More stories

  • in

    Site-specific temporal variation of population dynamics in subalpine endemic plant species

    Theurillat, J.-P. & Guisan, A. Potential impact of climate change on vegetation in the European Alps: A review. Clim. Change 50, 77–109 (2001).CAS 

    Google Scholar 
    Diaz, H. F. & Eischeid, J. K. Disappearing “alpine tundra” Köppen climatic type in the western United States. Geophys. Res. Lett. 34, L18707 (2007).ADS 

    Google Scholar 
    Dirnböck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Change Biol. 17, 990–996 (2011).ADS 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pauli, H., Gottfried, M., Dirnböck, T., Dullinger, S. & Grabherr, G. Assessing the long-term dynamics of endemic plants at summit habitats. In Alpine Biodiversity in Europe (eds. Nagy, L., Grabherr, G., Körner, C., & Thompson, D. B.) 195–207 (Springer, 2003).Cogoni, D., Sulis, E., Bacchetta, G. & Fenu, G. The unpredictable fate of the single population of a threatened narrow endemic Mediterranean plant. Biodivers. Conserv. 28, 1799–1813 (2019).
    Google Scholar 
    Cursach, J., Besnard, A., Rita, J. & Fréville, H. Demographic variation and conservation of the narrow endemic plant Ranunculus weyleri. Acta Oecol. 53, 102–109 (2013).ADS 

    Google Scholar 
    Dibner, R. R., DeMarche, M. L., Louthan, A. M. & Doak, D. F. Multiple mechanisms confer stability to isolated populations of a rare endemic plant. Ecol. Monogr. 89, e01360 (2019).
    Google Scholar 
    Boyce, M. S., Haridas, C. V., Lee, C. T., NCEAS Stochastic Demography Working Group. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).PubMed 

    Google Scholar 
    Buckley, Y. M. et al. Causes and consequences of variation in plant population growth rate: A synthesis of matrix population models in a phylogenetic context. Ecol. Lett. 13, 1182–1197 (2010).PubMed 

    Google Scholar 
    Abbott, R. E., Doak, D. F. & DeMarche, M. L. Portfolio effects, climate change, and the persistence of small populations: Analyses on the rare plant Saussurea weberi. Ecology 98, 1071–1081 (2017).PubMed 

    Google Scholar 
    Villellas, J., Doak, D. F., García, M. B. & Morris, W. F. Demographic compensation among populations: What is it, how does it arise and what are its implications?. Ecol. Lett. 18, 1139–1152 (2015).PubMed 

    Google Scholar 
    Doak, D. F. & Morris, W. F. Demographic compensation and tipping points in climate-induced range shifts. Nature 467, 959–962 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    García-Camacho, R., Albert, M. J. & Escudero, A. Small-scale demographic compensation in a high-mountain endemic: The low edge stands still. Plant Ecol. Divers. 5, 37–44 (2012).
    Google Scholar 
    Andrello, M. et al. Accounting for stochasticity in demographic compensation along the elevational range of an alpine plant. Ecol. Lett. 23, 870–880 (2020).PubMed 

    Google Scholar 
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed 

    Google Scholar 
    Ægisdóttir, H. H., Kuss, P. & Stöcklin, J. Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann. Bot. 104, 1313–1322 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Morente-López, J. et al. Geography and environment shape landscape genetics of Mediterranean alpine species Silene ciliata Poiret. (Caryophyllaceae). Front. Plant Sci. 9, 1698 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Franks, S. J., Weber, J. J. & Aitken, S. N. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 7, 123–139 (2014).PubMed 

    Google Scholar 
    Jeong, H., Cho, Y.-C. & Kim, E. Differential plastic responses to temperature and nitrogen deposition in the subalpine plant species, Primula farinosa subsp. modesta. AoB Plants 13, plab061 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sulis, E., Bacchetta, G., Cogoni, D. & Fenu, G. From global to local scale: Where is the best for conservation purpose?. Biodivers. Conserv. 30, 183–200 (2021).
    Google Scholar 
    Hambler, D. & Dixon, J. Primula farinosa L. J. Ecol. 91, 694–705 (2003).
    Google Scholar 
    Arnold, E. & Richards, A. On the occurrence of unilateral incompatibility in Primula section Aleuritia Duby and the origin of Primula scotica Hook. Bot. J. Linn. Soc. 128, 359–368 (1998).
    Google Scholar 
    Tribsch, A. Areas of endemism of vascular plants in the eastern Alps in relation to Pleistocene glaciation. J. Biogeogr. 31, 747–760 (2004).
    Google Scholar 
    Chung, J.-M., Son, S.-W., Kim, S.-Y., Park, G.-W. & Kim, S.-S. Genetic diversity and geographic differentiation in the endangered Primula farinosa subsp. modesta, a subalpine endemic to Korea. Korean J. Plant. Taxon. 43, 236–243 (2013).
    Google Scholar 
    Lindborg, R. & Ehrlén, J. Evaluating the extinction risk of a perennial herb: Demographic data versus historical records. Conserv. Biol. 16, 683–690 (2002).
    Google Scholar 
    Caswell, H. Matrix Population Models, 2nd ed (Sinauer Associates Inc, 2000).Salguero-Gómez, R. & De Kroon, H. Matrix projection models meet variation in the real world. J. Ecol. 98, 250–254 (2010).
    Google Scholar 
    Jongejans, E. et al. Region versus site variation in the population dynamics of three short-lived perennials. J. Ecol. 98, 279–289 (2010).
    Google Scholar 
    Jongejans, E. & De Kroon, H. Space versus time variation in the population dynamics of three co-occurring perennial herbs. J. Ecol. 93, 681–692 (2005).
    Google Scholar 
    Suggitt, A. J. et al. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120, 1–8 (2011).
    Google Scholar 
    Tomimatsu, H. & Ohara, M. Demographic response of plant populations to habitat fragmentation and temporal environmental variability. Oecologia 162, 903–911 (2010).ADS 
    PubMed 

    Google Scholar 
    Kudernatsch, T., Fischer, A., Bernhardt-Römermann, M. & Abs, C. Short-term effects of temperature enhancement on growth and reproduction of alpine grassland species. Basic Appl. Ecol. 9, 263–274 (2008).
    Google Scholar 
    Kim, E. & Donohue, K. Local adaptation and plasticity of Erysimum capitatum to altitude: Its implications for responses to climate change. J. Ecol. 101, 796–805 (2013).
    Google Scholar 
    Forbis, T. A. Seedling demography in an alpine ecosystem. Am. J. Bot. 90, 1197–1206 (2003).PubMed 

    Google Scholar 
    Yenni, G., Adler, P. B. & Ernest, S. M. Strong self-limitation promotes the persistence of rare species. Ecology 93, 456–461 (2012).PubMed 

    Google Scholar 
    Doak, D. F. Source-sink models and the problem of habitat degradation: General models and applications to the Yellowstone grizzly. Conserv. Biol. 9, 1370–1379 (1995).
    Google Scholar 
    Lesica, P. & Crone, E. E. Arctic and boreal plant species decline at their southern range limits in the Rocky Mountains. Ecol. Lett. 20, 166–174 (2017).PubMed 

    Google Scholar 
    Oldfather, M. F. & Ackerly, D. D. Microclimate and demography interact to shape stable population dynamics across the range of an alpine plant. New Phytol. 222, 193–205 (2019).PubMed 

    Google Scholar 
    Ågren, J., Fortunel, C. & Ehrlén, J. Selection on floral display in insect-pollinated Primula farinosa: Effects of vegetation height and litter accumulation. Oecologia 150, 225–232 (2006).ADS 
    PubMed 

    Google Scholar 
    Ehrlén, J., Syrjänen, K., Leimu, R., Begona Garcia, M. & Lehtilä, K. Land use and population growth of Primula veris: An experimental demographic approach. J. Appl. Ecol. 42, 317–326 (2005).
    Google Scholar 
    Ehrlén, J. & Morris, W. F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 18, 303–314 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio package in R. J. Stat. Softw. 22, 1–23 (2007).
    Google Scholar 
    Weiss, N. Package ‘wPerm’. https://cran.r-project.org/web/packages/wPerm/wPerm.pdf. (2015).Frossard, J. & Renaud, O. Permutation tests for regression, ANOVA, and comparison of signals: The permuco package. J. Stat. Softw. 99, 1–32 (2021).
    Google Scholar  More

  • in

    Sugarcane cultivation practices modulate rhizosphere microbial community composition and structure

    Meghana, M. & Shastri, Y. Sustainable valorization of sugar industry waste: Status, opportunities, and challenges. Biores. Technol. 303, 122929 (2020).CAS 

    Google Scholar 
    Petrescu, D. C., Vermeir, I. & Petrescu-Mag, R. M. Consumer understanding of food quality, healthiness, and environmental impact: a cross-national perspective. IJERPH 17, 169 (2019).PubMed Central 

    Google Scholar 
    Kassam, A., Friedrich, T., Shaxson, F. & Pretty, J. The spread of conservation agriculture: justification, sustainability and uptake. Int. J. Agric. Sustain. 7, 292–320 (2009).
    Google Scholar 
    Malviya, M. K. et al. Sugarcane microbiome: role in sustainable production. In Microbiomes and Plant Health 225–242 (Elsevier, 2021). https://doi.org/10.1016/B978-0-12-819715-8.00007-0.Chapter 

    Google Scholar 
    Sandhu, H. S., Wratten, S. D. & Cullen, R. Organic agriculture and ecosystem services. Environ. Sci. Policy 13, 1–7 (2010).CAS 

    Google Scholar 
    Schipanski, M. E. et al. Balancing multiple objectives in organic feed and forage cropping systems. Agr. Ecosyst. Environ. 239, 219–227 (2017).
    Google Scholar 
    Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 3632 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed 

    Google Scholar 
    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).CAS 
    PubMed 

    Google Scholar 
    Chialva, M., Lanfranco, L. & Bonfante, P. The plant microbiota: composition, functions, and engineering. Curr. Opin. Biotechnol. 73, 135–142 (2022).CAS 
    PubMed 

    Google Scholar 
    Dastogeer, K. M. G., Tumpa, F. H., Sultana, A., Akter, M. A. & Chakraborty, A. Plant microbiome–an account of the factors that shape community composition and diversity. Curr. Plant Biol. 23, 100161 (2020).
    Google Scholar 
    Yang, B., Wang, Y. & Qian, P.-Y. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformat. 17, 135 (2016).
    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 

    Google Scholar 
    Wright, R. J., Gibson, M. I. & Christie-Oleza, J. A. Understanding microbial community dynamics to improve optimal microbiome selection. Microbiome 7, 85 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Praeg, N. & Illmer, P. Microbial community composition in the rhizosphere of Larix decidua under different light regimes with additional focus on methane cycling microorganisms. Sci. Rep. 10, 22324 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Souza, R. S. C. et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci. Rep. 6, 28774 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tayyab, M. et al. Sugarcane cultivars manipulate rhizosphere bacterial communities’ structure and composition of agriculturally important keystone taxa. 3 Biotech. 12, 32 (2022).PubMed 

    Google Scholar 
    Tayyab, M. et al. Sugarcane cultivar-dependent changes in assemblage of soil rhizosphere fungal communities in subtropical ecosystem. Environ. Sci. Pollut. Res. 29, 20795–20807 (2022).
    Google Scholar 
    Dakora, F. D., Matiru, V. N. & Kanu, A. S. Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. Front. Plant Sci. 6, 700 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Chapelle, E., Mendes, R., Bakker, P. A. H. & Raaijmakers, J. M. Fungal invasion of the rhizosphere microbiome. ISME J. 10, 265–268 (2016).CAS 
    PubMed 

    Google Scholar 
    Teheran-Sierra, L. G. et al. Bacterial communities associated with sugarcane under different agricultural management exhibit a diversity of plant growth-promoting traits and evidence of synergistic effect. Microbiol. Res. 247, 126729 (2021).CAS 
    PubMed 

    Google Scholar 
    de Carvalho, L. A. L. et al. Farming systems influence the compositional, structural, and functional characteristics of the sugarcane-associated microbiome. Microbiol. Res. 252, 126866 (2021).PubMed 

    Google Scholar 
    Henneron, L. et al. Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agron. Sustain. Dev. 35, 169–181 (2015).
    Google Scholar 
    Hartmann, M., Frey, B., Mayer, J., Mäder, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).PubMed 

    Google Scholar 
    Tayyab, M. et al. Sugarcane monoculture drives microbial community composition, activity and abundance of agricultural-related microorganisms. Environ. Sci. Pollut. Res. 28, 48080–48096 (2021).CAS 

    Google Scholar 
    Pang, Z. et al. Soil Metagenomics reveals effects of continuous sugarcane cropping on the structure and functional pathway of rhizospheric microbial community. Front. Microbiol. 12, 627569 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Orr, C. H., Stewart, C. J., Leifert, C., Cooper, J. M. & Cummings, S. P. Effect of crop management and sample year on abundance of soil bacterial communities in organic and conventional cropping systems. J. Appl. Microbiol. 119, 208–214 (2015).CAS 
    PubMed 

    Google Scholar 
    Brasil. Lei no 10.831, de 23 de dezembro de 2003. Dispõe sobre a agricultura orgânica e dá outras providências. In Publicado no Diário Oficial da União de 24/12/2003 (2003).Europea, C. Reglamento (CE) no 834/2007 del Consejo, de 28 de junio de 2007, sobre producción y etiquetado de los productos ecológicos y por el que se deroga el Reglamento (CEE) no 2092/91. D. Of. Unión Eur. 20, 1–23 (2007).
    Google Scholar 
    Council of the European Union. 889/2008, “Commission Regulation 889/2008/EC of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control”. Off. J. Eur. Union (L) 250, 18–19 (2007).
    Google Scholar 
    de Andrade, J. C., Cantarella, H. & Quaggio, J. A. Análise química para avaliação da fertilidade de solos tropicais. (2001).Donagema, G. K., de Campos, D. B., Calderano, S. B., Teixeira, W. G. & Viana, J. M. Manual de métodos de análise de solo. In Embrapa Solos-Documentos (INFOTECA-E) (2011).Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. (2020). at R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). At Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).CAS 
    PubMed 

    Google Scholar 
    Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Renaud, G., Stenzel, U., Maricic, T., Wiebe, V. & Kelso, J. deML: robust demultiplexing of Illumina sequences using a likelihood-based approach. Bioinformatics 31, 770–772 (2015).CAS 
    PubMed 

    Google Scholar 
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cole, J. R. et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).CAS 
    PubMed 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lahti, L. & Shetty, S. Microbiome R package. (2012).Oksanen, J. et al. vegan: Community Ecology Package. (2019). At Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Dhariwal, A. et al. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, G. M. et al. PICRUSt2: an improved and extensible approach for metagenome inference. Bioinformatics https://doi.org/10.1101/672295 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kohl, M., Wiese, S. & Warscheid, B. Cytoscape: software for visualization and analysis of biological networks. In Data Mining in Proteomics (eds Hamacher, M. et al.) 291–303 (Humana Press, Totowa, NJ, 2011). https://doi.org/10.1007/978-1-60761-987-1_18.Chapter 

    Google Scholar 
    Assenov, Y., Ramírez, F., Schelhorn, S.-E., Lengauer, T. & Albrecht, M. Computing topological parameters of biological networks. Bioinformatics 24, 282–284 (2008).CAS 
    PubMed 

    Google Scholar 
    Shen, Z. et al. Deep 16S rRNA pyrosequencing reveals a bacterial community associated with banana fusarium wilt disease suppression induced by bio-organic fertilizer application. PLoS One 9, e98420 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yun, Y. et al. The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification. Front. Microbiol. 7, 1955 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Wu, Y., Zeng, J., Zhu, Q., Zhang, Z. & Lin, X. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Sci. Rep. 7, 40093 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, R. et al. Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. PLoS One 7, e51897 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bill, M., Chidamba, L., Gokul, J. K., Labuschagne, N. & Korsten, L. Bacterial community dynamics and functional profiling of soils from conventional and organic cropping systems. Appl. Soil. Ecol. 157, 103734 (2021).
    Google Scholar 
    Xun, W., Shao, J., Shen, Q. & Zhang, R. Rhizosphere microbiome: Functional compensatory assembly for plant fitness. Comput. Struct. Biotechnol. J. 19, 5487–5493 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Semenov, M. V., Krasnov, G. S., Semenov, V. M. & van Bruggen, A. Mineral and organic fertilizers distinctly affect fungal communities in the crop rhizosphere. JoF 8, 251 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Z., Li, Y., Li, T., Zhao, D. & Liao, Y. Tillage practices with different soil disturbance shape the rhizosphere bacterial community throughout crop growth. Soil Tillage Res. 197, 104501 (2020).
    Google Scholar 
    Gdanetz, K. & Trail, F. The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiom. J. 1, 158–168 (2017).
    Google Scholar 
    Lazcano, C. et al. The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Sci. Rep. 11, 3188 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leys, N. M. E. J. et al. Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 70, 1944–1955 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yin, C. et al. Role of bacterial communities in the natural suppression of rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.). Appl. Environ. Microbiol. 79, 7428–7438 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart, A. & Hill, R. Applications of trichoderma in plant growth promotion. In Biotechnology and Biology of Trichoderma 415–428 (Elsevier, 2014). https://doi.org/10.1016/B978-0-444-59576-8.00031-X.Chapter 

    Google Scholar 
    Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).CAS 

    Google Scholar 
    Andargie, M., Congyi, Z., Yun, Y. & Li, J. Identification and evaluation of potential bio-control fungal endophytes against Ustilagonoidea virens on rice plants. World J. Microbiol. Biotechnol. 33, 120 (2017).PubMed 

    Google Scholar 
    Orrù, L. et al. How tillage and crop rotation change the distribution pattern of fungi. Front. Microbiol. 12, 634325 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    van der Heijden, M. G. A. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, e1002378 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, W. et al. Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River. Sci. Rep. 6, 35046 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Silva, T. M. et al. Degradation of 2,4-D herbicide by microorganisms isolated from Brazilian contaminated soil. Braz. J. Microbiol. 38, 522–525 (2007).
    Google Scholar 
    Laura, M., Snchez-Salinas, E., Gonzlez, E. D. & Luisa, M. Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. In Biodegradation – Life of Science (ed. Chamy, R.) (InTech, 2013). https://doi.org/10.5772/56098.Chapter 

    Google Scholar 
    Upadhyay, L. S. B. & Dutt, A. Microbial detoxification of residual organophosphate pesticides in agricultural practices. In Microbial Biotechnology (eds Patra, J. K. et al.) 225–242 (Springer Singapore, Singapore, 2017). https://doi.org/10.1007/978-981-10-6847-8_10.Chapter 

    Google Scholar 
    Hassan, Y. I., Lepp, D., He, J. & Zhou, T. Draft genome sequences of Devosia sp. strain 17-2-E-8 and Devosia riboflavina strain IFO13584. Genome Announ. https://doi.org/10.1128/genomeA.00994-14 (2014).Article 

    Google Scholar 
    Talwar, C. et al. Defining the environmental adaptations of genus Devosia: insights into its expansive short peptide transport system and positively selected genes. Sci. Rep. 10, 1151 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, F., Chen, L., Zhang, J., Yin, J. & Huang, S. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Front. Microbiol. 8, 187 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ho, A., Lonardo, D. P. D. & Bodelier, P. L. E. Revisiting life strategy concepts in environmental microbial ecology. Microbiol. Ecol. https://doi.org/10.1093/femsec/fix006 (2017).Article 

    Google Scholar 
    Lupatini, M., Korthals, G. W., de Hollander, M., Janssens, T. K. S. & Kuramae, E. E. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front. Microbiol. 7, 2064 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, H. et al. Eight years of manure fertilization favor copiotrophic traits in paddy soil microbiomes. Eur. J. Soil Biol. 106, 103352 (2021).CAS 

    Google Scholar 
    Fließbach, A., Oberholzer, H.-R., Gunst, L. & Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 118, 273–284 (2007).
    Google Scholar 
    Lewin, G. R. et al. Evolution and ecology of Actinobacteria and their bioenergy applications. Annu. Rev. Microbiol. 70, 235–254 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karanja, E. N. et al. Diversity and structure of prokaryotic communities within organic and conventional farming systems in central highlands of Kenya. PLoS One 15, e0236574 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Francioli, D. et al. Mineral versus organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, 1446 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Paungfoo-Lonhienne, C. et al. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Sci. Rep. 5, 8678 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pang, Z. et al. Liming positively modulates microbial community composition and function of sugarcane fields. Agronomy 9, 808 (2019).CAS 

    Google Scholar 
    Aira, M., Gómez-Brandón, M., Lazcano, C., Bååth, E. & Domínguez, J. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol. Biochem. 42, 2276–2281 (2010).CAS 

    Google Scholar 
    Ma, M. et al. Responses of fungal community composition to long-term chemical and organic fertilization strategies in Chinese Mollisols. MicrobiologyOpen 7, e00597 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bellenger, J. P., Darnajoux, R., Zhang, X. & Kraepiel, A. M. L. Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review. Biogeochemistry 149, 53–73 (2020).
    Google Scholar 
    Schmidt, J. E. et al. Effects of agricultural management on rhizosphere microbial structure and function in processing tomato plants. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01064-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Lin, Y. et al. Nitrosospira cluster 8a plays a predominant role in the nitrification process of a subtropical Ultisol under long-term inorganic and organic fertilization. Appl. Environ. Microbiol. 84, e01031-e1118 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chu, H. et al. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Appl. Environ. Microbiol. 73, 485–491 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Xun, W. et al. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome 9, 35 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Sensing whales, storms, ships and earthquakes using an Arctic fibre optic cable

    Howe, B. M. et al. Observing the oceans acoustically. Front. Mar. Sci. 6, 426. https://doi.org/10.3389/fmars.2019.00426 (2019).Article 

    Google Scholar 
    Molenaar, M. M., Hill, D., Webster, P., Fidan, E. & Birch, B. First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics. SPE Drill. Complet. 27, 32–38. https://doi.org/10.2118/140561-PA (2012).Article 

    Google Scholar 
    Lindsey, N. J. et al. Fiber-optic network observations of earthquake wavefields. Geophys. Res. Lett. 44, 11792–11799. https://doi.org/10.1002/2017GLO75722 (2017).Article 
    ADS 

    Google Scholar 
    Jousset, P. et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun. 9, 1–11. https://doi.org/10.1038/s41467-018-04860-y (2018).Article 
    CAS 

    Google Scholar 
    Ajo-Franklin, J. B. et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection. Sci. Rep. 9, 1–14. https://doi.org/10.1038/s41598-018-36675-8 (2019).Article 
    CAS 

    Google Scholar 
    Williams, E. F. et al. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat. Commun. 10, 1–11. https://doi.org/10.1038/s41467-019-13262-7 (2019).Article 
    CAS 

    Google Scholar 
    Lindsey, N. J., Dawe, T. C. & Ajo-Franklin, J. B. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science 366, 1103–1107. https://doi.org/10.1126/science.aay5881 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sladen, A. et al. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun. 10, 5777. https://doi.org/10.1038/s41467-019-13793-z (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, E. F. et al. Surface gravity wave interferometry and ocean current monitoring with ocean-bottom DAS. J. Geophys. Res. Oceans 127, e2021JC018375. https://doi.org/10.1029/2021JC018375 (2022).Article 
    ADS 

    Google Scholar 
    Zhan, Z. et al. Optical polarization-based seismic and water wave sensing on transoceanic cables. Science 371, 931–936. https://doi.org/10.1126/science.abe6648 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Waagaard, O. H. et al. Real-time low noise distributed acoustic sensing in 171 km low loss fiber. OSA Contin. 4, 688–701. https://doi.org/10.1364/OSAC.408761 (2021).Article 
    CAS 

    Google Scholar 
    Rivet, D., de Cacqueray, B., Sladen, A., Roques, A. & Calbris, G. Preliminary assessment of ship detection and trajectory evaluation using distributed acoustic sensing on an optical fiber telecom cable. J. Acoust. Soc. Am. 149, 2615–2627. https://doi.org/10.1121/10.0004129 (2021).Article 
    ADS 
    PubMed 

    Google Scholar 
    Taweesintananon, K., Landrø, M., Brenne, J. K. & Haukanes, A. Distributed acoustic sensing for near-surface imaging using submarine telecommunication cable: a case study in the Trondheimsfjord, Norway. Geophysics 86, B303–B320. https://doi.org/10.1190/geo2020-0834.1 (2021).Article 

    Google Scholar 
    Matsumoto, H. et al. Detection of hydroacoustic signals on a fiber-optic submarine cable. Sci. Rep. 11, 2797. https://doi.org/10.1038/s41598-021-82093-8 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouffaut, L. et al. Eavesdropping at the speed of light: Distributed acoustic sensing of baleen whales in the Arctic. Front. Mar. Sci. 9, 901348. https://doi.org/10.3389/fmars.2022.901348 (2022).Article 

    Google Scholar 
    Jones, N. The quest for quieter seas. Nature 568, 158–161. https://doi.org/10.1038/d41586-019-01098-6 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Williams, R. et al. Chronic ocean noise and cetacean population models. J. Cetacean Res. Manag. 21, 85–94. https://doi.org/10.47536/jcrm.v21i1.202 (2020).Article 

    Google Scholar 
    Roman, J. et al. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12, 377–385. https://doi.org/10.1890/130220 (2014).Article 

    Google Scholar 
    Pershing, A. J., Christensen, L. B., Record, N. R., Sherwood, G. D. & Stetson, P. B. The impact of whaling on the ocean carbon cycle: Why bigger was better. PLoS ONE 5, 1–9. https://doi.org/10.1371/journal.pone.0012444 (2010).Article 
    CAS 

    Google Scholar 
    IUCN – SSC Cetacean Specialist Group. Status of the World’s cetaceans (2021). https://iucn-csg.org/status-of-the-worlds-cetaceans/.Bailey, H. et al. Behavioural estimation of blue whale movements in the Northeast Pacific from state-space model analysis of satellite tracks. Endanger. Species Res. 10, 93–106. https://doi.org/10.3354/esr00239 (2010).Article 

    Google Scholar 
    Thomas, P. O., Reeves, R. R. & Brownell, R. L. Jr. Status of the world’s baleen whales. Mar. Mamm. Sci. 32, 682–734. https://doi.org/10.1111/mms.12281 (2016).Article 

    Google Scholar 
    Grigoli, F. et al. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective. Rev. Geophys. 55, 310–340. https://doi.org/10.1002/2016RG000542 (2017).Article 
    ADS 

    Google Scholar 
    Bigg, G. R. & Hanna, E. Impacts and effects of ocean warming on the weather. In: Laffoley, D. & Baxter, J. M. (eds.) Explaining ocean warming: Causes, scale, effects and consequences, 359–372, https://doi.org/10.2305/IUCN.CH.2016.08.en (International Union for Conservation of Nature and Natural Resources (IUCN), Gland, Switzerland, 2016).Hartog, A. H. An Introduction to Distributed Optical Fibre Sensors 1st edn. (CRC Press, 2017). https://doi.org/10.1201/9781315119014.Book 

    Google Scholar 
    Lin, J., Fang, S., Li, X., Wu, R. & Zheng, H. Seismological observations of ocean swells induced by Typhoon Megi using dispersive microseisms recorded in coastal areas. Remote Sens.https://doi.org/10.3390/rs10091437 (2018).Article 

    Google Scholar 
    Munk, W. H., Miller, G. R., Snodgrass, F. E., Barber, N. F. & Deacon, G. E. R. Directional recording of swell from distant storms. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 255, 505–584. https://doi.org/10.1098/rsta.1963.0011 (1963).Article 
    ADS 

    Google Scholar 
    Mellinger, D. K. & Clark, C. W. Blue whale (balaenoptera musculus) sounds from the North Atlantic. J. Acoust. Soc. Am. 114, 1108–1119. https://doi.org/10.1121/1.1593066 (2003).Article 
    ADS 
    PubMed 

    Google Scholar 
    Ou, H., Au, W. W., Van Parijs, S., Oleson, E. M. & Rankin, S. Discrimination of frequency-modulated baleen whale downsweep calls with overlapping frequencies. J. Acoust. Soc. Am. 137, 3024–3032. https://doi.org/10.1121/1.4919304 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Saito, T. & Tsushima, H. Synthesizing ocean bottom pressure records including seismic wave and tsunami contributions: Toward realistic tests of monitoring systems. J. Geophys. Res. Solid Earth 121, 8175–8195. https://doi.org/10.1002/2016JB013195 (2016).Article 
    ADS 

    Google Scholar 
    Rørstadbotnen, R. A. et al. Analysis of a local earthquake in the Arctic using a 120 km long fibre-optic cable. In 83rd EAGE Annual Conference & Exhibition, vol. 2022 of Conference Proceedings, 1–5, https://doi.org/10.3997/2214-4609.202210404 (European Association of Geoscientists & Engineers, 2022).Bromirski, P. D. & Duennebier, F. K. The near-coastal microseism spectrum: Spatial and temporal wave climate relationships. J. Geophys. Res. Solid Earth 107, ESE 5-1-20. https://doi.org/10.1029/2001JB000265 (2002).Article 

    Google Scholar 
    Pasch, R. J. National hurricane center tropical cyclone report: Tropical storm Edouard (AL052020). Technical report, National Oceanic and Atmospheric Administration (2021). https://www.nhc.noaa.gov/data/tcr/AL052020_Edouard.pdf.Gobato, R. & Heidari, A. Cyclone Bomb hits Southern Brazil in 2020. J. Atmos. Sci. Res. 3, 8–12. https://doi.org/10.30564/jasr.v3i3.2163 (2020).Article 

    Google Scholar 
    Khalid, A., de Lima, Ad. S., Cassalho, F., Miesse, T. & Ferreira, C. Hydrodynamic and wave responses during storm surges on the Southern Brazilian Coast: A real-time forecast system. Water 12, 3397. https://doi.org/10.3390/w12123397 (2020).Article 

    Google Scholar 
    Ćirić, J. Weather warning for Central Highland, Northwest Iceland (2020). https://www.icelandreview.com/travel/weather-warning-for-central-highland-northwest-iceland/.Schoeman, R. P., Patterson-Abrolat, C. & Plön, S. A global review of vessel collisions with marine animals. Front. Mar. Sci. 7, 292. https://doi.org/10.3389/fmars.2020.00292 (2020).Article 

    Google Scholar 
    Ringrose, P. S. et al. Storage of carbon dioxide in saline aquifers: Physicochemical processes, key constraints, and scale-up potential. Annu. Rev. Chem. Biomol. Eng. 12, 471–494. https://doi.org/10.1146/annurev-chembioeng-093020-091447 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nishimura, T. et al. Source location of volcanic earthquakes and subsurface characterization using fiber-optic cable and distributed acoustic sensing system. Sci. Rep. 11, 6319. https://doi.org/10.1038/s41598-021-85621-8 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ardhuin, F. & Herbers, T. H. C. Noise generation in the solid Earth, oceans and atmosphere, from nonlinear interacting surface gravity waves in finite depth. J. Fluid Mech. 716, 316–348. https://doi.org/10.1017/jfm.2012.548 (2013).Article 
    ADS 
    MATH 

    Google Scholar 
    Airy, G. B. Encyclopaedia Metropolitana (1817–1845), vol. 3 of Mixed Sciences, chap. Tides and waves (London, 1841).Craik, A. D. The origins of water wave theory. Annu. Rev. Fluid Mech. 36, 1–28. https://doi.org/10.1146/annurev.fluid.36.050802.122118 (2004).Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Matsumoto, H., Inoue, S. & Ohmachi, T. Dynamic response of bottom water pressure due to the 2011 Tohoku earthquake. J. Disaster Res. 7, 468–475. https://doi.org/10.20965/jdr.2012.p0468 (2012).Article 

    Google Scholar 
    Landrø, M. & Hatchell, P. Normal modes in seismic data: Revisited. Geophysics 77, W27–W40. https://doi.org/10.1190/geo2011-0094.1 (2012).Article 
    ADS 

    Google Scholar  More

  • in

    Transmission of stony coral tissue loss disease (SCTLD) in simulated ballast water confirms the potential for ship-born spread

    Precht, W. F., Gintert, B. E., Robbart, M. L., Fura, R. & van Woesik, R. Unprecedented disease-related coral mortality in Southeastern Florida. Sci. Rep. 6, 31374 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    NOAA. Stony Coral Tissue Loss Disease Case Definition. NOAA, Silver Spring, MD 10 (2018).Aeby, G. S. et al. Pathogenesis of a tissue loss disease affecting multiple species of corals along the Florida Reef Tract. Front Mar. Sci. 6, 00678 (2019).
    Google Scholar 
    Landsberg, J. H. et al. Stony coral tissue loss disease in Florida is associated with disruption of host–zooxanthellae physiology. Front Mar. Sci. 7, 576013 (2020).
    Google Scholar 
    Neely, K. L., Macaulay, K. A., Hower, E. K. & Dobler, M. A. Effectiveness of topical antibiotics in treating corals affected by Stony Coral Tissue Loss Disease. PeerJ 8, 9289 (2020).
    Google Scholar 
    Shilling, E. N., Combs, I. R. & Voss, J. D. Assessing the effectiveness of two intervention methods for stony coral tissue loss disease on Montastraea cavernosa. Sci. Rep. 11, 8566 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker, B. K., Turner, N. R., Noren, H. K. G., Buckley, S. F. & Pitts, K. A. Optimizing stony coral tissue loss disease (SCTLD) intervention treatments on Montastraea cavernosa in an endemic zone. Front Mar. Sci. 8, 666224 (2021).
    Google Scholar 
    Work, T. M. et al. Viral-like particles are associated with endosymbiont pathology in Florida corals affected by stony coral tissue loss disease. Front Mar. Sci. 8, 750658 (2021).
    Google Scholar 
    Veglia, A. J. et al. Alphaflexivirus genomes in stony coral tissue loss disease-affected, disease-exposed, and disease-unexposed coral colonies in the U.S. Virgin Islands. Microbiol. Resource Announc. 11, e01199-e1221 (2022).CAS 

    Google Scholar 
    Rosales, S. M. et al. Bacterial metabolic potential and micro-eukaryotes enriched in stony coral tissue loss disease lesions. Front Mar. Sci. 8, 776859 (2022).
    Google Scholar 
    Rosales, S. M., Clark, A. S., Huebner, L. K., Ruzicka, R. R. & Muller, E. M. Rhodobacterales and Rhizobiales are associated with stony coral tissue loss disease and its suspected sources of transmission. Front. Microbiol. 11, 681 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Studivan, M. S. et al. Reef sediments can act as a stony coral tissue loss disease vector. Front Mar. Sci. 8, 815698 (2022).
    Google Scholar 
    Meyer, J. L. et al. Microbial community shifts associated with the ongoing stony coral tissue loss disease outbreak on the Florida Reef Tract. Front. Microbiol. 10, 2244 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Ushijima, B. et al. Disease diagnostics and potential coinfections by Vibrio coralliilyticus during an ongoing coral disease outbreak in Florida. Front. Microbiol. 11, 2682 (2020).
    Google Scholar 
    Meiling, S. S. et al. Variable species responses to experimental stony coral tissue loss disease (SCTLD) exposure. Front Mar. Sci. 8, 670829 (2021).
    Google Scholar 
    Becker, C. C., Brandt, M., Miller, C. A. & Apprill, A. Microbial bioindicators of stony coral tissue loss disease identified in corals and overlying waters using a rapid field-based sequencing approach. Environ. Microbiol. 24, 1166–1182 (2021).PubMed 

    Google Scholar 
    Dobbelaere, T., Muller, E. M., Gramer, L. J., Holstein, D. M. & Hanert, E. Coupled epidemio-hydrodynamic modeling to understand the spread of a deadly coral disease in Florida. Front Mar. Sci. 7, 591881 (2020).
    Google Scholar 
    Dobbelaere, T. et al. Connecting the dots: Transmission of stony coral tissue loss disease from the Marquesas to the Dry Tortugas. Front Mar. Sci. 9, 778938 (2022).
    Google Scholar 
    Muller, E. M., Sartor, C., Alcaraz, N. I. & van Woesik, R. Spatial epidemiology of the stony-coral-tissue-loss disease in Florida. Front Mar. Sci. 7, 00163 (2020).
    Google Scholar 
    Sharp, W. C., Shea, C. P., Maxwell, K. E., Muller, E. M. & Hunt, J. H. Evaluating the small-scale epidemiology of the stony-coral-tissue-loss-disease in the middle Florida Keys. PLoS ONE 15, e0241871 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williamson, O. M., Dennison, C. E., O’Neil, K. L. & Baker, A. C. Susceptibility of Caribbean brain coral recruits to stony coral tissue loss disease (SCTLD). Front Mar. Sci. 9, 821165 (2022).
    Google Scholar 
    Noonan, K. R. & Childress, M. J. Association of butterflyfishes and stony coral tissue loss disease in the Florida Keys. Coral Reefs 39, 1581–1590 (2020).
    Google Scholar 
    Dahlgren, C., Pizarro, V., Sherman, K., Greene, W. & Oliver, J. Spatial and temporal patterns of stony coral tissue loss disease outbreaks in the Bahamas. Front Mar. Sci. 8, 682114 (2021).
    Google Scholar 
    Rosenau, N. A. et al. Considering commercial vessels as potential vectors of stony coral tissue loss disease. Front Mar. Sci. 8, 709764 (2021).
    Google Scholar 
    Roth, L., Kramer, P., Doyle, E. & O’Sullivan, C. Caribbean SCTLD Dashboard. Available www.agrra.org. Accessed 06 Mar 2021. (2020).Brandt, M. E. et al. The emergence and initial impact of stony coral tissue loss disease (SCTLD) in the United States Virgin Islands. Front Mar. Sci. 8, 715329 (2021).
    Google Scholar 
    Bailey, S. A. et al. Trends in the detection of aquatic non-indigenous species across global marine, estuarine and freshwater ecosystems: A 50-year perspective. Divers. Distrib. 26, 1780–1797 (2020).MathSciNet 

    Google Scholar 
    Hewitt, C. L., Gollasch, S. & Minchin, D. The vessel as a vector: Biofouling, ballast water and sediments. In Biological Invasions in Marine Ecosystems Vol. 204 (eds Rilov, G. & Crooks, J. A.) 117–131 (Springer, 2009).
    Google Scholar 
    Zabin, C. J. et al. Small boats provide connectivity for nonindigenous marine species between a highly invaded international port and nearby coastal harbors. Manag. Biol. Invas. 5, 97–112 (2014).
    Google Scholar 
    Ashton, G. V., Zabin, C. J., Davidson, I. C. & Ruiz, G. M. Recreational boats routinely transfer organisms and promote marine bioinvasions. Biol. Invas. 24, 1083–1096 (2022).
    Google Scholar 
    Drake, L. A., Doblin, M. A. & Dobbs, F. C. Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm. Mar. Pollut. Bull. 55, 333–341 (2007).CAS 
    PubMed 

    Google Scholar 
    Pagenkopp Lohan, K. M., Fleischer, R. C., Carney, K. J., Holzer, K. K. & Ruiz, G. M. Amplicon-based pyrosequencing reveals high diversity of protistan parasites in ships’ ballast water: Implications for biogeography and infectious diseases. Microb. Ecol. 71, 530–542 (2015).PubMed 

    Google Scholar 
    Ruiz, G. M. et al. Global spread of microorganisms by ships. Nature 408, 49–50 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hwang, J., Park, S. Y., Lee, S. & Lee, T. K. High diversity and potential translocation of DNA viruses in ballast water. Mar. Pollut. Bull. 137, 449–455 (2018).CAS 
    PubMed 

    Google Scholar 
    Shikuma, N. J. & Hadfield, M. G. Marine biofilms on submerged surfaces are a reservoir for Escherichia coli and Vibrio cholerae. Biofouling 26, 39–46 (2009).
    Google Scholar 
    Aguirre-Macedo, M. L. et al. Ballast water as a vector of coral pathogens in the Gulf of Mexico: The case of the Cayo Arcas coral reef. Mar. Pollut. Bull. 56, 1570–1577 (2008).CAS 
    PubMed 

    Google Scholar 
    Bruno, J. F. The coral disease triangle. Nat. Clim. Chang. 5, 302–303 (2015).ADS 

    Google Scholar 
    Lakshmi, E., Priya, M. & Achari, V. S. An overview on the treatment of ballast water in ships. Ocean Coast. Manag. 199, 105296 (2021).
    Google Scholar 
    Petersen, N. B., Madsen, T., Glaring, M. A., Dobbs, F. C. & Jørgensen, N. O. G. Ballast water treatment and bacteria: Analysis of bacterial activity and diversity after treatment of simulated ballast water by electrochlorination and UV exposure. Sci. Total Environ. 648, 408–421 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Romero-Martínez, L., Moreno-Andrés, J., Acevedo-Merino, A. & Nebot, E. Evaluation of ultraviolet disinfection of microalgae by growth modeling: Application to ballast water treatment. J. Appl. Phycol. 28, 2831–2842 (2016).
    Google Scholar 
    First, M. R. et al. Stratification of living organisms in ballast tanks: How do organism concentrations vary as ballast water is discharged?. Environ. Sci. Technol. 47, 4442–4448 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Drake, L. A. et al. Microbial ecology of ballast water during a transoceanic voyage and the effects of open-ocean exchange. Mar. Ecol. Prog. Ser. 233, 13–20 (2002).ADS 

    Google Scholar 
    Khandeparker, L., Kuchi, N., Desai, D. V. & Anil, A. C. Changes in the ballast water tank bacterial community during a trans-sea voyage: Elucidation through next generation DNA sequencing. J. Environ. Manag. 273, 111018 (2020).
    Google Scholar 
    Ruiz, G. M., Lorda, J., Arnwine, A. & Lion, K. Shipping patterns associated with the Panama Canal: Effects on biotic exchange? In Bridging Divides Vol. 83 (eds Gollasch, S. et al.) 113–126 (Springer, 2006).
    Google Scholar 
    Pagano, A., Wang, G., Sánchez, O., Ungo, R. & Tapiero, E. The impact of the Panama Canal expansion on Panama’s maritime cluster. Marit. Policy Manag. 43, 164–178 (2016).
    Google Scholar 
    Muirhead, J. R., Minton, M. S., Miller, W. A. & Ruiz, G. M. Projected effects of the Panama Canal expansion on shipping traffic and biological invasions. Divers. Distrib. 21, 75–87 (2015).
    Google Scholar 
    Ros, M. et al. The Panama Canal and the transoceanic dispersal of marine invertebrates: Evaluation of the introduced amphipod Paracaprella pusilla Mayer, 1890 in the Pacific Ocean. Mar. Environ. Res. 99, 204–211 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stehouwer, P. P., Buma, A. & Peperzak, L. A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide. Environ. Technol. 36, 2094–2104 (2015).CAS 
    PubMed 

    Google Scholar 
    Wu, Y., Li, Z., Du, W. & Gao, K. Physiological response of marine centric diatoms to ultraviolet radiation, with special reference to cell size. J. Photochem. Photobiol., B 153, 1–6 (2015).CAS 

    Google Scholar 
    Aguirre, L. E. et al. Diatom frustules protect DNA from ultraviolet light. Sci. Rep. 8, 5138 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    First, M. R. & Drake, L. A. Life after treatment: Detecting living microorganisms following exposure to UV light and chlorine dioxide. J. Appl. Phycol. 26, 227–235 (2014).CAS 

    Google Scholar 
    Liebich, V., Stehouwer, P. P. & Veldhuis, M. Re-growth of potential invasive phytoplankton following UV-based ballast water treatment. Aquat. Invas. 7, 29–36 (2012).
    Google Scholar 
    Hess-Erga, O. K., Moreno-Andrés, J., Enger, Ø. & Vadstein, O. Microorganisms in ballast water: Disinfection, community dynamics, and implications for management. Sci. Total Environ. 657, 704–716 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Endresen, Ø., Lee Behrens, H., Brynestad, S., Bjørn Andersen, A. & Skjong, R. Challenges in global ballast water management. Mar. Pollut. Bull. 48, 615–623 (2004).CAS 
    PubMed 

    Google Scholar 
    Vorkapić, A., Radonja, R. & Zec, D. Cost efficiency of ballast water treatment systems based on ultraviolet irradiation and electrochlorination. Promet Traffic Transp. 30, 343–348 (2018).
    Google Scholar 
    King, D., Hagan, P., Riggio, M. & Wright, D. Preview of global ballast water treatment markets. J. Mar. Eng. Technol. 11, 3–15 (2012).
    Google Scholar 
    Wang, Z., Saebi, M., Corbett, J. J., Grey, E. K. & Curasi, S. R. Integrated biological risk and cost model analysis supports a geopolitical shift in ballast water management. Environ. Sci. Technol. 55, 12791–12800 (2021).CAS 
    PubMed 

    Google Scholar 
    Moreno-Andrés, J. & Peperzak, L. Operational and environmental factors affecting disinfection byproducts formation in ballast water treatment systems. Chemosphere 232, 496–505 (2019).ADS 
    PubMed 

    Google Scholar 
    David, M., Linders, J., Gollasch, S. & David, J. Is the aquatic environment sufficiently protected from chemicals discharged with treated ballast water from vessels worldwide? A decadal environmental perspective and risk assessment. Chemosphere 207, 590–600 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    U.S. Environmental Protection Agency. Generic protocol for the verification of ballast water treatment technology, version 5.1. Report number EPA/600/R-10/146. Washington, D.C. 157 (2010).Evans, J. S., Paul, V. J., Ushijima, B. & Kellogg, C. A. Combining tangential flow filtration and size fractionation of mesocosm water as a method for the investigation of waterborne coral diseases. Biol. Methods Protocols 7, bpac007 (2022).
    Google Scholar 
    Fujimoto, M. et al. Application of Ion Torrent sequencing to the assessment of the effect of alkali ballast water treatment on microbial community diversity. PLoS ONE 9, e107534 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    United States Coast Guard. Ballast Water Best Management Practices to Reduce the Likelihood of Transporting Pathogens That May Spread Stony Coral Tissue Loss Disease. Marine Safety Information Bulletin 07–19. Washington, D.C. 2 (2019).Bolton, J. R. & Linden, K. G. Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. J. Environ. Eng. 129, 209–215 (2003).CAS 

    Google Scholar 
    Enochs, I. C. et al. The influence of diel carbonate chemistry fluctuations on the calcification rate of Acropora cervicornis under present day and future acidification conditions. J. Exp. Mar. Biol. Ecol. 506, 135–143 (2018).CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Preprint at https://www.r-project.org/ (2019).Therneau, T. M. survival: A package for survival analysis in R. R package version 3.2–13. (2021).Kassambara, A., Kosinski, M. & Biecek, P. survminer: Drawing survival curves using “ggplot2”. R package version 0.4.9. (2021).Bakalar, G. Review of interdisciplinary devices for detecting the quality of ship ballast water. Springerplus 3, 468 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Water Environmental Federation & American Public Health Association. Standard methods for the examination of water and wastewater. Washington, D.C. 21 (2005).Steinberg, M. K., Lemieux, E. J. & Drake, L. A. Determining the viability of marine protists using a combination of vital, fluorescent stains. Mar. Biol. 158, 1431–1437 (2011).
    Google Scholar 
    Oksanen, J. et al. vegan: Community ecology package. R package version 2.0–10. (2015).Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4. (2020).Studivan, MS. Mstudiva/SCTLD-ballast-transmission: Stony coral tissue loss disease ballast transmission and treatment (Version 1.0), Zenodo, https://doi.org/10.5281/zenodo.6561517 (2022). More

  • in

    Acoustic and visual cetacean surveys reveal year-round spatial and temporal distributions for multiple species in northern British Columbia, Canada

    Williams, R. et al. Prioritizing global marine mammal habitats using density maps in place of range maps. Ecography 37, 212–220 (2014).
    Google Scholar 
    Tyack, P. L. & Clark, C. W. Communication and acoustic behavior of dolphins and whales in Hearing by whales and dolphins 156–224 (Springer, 2000).Davis, G. E. et al. Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Glob. Change Biol. 26, 4812 (2020).ADS 

    Google Scholar 
    Lomac-MacNair, K. S. et al. Marine mammal visual and acoustic surveys near the Alaskan Colville River Delta. Polar Biol. 42, 441–448 (2018).
    Google Scholar 
    Keen, E., Hendricks, B., Wray, J., Alidina, H. & Picard, C. Integrating passive acoustic and visual surveys for marine mammals in coastal habitats in 176th Meeting of Acoustical Society of America. 1 edn.Gregr, E. J., Baumgartner, M. F., Laidre, K. L. & Palacios, D. M. Marine mammal habitat models come of age: The emergence of ecological and management relevance. Endang. Species Res. 22, 205–212 (2013).
    Google Scholar 
    Hastie, G. D., Wilson, B., Wilson, L., Parsons, K. M. & Thompson, P. M. Functional mechanisms underlying cetacean distribution patterns: Hotspots for bottlenose dolphins are linked to foraging. Mar. Biol. 144, 397–403 (2004).
    Google Scholar 
    Lambert, C., Mannocci, L., Lehodey, P. & Ridoux, V. Predicting cetacean habitats from their energetic needs and the distribution of their prey in two contrasted tropical regions. PLoS ONE 9, e105958 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huot, Y. et al. Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies?. Biogeosci. Discuss. 4, 707–745 (2007).ADS 

    Google Scholar 
    Etnoyer, P. et al. Sea-surface temperature gradients across blue whale and sea turtle foraging trajectories off the Baja California Peninsula, Mexico. Deep Sea Res. II 53, 340–358 (2006).ADS 

    Google Scholar 
    Shabangu, F. W. et al. Seasonal occurrence and diel calling behaviour of Antarctic blue whales and fin whales in relation to environmental conditions off the west coast of South Africa. J. Mar. Syst. 190, 25–39 (2019).
    Google Scholar 
    Haida Nation & Parks Canada Agency. Gwaii Haanas Gina ’Waadluxan Kilguhlga. Land-Sea-People Management Plan. 33 (© Council of the Haida Nation and Her Majesty the Queen in Right of Canada, represented by the Chief Executive Officer of Parks Canada, 2018).Ford, J. K. B. Marine Mammals of British Columbia. (Royal BC Museum, 2014).Allen, A. S., Yurk, H., Vagle, S., Pilkington, J. & Canessa, R. The underwater acoustic environment at SGaan Kinghlas-Bowie Seamount Marine Protected Area: Characterizing vessel traffic and associated noise using satellite AIS and acoustic datasets. Mar. Pollut. Bull. 128, 82–88 (2018).CAS 
    PubMed 

    Google Scholar 
    Ainslie, M. A. Principles of Sonar Performance Modeling. (Springer, 2010).Collins, M. D. A split-step Padé solution for the parabolic equation method. J. Acoust. Soc. Am. 93, 1736–1742 (1993).ADS 

    Google Scholar 
    Porter, M. B. & Bucker, H. P. Gaussian beam tracing for computing ocean acoustic fields. J. Acoust. Soc. Am. 82, 1349–1359 (1987).ADS 

    Google Scholar 
    Mouy, X., MacGillivray, A. O., Vallarta, J. H., Martin, B. & Delarue, J. J.-Y. Ambient Noise and Killer Whale Monitoring near Port Metro Vancouver’s Proposed Terminal 2 Expansion Site: July–September 2012. (Technical report by JASCO Applied Sciences for Hemmera, 2012).Ford, J. et al. Distribution and relative abundance of cetaceans in western Canadian waters from ship surveys, 2002–2008. Can. Tech. Rep. Fish. Aquat. Sci. 2913, 51 (2010).
    Google Scholar 
    Wright, B. M., Nichol, L. M. & Doniol-Valcroze, T. Spatial density models of cetaceans in the Canadian Pacific estimated from 2018 ship-based surveys. DFO Can. Sci. Advis. Sec. Res. Doc. 2021, 49 (2021).
    Google Scholar 
    Devred, E., Hardy, M. & Hannah, C. Satellite observations of the Northeast Pacific Ocean. Can. Tech. Rep. Hydrogr. Ocean Sci. 335, 46 (2021).
    Google Scholar 
    Saha, K. et al. NOAA National centers for environmental information. Dataset https://doi.org/10.7289/v52j68xx (2018).Article 

    Google Scholar 
    NASA Goddard Space Flight Center, Ocean Ecology Laboratory & Ocean Biology Processing Group. (NASA OB.DAAC, Greenbelt, MD, USA. https://doi.org/10.5067/AQUA/MODIS/L3B/CHL/2018. Accessed 3 Feb 2021.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B Stat. Methodol. 73, 3–36 (2011).MathSciNet 
    MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).Ogle, D. H., Wheeler, P. & Dinno, A. FSA: Fisheries Stock Analysis. R package version 0.8.32. https://github.com/droglenc/FSA (2021).Payne, R. S. & McVay, S. Songs of humpback whales. Science 173, 585–597 (1971).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rekdahl, M. L. et al. Non-song social call bouts of migrating humpback whales. J. Acoust. Soc. Am. 137, 3042–3053 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oswald, J. N., Rankin, S. & Barlow, J. To whistle or not to whistle? Geographic variation in the whistling behavior of small odontocetes. Aquat. Mamm. 34, 288–302 (2008).
    Google Scholar 
    Rankin, S., Oswald, J., Barlow, J. P. & Lammers, M. Patterned burst-pulse vocalizations of the northern right whale dolphin, Lissodelphis borealis. J. Acoust. Soc. Am. 121, 1213–1218. https://doi.org/10.1121/1.2404919 (2007).Article 
    ADS 
    PubMed 

    Google Scholar 
    Arranz, P. et al. Discrimination of fast click-series produced by tagged Risso’s dolphins (Grampus griseus) for echolocation or communication. J. Exp. Biol. 219, 2898–2907. https://doi.org/10.1242/jeb.144295 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Halpin, L. R., Towers, J. R. & Ford, J. K. First record of common bottlenose dolphin (Tursiops truncatus) in Canadian Pacific waters. Mar. Biodivers. Rec. 11, 1–5 (2018).
    Google Scholar 
    Nikolich, K. & Towers, J. R. Vocalizations of common minke whales (Balaenoptera acutorostrata) in an eastern North Pacific feeding ground. Bioacoustics 29, 97–108 (2020).
    Google Scholar 
    Money, J. H. & Trites, A. W. A preliminary assessment of the status of marine mammal populations and associated research needs for the west coast of Canada. Report No. Final Report, 80 (Fisheries and Oceans Canada, 1998).Gregr, E. J. & Trites, A. W. Predictions of critical habitat for five whale species in the waters of coastal British Columbia. Can. J. Fish. Aquat. Sci. 58, 1265–1285 (2001).
    Google Scholar 
    Ou, H., Au, W. W. L., Van Parijs, S., Oleson, E. M. & Rankin, S. Discrimination of frequency-modulated Baleen whale downsweep calls with overlapping frequencies. J. Acoust. Soc. Am. 137, 3024–3032. https://doi.org/10.1121/1.4919304 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Mellinger, D. K., Stafford, K. M., Moore, S. E., Dziak, R. P. & Matsumoto, H. An overview of fixed passive acoustic observation methods for cetaceans. Oceanography 20, 36–45 (2007).
    Google Scholar 
    Stafford, K. M., Citta, J. J., Moore, S. E., Daher, M. A. & George, J. E. Environmental correlates of blue and fin whale call detections in the North Pacific Ocean from 1997 to 2002. Mar. Ecol. Prog. Ser. 395, 37–53 (2009).ADS 

    Google Scholar 
    Burnham, R., Duffus, D. & Mouy, X. The presence of large whale species in Clayoquot Sound and its offshore waters. Cont. Shelf Res. 177, 15–23 (2019).ADS 

    Google Scholar 
    Burtenshaw, J. C. et al. Acoustic and satellite remote sensing of blue whale seasonality and habitat in the Northeast Pacific. Deep Sea Res. II 51, 967–986 (2004).ADS 

    Google Scholar 
    Calambokidis, J., Barlow, J., Ford, J. K. B., Chandler, T. E. & Douglas, A. B. Insights into the population structure of blue whales in the Eastern North Pacific from recent sightings and photographic identification. Mar. Mamm. Sci. 25, 816–832 (2009).
    Google Scholar 
    Jackson, J. M., Thomson, R. E., Brown, L. N., Willis, P. G. & Borstad, G. A. Satellite chlorophyll off the British Columbia Coast, 1997–2010. J. Geophys. Res. Oceans 120, 4709–4728 (2015).ADS 

    Google Scholar 
    Evans, R., English, P. A., Anderson, S. C., Gauthier, S. & Robinson, C. L. Factors affecting the seasonal distribution and biomass of E. pacifica and T. spinifera along the Pacific coast of Canada: A spatiotemporal modelling approach. PLoS ONE 16, e0249818 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, S. E., Watkins, W. A., Daher, M. A., Davies, J. R. & Dahlheim, M. E. Blue whale habitat associations in the Northwest Pacific: Analysis of remotely-sensed data using a Geographic Information System. Oceanography 15, 1–10 (2002).
    Google Scholar 
    Lockyer, C. Review of Baleen Whale (Mysticeti) reproduction and implications for management. Rep. Int. Whal. Commn Spec. Issue 6, 27–50 (1984).
    Google Scholar 
    Ohsumi, S. M. N. Growth of fin whale in the Northern Pacific Ocean. Sci. Rep. Whale Res. Inst. 13, 97–133 (1958).
    Google Scholar 
    Watkins, W. A. et al. Seasonality and distribution of whale calls in the North Pacific. Oceanography 13, 62–67 (2000).
    Google Scholar 
    Watkins, W. A., Tyack, P., Moore, K. E. & Bird, J. E. The 20-Hz signals of finback whales (Balaenoptera physalus). J. Acoust. Soc. Am. 82, 1901–1912 (1987).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stafford, K. M., Mellinger, D. K., Moore, S. E. & Fox, C. G. Seasonal variability and detection range modeling of baleen whale calls in the Gulf of Alaska, 1999–2002. J. Acoust. Soc. Am. 122, 3378–3390 (2007).ADS 
    PubMed 

    Google Scholar 
    Koot, B. Winter Behaviour and Population Structure of Fin Whales (Balaenoptera physalus) in British Columbia inferred from passive acoustic data (University of British Columbia, 2015).
    Google Scholar 
    Pilkington, J. F., Stredulinsky, E. H., Abernethy, R. M. & Ford, J. K. B. Patterns of Fin whale (Balaenoptera physalus) Seasonality and Relative Distribution in Canadian Pacific Waters Inferred from Passive Acoustic Monitoring. DFO Can. Sci. Advis. Sec. Res. Doc. (2018).Best, B. D., Fox, C. H., Williams, R., Halpin, P. H. & Paquet, P. C. Updated Marine Mammal Distribution and Abundance Estimates in British Columbia (Springer, 2015).
    Google Scholar 
    Clarke, C. & Jamieson, G. Identification of ecologically and biologically significant areas in the Pacific North Coast integrated management area: Phase II: Final report. Can. Tech. Rep. Fish. Aquat. Sci. 2678, 59 (2006).
    Google Scholar 
    Nichol, L. M. et al. Distribution, movements and habitat fidelity patterns of Fin Whales (Balaenoptera physalus) in Canadian Pacific Waters. DFO Can. Sci. Advis. Sec. Res. Doc. (2018).Nichol, L. M. & Ford, J. K. B. Information in Support of the Identification of Habitat of Special Importance to Fin Whales (Balaenoptera physalus) in Canadian Pacific Waters. DFO Can. Sci. Advis. Sec. Res. Doc. (2018).Mizroch, S. A., Rice, D. W., Zwiefelhofer, D., Waite, J. & Perryman, W. L. Distribution and movements of fin whales in the North Pacific Ocean. Mammal Rev. 39, 193–227 (2009).
    Google Scholar 
    Širović, A., Williams, L. N., Kerosky, S. M., Wiggins, S. M. & Hildebrand, J. A. Temporal separation of two fin whale call types across the eastern North Pacific. Mar. Biol. 160, 47–57 (2013).PubMed 

    Google Scholar 
    Flinn, R. D., Trites, A. W., Gregr, E. J. & Perry, R. I. Diets of fin, sei, and sperm whales in British Columbia: an analysis of commercial whaling records, 1963–1967. Mar. Mamm. Sci. 18, 663–679 (2002).
    Google Scholar 
    Barnes, R. S. K. & Hughes, R. N. An Introduction to Marine Ecology (Wiley, 1999).
    Google Scholar 
    Romagosa, M. et al. Food talks: 40-hz fin whale calls are associated with prey biomass. Proc. R. Soc. B 288, 20211156 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Gregr, E. J., Nichol, L., Ford, J. K., Ellis, G. & Trites, A. W. Migration and population structure of northeastern Pacific whales off coastal British Columbia: An analysis of commercial whaling records from 1908–1967. Mar. Mamm. Sci. 16, 699–727 (2000).
    Google Scholar 
    Williams, R. & Thomas, L. Distribution and abundance of marine mammals in the coastal waters of British Columbia, Canada. J. Cetac. Res. Manage. 9, 15 (2007).
    Google Scholar 
    Dalla Rosa, L., Ford, J. K. & Trites, A. W. Distribution and relative abundance of humpback whales in relation to environmental variables in coastal British Columbia and adjacent waters. Contin. Shelf Res. 36, 89–104 (2012).ADS 

    Google Scholar 
    Winn, H. E. & Winn, L. K. The song of the humpback whale Megaptera novaeangliae in the West Indies. Mar. Biol. 47, 97–114. https://doi.org/10.1007/BF00395631 (1978).Article 

    Google Scholar 
    Baker, C. S. et al. Population characteristics and migration of summer and late-season humpback whales (Megaptera novaeangliae) in southeastern Alaska. Mar. Mamm. Sci. 1, 304–323 (1985).ADS 

    Google Scholar 
    McSweeney, D., Chu, K., Dolphin, W. & Guinee, L. North Pacific humpback whale songs: A comparison of southeast Alaskan feeding ground songs with Hawaiian wintering ground songs. Mar. Mamm. Sci. 5, 139–148 (1989).
    Google Scholar 
    Norris, T. F., McDonald, M. & Barlow, J. Acoustic detections of singing humpback whales (Megaptera novaeangliae) in the eastern North Pacific during their northbound migration. J. Acoust. Soc. Am. 106, 506–514 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Clark, C. W. & Clapham, P. J. Acoustic monitoring on a humpback whale (Megaptera novaeangliae) feeding ground shows continual singing into late spring. Proc. R. Soc. Lond. B 271, 1051–1057 (2004).
    Google Scholar 
    Stimpert, A. K., Peavey, L. E., Friedlaender, A. S. & Nowacek, D. P. Humpback whale song and foraging behavior on an Antarctic feeding ground. PLoS ONE 7, e51214 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kowarski, K., Evers, C., Moors-Murphy, H., Martin, B. & Denes, S. L. Singing through winter nights: Seasonal and diel occurrence of humpback whale (Megaptera novaeangliae) calls in and around the Gully MPA, offshore eastern Canada. Mar. Mamm. Sci. 34, 169–189 (2018).
    Google Scholar 
    Nichol, L. M., Abernethy, R., Flostrand, L., Lee, T. S. & Ford, J. K. B. Information relevant for the identification of critical habitats of north pacific humpback whales (Megaptera novaeangliae) in British Columbia. DFO Can. Sci. Advis. Sec. Res. Doc. (2010).Williams, R., Erbe, C., Ashe, E. & Clark, C. W. Quiet (er) marine protected areas. Mar. Pollut. Bull. 100, 154–161 (2015).CAS 
    PubMed 

    Google Scholar 
    Gaston, A. J., Pilgrim, N. G. & Pattison, V. Humpback Whale (Megaptera novaeangliae) observations in Laskeek Bay, western Hecate Strait, in spring and early summer, 1990–2018. Can. Field Nat. 133, 263–269 (2019).
    Google Scholar 
    Robinson, C. L., Gower, J. F. & Borstad, G. Twenty years of satellite observations describing phytoplankton blooms in seas adjacent to Gwaii Haanas National Park Reserve, Canada. Can. J. Remote Sens. 30, 36–43 (2004).ADS 

    Google Scholar 
    Swartz, S. L., Taylor, B. L. & Rugh, D. J. Gray whale Eschrichtius robustus population and stock identity. Mamm. Rev. 36, 66–84 (2006).
    Google Scholar 
    Gaston, A. J. & Heise, K. Results of cetacean observations in Laskeek Bay, 1990–2003. Laskeek Bay Res. 55, 1–10 (2004).
    Google Scholar 
    Ford, J. K. et al. New insights into the northward migration route of gray whales between Vancouver Island, British Columbia, and southeastern Alaska. Mar. Mamm. Sci. 29, 325–337 (2013).
    Google Scholar 
    Burnham, R. E. & Duffus, D. A. The use of passive acoustic monitoring as a census tool of gray whale (Eschrichtius robustus) migration. Ocean Coast. Manag. 188, 105070 (2020).
    Google Scholar 
    Best, P. B. Social organization in sperm whales. In Physeter macrocephalus in Behavior of Marine Animals (eds Winn, H. E. & Olla, B. L.) 227–289 (Springer, 1979).
    Google Scholar 
    Jaquet, N. & Gendron, D. Distribution and relative abundance of sperm whales in relation to key environmental features, squid landings and the distribution of other cetacean species in the Gulf of California, Mexico. Mar. Biol. 141, 591–601 (2002).
    Google Scholar 
    Rice, D. W. Sperm whale Physeter macrocephalus Linnaeus, 1758. Handb. Mar. Mamm. 4, 177–233 (1989).
    Google Scholar 
    Whitehead, H. & Arnbom, T. Social organization of sperm whales off the Galapagos Islands, February–April 1985. Can. J. Zool. 65, 913–919 (1987).
    Google Scholar 
    Whitehead, H. Sperm whale: Physeter macrocephalus. In Encyclopedia of Marine Mammals 3rd edn (eds Würsig, B. et al.) 919–925 (Academic Press, 2018).
    Google Scholar 
    Mizroch, S. A. & Rice, D. W. Ocean nomads: Distribution and movements of sperm whales in the North Pacific shown by whaling data and Discovery marks. Mar. Mamm. Sci. 29, E136–E165 (2013).
    Google Scholar 
    Diogou, N. et al. Sperm whale (Physeter macrocephalus) acoustic ecology at Ocean Station PAPA in the Gulf of Alaska-Part 2: Oceanographic drivers of interannual variability. Deep Sea Res. I 150, 103044 (2019).
    Google Scholar 
    Ford, J. K. & Ellis, G. M. You are what you eat: Foraging specializations and their influence on the social organization and behavior of killer whales. in Primates and Cetaceans 75–98 (Springer, 2014).Ford, J. K. B. et al. Habitats of special importance to resident killer whales (Orcinus orca) off the West Coast of Canada. DFO Can. Sci. Advis. Sec. Res. Doc. (2017).Ford, J. K. B., Stredulinsky, E. H., Ellis, G. M., Durban, J. W. & Pilkington, J. F. Offshore Killer whales in Canadian pacific waters: Distribution, seasonality, foraging ecology, population status and potential for recovery. DFO Can. Sci. Advis. Sec. Res. Doc. (2014).Nichol, L. M. & Shackleton, D. M. Seasonal movements and foraging behaviour of northern resident killer whales (Orcinus orca) in relation to the inshore distribution of salmon (Oncorhynchus spp.) in British Columbia. Can. J. Zool. 74, 983–991 (1996).
    Google Scholar 
    Olesiuk, P. F., Ellis, G. M. & Ford, J. K. Life History and Population Dynamics of Northern Resident Killer Whales (Orcinus orca) in British Columbia (Canadian Science Advisory Secretariat Ottawa, 2005).
    Google Scholar 
    Newman, K. & Springer, A. Nocturnal activity by mammal-eating killer whales at a predation hot spot in the Bering Sea. Mar. Mamm. Sci. 24, 990 (2008).
    Google Scholar 
    Ford, J. K. B. et al. Dietary specialization in two sympatric populations of killer whales (Orcinus orca) in coastal British Columbia and adjacent waters. Can. J. Zool. 76, 1456–1471 (1998).
    Google Scholar 
    Barrett-Lennard, L. G., Ford, J. K. B. & Heise, K. A. The mixed blessing of echolocation: Differences in sonar use by fish-eating and mammal-eating killer whales. Anim. Behav. 51, 553–565 (1996).
    Google Scholar 
    Deecke, V. B., Ford, J. K. B. & Slater, P. J. B. The vocal behaviour of mammal-eating killer whales: Communicating with costly calls. Anim. Behav. 69, 395–405 (2005).
    Google Scholar 
    Ford, J. K. B. Call traditions and vocal dialects of killer whales (Orcinus orca) in British Columbia Ph.D. thesis, University of British Columbia (1984).Baird, R. W. Status of killer whales, Orcinus orca, Canada. Can. Field. Nat. 115, 676–701 (2001).
    Google Scholar 
    Ford, J. K. B., Stredulinsky, E. H., Towers, J. R. & Ellis, G. M. Information in Support of the Identification of Critical Habitat for Transient Killer Whales (Orcinus orca) off the West Coast of Canada. DFO Can. Sci. Advis. Sec. Res. Doc. (2013).Tyack, P. L., Johnson, M., Soto, N. A., Sturlese, A. & Madsen, P. T. Extreme diving of beaked whales. J. Exp. Biol. 209, 4238–4253 (2006).PubMed 

    Google Scholar 
    Baumann-Pickering, S. et al. Species-specific beaked whale echolocation signals. J. Acoust. Soc. Am. 134, 2293–2301 (2013).ADS 
    PubMed 

    Google Scholar 
    Pike, G. C. Two records of Berardius bairdi from the coast of British Columbia. J. Mammal. 34, 98–104 (1953).
    Google Scholar 
    Pike, G. C. & MacAskie, I. Marine mammals of British Columbia. Fish. Res. Board Can. Bull. 171, 1–10 (1969).
    Google Scholar 
    Willis, P. M. & Baird, R. W. Sightings and strandings of beaked whales on the west coast of. Aquat. Mamm. 24, 21–25 (1998).
    Google Scholar 
    Jefferson, T. A. Phocoenoides dalli. Mamm. Spec. https://doi.org/10.2307/3504170 (1988).Article 

    Google Scholar 
    Boyd, C. et al. Estimation of population size and trends for highly mobile species with dynamic spatial distributions. Divers. Distrib. 24, 1–12 (2018).
    Google Scholar 
    Carretta, J. V., Taylor, B. L. & Chivers, S. J. Abundance and depth distribution of harbor porpoise (Phocoena phocoena) in northern California determined from a 1995 ship survey. Fish. Bull. 99, 29–29 (2001).
    Google Scholar 
    Willis, P. M. & Baird, R. W. Status of the dwarf sperm whale, Kogia simus, with special reference to Canada. Can. Field Nat. 112, 114–125 (1998).
    Google Scholar 
    Kyhn, L. A. et al. Clicking in a killer whale habitat: Narrow-band, high-frequency biosonar cliks of harbour porpoise (Phocoena phocoena) and Dall’s porpoise (Phocoenoides dalli). PLoS ONE 8, e63763 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Madsen, P., Carder, D., Bedholm, K. & Ridgway, S. Porpoise clicks from a sperm whale nose—Convergent evolution of 130 kHz pulses in toothed whale sonars?. Bioacoustics 15, 195–206 (2005).
    Google Scholar 
    Merkens, K. et al. Clicks of dwarf sperm whales (Kogia sima). Mar. Mamm. Sci. 34, 963–978 (2018).
    Google Scholar 
    Griffiths, E. T. et al. Detection and classification of narrow-band high frequency echolocation clicks from drifting recorders. J. Acoust. Soc. Am. 147, 3511–3522 (2020).ADS 
    PubMed 

    Google Scholar 
    Baird, R. W. & Stacey, P. J. Status of Risso’s Dolphin, Grampus griseus, in Canada. Naturalist 5, 233142 (1991).
    Google Scholar 
    Benoit-Bird, K. J. & Au, W. W. Prey dynamics affect foraging by a pelagic predator (Stenella longirostris) over a range of spatial and temporal scales. Behav. Ecol. Sociobiol. 53, 364–373 (2003).
    Google Scholar 
    Benoit-Bird, K. J., Würsig, B. & Mfadden, C. J. Dusky dolphin (Lagenorhynchus obscurus) foraging in two different habitats: active acoustic detection of dolphins and their prey. Mar. Mamm. Sci. 20, 215–231 (2004).
    Google Scholar 
    Soldevilla, M. S., Wiggins, S. M. & Hildebrand, J. A. Spatial and temporal patterns of Risso’s dolphin echolocation in the Southern California Bight. J. Acoust. Soc. Am. 127, 124–132 (2010).ADS 
    PubMed 

    Google Scholar 
    Soldevilla, M. S., Wiggins, S. M. & Hildebrand, J. A. Spatio-temporal comparison of Pacific white-sided dolphin echolocation click types. Aquat. Biol. 9, 49–62 (2010).
    Google Scholar 
    Taylor, F. The relationship of midwater trawl catches to sound scattering layers off the coast of northern British Columbia. J. Fish. Board Can. 25, 457–472 (1968).
    Google Scholar 
    Curtis, K. R., Howe, B. M. & Mercer, J. A. Low-frequency ambient sound in the North Pacific: Long time series observations. J. Acoust. Soc. Am. 106, 3189–3200 (1999).ADS 

    Google Scholar 
    Aroyan, J. L. et al. Acoustic models of sound production and propagation in Hearing by whales and dolphins 409–469 (Springer, 2000).
    Google Scholar 
    Cummings, W. C. & Thompson, P. O. Underwater sounds from the blue whale, Balaenoptera musculus. J. Acoust. Soc. Am. 50, 1193–1198 (1971).ADS 

    Google Scholar 
    McDonald, M. A., Calambokidis, J., Teranishi, A. M. & Hildebrand, J. A. The acoustic calls of blue whales off California with gender data. J. Acoust. Soc. Am. 109, 1728–1735 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Weirathmueller, M. J., Wilcock, W. S. D. & Soule, D. C. Source levels of fin whale 20 Hz pulses measured in the Northeast Pacific Ocean. J. Acoust. Soc. Am. 133, 741–749 (2013).ADS 
    PubMed 

    Google Scholar 
    Vihtakari, M. ggOceanMaps: Plot Data on Oceanographic Maps using ‘ggplot2’. R package version 1.2.14. https://mikkovihtakari.github.io/ggOceanMaps/ (2022). More

  • in

    African perspectives on climate change research

    Urbanization is fast progressing in the Global South, requiring new solutions for infrastructure, services, industrial development and land and energy use for these regions. In this context, fast-growing cities in Africa can take on a leadership role in driving climate change mitigation and adaptation, disaster risk reduction and sustainable development.
    Credit: Stefan Rotter / Alamy Stock PhotoCities in Africa and elsewhere in the Global South continue to grapple with the challenge of delivering equitable services, infrastructure, housing and action to respond to climate change extremes and disasters. One well-known problem is a mismatch between the pace of urban growth and the slower development of basic services and critical infrastructure. This results in, for example, deficient sanitation, water supply systems and localized waste management for large parts of the population, which in turn contribute substantially to heightened poverty and inequality. For inclusive, equitable, prosperous and climate-resilient cities, urban management needs to integrate low-income communities into the urban economy by ensuring access to water, sanitation, energy transition, waste management, poverty reduction and by improving resilience through innovative solutions.
    Credit: Patrick J. Endres/Corbis Documentary/GettySuch an equitable urban transition requires changes in the urban infrastructure, and land and energy use, as well as water and ecosystem management. The key research question in this field is to find ways to ensure city-wide access to infrastructure and services, while minimizing emissions and resource use, and building resilience to climate change impacts. In this regard, cities in the Global South and Africa in particular can serve as examples for other parts of the world as they have the potential to adopt disruptive, innovative yet practical solutions to low emissions, resource minimization and resilience building.
    Credit: Nature Picture Library / Alamy Stock PhotoFor example, rapid urbanization creates the opportunity to develop economic structures in African cities that strongly integrate waste by promoting recovery, recycling, re-use and repair for lengthening lifecycles. Such a circular economy can create business opportunities, while also reducing resource use, thus creating a pathway for sustainable development. Another potential solution is hybrid systems for urban water management that are off-grid and utilize multiple water sources and treatment but that can also connect to centralized water systems. Business models for micro-to-medium enterprises have the potential to integrate some of the low-income groups through these kinds of technology and building social resilience.
    Credit: Images of Africa Photobank / Alamy Stock PhotoThese examples are part of a broader assessment of urban infrastructure innovations, their disruption of centralized systems and rethinking of urban form for more compact, walkable, co-located land use for low carbon intensity towards net-zero cities. However, to translate research on these new solutions into action, a shift is necessary in the planning, governing and managing of cities so as to allow for opportunities for leapfrogging to emerge and expand the possibilities of urban development for inclusive and resilient African cities. More

  • in

    Living on the sea-coast: ranging and habitat distribution of Asiatic lions

    Study areaSituated in western India’s southwestern part of the Gujarat state, the Saurashtra region typically represents the semi-arid Gujarat-Rajputana province 4B23, which covers 11 out of 33 districts of the state. The region forms a rocky tableland (altitude 300–600 m) fringed by coastal plains with an undulating central plain broken by hills and dissected by various rivers that flow in all directions24. With the longest coastline (~ 1600 km) in India, Gujarat is endowed with rich coastal biodiversity25,26. The Saurashtra coast in Gujarat is encircled by the open sea between two Gulfs (68° 58′–71° 30′ N and 22° 15′–20° 50′ E) and divided into two segments, viz. the southwestern coast from Dwarka to Diu (~ 300 km stretch) and south-eastern coast from Diu to Bhavnagar (~ 250 km stretch)26.The Asiatic Lion Landscape covers an area of ~ 30,000 km2 (permanent lion distribution range: ~ 16,000 km2; visitation record range: ~ 14,000 km2) of varied habitat types within Saurashtra. The landscape includes five protected areas (Gir National Park, Gir Wildlife Sanctuary, Paniya Wildlife Sanctuary, Mitiyala Wildlife Sanctuary, and Girnar Wildlife Sanctuary) and other forest classes (reserved forests, protected forests, and unclassed forests).The coastal habitats extend across the districts of Bhavnagar, Amreli, Gir-Somnath, and Junagadh (Fig. 1). Within these districts (Fig. 1), the tehsils (sub-divisions/taluka) of Mangrol, Malia, Patan-Veraval, Sutrapada, Kodinar and Una are categorized under the southwestern coast (hereafter western coastal habitat), Jafrabad, Rajula, form the south-eastern coast and Mahuva and Talaja constitute the Bhavnagar coast and represent distinct lion range units (Fig. 1). The total area covered in the study is 2843 km2 on the eastern coast and 1413 km2 on the western coast (Fig. 1).The Saurashtra region is bestowed with three distinct seasons, viz. dry and hot summer (March–June), monsoon (July–October), and primarily dry winter (November–February). It receives a mean annual rainfall of ~ 600 mm, with most rainfall during the southwest monsoon27. The mean maximum and minimum temperatures are 34 °C and 19 °C, respectively28. There is a 110 km2 stretch of forests along the coast. The rest of the areas are multi-use consisting of private, industrial, pastoral and wastelands of varied ownerships. The natural vegetation primarily consists of Prosopis juliflora and Casuarina equistsetifolia. On the beach and dune areas, vegetation such as Ipomea pescaprae, Sporobolus trinules, Fimrystylis sp., Crotalaria sp., and Euphorbia nivuleria29. The mudflats along the coast are restricted to Talaja, Mahuva, Pipavav Port, Jafrabad creek, and Porbandar, sparsely covered by the Avicennia marina29. Fisheries, agriculture, horticulture, livestock rearing, and some large- and small-scale industries are the leading economies in the coastal belt.Coastal segments are characterized by the variety of vegetation, sandy beaches, small cliffs, wave-cut platforms, open and submerged dunes, minor estuaries, embankments, and transition from the open sea to gulf environment with tidal mud26,29 and also support a diverse assemblage of biodiversity25. This biodiversity is further enriched by several perennial/ephemeral rivers originating from the Gir PA (Shetrunji, Machundari, Raval, Ardak, Bhuvatirth, Shinghoda, Hiran, Saraswati, etc.)12. These rivers meet the sea at different sections of the coast, forming prominent coastal ecosystems25. The riverine tracts act as important corridors for wildlife movement9,12,30. Dispersing through these corridors, lions have started inhabiting these coastal habitats30,31.MethodsAll the research activities involved in this study on Asiatic lions were carried out after taking due permission from the Ministry of Environment, Forests & Climate Change (MoEF&CC), Government of India (Letter No.: F. No. 1-50/2018 WL) and Principal Chief Conservator of Forests (Wildlife) & Chief Wildlife Warden, Gujarat State, Gandhinagar (Letter No.: WLP 26B 781-83/2019-20). Procedures and protocols were followed as per the Standard Operating Procedures of the Gujarat Forest Department, Government of Gujarat, concerning the handling of wild animals. Qualified and experienced veterinarians and their team carried out all procedures related to radio-collaring. Moreover, the study is reported in accordance with ‘Animal Research: Reporting of In Vivo Experiments’ (ARRIVE) guidelines as applicable.A long-term lion monitoring project was initiated in 2019 by the Gujarat Forest Department to understand the movement patterns and ecology of lions in the Asiatic Lion Landscape. Looking at the heterogeneity and vastness of the coastal areas, ten individuals were carefully selected for satellite radio-collaring based on their frequent movement in different coastal habitats and monitored from 2019 to 2021.The lions were deployed with Vertex Plus GPS Collars (Vectronics Aerospace GmbH, Berlin, Germany) that weighed less than three per cent of the individual’s body weight, irrespective of age and sex. The lions were immobilized using a combination of Ketamine hydrochloride (2.2 mg per kg body weight; Ketamine, Biowet, Pulawy) and Xylazine hydrochloride (1.1 mg per kg body weight; Xylaxil, Brilliant Bio Pharma Pvt. Ltd., Telangana)32 administered intramuscularly using a gas-powered Telinject™ G.U.T 50 (Telinject Inc., Dudenhofen, Germany) dart delivery system. A blindfold was placed to protect the eyes and decrease visual stimuli33,34. Each sedated individual was sexed, aged, and measured as per the standard operating procedure (SOP) of the Gujarat Forest Department, Government of Gujarat, and recorded the data in the trapping datasheet. The radio-collars were deployed considering the neck girth of the individual, ensuring free movement of it so as not to hamper the individual’s routine activities. After deploying the radio-collar, we used the specific antidote for Xylazine, i.e., Yohimbine hydrochloride (0.1–0.15 mg per kg body weight; Yohimbe, Equimed, USA) intravenously, resulting in the total recovery of immobilized individuals32 within 5–10 min. The individuals were intensively monitored for 72 h and, after that, regularly monitored throughout the functional period of the radio-collars. The entire radio-collaring exercise was carried out by trained and experienced veterinary officers and their teams that constituted wildlife health care personnel and field staff.Each collar had a unique VHF and UHF frequency. The radio-collars were equipped with a programmable GPS schedule and configured to record the location fixes at every hour and provided the data through the constellation of low-earth-orbit Iridium satellite data service (Iridium Communications Inc., Virginia, USA) at four-hour intervals after getting activated. The data logs included location fixes in degree decimal format (latitude/longitude), speed (km/hour), altitude (meters above mean sea level), UTC timestamp (dd-mm-yyyy h:m:s), direction (degrees), and temperature (Celsius). Radio-collars were equipped with mortality sensors and a programmable drop-off activation system. Gir Hi-Tech Monitoring Unit, Sasan-Gir, Gujarat, monitored and coordinated these activities. The location data from each radio-collar was downloaded using the GPS Plus X software (Vectronics Aerospace GmbH, Berlin, Germany) in the Gir Hi-Tech Monitoring Unit (a technology-driven scientific monitoring initiative in the landscape established in 2019 at Sasan-Gir, Gujarat).Data analysisIn this study, we calculated the home range of lions resident in the coastal region using the Fixed Kernel method. We expressed them as 90% and 50% Fixed Kernel (FK) to summarize the overall home range and core area, respectively35,36,37. Additionally, the home range of lions categorized as “link lions” and lions of the protected area was summarized for comparison (Table 1).MaxEnt (version 3.4.1) stand-alone software38 was applied for fine-scaled lion distribution modelling39,40. The logistic output format was set for the MaxEnt output. 30% random lion occurrence points were used as test data to evaluate model performance. The area under the receiver operating characteristic curve (AUC) was used to evaluate the discriminative ability of the model based on the values of sensitivity (correct discrimination of true positive location points) and specificity (correct discrimination of true negative absence points)41. The Jackknife regularised training gain for the species was used to understand the effect of each variable in model building. The logical output by the MaxEnt was presented in a table format as “percent contribution” and “permutation importance” values (from 0 to 100%). Spatial inputs were prepared on the GIS platform using ArcMap (version 10.8.1, ESRI, Redlands, USA)42. Input data for MaxEnt were categorized as (i) lion occurrence data, (ii) model variables were prepared as described below:

    i.

    Occurrence data
    At the first level, inconsistent location fixes (records with missing coordinates, time stamps, and elevation) and outliers were filtered out. Next, each lion’s hourly GPS location fixes obtained from remotely monitored radio-telemetry data were randomized to overcome spatial and temporal biases. The data was reduced by taking every three-hour location fix43,44. The data was further categorized season-wise, viz. summer, monsoon and winter. This consolidated data was then subject to spatial thinning of one kilometre using SDMtoolbox (version 2.0)45,46.

    ii.

    Model variables

    The variables used for distribution modelling broadly included different categories of land use, including both natural habitats and anthropogenic factors, namely, roads and human settlement areas. All variables were rasterized at 10 m spatial resolution.Land Use Land Cover (LULC) data of Saurashtra was obtained from Bhaskaracharya National Institute for Space Applications and Geo-informatics (BISAG-N), Gandhinagar, Gujarat. The data was then further classified into 18 sub-classes—Forest, Sandy areas, Salt-affected, Saltpan, open scrub, dense scrub (Wastelands), Waterlogged, River/Stream/Drain, Lakes and Ponds, Mining/Industrial areas, Reservoir/Tanks, Mangrove/Swamp Area, Crop Land, Agriculture Plantation (horticulture and agro-forestry), Core urban, Mixed settlement, Peri-urban, Village (Fig. 2).Roads and highways were also analyzed as separate variables in the model. Roads were classified as village roads, major district roads, and state and national highways and digitized individually to estimate Euclidean distance further (Table 2). Euclidean distance from the human settlement (Core-urban, Peri-urban, villages and mixed settlement) was analyzed and taken as a separate input variable for the model. More

  • in

    Distinct effects of three Wolbachia strains on fitness and immune traits in Homona magnanima

    Ahmed MZ, Li SJ, Xue X, Yin XJ, Ren SX, Jiggins FM et al. (2015) The Intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathog 11:1–19
    Google Scholar 
    Arai H, Hirano T, Akizuki N, Abe A, Nakai M, Kunimi Y et al. (2019) Multiple infection and reproductive manipulations of Wolbachia in Homona magnanima (Lepidoptera: Tortricidae). Microb Ecol 77:257–266PubMed 

    Google Scholar 
    Arai H, Lin SR, Nakai M, Kunimi Y, Inoue MN (2020) Closely related male-killing and nonmale-killing Wolbachia strains in the oriental tea tortrix Homona magnanima. Microb Ecol 79:1011–1020CAS 
    PubMed 

    Google Scholar 
    Bailey NW, Zuk M (2008) Changes in immune effort of male field crickets infested with mobile parasitoid larvae. J Insect Physiol 54:96–104CAS 
    PubMed 

    Google Scholar 
    Ballad JWO, Hatzidakis J, Karr TL, Kreitman M (1996) Reduced variation in Drosophila simulans mitochondrial DNA. Genetics 144:1519–1528
    Google Scholar 
    Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15–26
    Google Scholar 
    Capobianco IIIF, Nandkumar S, Parker JD (2018) Wolbachia affects survival to different oxidative stressors dependent upon the genetic background in Drosophila melanogaster. Physiol Entomol 43:239–244
    Google Scholar 
    Danthanarayana W (1975) Factors determining variation in fecundity of the light brown apple moth, Epiphyas postvittana (Walker) (Tortricidae). Aust J Zool 23:309–319
    Google Scholar 
    Dean MD (2006) A Wolbachia-associated fitness benefit depends on genetic background in Drosophila simulans. Proc R Soc B 273:1415–1420CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deseo KV (1971) Study of factors influencing the fecundity and fertility of codling moth (Laspeyresia pomonella L., Lepidoptera, Tortricidae). Acta Phytopathol Hun 6:243–252
    Google Scholar 
    Dobson SL, Rattanadechakul W, Marsland EJ (2004) Fitness advantage and cytoplasmic incompatibility in Wolbachia single-and superinfected Aedes albopictus. Heredity 93:135–142CAS 
    PubMed 

    Google Scholar 
    Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, Hurst GD (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:1–12
    Google Scholar 
    Engelstädter J, Telschow A, Hammerstein P (2004) Infection dynamics of different Wolbachia-types within one host population. J Theor Biol 231:345–55PubMed 

    Google Scholar 
    Fleury F, Vavre F, Ris N, Fouillet P, Boulétreau M (2000) Physiological cost induced by the maternally-transmitted endosymbiont Wolbachia in the Drosophila parasitoid Leptopilina heterotoma. Parasitology 121:493–500PubMed 

    Google Scholar 
    Frank SA (1998) Dynamics of cytoplasmic incompatibility with multiple Wolbachia infections. J Theor Biol 192:213–18CAS 
    PubMed 

    Google Scholar 
    Frank SA, Hurst LD (1996) Mitochondria and male disease. Nature 383:224–224CAS 
    PubMed 

    Google Scholar 
    Fry AJ, Palmer MR, Rand DM (2004) Variable fitness effects of Wolbachia infection in Drosophila melanogaster. Heredity 93:379–389CAS 
    PubMed 

    Google Scholar 
    Gómez-Valero L, Soriano-Navarro M, Pérez-Brocal V, Heddi A, Moya A, García-Verdugo JM, Latorre A (2004) Coexistence of Wolbachia with Buchnera Aphidicola and a secondary symbiont in the aphid Cinara cedri. J Bacteriol 186:6626–33PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann AA, Turelli M, Harshman LG (1990) Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126:933–948CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hornett EA, Charlat S, Duplouy AMR, Davies N, Roderick GK, Wedell N et al. (2006) Evolution of male-killer suppression in a natural population. PLoS Biol 4:1643–1648CAS 

    Google Scholar 
    Hough JA, Pimentel D (1978) Influence of host foliage on development, survival, and fecundity of the gypsy moth. Environ Entomol 7:97–102
    Google Scholar 
    Ikeda T, Ishikawa H, Sasaki T (2003) Infection density of Wolbachia and level of cytoplasmic incompatibility in the Mediterranean flour moth, Ephestia kuehniella. J Invertebr Pathol 84:1–5PubMed 

    Google Scholar 
    Ishii T, Nakai M, Okuno S, Takatsuka J, Kunimi Y (2003) Characterization of Adoxophyes honmai single-nucleocapsid nucleopolyhedrovirus: morphology, structure, and effects on larvae. J Invertebr Pathol 83:206–214CAS 
    PubMed 

    Google Scholar 
    Kondo N, Shimada M, Fukatsu T (2005) Infection density of Wolbachia endosymbiont affected by coinfection and host genotype. Biol Lett 1:488–491PubMed 
    PubMed Central 

    Google Scholar 
    Lu P, Bian G, Pan X, Xi Z (2012) Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl Trop D 6:1–8CAS 

    Google Scholar 
    Maia AHN, Luiz AJB, Campanhola C (2000) Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J Econ Entomol 93:511–518
    Google Scholar 
    Mazzetto F, Gonella E, Alma A (2015) Wolbachia infection affects female fecundity in Drosophila suzukii. Bull Insectol 68:153–157
    Google Scholar 
    Meyer JS, Ingersoll CG, McDonald LL, Boyce MS (1986) Estimating uncertainty in population growth rates: jackknife vs. bootstrap techniques. Ecology 67:1156–1166
    Google Scholar 
    Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM et al. (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139:1268–1278PubMed 

    Google Scholar 
    Mouton L, Henri H, Bouletreau M, Vavre F (2006) Effect of temperature on Wolbachia density and impact on cytoplasmic incompatibility. Parasitology 132:49–56CAS 
    PubMed 

    Google Scholar 
    Narita S, Nomura M, Kageyama D (2007) Naturally occurring single and double infection with Wolbachia strains in the butterfly Eurema hecabe: transmission efficiencies and population density dynamics of each Wolbachia strain. FEMS Microb Ecol 61:235–245CAS 

    Google Scholar 
    Pigeault R, Braquart-Varnier C, Marcadé I, Mappa G, Mottin E, Sicard M (2014) Modulation of host immunity and reproduction by horizontally acquired Wolbachia. J Insect Physiol 70:125–133CAS 
    PubMed 

    Google Scholar 
    Rancès E, Ye YH, Woolfit M, McGraw EA, O´Neill SL (2012) The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog 8:e1002548. https://doi.org/10.1371/journal.ppat.1002548Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Stevanovic AL, Arnold PA, Johnson KN (2015) Wolbachia -mediated antiviral protection in Drosophila larvae and adults following oral infection. Appl Environ Micro 81:8215–8223CAS 

    Google Scholar 
    Takamatsu T, Arai H, Abe N, Nakai M, Kunimi Y, Inoue MN (2021) Coexistence of two male-killers and their impact on the development of oriental tea tortrix Homona magnanima. Microb Ecol 81:193–202CAS 
    PubMed 

    Google Scholar 
    Takehana A, Katsuyama T, Yano T, Oshima Y, Takada H, Aigaki T et al. (2002) Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc Natl Acad Sci USA 99:13705–13710CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takatsuka J, Okuno S, Ishii T, Nakai M, Kunimi Y (2010) Fitness-related traits of entomopoxviruses isolated from Adoxophyes honmai (Lepidoptera: Tortricidae) at three localities in Japan. J Invertebr Pathol 105:121–131PubMed 

    Google Scholar 
    Teixeira L, Ferreira Á, Ashburner M (2008) The Bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:e1000002. https://doi.org/10.1371/journal.pbio.1000002Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Thomas P, Kenny N, Eyles D, Moreira LA, O´Neill SL, Asgari S (2011) Infection with the wMel and wMelPop strains of Wolbachia leads to higher levels of melanization in the hemolymph of Drosophila melanogaster, Drosophila simulans and Aedes aegypti. Dev Comp Immunol 35:360–365CAS 
    PubMed 

    Google Scholar 
    Tsuruta K, Wennmann JT, Kunimi Y, Inoue MN, Nakai M (2018) Morphological properties of the occlusion body of Adoxophyes orana granulovirus. J Invertebr Pathol 154:58–64CAS 
    PubMed 

    Google Scholar 
    Turelli M, Hoffmann AA (1991) Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353:440–442CAS 
    PubMed 

    Google Scholar 
    Vautrin E, Vavre F (2009) Interactions between vertically transmitted symbionts: cooperation or conflict? Trends Microbiol 17:95–99CAS 
    PubMed 

    Google Scholar 
    Vavre F, Fleury F, Lepetit D, Fouillet P, Boulétreau M (1999) Phylogenetic evidence for horizontal transmission of Wolbachia in host- parasitoid associations. Mol Biol Evol 16:1711–1723CAS 
    PubMed 

    Google Scholar 
    Vollmer J, Schiefer A, Schneider T, Jülicher K, Johnston KL, Taylor MJ et al. (2013) Requirement of lipid II biosynthesis for cell division in cell wall-less Wolbachia, endobacteria of arthropods and filarial nematodes. Int J Med Microbiol 303:140–149CAS 
    PubMed 

    Google Scholar 
    Voronin D, Guimarães AF, Molyneux GR, Johnston KL, Ford L, Taylor MJ (2014) Wolbachia lipoproteins: abundance, localization and serology of Wolbachia peptidoglycan associated lipoprotein and the Type IV Secretion System component, VirB6 from Brugia malayi and Aedes albopictus. Parasite Vector 7:462
    Google Scholar 
    Watanabe M, Miura K, Hunter MS, Wajnberg E (2011) Superinfection of cytoplasmic incompatibility-inducing Wolbachia is not additive in Orius strigicollis (Hemiptera: Anthocoridae). Heredity 106:642–648CAS 
    PubMed 

    Google Scholar 
    Weeks AR, Turelli M, Harcombe WR, Reynolds KT, Hoffmann AA (2007) From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol 5:0997–1005CAS 

    Google Scholar 
    Werren JH, Baldo L, Clark ME (2008) Wolbachia: Master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751CAS 
    PubMed 

    Google Scholar 
    Xue X, Li S, Ahmed MZ, Barro PJ, Ren S, Qiu B (2012) Inactivation of Wolbachia reveals its biological roles in whitefly host. PLoS One 7:e48148. https://doi.org/10.1371/journal.pone.0048148Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7:e38544. https://doi.org/10.1371/journal.pone.0038544Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zug R, Hammerstein P (2015) Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. Front Microbiol 6:1–16
    Google Scholar  More