stops when fPS is smaller than (f_{{mathrm{PS}}}^{{mathrm{min}}})(minimum fraction of fixed C originating form photosynthesis, 1% by default) according to laboratory studies of Prochlorococcus that showed that they cannot survive long exposure to darkness (beyond several days) even when supplied with organic carbon sources13. (1 − fPS) is also shown in Fig. 3 as the contribution of DOC uptake.We set up two separate simulations; each of them has a population of either an obligate photo-autotroph or a mixotroph that also consumes DOC. The initial conditions and parameters (Supplementary Table 3) are the same for the two simulations except the ability of mixotrophy. The simulations were run with a timestep of 1 min for 360 simulated days to achieve a steady state. We run the two simulations for multiple times in order to get the range of the stochastic processes.Evaluation of autotrophic growth ratesWe evaluated the carbon-specific, daily-averaged carbon fixation rate, ℙ as a function of light intensity (I, µE), following Platt et al.33:$${Bbb P} = frac{1}{{Delta t}}{int}_0^{Delta t} {frac{{q_{{mathrm{Chl}}}}}{{q_{mathrm{C}}}}} P_{mathrm{S}}^{{mathrm{Chl}}}left( {1 - e^{ - alpha _{{mathrm{Chl}}}I/P_{mathrm{S}}^{{mathrm{Chl}}}}} right)e^{ - beta _{{mathrm{Chl}}}I/P_{mathrm{S}}^{{mathrm{Chl}}}}Delta t$$ (4) Here, (P_{mathrm{S}}^{{mathrm{Chl}}}), αChl and βChl are empirically determined coefficients representing the chlorophyll-a-specific carbon fixation rate (mol C (mol Chl)−1 s−1), the initial slope of the photosynthesis–light relationship and photo-inhibition effects at high photon fluxes, respectively. We impose empirically determined values for (P_{mathrm{S}}^{{mathrm{Chl}}}), αChl and βChl from the published study of Moore and Chisholm24. The natural Prochlorococcus community comprises HL and LL ecotypes, which have different values of (P_{mathrm{S}}^{{mathrm{Chl}}}), αChl and βChl, and the community growth rate is expected to be between that of HL extremes and LL extremes. Therefore, we use photo-physiological parameters for an HL-adapted ecotype (MIT9215), acclimated at 70 µmol photons m−2 s−1 and an LL-adapted ecotype (MIT9211), acclimated 9 µmol photons m−2 s−1. The models with these values are shown as the different lines in Fig. 2b,d. I is the hourly PAR, estimated by scaling the observed noon value at each depth with a diurnal variation evaluated from astronomical formulae based on geographic location and time of year37,38.(frac{{q_{{mathrm{Chl}}}}}{{q_{mathrm{C}}}}) is the molar chlorophyll-a to carbon ratio, which is modelled as a function of growth rate and light intensity using the Inomura34 model (equation 17 therein) where parameters were calibrated with laboratory data from Healey49. In addition, the maximum growth rate ((mu _{{mathrm{max}}}^I)) based on macromolecular allocation is also estimated using the Inomura model (equation 30 therein). An initial guess of the growth rate and the empirically informed light intensity are used to estimate (frac{{q_{{mathrm{Chl}}}}}{{q_{mathrm{C}}}}), which is then used to evaluate the light-limited, photoautotrophic growth rate$${Bbb V}_{mathrm{C}}^{{mathrm{auto}}} = min left( {{Bbb P} - K_{mathrm{R}},mu _{{mathrm{max}}}^I} right)$$ (5) from which the (frac{{q_{{mathrm{Chl}}}}}{{q_{mathrm{C}}}}) is again updated. The light-limited growth rate is used to re-evaluate the (frac{{q_{{mathrm{Chl}}}}}{{q_{mathrm{C}}}}). Repeating this sequence until the values converge, ({Bbb V}_{mathrm{C}}^{{mathrm{auto}}}) and (frac{{q_{{mathrm{Chl}}}}}{{q_{mathrm{C}}}}) are solved iteratively.The nitrogen-specific uptake rate of fixed nitrogen (day−1) is modelled as$${Bbb V}_{{{mathrm{N}}}} = {Bbb V}_{mathrm{N}}^{{mathrm{max}}}frac{1}{{Q_{mathrm{N}}}}frac{N}{{N + K_{{{mathrm{N}}}}}}$$ (6) where values of the maximum uptake rate, ({Bbb V}_{mathrm{N}}^{{mathrm{max}}}), and half-saturation, KN, are determined from empirical allometric scalings35, along with a nitrogen cell quota QN from Bertilsson et al.39.The P-limited growth rate, or the phosphorus-specific uptake rate of phosphate (day−1), is modelled as$${Bbb V}_{mathrm{P}} = {Bbb V}_{mathrm{P}}^{{mathrm{max}}}frac{1}{{Q_{mathrm{P}}}}frac{{{mathrm{PO}_{4}}^{3 - }}}{{{mathrm{PO}_{4}}^{3 - } + K_{mathrm{P}}}}$$ (7) where values of the maximum uptake rate, ({Bbb V}_{mathrm{P}}^{{mathrm{max}}}). and half-saturation, KP, are determined from empirical allometric scalings35, along with a nitrogen cell quota QP from Bertilsson et al.39.Iron uptake is modelled as a linear function of cell surface area (SA), with rate constant ((k_{{mathrm{Fe}}}^{{mathrm{SA}}})) following Lis et al.36.$${Bbb V}_{{mathrm{Fe}}} = k_{{mathrm{Fe}}}^{{mathrm{SA}}} cdot {mathrm{SA}}frac{1}{{Q_{{mathrm{Fe}}}}}{mathrm{Fe}}$$ (8) The potential light-, nitrogen-, phosphorus- and iron-limited growth rates (({Bbb V}_{mathrm{C}},{Bbb V}_{mathrm{N}},{Bbb V}_{mathrm{P}},{Bbb V}_{{mathrm{Fe}}})) were evaluated at each depth in the water column and the minimum is the local modelled photo-autotrophic growth rate estimate, assuming no mixotrophy (Fig. 2b,d, blue lines). Parameters used in this evaluation are listed in Supplementary Table 2.An important premise of this study is that heterotrophy is providing for the shortfall in carbon under very low light conditions, but not nitrogen. It is known that Prochlorococcus can assimilate amino acids9 and therefore the stoichiometry of the heterotrophic contribution might alter the interpretations. However, it is also known that Prochlorococcus can exude amino acids40, which might cancel out the effects on the stoichiometry of Prochlorococcus.For the estimates of phototrophic growth rate from local environmental conditions (Fig. 2) we employed photo-physiological parameters from laboratory cultures of Prochlorococcus24. For the purposes of this study, we have assumed that the photosynthetic rates predicted are net primary production, which means that autotrophic respiration has been accounted for in the measurement. However, the incubations in that study were of relatively short timescale (45 min), which might suggest they are perhaps more representative of gross primary production. If this is the case, our estimates of photo-autotrophic would be even lower after accounting for autotrophic respiration, and thus would demand a higher contribution from heterotrophic carbon uptake. In this regard, our estimates might be considered a lower bound for organic carbon assimilation.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Taxonomic response of bacterial and fungal populations to biofertilizers applied to soil or substrate in greenhouse-grown cucumber

    All the results were reported relative to the control, unless specifically stated to the contrary or for clarity.Growth of cucumber plants in response to different biofertilizersSoilThere was no significant difference in cucumber growth before microbial fertilizer was applied. However, some microbial fertilizers significantly increased cucumber height and stem diameter when they were applied within 4 weeks from when the seedlings were planted (Fig. 1a,b,e,f). In the second week, SHZ and SMF increased plant height by 11.2 and 9.5%, respectively. In the third week, S267, SBS, SBH, SM and SHZ increased plant height by 12.0, 13.8, 15.0, 20.5 and 26.9%, respectively (Fig. 1a). In the fourth and fifth weeks, some treatments significantly increased cucumber height. In the second and third weeks, S267 significantly increased stem diameter by 21.2 and 16.8% (Fig. 1b).Figure 1Effect of different biofertilizer treatments on the growth of cucumber seedlings produced in soil or substrate in a greenhouse. S267 = Trichoderma Strain 267 added to soil; SBH = Bacillus subtilis and T. harzianum biofertilizers added to soil; SBS = B. subtilis biofertilizer added to the soil; SM = Compound biofertilizer added to soil; SHZ = T. harzianum biofertilizer added to soil; SCK = Untreated soil. US267 = T.267 biofertilizer added to substrate; USBH = B. subtilis and T. harzianum biofertilizers added to substrate; USBS = B. subtilis biofertilizer added to substrate; USM = Compound biofertilizer added to substrate; USHZ = T. harzianum biofertilizer added to substrate; USCK = Untreated substrate.Full size imageOver the subsequent 5 weeks, some microbial fertilizer treatments decreased cucumber height and stem diameter (Fig. 1g,h).SubstrateThere were no significant differences in cucumber growth before microbial fertilizer microbial fertilizer was applied (Fig. 1c,d,g,h). However, within 4 weeks of applying the microbial fertilizer, each biofertilizer treatment applied significantly increased cucumber height (Fig. 1c). US267 and USHZ significantly increased cucumber height by 39.8–75.4% and 56.1–86.1%, respectively. US267, USM and USHZ significantly increased the stem diameter by 76.8–108.9%, 71.1–97.6% and 80.4–122.4%, respectively (Fig. 1d).Over the subsequent 5 weeks, US267, USM and USHZ treatments continued to significantly increase cucumber height and stem diameter (Fig. 1g,h).Changes in the taxonomic composition of soil-borne fungal pathogensSoilBiofertilizers application significantly reduced the taxonomic composition of soil-borne fungal pathogens at different times during the cucumber growth period (Tables 1 and 2). Fusarium spp. were significantly reduced (T, 63.8% reduction, P  More