More stories

  • in

    Stacked distribution models predict climate-driven loss of variation in leaf phenology at continental scales

    Wright, S. Evolution in Mendelian Populations. Genetics 16, 97–159 (1931).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    DiBattista, J. D. Patterns of genetic variation in anthropogenically impacted populations. Conserv. Genet. 9, 141–156 (2008).
    Google Scholar 
    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).CAS 
    PubMed 

    Google Scholar 
    Nei, M., Maruyama, T. & Chakraborty, R. The Bottleneck Effect and Genetic Variability in Populations. Evolution 29, 1–10 (1975).PubMed 

    Google Scholar 
    Frankham, R. Stress and adaptation in conservation genetics. J. Evol. Biol. 18, 750–755 (2005).CAS 
    PubMed 

    Google Scholar 
    Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2017).PubMed 

    Google Scholar 
    Whitham, T. G. et al. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 7, 510–523 (2006).CAS 
    PubMed 

    Google Scholar 
    Hughes, A., Inouye, B., Johnson, M., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623 (2008).PubMed 

    Google Scholar 
    Hughes, A. R., Stachowicz, J. J. & Williams, S. L. Morphological and physiological variation among seagrass (Zostera marina) genotypes. Oecologia 159, 725–733 (2009).PubMed 

    Google Scholar 
    Schweitzer, J. A. et al. Genetically based trait in a dominant tree affects ecosystem processes: Plant genetics impact ecosystems. Ecol. Lett. 7, 127–134 (2004).
    Google Scholar 
    Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl Acad. Sci. USA 101, 8998–9002 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wimp, G. M. et al. Conserving plant genetic diversity for dependent animal communities. Ecol. Lett. 7, 776–780 (2004).
    Google Scholar 
    Reusch, T. B. H., Ehlers, A., Hämmerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl Acad. Sci. 102, 2826–2831 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 

    Google Scholar 
    Salo, T. & Gustafsson, C. The Effect of Genetic Diversity on Ecosystem Functioning in Vegetated Coastal Ecosystems. Ecosystems 19, 1429–1444 (2016).
    Google Scholar 
    Zettlemoyer, M. A. & Peterson, M. L. Does Phenological Plasticity Help or Hinder Range Shifts Under Climate Change? Front. Ecol. Evol. 9, 392 (2021).
    Google Scholar 
    Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Yiming, L. et al. Latitudinal gradients in genetic diversity and natural selection at a highly adaptive gene in terrestrial mammals. Ecography 44, 206–218 (2021).
    Google Scholar 
    Excoffier, L., Foll, M. & Petit, R. J. Genetic Consequences of Range Expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501 (2009).
    Google Scholar 
    Alsos, I. G. et al. Genetic consequences of climate change for northern plants. Proc. R. Soc. B Biol. Sci. 279, 2042–2051 (2012).
    Google Scholar 
    Stahl, U., Reu, B. & Wirth, C. Predicting species’ range limits from functional traits for the tree flora of North America. Proc. Natl Acad. Sci. 111, 13739–13744 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Nuland, M. E. et al. Intraspecific trait variation across elevation predicts a widespread tree species’ climate niche and range limits. Ecol. Evol. 10, 3856–3867 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Peterson, M. L., Angert, A. L. & Kay, K. M. Experimental migration upward in elevation is associated with strong selection on life history traits. Ecol. Evol. 10, 612–625 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. 115, 1004–1008 (2018).CAS 
    PubMed 

    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
    Google Scholar 
    Chen, I.-C., Hill, J., Ohlemüller, R., Roy, D. B. & Thomas, C. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 333, 1024–6 (2011).CAS 
    PubMed 

    Google Scholar 
    Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946 (2013).PubMed 

    Google Scholar 
    De Kort, H. et al. Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat. Commun. 12, 516 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467 (2005).PubMed 

    Google Scholar 
    DeMarche, M. L., Doak, D. F. & Morris, W. F. Incorporating local adaptation into forecasts of species’ distribution and abundance under climate change. Glob. Change Biol. 25, 775–793 (2019).
    Google Scholar 
    Bothwell, H. M. et al. Genetic data improves niche model discrimination and alters the direction and magnitude of climate change forecasts. Ecol. Appl. 31, e02254 (2021).Syfert, M. M., Brummitt, N. A., Coomes, D. A., Bystriakova, N. & Smith, M. J. Inferring diversity patterns along an elevation gradient from stacked SDMs: A case study on Mesoamerican ferns. Glob. Ecol. Conserv. 16, e00433 (2018).
    Google Scholar 
    Mateo, R. G., Felicísimo, Á. M., Pottier, J., Guisan, A. & Muñoz, J. Do Stacked Species Distribution Models Reflect Altitudinal Diversity Patterns? PLOS ONE 7, e32586 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferrier, S. & Guisan, A. Spatial modelling of biodiversity at the community level. J. Appl. Ecol. 43, 393–404 (2006).
    Google Scholar 
    Ware, I. M. et al. Climate-driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. Glob. Change Biol. 25, 1514–1528 (2019).
    Google Scholar 
    Endler, J. A. Geographic variation, speciation, and clines (Princeton University Press, 1977).May, R. M. & Godfrey, J. Biological Diversity: Differences between Land and Sea [and Discussion]. Philos. Trans. Biol. Sci. 343, 105–111 (1994).
    Google Scholar 
    Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).PubMed 

    Google Scholar 
    Van Nuland, M. E., Bailey, J. K. & Schweitzer, J. A. Divergent plant–soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nat. Ecol. Evol. 1, 0150 (2017).
    Google Scholar 
    Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B Biol. Sci. 365, 3227–3246 (2010).
    Google Scholar 
    Richardson, A. D. et al. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol. 29, 321–321 (2009).CAS 
    PubMed 

    Google Scholar 
    Huntington, T. G. CO2-induced suppression of transpiration cannot explain increasing runoff. Hydrol. Process. 22, 311–314 (2008).
    Google Scholar 
    Kim, J. H. et al. Warming-Induced Earlier Greenup Leads to Reduced Stream Discharge in a Temperate Mixed Forest Catchment. J. Geophys. Res. Biogeosciences 123, 1960–1975 (2018).
    Google Scholar 
    Ware, I. M. et al. Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology. Commun. Biol. 4, 748 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Mori, A. S. et al. Biodiversity–productivity relationships are key to nature-based climate solutions. Nat. Clim. Change 11, 543–550 (2021).
    Google Scholar 
    Woolbright, S. A., Whitham, T. G., Gehring, C. A., Allan, G. J. & Bailey, J. K. Climate relicts and their associated communities as natural ecology and evolution laboratories. Trends Ecol. Evol. 29, 406–416 (2014).PubMed 

    Google Scholar 
    Naiman, R. J., Décamps, H. & McClain, M. E. Riparia: ecology, conservation, and management of streamside communities (Elsevier Academic Press, 2005).Bayliss, S. L. J., Mueller, L. O., Ware, I. M., Schweitzer, J. A. & Bailey, J. K. Plant genetic variation drives geographic differences in atmosphere–plant–ecosystem feedbacks. Plant-Environ. Interact. 1, 166–180 (2020).
    Google Scholar 
    Cooke, J. E. K. & Rood, S. B. Trees of the people: the growing science of poplars in Canada and worldwide. This commentary is one of a selection of papers published in the Special Issue on Poplar Research in Canada. Can. J. Bot. 85, 1103–1110 (2007).
    Google Scholar 
    Evans, L. M., Allan, G. J., Meneses, N., Max, T. L. & Whitham, T. G. Herbivore host- associated genetic differentiation depends on the scale of plant genetic variation examined. Evol. Ecol. 27, 65–81 (2013).
    Google Scholar 
    Evans, L. M. et al. Geographical barriers and climate influence demographic history in narrowleaf cottonwoods. Heredity 114, 387–396 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hargreaves, A. L., Samis, K. E., Eckert, C. G., Schmitz, A. E. O. J. & Bronstein, E. J. L. Are Species’ Range Limits Simply Niche Limits Writ Large? A Review of Transplant Experiments beyond the Range. Am. Nat. 183, 157–173 (2014).PubMed 

    Google Scholar 
    Gotelli, N. J. & Stanton-Geddes, J. Climate change, genetic markers and species distribution modelling. J. Biogeogr. 42, 1577–1585 (2015).
    Google Scholar 
    Cushman, S. A. et al. Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks. Ecol. Appl. 24, 1000–1014 (2014).PubMed 

    Google Scholar 
    Bothwell, H. M. et al. Conserving threatened riparian ecosystems in the American West: Precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (Populus angustifolia). Mol. Ecol. 26, 5114–5132 (2017).PubMed 

    Google Scholar 
    Jimenez-Valverde, A. Sample Size for the evaluation of presence-absence models. Ecol. Indic. 114, 106289 (2020).
    Google Scholar 
    Hamann, A., Wang, T., Spittlehouse, D. L. & Murdock, T. Q. A Comprehensive, High-Resolution Database of Historical and Projected Climate Surfaces for Western North America. Bull. Am. Meteorol. Soc. 94, 1307–1309 (2013).
    Google Scholar 
    Lucinda. M. et al. NHDPlus version 2: user guide (Horizon Systems Corporation, 2012).ESRI. ArcMap (ESRI, 2018).Bayliss, S. L. J., Papeş, M., Schweitzer, J. A. & Bailey, J. K. Aggregate population-level models informed by genetics predict more suitable habitat than traditional species-level model across the range of a widespread riparian tree. PLoS One. 17, e0274892 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Google Scholar 
    Franklin, J. Mapping species distributions: spatial inference and prediction (Cambridge University Press, 2009).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015). (1).
    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).
    Google Scholar 
    Swets, J. A. Measuring the Accuracy of Diagnostic Systems. Science 240, 1285–1293 (1988).CAS 
    PubMed 

    Google Scholar 
    Engler, R. et al. 21st century climate change threatens mountain flora unequally across Europe. Glob. Change Biol. 17, 2330–2341 (2011).
    Google Scholar 
    Randin, C. F. et al. Climate change and plant distribution: local models predict high-elevation persistence. Glob. Change Biol. 15, 1557–1569 (2009).
    Google Scholar 
    Knutti, R., Masson, D. & Gettelman, A. Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett. 40, 1194–1199 (2013).
    Google Scholar 
    Mateo, R. G., Mokany, K. & Guisan, A. Biodiversity Models: What If Unsaturation Is the Rule? Trends Ecol. Evol. 32, 556–566 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    R. Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).Oksanen, J. et al. vegan: community ecology package (2020) http://CRAN.R-project.org/package=vegan. More

  • in

    Abundant and cosmopolitan lineage of cyanopodoviruses lacking a DNA polymerase gene

    Suttle CA. Marine viruses-major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    PubMed 

    Google Scholar 
    Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature 1999;399:541–8.CAS 
    PubMed 

    Google Scholar 
    Rohwer F, Thurber RV. Viruses manipulate the marine environment. Nature 2009;459:207–12.CAS 
    PubMed 

    Google Scholar 
    Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.CAS 
    PubMed 

    Google Scholar 
    Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18:21–34.CAS 
    PubMed 

    Google Scholar 
    Rosenwasser S, Ziv C, Creveld SGV, Vardi A. Virocell metabolism: metabolic innovations during host-virus interactions in the ocean. Trends Microbiol. 2016;24:821–32.CAS 
    PubMed 

    Google Scholar 
    Fuchsman CA, Carlson MCG, Garcia Prieto D, Hays MD, Rocap G. Cyanophage host-derived genes reflect contrasting selective pressures with depth in the oxic and anoxic water column of the Eastern Tropical North Pacific. Environ Microbiol. 2021;23:2782–2800.CAS 
    PubMed 

    Google Scholar 
    Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 2016;537:689–93.CAS 
    PubMed 

    Google Scholar 
    Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro-and microdiversity from pole to pole. Cell 2019;177:1109–23.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Patterns and ecological drivers of ocean viral communities. Science 2015;348:1261498.PubMed 

    Google Scholar 
    Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol. 2020;18:125–38.CAS 
    PubMed 

    Google Scholar 
    Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 2003;424:1047–51.CAS 
    PubMed 

    Google Scholar 
    Mann NH. Phages of the marine cyanobacterial picophytoplankton. FEMS Microbiol Rev. 2003;27:17–34.CAS 
    PubMed 

    Google Scholar 
    Ni T, Zeng Q. Diel infection of cyanobacteria by cyanophages. Front Mar Sci. 2016;2:123.
    Google Scholar 
    Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA 2013;110:9824–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol 2015;13:13–27.CAS 
    PubMed 

    Google Scholar 
    Proctor LM, Fuhrman JA. Viral mortality of marine-bacteria and cyanobacteria. Nature 1990;343:60–62.
    Google Scholar 
    Carlson MCG, Ribalet F, Maidanik I, Durham BP, Hulata Y, Ferron S, et al. Viruses affect picocyanobacterial abundance and biogeography in the North Pacific Ocean. Nat Microbiol 2022;7:570–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matteson AR, Loar SN, Pickmere S, DeBruyn JM, Ellwood MJ, Boyd PW, et al. Production of viruses during a spring phytoplankton bloom in the South Pacific Ocean near of New Zealand. FEMS Microbiol Ecol 2012;79:709–19.CAS 
    PubMed 

    Google Scholar 
    Ribalet F, Swalwell J, Clayton S, Jimenez V, Sudek S, Lin Y, et al. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc Natl Acad Sci USA. 2015;112:8008–12.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Demory D, Liu R, Chen Y, Zhao F, Coenen AR, Zeng Q, et al. Linking light-dependent life history traits with population dynamics for Prochlorococcus and cyanophage. mSystems 2020;5:e00586–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D. Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature 2011;474:604–8.CAS 
    PubMed 

    Google Scholar 
    Marston MF, Pierciey FJ Jr, Shepard A, Gearin G, Qi J, Yandava C, et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci USA 2012;109:4544–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiao X, Guo W, Li X, Wang C, Chen X, Lin X, et al. Viral lysis alters the optical properties and biological availability of dissolved organic matter derived from Prochlorococcus picocyanobacteria. Appl Environ Microbiol. 2021;87:e02271–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiao X, Zeng Q, Zhang R, Jiao N. Prochlorococcus viruses—From biodiversity to biogeochemical cycles. Sci China Earth Sci. 2018;61:1728–36.
    Google Scholar 
    Jover LF, Effler TC, Buchan A, Wilhelm SW, Weitz JS. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat Rev Microbiol. 2014;12:519–28.CAS 
    PubMed 

    Google Scholar 
    Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Viruses inhibit CO2 fixation in the most abundant phototrophs on earth. Curr Biol 2016;26:1585–9.CAS 
    PubMed 

    Google Scholar 
    Weitz JS, Stock CA, Wilhelm SW, Bourouiba L, Coleman ML, Buchan A, et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 2015;9:1352–64.PubMed 
    PubMed Central 

    Google Scholar 
    Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 2005;3:e144.PubMed 
    PubMed Central 

    Google Scholar 
    Sullivan MB, Krastins B, Hughes JL, Kelly L, Chase M, Sarracino D, et al. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial ‘mobilome’. Environ Microbiol. 2009;11:2935–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–56.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sabehi G, Shaulov L, Silver DH, Yanai I, Harel A, Lindell D. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans. Proc Natl Acad Sci USA 2012;109:2037–42.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang S, Wang K, Jiao N, Chen F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol. 2012;14:540–58.CAS 
    PubMed 

    Google Scholar 
    Labrie SJ, Frois-Moniz K, Osburne MS, Kelly L, Roggensack SE, Sullivan MB, et al. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol. 2013;15:1356–76.CAS 
    PubMed 

    Google Scholar 
    Dekel-Bird NP, Avrani S, Sabehi G, Pekarsky I, Marston MF, Kirzner S, et al. Diversity and evolutionary relationships of T7-like podoviruses infecting marine cyanobacteria. Environ Microbiol. 2013;15:1476–91.CAS 
    PubMed 

    Google Scholar 
    Huang S, Wilhelm SW, Jiao N, Chen F. Ubiquitous cyanobacterial podoviruses in the global oceans unveiled through viral DNA polymerase gene sequences. ISME J. 2010;4:1243–51.PubMed 

    Google Scholar 
    Baran N, Goldin S, Maidanik I, Lindell D. Quantification of diverse virus populations in the environment using the polony method. Nat Microbiol. 2018;3:62–72.CAS 
    PubMed 

    Google Scholar 
    Chow C-ET, Suttle CA. Biogeography of viruses in the sea. Annu Rev Virol. 2015;2:41–66.CAS 
    PubMed 

    Google Scholar 
    Chen F, Lu JR. Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phages. Appl Environ Microbiol. 2002;68:2589–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang S, Zhang S, Jiao N, Chen F. Comparative genomic and phylogenomic analyses reveal a conserved core genome shared by estuarine and oceanic cyanopodoviruses. PLoS One. 2015;10:e0142962.PubMed 
    PubMed Central 

    Google Scholar 
    Pope WH, Weigele PR, Chang J, Pedulla ML, Ford ME, Houtz JM, et al. Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: A “horned’ bacteriophage of marine Synechococcus. J Mol Biol. 2007;368:966–81.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang S, Sun Y, Zhang S, Long L. Temporal transcriptomes of a marine cyanopodovirus and its Synechococcus host during infection. Microbiologyopen 2021;10:e1150.CAS 
    PubMed 

    Google Scholar 
    Wang K, Chen F. Prevalence of highly host-specific cyanophages in the estuarine environment. Environ Microbiol. 2008;10:300–12.CAS 
    PubMed 

    Google Scholar 
    Chen F, Wang K, Huang S, Cai H, Zhao M, Jiao N, et al. Diverse and dynamic populations of cyanobacterial podoviruses in the Chesapeake Bay unveiled through DNA polymerase gene sequences. Environ Microbiol. 2009;11:2884–92.PubMed 

    Google Scholar 
    Goldin S, Hulata Y, Baran N, Lindell D. Quantification of T4-like and T7-like cyanophages using the polony method show they are significant members of the virioplankton in the North Pacific Subtropical Gyre. Front Microbiol. 2020;11:1210.PubMed 
    PubMed Central 

    Google Scholar 
    Nasko DJ, Chopyk J, Sakowski EG, Ferrell BD, Polson SW, Wommack KE. Family A DNA polymerase phylogeny uncovers diversity and replication gene organization in the virioplankton. Front Microbiol. 2018;9:3053.PubMed 
    PubMed Central 

    Google Scholar 
    Dekel-Bird NP, Sabehi G, Mosevitzky B, Lindell D. Host-dependent differences in abundance, composition and host range of cyanophages from the Red Sea. Environ Microbiol. 2015;17:1286–99.CAS 
    PubMed 

    Google Scholar 
    Hanson CA, Marston MF, Martiny JBH. Biogeographic variation in host range phenotypes and taxonomic composition of marine cyanophage isolates. Front Microbiol. 2016;7:983.PubMed 
    PubMed Central 

    Google Scholar 
    Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 2003;424:1042–7.CAS 
    PubMed 

    Google Scholar 
    Chen B, Wang L, Song S, Huang B, Sun J, Liu H. Comparisons of picophytoplankton abundance, size, and fluorescence between summer and winter in northern South China Sea. Cont Shelf Res. 2011;31:1527–40.
    Google Scholar 
    Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM, Rector T, et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 2007;449:83–86.CAS 
    PubMed 

    Google Scholar 
    Zhao Y, Qin F, Zhang R, Giovannoni SJ, Zhang Z, Sun J, et al. Pelagiphages in the Podoviridae family integrate into host genomes. Environ Microbiol. 2019;21:1989–2001.CAS 
    PubMed 

    Google Scholar 
    Leptihn S, Gottschalk J, Kuhn A. T7 ejectosome assembly: A story unfolds. Bacteriophage 2016;6:e1128513.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci USA 2011;108:E757–64.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zeng Q, Chisholm SW. Marine viruses exploit their host’s two-component regulatory system in response to resource limitation. Curr Biol 2012;22:124–8.CAS 
    PubMed 

    Google Scholar 
    Zeng Q, Bonocora RP, Shub DA. A free-standing homing endonuclease targets an intron insertion site in the psbA gene of cyanophages. Curr Biol. 2009;19:218–22.CAS 
    PubMed 

    Google Scholar 
    Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 2005;438:86–89.CAS 
    PubMed 

    Google Scholar 
    Breitbart M, Thompson LR, Suttle CA, Sullivan MB. Exploring the vast diversity of marine viruses. Oceanography. 2007;20:135–9.
    Google Scholar 
    Kazlauskas D, Venclovas C. Computational analysis of DNA replicases in double-stranded DNA viruses: relationship with the genome size. Nucleic Acids Res. 2011;39:8291–305.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu X, Zhang Q, Murata K, Baker ML, Sullivan MB, Fu C, et al. Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus. Nat Struct Mol Biol. 2010;17:830–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dai W, Fu C, Raytcheva D, Flanagan J, Khant HA, Liu XG, et al. Visualizing virus assembly intermediates inside marine cyanobacteria. Nature 2013;502:707–10.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu R, Liu Y, Chen Y, Zhan Y, Zeng Q. Cyanobacterial viruses exhibit diurnal rhythms during infection. Proc Natl Acad Sci USA 2019;116:14077–82.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maidanik I, Kirzner S, Pekarski I, Arsenieff L, Tahan R, Carlson MCG, et al. Cyanophages from a less virulent clade dominate over their sister clade in global oceans. ISME J. 2022;16:2169–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shitrit D, Hackl T, Laurenceau R, Raho N, Carlson MCG, Sabehi G, et al. Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages. ISME J. 2022;16:488–99.CAS 
    PubMed 

    Google Scholar 
    Liang Y, Wang L, Wang Z, Zhao J, Yang Q, Wang M, et al. Metagenomic analysis of the diversity of DNA viruses in the surface and deep sea of the South China Sea. Front Microbiol. 2019;10:1951.PubMed 
    PubMed Central 

    Google Scholar 
    Pedrós-Alió C, Potvin M, Lovejoy C. Diversity of planktonic microorganisms in the Arctic Ocean. Prog Oceanogr. 2015;139:233–43.
    Google Scholar 
    Luo E, Eppley JM, Romano AE, Mende DR, DeLong EF. Double-stranded DNA virioplankton dynamics and reproductive strategies in the oligotrophic open ocean water column. ISME J. 2020;14:1304–15.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steidinger BS, Crowther TW, Liang J, Van Nuland ME, Werner GDA, Reich PB, et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 2019;569:404–8.CAS 
    PubMed 

    Google Scholar 
    Xie X, Wu T, Zhu M, Jiang G, Xu Y, Wang X, et al. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol Indic. 2021;120:106925.CAS 

    Google Scholar 
    Lee SJ, Richardson CC. Choreography of bacteriophage T7 DNA replication. Curr Opin Chem Biol. 2011;15:580–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kulczyk AW, Richardson CC. The replication system of bacteriophage T7. Enzymes. 2016;39:89–136.CAS 
    PubMed 

    Google Scholar 
    Benkovic SJ, Valentine AM, Salinas F. Replisome-mediated DNA replication. Annu Rev Biochem. 2001;70:181–208.CAS 
    PubMed 

    Google Scholar 
    Johnson A, O’Donnell M. Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem. 2005;74:283–315.CAS 
    PubMed 

    Google Scholar 
    Seco EM, Zinder JC, Manhart CM, Lo Piano A, McHenry CS, Ayora S. Bacteriophage SPP1 DNA replication strategies promote viral and disable host replication in vitro. Nucleic Acids Res. 2013;41:1711–21.CAS 
    PubMed 

    Google Scholar 
    Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 2021;15:41–54.CAS 
    PubMed 

    Google Scholar 
    Moore LR, Rocap G, Chisholm SW. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 1998;393:464–7.CAS 
    PubMed 

    Google Scholar 
    Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light on viral photosynthesis. Photosynth Res. 2015;126:71–97.CAS 
    PubMed 

    Google Scholar 
    Edwards KF, Steward GF, Schvarcz CR. Making sense of virus size and the tradeoffs shaping viral fitness. Ecol Lett. 2021;24:363–73.PubMed 

    Google Scholar 
    Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, et al. Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr Methods. 2007;5:353–62.CAS 

    Google Scholar 
    Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol. 2010;70:217–48.CAS 
    PubMed 

    Google Scholar 
    Fridman S, Flores-Uribe J, Larom S, Alalouf O, Liran O, Yacoby I, et al. A myovirus encoding both photosystem I and II proteins enhances cyclic electron flow in infected Prochlorococcus cells. Nat Microbiol. 2017;2:1350–7.CAS 
    PubMed 

    Google Scholar 
    Fang X, Liu Y, Zhao Y, Chen Y, Liu R, Qin QL, et al. Transcriptomic responses of the marine cyanobacterium Prochlorococcus to viral lysis products. Environ Microbiol. 2019;21:2015–28.CAS 
    PubMed 

    Google Scholar 
    John SG, Mendez CB, Deng L, Poulos B, Kauffman AK, Kern S, et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ Microbiol Rep. 2011;3:195–202.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011;27:863–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:1–10.
    Google Scholar 
    Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.CAS 
    PubMed 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–9.CAS 
    PubMed 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic Inference in the genomic era. Mol Biol Evol. 2020;37:2461–2461.PubMed 
    PubMed Central 

    Google Scholar 
    Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22.CAS 
    PubMed 

    Google Scholar 
    Martinez-Hernandez F, Fornas O, Lluesma Gomez M, Bolduc B, de la Cruz Pena MJ, Martinez JM, et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat Commun. 2017;8:15892.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang Z, Qin F, Chen F, Chu X, Luo H, Zhang R, et al. Culturing novel and abundant pelagiphages in the ocean. Environ Microbiol 2021;23:1145–61.CAS 
    PubMed 

    Google Scholar 
    Buchholz HH, Michelsen ML, Bolanos LM, Browne E, Allen MJ, Temperton B. Efficient dilution-to-extinction isolation of novel virus-host model systems for fastidious heterotrophic bacteria. ISME J. 2021;15:1585–98.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Qin F, Du S, Zhang Z, Ying H, Wu Y, Zhao G, et al. Newly identified HMO-2011-type phages reveal genomic diversity and biogeographic distributions of this marine viral group. ISME J. 2022;16:1363–75.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Transmission of stony coral tissue loss disease (SCTLD) in simulated ballast water confirms the potential for ship-born spread

    Precht, W. F., Gintert, B. E., Robbart, M. L., Fura, R. & van Woesik, R. Unprecedented disease-related coral mortality in Southeastern Florida. Sci. Rep. 6, 31374 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    NOAA. Stony Coral Tissue Loss Disease Case Definition. NOAA, Silver Spring, MD 10 (2018).Aeby, G. S. et al. Pathogenesis of a tissue loss disease affecting multiple species of corals along the Florida Reef Tract. Front Mar. Sci. 6, 00678 (2019).
    Google Scholar 
    Landsberg, J. H. et al. Stony coral tissue loss disease in Florida is associated with disruption of host–zooxanthellae physiology. Front Mar. Sci. 7, 576013 (2020).
    Google Scholar 
    Neely, K. L., Macaulay, K. A., Hower, E. K. & Dobler, M. A. Effectiveness of topical antibiotics in treating corals affected by Stony Coral Tissue Loss Disease. PeerJ 8, 9289 (2020).
    Google Scholar 
    Shilling, E. N., Combs, I. R. & Voss, J. D. Assessing the effectiveness of two intervention methods for stony coral tissue loss disease on Montastraea cavernosa. Sci. Rep. 11, 8566 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker, B. K., Turner, N. R., Noren, H. K. G., Buckley, S. F. & Pitts, K. A. Optimizing stony coral tissue loss disease (SCTLD) intervention treatments on Montastraea cavernosa in an endemic zone. Front Mar. Sci. 8, 666224 (2021).
    Google Scholar 
    Work, T. M. et al. Viral-like particles are associated with endosymbiont pathology in Florida corals affected by stony coral tissue loss disease. Front Mar. Sci. 8, 750658 (2021).
    Google Scholar 
    Veglia, A. J. et al. Alphaflexivirus genomes in stony coral tissue loss disease-affected, disease-exposed, and disease-unexposed coral colonies in the U.S. Virgin Islands. Microbiol. Resource Announc. 11, e01199-e1221 (2022).CAS 

    Google Scholar 
    Rosales, S. M. et al. Bacterial metabolic potential and micro-eukaryotes enriched in stony coral tissue loss disease lesions. Front Mar. Sci. 8, 776859 (2022).
    Google Scholar 
    Rosales, S. M., Clark, A. S., Huebner, L. K., Ruzicka, R. R. & Muller, E. M. Rhodobacterales and Rhizobiales are associated with stony coral tissue loss disease and its suspected sources of transmission. Front. Microbiol. 11, 681 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Studivan, M. S. et al. Reef sediments can act as a stony coral tissue loss disease vector. Front Mar. Sci. 8, 815698 (2022).
    Google Scholar 
    Meyer, J. L. et al. Microbial community shifts associated with the ongoing stony coral tissue loss disease outbreak on the Florida Reef Tract. Front. Microbiol. 10, 2244 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Ushijima, B. et al. Disease diagnostics and potential coinfections by Vibrio coralliilyticus during an ongoing coral disease outbreak in Florida. Front. Microbiol. 11, 2682 (2020).
    Google Scholar 
    Meiling, S. S. et al. Variable species responses to experimental stony coral tissue loss disease (SCTLD) exposure. Front Mar. Sci. 8, 670829 (2021).
    Google Scholar 
    Becker, C. C., Brandt, M., Miller, C. A. & Apprill, A. Microbial bioindicators of stony coral tissue loss disease identified in corals and overlying waters using a rapid field-based sequencing approach. Environ. Microbiol. 24, 1166–1182 (2021).PubMed 

    Google Scholar 
    Dobbelaere, T., Muller, E. M., Gramer, L. J., Holstein, D. M. & Hanert, E. Coupled epidemio-hydrodynamic modeling to understand the spread of a deadly coral disease in Florida. Front Mar. Sci. 7, 591881 (2020).
    Google Scholar 
    Dobbelaere, T. et al. Connecting the dots: Transmission of stony coral tissue loss disease from the Marquesas to the Dry Tortugas. Front Mar. Sci. 9, 778938 (2022).
    Google Scholar 
    Muller, E. M., Sartor, C., Alcaraz, N. I. & van Woesik, R. Spatial epidemiology of the stony-coral-tissue-loss disease in Florida. Front Mar. Sci. 7, 00163 (2020).
    Google Scholar 
    Sharp, W. C., Shea, C. P., Maxwell, K. E., Muller, E. M. & Hunt, J. H. Evaluating the small-scale epidemiology of the stony-coral-tissue-loss-disease in the middle Florida Keys. PLoS ONE 15, e0241871 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williamson, O. M., Dennison, C. E., O’Neil, K. L. & Baker, A. C. Susceptibility of Caribbean brain coral recruits to stony coral tissue loss disease (SCTLD). Front Mar. Sci. 9, 821165 (2022).
    Google Scholar 
    Noonan, K. R. & Childress, M. J. Association of butterflyfishes and stony coral tissue loss disease in the Florida Keys. Coral Reefs 39, 1581–1590 (2020).
    Google Scholar 
    Dahlgren, C., Pizarro, V., Sherman, K., Greene, W. & Oliver, J. Spatial and temporal patterns of stony coral tissue loss disease outbreaks in the Bahamas. Front Mar. Sci. 8, 682114 (2021).
    Google Scholar 
    Rosenau, N. A. et al. Considering commercial vessels as potential vectors of stony coral tissue loss disease. Front Mar. Sci. 8, 709764 (2021).
    Google Scholar 
    Roth, L., Kramer, P., Doyle, E. & O’Sullivan, C. Caribbean SCTLD Dashboard. Available www.agrra.org. Accessed 06 Mar 2021. (2020).Brandt, M. E. et al. The emergence and initial impact of stony coral tissue loss disease (SCTLD) in the United States Virgin Islands. Front Mar. Sci. 8, 715329 (2021).
    Google Scholar 
    Bailey, S. A. et al. Trends in the detection of aquatic non-indigenous species across global marine, estuarine and freshwater ecosystems: A 50-year perspective. Divers. Distrib. 26, 1780–1797 (2020).MathSciNet 

    Google Scholar 
    Hewitt, C. L., Gollasch, S. & Minchin, D. The vessel as a vector: Biofouling, ballast water and sediments. In Biological Invasions in Marine Ecosystems Vol. 204 (eds Rilov, G. & Crooks, J. A.) 117–131 (Springer, 2009).
    Google Scholar 
    Zabin, C. J. et al. Small boats provide connectivity for nonindigenous marine species between a highly invaded international port and nearby coastal harbors. Manag. Biol. Invas. 5, 97–112 (2014).
    Google Scholar 
    Ashton, G. V., Zabin, C. J., Davidson, I. C. & Ruiz, G. M. Recreational boats routinely transfer organisms and promote marine bioinvasions. Biol. Invas. 24, 1083–1096 (2022).
    Google Scholar 
    Drake, L. A., Doblin, M. A. & Dobbs, F. C. Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm. Mar. Pollut. Bull. 55, 333–341 (2007).CAS 
    PubMed 

    Google Scholar 
    Pagenkopp Lohan, K. M., Fleischer, R. C., Carney, K. J., Holzer, K. K. & Ruiz, G. M. Amplicon-based pyrosequencing reveals high diversity of protistan parasites in ships’ ballast water: Implications for biogeography and infectious diseases. Microb. Ecol. 71, 530–542 (2015).PubMed 

    Google Scholar 
    Ruiz, G. M. et al. Global spread of microorganisms by ships. Nature 408, 49–50 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hwang, J., Park, S. Y., Lee, S. & Lee, T. K. High diversity and potential translocation of DNA viruses in ballast water. Mar. Pollut. Bull. 137, 449–455 (2018).CAS 
    PubMed 

    Google Scholar 
    Shikuma, N. J. & Hadfield, M. G. Marine biofilms on submerged surfaces are a reservoir for Escherichia coli and Vibrio cholerae. Biofouling 26, 39–46 (2009).
    Google Scholar 
    Aguirre-Macedo, M. L. et al. Ballast water as a vector of coral pathogens in the Gulf of Mexico: The case of the Cayo Arcas coral reef. Mar. Pollut. Bull. 56, 1570–1577 (2008).CAS 
    PubMed 

    Google Scholar 
    Bruno, J. F. The coral disease triangle. Nat. Clim. Chang. 5, 302–303 (2015).ADS 

    Google Scholar 
    Lakshmi, E., Priya, M. & Achari, V. S. An overview on the treatment of ballast water in ships. Ocean Coast. Manag. 199, 105296 (2021).
    Google Scholar 
    Petersen, N. B., Madsen, T., Glaring, M. A., Dobbs, F. C. & Jørgensen, N. O. G. Ballast water treatment and bacteria: Analysis of bacterial activity and diversity after treatment of simulated ballast water by electrochlorination and UV exposure. Sci. Total Environ. 648, 408–421 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Romero-Martínez, L., Moreno-Andrés, J., Acevedo-Merino, A. & Nebot, E. Evaluation of ultraviolet disinfection of microalgae by growth modeling: Application to ballast water treatment. J. Appl. Phycol. 28, 2831–2842 (2016).
    Google Scholar 
    First, M. R. et al. Stratification of living organisms in ballast tanks: How do organism concentrations vary as ballast water is discharged?. Environ. Sci. Technol. 47, 4442–4448 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Drake, L. A. et al. Microbial ecology of ballast water during a transoceanic voyage and the effects of open-ocean exchange. Mar. Ecol. Prog. Ser. 233, 13–20 (2002).ADS 

    Google Scholar 
    Khandeparker, L., Kuchi, N., Desai, D. V. & Anil, A. C. Changes in the ballast water tank bacterial community during a trans-sea voyage: Elucidation through next generation DNA sequencing. J. Environ. Manag. 273, 111018 (2020).
    Google Scholar 
    Ruiz, G. M., Lorda, J., Arnwine, A. & Lion, K. Shipping patterns associated with the Panama Canal: Effects on biotic exchange? In Bridging Divides Vol. 83 (eds Gollasch, S. et al.) 113–126 (Springer, 2006).
    Google Scholar 
    Pagano, A., Wang, G., Sánchez, O., Ungo, R. & Tapiero, E. The impact of the Panama Canal expansion on Panama’s maritime cluster. Marit. Policy Manag. 43, 164–178 (2016).
    Google Scholar 
    Muirhead, J. R., Minton, M. S., Miller, W. A. & Ruiz, G. M. Projected effects of the Panama Canal expansion on shipping traffic and biological invasions. Divers. Distrib. 21, 75–87 (2015).
    Google Scholar 
    Ros, M. et al. The Panama Canal and the transoceanic dispersal of marine invertebrates: Evaluation of the introduced amphipod Paracaprella pusilla Mayer, 1890 in the Pacific Ocean. Mar. Environ. Res. 99, 204–211 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stehouwer, P. P., Buma, A. & Peperzak, L. A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide. Environ. Technol. 36, 2094–2104 (2015).CAS 
    PubMed 

    Google Scholar 
    Wu, Y., Li, Z., Du, W. & Gao, K. Physiological response of marine centric diatoms to ultraviolet radiation, with special reference to cell size. J. Photochem. Photobiol., B 153, 1–6 (2015).CAS 

    Google Scholar 
    Aguirre, L. E. et al. Diatom frustules protect DNA from ultraviolet light. Sci. Rep. 8, 5138 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    First, M. R. & Drake, L. A. Life after treatment: Detecting living microorganisms following exposure to UV light and chlorine dioxide. J. Appl. Phycol. 26, 227–235 (2014).CAS 

    Google Scholar 
    Liebich, V., Stehouwer, P. P. & Veldhuis, M. Re-growth of potential invasive phytoplankton following UV-based ballast water treatment. Aquat. Invas. 7, 29–36 (2012).
    Google Scholar 
    Hess-Erga, O. K., Moreno-Andrés, J., Enger, Ø. & Vadstein, O. Microorganisms in ballast water: Disinfection, community dynamics, and implications for management. Sci. Total Environ. 657, 704–716 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Endresen, Ø., Lee Behrens, H., Brynestad, S., Bjørn Andersen, A. & Skjong, R. Challenges in global ballast water management. Mar. Pollut. Bull. 48, 615–623 (2004).CAS 
    PubMed 

    Google Scholar 
    Vorkapić, A., Radonja, R. & Zec, D. Cost efficiency of ballast water treatment systems based on ultraviolet irradiation and electrochlorination. Promet Traffic Transp. 30, 343–348 (2018).
    Google Scholar 
    King, D., Hagan, P., Riggio, M. & Wright, D. Preview of global ballast water treatment markets. J. Mar. Eng. Technol. 11, 3–15 (2012).
    Google Scholar 
    Wang, Z., Saebi, M., Corbett, J. J., Grey, E. K. & Curasi, S. R. Integrated biological risk and cost model analysis supports a geopolitical shift in ballast water management. Environ. Sci. Technol. 55, 12791–12800 (2021).CAS 
    PubMed 

    Google Scholar 
    Moreno-Andrés, J. & Peperzak, L. Operational and environmental factors affecting disinfection byproducts formation in ballast water treatment systems. Chemosphere 232, 496–505 (2019).ADS 
    PubMed 

    Google Scholar 
    David, M., Linders, J., Gollasch, S. & David, J. Is the aquatic environment sufficiently protected from chemicals discharged with treated ballast water from vessels worldwide? A decadal environmental perspective and risk assessment. Chemosphere 207, 590–600 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    U.S. Environmental Protection Agency. Generic protocol for the verification of ballast water treatment technology, version 5.1. Report number EPA/600/R-10/146. Washington, D.C. 157 (2010).Evans, J. S., Paul, V. J., Ushijima, B. & Kellogg, C. A. Combining tangential flow filtration and size fractionation of mesocosm water as a method for the investigation of waterborne coral diseases. Biol. Methods Protocols 7, bpac007 (2022).
    Google Scholar 
    Fujimoto, M. et al. Application of Ion Torrent sequencing to the assessment of the effect of alkali ballast water treatment on microbial community diversity. PLoS ONE 9, e107534 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    United States Coast Guard. Ballast Water Best Management Practices to Reduce the Likelihood of Transporting Pathogens That May Spread Stony Coral Tissue Loss Disease. Marine Safety Information Bulletin 07–19. Washington, D.C. 2 (2019).Bolton, J. R. & Linden, K. G. Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. J. Environ. Eng. 129, 209–215 (2003).CAS 

    Google Scholar 
    Enochs, I. C. et al. The influence of diel carbonate chemistry fluctuations on the calcification rate of Acropora cervicornis under present day and future acidification conditions. J. Exp. Mar. Biol. Ecol. 506, 135–143 (2018).CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Preprint at https://www.r-project.org/ (2019).Therneau, T. M. survival: A package for survival analysis in R. R package version 3.2–13. (2021).Kassambara, A., Kosinski, M. & Biecek, P. survminer: Drawing survival curves using “ggplot2”. R package version 0.4.9. (2021).Bakalar, G. Review of interdisciplinary devices for detecting the quality of ship ballast water. Springerplus 3, 468 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Water Environmental Federation & American Public Health Association. Standard methods for the examination of water and wastewater. Washington, D.C. 21 (2005).Steinberg, M. K., Lemieux, E. J. & Drake, L. A. Determining the viability of marine protists using a combination of vital, fluorescent stains. Mar. Biol. 158, 1431–1437 (2011).
    Google Scholar 
    Oksanen, J. et al. vegan: Community ecology package. R package version 2.0–10. (2015).Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4. (2020).Studivan, MS. Mstudiva/SCTLD-ballast-transmission: Stony coral tissue loss disease ballast transmission and treatment (Version 1.0), Zenodo, https://doi.org/10.5281/zenodo.6561517 (2022). More

  • in

    Plant-associated Bacillus mobilizes its secondary metabolites upon perception of the siderophore pyochelin produced by a Pseudomonas competitor

    Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, et al. A genomic catalog of Earth’s microbiomes. Nat Biotechnol. 2021;39:499–509.CAS 
    PubMed 

    Google Scholar 
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.CAS 
    PubMed 

    Google Scholar 
    Cordovez V, Dini-Andreote F, Carrión VJ, Raaijmakers JM. Ecology and evolution of plant microbiomes. Annu Rev Microbiol. 2019;73:69–88.CAS 
    PubMed 

    Google Scholar 
    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    PubMed 

    Google Scholar 
    Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, et al. The plant microbiome: From ecology to reductionism and beyond. Annu Rev Microbiol. 2020;74:81–100.CAS 
    PubMed 

    Google Scholar 
    Schmidt R, Ulanova D, Wick LY, Bode HB, Garbeva P. Microbe-driven chemical ecology: past, present and future. ISME J. 2019;13:2656–63.PubMed 
    PubMed Central 

    Google Scholar 
    Tyc O, Song C, Dickschat JS, Vos M, Garbeva P. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 2017;25:280–92.CAS 
    PubMed 

    Google Scholar 
    Romero D, Traxler MF, López D, Kolter R. Antibiotics as signal molecules. Chem Rev. 2011;111:5492–505.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R. Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol Microbiol. 2012;86:628–44.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernal P, Llamas MA, Filloux A. Type VI secretion systems in plant-associated bacteria. Environ Microbiol. 2018;20:1–15.PubMed 

    Google Scholar 
    Okada BK, Seyedsayamdost MR. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev. 2017;41:19–33.CAS 
    PubMed 

    Google Scholar 
    Zhang C, Straight PD. Antibiotic discovery through microbial interactions. Curr Opin Microbiol. 2019;51:64–71.CAS 
    PubMed 

    Google Scholar 
    Traxler MF, Kolter R. Natural products in soil microbe interactions and evolution. Nat Prod Rep. 2015;32:956–70.CAS 
    PubMed 

    Google Scholar 
    Müller DB, Vogel C, Bai Y, Vorholt JA. The plant microbiota: systems-level insights and perspectives. Annu Rev Genet. 2016;50:211–34.PubMed 

    Google Scholar 
    Anckaert A, Arias AA, Hoff G, Calonne-Salmon M, Declerck S, Ongena M. The use of Bacillus spp. as bacterial biocontrol agents to control plant diseases. In: Köhl J, Ravensberg W, editors. Microbial bioprotectants for plant disease management. Cambridge, UK: Burleigh Dodds Science Publishing; 2022. p. 1–54.Dunlap CA. Taxonomy of registered Bacillus spp. strains used as plant pathogen antagonists. Biol Control. 2019;134:82–86.
    Google Scholar 
    Ye M, Tang X, Yang R, Zhang H, Li F, Tao F, et al. Characteristics and application of a novel species of Bacillus: Bacillus velezensis. ACS Chem Biol. 2018;13:500–5.CAS 
    PubMed 

    Google Scholar 
    Grubbs KJ, Bleich RM, Santa Maria KC, Allen SE, Farag S, Shank EA, et al. Large-scale bioinformatics analysis of Bacillus genomes uncovers conserved roles of natural products in bacterial physiology. mSystems 2017;2:e00040–17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harwood CR, Mouillon J-MM, Pohl S, Arnau J. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol Rev. 2018;42:721–38.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Köhl J, Kolnaar R, Ravensberg WJ. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front Plant Sci. 2019;10:1–19.
    Google Scholar 
    Li Y, Rebuffat S. The manifold roles of microbial ribosomal peptide-based natural products in physiology and ecology. J Biol Chem. 2020;295:34–54.Andrić S, Meyer T, Ongena M. Bacillus responses to plant-associated fungal and bacterial communities. Front Microbiol. 2020;11:1350.PubMed 
    PubMed Central 

    Google Scholar 
    Zhang L, Sun C. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Appl Environ Microbiol. 2018;84:e00445–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Molina-Santiago C, Vela-Corcía D, Petras D, Díaz-Martínez L, Pérez-Lorente AI, Sopeña-Torres S, et al. Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence. Cell Rep. 2021;36:109449.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Molina-Santiago C, Pearson JR, Navarro Y, Berlanga-Clavero MV, Caraballo-Rodriguez AM, Petras D, et al. The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nat Commun. 2019;10:1919.PubMed 
    PubMed Central 

    Google Scholar 
    Almoneafy AA, Kakar KU, Nawaz Z, Li B, Saand MA, Chun-lan Y, et al. Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis 2014;63:59–70.CAS 

    Google Scholar 
    Kakar KU, Duan Y-P, Nawaz Z, Sun G, Almoneafy AA, Hassan MA, et al. A novel rhizobacterium Bk7 for biological control of brown sheath rot of rice caused by Pseudomonas fuscovaginae and its mode of action. Eur J Plant Pathol. 2014;138:819–34.
    Google Scholar 
    Raynaud X, Nunan N. Spatial ecology of bacteria at the microscale in soil. PLoS ONE. 2014;9:e87217.PubMed 
    PubMed Central 

    Google Scholar 
    Girard L, Lood C, Höfte M, Vandamme P, Rokni-Zadeh H, van Noort V, et al. The ever-expanding Pseudomonas genus: description of 43 new species and partition of the Pseudomonas putida group. Microorganisms. 2021;9:1–24.
    Google Scholar 
    Hua GKH, Höfte M. The involvement of phenazines and cyclic lipopeptide sessilin in biocontrol of Rhizoctonia root rot on bean (Phaseolus vulgaris) by Pseudomonas sp. CMR12a is influenced by substrate composition. Plant Soil. 2015;388:243–53.CAS 

    Google Scholar 
    Ma Z, Hoang Hua GKH, Ongena M, Höfte M. Role of phenazines and cyclic lipopeptides produced by Pseudomonas sp. CMR12a in induced systemic resistance on rice and bean. Environ Microbiol Rep. 2016;8:896–904.PubMed 

    Google Scholar 
    Olorunleke FE, Hua GKH, Kieu NP, Ma Z, Höfte M. Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CMR12a. Environ Microbiol Rep. 2015;7:774–81.CAS 
    PubMed 

    Google Scholar 
    van Gestel J, Vlamakis H, Kolter R. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. PLoS Biol. 2015;13:1–29.
    Google Scholar 
    Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, Ongena M. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol. 2012;79:176–91.CAS 
    PubMed 

    Google Scholar 
    Hoff G, Arias AA, Boubsi F, Pršić J, Meyer T, Ibrahim HMM, et al. Surfactin stimulated by pectin molecular patterns and root exudates acts as a key driver of the Bacillus-plant mutualistic interaction. MBio 2021;12:e01774–21.CAS 
    PubMed Central 

    Google Scholar 
    Andrić S, Meyer T, Rigolet A, Prigent-Combaret C, Höfte M, Balleux G, et al. Lipopeptide interplay mediates molecular interactions between soil bacilli and pseudomonads. Microbiol Spectr. 2021;9:e0203821.PubMed 

    Google Scholar 
    Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010;11:395.
    Google Scholar 
    Li W, Godzik A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.CAS 
    PubMed 

    Google Scholar 
    Bodenhofer U, Bonatesta E, Horejš-Kainrath C, Hochreiter S. msa: an R package for multiple sequence alignment. Bioinformatics. 2015;31:3997–9.CAS 
    PubMed 

    Google Scholar 
    Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004;20:289–90.CAS 
    PubMed 

    Google Scholar 
    Ivica Letunic PB. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296.PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team (2020). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.Steinke K, Mohite OS, Weber T, Kovács ÁT. Phylogenetic distribution of secondary metabolites in the Bacillus subtilis species complex. mSystems. 2021;6:2–10.
    Google Scholar 
    Molinatto G, Puopolo G, Sonego P, Moretto M, Engelen K, Viti C, et al. Complete genome sequence of Bacillus amyloliquefaciens subsp. plantarum S499, a rhizobacterium that triggers plant defences and inhibits fungal phytopathogens. J Biotechnol. 2016;238:56–59.CAS 
    PubMed 

    Google Scholar 
    Fan B, Wang C, Song X, Ding X, Wu L, Wu H, et al. Bacillus velezensis FZB42 in 2018: The gram-positive model strain for plant growth promotion and biocontrol. Front Microbiol. 2018;9:3389.
    Google Scholar 
    Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol. 2012;13:614–29.PubMed 
    PubMed Central 

    Google Scholar 
    Scholz R, Vater J, Budiharjo A, Wang Z, He Y, Dietel K, et al. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol. 2014;196:1842–52.PubMed 
    PubMed Central 

    Google Scholar 
    Lembrechts JJ, van den Hoogen J, Aalto J, Ashcroft MB, De Frenne P, Kemppinen J, et al. Global maps of soil temperature. Glob Chang Biol. 2022;28:3110–44.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blake C, Christensen MN, Kovacs AT. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol Plant-Microbe Interact. 2021;34:15–25.CAS 
    PubMed 

    Google Scholar 
    Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovács ÁT. Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol. 2021;19:600–14.CAS 
    PubMed 

    Google Scholar 
    D’aes J, Hua GKH, De Maeyer K, Pannecoucque J, Forrez I, Ongena M, et al. Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a. Phytopathology. 2011;101:996–1004.PubMed 

    Google Scholar 
    Grandchamp GM, Caro L, Shank EA. Pirated siderophores promote sporulation in Bacillus subtilis. Appl Environ Microbiol. 2017;83:e03293–16.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miethke M, Klotz O, Linne U, May JJ, Beckering CL, Marahiel MA. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol Microbiol. 2006;61:1413–27.CAS 
    PubMed 

    Google Scholar 
    Pi H, Helmann JD. Genome-wide characterization of the fur regulatory network reveals a link between catechol degradation and bacillibactin metabolism in Bacillus subtilis. MBio. 2018;9:1–15.
    Google Scholar 
    Adler C, Corbalán NS, Seyedsayamdost MR, Pomares MF, de Cristóbal RE, Clardy J, et al. Catecholate siderophores protect bacteria from pyochelin toxicity. PLoS ONE. 2012;7:e46754.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trottmann F, Franke J, Ishida K, García-Altares M, Hertweck C. A pair of bacterial siderophores releases and traps an intercellular signal molecule: an unusual case of natural nitrone bioconjugation. Angew Chem. 2019;58:200–4.CAS 

    Google Scholar 
    Mongkolsuk S, Helmann JD. Regulation of inducible peroxide stress responses. Mol Microbiol. 2002;45:9–15.CAS 
    PubMed 

    Google Scholar 
    Cox CD, Rinehart KL, Moore ML, Cook JC. Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 1981;78:4256–60.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Youard ZA, Mislin GLA, Majcherczyk PA, Schalk IJ, Reimmann C. Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J Biol Chem. 2007;282:35546–53.CAS 
    PubMed 

    Google Scholar 
    Ronnebaum TA, Lamb AL. Nonribosomal peptides for iron acquisition: pyochelin biosynthesis as a case study. Curr Opini Struct Biol. 2018;53:1–11.CAS 

    Google Scholar 
    Seipke RF, Song L, Bicz J, Laskaris P, Yaxley AM, Challis GL, et al. The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins. Microbiology. 2011;157:2681–93.CAS 
    PubMed 

    Google Scholar 
    Gu S, Wei Z, Shao Z, Friman VP, Cao K, Yang T, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat Microbiol. 2020;5:1002–10.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Komaki H, Ichikawa N, Hosoyama A, Hamada M, Igarashi Y. In silico analysis of PKS and NRPS gene clusters in arisostatin-and kosinostatin-producers and description of Micromonospora okii sp. nov. Antibiotics. 2021;10:1447.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Engelbrecht A, Saad H, Gross H, Kaysser L. Natural products from Nocardia and their role in pathogenicity. Micro Physiol. 2021;31:217–32.
    Google Scholar 
    Inahashi Y, Zhou S, Bibb MJ, Song L, Al-Bassam MM, Bibb MJ, et al. Watasemycin biosynthesis in Streptomyces venezuelae: thiazoline C-methylation by a type B radical-SAM methylase homologue. Chem Sci. 2017;8:2823–31.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song J, Qiu S, Zhao J, Han C, Wang Y, Sun X, et al. Pseudonocardia tritici sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Nat Microbiol. 2019;12:470–80.
    Google Scholar 
    Sayed AM, Abdel-Wahab NM, Hassan HM, Abdelmohsen UR. Saccharopolyspora: an underexplored source for bioactive natural products. J Appl Microbiol. 2020;128:314–29.CAS 
    PubMed 

    Google Scholar 
    Nordstedt NP, Jones ML. Genomic analysis of Serratia plymuthica MBSA-MJ1: A plant growth promoting rhizobacteria that improves water stress tolerance in greenhouse ornamentals. Front Microbiol. 2021;12:653556.PubMed 
    PubMed Central 

    Google Scholar 
    Zhalnina K, Louie KB, Hao Z, Mansoori N, Da Rocha UN, Shi S, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018;3:470–80.CAS 
    PubMed 

    Google Scholar 
    Takahashi Y, Malisorn K, Kanchanasin P, Phongsopitanun W, Tanasupawat S, Spain AM, et al. Actinomadura rhizosphaerae sp. nov., isolated from rhizosphere soil of the plant Azadirachta indica. ISME J 2018;68:3012–6.
    Google Scholar 
    Takahashi Y. Genus Kitasatospora, taxonomic features and diversity of secondary metabolites. J Antibiot. 2017;70:506–13.CAS 

    Google Scholar 
    Bennur T, Kumar AR, Zinjarde S, Javdekar V. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiol Res. 2015;174:33–47.PubMed 

    Google Scholar 
    Walterson AM, Stavrinides J. Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. J Basic Microbiol. 2015;39:33–47.
    Google Scholar 
    Sungthong R, Nakaew N. The genus Nonomuraea: a review of a rare actinomycete taxon for novel metabolites. J Basic Microbiol. 2015;55:554–65.PubMed 

    Google Scholar 
    Müller S, Strack SN, Ryan SE, Kearns DB, Kirby JR. Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures. Appl Environ Microbiol. 2015;81:203–10.PubMed 

    Google Scholar 
    Straight PD, Fischbach MA, Walsh CT, Rudner DZ, Kolter R. A singular enzymatic megacomplex from Bacillus subtilis. Proc Natl Acad Sci USA. 2007;104:305–10.CAS 
    PubMed 

    Google Scholar 
    Barger SR, Hoefler BC, Cubillos-Ruiz A, Russell WK, Russell DH, Straight PD. Imaging secondary metabolism of Streptomyces sp. Mg1 during cellular lysis and colony degradation of competing Bacillus subtilis. Antonie van Leeuwenhoek. 2012;102:435–45.CAS 
    PubMed 

    Google Scholar 
    Ogran A, Yardeni EH, Keren-Paz A, Bucher T, Jain R, Gilhar O, et al. The plant host induces antibiotic production to select the most-beneficial colonizers. Appl Environ Microbiol. 2019;85:1–15.
    Google Scholar 
    Rosenberg G, Steinberg N, Oppenheimer-Shaanan Y, Olender T, Doron S, Ben-Ari J, et al. Not so simple, not so subtle: The interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms. npj Biofilms Microbiomes. 2016;2:15027.PubMed 
    PubMed Central 

    Google Scholar 
    Straight PD, Willey JM, Kolter R. Interactions between Streptomyces coelicolor and Bacillus subtilis: Role of surfactants in raising aerial structures. J Bacteriol. 2006;188:4918–25.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoefler BC, Gorzelnik KV, Yang JY, Hendricks N, Dorrestein PC, Straight PD. Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition. Proc Natl Acad Sci USA. 2012;109:13082–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu Y, Kyle S, Straight PD. Antibiotic stimulation of a Bacillus subtilis migratory response. mSphere 2018;3:e00586–17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Qi G, Zhu F, Du P, Yang X, Qiu D, Yu Z, et al. Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides. 2010;31:1978–86.CAS 
    PubMed 

    Google Scholar 
    McCully LM, Bitzer AS, Seaton SC, Smith LM, Silby MW. Interspecies social spreading: interaction between two sessile soil bacteria leads to emergence of surface motility. mSphere. 2019;4:e00696–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14:563–75.CAS 
    PubMed 

    Google Scholar 
    Townsley L, Shank EA. Natural-product antibiotics: cues for modulating bacterial biofilm formation. Trends Microbiol. 2017;25:1016–26.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sun X, Xu Z, Xie J, Hesselberg-Thomsen V, Tan T, Zheng D, et al. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. ISME J. 2022;16:774–87.CAS 
    PubMed 

    Google Scholar 
    Dumas Z, Ross-Gillespie A, Kümmerli R. Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proc R Soc B Biol Sci. 2013;280:20131055.
    Google Scholar 
    Lee N, Kim W, Chung J, Lee Y, Cho S, Jang KS, et al. Iron competition triggers antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus. ISME J. 2020;14:1111–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kramer J, Özkaya Ö, Kümmerli R. Bacterial siderophores in community and host interactions. Nat Rev Microbiol. 2020;18:152–63.CAS 
    PubMed 

    Google Scholar 
    Niehus R, Picot A, Oliveira NM, Mitri S, Foster KR. The evolution of siderophore production as a competitive trait. Evolution. 2017;71:1443–55.CAS 
    PubMed 

    Google Scholar 
    Ho YN, Lee HJ, Hsieh CT, Peng CC, Yang YL. Chemistry and biology of salicyl-capped siderophores. Stud Nat Prod Chem. 2018;59:431–90.Schalk IJ, Rigouin C, Godet J. An overview of siderophore biosynthesis among fluorescent Pseudomonads and new insights into their complex cellular organization. Environ Microbiol. 2020;22:1447–66.PubMed 

    Google Scholar 
    Deveau A, Gross H, Palin B, Mehnaz S, Schnepf M, Leblond P, et al. Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions. FEMS Microbiol Ecol. 2016;92:1–11.
    Google Scholar 
    Jenul C, Keim K, Jens J, Zeiler MJ, Schilcher K, Schurr M, et al. Pyochelin biotransformation shapes bacterial competition. bioRxiv. 2022. https://doi.org/10.1101/2022.04.18.486787.Ho YN, Hoo SY, Wang BW, Hsieh CT, Lin CC, Sun CH, et al. Specific inactivation of an antifungal bacterial siderophore by a fungal plant pathogen. ISME J. 2021;15:1858–61.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lopez-Medina E, Fan D, Coughlin LA, Ho EX, Lamont IL, Reimmann C, et al. Candida albicans inhibits Pseudomonas aeruginosa virulence through suppression of pyochelin and pyoverdine biosynthesis. PLoS Pathog. 2015;11:1–34.
    Google Scholar 
    Meisel JD, Panda O, Mahanti P, Schroeder FC, Kim DH. Chemosensation of bacterial secondary metabolites modulates neuroendocrine signaling and behavior of C. elegans. Cell. 2014;159:267–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Finkel OM, Castrillo G, Herrera Paredes S, Salas González I, Dangl JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–63.PubMed 
    PubMed Central 

    Google Scholar 
    Saad MM, Eida AA, Hirt H, Doerner P. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. J Exp Bot. 2020;71:3878–901.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ansari FA, Ahmad I. Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Sci Rep. 2019;9:4547.PubMed 
    PubMed Central 

    Google Scholar 
    Domenech J, Reddy MS, Kloepper JW, Ramos B, Gutierrez-Mañero J. Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. BioControl. 2006;51:245–58.CAS 

    Google Scholar 
    Powers MJ, Sanabria-Valentín E, Bowers AA, Shank EA. Inhibition of cell differentiation in Bacillus subtilis by Pseudomonas protegens. J Bacteriol. 2015;197:2129–38.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Sensing whales, storms, ships and earthquakes using an Arctic fibre optic cable

    Howe, B. M. et al. Observing the oceans acoustically. Front. Mar. Sci. 6, 426. https://doi.org/10.3389/fmars.2019.00426 (2019).Article 

    Google Scholar 
    Molenaar, M. M., Hill, D., Webster, P., Fidan, E. & Birch, B. First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics. SPE Drill. Complet. 27, 32–38. https://doi.org/10.2118/140561-PA (2012).Article 

    Google Scholar 
    Lindsey, N. J. et al. Fiber-optic network observations of earthquake wavefields. Geophys. Res. Lett. 44, 11792–11799. https://doi.org/10.1002/2017GLO75722 (2017).Article 
    ADS 

    Google Scholar 
    Jousset, P. et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun. 9, 1–11. https://doi.org/10.1038/s41467-018-04860-y (2018).Article 
    CAS 

    Google Scholar 
    Ajo-Franklin, J. B. et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection. Sci. Rep. 9, 1–14. https://doi.org/10.1038/s41598-018-36675-8 (2019).Article 
    CAS 

    Google Scholar 
    Williams, E. F. et al. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat. Commun. 10, 1–11. https://doi.org/10.1038/s41467-019-13262-7 (2019).Article 
    CAS 

    Google Scholar 
    Lindsey, N. J., Dawe, T. C. & Ajo-Franklin, J. B. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science 366, 1103–1107. https://doi.org/10.1126/science.aay5881 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sladen, A. et al. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun. 10, 5777. https://doi.org/10.1038/s41467-019-13793-z (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, E. F. et al. Surface gravity wave interferometry and ocean current monitoring with ocean-bottom DAS. J. Geophys. Res. Oceans 127, e2021JC018375. https://doi.org/10.1029/2021JC018375 (2022).Article 
    ADS 

    Google Scholar 
    Zhan, Z. et al. Optical polarization-based seismic and water wave sensing on transoceanic cables. Science 371, 931–936. https://doi.org/10.1126/science.abe6648 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Waagaard, O. H. et al. Real-time low noise distributed acoustic sensing in 171 km low loss fiber. OSA Contin. 4, 688–701. https://doi.org/10.1364/OSAC.408761 (2021).Article 
    CAS 

    Google Scholar 
    Rivet, D., de Cacqueray, B., Sladen, A., Roques, A. & Calbris, G. Preliminary assessment of ship detection and trajectory evaluation using distributed acoustic sensing on an optical fiber telecom cable. J. Acoust. Soc. Am. 149, 2615–2627. https://doi.org/10.1121/10.0004129 (2021).Article 
    ADS 
    PubMed 

    Google Scholar 
    Taweesintananon, K., Landrø, M., Brenne, J. K. & Haukanes, A. Distributed acoustic sensing for near-surface imaging using submarine telecommunication cable: a case study in the Trondheimsfjord, Norway. Geophysics 86, B303–B320. https://doi.org/10.1190/geo2020-0834.1 (2021).Article 

    Google Scholar 
    Matsumoto, H. et al. Detection of hydroacoustic signals on a fiber-optic submarine cable. Sci. Rep. 11, 2797. https://doi.org/10.1038/s41598-021-82093-8 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouffaut, L. et al. Eavesdropping at the speed of light: Distributed acoustic sensing of baleen whales in the Arctic. Front. Mar. Sci. 9, 901348. https://doi.org/10.3389/fmars.2022.901348 (2022).Article 

    Google Scholar 
    Jones, N. The quest for quieter seas. Nature 568, 158–161. https://doi.org/10.1038/d41586-019-01098-6 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Williams, R. et al. Chronic ocean noise and cetacean population models. J. Cetacean Res. Manag. 21, 85–94. https://doi.org/10.47536/jcrm.v21i1.202 (2020).Article 

    Google Scholar 
    Roman, J. et al. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12, 377–385. https://doi.org/10.1890/130220 (2014).Article 

    Google Scholar 
    Pershing, A. J., Christensen, L. B., Record, N. R., Sherwood, G. D. & Stetson, P. B. The impact of whaling on the ocean carbon cycle: Why bigger was better. PLoS ONE 5, 1–9. https://doi.org/10.1371/journal.pone.0012444 (2010).Article 
    CAS 

    Google Scholar 
    IUCN – SSC Cetacean Specialist Group. Status of the World’s cetaceans (2021). https://iucn-csg.org/status-of-the-worlds-cetaceans/.Bailey, H. et al. Behavioural estimation of blue whale movements in the Northeast Pacific from state-space model analysis of satellite tracks. Endanger. Species Res. 10, 93–106. https://doi.org/10.3354/esr00239 (2010).Article 

    Google Scholar 
    Thomas, P. O., Reeves, R. R. & Brownell, R. L. Jr. Status of the world’s baleen whales. Mar. Mamm. Sci. 32, 682–734. https://doi.org/10.1111/mms.12281 (2016).Article 

    Google Scholar 
    Grigoli, F. et al. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective. Rev. Geophys. 55, 310–340. https://doi.org/10.1002/2016RG000542 (2017).Article 
    ADS 

    Google Scholar 
    Bigg, G. R. & Hanna, E. Impacts and effects of ocean warming on the weather. In: Laffoley, D. & Baxter, J. M. (eds.) Explaining ocean warming: Causes, scale, effects and consequences, 359–372, https://doi.org/10.2305/IUCN.CH.2016.08.en (International Union for Conservation of Nature and Natural Resources (IUCN), Gland, Switzerland, 2016).Hartog, A. H. An Introduction to Distributed Optical Fibre Sensors 1st edn. (CRC Press, 2017). https://doi.org/10.1201/9781315119014.Book 

    Google Scholar 
    Lin, J., Fang, S., Li, X., Wu, R. & Zheng, H. Seismological observations of ocean swells induced by Typhoon Megi using dispersive microseisms recorded in coastal areas. Remote Sens.https://doi.org/10.3390/rs10091437 (2018).Article 

    Google Scholar 
    Munk, W. H., Miller, G. R., Snodgrass, F. E., Barber, N. F. & Deacon, G. E. R. Directional recording of swell from distant storms. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 255, 505–584. https://doi.org/10.1098/rsta.1963.0011 (1963).Article 
    ADS 

    Google Scholar 
    Mellinger, D. K. & Clark, C. W. Blue whale (balaenoptera musculus) sounds from the North Atlantic. J. Acoust. Soc. Am. 114, 1108–1119. https://doi.org/10.1121/1.1593066 (2003).Article 
    ADS 
    PubMed 

    Google Scholar 
    Ou, H., Au, W. W., Van Parijs, S., Oleson, E. M. & Rankin, S. Discrimination of frequency-modulated baleen whale downsweep calls with overlapping frequencies. J. Acoust. Soc. Am. 137, 3024–3032. https://doi.org/10.1121/1.4919304 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Saito, T. & Tsushima, H. Synthesizing ocean bottom pressure records including seismic wave and tsunami contributions: Toward realistic tests of monitoring systems. J. Geophys. Res. Solid Earth 121, 8175–8195. https://doi.org/10.1002/2016JB013195 (2016).Article 
    ADS 

    Google Scholar 
    Rørstadbotnen, R. A. et al. Analysis of a local earthquake in the Arctic using a 120 km long fibre-optic cable. In 83rd EAGE Annual Conference & Exhibition, vol. 2022 of Conference Proceedings, 1–5, https://doi.org/10.3997/2214-4609.202210404 (European Association of Geoscientists & Engineers, 2022).Bromirski, P. D. & Duennebier, F. K. The near-coastal microseism spectrum: Spatial and temporal wave climate relationships. J. Geophys. Res. Solid Earth 107, ESE 5-1-20. https://doi.org/10.1029/2001JB000265 (2002).Article 

    Google Scholar 
    Pasch, R. J. National hurricane center tropical cyclone report: Tropical storm Edouard (AL052020). Technical report, National Oceanic and Atmospheric Administration (2021). https://www.nhc.noaa.gov/data/tcr/AL052020_Edouard.pdf.Gobato, R. & Heidari, A. Cyclone Bomb hits Southern Brazil in 2020. J. Atmos. Sci. Res. 3, 8–12. https://doi.org/10.30564/jasr.v3i3.2163 (2020).Article 

    Google Scholar 
    Khalid, A., de Lima, Ad. S., Cassalho, F., Miesse, T. & Ferreira, C. Hydrodynamic and wave responses during storm surges on the Southern Brazilian Coast: A real-time forecast system. Water 12, 3397. https://doi.org/10.3390/w12123397 (2020).Article 

    Google Scholar 
    Ćirić, J. Weather warning for Central Highland, Northwest Iceland (2020). https://www.icelandreview.com/travel/weather-warning-for-central-highland-northwest-iceland/.Schoeman, R. P., Patterson-Abrolat, C. & Plön, S. A global review of vessel collisions with marine animals. Front. Mar. Sci. 7, 292. https://doi.org/10.3389/fmars.2020.00292 (2020).Article 

    Google Scholar 
    Ringrose, P. S. et al. Storage of carbon dioxide in saline aquifers: Physicochemical processes, key constraints, and scale-up potential. Annu. Rev. Chem. Biomol. Eng. 12, 471–494. https://doi.org/10.1146/annurev-chembioeng-093020-091447 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nishimura, T. et al. Source location of volcanic earthquakes and subsurface characterization using fiber-optic cable and distributed acoustic sensing system. Sci. Rep. 11, 6319. https://doi.org/10.1038/s41598-021-85621-8 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ardhuin, F. & Herbers, T. H. C. Noise generation in the solid Earth, oceans and atmosphere, from nonlinear interacting surface gravity waves in finite depth. J. Fluid Mech. 716, 316–348. https://doi.org/10.1017/jfm.2012.548 (2013).Article 
    ADS 
    MATH 

    Google Scholar 
    Airy, G. B. Encyclopaedia Metropolitana (1817–1845), vol. 3 of Mixed Sciences, chap. Tides and waves (London, 1841).Craik, A. D. The origins of water wave theory. Annu. Rev. Fluid Mech. 36, 1–28. https://doi.org/10.1146/annurev.fluid.36.050802.122118 (2004).Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Matsumoto, H., Inoue, S. & Ohmachi, T. Dynamic response of bottom water pressure due to the 2011 Tohoku earthquake. J. Disaster Res. 7, 468–475. https://doi.org/10.20965/jdr.2012.p0468 (2012).Article 

    Google Scholar 
    Landrø, M. & Hatchell, P. Normal modes in seismic data: Revisited. Geophysics 77, W27–W40. https://doi.org/10.1190/geo2011-0094.1 (2012).Article 
    ADS 

    Google Scholar  More

  • in

    Living on the sea-coast: ranging and habitat distribution of Asiatic lions

    Study areaSituated in western India’s southwestern part of the Gujarat state, the Saurashtra region typically represents the semi-arid Gujarat-Rajputana province 4B23, which covers 11 out of 33 districts of the state. The region forms a rocky tableland (altitude 300–600 m) fringed by coastal plains with an undulating central plain broken by hills and dissected by various rivers that flow in all directions24. With the longest coastline (~ 1600 km) in India, Gujarat is endowed with rich coastal biodiversity25,26. The Saurashtra coast in Gujarat is encircled by the open sea between two Gulfs (68° 58′–71° 30′ N and 22° 15′–20° 50′ E) and divided into two segments, viz. the southwestern coast from Dwarka to Diu (~ 300 km stretch) and south-eastern coast from Diu to Bhavnagar (~ 250 km stretch)26.The Asiatic Lion Landscape covers an area of ~ 30,000 km2 (permanent lion distribution range: ~ 16,000 km2; visitation record range: ~ 14,000 km2) of varied habitat types within Saurashtra. The landscape includes five protected areas (Gir National Park, Gir Wildlife Sanctuary, Paniya Wildlife Sanctuary, Mitiyala Wildlife Sanctuary, and Girnar Wildlife Sanctuary) and other forest classes (reserved forests, protected forests, and unclassed forests).The coastal habitats extend across the districts of Bhavnagar, Amreli, Gir-Somnath, and Junagadh (Fig. 1). Within these districts (Fig. 1), the tehsils (sub-divisions/taluka) of Mangrol, Malia, Patan-Veraval, Sutrapada, Kodinar and Una are categorized under the southwestern coast (hereafter western coastal habitat), Jafrabad, Rajula, form the south-eastern coast and Mahuva and Talaja constitute the Bhavnagar coast and represent distinct lion range units (Fig. 1). The total area covered in the study is 2843 km2 on the eastern coast and 1413 km2 on the western coast (Fig. 1).The Saurashtra region is bestowed with three distinct seasons, viz. dry and hot summer (March–June), monsoon (July–October), and primarily dry winter (November–February). It receives a mean annual rainfall of ~ 600 mm, with most rainfall during the southwest monsoon27. The mean maximum and minimum temperatures are 34 °C and 19 °C, respectively28. There is a 110 km2 stretch of forests along the coast. The rest of the areas are multi-use consisting of private, industrial, pastoral and wastelands of varied ownerships. The natural vegetation primarily consists of Prosopis juliflora and Casuarina equistsetifolia. On the beach and dune areas, vegetation such as Ipomea pescaprae, Sporobolus trinules, Fimrystylis sp., Crotalaria sp., and Euphorbia nivuleria29. The mudflats along the coast are restricted to Talaja, Mahuva, Pipavav Port, Jafrabad creek, and Porbandar, sparsely covered by the Avicennia marina29. Fisheries, agriculture, horticulture, livestock rearing, and some large- and small-scale industries are the leading economies in the coastal belt.Coastal segments are characterized by the variety of vegetation, sandy beaches, small cliffs, wave-cut platforms, open and submerged dunes, minor estuaries, embankments, and transition from the open sea to gulf environment with tidal mud26,29 and also support a diverse assemblage of biodiversity25. This biodiversity is further enriched by several perennial/ephemeral rivers originating from the Gir PA (Shetrunji, Machundari, Raval, Ardak, Bhuvatirth, Shinghoda, Hiran, Saraswati, etc.)12. These rivers meet the sea at different sections of the coast, forming prominent coastal ecosystems25. The riverine tracts act as important corridors for wildlife movement9,12,30. Dispersing through these corridors, lions have started inhabiting these coastal habitats30,31.MethodsAll the research activities involved in this study on Asiatic lions were carried out after taking due permission from the Ministry of Environment, Forests & Climate Change (MoEF&CC), Government of India (Letter No.: F. No. 1-50/2018 WL) and Principal Chief Conservator of Forests (Wildlife) & Chief Wildlife Warden, Gujarat State, Gandhinagar (Letter No.: WLP 26B 781-83/2019-20). Procedures and protocols were followed as per the Standard Operating Procedures of the Gujarat Forest Department, Government of Gujarat, concerning the handling of wild animals. Qualified and experienced veterinarians and their team carried out all procedures related to radio-collaring. Moreover, the study is reported in accordance with ‘Animal Research: Reporting of In Vivo Experiments’ (ARRIVE) guidelines as applicable.A long-term lion monitoring project was initiated in 2019 by the Gujarat Forest Department to understand the movement patterns and ecology of lions in the Asiatic Lion Landscape. Looking at the heterogeneity and vastness of the coastal areas, ten individuals were carefully selected for satellite radio-collaring based on their frequent movement in different coastal habitats and monitored from 2019 to 2021.The lions were deployed with Vertex Plus GPS Collars (Vectronics Aerospace GmbH, Berlin, Germany) that weighed less than three per cent of the individual’s body weight, irrespective of age and sex. The lions were immobilized using a combination of Ketamine hydrochloride (2.2 mg per kg body weight; Ketamine, Biowet, Pulawy) and Xylazine hydrochloride (1.1 mg per kg body weight; Xylaxil, Brilliant Bio Pharma Pvt. Ltd., Telangana)32 administered intramuscularly using a gas-powered Telinject™ G.U.T 50 (Telinject Inc., Dudenhofen, Germany) dart delivery system. A blindfold was placed to protect the eyes and decrease visual stimuli33,34. Each sedated individual was sexed, aged, and measured as per the standard operating procedure (SOP) of the Gujarat Forest Department, Government of Gujarat, and recorded the data in the trapping datasheet. The radio-collars were deployed considering the neck girth of the individual, ensuring free movement of it so as not to hamper the individual’s routine activities. After deploying the radio-collar, we used the specific antidote for Xylazine, i.e., Yohimbine hydrochloride (0.1–0.15 mg per kg body weight; Yohimbe, Equimed, USA) intravenously, resulting in the total recovery of immobilized individuals32 within 5–10 min. The individuals were intensively monitored for 72 h and, after that, regularly monitored throughout the functional period of the radio-collars. The entire radio-collaring exercise was carried out by trained and experienced veterinary officers and their teams that constituted wildlife health care personnel and field staff.Each collar had a unique VHF and UHF frequency. The radio-collars were equipped with a programmable GPS schedule and configured to record the location fixes at every hour and provided the data through the constellation of low-earth-orbit Iridium satellite data service (Iridium Communications Inc., Virginia, USA) at four-hour intervals after getting activated. The data logs included location fixes in degree decimal format (latitude/longitude), speed (km/hour), altitude (meters above mean sea level), UTC timestamp (dd-mm-yyyy h:m:s), direction (degrees), and temperature (Celsius). Radio-collars were equipped with mortality sensors and a programmable drop-off activation system. Gir Hi-Tech Monitoring Unit, Sasan-Gir, Gujarat, monitored and coordinated these activities. The location data from each radio-collar was downloaded using the GPS Plus X software (Vectronics Aerospace GmbH, Berlin, Germany) in the Gir Hi-Tech Monitoring Unit (a technology-driven scientific monitoring initiative in the landscape established in 2019 at Sasan-Gir, Gujarat).Data analysisIn this study, we calculated the home range of lions resident in the coastal region using the Fixed Kernel method. We expressed them as 90% and 50% Fixed Kernel (FK) to summarize the overall home range and core area, respectively35,36,37. Additionally, the home range of lions categorized as “link lions” and lions of the protected area was summarized for comparison (Table 1).MaxEnt (version 3.4.1) stand-alone software38 was applied for fine-scaled lion distribution modelling39,40. The logistic output format was set for the MaxEnt output. 30% random lion occurrence points were used as test data to evaluate model performance. The area under the receiver operating characteristic curve (AUC) was used to evaluate the discriminative ability of the model based on the values of sensitivity (correct discrimination of true positive location points) and specificity (correct discrimination of true negative absence points)41. The Jackknife regularised training gain for the species was used to understand the effect of each variable in model building. The logical output by the MaxEnt was presented in a table format as “percent contribution” and “permutation importance” values (from 0 to 100%). Spatial inputs were prepared on the GIS platform using ArcMap (version 10.8.1, ESRI, Redlands, USA)42. Input data for MaxEnt were categorized as (i) lion occurrence data, (ii) model variables were prepared as described below:

    i.

    Occurrence data
    At the first level, inconsistent location fixes (records with missing coordinates, time stamps, and elevation) and outliers were filtered out. Next, each lion’s hourly GPS location fixes obtained from remotely monitored radio-telemetry data were randomized to overcome spatial and temporal biases. The data was reduced by taking every three-hour location fix43,44. The data was further categorized season-wise, viz. summer, monsoon and winter. This consolidated data was then subject to spatial thinning of one kilometre using SDMtoolbox (version 2.0)45,46.

    ii.

    Model variables

    The variables used for distribution modelling broadly included different categories of land use, including both natural habitats and anthropogenic factors, namely, roads and human settlement areas. All variables were rasterized at 10 m spatial resolution.Land Use Land Cover (LULC) data of Saurashtra was obtained from Bhaskaracharya National Institute for Space Applications and Geo-informatics (BISAG-N), Gandhinagar, Gujarat. The data was then further classified into 18 sub-classes—Forest, Sandy areas, Salt-affected, Saltpan, open scrub, dense scrub (Wastelands), Waterlogged, River/Stream/Drain, Lakes and Ponds, Mining/Industrial areas, Reservoir/Tanks, Mangrove/Swamp Area, Crop Land, Agriculture Plantation (horticulture and agro-forestry), Core urban, Mixed settlement, Peri-urban, Village (Fig. 2).Roads and highways were also analyzed as separate variables in the model. Roads were classified as village roads, major district roads, and state and national highways and digitized individually to estimate Euclidean distance further (Table 2). Euclidean distance from the human settlement (Core-urban, Peri-urban, villages and mixed settlement) was analyzed and taken as a separate input variable for the model. More

  • in

    Plant-frugivore network simplification under habitat fragmentation leaves a small core of interacting generalists

    Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton Univ. Press, Princeton, NJ, 2013).Cordeiro, N. J. & Howe, H. F. Forest fragmentation severs mutualism between seed dispersers and an endemic African tree. Proc. Natl Acad. Sci. USA 100, 14052–14056 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wandrag, E. M., Dunham, A. E., Duncan, R. P. & Rogers, H. S. Seed dispersal increases local species richness and reduces spatial turnover of tropical tree seedlings. Proc. Natl Acad. Sci. USA 114, 10689–10694 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).
    Google Scholar 
    Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).
    Google Scholar 
    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Fricke, E. C. & Svenning, J. C. Accelerating homogenization of the global plant-frugivore meta-network. Nature 585, 74–78 (2020).CAS 
    PubMed 

    Google Scholar 
    Fontúrbel, F. E. et al. Meta-analysis of anthropogenic habitat disturbance effects on animal-mediated seed dispersal. Glob. Change Biol. 21, 3951–3960 (2015).
    Google Scholar 
    Poisot, T. et al. Global knowledge gaps in species interaction networks data. J. Biogeogr. 48, 1552–1563 (2021).
    Google Scholar 
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
    Google Scholar 
    Magrach, A., Laurance, W. F., Larrinaga, A. R. & Santamaria, L. Meta-analysis of the effects of forest fragmentation on interspecific interactions. Conserv. Biol. 28, 1342–1348 (2014).PubMed 

    Google Scholar 
    Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).CAS 
    PubMed 

    Google Scholar 
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed 

    Google Scholar 
    de Assis Bomfim, J., Guimarães, P. R. Jr., Peres, C. A., Carvalho, G. & Cazetta, E. Local extinctions of obligate frugivores and patch size reduction disrupt the structure of seed dispersal networks. Ecography 41, 1899–1909 (2018).
    Google Scholar 
    Emer, C. et al. Seed dispersal networks in tropical forest fragments: Area effects, remnant species, and interaction diversity. Biotropica 52, 81–89 (2020).
    Google Scholar 
    Evans, D. M., Pocock, M. J. O. & Memmott, J. The robustness of a network of ecological networks to habitat loss. Ecol. Lett. 16, 844–852 (2013).PubMed 

    Google Scholar 
    Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nat. Ecol. Evol. 2, 1408–1417 (2018).PubMed 

    Google Scholar 
    Neff, F. M. et al. Changes in plant-herbivore network structure and robustness along land-use intensity gradients in grasslands and forests. Sci. Adv. 7, eabf3985 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
    Google Scholar 
    James, A., Pitchford, J. W. & Plank, M. J. Disentangling nestedness from models of ecological complexity. Nature 487, 227–230 (2012).CAS 
    PubMed 

    Google Scholar 
    Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (1987).
    Google Scholar 
    Vieira, M. C. & Almeida-Neto, M. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol. Lett. 18, 144–152 (2015).PubMed 

    Google Scholar 
    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilarranz, L. J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J. & Gonzalez, A. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357, 199–201 (2017).CAS 
    PubMed 

    Google Scholar 
    Liu, H. et al. Geographic variation in the robustness of pollination networks is mediated by modularity. Glob. Ecol. Biogeogr. 30, 1447–1460 (2021).
    Google Scholar 
    Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).CAS 
    PubMed 

    Google Scholar 
    Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B. 271, 2605–2611 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 9, 16–36 (2019).
    Google Scholar 
    Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).PubMed 

    Google Scholar 
    Song, C., Rohr, R. P. & Saavedra, S. Why are some plant-pollinator networks more nested than others? J. Anim. Ecol. 86, 1417–1424 (2017).PubMed 

    Google Scholar 
    Schleuning, M., Böhning-Gaese, K., Dehling, D. M. & Burns, K. C. At a loss for birds: insularity increases asymmetry in seed-dispersal networks. Glob. Ecol. Biogeogr. 23, 385–394 (2014).
    Google Scholar 
    Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).CAS 
    PubMed 

    Google Scholar 
    Fortuna, M. A. & Bascompte, J. Habitat loss and the structure of plant-animal mutualistic networks. Ecol. Lett. 9, 278–283 (2006).
    Google Scholar 
    Spiesman, B. J. & Inouye, B. D. Habitat loss alters the architecture of plant-pollinator interaction networks. Ecology 94, 2688–2696 (2013).PubMed 

    Google Scholar 
    Traveset, A. et al. Bird-flower visitation networks in the Galápagos unveil a widespread interaction release. Nat. Commun. 6, 6376 (2015).CAS 
    PubMed 

    Google Scholar 
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).PubMed 

    Google Scholar 
    Monteiro, E. C. S., Pizo, M. A., Vancine, M. H. & Ribeiro, M. C. Forest cover and connectivity have pervasive effects on the maintenance of evolutionary distinct interactions in seed dispersal networks. Oikos 2022, e08240 (2022).
    Google Scholar 
    Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K. & Triantis, K. A. Island biogeography: taking the long view of nature’s laboratories. Science 357, eaam8326 (2017).PubMed 

    Google Scholar 
    Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai’i. Science 364, 78–82 (2019).CAS 
    PubMed 

    Google Scholar 
    Diamond, J. Dammed experiments! Science 294, 1847–1848 (2001).CAS 
    PubMed 

    Google Scholar 
    Jones, I. L., Bunnefeld, N., Jump, A. S., Peres, C. A. & Dent, D. H. Extinction debt on reservoir land-bridge islands. Biol. Conserv. 199, 75–83 (2016).
    Google Scholar 
    Wu, J., Huang, J., Han, X., Xie, Z. & Gao, X. Three-Gorges dam–experiment in habitat Fragmentation? Science 300, 1239–1240 (2003).CAS 
    PubMed 

    Google Scholar 
    Wilson, M. C. et al. Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc. Ecol. 31, 219–227 (2016).
    Google Scholar 
    Trøjelsgaard, K. et al. Island biogeography of mutualistic interaction networks. J. Biogeogr. 40, 2020–2031 (2013).
    Google Scholar 
    Emer, C., Venticinque, E. M. & Fonseca, C. R. Effects of dam-induced landscape fragmentation on amazonian ant-plant mutualistic networks. Conserv. Biol. 27, 763–773 (2013).PubMed 

    Google Scholar 
    Zhu, C. et al. Arboreal camera trapping: a reliable tool to monitor plant-frugivore interactions in the trees on large scales. Remote Sens. Ecol. Conserv. 8, 92–104 (2022).
    Google Scholar 
    Zhu, C., Li, W., Wang, D., Ding, P. & Si, X. Plant-frugivore interactions revealed by arboreal camera trapping. Front. Ecol. Environ. 19, 149–151 (2021).
    Google Scholar 
    Galiana, N. et al. The spatial scaling of species interaction networks. Nat. Ecol. Evol. 2, 782–790 (2018).PubMed 

    Google Scholar 
    Hanski, I., Zurita, G. A., Bellocq, M. I. & Rybicki, J. Species-fragmented area relationship. Proc. Natl Acad. Sci. USA 110, 12715–12720 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sugiura, S. Species interactions-area relationships: biological invasions and network structure in relation to island area. Proc. R. Soc. B. 277, 1807–1815 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Galiana, N. et al. Ecological network complexity scales with area. Nat. Ecol. Evol. 6, 307–314 (2022).PubMed 

    Google Scholar 
    Santos, M., Cagnolo, L., Roslin, T., Marrero, H. J. & Vázquez, D. P. Landscape connectivity explains interaction network patterns at multiple scales. Ecology 100, e02883 (2019).PubMed 

    Google Scholar 
    Si, X., Pimm, S. L., Russell, G. J. & Ding, P. Turnover of breeding bird communities on islands in an inundated lake. J. Biogeogr. 41, 2283–2292 (2014).
    Google Scholar 
    Si, X. et al. Functional and phylogenetic structure of island bird communities. J. Anim. Ecol. 86, 532–542 (2017).PubMed 

    Google Scholar 
    Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).
    Google Scholar 
    Sebastián-González, E. Drivers of species’ role in avian seed-dispersal mutualistic networks. J. Anim. Ecol. 86, 878–887 (2017).PubMed 

    Google Scholar 
    Donoso, I. et al. Downsizing of animal communities triggers stronger functional than structural decay in seed-dispersal networks. Nat. Commun. 11, 1582 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).PubMed 

    Google Scholar 
    Dalsgaard, B. et al. Opposed latitudinal patterns of network-derived and dietary specialization in avian plant-frugivore interaction systems. Ecography 40, 1395–1401 (2017).
    Google Scholar 
    Borrvall, C., Ebenman, B. & Jonsson, T. Biodiversity lessens the risk of cascading extinction in model food webs. Ecol. Lett. 3, 131–136 (2000).
    Google Scholar 
    Liao, J. et al. Robustness of metacommunities with omnivory to habitat destruction: disentangling patch fragmentation from patch loss. Ecology 98, 1631–1639 (2017).PubMed 

    Google Scholar 
    Rumeu, B. et al. Predicting the consequences of disperser extinction: richness matters the most when abundance is low. Funct. Ecol. 31, 1910–1920 (2017).
    Google Scholar 
    Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673 (2015).
    Google Scholar 
    Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239 (2019).CAS 
    PubMed 

    Google Scholar 
    Menke, S., Böhning-Gaese, K. & Schleuning, M. Plant-frugivore networks are less specialized and more robust at forest–farmland edges than in the interior of a tropical forest. Oikos 121, 1553–1566 (2012).
    Google Scholar 
    Redhead, J. W. et al. Potential landscape-scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover. Ecol. Lett. 21, 1821–1832 (2018).PubMed 

    Google Scholar 
    Si, X. et al. The importance of accounting for imperfect detection when estimating functional and phylogenetic community structure. Ecology 99, 2103–2112 (2018).PubMed 

    Google Scholar 
    Schoereder, J. H. et al. Should we use proportional sampling for species-area studies? J. Biogeogr. 31, 1219–1226 (2004).
    Google Scholar 
    Liu, J. et al. The distribution of plants and seed dispersers in response to habitat fragmentation in an artificial island archipelago. J. Biogeogr. 46, 1152–1162 (2019).
    Google Scholar 
    Olson, E. R. et al. Arboreal camera trapping for the Critically Endangered greater bamboo lemur Prolemur simus. Oryx 46, 593–597 (2012).
    Google Scholar 
    Li, H.-D. et al. The functional roles of species in metacommunities, as revealed by metanetwork analyses of bird-plant frugivory networks. Ecol. Lett. 23, 1252–1262 (2020).PubMed 

    Google Scholar 
    Snow, B. & Snow, D. Birds and berries: a study of an ecological interaction (T & AD Poyser, Calton, 1988).Si, X., Kays, R. & Ding, P. How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps. PeerJ 2, e374 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Vázquez, D. P. et al. Species abundance and asymmetric interaction strength in ecological networks. Oikos 116, 1120–1127 (2007).
    Google Scholar 
    Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).PubMed 

    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 
    Beckett, S. J. Improved community detection in weighted bipartite networks. R. Soc. Open. Sci. 3, 140536 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Modell. Softw. 26, 173–178 (2011).
    Google Scholar 
    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).CAS 
    PubMed 

    Google Scholar 
    Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Nic Lughadha, E. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3, 1043–1047 (2019).PubMed 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
    PubMed 

    Google Scholar 
    Rogers, H. S., Donoso, I., Traveset, A. & Fricke, E. C. Cascading impacts of seed disperser loss on plant communities and ecosystems. Annu. Rev. Ecol. Evol. Syst. 52, 641–666 (2021).
    Google Scholar 
    Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).
    Google Scholar 
    Patefield, W. M. Algorithm AS 159: An efficient method of generating random R × C tables with given row and column totals. Appl. Stat. 30, 91–97 (1981).
    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
    Google Scholar 
    Kabacoff, R. R in Action: Data Analysis and Graphics with R (Manning Publications Co, 2015).R Core Team. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2021). More

  • in

    Site-specific temporal variation of population dynamics in subalpine endemic plant species

    Theurillat, J.-P. & Guisan, A. Potential impact of climate change on vegetation in the European Alps: A review. Clim. Change 50, 77–109 (2001).CAS 

    Google Scholar 
    Diaz, H. F. & Eischeid, J. K. Disappearing “alpine tundra” Köppen climatic type in the western United States. Geophys. Res. Lett. 34, L18707 (2007).ADS 

    Google Scholar 
    Dirnböck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Change Biol. 17, 990–996 (2011).ADS 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pauli, H., Gottfried, M., Dirnböck, T., Dullinger, S. & Grabherr, G. Assessing the long-term dynamics of endemic plants at summit habitats. In Alpine Biodiversity in Europe (eds. Nagy, L., Grabherr, G., Körner, C., & Thompson, D. B.) 195–207 (Springer, 2003).Cogoni, D., Sulis, E., Bacchetta, G. & Fenu, G. The unpredictable fate of the single population of a threatened narrow endemic Mediterranean plant. Biodivers. Conserv. 28, 1799–1813 (2019).
    Google Scholar 
    Cursach, J., Besnard, A., Rita, J. & Fréville, H. Demographic variation and conservation of the narrow endemic plant Ranunculus weyleri. Acta Oecol. 53, 102–109 (2013).ADS 

    Google Scholar 
    Dibner, R. R., DeMarche, M. L., Louthan, A. M. & Doak, D. F. Multiple mechanisms confer stability to isolated populations of a rare endemic plant. Ecol. Monogr. 89, e01360 (2019).
    Google Scholar 
    Boyce, M. S., Haridas, C. V., Lee, C. T., NCEAS Stochastic Demography Working Group. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).PubMed 

    Google Scholar 
    Buckley, Y. M. et al. Causes and consequences of variation in plant population growth rate: A synthesis of matrix population models in a phylogenetic context. Ecol. Lett. 13, 1182–1197 (2010).PubMed 

    Google Scholar 
    Abbott, R. E., Doak, D. F. & DeMarche, M. L. Portfolio effects, climate change, and the persistence of small populations: Analyses on the rare plant Saussurea weberi. Ecology 98, 1071–1081 (2017).PubMed 

    Google Scholar 
    Villellas, J., Doak, D. F., García, M. B. & Morris, W. F. Demographic compensation among populations: What is it, how does it arise and what are its implications?. Ecol. Lett. 18, 1139–1152 (2015).PubMed 

    Google Scholar 
    Doak, D. F. & Morris, W. F. Demographic compensation and tipping points in climate-induced range shifts. Nature 467, 959–962 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    García-Camacho, R., Albert, M. J. & Escudero, A. Small-scale demographic compensation in a high-mountain endemic: The low edge stands still. Plant Ecol. Divers. 5, 37–44 (2012).
    Google Scholar 
    Andrello, M. et al. Accounting for stochasticity in demographic compensation along the elevational range of an alpine plant. Ecol. Lett. 23, 870–880 (2020).PubMed 

    Google Scholar 
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed 

    Google Scholar 
    Ægisdóttir, H. H., Kuss, P. & Stöcklin, J. Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann. Bot. 104, 1313–1322 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Morente-López, J. et al. Geography and environment shape landscape genetics of Mediterranean alpine species Silene ciliata Poiret. (Caryophyllaceae). Front. Plant Sci. 9, 1698 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Franks, S. J., Weber, J. J. & Aitken, S. N. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 7, 123–139 (2014).PubMed 

    Google Scholar 
    Jeong, H., Cho, Y.-C. & Kim, E. Differential plastic responses to temperature and nitrogen deposition in the subalpine plant species, Primula farinosa subsp. modesta. AoB Plants 13, plab061 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sulis, E., Bacchetta, G., Cogoni, D. & Fenu, G. From global to local scale: Where is the best for conservation purpose?. Biodivers. Conserv. 30, 183–200 (2021).
    Google Scholar 
    Hambler, D. & Dixon, J. Primula farinosa L. J. Ecol. 91, 694–705 (2003).
    Google Scholar 
    Arnold, E. & Richards, A. On the occurrence of unilateral incompatibility in Primula section Aleuritia Duby and the origin of Primula scotica Hook. Bot. J. Linn. Soc. 128, 359–368 (1998).
    Google Scholar 
    Tribsch, A. Areas of endemism of vascular plants in the eastern Alps in relation to Pleistocene glaciation. J. Biogeogr. 31, 747–760 (2004).
    Google Scholar 
    Chung, J.-M., Son, S.-W., Kim, S.-Y., Park, G.-W. & Kim, S.-S. Genetic diversity and geographic differentiation in the endangered Primula farinosa subsp. modesta, a subalpine endemic to Korea. Korean J. Plant. Taxon. 43, 236–243 (2013).
    Google Scholar 
    Lindborg, R. & Ehrlén, J. Evaluating the extinction risk of a perennial herb: Demographic data versus historical records. Conserv. Biol. 16, 683–690 (2002).
    Google Scholar 
    Caswell, H. Matrix Population Models, 2nd ed (Sinauer Associates Inc, 2000).Salguero-Gómez, R. & De Kroon, H. Matrix projection models meet variation in the real world. J. Ecol. 98, 250–254 (2010).
    Google Scholar 
    Jongejans, E. et al. Region versus site variation in the population dynamics of three short-lived perennials. J. Ecol. 98, 279–289 (2010).
    Google Scholar 
    Jongejans, E. & De Kroon, H. Space versus time variation in the population dynamics of three co-occurring perennial herbs. J. Ecol. 93, 681–692 (2005).
    Google Scholar 
    Suggitt, A. J. et al. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120, 1–8 (2011).
    Google Scholar 
    Tomimatsu, H. & Ohara, M. Demographic response of plant populations to habitat fragmentation and temporal environmental variability. Oecologia 162, 903–911 (2010).ADS 
    PubMed 

    Google Scholar 
    Kudernatsch, T., Fischer, A., Bernhardt-Römermann, M. & Abs, C. Short-term effects of temperature enhancement on growth and reproduction of alpine grassland species. Basic Appl. Ecol. 9, 263–274 (2008).
    Google Scholar 
    Kim, E. & Donohue, K. Local adaptation and plasticity of Erysimum capitatum to altitude: Its implications for responses to climate change. J. Ecol. 101, 796–805 (2013).
    Google Scholar 
    Forbis, T. A. Seedling demography in an alpine ecosystem. Am. J. Bot. 90, 1197–1206 (2003).PubMed 

    Google Scholar 
    Yenni, G., Adler, P. B. & Ernest, S. M. Strong self-limitation promotes the persistence of rare species. Ecology 93, 456–461 (2012).PubMed 

    Google Scholar 
    Doak, D. F. Source-sink models and the problem of habitat degradation: General models and applications to the Yellowstone grizzly. Conserv. Biol. 9, 1370–1379 (1995).
    Google Scholar 
    Lesica, P. & Crone, E. E. Arctic and boreal plant species decline at their southern range limits in the Rocky Mountains. Ecol. Lett. 20, 166–174 (2017).PubMed 

    Google Scholar 
    Oldfather, M. F. & Ackerly, D. D. Microclimate and demography interact to shape stable population dynamics across the range of an alpine plant. New Phytol. 222, 193–205 (2019).PubMed 

    Google Scholar 
    Ågren, J., Fortunel, C. & Ehrlén, J. Selection on floral display in insect-pollinated Primula farinosa: Effects of vegetation height and litter accumulation. Oecologia 150, 225–232 (2006).ADS 
    PubMed 

    Google Scholar 
    Ehrlén, J., Syrjänen, K., Leimu, R., Begona Garcia, M. & Lehtilä, K. Land use and population growth of Primula veris: An experimental demographic approach. J. Appl. Ecol. 42, 317–326 (2005).
    Google Scholar 
    Ehrlén, J. & Morris, W. F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 18, 303–314 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio package in R. J. Stat. Softw. 22, 1–23 (2007).
    Google Scholar 
    Weiss, N. Package ‘wPerm’. https://cran.r-project.org/web/packages/wPerm/wPerm.pdf. (2015).Frossard, J. & Renaud, O. Permutation tests for regression, ANOVA, and comparison of signals: The permuco package. J. Stat. Softw. 99, 1–32 (2021).
    Google Scholar  More