More stories

  • in

    Kinship dynamics may drive selection of age-related traits

    “This new study is inspired by some our earlier theoretical work applied to killer whales that suggests that age-related changes in relatedness are important for the evolution of menopause,” says Samuel Ellis, the first author of the study. “Reproduction can be thought of as a form of generalized harm as the birth of an offspring increases within-group competition for resources. Kinship dynamics — the ways in which local relatedness changes over an individual’s lifetime — are one way that menopause could be favored, because older females are more inclined to cease reproduction to not harm their group mates than younger females. Here we wanted to generalize this concept to both sexes, and to other species without menopause.” More

  • in

    The emergence and development of behavioral individuality in clonal fish

    All animal care and experimental protocols complied with local and federal laws and guidelines and were approved by the appropriate governing body in Berlin, Germany, the Landesamt fur Gesundheit und Soziales (LaGeSo G-0224/20).Experimental breeding and designThe all-female Amazon molly (Poecilia formosa) is a naturally clonal, live-bearing fish species that gives birth to broods of genetically identical offspring. Like all unisexual vertebrates, Amazon mollies are the result of inter-specific hybridization44,45. As such, this ‘frozen hybrid’ has a heterozygous genome from its ancestral P. mexicana mother and P. latipinna father alleviating concerns about reduced genetic variation and the resulting inbreeding depression often associated with artificially selected isogenic animals. Additionally, despite their clonal nature, the Amazon’s genome shows no evidence of increased mutation accumulation, genomic decay or transposable element activity suggesting the genomes of these animals are evolving in similar ways as sexual species46. They reproduce through gynogenesis where the meiotic process is disrupted so that the eggs contain a full maternal genome. The egg must be fused with a sperm from one of their ancestral species to stimulate embryogenesis, but this paternal DNA is not incorporated into the egg. This provides the opportunity to control when reproduction occurs by controlling the females’ access to male sperm donors.We placed adult females, as potential mothers of experimental fish, in individual (5-gallon) breeding tanks with two Atlantic molly (P. mexicana) males for one week to act as sperm donors. Amazon mollies give birth to broods of generally ~8-30 individuals. A brood is born at once (i.e. all individuals are born within minutes of each other) and birth generally happens early in the day close to dawn. These parental fish were lab-bred and themselves sisters, so of the same age and lineage, and were kept at similar social densities and under standardized environmental conditions throughout their lives to further minimize potential variation in maternal experience. Each breeding tank contained an artificial plant as refuge and was checked frequently each day for the presence of offspring, especially during the morning hours when births are most likely. Newborn mollies were always found in the morning and then singly netted by trained animal caretakers, into individual experimental tanks where their behavior was automatically recorded for the next 70 days (see below). Moving the fish from the maternal tank to the experimental tanks was done in a standardized manner (i.e. individual fish were netted and placed into small dishes of water and then placed in the tracking tanks to limit exposure to the air) by the same caretakers to minimize variation in experience among individual fish. Altogether, eight mothers provided offspring that completed the entire 10-week experiment (Supplementary Table 1).Experimental tanks (27 x 27 cm), made of white Perspex, consisted of four equally sized compartments, and were evenly lit from below using 6500K-LEDs. Environmental conditions were highly standardized across tanks: all tanks were on the same 11:13 (L:D) light schedule, water depth was maintained at 10 cm depth, temperature was maintained at 25 ± 1 °C by a room air conditioning system, and fish received a standardized amount of powdered flake fish food (TetraMin™) twice daily. Opaque blinds surrounded the tanks to further limit outside disturbances. All experimental tanks were connected to the same filtration system where water could mix in the sump tank, allowing chemical cues to be shared across all experimental fish. Previous work has shown exposure to just chemical cues of conspecifics is sufficient in preventing the developmental of pathological behavior that could be associated with development in complete isolation14. We initially placed a total of 40 newborn individuals into the tracking tanks. At the end of the 10-week experiment, we were able to achieve complete tracking data on 26 individuals; camera malfunctions prevented data collection on four individuals, two individuals jumped into neighboring tanks causing the loss of data of all four individuals as we could not verify their identity; four newborn individuals escaped through holes in the water outlet of the tanks; and four individuals died as newborns. All results in the manuscript are on these 26 animals, though including data from all 40 (e.g. patterns of individual variation on the first day post birth) did not change the results or their interpretation (see Supplementary Table 2).Behavioral trackingWe developed a custom recording system using Raspberry Pi computers, which are an upcoming low-cost, highly adaptable solution for many applications in the biological sciences25. Specifically, we created a local network of Raspberry Pi 3B + ’s, each connected to a Raspberry Pi camera positioned exactly above an experimental tank, commanded by a lab computer, and connected to the server on the institute network (Supplementary Fig. 1). We programmed the Raspberry Pi’s using pirecorder26 to take timestamped photos every 3 s across the daily light period, each day, for 10 weeks, and store them automatically in dedicated, automatically named folders on the server. Image settings and resolution were thereby optimized to minimize file size while assuring image quality. After the experimental period, we created videos of all the recorded images of each fish of each day. These videos were subsequently tracked with the Biotracker software27, using background subtraction, providing the x, y coordinates of each fish in each frame. We then processed the data, including scaling and converting the coordinates to mm, and, for each frame, computed fish’s swimming speed (cm/s) and distance from the tank walls (cm). We then summarized these variables both on an hourly and daily basis to compute fish’s median swimming speed, inter-quartile range of swimming speeds, activity (proportion of time spent moving >0.5 cm/s), and median border distance. To quantify fish’s body size over time, we randomly selected five photos per week of each compartment, making sure the fish was away from the compartment walls and did not show strong body curvature, and then used ImageJ software to measure total body length (mm) from the tip of the snout to the end of the body. By averaging the measurements of the five images, we acquired one body size measurement per week.Error checkingWe collected up to 924,000 photos on each individual throughout the experimental period resulting in a total of over 24 million data points collected on our experimental animals (N = 26 individuals). To ensure that our tracking software accurately captured the behavior of our fish, we checked for potential tracking errors in two ways. First, we estimated overall error rates. To do this, we selected at random a starting frame from within a day; then we manually checked each of the subsequent 200 frames and identified whether an error was made (fish was not properly located by BioTracker) or not (fish was properly located) by visual inspection of the videos. We estimated the error rate as the number of errors divided by the total number of checked frames. The overall median error rate over the entire observation period was estimated to be 7%. Error rates increased earlier in the observation period when the fish were smaller (Supplementary Note I). As such, as a second step, we manually went through and corrected all frames for the very first day of tracking (i.e. day 1 post-birth) for all fish (~13,200 frames per individual) as this is a critical time period for one of our research questions. This ensured that the resulting behavioral data were completely accurate for this day. This manual correction allowed us the additional opportunity to compare how well our automatically tracked (i.e. not manually corrected) data performed compared to the manually corrected data. We found that the automatically tracked data re-created near identical estimates of among- and within-individual variance components and most importantly the among-individual correlation between the automatically tracked and manually corrected data was over 0.98 for our behavioral variables (Supplementary Note I). This strongly suggests that any errors introduced by our automated tracking software have minimal influence of our behavioral variables at best and do not affect our interpretation of the results.Statistical analysesWe used linear mixed, or hierarchical, models to partition the behavioral variation across different times periods into its among- and within-individual components. Throughout we focused our analysis on the 26 individuals for which we had complete data for the entire 10-week observation period to ensure comparable variation over time and across models.Our first question of interest was to test when individual differences in behavior first appeared over the course of the experiment. We started by investigating behavior on the first day post birth (Fig. 1A, Supplementary Table 2) and then planned to proceed in a day-by-day fashion until significant repeatability in behavior was apparent (Supplementary Table 3). We used hourly median swimming speed (11 observations for each of 26 individuals) as our response variable and included ‘hour’ and ‘total length (TL)’ as fixed effects and ‘individual’ was included as our random effect of interest. Including TL as a covariate allowed us to test whether behavior was related to an offspring’s body size on its first day of life. We set the first hour of the day as 0 and mean-centered TL as this would allow the among- (and within-) individual variance components to be estimated at these values (i.e. the earliest possible moment from when we could record behavior in the fish). We estimated the adjusted repeatability of median swimming speed as the variance attributable to individual identity over the total variance not explained by the fixed effects. We additionally estimated both marginal and conditional R-squared values which estimate the variance explained by the fixed effects only and the variance explained by the fixed and random effects combined, respectively. As our individual experimental fish came from different mothers, we first explored a number of different variance structures including random intercepts and slopes for both individual ID and maternal ID. This allowed us to test whether maternal identity explained variation in individual behavior. However, the most supported model included random intercepts and slopes for individual ID and not for mother ID, indicating that our methods to reduce variation among mothers were successful (Table 1). We used median swimming speed as our behavioral variable of interest throughout the main manuscript, as this behavior was tightly correlated with most of our other behavioral variables (Supplementary Fig. 2); though results using the other behavioral variables yielded the same interpretation (i.e. that significant individuality in (any) behavior was present on the very first day post-birth; Supplementary Table 2).Our second research question was to investigate how individual behavioral variance changed over the course of the entire observation period (70 days). Again, we first explored several different variance structures to test the importance of maternal identity and/or individual identity on behavioral variation. We found support for the inclusion of random slopes at the individual level, but not maternal level (Table 1). This indicates that levels of among- (and within-) individual variation may differ throughout the observation period. To investigate patterns of change in the variance components, we ran a series of models where we centered the observation covariate on different days. Individual intercepts are estimated when all covariates are set to zero, so this allowed us to ‘slice’ the data to estimate the among- and within-individual variance at different time points over the ten weeks. We ran 11 models as we chose to center the data every 7 days (first model was centered on observation 1; 11th model was centered on observation 70). The predicted individual intercepts (best linear unbiased predictors) and estimated variance components from each model are plotted in Fig. 3.We also closely investigated any potential influence of body size and/or growth rate differences on behavioral expression and individual behavioral variation in this entire 10-week data set. First, we estimated the repeatability of both weekly total length and weekly growth rates to determine if individuals consistently differed in these traits. Then, we ran a series of models with median weekly swimming speed as the response variable and included either weekly total length, weekly growth rate, and/or overall growth rate (estimated over the entire 10 weeks), as our fixed effects of interest. Each model also included the random effects of individual intercepts and slopes. Finally, because body size varies both among individuals (some individuals are on average larger than others) and within individuals (as they grow), we also performed within-individual centering of total length. In this fifth model, we included each individual’s average total length and their weekly deviation from their average length as the two fixed effects of interest. Individual identity and slopes were included as random effects. For all models, we estimated the variance explained by the fixed effects (marginal R2) and the fixed and random effects together (conditional R2). These results are reported in Table 2.For our third and final research question, we tested whether early-life behavior predicted later-life behavior. To test this, we estimated the among-individual correlation (including ‘individual ID’ as our random effect) in behavior using multivariate mixed models where the daily median swimming speeds in each week were the response variables (7 observations per week per individual; 10 weeks total; Fig. 4A). Then to investigate how the strength of these correlations may change over development, we used a linear model to test whether the correlation strength was predicted by the interaction between the first week included in the correlation and distance to the next week in the correlation (1, 2, 3, 4 or 5 weeks away in time; Fig. 4B).All models were performed using Markov Chain Monte Carlo estimation with the MCMCglmm package38 in R v3.6.139. We set our models to run 510,000 iterations with a 10,000 burn-in and thinning every 200 iterations. To ensure proper model mixing and convergence, we initially ran 5 independent chains and inspected posterior trace plots of parameter estimates (Supplementary Note II). In a preliminary analysis we tested three different prior settings (Supplementary Note II); results did not change with prior settings so we chose parameter-expanded priors for all models reported here as these are generally considered to be more robust. An R Markdown file with all the results presented here is included in Supplementary Note II.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Droplet microfluidics-based high-throughput bacterial cultivation for validation of taxon pairs in microbial co-occurrence networks

    Conception of the workflow to demonstrate the microbial associations from co-occurrence networks with microbial cultivationMicrobial co-occurrence networks are composed of nodes and edges, which usually represent microbes and statistically significant associations between microbes, respectively. We hypothesized that the microbial associations could be validated if the topological properties of networks are simplified, and if the microbes representing the nodes can be cultivated. To test this hypothesis, we designed a workflow as shown in Fig. 1. A total of 12,096 wells from 126 96-well plates were inoculated with droplets of series diluted environmental samples, wells from each 96-well plate represented the same combination of given culture condition, sample type (plants, roots, and sediments) and dilution rate (from 10–1 to 10–7). After being cultivated at 30 °C for 10 days, 69 effective (Supplementary Table S3) plates with  > 30% wells showing microbial growth were retained for downstream microbial community analysis. Microbial DNA in each well was extracted, bar-coded, and sequenced for the inference of co-occurrence networks. The wells of plates showing high abundances of target Zotus were targeted for microbial isolations. Lastly, the cultivated microbial isolates were matched to Zotus in the network and used for demonstration of microbial interactions.Figure 1Overview of experimental demonstration of microbial interactions in co-occurrence networks. For detailed description, please refer to the method section.Full size imagePrevalent Zotu pairs in the co-occurrence networksDepending on the microbial density in samples, the 96-well plates harbored different numbers of wells with microbial growth. We obtained 65 96-well plates (6,091 wells) that were effective with microbial growth and data analysis for co-occurrence network reconstruction. After quality control and denoise, we obtained 130 Gbp sequence data. A total of 14,377 Zotus were annotated (Supplementary Table S4). There were 217 ± 94 (average ± standard deviation) prevalent Zotus, i.e., these Zotus appeared at frequencies ≥ 30% of wells in a given 96-well plate.Next, we analyzed Zotus compositions and abundances in each well of the 65 plates. Accordingly, we reconstructed 65 independent microbial co-occurrence networks and further retrieved the robust (Spearman’s |ρ| > 0.6 and P  More

  • in

    Presence of algal symbionts affects denitrifying bacterial communities in the sea anemone Aiptasia coral model

    Darwin C. The structure and distribution of coral reefs, 3rd edn. D. Appleton & Company: New York, NY, USA, 1889.Lajeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, et al. Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. Curr Biol. 2018;28:2570–80.e6.CAS 
    PubMed 

    Google Scholar 
    Muscatine L, Porter JW. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience. 1977;27:454–60.
    Google Scholar 
    Rohwer F, Seguritan V, Azam F, Knowlton N. Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser. 2002;243:1–10.
    Google Scholar 
    Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5:355–62.CAS 
    PubMed 

    Google Scholar 
    Muscatine L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs. 1990;25:75–87.
    Google Scholar 
    Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L. Population control in symbiotic corals. Bioscience. 1993;43:606–11.
    Google Scholar 
    Baker DM, Freeman CJ, Wong JCY, Fogel ML, Knowlton N. Climate change promotes parasitism in a coral symbiosis. ISME J. 2018;12:921–30.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Perna G, Geißler L, et al. Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling. ISME J. 2022;16:1110–8.PubMed 

    Google Scholar 
    Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 2015;23:490–7.PubMed 

    Google Scholar 
    Bourne DG, Webster NS. Coral Reef Bacterial Communities. In: Rosenberg E, DeLong EF, editors. The Prokaryotes. Springer: Berlin Heidelberg; 2013. pp. 163–87.Ainsworth DT, Krause L, Bridge T, Torda G, Raina J-B, Zakrzewski M, et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 2015;9:2261–74.CAS 

    Google Scholar 
    Pernice M, Raina J-B, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 2020;14:325–34.PubMed 

    Google Scholar 
    Pogoreutz C, Oakley CA, Rädecker N, Cárdenas A, Perna G, Xiang N, et al. Coral holobiont cues prime Endozoicomonas for a symbiotic lifestyle. ISME J. 2022;16:1883–95.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pogoreutz C, Voolstra CR, Rädecker N, Weis V. The coral holobiont highlights the dependence of cnidarian animal hosts on their associated microbes. In: Bosch TCG, Hadfield MG, editors. Cellular Dialogues in the Holobiont. Boca Raton: CRC Press; 2020. pp. 91–118.Babbin AR, Tamasi T, Dumit D, Weber L, Rodríguez MVI, Schwartz SL, et al. Discovery and quantification of anaerobic nitrogen metabolisms among oxygenated tropical Cuban stony corals. ISME J. 2021;15:1222–35.CAS 
    PubMed 

    Google Scholar 
    Glaze TD, Erler DV, Siljanen HMP. Microbially facilitated nitrogen cycling in tropical corals. ISME J. 2022;16:68–77.CAS 
    PubMed 

    Google Scholar 
    Lesser MP, Morrow KM, Pankey SM, Noonan SHC. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J. 2018;12:813–24.CAS 
    PubMed 

    Google Scholar 
    Cardini U, Bednarz VN, Naumann MS, van Hoytema N, Rix L, Foster RA, et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc R Soc B. 2015;282:20152257.PubMed 
    PubMed Central 

    Google Scholar 
    Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front Microbiol. 2017;8:1187.PubMed 
    PubMed Central 

    Google Scholar 
    Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob Chang Biol. 2017;23:3838–48.PubMed 

    Google Scholar 
    Bednarz VN, van de Water JA, Rabouille S, Maguer JF, Grover R, Ferrier‐Pagès C. Diazotrophic community and associated dinitrogen fixation within the temperate coral Oculina patagonica. Environ Microbiol. 2019;21:480–95.CAS 
    PubMed 

    Google Scholar 
    Lema KA, Willis BL, Bourne DG. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl Environ Microbiol. 2012;78:3136–44.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lema KA, Clode PL, Kilburn MR, Thornton R, Willis BL, Bourne DG. Imaging the uptake of nitrogen-fixing bacteria into larvae of the coral Acropora millepora. ISME J. 2016;10:1804–8.CAS 
    PubMed 

    Google Scholar 
    Santos HF, Carmo FL, Duarte G, Dini-Andreote F, Castro CB, Rosado AS, et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 2014;8:2272–9.PubMed 
    PubMed Central 

    Google Scholar 
    Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Roth F, Bougoure J, et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc Natl Acad Sci USA. 2021;118:e2022653118.PubMed 
    PubMed Central 

    Google Scholar 
    Braker G, Fesefeldt A, Witzel K-P. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol. 1998;64:3769–75.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tilstra A, El-Khaled YC, Roth F, Rädecker N, Pogoreutz C, Voolstra CR, et al. Denitrification aligns with N2 fixation in Red Sea corals. Sci Rep. 2019;9:1–9.Tilstra A, Roth F, El-Khaled YC, Pogoreutz C, Rädecker N, Voolstra CR, et al. Relative abundance of nitrogen cycling microbes in coral holobionts reflects environmental nitrate availability. R Soc Open Sci. 2021;8:201835.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiang N, Hassenrück C, Pogoreutz C, Rädecker N, Simancas-Giraldo SM, Voolstra CR, et al. Contrasting microbiome dynamics of putative denitrifying bacteria in two octocoral species exposed to dissolved organic carbon (DOC) and warming. Appl Environ Microbiol. 2022;88:e01886-21.El-Khaled YC, Roth F, Tilstra A, Rädecker N, Karcher DB, Kürten B, et al. In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs. Mar Ecol Prog Ser. 2020;645:55–66.CAS 

    Google Scholar 
    Beauchamp EG, Trevors JT, Paul JW. Carbon sources for bacterial Denitrification. In: Stewart BA. Advances in Soil Science. Springer: New York, NY; 1989. pp. 113–42.Baker AC. Flexibility and Specificity in Coral-Algal Symbiosis: Diversity, Ecology, and Biogeography of Symbiodinium. Ann Rev Ecol Evol Syst. 2003;34:661–89.
    Google Scholar 
    Wang J-T, Chen Y-Y, Tew KS, Meng P-J, Chen CA. Physiological and Biochemical Performances of Menthol-Induced Aposymbiotic Corals. PLoS ONE. 2012;7:e46406.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cui G, Liew YJ, Li Y, Kharbatia N, Zahran NI, Emwas A-H, et al. Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLoS Genet. 2019;15:e1008189.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rädecker N, Raina J-B, Pernice M, Perna G, Guagliardo P, Kilburn MR, et al. Using Aiptasia as a Model to Study Metabolic Interactions in Cnidarian-Symbiodinium Symbioses. Front Physiol. 2018;9:214.PubMed 
    PubMed Central 

    Google Scholar 
    Voolstra CR. A journey into the wild of the cnidarian model systemAiptasiaand its symbionts. Mol Ecol. 2013;22:4366–8.PubMed 

    Google Scholar 
    Sunagawa S, Wilson EC, Thaler M, Smith ML, Caruso C, Pringle JR, et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genom. 2009;10:258.
    Google Scholar 
    Xiang T, Hambleton EA, DeNofrio JC, Pringle JR, Grossman AR. Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity1. J Phycol. 2013;49:447–58.CAS 
    PubMed 

    Google Scholar 
    Thornhill DJ, Lewis AM, Wham DC, Lajeunesse TC. Host‐specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution. 2014;68:352–67.CAS 
    PubMed 

    Google Scholar 
    Bieri T, Onishi M, Xiang T, Grossman AR, Pringle JR. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching. PLoS ONE. 2016;11:e0152693.PubMed 
    PubMed Central 

    Google Scholar 
    Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, et al. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci USA. 2015;112:11893–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Correa AMS, McDonald MD, Baker AC. Development of clade-specific Symbiodinium primers for quantitative PCR (qPCR) and their application to detecting clade D symbionts in Caribbean corals. Mar Biol. 2009;156:2403–11.CAS 

    Google Scholar 
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8.CAS 
    PubMed 

    Google Scholar 
    Lee JA, Francis CA. DeepnirSamplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition. Environ Microbiol. 2017;19:4897–912.CAS 
    PubMed 

    Google Scholar 
    Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005;6:279–84.CAS 
    PubMed 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBO J. 2011;17:10–2.
    Google Scholar 
    Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/Swiss-Prot: the manually annotated section of the UniProt KnowledgeBase. Methods Mol Biol. 2007;406:89–112.Abascal F, Zardoya R, Telford MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 2010;38:7–13.
    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.PubMed 
    PubMed Central 

    Google Scholar 
    Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, et al. FunGene: the functional gene pipeline and repository. Front Microbiol. 2013;4:291.PubMed 
    PubMed Central 

    Google Scholar 
    Wickham H. ggplot2. Wiley Interdiscip Rev Comput Stat. 2011;3:180–5.Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Commun Ecol Package. 2007;10:719.
    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020;11:1–11.CAS 

    Google Scholar 
    Meunier V, Geissler L, Bonnet S, Rädecker N, Perna G, Grosso O, et al. Microbes support enhanced nitrogen requirements of coral holobionts in a high CO 2 environment. Mol Ecol. 2021;30:5888–99.CAS 
    PubMed 

    Google Scholar 
    Geissler L, Meunier V, Rädecker N, Perna G, Rodolfo-Metalpa R, Houlbrèque F, et al. Highly Variable and Non-complex Diazotroph Communities in Corals From Ambient and High CO2 Environments. Front Mar Sci. 2021;8:754682.Thornhill DJ, Xiang Y, Pettay DT, Zhong M, Santos SR. Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Mol Ecol. 2013;22:4499–515.CAS 
    PubMed 

    Google Scholar 
    Röthig T, Costa RM, Simona F, Baumgarten S, Torres AF, Radhakrishnan A, et al. Distinct bacterial communities associated with the coral model Aiptasia in aposymbiotic and symbiotic states with Symbiodinium. Front Mar Sci. 2016;3:234.
    Google Scholar 
    Hartman LM, Blackall LL, van Oppen MJH. Antibiotics reduce bacterial load in Exaiptasia diaphana, but biofilms hinder its development as a gnotobiotic coral model. Access Microbiol. 2022;4:000314.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lawson CA, Raina JB, Kahlke T, Seymour JR, Suggett DJ. Defining the core microbiome of the symbiotic dinoflagellate, Symbiodinium. Environ Microbiol Rep. 2018;10:7–11.CAS 
    PubMed 

    Google Scholar 
    Matthews JL, Raina JB, Kahlke T, Seymour JR, van Oppen MJ, Suggett DJ. Symbiodiniaceae‐bacteria interactions: rethinking metabolite exchange in reef‐building corals as multi‐partner metabolic networks. Environ Microbiol. 2020;22:1675–87.PubMed 

    Google Scholar 
    Costa RM, Cárdenas A, Loussert-Fonta C, Toullec G, Meibom A, Voolstra CR. Surface Topography, Bacterial Carrying Capacity, and the Prospect of Microbiome Manipulation in the Sea Anemone Coral Model Aiptasia. Front Microbiol. 2021;12:637834.Pelve EA, Fontanez KM, DeLong EF. Bacterial succession on sinking particles in the ocean’s interior. Front Microbiol. 2017;8:2269.PubMed 
    PubMed Central 

    Google Scholar 
    Welles L, Lopez-Vazquez CM, Hooijmans CM, Van Loosdrecht MCM, Brdjanovic D. Prevalence of ‘Candidatus Accumulibacter phosphatis’ type II under phosphate limiting conditions. AMB Express. 2016;6:1–12.Kaneko T. Complete Genomic Sequence of Nitrogen-fixing Symbiotic Bacterium Bradyrhizobium japonicum USDA110. DNA Res. 2002;9:189–97.PubMed 

    Google Scholar 
    Cziesielski MJ, Liew YJ, Cui G, Schmidt-Roach S, Campana S, Marondedze C, et al. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc R Soc B: Biol Sci. 2018;285:20172654.
    Google Scholar 
    Xiang T, Lehnert E, Jinkerson RE, Clowez S, Kim RG, Denofrio JC, et al. Symbiont population control by host-symbiont metabolic interaction in Symbiodiniaceae-cnidarian associations. Nat Commun. 2020;11:1–9.CAS 

    Google Scholar  More

  • in

    Exceptional preservation of internal organs in a new fossil species of freshwater shrimp (Caridea: Palaemonoidea) from the Eocene of Messel (Germany)

    De Grave, S., & Fransen, C. H. J. M. Carideorum Catalogus: The Recent Species of the Dendrobranchiate, Stenopodidean, Procarididean and Caridean Shrimps (Crustacea: Decapoda). Zool. Meded. 85, (2011).Garassino, A. The macruran decapod crustaceans of the Lower Cretaceous (Lower Barremian) of Las Hoyas (Cuenca, Spain). Atti Soc. it. Sci. nat. Museo civ. Stor. nat. Milano 137, 101–126 (1997).Bravi, S., Coppa, M. G., Garassino, A., & Patricelli, R. Palaemon vesolensis n. sp. (Crustacea, Decapoda) from the Plattenkalk of Vesole Mount (Salerno, Southern Italy). Atti Soc. it. Sci. nat. Museo civ. Stor. nat. Milano 140, 141–169 (1999).Colleary, C. et al. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils. Proc. Natl. Acad. Sci. U.S.A. 11241, 12592–12597 (2015).Article 
    ADS 

    Google Scholar 
    Vinther, J., Briggs, D. E., Clarke, J., Mayr, G. & Prum, R. O. Structural coloration in a fossil feather. Biol. Lett. 6, 128–131 (2010).Article 
    PubMed 

    Google Scholar 
    McNamara, M. E. et al. Fossilised biophotonic nanostructures reveal the original colors of 47 million-year-old moths. PLoS Biol. 9, e1001200 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rietschel, S. Taphonomic biasing in the Messel Fauna and Flora. Cour. Forsch. Inst. Senckenberg 107, 169–182 (1988).
    Google Scholar 
    Wolf, H. W. Schätze im Schiefer (Westermann, 1991).Rabenstein, R. Messel 2000 – Das Weltnaturerbe Deutschlands (eds Forschungsinstitut Senckenberg) (2000).Gruber, G., & Micklich, N. Messel – Treasures of the Eocene (Hessisches Landesmuseum Darmstadt, 2007).Wedmann, S. Annotated taxon-list of the invertebrate animals from the Eocene fossil site Grube Messel near Darmstadt Germany. Cour. Forsch. Inst. Senckenberg 255, 103–110 (2005).
    Google Scholar 
    Schaal, S. F. K. & Rabenstein, R. D. Tagebau Messel in Linien und Zahlen. Senckenberg Nat. Forsch. Mus. 142, 376–377 (2012).
    Google Scholar 
    Moshayedi, M., Lenz, O. K., Wilde, V. & Hinderer, M. The recolonisation of volcanically disturbed Eocene habitats of Central Europe: the maar lakes of Messel and Offenthal (SW Germany) compared. Paleobiodivers. Paleoenviron. 100, 951–973 (2020).Article 

    Google Scholar 
    Schulz, R., Harms, F.-J. & Felder, M. Die Forschungsbohrung Messel 2001: Ein Beitrag zur Entschlüsselung der Genese einer Ölschieferlagerstätte. Z. angew. Geol. 2002, 9–17 (2002).
    Google Scholar 
    Felder, M. & Harms, F. J. Lithologie und genetische Interpretation der vulkano-sedimentären Ablagerungen aus der Grube Messel anhand der Forschungsbohrung Messel 2001 und weiterer Bohrungen (Eozän, Messel-Formation, Sprendlinger Horst, Südhessen). Cour. Forsch. Inst. Senckenberg 252, 151–203 (2004).
    Google Scholar 
    Büchel, G. N., & Schaal, S. F. K. The formation of the Messel maar in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 62–103 (Schweizerbart, 2018).Der, G. K. Messeler Ölschiefer – ein Algenlaminit. Cour. Forsch. Inst. Senckenberg 131, 1–143 (1990).
    Google Scholar 
    Lenz, O. K., Wilde, V. & Riegel, W. Recolonization of a Middle Eocene volcanic site: quantitative palynology of the initial phase of the maar lake of Messel (Germany). Rev. Palaeobot. Palynol. 145, 217–242 (2007).Article 

    Google Scholar 
    Bauersachs, T., Schouten, S. & Schwark, L. Characterization of the sedimentary organic matter preserved in Messel oil shale by bulk geochemistry and stable isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 410, 390–400 (2014).Article 

    Google Scholar 
    Mertz, D. F. & Renne, P. R. A numerical age for the Messel fossil deposit (UNESCO world natural heritage site) from 40Ar/39Ar dating. Cour. Forsch. Inst. Senckenberg 255, 67–75 (2005).
    Google Scholar 
    Lenz, O. K., Wilde, V., Mertz, D. F. & Riegel, W. New palynology-based astronomical and revised 40Ar/39Ar ages for the Eocene maar lake of Messel (Germany). Int. J. Earth Sci. 104, 873–889 (2015).Article 
    CAS 

    Google Scholar 
    Lenz, O. K. & Wilde, V. Changes in Eocene plant diversity and composition of vegetation: The lacustrine archive of Messel (Germany). Paleobiology 44, 709–735 (2018).Article 

    Google Scholar 
    Lenz, O. K., Wilde, V, Riegel, W., & Harms, F-J. A 600 k.y. record of El Niño–Southern Oscillation (ENSO): evidence for persisting teleconnections during the Middle Eocene greenhouse climate of Central Europe. Geology 38, 627–630 (2010).Lenz, O. K., Wilde, V, & Riegel, W. Paleoclimate – Learning from the past for the future in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 16–23 (Schweizerbart, 2018).Grein, M., Utescher, T., Wilde, V. & Roth-Nebelsick, A. Reconstruction of the middle Eocene climate of Messel using palaeobotanical data. Neues Jb. Geol. Paläontol. Abh. 260, 305–318 (2011).Article 

    Google Scholar 
    Tütken, T. Isotope compositions (C, O, Sr, Nd) of vertebrate fossils from the Middle Eocene oil shale of Messel, Germany: Implications for their taphonomy and palaeoenvironment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 92–109 (2014).Article 

    Google Scholar 
    Wilde, V. The fossil flora of Messel in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 42–61 (Schweizerbart, 2018).Smith, K. T., Schaal, S. F. K. & Habersetzer, J. (eds.) Messel: An Ancient Greenhouse Ecosystem. (Schweizerbart, 2018).Wedmann, S., Hörnschemeyer, T., Engel, M. S., Zetter, R. & Grímsson, F. The last meal of an Eocene pollen-feeding fly. Curr. Biol. 31, 2020–2026 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wedmann, S. Jewels in the oil shale – insects and other invertebrates in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 62–103 (Schweizerbart, 2018).Franzen J. L. Odd-toed ungulates – Early horses and tapiromorphs in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 292–301 (Schweizerbart, 2018).Franzen, J. L., Aurich, C. & Habersetzer, J. Description of a well preserved fetus of the European Eocene Equoid Eurohippus messelensis. PLoS ONE 10, e0137985 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Franzen J. L., & Gingerich, P. D. Primates – Rareties in Messel in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 240–247 (Schweizerbart, 2018).Franzen, J. L. et al. Complete primate skeleton from the middle Eocene of Messel in Germany: Morphology and paleobiology. PLoS ONE 4(5), e5723 (2009).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Houša, V. Bechleja inopinata n. g., n. sp., nový ráček z českých třetihor (Decapoda, Palaemonidae). Ústřed. Ústavu Geol. Sborník 23, 365–377 (1957).Glaessner, M. F. Decapoda. In Part R Arthropoda 4(2) Treatise on Invertebrate Paleontology (ed Moore, R. C.) (The University of Kansas Press and The Geological Society of America, 1969).De Grave, S., Cai, Y. & Anker, A. Global diversity of shrimps (Crustacea: Decapoda: Caridea) in freshwater. Hydrobiologia 595, 287–293 (2008).Article 

    Google Scholar 
    Garassino, A. & Bravi, S. Palaemon antonellae new species (Crustacea, Decapoda, Caridea) from the Lower Cretaceous “Platydolomite” of profeti (Caserta, Italy). J. Paleontol. 77, 589–592 (2003).Article 

    Google Scholar 
    Schweitzer, C., Karasawa, H., Schweigert, G., Feldmann, R. & Garassino, A. Systematic list of fossil decapod crustacean species. Crustac. Monogr. 10, 1–222 (2010).
    Google Scholar 
    Plotnick, R. E. Taphonomy of a modern shrimp: implications for the arthropod fossil record. Palaios 1, 286–293 (1986).Article 
    ADS 

    Google Scholar 
    Klompmaker, A. A., Portell, R. W. & Frick, M. G. Comparative experimental taphonomy of eight marine arthropods indicates distinct differences in preservation potential. Palaeontology 60, 773–794 (2017).Article 

    Google Scholar 
    Vannier, J., Schoenemann, B., Gillot, T., Charbonnier, S. & Clarkson, E. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic. Nat. Commun. 7, 1–9 (2016).Article 

    Google Scholar 
    Jauvion, C., Audo, D., Charbonnier, S. & Vannier, J. Virtual dissection and lifestyle of a 165-million-year-old female polychelidan lobster. Arthropod Struct. Dev. 45, 122–132 (2016).Article 
    PubMed 

    Google Scholar 
    Pazinato, P. G., Jauvion, C., Schweigert, G., Haug, J. T. & Haug, C. After 100 years: a detailed view of an eumalacostracan crustacean from the Upper Jurassic Solnhofen Lagerstätte with raptorial appendages unique to Euarthropoda. Lethaia 54, 55–72 (2021).Article 

    Google Scholar 
    Briggs, D. E. G. & Kear, A. J. Decay and mineralization of shrimps. Palaios 9, 431–456 (1994).Article 
    ADS 

    Google Scholar 
    Wuttke, M. Conservation-dissolution-transformation. On the behaviour of biogenic materials during fossilization In Messel: an insight into the history of life and of the earth (eds. Schaal, S. & Ziegler, W.) 263–275 (Claredon, 1992).Thompson, J. R. Comments on phylogeny of section Caridea (Decapoda Natantia) and the phylogenetic importance of the Oplophoridea. Proc. Symp. Crustacea Part 1, 314–326 (1967).
    Google Scholar 
    Ashelby, C. W., De Grave, S. & Johnson, M. L. Preliminary observations on the mandibles of palaemonoid shrimp (Crustacea: Decapoda: Caridea: Palaemonoidea). PeerJ 3, e846 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Felgenhauer, B. E., & Abele, L. G. Phylogenetic relationships among shrimp-like decapods. In Crustacean Phylogeny (ed Schram, F. R.) 291–311 (A. A. Balkema, 1983).Wowor, D., Cai, Y., & Ng, P. K. L. Crustacea: Decapoda, Caridea. In Freshwater Invertebrates of the Malaysian Region (eds Yule, C. M. & Y. H. Sen, Y. H.) 337–357 (Academy of Sciences Malaysia, 2004).Rodd, F. H., & Reznick, D. N. Life History Evolution in Guppies: III. The Impact of Prawn Predation on Guppy Life Histories. Oikos 62, 13–19 (1991).Felgenhauer, B. E. & Abele, L. G. Feeding structures of two atyid shrimps, with comments on Caridean phylogeny. J. Crustac. Biol. 5, 397–419 (1985).Article 

    Google Scholar 
    de Mazancourt, V., Marquet, G., & Keith, P. The “Pinocchio-shrimp effect”: First evidence of variation in rostrum length with the environment in Caridina H. Milne-Edwards, 1837 (Decapoda: Caridea: Atyidae). J. Crustac. Biol. 37, 249–257 (2017).Zimmermann, G. et al. Geometric morphometrics of carapace of Macrobrachium australe (Crustacea: Palaemonidae) from Reunion Island. Acta Zool. 93, 492–500 (2012).Article 

    Google Scholar 
    Bauer, R. T. Amphidromy in shrimps: a life cycle between rivers and the sea. Lat. Am. J. Aquat. Res. 41, 633–650 (2013).Article 

    Google Scholar 
    Jalihal, D. R., Sankolli, K. N. & Shenoy, S. Evolution of larval developmental patterns and the process of freshwaterization in the prawn genus Macrobrachium Bate, 1868 (Decapoda, Palaemonidae). Crustaceana 65, 365–376 (1993).Article 

    Google Scholar 
    Grande, L. Paleontology of the Green River Formation, with a review of the fish fauna. Bull. Geol. Surv. Wyoming 63, 1–333 (1984).
    Google Scholar 
    Grande, L. The Lost World of Fossil Lake: snapshots from deep time (University of Chicago Press, 2013).Micklich, N. Peculiarities of the Messel fish fauna and their palaeoecological implications: A case study. Palaeobiodivers. Palaeoenviron. 92, 585–629 (2012).Article 

    Google Scholar 
    Micklich, N. Actinopterygians—the fishes of the Messel lake. in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 104–111 (Schweizerbart, 2018).Christodoulou, M., Anastasiadou, C., Jugovic, J., & Tzomos, T. Freshwater Shrimps (Atyidae, Palaemonidae, Typhlocarididae) in the Broader Mediterranean Region: Distribution, Life Strategies, Threats, Conservation Challenges and Taxonomic Issues. In A Global Overview of the Conservation of Freshwater Decapod Crustaceans (eds Kawai, T. & Cumberlidge, N.) 199–236 (Springer, 2016).Anger, K. Neotropical Macrobrachium (Caridea: Palaemonidae): On the biology, origin, and radiation of freshwater-invading shrimp. J. Crustac. Biol. 33, 151–183 (2013).Article 

    Google Scholar  More

  • in

    Recovery and genome reconstruction of novel magnetotactic Elusimicrobiota from bog soil

    Steen AD, Carini ACP, Lloyd KG, Thrash JC, Deangelis KM, Fierer N. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 2019;13:3126–30.PubMed 
    PubMed Central 

    Google Scholar 
    Lloyd KG, Steen AD, Ladau J, Yin J. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems. 2018;3:e00055–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marcy Y, Ouverney C, Bik EM, Lo T, Ivanova N, Garcia H, et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci USA. 2007;104:11889–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pascoal F, Costa R, Magalhães C. The microbial rare biosphere: current concepts, methods and ecological principles. FEMS Microbiol Ecol. 2021;97:fiaa227.CAS 
    PubMed 

    Google Scholar 
    Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA. 2006;103:12115–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gareev KG, Grouzdev DS, Kharitonskii PV, Kosterov A, Koziaeva VV, Sergienko ES, et al. Magnetotactic bacteria and magnetosomes: basic properties and applications. Magnetochemistry. 2021;7:86.CAS 

    Google Scholar 
    Lefevre CT, Bazylinski DA. Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev. 2013;77:497–526.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin W, Pan Y, Bazylinsky DA. Diversity and ecology of and biomineralization by magnetotactic bacteria. Environ Microbiol Rep. 2017;9:345–56.CAS 
    PubMed 

    Google Scholar 
    Uebe R, Schüler D. Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol. 2016;14:621–37.CAS 
    PubMed 

    Google Scholar 
    Lefèvre CT, Frankel RB, Bazylinski DA. Magnetotaxis in prokaryotes. eLS. 2011. https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2F9780470015902.a0000397.pub2https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2F9780470015902.a0000397.pub2.Goswami P, He K, Li J, Pan Y, Roberts AP, Lin W. Magnetotactic bacteria and magnetofossils: ecology, evolution and environmental implications. npj Biofilms Microbiomes. 2022;8:43.PubMed 
    PubMed Central 

    Google Scholar 
    Flies CB, Jonkers HM, De Beer D, Bosselmann K, Böttcher ME, Schüler D. Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS Microbiol Ecol. 2005;52:185–95.CAS 
    PubMed 

    Google Scholar 
    Wolfe RS, Thauer RK, Pfennig N. A’capillary racetrack’ method for isolation of magnetotactic bacteria. FEMS Microbiol Ecol. 1987;45:31–5.
    Google Scholar 
    Jogler C, Lin W, Meyerdierks A, Kube M, Katzmann E, Flies C, et al. Toward cloning of the magnetotactic metagenome: identification of magnetosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic sediments. Appl Environ Microbiol. 2009;75:3972–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin W, Zhang W, Paterson GA, Zhu Q, Zhao X. Expanding magnetic organelle biogenesis in the domain Bacteria. Microbiome. 2020;8:152.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Geissinger O, Herlemann DPR, Mo E, Maier UG, Brune A. The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the Termite Group 1 phylum. Appl Environ Microbiol. 2009;75:2831–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wakako I-O, Brune A. Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and ‘Candidatus Endomicrobium trichonymphae’. Mol Ecol. 2009;18:332–42.
    Google Scholar 
    Zheng H, Dietrich C, Radek R, Brune A. Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia) – an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase. Environ Ecol Stat. 2016;18:191–204.CAS 

    Google Scholar 
    Méheust R, Castelle CJ, Carnevali PBM, Chen L, Amano Y, Hug LA, et al. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. ISME J. 2020;14:2907–22.PubMed 
    PubMed Central 

    Google Scholar 
    Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, et al. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. ISME J. 2021;15:1810–25.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 

    Google Scholar 
    Zhang L, Gong X, Wang L, Guo K, Cao S, Zhou Y. Science of the total environment metagenomic insights into the effect of thermal hydrolysis pre-treatment on microbial community of an anaerobic digestion system. Sci Total Environ. 2021;791:148096.CAS 
    PubMed 

    Google Scholar 
    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.CAS 
    PubMed 

    Google Scholar 
    Uzun M, Alekseeva L, Krutkina M, Koziaeva V, Grouzdev D. Unravelling the diversity of magnetotactic bacteria through analysis of open genomic databases. Sci Data. 2020;7:252.PubMed 
    PubMed Central 

    Google Scholar 
    Tully BJ, Wheat CG, Glazer BT, Huber JA. A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer. ISME J. 2018;12:1–16.CAS 
    PubMed 

    Google Scholar 
    Kirillova NP, Sileva TM, Ul’yanova TY, Rozov SY, Il’yashenko MA, Makarov MI. Digital soil map of Chashnikovo training and experimental soil ecological center, Moscow State University. Mosc Univ Soil Sci Bull. 2015;70:58–65.
    Google Scholar 
    Koziaeva VV, Alekseeva LM, Uzun MM, Leão P, Sukhacheva MV, Patutina EO, et al. Biodiversity of magnetotactic bacteria in the freshwater lake Beloe Bordukovskoe, Russia. Microbiology. 2020;89:348–58.CAS 

    Google Scholar 
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 

    Google Scholar 
    Edgar RC, Flyvbjerg H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics. 2015;31:3476–82.CAS 
    PubMed 

    Google Scholar 
    Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 2016. https://doi.org/10.1101/081257.Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fierer N, Jackson JA, Vilgalys R, Jackson RB. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol. 2005;71:4117–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 

    Google Scholar 
    Lin HH, Liao YC. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep. 2016;6:12–9.
    Google Scholar 
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil P, Mussig AJ, Parks DH, Hugenholtz P. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.PubMed Central 

    Google Scholar 
    Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ji R, Zhang W, Pan Y, Lin W. MagCluster: a tool for identification, annotation, and visualization of magnetosome gene clusters. Microbiol Resour Announc. 2022;11:e01031–21.CAS 
    PubMed Central 

    Google Scholar 
    Wu S, Zhu Z, Fu L, Niu B, Li W. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics. 2011;12:444.PubMed 
    PubMed Central 

    Google Scholar 
    Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35.CAS 
    PubMed 

    Google Scholar 
    Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL. 0003 3527 8101, Solden LM, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 2020;48:8883–900.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 
    PubMed 

    Google Scholar 
    Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler AVon, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22.CAS 
    PubMed 

    Google Scholar 
    Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coleman GA, Davín AA, Mahendrarajah TA, Szánthó LL, Spang A, Hugenholtz P, et al. A rooted phylogeny resolves early bacterial evolution. Science. 2021;372:eabe0511.CAS 
    PubMed 

    Google Scholar 
    Parks DH. https://github.com/dparks1134/CompareM.Dombrowski N, Lee JH, Williams TA, Offre P, Spang A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol Lett. 2019;366:fnz008.CAS 
    PubMed Central 

    Google Scholar 
    Lin W, Zhang W, Zhao X, Roberts AP, Paterson GA, Bazylinski DA, et al. Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME J. 2018;12:1508–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urakawa H, Garcia JC, Nielsen JL, Le VQ, Kozlowski JA, Stein LY, et al. Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. Int J Syst Evol Microbiol. 2015;65:242–50.CAS 
    PubMed 

    Google Scholar 
    Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC, Lidstrom ME, et al. Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol. 2006;56:2517–22.CAS 
    PubMed 

    Google Scholar 
    Bazylinski DA, Frankel RB, Konhauser KO. Modes of biomineralization of magnetite by microbes. Geomicrobiol J. 2007;24:465–75.CAS 

    Google Scholar 
    Uzun M, Koziaeva V, Dziuba M, Leão P, Krutkina M, Grouzdev D. Detection of interphylum transfers of the magnetosome gene cluster in magnetotactic bacteria. Front Microbiol. 2022;13:945734.PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996.CAS 
    PubMed 

    Google Scholar 
    Murphy CL, Biggerstaff J, Eichhorn A, Ewing E, Shahan R, Soriano D, et al. Genomic characterization of three novel Desulfobacterota classes expand the metabolic and phylogenetic diversity of the phylum. Environ Microbiol. 2021;23:4326–43.CAS 
    PubMed 

    Google Scholar 
    Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.PubMed 
    PubMed Central 

    Google Scholar 
    Denise R, Abby SS, Rocha EPC. Diversification of the type IV filament superfamily into machines for adhesion, protein secretion, DNA uptake, and motility. PLoS Biol. 2019;17:e3000390.PubMed 
    PubMed Central 

    Google Scholar 
    Hennell James R, Deme JC, Kjӕr A, Alcock F, Silale A, Lauber F, et al. Structure and mechanism of the proton-driven motor that powers type 9 secretion and gliding motility. Nat Microbiol. 2021;6:221–33.CAS 
    PubMed 

    Google Scholar 
    Nolan LM, Whitchurch CB, Barquist L, Katrib M, Boinett CJ, Mayho M, et al. A global genomic approach uncovers novel components for twitching motility-mediated biofilm expansion in Pseudomonas aeruginosa. Micro Genomics. 2018;4:e000229.
    Google Scholar 
    Uzun M, Koziaeva V, Dziuba M, Alekseeva L, Grouzdev D. Mam protein trees. 2022. https://doi.org/10.6084/m9.figshare.c.6045158.v1.Arnoux P, Siponen MI, Lefèvre CT, Ginet N, Pignol D. Structure and evolution of the magnetochrome domains: no longer alone. Front Microbiol. 2014;5:117.PubMed 
    PubMed Central 

    Google Scholar 
    Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D. Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol Microbiol. 2010;77:208–24.CAS 
    PubMed 

    Google Scholar 
    Wagner-Döbler I, Bennasar A, Vancanneyt M, Strömpl C, Brümmer I, Eichner C, et al. Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments. Appl Environ Microbiol. 1998;64:3014–22.PubMed 
    PubMed Central 

    Google Scholar 
    Ibekwe AM, Papiernik SK, Gan J, Yates SR, Crowley DE, Yang CH. Microcosm enrichment of 1,3-dichloropropene-degrading soil microbial communities in a compost-amended soil. J Appl Microbiol. 2001;91:668–76.CAS 
    PubMed 

    Google Scholar 
    Yakimov MM, Denaro R, Genovese M, Cappello S, D’Auria G, Chernikova TN, et al. Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol. 2005;7:1426–41.CAS 
    PubMed 

    Google Scholar 
    Tringe SG, Von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, et al. Comparative metagenomics of microbial communities. Science. 2005;308:554–7.CAS 
    PubMed 

    Google Scholar 
    Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, Jogler C, de Almeida LGP, et al. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ Microbiol. 2013;15:2712–35.PubMed 

    Google Scholar 
    Wadhwa N, Berg HC. Bacterial motility: machinery and mechanisms. Nat Rev Microbiol. 2022;20:161–73.CAS 
    PubMed 

    Google Scholar 
    Zhu K, Pan H, Li J, Yu-Zhang K, Zhang SD, Zhang WY, et al. Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res Microbiol. 2010;161:276–83.CAS 
    PubMed 

    Google Scholar 
    Kaimer C, Zusman DR. Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY-like domains in FrzE and FrzZ. Mol Microbiol. 2016;100:379–95.CAS 
    PubMed 

    Google Scholar 
    Kühn MJ, Talà L, Inclan YF, Patino R, Pierrat X, Vos I, et al. Mechanotaxis directs Pseudomonas aeruginosa twitching motility. Proc Natl Acad Sci USA. 2021;118:e2101759118.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Evapotranspiration frequently increases during droughts

    Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).CAS 

    Google Scholar 
    Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).CAS 

    Google Scholar 
    Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).CAS 

    Google Scholar 
    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).CAS 

    Google Scholar 
    Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).CAS 

    Google Scholar 
    Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).CAS 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).CAS 

    Google Scholar 
    Short Gianotti, D. J., Rigden, A. J., Salvucci, G. D. & Entekhabi, D. Satellite and station observations demonstrate water availability’s effect on continental-scale evaporative and photosynthetic land surface dynamics. Water Resour. Res. 55, 540–554 (2019).
    Google Scholar 
    Anderegg, W. R. L., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).CAS 

    Google Scholar 
    Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).CAS 

    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).CAS 

    Google Scholar 
    Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Chang. 10, 691–695 (2020).CAS 

    Google Scholar 
    Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).CAS 

    Google Scholar 
    Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).CAS 

    Google Scholar 
    Teuling, A. J. et al. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071–2075 (2013).
    Google Scholar 
    Mastrotheodoros, T. et al. More green and less blue water in the Alps during warmer summers. Nat. Clim. Chang. 10, 155–161 (2020).
    Google Scholar 
    Peterson, T. J., Saft, M., Peel, M. C. & John, A. Watersheds may not recover from drought. Science 372, 745–749 (2021).CAS 

    Google Scholar 
    Helbig, M. et al. Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nat. Clim. Chang. 10, 555–560 (2020).CAS 

    Google Scholar 
    Massmann, A., Gentine, P. & Lin, C. When does vapor pressure deficit drive or reduce evapotranspiration? J. Adv. Model. Earth Syst. 11, 3305–3320 (2019).
    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Orth, R. & Destouni, G. Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nat. Commun. 9, 3602 (2018).
    Google Scholar 
    Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Chang. 10, 191–199 (2020).
    Google Scholar 
    Chu, H., Baldocchi, D. D., John, R., Wolf, S. & Reichstein, M. Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. J. Geophys. Res. Biogeosci. 122, 289–307 (2017).
    Google Scholar 
    Ukkola, A. M. et al. Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts. Environ. Res. Lett. 11, 104012 (2016).
    Google Scholar 
    Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett. 45, 6495–6503 (2018).
    Google Scholar 
    De Kauwe, M. G. et al. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic–xeric gradient in Europe. Biogeosciences 12, 7503–7518 (2015).
    Google Scholar 
    Dong, J., Lei, F. & Crow, W. T. Land transpiration–evaporation partitioning errors responsible for modeled summertime warm bias in the central United States. Nat. Commun. 13, 336 (2022).CAS 

    Google Scholar 
    Kennedy, D. et al. Implementing plant hydraulics in the Community Land Model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).
    Google Scholar 
    Novick, K. A. et al. Confronting the water potential information gap. Nat. Geosci. 15, 158–164 (2022).CAS 

    Google Scholar 
    Liu, Y., Holtzman, N. M. & Konings, A. G. Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion. Hydrol. Earth Syst. Sci. 25, 2399–2417 (2021).CAS 

    Google Scholar 
    Lin, Y.-S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Chang. 5, 459–464 (2015).CAS 

    Google Scholar 
    Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).CAS 

    Google Scholar 
    Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).CAS 

    Google Scholar 
    Lehmann, P., Merlin, O., Gentine, P. & Or, D. Soil texture effects on surface resistance to bare-soil evaporation. Geophys. Res. Lett. 45, 10398–10405 (2018).
    Google Scholar 
    Fatichi, S. et al. Soil structure is an important omission in Earth System Models. Nat. Commun. 11, 522 (2020).CAS 

    Google Scholar 
    McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).CAS 

    Google Scholar 
    Baldocchi, D., Ma, S. & Verfaillie, J. On the inter- and intra-annual variability of ecosystem evapotranspiration and water use efficiency of an oak savanna and annual grassland subjected to booms and busts in rainfall. Glob. Chang. Biol. 27, 359–375 (2021).CAS 

    Google Scholar 
    Condon, L. E., Atchley, A. L. & Maxwell, R. M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020).CAS 

    Google Scholar 
    Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).CAS 

    Google Scholar 
    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).CAS 

    Google Scholar 
    Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).CAS 

    Google Scholar 
    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS 

    Google Scholar 
    Zhao, M. et al. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 4, 56–62 (2021).
    Google Scholar 
    Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 6, 1019–1022 (2016).
    Google Scholar 
    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).CAS 

    Google Scholar 
    Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).CAS 

    Google Scholar 
    Zhao, M., Geruo, A., Velicogna, I. & Kimball, J. S. A global gridded dataset of GRACE drought severity index for 2002–14: comparison with PDSI and SPEI and a case study of the Australia Millennium Drought. J. Hydrometeorol. 18, 2117–2129 (2017).
    Google Scholar 
    Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).
    Google Scholar 
    Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 52, 7490–7502 (2016).
    Google Scholar 
    Adler, R. F. et al. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).
    Google Scholar 
    Sun, Q. et al. A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev. Geophys. 56, 79–107 (2018).
    Google Scholar 
    Gebremichael, M. et al. Error uncertainty analysis of GPCP monthly rainfall products: a data-based simulation study. J. Appl. Meteorol. 42, 1837–1848 (2003).
    Google Scholar 
    Rodell, M. et al. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 31, L20504 (2004).
    Google Scholar 
    Major River Basins of the World (Global Runoff Data Centre, 2020).Pascolini-Campbell, M. A., Reager, J. T. & Fisher, J. B. GRACE-based mass conservation as a validation target for basin-scale evapotranspiration in the contiguous United States. Water Resour. Res. 56, e2019WR026594 (2020).
    Google Scholar 
    Fekete, B. M., Vörösmarty, C. J. & Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles 16, 15-1–15-10 (2002).
    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    Google Scholar 
    Myneni, R., Knyazikhin, Y. & Park, T (ed. NASA EOSDIS Land Processes DAAC) (2021).Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
    Google Scholar 
    Sulla-Menashe, D. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product (US Geological Survey, 2018).Zhao, M., Aa, G., Liu, Y. & Konings, A. Evapotranspiration frequently increases during droughts. Zenodo https://doi.org/10.5281/zenodo.6842054 (2022). More

  • in

    Ecological and evolutionary trends of body size in Pristimantis frogs, the world's most diverse vertebrate genus

    LaBarbera, M. The evolution and ecology of body size. In Patterns and Processes in the History of Life (eds Raup, D. M. & Jablonski, D.) 69–98 (Springer, 1986).
    Google Scholar 
    Peters, R. H. & Peters, R. H. The Ecological Implications of Body Size Vol. 2 (Cambridge University Press, 1986).
    Google Scholar 
    Klingenberg, C. P. & Spence, J. On the role of body size for life-history evolution. Ecol. Entomol. 22(1), 55–68 (1997).
    Google Scholar 
    Blanckenhorn, W. U. The evolution of body size: What keeps organisms small?. Q. Rev. Biol. 75(4), 385–407 (2000).CAS 
    PubMed 

    Google Scholar 
    Sibly, R. M. & Brown, J. H. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl. Acad. Sci. USA 104(45), 17707–17712 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt-Nielsen, K. Scaling in biology: The consequences of size. J. Exp. Zool. 194(1), 287–307 (1975).CAS 
    PubMed 

    Google Scholar 
    Calder, W. A. Size, Function, and Life History (Courier Corporation, 1996).
    Google Scholar 
    Gould, S. J. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41(4), 587–638 (1966).CAS 
    PubMed 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293(5538), 2248–2251 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gearty, W. & Payne, J. L. Physiological constraints on body size distributions in Crocodyliformes. Evolution 74(2), 245–255 (2020).PubMed 

    Google Scholar 
    Maurer, B. A., Brown, J. H. & Rusler, R. D. The micro and macro in body size evolution. Evolution 46(4), 939–953 (1992).PubMed 

    Google Scholar 
    Hone, D. W. & Benton, M. J. The evolution of large size: How does Cope’s Rule work?. Trends Ecol. Evol. 20(1), 4–6 (2005).PubMed 

    Google Scholar 
    Reeve, J. P. & Fairbairn, D. J. Predicting the evolution of sexual size dimorphism. J. Evol. Biol. 14(2), 244–254 (2001).
    Google Scholar 
    Blanckenhorn, W. U. Behavioral causes and consequences of sexual size dimorphism. Ethology 111(11), 977–1016 (2005).
    Google Scholar 
    Wu, H., Jiang, T., Huang, X. & Feng, J. Patterns of sexual size dimorphism in horseshoe bats: Testing Rensch’s rule and potential causes. Sci. Rep. 8(1), 1–13 (2018).ADS 

    Google Scholar 
    Cox, R. M., Butler, M. A. & John-Alder, H. B. The evolution of sexual size dimorphism in reptiles. In Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (eds Fairbairn, D. J. et al.) 38–49 (Oxford University Press, 2007).
    Google Scholar 
    Stillwell, R. C., Blanckenhorn, W. U., Teder, T., Davidowitz, G. & Fox, C. W. Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: From physiology to evolution. Annu. Rev. Entomol. 55, 227–245 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rensch, B. Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse. Bonn. Zool. Beitr. 1, 58–69 (1950).
    Google Scholar 
    Rensch, B. Evolution Above the Species Level (Columbia University Press, 1960).
    Google Scholar 
    Shine, R. Ecological causes for the evolution of sexual dimorphism: A review of the evidence. Q. Rev. Biol. 64(4), 419–461 (1989).CAS 
    PubMed 

    Google Scholar 
    Portik, D. M., Blackburn, D. C. & McGuire, J. A. Macroevolutionary patterns of sexual size dimorphism among African tree frogs (Family: Hyperoliidae). J. Hered. 111(4), 379–391 (2020).PubMed 

    Google Scholar 
    Ceballos, C. P., Adams, D. C., Iverson, J. B. & Valenzuela, N. Phylogenetic patterns of sexual size dimorphism in turtles and their implications for Rensch’s rule. Evol. Biol. 40(2), 194–208 (2013).
    Google Scholar 
    Amado, T. F., Martinez, P. A., Pincheira-Donoso, D. & Olalla-Tárraga, M. Á. Body size distributions of anurans are explained by diversification rates and the environment. Glob. Ecol. Biogeogr. 30(1), 154–164 (2021).
    Google Scholar 
    Starostová, Z., Kubička, L. & Kratochvíl, L. Macroevolutionary pattern of sexual size dimorphism in geckos corresponds to intraspecific temperature-induced variation. J. Evol. Biol. 23(4), 670–677 (2010).PubMed 

    Google Scholar 
    Herczeg, G., Gonda, A. & Merilä, J. Rensch’s rule inverted–female-driven gigantism in nine-spined stickleback Pungitius pungitius. J. Anim. Ecol. 79(3), 581–588 (2010).PubMed 

    Google Scholar 
    Liao, W. B. & Chen, W. Inverse Rensch’s rule in a frog with female-biased sexual size dimorphism. Naturwissenschaften 99(5), 427–431 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cooper, M. I. Sexual size dimorphism and the rejection of Rensch’s rule in Diplopoda (Arthropoda). J. Entomol. Zool. Stud. 6(1), 1582–1587 (2018).
    Google Scholar 
    Cheng, R. C. & Kuntner, M. Phylogeny suggests nondirectional and isometric evolution of sexual size dimorphism in argiopine spiders. Evolution 68(10), 2861–2872 (2014).PubMed 

    Google Scholar 
    Webb, T. J. & Freckleton, R. P. Only half right: Species with female-biased sexual size dimorphism consistently break Rensch’s rule. PLoS ONE 2(9), e897 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaston, K. J., Chown, S. L. & Evans, K. L. Ecogeographical rules: Elements of a synthesis. J. Biogeogr. 35(3), 483–500 (2008).
    Google Scholar 
    Olalla-Tárraga, M. Á. & Rodríguez, M. Á. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: Anurans follow Bergmann’s rule, urodeles its converse. Glob. Ecol. Biogeogr. 16(5), 606–617 (2007).
    Google Scholar 
    Olalla-Tárraga, M. Á., Diniz-Filho, J. A. F., Bastos, R. P. & Rodríguez, M. Á. Geographic body size gradients in tropical regions: Water deficit and anuran body size in the Brazilian Cerrado. Ecography 32(4), 581–590 (2009).
    Google Scholar 
    Gouveia, S. F. & Correia, I. Geographical clines of body size in terrestrial amphibians: Water conservation hypothesis revisited. J. Biogeogr. 43(10), 2075–2084 (2016).
    Google Scholar 
    Pincheira-Donoso, D., Meiri, S., Jara, M., Olalla-Tárraga, M. Á. & Hodgson, D. J. Global patterns of body size evolution are driven by precipitation in legless amphibians. Ecography 42(10), 1682–1690 (2019).
    Google Scholar 
    Nevo, E. Adaptive color polymorphism in cricket frogs. Evolution 27(3), 353–367 (1973).PubMed 

    Google Scholar 
    Ashton, K. G. Do amphibians follow Bergmann’s rule?. Can. J. Zool. 80(4), 708–716 (2002).MathSciNet 

    Google Scholar 
    Bergmann, C. Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien. 1, 595–708 (1847).
    Google Scholar 
    Olalla-Tárraga, M. Á., Rodríguez, M. Á. & Hawkins, B. A. Broad-scale patterns of body size in squamate reptiles of Europe and North America. J. Biogeogr. 33(5), 781–793 (2006).
    Google Scholar 
    Trullas, S. C., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32(5), 235–245 (2007).
    Google Scholar 
    Rodríguez, M. Á., López-Sañudo, I. L. & Hawkins, B. A. The geographic distribution of mammal body size in Europe. Glob. Ecol. Biogeogr. 15(2), 173–181 (2006).
    Google Scholar 
    Olalla-Tárraga, M. Á., Diniz-Filho, J. A. F., Bastos, R. P. & Rodriguez, M. A. Geographic body size gradients in tropical regions: Water deficit and anuran body size in the Brazilian Cerrado. Ecography 32(4), 581–590 (2009).
    Google Scholar 
    Womack, M. C. & Bell, R. C. Two-hundred million years of anuran body-size evolution in relation to geography, ecology and life history. J. Evol. Biol. 33(10), 1417–1432 (2020).PubMed 

    Google Scholar 
    Frost, D. R. Amphibian Species of the World: An online reference, version 6. http://research.amnh.org/herpetology/amphibia/index.php. Accessed 12 July 2021 (2021).
    Acevedo, A. A., Armesto, O. & Palma, R. E. Two new species of Pristimantis (Anura: Craugastoridae) with notes on the distribution of the genus in northeastern Colombia. Zootaxa 4750(4), 499–523 (2020).
    Google Scholar 
    Heinicke, M. P., Duellman, W. E. & Hedges, S. B. Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proc. Natl. Acad. Sci. USA 104(24), 10092–10097 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pinto-Sánchez, N. R. et al. The great American biotic interchange in frogs: Multiple and early colonization of Central America by the South American genus Pristimantis (Anura: Craugastoridae). Mol. Phylogenet. Evol. 62(3), 954–972 (2012).PubMed 

    Google Scholar 
    Zumel, D., Buckley, D. & Ron, S. R. The Pristimantis trachyblepharis species group, a clade of miniaturized frogs: Description of four new species and insights into the evolution of body size in the genus. Zool. J. Linn. Soc. zlab044 (2021).Pincheira-Donoso, D. et al. The multiple origins of sexual size dimorphism in global amphibians. Glob. Ecol. Biogeogr. 30(2), 443–458 (2021).
    Google Scholar 
    Woolbright, L. L. Sexual selection and size dimorphism in anuran amphibia. Am. Nat. 121(1), 110–119 (1983).
    Google Scholar 
    Nali, R. C., Zamudio, K. R., Haddad, C. F. & Prado, C. P. Size-dependent selective mechanisms on males and females and the evolution of sexual size dimorphism in frogs. Am. Nat. 184(6), 727–740 (2014).PubMed 

    Google Scholar 
    Hill, R. et al. Herpetological husbandry observations on the captive reproduction of gaige’s rain frog Pristimantis gaigeae (Dunn 1931). Herpetol. Rev. 41(4), 465 (2010).
    Google Scholar 
    Rojas-Rivera, A., Cortés-Bedoya, S., Gutiérrez-Cárdenas, P. D. A. & Castellanos, J. M. Pristimantis achatinus (Cachabi robber frog). Parental care and clutch size. Herpetol. Rev. 42, 588–589 (2011).
    Google Scholar 
    Granados-Pérez, Y. & Ramirez-Pinilla, M. P. Reproductive phenology of three species of Pristimantis in an Andean cloud forest. Revista Acad. Colomb. Ci. Exact. 44(173), 1083–1098 (2020).
    Google Scholar 
    Levy, D. L. & Heald, R. Biological scaling problems and solutions in amphibians. Cold Spring Harb. Perspect. Biol. 8(1), a019166 (2016).PubMed Central 

    Google Scholar 
    O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geol. Survey Data Series. 691(10), 4–9 (2012).
    Google Scholar 
    Valenzuela-Sánchez, A., Cunningham, A. A. & Soto-Azat, C. Geographic body size variation in ectotherms: Effects of seasonality on an anuran from the southern temperate forest. Front. Zool. 12(1), 1–10 (2015).
    Google Scholar 
    Parsons, J. J. The northern Andean environment. Mt. Res. Dev. 2(3), 253–264 (1982).
    Google Scholar 
    Navas, C. A., Carvajalino-Fernández, J. M., Saboyá-Acosta, L. P., Rueda-Solano, L. A. & Carvajalino-Fernández, M. A. The body temperature of active amphibians along a tropical elevation gradient: Patterns of mean and variance and inference from environmental data. Funct. Ecol. 27(5), 1145–1154 (2013).
    Google Scholar 
    Swemmer, A. M., Knapp, A. K. & Snyman, H. A. Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. J. Ecol. 95(4), 780–788 (2007).
    Google Scholar 
    Losos, J. B. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles (Univ. of California Press, 2011).
    Google Scholar 
    Pincheira-Donoso, D. & Hunt, J. Fecundity selection theory: Concepts and evidence. Biol. Rev. 92(1), 341–356 (2017).PubMed 

    Google Scholar 
    Morrison, C. & Hero, J. M. Geographic variation in life-history characteristics of amphibians: A review. J. Anim. Ecol. 72(2), 270–279 (2003).
    Google Scholar 
    Morrow, C. B., Ernest, S. M. & Kerkhoff, A. J. Macroevolution of dimensionless life-history metrics in tetrapods. Proc. Royal Soc. B. 288, 20210200 (2021).
    Google Scholar 
    Revell, L. J., Harmon, L. J. & Collar, D. C. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57(4), 591–601 (2008).PubMed 

    Google Scholar 
    Kamilar, J. M. & Cooper, N. Phylogenetic signal in primate behaviour, ecology and life history. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1618), 20120341 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, A. L. & Wiens, J. J. Estimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shifts. Evolution 72(1), 39–53 (2018).PubMed 

    Google Scholar 
    Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4(1), 1–8 (2013).
    Google Scholar 
    Mendoza, A. M., Ospina, O. E., Cárdenas-Henao, H. & García-R, J. C. A likelihood inference of historical biogeography in the world’s most diverse terrestrial vertebrate genus: Diversification of direct-developing frogs (Craugastoridae: Pristimantis) across the Neotropics. Mol. Phylogenet. Evol. 85, 50–58 (2015).PubMed 

    Google Scholar 
    Baker, J., Meade, A., Pagel, M. & Venditti, C. Adaptive evolution toward larger size in mammals. Proc. Natl. Acad. Sci. USA 112(16), 5093–5098 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hariharan, I. K., Wake, D. B. & Wake, M. H. Indeterminate growth: Could it represent the ancestral condition?. Cold Spring Harb. Perspect. Biol. 8(2), a019174 (2016).PubMed Central 

    Google Scholar 
    Amado, T. F., Bidau, C. J. & Olalla-Tárraga, M. Á. Geographic variation of body size in New World anurans: Energy and water in a balance. Ecography 42(3), 456–466 (2019).
    Google Scholar 
    Watters, J. L., Cummings, S. T., Flanagan, R. L. & Siler, C. D. Review of morphometric measurements used in anuran species descriptions and recommendations for a standardized approach. Zootaxa 4072, 477–495 (2016).PubMed 

    Google Scholar 
    Lovich, J. E. & Gibbons, J. W. A review of techniques for quantifying sexual size dimorphism. Growth Dev. Aging. 56, 269–269 (1992).CAS 
    PubMed 

    Google Scholar 
    Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29(6), 1695–1701 (2012).CAS 
    PubMed 

    Google Scholar 
    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7(1), 1–8 (2007).
    Google Scholar 
    Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4(5), e88 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A. FigTree, A Graphical Viewer of Phylogenetic Trees. (2007)Olalla-Tárraga, M. A., Bini, L. M., Diniz-Filho, J. A. & Rodríguez, M. Á. Cross-species and assemblage-based approaches to Bergmann’s rule and the biogeography of body size in Plethodon salamanders of eastern North America. Ecography 33(2), 362–368 (2010).
    Google Scholar 
    QGIS.org. QGIS Geographic Information System. QGIS Association. http://www.qgis.org. Accessed 10 July 2021 (2022).Wei, T. et al. Package ‘corrplot’. Statistician. 56(316), e24 (2017).
    Google Scholar 
    James, F. C. Geographic size variation in birds and its relationship to climate. Ecology 51(3), 365–390 (1970).
    Google Scholar 
    Hawkins, B. A. & Felizola Diniz-Filho, J. A. Beyond Rapoport’s rule: Evaluating range size patterns of New World birds in a two-dimensional framework. Glob. Ecol. Biogeogr. 15(5), 461–469 (2006).
    Google Scholar 
    Eager, C. standardize: Tools for standardizing variables for regression in R. R package version 0.21 (2017).Meireles, J. E., O’Meara, B. & Cavender-Bares, J. Linking leaf spectra to the plant tree of life. In Remote Sensing of Plant Biodiversity (eds Cavender-Bares, J. et al.) 155–172 (Springer, 2010).
    Google Scholar 
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401(6756), 877–884 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pagel, M. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48(3), 612–622 (1999).
    Google Scholar 
    Revell, L. J. Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3(2), 217–223 (2012).
    Google Scholar 
    Revell, L. J. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4(8), 754–759 (2013).
    Google Scholar 
    Rabosky, D. L. et al. BAMM tools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5(7), 701–707 (2014).
    Google Scholar 
    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9(2), e89543 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66(4), 477–498 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence diagnosis and output analysis for MCMC. R News. 6(1), 7–11 (2006).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2021). https://www.R-project.org. Accessed 1 June 2021 (2021).Fairbairn, D. J. Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Annu. Rev. Ecol. Evol. Syst. 28(1), 659–687 (1997).
    Google Scholar 
    Fairbairn, D. J. Allometry for sexual size dimorphism: Testing two hypotheses for Rensch’s rule in the water strider Aquarius remigis. Am. Nat. 166(S4), S69–S84 (2005).PubMed 

    Google Scholar 
    Visser, A. G., Beevers, L. & Patidar, S. Complexity in hydroecological modelling: A comparison of stepwise selection and information theory. River Res. Appl. 34(8), 1045–1056 (2018).
    Google Scholar 
    Calcagno, V. & de Mazancourt, C. glmulti: An R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34(12), 1–29 (2010).
    Google Scholar 
    Callaghan, S., Guilyardi, E., Steenman-Clark, L. & Morgan, M. The METAFOR project. in Earth System Modelling-Volume 1 (Springer, 2013).Garamszegi, L. Z. & Mundry, R. Multimodel-inference in comparative analyses. In Modern Phylogenetic Comparative Methods and THEIR Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 305–331 (Springer Berlin, 2014).
    Google Scholar  More