More stories

  • in

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Surface energy fluxes and componentsIn our study, we focused on the circumpolar land north of 60° latitude, and specifically on the extent of the circumpolar Arctic vegetation map (CAVM20, Supplementary Fig. 1–3). We obtained half-hourly and hourly in situ observations of energy fluxes and meteorological variables from the monitoring networks FLUXNET28 (fluxnet.org; FLUXNET2015 dataset), AmeriFlux29 (ameriflux.lbl.gov), AON31,32 (aon.iab.uaf.edu), ICOS (icos-cp.eu), GEM35,36 (g-e-m.dk), GC-Net33,34 (cires1.colorado.edu/steffen/gcnet) and PROMICE30; (promice.dk; Supplementary Table 3). We did not include observations from the Baseline Surface Radiation Network (BSRN; bsrn.awi.de) and Global Energy Balance Archive (GEBA; geba.ethz.ch) because they typically lack information on non-radiative energy fluxes. Finally, we did not include observations from the European Flux Database Cluster (EFDC, europe-fluxdata.eu) because these data are largely located outside the domain of the CAVM20.We aggregated surface energy fluxes and components (Supplementary Table 1) to daily resolution as follows: (i) we extracted only directly measured data and excluded gap-filled data by filtering according to quality information; (ii) we performed a basic outlier filtering (excluding shortwave and longwave radiation flux values >1400 Wm−2 and in case of incoming/outgoing radiation More

  • in

    Spotting hopeful signs for coral health in Barbados’s backyard

    I’m a coral-reef ecologist at the University of the West Indies at Cave Hill in Barbados. Every five years, as often as our funding allows, my team and I survey coral reefs for the government. I was born in Spain and earned my PhD at McGill University in Montreal, Canada. But I decided to work in the Caribbean, where I think I am more useful.We monitor the abundance and diversity of corals, algae, sponges and fish. Barbados no longer has populations of large fish, such as groupers and snappers, because of overfishing. The populations of parrotfish, Barbados’s most important species ecologically and economically, have seemed stable for the past decade.Reefs are under threat globally, and the biggest losses of corals here occurred in the 1970s and 1980s. Since the 1990s, the shallow reefs have stabilized, but the deeper reefs have continued to deteriorate. And numbers of sponges and algae, which can damage corals when too abundant, have gradually increased in the deeper reefs. Still, there are positive signs. Staghorn corals (Acropora cervicornis), which nearly went extinct here in the 1970s, are making a slow comeback.This photo was taken in early September and the water was 28 °C or 29 °C. But I still wore a wetsuit with a hood, because after 90 minutes of scuba diving, you get cold.We survey 43 sites in two months, doing one or two dives a day, three times a week. Four of us dive together; we are like a well-oiled machine.I wish we could do surveys more frequently; in a rapidly changing environment, we need to know what is happening. But there’s not enough money. Still, new technology can model reefs in 3D. Those tools are becoming more affordable, and I think we’ll be using them in the next decade. Then, we could monitor more sites more often with the same resources.I’ve wanted to be a biologist since I was a young boy. And it doesn’t get any better than studying coral reefs in your backyard. More

  • in

    Uropygial gland microbiota differ between free-living and captive songbirds

    Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723–735 (2008).Article 
    PubMed 

    Google Scholar 
    Archie, E. A. & Theis, K. R. Animal behaviour meets microbial ecology. Anim. Behav. 82, 425–436 (2011).Article 

    Google Scholar 
    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. 110, 3229–3236 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cresci, G. A. & Bawden, E. Gut microbiome: What we do and don’t know. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 30, 734–746 (2015).
    Google Scholar 
    Martin, C. R., Osadchiy, V., Kalani, A. & Mayer, E. A. The brain–gut–microbiome axis. Cell. Mol. Gastroenterol. Hepatol. 6, 133–148 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davidson, G. L., Raulo, A. & Knowles, S. C. Identifying microbiome-mediated behaviour in wild vertebrates. Trends Ecol. Evol. 35, 972–980 (2020).Article 
    PubMed 

    Google Scholar 
    Ushida, K., Kock, R. & Sundset, M. A. Wildlife microbiology. Microorganisms 9, 1968 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezenwa, V. O., Gerardo, N. M., Inouye, D. W., Medina, M. & Xavier, J. B. Animal behavior and the microbiome. Science 338, 198–199 (2012).Article 
    ADS 
    PubMed 

    Google Scholar 
    Ezenwa, V. O. & Williams, A. E. Microbes and animal olfactory communication: Where do we go from here?. BioEssays 36, 847–854 (2014).Article 
    PubMed 

    Google Scholar 
    Carthey, A. J. R., Gillings, M. R. & Blumstein, D. T. The extended genotype: Microbially mediated olfactory communication. Trends Ecol. Evol. 33, 885–894 (2018).Article 
    PubMed 

    Google Scholar 
    Maraci, Ö., Engel, K. & Caspers, B. A. Olfactory communication via microbiota: What is known in birds?. Genes 9, 387 (2018).Article 
    PubMed Central 

    Google Scholar 
    Hird, S. M. Evolutionary biology needs wild microbiomes. Front. Microbiol. 8, 725 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberdi, A., Martin Bideguren, G. & Aizpurua, O. Diversity and compositional changes in the gut microbiota of wild and captive vertebrates: A meta-analysis. Sci. Rep. 11, 22660 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leclaire, S., Nielsen, J. F. & Drea, C. M. Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. Behav. Ecol. 25, 996–1004 (2014).Article 

    Google Scholar 
    Theis, K. R., Schmidt, T. M. & Holekamp, K. E. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci. Rep. 2, 615 (2012).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Theis, K. R. et al. Symbiotic bacteria appear to mediate hyena social odors. Proc. Natl. Acad. Sci. 110, 1983219837 (2013).Article 
    ADS 

    Google Scholar 
    Gassett, J. W., Dasher, K. A., Miller, K. V., Osborn, D. A. & Russell, S. M. White-tailed deer tarsal glands: Sex and age-related variation in microbial flora. Mammalia 64, 371–377 (2000).Article 

    Google Scholar 
    Sin, Y. W., Buesching, C. D., Burke, T. & Macdonald, D. W. Molecular characterization of the microbial communities in the subcaudal gland secretion of the European badger (Meles meles). FEMS Microbiol. Ecol. 81, 648–659 (2012).Article 
    PubMed 

    Google Scholar 
    Albone, E. S., Eglinton, G., Walker, J. M. & Ware, G. C. The anal sac secretion of the red fox (Vulpes vulpes); its chemistry and microbiology. A comparison with the anal sac secretion of the lion (Panthera leo). Life Sci. 14, 387–400 (1974).Article 
    PubMed 

    Google Scholar 
    Greene, L. K. et al. The importance of scale in comparative microbiome research: New insights from the gut and glands of captive and wild lemurs. Am. J. Primatol. 81, e22974 (2019).Article 
    PubMed 

    Google Scholar 
    Leclaire, S., Jacob, S., Greene, L. K., Dubay, G. R. & Drea, C. M. Social odours covary with bacterial community in the anal secretions of wild meerkats. Sci. Rep. 7, 3240 (2017).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grieves, L. A., Gloor, G. B., Kelly, T. R., Bernards, M. A. & MacDougall-Shackleton, E. A. Preen gland microbiota of songbirds differ across populations but not sexes. J. Anim. Ecol. 90, 2202–2212 (2021).Article 
    PubMed 

    Google Scholar 
    Whittaker, D. J. et al. Social environment has a primary influence on the microbial and odor profiles of a chemically signaling songbird. Front. Ecol. Evol. 4, 1–15 (2016).Article 

    Google Scholar 
    Grieves, L. A., Gloor, G. B., Bernards, M. A. & MacDougall-Shackleton, E. A. Preen gland microbiota covary with major histocompatibility complex genotype in a songbird. R. Soc. Open Sci. 8, 210936 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whittaker, D. J. et al. Experimental evidence that symbiotic bacteria produce chemical cues in a songbird. J. Exp. Biol. 222, jeb202978 (2019).Article 
    PubMed 

    Google Scholar 
    Martín-Vivaldi, M. et al. Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc. R. Soc. B Biol. Sci. 277, 123–130 (2010).Article 

    Google Scholar 
    Whittaker, D. J. et al. Intraspecific preen oil odor preferences in dark-eyed juncos (Junco hyemalis). Behav. Ecol. 22, 1256–1263 (2011).Article 

    Google Scholar 
    Grieves, L. A., Bernards, M. A. & MacDougall-Shackleton, E. A. Behavioural responses of songbirds to preen oil odour cues of sex and species. Anim. Behav. 156, 57–65 (2019).Article 

    Google Scholar 
    Grieves, L. A., Gloor, G. B., Bernards, M. A. & MacDougall-Shackleton, E. A. Songbirds show odour-based discrimination of similarity and diversity at the major histocompatibility complex. Anim. Behav. 158, 131–138 (2019).Article 

    Google Scholar 
    Pearce, D. S., Hoover, B. A., Jennings, S., Nevitt, G. A. & Docherty, K. M. Morphological and genetic factors shape the microbiome of a seabird species (Oceanodroma leucorhoa) more than environmental and social factors. Microbiome 5, 146 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leclaire, S. et al. Plumage microbiota covaries with the major histocompatibility complex in blue petrels. Mol. Ecol. 28, 833–846 (2019).PubMed 

    Google Scholar 
    Bisson, I.-A., Marra, P. P., Burtt, E. H. Jr., Sikaroodi, M. & Gillevet, P. M. Variation in plumage microbiota depends on season and migration. Microb. Ecol. 58, 212 (2009).Article 
    PubMed 

    Google Scholar 
    Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. 116, 23588–23593 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arcese, P., Sogge, M. K., Marr, A. B. & Patten, M. A. Song sparrow (Melospiza melodia), version 2.0. In The Birds of North America (ed. Rodewald, P. G.) (Cornell Lab of Ornithology, 2002).
    Google Scholar 
    Breton, J. et al. Ecotoxicology inside the gut: Impact of heavy metals on the mouse microbiome. BMC Pharmacol. Toxicol. 14, 62 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ruan, Y. et al. High doses of copper and mercury changed cecal microbiota in female mice. Biol. Trace Elem. Res. 189, 134–144 (2019).Article 
    PubMed 

    Google Scholar 
    Lin, X. et al. Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicol. Environ. Saf. 190, 110130 (2020).Article 
    PubMed 

    Google Scholar 
    Grieves, L. A. et al. Food stress, but not experimental exposure to mercury, affects songbird preen oil composition. Ecotoxicology 29, 275–285 (2020).Article 
    PubMed 

    Google Scholar 
    Christian, V. J., Miller, K. R. & Martindale, R. G. Food insecurity, malnutrition, and the microbiome. Curr. Nutr. Rep. 9, 356–360 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Genton, L., Cani, P. D. & Schrenzel, J. Alterations of gut barrier and gut microbiota in food restriction, food deprivation and protein-energy wasting. Clin. Nutr. 34, 341–349 (2015).Article 
    PubMed 

    Google Scholar 
    Noguera, J. C., Aira, M., Pérez-Losada, M., Domínguez, J. & Velando, A. Glucocorticoids modulate gastrointestinal microbiome in a wild bird. R. Soc. Open Sci. 5, 171743 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wienemann, T. et al. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Syst. Appl. Microbiol. 34, 542–551 (2011).Article 
    PubMed 

    Google Scholar 
    Salgado-Flores, A., Tveit, A. T., Wright, A.-D., Pope, P. B. & Sundset, M. A. Characterization of the cecum microbiome from wild and captive rock ptarmigans indigenous to Arctic Norway. PLoS One 14, e0213503 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. T. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, R. H. et al. Use of TLC-FID and GC-MS⁄FID to examine the effects of migratory state, diet and captivity on preen wax composition in White-throated Sparrows Zonotrichia albicollis. Ibis 152, 782–792 (2010).Article 

    Google Scholar 
    Xie, Y. et al. Effects of captivity and artificial breeding on microbiota in feces of the red-crowned crane (Grus japonensis). Sci. Rep. 6, 33350 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    San Juan, P. A., Castro, I. & Dhami, M. K. Captivity reduces diversity and shifts composition of the Brown Kiwi microbiome. Anim. Microbiome 3, 48 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, H., Wu, F.-T., Zhou, Q.-H. & Zhao, D.-P. Comparative analysis of gut microbiota in captive and wild oriental white storks: Implications for conservation biology. Front. Microbiol. 12, 649466 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Ruano, S. M. et al. The hoopoe’s uropygial gland hosts a bacterial community influenced by the living conditions of the bird. PLoS One 10, e0139734 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xenoulis, P. G. et al. Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet. Microbiol. 146, 320–325 (2010).Article 
    PubMed 

    Google Scholar 
    Kelly, T. R., Vinson, A. E., King, G. M. & Lattin, C. R. No guts about it: Captivity, but not neophobia phenotype, influences the cloacal microbiome of house sparrows (Passer domesticus). Integr. Org. Biol. 4, obac010 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grond, K., Sandercock, B. K., Jumpponen, A. & Zeglin, L. H. The avian gut microbiota: Community, physiology and function in wild birds. J. Avian Biol. 49, e01788 (2018).Article 

    Google Scholar 
    Videvall, E., Strandh, M., Engelbrecht, A., Cloete, S. & Cornwallis, C. K. Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Mol. Ecol. Resour. 18, 424–434 (2018).Article 
    PubMed 

    Google Scholar 
    McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kohl, K. D., Skopec, M. M. & Dearing, M. D. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv. Physiol. 2, cou009 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martínez-Mota, R., Kohl, K. D., Orr, T. J. & Denise Dearing, M. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 14, 67–78 (2020).Article 
    PubMed 

    Google Scholar 
    Chatelain, M., Frantz, A., Gasparini, J. & Leclaire, S. Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon. J. Avian Biol. 47, 521–529 (2016).Article 

    Google Scholar 
    Jacob, S. et al. Uropygial gland size and composition varies according to experimentally modified microbiome in great tits. BMC Evol. Biol. 14, 134 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jacob, J. & Ziswiler, V. The uropygial gland. In Avian Biology Vol. 6 (eds Farner, D. S. et al.) 199–324 (Academic Press, 1982).Chapter 

    Google Scholar 
    Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143 (2018).Article 
    PubMed 

    Google Scholar 
    Egert, M. & Simmering, R. The microbiota of the human skin. Microbiota Hum. Body 902, 61–81 (2016).Article 

    Google Scholar 
    Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome Res. 18, 1043–1050 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, B. et al. Molecular and biochemical characterization of a novel xylanase from Massilia sp. RBM26 isolated from the feces of Rhinopithecus bieti. J. Microbiol. Biotechnol. 26, 9–19 (2016).Article 
    PubMed 

    Google Scholar 
    Rosenberg, E. The Prokaryotes (Springer, 2014).Book 

    Google Scholar 
    Tang, J., Huang, J., Qiao, Z., Wang, R. & Wang, G. Mucilaginibacter pedocola sp. Nov., isolated from a heavy-metal-contaminated paddy field. Int. J. Syst. Evol. Microbiol. 66, 4033–4038 (2016).Article 
    PubMed 

    Google Scholar 
    Vasconcelos, A. L. et al. Mucilaginibacter sp. strain metal (loid) and antibiotic resistance isolated from estuarine soil contaminated mine tailing from the Fundão dam. Genes 13, 174 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dewi, G. & Kollanoor Johny, A. Lactobacillus in food animal production—A forerunner for clean label prospects in animal-derived products. Front. Sustain. Food Syst. 6, 831195 (2022).Article 

    Google Scholar 
    Dworkin, M. The Prokaryotes Proteobacteria: Alpha and Beta Subclasses (Springer Science & Business Media, 2006).Book 

    Google Scholar 
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B 286, 20182448 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).Article 
    PubMed 

    Google Scholar 
    Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).Article 
    PubMed 

    Google Scholar 
    Bottini, C. L., MacDougall-Shackleton, S. A., Branfireun, B. A. & Hobson, K. A. Feathers accurately reflect blood mercury at time of feather growth in a songbird. Sci. Total Environ. 775, 145739 (2021).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kelly, T. R., Bonner, S. J., MacDougall-Shackleton, S. A. & MacDougall-Shackleton, E. A. Exposing migratory sparrows to Plasmodium suggests costs of resistance, not necessarily of infection itself. J. Exp. Zool. Part Ecol. Integr. Physiol. 329, 5–14 (2018).Article 

    Google Scholar 
    Whittaker, D. J. & Hagelin, J. C. Female-based patterns and social function in avian chemical communication. J. Chem. Ecol. 47, 53–62 (2020).
    Google Scholar 
    Griffiths, R., Double, M. C., Orr, K. & Dawson, R. J. A DNA test to sex most birds. Mol. Ecol. 7, 1071–1075 (1998).Article 
    PubMed 

    Google Scholar 
    Canadian Council on Animal Care (CCAC). Three Rs | Trois R :: About the Three Rs. https://3rs.ccac.ca/.Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. 82, 6955–6959 (1985).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).Article 
    ADS 
    PubMed 

    Google Scholar 
    Gloor, G. B. et al. Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products. PLoS One 5, e15406 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bian, G. et al. The gut microbiota of healthy aged Chinese is similar to that of the healthy young. Msphere 2, e00327-e417 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stoler, N. & Nekrutenko, A. Sequencing error profiles of Illumina sequencing instruments. NAR Genom. Bioinform. 3, lqab019 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).Article 
    PubMed 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aitchison, J. The Statistical Analysis of Compositional Data (Chapman and Hall, 1986).Book 
    MATH 

    Google Scholar 
    Gloor, G. B. & Reid, G. Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data. Can. J. Microbiol. 62, 692–703 (2016).Article 
    PubMed 

    Google Scholar 
    Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as compositions: An outlook and review. Bioinformatics 34, 2870–2878 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palarea-Albaladejo, J. & Martin-Fernandez, J. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 143, 85–96 (2015).Article 

    Google Scholar 
    Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aitchison, J. & Greenacre, M. Biplots of compositional data. J. R. Stat. Soc. Ser. C Appl. Stat. 51, 375–392 (2002).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Dixon, P. & Palmer, M. W. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G. & Gloor, G. B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One 8, e67019 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nearing, J. T. et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342 (2022).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Halsey, L. G., Curran-Everett, D., Vowler, S. L. & Drummond, G. B. The fickle P value generates irreproducible results. Nat. Methods 12, 179–185 (2015).Article 
    PubMed 

    Google Scholar  More

  • in

    Future biological control

    The success of biological control agents — organisms used to reduce the success of other, usually non-native invasive species — is complicated by ongoing climate change. Chosen for their host-specificity and introduced into new locations, biological agents can succumb to both direct and indirect climate-related stressors, compromising their biology and activity against target organisms. Adding to this is the fact that environmental stressors often occur in concert, making it hard to predict the efficacy of biological control programs. More

  • in

    Intermediate snowpack melt-out dates guarantee the highest seasonal grasslands greening in the Pyrenees

    Battaglini, L., Bovolenta, S., Gusmeroli, F., Salvador, S. & Sturaro, E. Environmental sustainability of alpine livestock farms. Ital. J. Anim. Sci. 13, 3155 (2014).
    Google Scholar 
    Lavorel, S. et al. Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Reg. Environ. Change 17, 2251–2264 (2017).PubMed Central 

    Google Scholar 
    Pan, Y., Wu, J. & Xu, Z. Analysis of the tradeoffs between provisioning and regulating services from the perspective of varied share of net primary production in an alpine grassland ecosystem. Ecol. Complex. 17, 79–86 (2014).
    Google Scholar 
    Rossi, M. et al. A comparison of the signal from diverse optical sensors for monitoring alpine grassland dynamics. Remote Sens. 11, 296 (2019).ADS 

    Google Scholar 
    Körner, C. Plant ecology at high elevations. In Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (ed. Körner, C.) 1–7 (Springer, 2003). https://doi.org/10.1007/978-3-642-18970-8_1.Jonas, T., Rixen, C., Sturm, M. & Stoeckli, V. How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res. Biogeosci. 113 (2008).Körner, C. Impact of atmospheric changes on high mountain vegetation. In Mountain Environments in Changing Climates 155–166 (Routledge, 1994).Choler, P. Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration. Biogeosciences 12, 3885–3897 (2015).ADS 

    Google Scholar 
    Schirmer, M., Wirz, V., Clifton, A. & Lehning, M. Persistence in intra-annual snow depth distribution: 1. Measurements and topographic control. Water Resour. Res. 47, 09516 (2011).ADS 

    Google Scholar 
    Revuelto, J., Jonas, T. & López-Moreno, J.-I. Backward snow depth reconstruction at high spatial resolution based on time-lapse photography. Hydrol. Process. 30, 2976–2990 (2016).ADS 

    Google Scholar 
    López-Moreno, J. I. et al. Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Adv. Water Resour. 55, 40–52 (2013).ADS 

    Google Scholar 
    Clark, M. P. et al. Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review. Water Resour. Res. 47, (2011).Wayand, N. E., Hamlet, A. F., Hughes, M., Feld, S. I. & Lundquist, J. D. Intercomparison of meteorological forcing data from empirical and mesoscale model sources in the north fork american river basin in northern sierra Nevada, California. J. Hydrometeorol. 14, 677–699 (2013).ADS 

    Google Scholar 
    Revuelto, J., López-Moreno, J. I., Azorin-Molina, C. & Vicente-Serrano, S. M. Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: Intra- and inter-annual persistence. Cryosphere 8, 1989–2006 (2014).ADS 

    Google Scholar 
    Winkler, D. E., Butz, R. J., Germino, M. J., Reinhardt, K. & Kueppers, L. M. Snowmelt timing regulates community composition, phenology, and physiological performance of alpine plants. Front. Plant Sci. (2018).Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).
    Google Scholar 
    Billings, W. D. Arctic and alpine vegetations: Similarities, differences, and susceptibility to disturbance. Bioscience 23, 697–704 (1973).
    Google Scholar 
    Hua, X., Ohlemüller, R. & Sirguey, P. Differential effects of topography on the timing of the growing season in mountainous grassland ecosystems. Environ. Adv. 8, 100234 (2022).
    Google Scholar 
    Xie, J. et al. Land surface phenology and greenness in Alpine grasslands driven by seasonal snow and meteorological factors. Sci. Total Environ. 725, 138380 (2020).ADS 
    CAS 

    Google Scholar 
    Carlson, B. Z., Choler, P., Renaud, J., Dedieu, J.-P. & Thuiller, W. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities. Ann. Bot. 116, 1023–1034 (2015).PubMed Central 

    Google Scholar 
    Beniston, M. et al. The European mountain cryosphere: A review of its current state, trends, and future challenges. Cryosphere 12, 759–794 (2018).ADS 

    Google Scholar 
    Stöckli, R. & Vidale, P. L. European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. Int. J. Remote Sens. 25, 3303–3330 (2004).
    Google Scholar 
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).ADS 
    CAS 

    Google Scholar 
    Fazeli Farsani, I., Farzaneh, M. R., Besalatpour, A. A., Salehi, M. H. & Faramarzi, M. Assessment of the impact of climate change on spatiotemporal variability of blue and green water resources under CMIP3 and CMIP5 models in a highly mountainous watershed. Theor. Appl. Climatol. 136, 169–184 (2019).ADS 

    Google Scholar 
    Kharin, V. V., Zwiers, F. W., Zhang, X. & Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Change 119, 345–357 (2013).ADS 

    Google Scholar 
    Engler, R. et al. 21st century climate change threatens mountain flora unequally across Europe. Glob. Change Biol. 17, 2330–2341 (2011).ADS 

    Google Scholar 
    Qiao, D. & Wang, N. Relationship between winter snow cover dynamics, climate and spring grassland vegetation phenology in Inner Mongolia, China. ISPRS Int. J. Geo-Inf. 8, 42 (2019).
    Google Scholar 
    Zong, S. et al. Upward range shift of a dominant alpine shrub related to 50 years of snow cover change. Remote Sens. Environ. 268, 112773 (2022).ADS 

    Google Scholar 
    Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Change Biol. 20, 3256–3269 (2014).ADS 

    Google Scholar 
    Zheng, J., Jia, G. & Xu, X. Earlier snowmelt predominates advanced spring vegetation greenup in Alaska. Agric. For. Meteorol. 315, 108828 (2022).ADS 

    Google Scholar 
    Dedieu, J.-P. et al. On the importance of high-resolution time series of optical imagery for quantifying the effects of snow cover duration on alpine plant habitat. Remote Sens. 8, 481 (2016).ADS 

    Google Scholar 
    Virtanen, T. & Ek, M. The fragmented nature of tundra landscape. Int. J. Appl. Earth Obs. Geoinf. 27, 4–12 (2014).ADS 

    Google Scholar 
    Fontana, F., Rixen, C., Jonas, T., Aberegg, G. & Wunderle, S. Alpine grassland phenology as seen in AVHRR, VEGETATION, and MODIS NDVI time series—A comparison with in situ measurements. Sensors 8, 2833–2853 (2008).ADS 
    PubMed Central 

    Google Scholar 
    Carlson, B. Z. et al. Observed long-term greening of alpine vegetation—A case study in the French Alps. Environ. Res. Lett. 12, 114006 (2017).ADS 

    Google Scholar 
    Tomaszewska, M. A., Nguyen, L. H. & Henebry, G. M. Land surface phenology in the highland pastures of montane Central Asia: Interactions with snow cover seasonality and terrain characteristics. Remote Sens. Environ. 240, 111675 (2020).ADS 

    Google Scholar 
    Rumpf, S. B. et al. From white to green: Snow cover loss and increased vegetation productivity in the European Alps. Science 376, 1119–1122 (2022).ADS 
    CAS 

    Google Scholar 
    Myneni, R. B. & Williams, D. L. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 49, 200–211 (1994).ADS 

    Google Scholar 
    Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).
    Google Scholar 
    Asam, S. et al. Relationship between spatiotemporal variations of climate, snow cover and plant phenology over the alps—An earth observation-based analysis. Remote Sens. 10, 1757 (2018).ADS 

    Google Scholar 
    Rossini, M. et al. Remote sensing-based estimation of gross primary production in a subalpine grassland. Biogeosciences 9, 2565–2584 (2012).ADS 

    Google Scholar 
    Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 28, 9–22 (1989).ADS 

    Google Scholar 
    Hall, D. K. & Riggs, G. A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 21, 1534–1547 (2007).ADS 

    Google Scholar 
    Julitta, T. et al. Using digital camera images to analyse snowmelt and phenology of a subalpine grassland. Agric. For. Meteorol. 198–199, 116–125 (2014).ADS 

    Google Scholar 
    Francon, L. et al. Assessing the effects of earlier snow melt-out on alpine shrub growth: The sooner the better?. Ecol. Ind. 115, 106455 (2020).
    Google Scholar 
    Assmann, J. J., Myers-Smith, I. H., Kerby, J. T., Cunliffe, A. M. & Daskalova, G. N. Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Environ. Res. Lett. 15, 125002 (2020).ADS 
    CAS 

    Google Scholar 
    Revuelto, J. et al. Meteorological and snow distribution data in the Izas Experimental Catchment (Spanish Pyrenees) from 2011 to 2017. Earth Syst. Sci. Data 9, 993–1005 (2017).ADS 

    Google Scholar 
    Nadal Romero, E. et al. Sediment balance in four small catechumen’s with different land cover in the Central Pyrenes (Spain). (2009).Gartzia, M., Alados, C. L. & Pérez-Cabello, F. Assessment of the effects of biophysical and anthropogenic factors on woody plant encroachment in dense and sparse mountain grasslands based on remote sensing data. Progr. Phys. Geogr. Earth Environ. 38, 201–217 (2014).
    Google Scholar 
    Fillat, F., González, R. G., García, D. G., Gómez, D. & Reiné, R. Pastos del Pirineo. (Editorial CSIC-CSIC Press, 2008).Gómez-García, D., Ferrández, J. V., Tejero, P. & Font, X. Spatial distribution and environmental analysis of the alpine flora in the Pyrenees. Pirineos 172, e027–e027 (2017).
    Google Scholar 
    Gascoin, S. et al. A snow cover climatology for the Pyrenees from MODIS snow products. Hydrol. Earth Syst. Sci. 19, 2337–2351 (2015).ADS 

    Google Scholar 
    López-Moreno, J. I. et al. Different sensitivities of snowpacks to warming in Mediterranean climate mountain areas. Environ. Res. Lett. 12, 074006 (2017).ADS 

    Google Scholar 
    Cernusca, A. Standörtliche Variabilität in Mikroklima und Energiehaushalt Alpiner Zwergstrauchbestände. In Verhandlungen der Gesellschaft für Ökologie Wien 1975: 5. Jahresversammlung vom 22. bis 24. September 1975 in Wien (ed. Müller, P.) 9–21 (Springer Netherlands, 1976). https://doi.org/10.1007/978-94-015-7168-5_2.Cernusca, A. & Seeber, M. C. Canopy structure, microclimate and the energy budget in different alpine plant communities. In Symposium—British Ecological Society (1981).Kudo, G., Nordenhäll, U. & Molau, U. Effects of snowmelt timing on leaf traits, leaf production, and shoot growth of alpine plants: Comparisons along a snowmelt gradient in northern Sweden. Écoscience 6, 439–450 (1999).
    Google Scholar 
    Baptist, F. & Choler, P. A simulation of the importance of length of growing season and canopy functional properties on the seasonal gross primary production of temperate alpine meadows. Ann. Bot. 101, 549–559 (2008).PubMed Central 

    Google Scholar 
    Baptist, F., Flahaut, C., Streb, P. & Choler, P. No increase in alpine snowbed productivity in response to experimental lengthening of the growing season. Plant Biol. 12, 755–764 (2010).CAS 

    Google Scholar 
    Wipf, S., Rixen, C. & Mulder, C. P. H. Advanced snowmelt causes shift towards positive neighbour interactions in a subarctic tundra community. Glob. Change Biol. 12, 1496–1506 (2006).ADS 

    Google Scholar 
    Sierra-Almeida, A. & Cavieres, L. A. Summer freezing resistance decreased in high-elevation plants exposed to experimental warming in the central Chilean Andes. Oecologia 163, 267–276 (2010).ADS 

    Google Scholar 
    Camarero, J. J., Gutiérrez, E. & Fortin, M.-J. Spatial pattern of subalpine forest-alpine grassland ecotones in the Spanish Central Pyrenees. For. Ecol. Manag. 134, 1–16 (2000).
    Google Scholar 
    Dadic, R., Mott, R., Lehning, M. & Burlando, P. Parameterization for wind-induced preferential deposition of snow. Hydrol. Process. 24, 1994–2006 (2010).
    Google Scholar 
    Vionnet, V. et al. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model. Cryosphere 8, 395–415 (2014).ADS 

    Google Scholar 
    Burns, S. F., Tonkin, P. J. & Thorn, C. E. Soil-geomorphic models and the spatial distribution and development of alpine soils. In Space and Time in Geomorphology: Binghamton Geomorphology Symposium, vol. 12 (2020).Lana-Renault, N. et al. Comparative analysis of the response of various land covers to an exceptional rainfall event in the central Spanish Pyrenees, October 2012. Earth Surf. Proc. Land. 39, 581–592 (2014).ADS 

    Google Scholar 
    Freppaz, M., Williams, B. L., Edwards, A. C., Scalenghe, R. & Zanini, E. Simulating soil freeze/thaw cycles typical of winter alpine conditions: Implications for N and P availability. Appl. Soil. Ecol. 35, 247–255 (2007).
    Google Scholar 
    López-Moreno, J. I. et al. Long-term trends (1958–2017) in snow cover duration and depth in the Pyrenees. Int. J. Climatol. 40, 6122–6136 (2020).
    Google Scholar 
    López-Moreno, J. I., Vicente-Serrano, S. M. & Lanjeri, S. Mapping snowpack distribution over large areas using GIS and interpolation techniques. Clim. Res. 33, 257–270 (2007).
    Google Scholar 
    Revuelto, J., López-Moreno, J. I. & Alonso-González, E. Light and shadow in mapping alpine snowpack with unmanned aerial vehicles in the absence of ground control points. Water Resour. Res. 57, e2020WR028980 (2021).ADS 

    Google Scholar 
    Eberhard, L. A. et al. Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping. Cryosphere 15, 69–94 (2021).ADS 

    Google Scholar 
    Harder, P., Schirmer, M., Pomeroy, J. & Helgason, W. Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle. Cryosphere 10, 2559–2571 (2016).ADS 

    Google Scholar 
    Stanton, M. L., Rejmánek, M. & Galen, C. Changes in vegetation and soil fertility along a predictable snowmelt gradient in the mosquito range, Colorado, USA. Arct. Alp. Res. 26, 364–374 (1994).
    Google Scholar 
    Winkler, D. E., Chapin, K. J. & Kueppers, L. M. Soil moisture mediates alpine life form and community productivity responses to warming. Ecology 97, 1553–1563 (2016).
    Google Scholar 
    Litaor, M. I., Williams, M. & Seastedt, T. R. Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. J. Geophys. Res. Biogeosci. 113, (2008).Keller, F., Kienast, F. & Beniston, M. Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps. Reg. Environ. Change 1, 70–77 (2000).
    Google Scholar 
    Running, S. W. Estimating terrestrial primary productivity by combining remote sensing and ecosystem simulation. In Remote Sensing of Biosphere Functioning (eds. Hobbs, R. J. & Mooney, H. A.) 65–86 (Springer, 1990). https://doi.org/10.1007/978-1-4612-3302-2_4.Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 33, 481–486 (1995).ADS 

    Google Scholar 
    Huang, S., Tang, L., Hupy, J. P., Wang, Y. & Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 32, 1–6 (2021).
    Google Scholar 
    Floyd, D. A. & Anderson, J. E. A comparison of three methods for estimating plant cover. J. Ecol. 75, 221–228 (1987).
    Google Scholar 
    Peet, R. K. The measurement of species diversity. Annu. Rev. Ecol. Syst. 5, 285–307 (1974).
    Google Scholar 
    Mouillot, D. & Leprêtre, A. A comparison of species diversity estimators. Res. Popul. Ecol. 41, 203–215 (1999).
    Google Scholar  More

  • in

    Mechanisms of prey division in striped marlin, a marine group hunting predator

    Jolles, J. W., King, A. J. & Killen, S. S. The Role of Individual Heterogeneity in Collective Animal Behaviour. Trends Ecol. Evol. 35, 278–291 (2020).Article 
    PubMed 

    Google Scholar 
    Lang, S. D. J. & Farine, D. R. A multidimensional framework for studying social predation strategies. Nat. Ecol. Evol. 1, 1230–1239 (2017).Article 
    PubMed 

    Google Scholar 
    Kissui, B. M. & Packer, C. Top–down population regulation of a top predator: lions in the Ngorongoro Crater. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 1867–1874 (2004).Article 

    Google Scholar 
    Atwood, T. C. & Gese, E. M. Coyotes and recolonizing wolves: social rank mediates risk-conditional behaviour at ungulate carcasses. Anim. Behav. 75, 753–762 (2008).Article 

    Google Scholar 
    Pitman, R. L. & Durban, J. W. Cooperative hunting behavior, prey selectivity and prey handling by pack ice killer whales (Orcinus orca), type B, in Antarctic Peninsula waters. Mar. Mammal. Sci. 28, 16–36 (2012).Article 

    Google Scholar 
    Machovsky-Capuska, G. E. & Raubenheimer, D. The nutritional ecology of marine apex predators. Ann. Rev. Mar. Sci. 12, 361–387 (2020).Article 
    PubMed 

    Google Scholar 
    Hubel, T. Y. et al. Energy cost and return for hunting in African wild dogs and cheetahs. Nat. Commun. 7, 1–13 (2016).Article 

    Google Scholar 
    Hubel, T. Y. et al. Additive opportunistic capture explains group hunting benefits in African wild dogs. Nat. Commun. 7, 1–11 (2016).Article 

    Google Scholar 
    Schaller, G. B. The Serengeti Lion.,(University of Chicago Press: Chicago, IL.). (1972).Packer, C., Pusey, A. E. & Eberly, L. E. Egalitarianism in female African lions. Science 293, 690–693 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tilson, R. L. & Hamilton, W. J. III Social dominance and feeding patterns of spotted hyaenas. Anim. Behav. 32, 715–724 (1984).Article 

    Google Scholar 
    Frank, L. G. Social organization of the spotted hyaena Crocuta crocuta. II. Dominance and reproduction. Anim. Behav. 34, 1510–1527 (1986).Article 

    Google Scholar 
    Mech, L. D. & Boitani, L. Wolves: behavior, ecology, and conservation. (University of Chicago Press, 2007).Frame, L. H., Malcolm, J. R., Frame, G. W. & Van Lawick, H. Social Organization of African Wild Dog on the Serengeti Plains. Z. Tierpsychol. 50, 225–249 (1979).Article 

    Google Scholar 
    Bertram, B. C. R. Social factors influencing reproduction in wild lions. J. Zool. 177, 463–482 (1975).Article 

    Google Scholar 
    Packer, C. & Pusey, A. Asymmetric contests in social mammals: respect, manipulation and age-specific aspects. Evol. essays honour John Maynard Smith 173–186 (1985).Domenici, P., Batty, R. S., Similä, T. & Ogam, E. Killer whales (Orcinus orca) feeding on schooling herring (Clupea harengus) using underwater tail-slaps: Kinematic analyses of field observations. J. Exp. Biol. 203, 283–294 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Benoit-Bird, K. J. & Au, W. W. L. Cooperative prey herding by the pelagic dolphin, Stenella longirostris. J. Acoust. Soc. Am. 125, 125–137 (2009).Article 
    PubMed 

    Google Scholar 
    Gazda, S. K. Driver-barrier feeding behavior in bottlenose dolphins (Tursiops truncatus): New insights from a longitudinal study. Mar. Mammal. Sci. 32, 1152–1160 (2016).Article 

    Google Scholar 
    Herbert-Read, J. E. et al. Proto-Cooperation: Group hunting sailfish improve hunting success by alternating attacks on grouping prey. Proc. R. Soc. B Biol. Sci. 283, 1–14 (2016).
    Google Scholar 
    Rieucau, G., Holmin, A. J., Castillo, J. C., Couzin, I. D. & Handegard, N. O. School level structural and dynamic adjustments to risk promote information transfer and collective evasion in herring. Anim. Behav. 117, 69–78 (2016).Article 

    Google Scholar 
    Rieucau, G., Fernö, A., Ioannou, C. C. & Handegard, N. O. Towards of a firmer explanation of large shoal formation, maintenance and collective reactions in marine fish. Rev. Fish. Biol. Fish. 25, 21–37 (2014).Article 

    Google Scholar 
    Ford, J. K. B. & Ellis, G. M. Transients: mammal-hunting killer whales of British Columbia, Washington, and southeastern Alaska. (UBC Press, 1999).Bailey, I., Myatt, J. P. & Wilson, A. M. Group hunting within the Carnivora: Physiological, cognitive and environmental influences on strategy and cooperation. Behav. Ecol. Sociobiol. 67, 1–17 (2013).Article 

    Google Scholar 
    Packer, C., Scheel, D. & Pusey, A. E. Why Lions Form Groups: Food is Not Enough. Am. Nat. 136, 1–19 (1990).Article 

    Google Scholar 
    Creel, S. & Creel, N. M. The African wild dog: behavior, ecology, and conservation. (Princeton University Press, 2002).Carbone, C. et al. Feeding success of African wild dogs (Lycaon pictus) in the Serengeti: The effects of group size and kleptoparasitism. J. Zool. 266, 153–161 (2005).Article 

    Google Scholar 
    Chakrabarti, S. & Jhala, Y. V. Selfish partners: Resource partitioning in male coalitions of Asiatic lions. Behav. Ecol. 28, 1532–1539 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amorós, M., Gil-Sánchez, J. M., López-Pastor, B., de las, N. & Moleón, M. Hyaenas and lions: how the largest African carnivores interact at carcasses. Oikos 129, 1820–1832 (2020).Article 

    Google Scholar 
    Wilmers, C. C. & Stahler, D. R. Constraints on active-consumption rates in gray wolves, coyotes, and grizzly bears. Can. J. Zool. 80, 1256–1261 (2002).Article 

    Google Scholar 
    Schmidt, P. A. & Mech, L. D. Wolf pack size and food acquisition. Am. Nat. 150, 513–517 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Major, P. F. Predator-prey interactions in two schooling fishes, Caranx ignobilis and Stolephorus purpureus. Anim. Behav. 26, 760–777 (1978).Article 

    Google Scholar 
    Thiebault, A., Semeria, M., Lett, C. & Tremblay, Y. How to capture fish in a school? Effect of successive predator attacks on seabird feeding success. J. Anim. Ecol. 85, 157–167 (2016).Article 
    PubMed 

    Google Scholar 
    Handegard, N. O. et al. The dynamics of coordinated group hunting and collective information transfer among schooling prey. Curr. Biol. 22, 1213–1217 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    King, A. J., Fehlmann, G., Biro, D., Ward, A. J. & Fürtbauer, I. Re-wilding Collective Behaviour: An Ecological Perspective. Trends Ecol. Evol. 33, 347–357 (2018).Article 
    PubMed 

    Google Scholar 
    Hansen, M. J. et al. Linking hunting weaponry to attack strategies in sailfish and striped marlin. Proc. R. Soc. B Biol. Sci. 287, 20192228 (2020).Rieucau, G. et al. Using unmanned aerial vehicle (UAV) surveys and image analysis in the study of large surface-associated marine species: a case study on reef sharks Carcharhinus melanopterus shoaling behaviour. J. Fish. Biol. 93, 119–127 (2018).Article 
    PubMed 

    Google Scholar 
    Krause, J. The relationship between foraging and shoal position in a mixed shoal of roach (Rutilus rutilus) and chub (Leuciscus cephalus): a field study. Oecologia 93, 356–359 (1993).Article 
    PubMed 

    Google Scholar 
    DeBlois, E. M. & Rose, G. A. Cross-shoal variability in the feeding habits of migrating Atlantic cod (Gadus morhua). Oecologia 108, 192–196 (1996).Article 
    PubMed 

    Google Scholar 
    Hansen, M. J., Schaerf, T. M. & Ward, A. J. W. The influence of nutritional state on individual and group movement behaviour in shoals of crimson-spotted rainbowfish (Melanotaenia duboulayi). Behav. Ecol. Sociobiol. 69, 1713–1722 (2015).Article 

    Google Scholar 
    Hansen, M. J., Schaerf, T. M., Krause, J. & Ward, A. J. W. Crimson spotted rainbowfish (Melanotaenia duboulayi) change their spatial position according to nutritional requirement. PLoS One 11, 1–17 (2016).Article 

    Google Scholar 
    McLean, S., Persson, A., Norin, T. & Killen, S. S. Metabolic costs of feeding predictively alter the spatial distribution of individuals in fish schools. Curr. Biol. 28, 1144–1149 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Domenici, P. et al. How sailfish use their bills to capture schooling prey. Proc. R. Soc. B Biol. Sci. 281, 20140444 (2014).Kurvers, R. H. J. M. et al. The Evolution of Lateralization in Group Hunting Sailfish. Curr. Biol. 27, 521–526 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ward, A. & Webster, M. Sociality: The behaviour of group-living animals. (Springer, 2016).Wiley, D. et al. Underwater components of humpback whale bubble-net feeding behaviour Published by: Brill Stable URL: http://www.jstor.org/stable/23034261 REFERENCES Linked references are available on JSTOR for this article: You may need to log in to JSTOR to access th. 148, 575–602 (2017).D’Vincent, C. G., Nilson, R. M. & Hanna, R. E. Vocalization and coordinated feeding behavior of the humpback whale Megaptera novaeangliae in Southeastern Alaska, USA. Sci. Rep. Whale Res. Inst. Tokyo 36, 41–47 (1985).
    Google Scholar 
    Jurasz, C. M. & Jurasz, V. P. Feeding modes of the humpback whale, Megaptera novaeangliae, in southeast Alaska. Sci. Rep. Whales Res. Inst. 31, 69–83 (1979).
    Google Scholar 
    Similä, T. & Ugarte, F. Surface and underwater observations of cooperatively feeding killer whales in northern Norway. Can. J. Zool. 71, 1494–1499 (1993).Article 

    Google Scholar 
    Clua, É. & Grosvalet, F. Mixed-species feeding aggregation of dolphins, large tunas and seabirds in the Azores. Aquat. Living Resour. 14, 11–18 (2001).Article 

    Google Scholar 
    Uchiyama, J. H. & Kazama, T. K. Updated weight-on-length relationships for pelagic fishes caught in the central North Pacific Ocean and bottomfishes from the northwestern Hawaiian Islands. (2003).Ponce-Díaz, G., Ortega-García, S. & González-Ramírez, P. G. Analysis of sizes and weight-length relation of the striped marlin, Tetrapturus sudax (Philippi, 1887) in Baja California Sur, Mexico. Cienc. Mar. 17, 69–82 (1991).Article 

    Google Scholar 
    Abitı́a-Cárdenas, L. A., Muhlia-Melo, A., Cruz-Escalona, V. & Galván-Magaña, F. Trophic dynamics and seasonal energetics of striped marlin Tetrapturus audax in the southern Gulf of California, Mexico. Fish. Res. 57, 287–295 (2002).Article 

    Google Scholar 
    R Core Team. (2021). R: A Language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/Hansen, Matthew Mechanisms prey Div. a Mar. group-Hunt. Predat., Dryad, Dataset https://doi.org/10.5061/dryad.b2rbnzshx (2022).Article 

    Google Scholar  More

  • in

    Origin, structure and functional transition of sex pheromone components in a false widow spider

    Experimental spidersExperimental spiders were maintained as previously reported37. Briefly, spiders were the F1 to F4 offspring of mated females collected from hallways of the Burnaby campus of Simon Fraser University (Burnaby, BC, CA). Upon hatching, juvenile spiders were housed individually in petri dishes (100 mm × 20 mm) and provisioned with the vinegar flies Drosophila melanogaster. Subadult spiders were fed with larvae of the mealworm beetle Tenebrio molitor. Each adult female spider was kept in a separate translucent 300-mL plastic cup (Western Family, CA) maintained at 22 °C under a reversed light cycle (12:12 h). Adult males and females were fed with black blow flies, Phormia regina. All spiders had access to water in cotton wicks. Water and food were provided once per week. Laboratory experiments were run during a reversed scotophase (0900 to 1700).Identification of contact pheromone components: Preparation of web extracts (summer 2017; spring and summer 2018)Each of the 100 spiders was allowed to build her web for three days on a wooden triangular prism scaffold (30 cm × 25 cm × 22 cm)44 of bamboo skewers (GoodCook, CA, USA) (Fig. 1b). After the spiders were removed from the scaffold, their webs were reeled up with a glass rod (10 cm × 0.5 cm) and deposited in a 1.5-mL glass vial. Per web, 50 µL of methanol (99.9% HPLC grade, Fisher Chemical, ON, Canada) were added and the silk was extracted for 24 h at room temperature. Prior to analysis, the silk was removed and the sample was concentrated under a steady nitrogen stream to the desired concentration.Identification of contact pheromone components: analyses of web extracts by gas chromatography–mass spectrometry (GC-MS)Aliquots (2 µL) of pooled and concentrated web extract (100 webs in 400 µL of solvent) were analysed by GC–MS, using a Varian Saturn Ion trap 2000 (Varian Inc., now Agilent Technologies Inc., Santa Clara, CA 95051, USA) and an Agilent 7890B GC coupled to a 5977 A MSD, both fitted with a DB-5 GC-MS column (30 m × 0.25 mm ID, film thickness 0.25 µm). The injector port was set to 250 °C, the MS source to 230 °C, and the MS quadrupole to 150 °C. Helium was used as a carrier gas at a flow rate of 35 cm s−1, with the following temperature programme: 50 °C held for 5 min, 10 °C min−1 to 280 °C (held for 10 min). Compounds were identified by comparing their mass spectra and retention indices (relative to aliphatic alkanes67) with those of authentic standards that were purchased or synthesised in our laboratory (Supplementary Table 1).Identification of contact pheromone components: high-performance liquid chromatography (HPLC) of web extractsWeb extract of virgin adult female S. grossa was fractionated by high-performance liquid chromatography (HPLC), using a Waters HPLC system (Waters Corporation, Milford, MA, USA; 600 Controller, 2487 Dual Absorbance Detector, Delta 600 pump) fitted with a Synergy Hydro Reverse Phase C18 column (250 mm × 4.6 mm, 4 µ; Phenomenex, Torrance, CA, USA). The column was eluted with a 1-mL/min flow of a solvent gradient, starting with 80% water (HPLC grade, EMD Millipore Corp., Burlington, MA, USA) and 20% acetonitrile (99.9% HPLC grade, Fisher Chemical, Ottawa, CA) and ending with acetonitrile after 10 min. A 60-web-equivalent extract was injected and 20 1-min fractions were collected. Each HPLC fraction (containing 20 web-equivalents) was tested in T-rod bioassays (Fig. 1c) for the presence of contact pheromone components. All eight fractions that elicited courtship responses by males (Supplementary Fig. 1) were analysed by HPLC-tandem MS/MS.Identification of contact pheromone components: HPLC-tandem MS/MS of bioactive HPLC fractionsThe bioactive HPLC fractions were analysed on a Bruker maXis Impact Quadrupole Time-of-Flight HPLC/MS System. The system consists of an Agilent 1200 HPLC fitted with a spursil C18 column (30 mm × 3.0 mm, 3 µ; Dikma Technologies, Foothill Ranch, CA, USA) and a Bruker maXis Impact Ultra-High Resolution tandem TOF (UHR-Qq-TOF) mass spectrometer. The LC-MS conditions were as follows: The mass spectrometer was set to positive electrospray ionisation (+ESI) with a gas temperature of 200 °C and a gas flow of 9 L/min. The nebuliser was set to 4 bar and the capillary voltage to 4200 V. The column was eluted with a 0.4-mL/min flow of a solvent gradient, starting with 80% water and 20% acetonitrile and ending with 100% acetonitrile after 4 min. The solvent contained 0.1% formic acid to improve peak shape.Identification of contact pheromone components: 1H NMR analyses of a bioactive fractionIn HPLC-MS analyses, a single bioactive fraction (9–10 min) appeared to contain only a single compound. This fraction was then further investigated using 1H NMR spectroscopy. The 1H NMR spectrum was recorded on a Bruker Advance 600 equipped with a QNP (600 MHz) using CDCl3. Signal positions (δ) are given in parts per million from tetramethylsilane (δ 0) and were measured relative to the signal of the solvent (1H NMR: CDCl3: δ 7.26).Identification of contact pheromone components: syntheses of candidate pheromone componentsThe syntheses of candidate pheromone components and synthetic intermediates are reported in the SI.Identification of contact pheromone components: T-rod bioassays (general procedures)The T-rod apparatus37 (Fig. 1c) consisted of a horizontal beam (25 cm × 0.4 cm) and a vertical beam (30 cm × 0.4 cm) held together by labelling tape (3 cm × 1.9 cm, Fisher Scientific, Ottawa, ON, CA). A piece of filter paper (2 cm2) was attached to each distal end of the horizontal beam. For each bioassay, an aliquot of web extract (in methanol), or a blend of synthetic candidate pheromone components, was applied to the randomly assigned treatment filter paper, whereas methanol was applied to the control filter paper. The solvent was allowed to evaporate for 1 min before the onset of a 15-min bioassay. A randomly selected naïve male spider was placed at the base of the vertical beam and the time he spent courting on each filter paper was recorded. In response to the presence of female-produced or synthetic pheromone on a filter paper, the male engaged in courtship, pulling silk with his hindlegs from his spinnerets and adding it to the paper. Sensing contact pheromone, the male essentially behaves as if he were courting on the web of a female. On a web, the male engages in web reduction prior to copulation, a behaviour that entails cutting sections of the female’s web with his chelicerae and wrapping the dismantled web bundle with his own silk pulled from his spinnerets41,56. Each T-rod apparatus was used only once. Replicates of experiments as part of specific research objectives were run in parallel to eliminate day effects on the responses of spiders. The sample size for each experiment was set to 20 unless otherwise stated.Identification of contact pheromone components: T-rod bioassays (specific experiments) (fall 2017; spring and summer 2018)Experiment 1 (fall 2017) tested a synthetic blend of volatile compounds 5–11 unique to mature S. grossa females (Fig. 1c and Supplementary Table 1) vs a solvent control. Parallel experiment 2 tested one web equivalent of virgin female web extract, followed by testing each of the 20 HPLC fractions in six replicates for the occurrence of courtship (spring 2018).Parallel experiments 3–6 (summer 2018) tested web extract at one female web equivalent (1 FWE) (Exp. 3), a ternary blend of the candidate contact pheromone components 12, 16 and 17 (Fig. 2d, Exp. 4), the same ternary blend (12, 16 and 17) in combination with the volatile compounds 5–11 (Exp. 5), and 5–11 on their own (Exp. 6).Parallel dose-response experiments 7–11 (summer 2018) tested the ternary blend of 12, 16 and 17 at five FWEs: 0.001 (Exp. 7); 0.01 (Exp. 8); 0.1 (Exp. 9); 1.0 (Exp. 10); and 10 (Exp. 11).Parallel experiments 12–15 tested the ternary blend, and all possible binary blends, of 12, 16 and 17. Parallel experiments 16–18 tested 12 and 16 in binary combination (Exp. 16) and singly (Exps. 17, 18).Origin of contact pheromone components (fall 2020)To trace the origin of contact pheromone component 12 (and coeluting 16), cold-euthanized female spiders were dissected in saline solution55 (25 mL of water and 25 mL of methanol, 160 mM NaCl, 7.5 mM KCl, 1 mM MgCl2, 4 mM NaHCO3, 4 mM CaCl2, 20 mM glucose, pH 7.4). Samples were homogenised (Kimble Pellet Pestle Motor, Kimble Kontes, USA) in methanol for 1 min, kept 24 h at room temperature for pheromone extraction, and then centrifuged (12,500 rpm, 3 °C for 20 min; Hermle Z 360 K refrigerated centrifuge; B. Hermle AG, Wehingen, DE) to obtain the supernatant for HPLC-MS analyses (see above) for the presence of 12 and 16. Three sequential sets of dissections aimed to determine (1) the pheromone-containing body tagma, (2) the pheromone-containing tissues or glands in that tagma and (3) the specific gland or tissue producing 12 & 16.To identify the pheromone-containing tagma, 11 spiders were severed at the pedicel, generating two tagmata: the cephalothorax with four pairs of legs and the abdomen. Each tagma was then extracted separately in 100 µL of methanol. Eight of 11 abdomen samples contained 12 and 16, whereas only one of 11 thorax samples contained 12 and 16 (Exp. 19), albeit at only trace amounts. With 12 and 16 being present in the abdomen, 20 additional abdomens were dissected68 to obtain separate samples of (i) haemolymph (25 µL), (ii) ventral cuticle (~0.5 cm2 near the pedicel, (iii) the ovaries, (iv) all silk glands combined, and (v) the gut (with anus, cloaca and Malpighian tubules). The remaining spider tissues (vi) were pooled as one sample, and 20 µL of the dissection buffer solution (vii) was obtained to detect potential pheromone bleeding. To each tissue sample, 50 µL of methanol were added. Only silk gland samples contained 12 and 16 (Exp. 20). Having established that only silk gland samples contained 12 and 16, the silk glands of 30 additional spiders were excised in the following order: (i) major ampullate gland, (ii) minor ampullate gland, (iii) anterior aggregate gland, (iv) posterior aggregate gland, (v) tubuliform, (vi) aciniform and flagelliform glands combined and (vii) pyriform gland. The glands from three spiders were combined in each sample and extracted in 30 µL methanol. Seven of ten posterior aggregate gland samples contained 12 and 16, with other silk gland samples not containing 12 and 16 or in only trace amounts (Exp. 21).Transition of contact pheromone components to mate attractant pheromone components: evidence for hydrolysis of contact pheromone components (12, 16 and 17) (spring 2021)To test for the hydrolysis of the contact pheromone components 12, 16 and 17, we compared their breakdown ratio (18/(12 + 16 + 17 + 18) on independent webs aged 0 days and 14 days (Exp. 24). Each of 140 spiders was allowed to spin a web on bamboo scaffolds for three days. Then, the spiders were removed and webs—by random assignment—were extracted immediately (0-day-old webs) or after 14 days of aging (14-day-old webs). On each web, the amount of contact pheromone components 12, 16 and 17, and of amide 18 as a breakdown product, was quantified using HPLC–MS, with 12 and 18 at 25 and 50 ng/µL as external standards.Transition of contact pheromone components to mate attractant pheromone components: Y-tube olfactometer bioassays (general procedures)The attraction of male spiders to web extracts and to candidate mate attractant pheromone components was tested in Y-tube olfactometers56 (Fig. 4a) lined with bamboo sticks to provide grip for the bioassay spider. Test stimuli were presented in translucent oven bags (30 cm × 31 cm; Toppits, Mengen, DE) secured to the orifice of side-arms. Test stimuli consisted of a triangular bamboo prism scaffold (each side 8.5 cm long) bearing a spider’s web, or bearing artificial webbing30 (40 ± 2 mg; Bling Star, CN) that was treated with web extract or synthetic chemicals in methanol (100 µL) as the treatment stimulus or with methanol (100 µL) as the control stimulus. For each experimental replicate, a male spider was introduced into a glass holding tube and allowed 2 min to acclimatise. Then, the holding tube was attached via a glass joint to the Y-tube olfactometer and an air pump was connected to the holding tube, drawing air at 100 mL/min through the olfactometer. Air entered the olfactometer through a glass tube secured to the oven bags’ second opening. A male that entered the olfactometer within the 5-min bioassay period was classed a responder and his first choice of oven bag (the oven bag he reached first) was recorded. Whenever a set of 30 replicates was completed by the same observer, using 30 separate Y-tubes, the Y-tubes were cleaned with hot water and soap (Sparkleen, Thermo Fisher Scientific, MA, United States) and dried in an oven at 100 °C for 3 h, whereas the bamboo sticks and the oven bags were discarded.Transition of contact pheromone components to mate attractant pheromone components: Y-tube olfactometer bioassays (specific experiments) (summer 2018)In experiments 22, 23 and 25–27, males were offered a choice between a solvent control stimulus and a treatment stimulus. The treatment stimulus consisted of (i) virgin female web-extract (1 web-equivalent) (Exp. 22, N = 24), (ii) the volatile compounds 5–11 unique to sexually mature females (Fig. 1d) (Exp. 23, N = 24), (iii) all breakdown products of the contact pheromone components 12, 16 and 17, consisting of the amide N-4-methylvaleroyl-l-serine (18) and the corresponding carboxylic acids 19, 20 and 21 (Exp. 25, N = 30), (iv) a blend of the acids 19, 20 and 21 (Exp. 26, N = 30) and (v) the amide 18 as a single compound (Exp. 27, N = 30). Compounds were tested at quantities as determined in virgin female web extract (50 webs in 150 μL of dichloromethane), following silyl-ester derivatization69 of acids in the extract, with valeric acid (200 ng; ≥99%, Sigma Aldrich, St. Louis, USA) added as an internal standard. Per web equivalent, there were 103 ng of 19, 3 ng of 20 and 54 ng of 21. The amide 18 was present at 200 ng per web equivalent, as determined using N-3-methylbutnaoyl-l-serine methyl ester as an external standard.Transition of contact pheromone components to mate attractant pheromone components: hallway of buildings experiment (fall 2018)As the ternary blend of the carboxylic acids 19, 20 and 21 attracted male spiders in Y-tube olfactometers (see Results), we aimed to confirm their functional role as mate attractant pheromone components also in ‘field’ settings (Exp. 28). To this end, we set up ten replicates of paired traps in building hallways on the Burnaby campus of Simon Fraser University. Adhesive-coated traps (Bell Laboratories Inc., Madison, WI, USA) were spaced 0.5 m within pairs and 20 m between pairs. By random assignment, one trap in each pair was baited with the carboxylic acids 19, 20 and 21 formulated in 200 µL of mineral oil (Anachemia, Montreal, CA; 2.8 mg of 19, 0.112 mg of 20 and 1.52 mg of 21), whereas the control trap received mineral oil only. Test stimuli were disseminated from a 400-μL microcentrifuge tube (Evergreen Scientific, Ranco Dominguez, CA, USA) with a hole in its lid punctured by a No. 3 insect pin (Hamilton Bell, Montvale, NJ, USA). Every week for 4 months (September to December 2018), traps were checked, lures were replaced, and the position of the treatment and the control trap within each trap pair was re-randomised.Communication function of amide breakdown product 18 (fall 2018)As the amide 18 did not attract males in Y-tube olfactometer experiments (see Results), we tested its alternate potential function as a contact pheromone component which, if active, would induce courtship by males. Using the T-rod apparatus (Fig. 1c), we treated one piece of filter paper with a solvent control and the other with a blend comprising both the contact pheromone components 12, 16 and 17 and the amide 18 (Exp. 29), a blend of 12, 16 and 17 (Exp. 30), and 18 alone (Exp. 31).Mechanisms underlying the transition of contact pheromone components to mate attractant pheromone components: relationship between web pH and breakdown rates of contact pheromone components (summer 2020)We allowed each of the 70 spiders to spin two webs, using one web to quantify the amide breakdown product (18) of the contact pheromone components (see above), and the other web to determine its pH according to the slurry method57 (Exp. 32). To this end, we first measured the pH of 50 µL water (HPLC grade, EMD Millipore Corp., Burlington, MA, USA) and then of a web with the water functioning as a conductor for the pH metre (LAQUAtwin pH 22 (Horiba, Kyoto, JP). Between web measurements, the pH metre was rinsed with water and regularly re-calibrated using a pH 7 and a pH 4 buffer (Horiba, Kyoto, JP).Mechanisms underlying the transition of contact pheromone components to mate attractant pheromone components: testing for pH-dependent saponification of contact pheromone components (12, 16 and 17) (summer 2021)To test whether pH alone catalyses saponification of the ester bond of contact pheromone components (12, 16 and 17), synthetic 12 was added to a 40% aqueous pH 7 buffer solution (Exp. 34), a pH 4 buffer solution (Exp. 34), and to acetonitrile (Exp. 35) as a polar aprotic solvent control (N = 12; 100 ng/µL each). pH-Dependent breakdown of 12 over time was assessed by analysing (HPLC-MS) diluted aqueous aliquots (2.5 ng/µl) of each sample at day 0 and after 14 days of storage at room temperature.Mechanisms underlying the transition of contact pheromone components to mate attractant pheromone components: testing for the presence of a carboxylesterhydrolase (CEH) (summer 2021)To test for the presence of a carboxylesterhydrolase (CEH), for each of three replicates we extracted (i) five webs of adult virgin female L. hesperus (positive control, known to have a CEH45), (ii) 20 webs of subadult S. grossa (deemed to have not yet produced a CEH) and (iii) ten webs of adult virgin female S. grossa, accounting for the different amounts of silk produced by these three groups of spiders. For each replicate, webs were extracted in 200 µL 0.05 M Sørensen buffer58 and analysed by Bioinformatics Solutions (Waterloo, ON, CA). After web samples were incubated for 20 min at 60 °C in 2× sample volumes of 10% SDS (lauryl sulfate; protein-denaturing anionic detergent), they were sonicated for 20 min. Then, the supernatant was withdrawn, reduced with dithiothreitol (DTT), and alkylated with iodoacetamide (IAA). Alkylated samples were treated further with a protein solvent (S-Trap kit; Protifi, Farmingdale, NY, USA). Briefly, samples were acidified by phosphoric acid to pH ≤1. Then 6× of sample volume S-trap buffer was mixed in. The mixture was loaded by centrifugation onto an S-Trap Micro Spin Column and washed 3× with S-trap buffer. Using the serine protease trypsin, protein digestions were carried out at 47 °C for 1 h in 50 mM triethylamonium bicarbonate (TEAB) buffer within the S-Trap Micro Spin column. Digestion products were eluted sequentially with 40 µL 50 mM TEAB and 0.2% formic acid. Eluates were dried and re-suspended in 0.1% formic acid.Eluates were analysed by HPLC-MS/MS in positive ion mode on a Thermo Scientific Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher, San Jose, CA, USA), equipped with a nanospray ionisation source and a Thermo Fisher Ultimate 3000 RSLCnano HPLC System (Thermo Fisher). Peptide mixtures were loaded onto a PEPMAP100 C18 trap column (75 µm × 20 mm, 5 µm particle size; Thermo Fisher) at a constant flow of 30 μL/min and 60 °C isothermal. Peptides were eluted at a rate of 0.2 μL/min and separated using a Reprosil C18 analytical column (75 μm × 15 mm, 1.9 μm particle size; PepSep, DK) with a 60-min solvent gradient: 0–45 min: 4–35% acetonitrile + 0.1% formic acid; 45–55 min: 90% acetonitrile + 0.1% formic acid; 55–60 min: 4% acetonitrile + 0.1% formic acid.MS data were acquired in data-dependent mode with a cycle time of 3 s. MS1 scan data were acquired with the Orbitrap mass analyser, using a mass range of 400–1600 m/z, with the resolution set to 120,000. The automatic gain control (AGC) was set to 4e5, with a maximum ion injection time of 50 ms, and the radio frequency (RF) lens was set to 30%. Isolations for MS2 scans were run using a quadrupole mass analyser, with an isolation window of 0.7. MS2 scan data were acquired with the Orbitrap mass analyser at a resolution of 15,000 m/z, with a maximum ion injection time of 22 ms, and the AGC target set to 5e4. Higher energy collisional dissociation (HCD; fixed normalised collision energy: 30%) was used for generating MS2 spectra, with the number of microscans set to 1.Statistics and reproducibilityData (Supplementary Table 2) were analysed statistically using R70. Data of experiments 1–18 and 29–31 (testing courtship by male spiders in response to contact pheromone components) were analysed with a Wilcoxon test or Kruskal–Wallis two-tailed rank-sum test with Benjamini–Hochberg correction to adjust for multiple comparison. Data of experiments 19–21 (revealing the presence of contact pheromone components in the abdomen, silk glands, and posterior aggregate silk gland) were analysed with two-tailed, rather than one-tailed, Wilcoxon test or Kruskal–Wallis rank tests because we had no strong assumption as to whether or not pheromone would be present in any of these potential pheromone sources. The p values were adjusted for multiple comparison using the Benjamini–Hochberg method. Y-tube olfactometer data of experiments 22, 23 and 25–27, as well as the hallway experiment 28 (revealing attraction of male spiders to volatile pheromone components) were analysed using an one-tailed71 binomial test, anticipating attraction of spiders to volatile mate attractant pheromone components rather than to solvent control stimuli. Data of experiment 32 (revealing a correlation between web pH and breakdown of web-borne contact pheromone components) were analysed using generalised linear models. Data of experiments 33–35 (showing pH-dependent breakdown of synthetic contact pheromone) were compared using a two-tailed Kruskal–Wallis test with Benjamini–Hochberg correction.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail

    Lucas, S. G. Permian tetrapod extinction events. Earth Sci. Rev. 170, 31–60 (2017).
    Google Scholar 
    Rampino, M. R. & Shen, S.-Z. The end-Guadalupian (259.8 Ma) biodiversity crisis: the sixth major mass extinction? Hist. Biol. 33, 716–722 (2019).
    Google Scholar 
    Day, M. O. & Rubidge, B. S. The late capitanian mass extinction of terrestrial vertebrates in the Karoo Basin of South Africa. Front. Earth Sci. 9, 631198 (2021).
    Google Scholar 
    Bordy, E. M. & Paiva, F. Stratigraphic architecture of the karoo river channels at the end-capitanian. Front. Earth Sci. 8, 521766 (2021).
    Google Scholar 
    Erwin, D. H., Bowring, S. A. & Yugan, J. In Catastrophic events and mass extinctions: impacts and beyond (eds. Koeberl, C. & MacLeod, K. G.) 363–383 (Geological Society of America, 2002).Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viglietti, P. A. et al. Evidence from South Africa for a protracted end-Permian extinction on land. Proc. Natl Acad. Sci. USA 118, e2017045118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rubidge, B. S. Did mammals originate in Africa? South African fossils and the Russian connection. Syd. Haughton Meml. Lect. 4, 1–14 (1995).
    Google Scholar 
    Day, M. O. & Rubidge, B. S. A brief lithostratigraphic review of the Abrahamskraal and Koonap formations of the Beaufort Group, South Africa: towards a basin-wide stratigraphic scheme for the Middle Permian Karoo. J. Afr. Earth Sci. 100, 227–242 (2014).
    Google Scholar 
    Day, M., Ramezani, J., Frazer, R. & Rubidge, B. U-Pb zircon age constraints on the vertebrate assemblages and palaeomagnetic record of the Guadalupian Abrahamskraal Formation, Karoo Basin, South Africa. J. Afr. Earth Sci. 186, 104435 (2022).CAS 

    Google Scholar 
    Koch, N. M., Garwood, R. & Parry, L. Fossils improve phylogenetic analyses of morphological characters. Proc. R. Soc. B Biol. Sci. 288, 1–8 (2021).
    Google Scholar 
    McLoughlin, S. Glossopteris: insights into the architecture and relationships of an iconic Permian Gondwanan plant. J. Bot. Soc. Bengal 65, 93–106 (2011).
    Google Scholar 
    Slater, B. J., McLoughlin, S. & Hilton, J. A high-latitude Gondwanan lagerstätte: the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica. Gondwana Res. 27, 1446–1473 (2015).
    Google Scholar 
    Plumstead, E. P. Three thousand million years of plant life in Africa. (Geological Society of South Africa, 1969).Lacey, W. S., van Dijk, D. E. & Gordon-Gray, K. D. Fossil plants from the Upper Permian in the Mooi River district of Natal, South Africa. Ann. Natal. Mus. 22, 349–420 (1975).
    Google Scholar 
    Anderson, J. M. & Anderson, H. M. Palaeoflora of Southern Africa. Prodomus of South African megafloras. Devonian to Lower Cretaceous. (Balkema, 1985).Bordy, E. M. & Prevec, R. Sedimentology, palaeontology and palaeo-environments of the Middle (?) to Upper Permian Emakwezini Formation (Karoo Supergroup, South Africa). South Afr. J. Geol. 111, 429–458 (2008).Prevec, R. et al. Portrait of a Gondwanan ecosystem: a new late Permian fossil locality from KwaZulu-Natal, South Africa. Rev. Palaeobot. Palynol. 156, 454–493 (2009).
    Google Scholar 
    Mcloughlin, S. & Prevec, R. The architecture of Permian glossopterid ovuliferous reproductive organs. Alcheringa Australas. J. Palaeontol. 43, 480–510 (2019).
    Google Scholar 
    McLoughlin, S. & Prevec, R. The reproductive biology of glossopterid gymnosperms—a review. Rev. Palaeobot. Palynol. 295, 104527 (2021).
    Google Scholar 
    Riek, E. F. New Upper Permian insects from Natal, South Africa. Ann. Natal. Mus. 22, 755–789 (1976).
    Google Scholar 
    Riek, E. F. Fossil insects from the Middle Ecca (Lower Permian) of southern Africa. Palaeontol. Afr. 19, 145–148 (1976).
    Google Scholar 
    Riek, E. F. An entomobryid collembolan (Hexapoda: Collembola) from the Lower Permian of Southern Africa. Palaeontol. Afr. 19, 141–143 (1976).
    Google Scholar 
    McLachlan, I. R. & Anderson, A. M. Fossil insect wings from the Early Permian White Band Formation, South Africa. Palaeontol. Afr. 20, 83–86 (1977).
    Google Scholar 
    Pinto, I. D. & Pinto De Ornellas, L. New fossil insects from the White Band Formation (Permian), South Africa. Pesqui. Zool. 10, 96–104 (1978).
    Google Scholar 
    van Dijk, D. E. & Geertsema, H. Permian insects from the Beaufort Group of Natal, South Africa. Ann. Natal. Mus. 40, 137–171 (1999).
    Google Scholar 
    Geertsema, H., van Dijk, D. E. & van den Heever, A. J. Palaeozoic insects of southern Africa: a review. Palaeontol. Afr. 38, 19–25 (2002).
    Google Scholar 
    Rubidge, B. S., Erwin, D. H., Ramezani, J., Bowring, S. A. & de Klerk, W. J. High-precision temporal calibration of Late Permian vertebrate biostratigraphy: U-Pb zircon constraints from the Karoo Supergroup, South Africa. Geology 41, 363–366 (2013).CAS 

    Google Scholar 
    Mcloughlin, S., Prevec, R. & Slater, B. J. Arthropod interactions with the Permian Glossopteris flora. J. Palaeosciences 70, 43–133 (2021).
    Google Scholar 
    Shcherbakov, D. E. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontol. J. 42, 15–31 (2008).
    Google Scholar 
    Nel, A. et al. The earliest known holometabolous insects. Nature 503, 257–261 (2013).CAS 
    PubMed 

    Google Scholar 
    Nicholson, D. B., Mayhew, P. J. & Ross, A. J. Changes to the fossil record of insects through fifteen years of discovery. PLoS ONE 10, 1421–1435 (2015).
    Google Scholar 
    Glenister, B. F., Wardlaw, B. R., Lambert, L. L., Spinosa, C. & Bowring, S. A. Proposal of Guadalupian and component Roadian. Wordian Capitanian Stages Int. Stand. middle Permian Ser. Permophiles 34, 3–11 (1999).
    Google Scholar 
    Allison, P. A. Konservat-Lagerstätten: cause and classification. Paleobiology 14, 331–344 (1988).
    Google Scholar 
    Grimaldi, D. & Engel, M. S. Evolution of the Insects. (Cambridge University Press, 2005).Tian, Q. et al. Experimental investigation of insect deposition in lentic environments and implications for formation of Konservat Lagerstätten. Palaeontology 63, 565–578 (2020).
    Google Scholar 
    McCurry, M. R. et al. A Lagerstätte from Australia provides insight into the nature of Miocene mesic ecosystems. Sci. Adv. 8, 1–11 (2022).
    Google Scholar 
    Beckemeyer, R. J. & Hall, J. D. The entomofauna of the Lower Permian fossil insect beds of Kansas and Oklahoma, USA. Afr. Invertebr. 48, 17 (2007).
    Google Scholar 
    Jell, P. A. The fossil insects of Australia. Mem. Qld. Mus. 50, 1–124 (2004).
    Google Scholar 
    Wickens, H., de, V. & Cole, D. I. Lithostratigraphy of the Skoorsteenberg Formation (Ecca Group, Karoo Supergroup), South Africa. South Afr. J. Geol. 120, 433–446 (2017).
    Google Scholar 
    Rubidge, B. S., Hancox, P. J. & Catuneaunu, O. Sequence analysis of the Ecca–Beaufort contact in the southern Karoo of South Africa. South Afr. J. Geol. 103, 81–96 (2000).
    Google Scholar 
    Lanci, L., Tohver, E., Wilson, A. & Flint, S. Upper Permian magnetic stratigraphy of the lower Beaufort Group, Karoo Basin. Earth Planet. Sci. Lett. 375, 123–134 (2013).CAS 

    Google Scholar 
    Belica, M. E. et al. Refining the chronostratigraphy of the Karoo Basin, South Africa: magnetostratigraphic constraints support an early Permian age for the Ecca Group. Geophys. J. Int. 211, 1354–1374 (2017).CAS 

    Google Scholar 
    Rubidge, B. S. & Day, M. O. Biostratigraphy of the Eodicynodon Assemblage Zone (Beaufort Group, Karoo Supergroup), South Africa. South Afr. J. Geol. 123, 141–148 (2020).
    Google Scholar 
    Nel, A., Garrouste, R. & Prevec, R. The first Permian Gondwanan damselfly-like Protozygoptera (Insecta, Odonatoptera). Hist. Biol. https://doi.org/10.1080/08912963.2022.2067996 (2022).Cawood, R. et al. The first ‘Grylloblattida’ of the family Liomopteridae from the Middle Permian in the Onder Karoo, South Africa (Insecta: Polyneoptera). Comptes Rendus Palevol. https://doi.org/10.5852/cr-palevol2022v21a22 (2022).Surange, K. R. & Chandra, S. Morphology of the gymnospermous fructifications of the Glossopteris flora and their relationships. Palaeontogr. B 149, 153–180 (1975).
    Google Scholar 
    White, M. E. Reproductive structures of the Glossopteridales in the plant fossil collection of the Australian Museum. Rec. Aust. Mus. 31, 473–504 (1978).
    Google Scholar 
    Nishida, H., Pigg, K. B. & DeVore, M. L. In Transformative Paleobotany, Ch. 8 (eds. Krings, M., Harper, C. J., Cúneo, N. R. & Rothwell, G. W.) 145–154 (Academic Press, 2018).McLoughlin, S. New records of Bergiopteris and glossopterid fructifications from the Permian of Western Australia and Queensland. Alcheringa Australas. J. Palaeontol. 19, 175–192 (1995).
    Google Scholar 
    McLoughlin, S. In Gondwana Eight (eds. Findlay, R. H., Unrug, R., Banks, M. R. & Veevers, J. J.) 253–264 (Balkema, 1993).Nishida, H., Pigg, K. B., Kudo, K. & Rigby, J. F. New evidence of the reproductive organs of Glossopteris based on permineralized fossils from Queensland, Australia. II: pollen-bearing organ Ediea gen. nov. J. Plant Res. 127, 233–240 (2014).PubMed 

    Google Scholar 
    Tomescu, A. M. F., Bomfleur, B., Bippus, A. C. & Savoretti, A. In Transformative Paleobotany (eds. Krings, M., Harper, C. J., Cuneo, N. R. & Rothwell, G. W.) 375–416 (Elsevier Academic Press, 2018).Bomfleur, B. et al. Diverse bryophyte mesofossils from the Triassic of Antarctica. Lethaia 47, 120–132 (2014).
    Google Scholar 
    Nel, A., Bechly, G., Prokop, J., Béthoux, O. & Fleck, G. Systematics and evolution of Paleozoic and Mesozoic damselfly-like Odonatoptera of the ‘protozygopteran’ grade. J. Paleontol. 86, 81–104 (2012).
    Google Scholar 
    Riek, E. F. Fossil insects from the Upper Permian of Natal, South Africa. Ann. Natal. Mus. 21, 513–532 (1973).
    Google Scholar 
    Gallego, O. F. et al. The most ancient Platyperlidae (Insecta, Perlida= Plecoptera) from early Late Triassic deposits in southern South America. Ameghiniana 48, 447–461 (2011).
    Google Scholar 
    Martins-Neto, R. G., Gallego, O. F. & Melchor, R. N. The Triassic insect fauna from South America (Argentina, Brazil and Chile): a checklist (except Blattoptera and Coleoptera) and descriptions of new taxa. Acta Zool. Cracoviensia 46, 229–256 (2003).
    Google Scholar 
    van Dijk, D. E. & Geertsema, H. A new genus of Permian Plecoptera (Afroperla) from KwaZulu-Natal, South Africa. Palaeontogr. B 12, 268–270 (2004).
    Google Scholar 
    Béthoux, O., Cui, Y., Kondratieff, B., Stark, B. & Ren, D. At last, a Pennsylvanian stem-stonefly (Plecoptera) discovered. BMC Evol. Biol. 11, 248 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Schubnel, T., Perdu, L., Roques, P., Garrouste, R. & Nel, A. Two new stem-stoneflies discovered in the Pennsylvanian Avion locality, Pas-de-Calais, France (Insecta: ‘Exopterygota’). Alcheringa Australas. J. Palaeontol. 43, 1–6 (2019).
    Google Scholar 
    Sharov, A. G. In Fundamentals of Paleontology: Arthropoda, Tracheata, Chelicerata. (eds. Rohdendorf, B. B. & Davis, D. R.) vol. 9 173–179 (Smithsonian Institution Libraries and NSCF, 1991).Sinitshenkova, N. D. In History of insects. (eds. Rasnitsyn, A. P. & Quicke, D. L. J.) Ch. 3.3, 388–426 (Kluwer Academic Publishers, 2002).Hayes, P. A. & Collinson, M. E. The Flora of the insect limestone (latest Eocene) from the Isle of Wight, southern England. Earth Environ. Sci. Trans. R. Soc. Edinb. 104, 245–261 (2014).
    Google Scholar 
    Zhang, Q. et al. Mayflies as resource pulses in Jurassic lacustrine ecosystems. Geology 50, 1043–1047 (2022).CAS 

    Google Scholar 
    Prokop, J. et al. Ecomorphological diversification of the Late Palaeozoic Palaeodictyopterida reveals different larval strategies and amphibious lifestyle in adults. R. Soc. Open Sci. 6, 190460 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Prokop, J., Nel, A., Engel, M. S., Pecharová, M. & Hörnschemeyer, T. New Carboniferous fossils of Spilapteridae enlighten postembryonic wing development in Palaeodictyoptera. Syst. Entomol. 41, 178–190 (2016).
    Google Scholar 
    Dos Santos, T. B., de Souza Pinheiro, E. R. & Iannuzzi, R. First evidence of seed predation by arthropods from Gondwana and its early Paleozoic history (Rio Bonito Formation, Paraná Basin, Brazil). PALAIOS 35, 292–301 (2020).
    Google Scholar 
    Nel, A., Garrouste, R. & Prokop, J. The first African Anthracoptilidae (Insecta: Paoliida) near the Permian—Triassic boundary in Kenya. Zootaxa 3925, 145 (2015).PubMed 

    Google Scholar 
    Riek, E. F. An unusual immature insect from the Upper Permian of Natal. Ann. Natal. Mus. 22, 271–274 (1974).
    Google Scholar 
    Dunlop, J. A., Penney, D., Tetlie, O. E. & Anderson, L. I. How many species of fossil arachnids are there? J. Arachnol. 36, 267–272 (2008).
    Google Scholar 
    Rasnitsyn, A. P. et al. Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins). Cretac. Res. 61, 234–255 (2016).
    Google Scholar 
    Manum, S. B., Bose, M. N. & Sawyer, R. T. Clitellate cocoons in freshwater deposits since the Triassic. Zool. Scr. 20, 347–366 (1991).
    Google Scholar 
    Struck, T. H. et al. Phylogenomic analyses unravel annelid evolution. Nature 471, 95–98 (2011).CAS 
    PubMed 

    Google Scholar 
    Parry, L., Tanner, A. & Vinther, J. The origin of annelids. Palaeontology 57, 1091–1103 (2014).
    Google Scholar 
    Mikulic, D. G., Briggs, D. E. G. & Kluessendorf, J. A Silurian soft-bodied biota. Science 228, 715–717 (1985).CAS 
    PubMed 

    Google Scholar 
    Prokop, J., Szwedo, J., Lapeyrie, J., Garrouste, R. & Nel, A. New Middle Permian insects from Salagou Formation of the Lodève Basin in southern France (Insecta: Pterygota). Ann. Soci.été Entomol. Fr. NS 51, 14–51 (2015).
    Google Scholar 
    Cai, C. et al. Integrated phylogenomics and fossil data illuminate the evolution of beetles. R. Soc. Open Sci. 9, 211771 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Srivastava, A. K. & Agnihotri, D. Dilemma of late Palaeozoic mixed floras in Gondwana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 298, 54–69 (2010).
    Google Scholar 
    Raff, R. A. Written in stone: fossils, genes and evo–devo. Nat. Rev. Genet. 8, 911–920 (2007).CAS 
    PubMed 

    Google Scholar 
    Cunningham, J. A., Liu, A. G., Bengtson, S. & Donoghue, P. C. J. The origin of animals: can molecular clocks and the fossil record be reconciled? BioEssays 39, 1–12 (2017).PubMed 

    Google Scholar 
    McCulloch, G. A., Wallis, G. P. & Waters, J. M. A time-calibrated phylogeny of southern hemisphere stoneflies: Testing for Gondwanan origins. Mol. Phylogenet. Evol. 96, 150–160 (2016).PubMed 

    Google Scholar 
    Cui, Y. et al. Rhythms of Insect Evolution. (John Wiley & Sons, Ltd, 2019).Letsch, H. et al. Combining molecular datasets with strongly heterogeneous taxon coverage enlightens the peculiar biogeographic history of stoneflies (Insecta: Plecoptera). Syst. Entomol. 46, 952–967 (2021).
    Google Scholar 
    Raja, N. B. et al. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat. Ecol. Evol. 6, 145–154 (2022).PubMed 

    Google Scholar 
    Beattie, R. The geological setting and palaeoenvironmental and palaeoecological reconstructions of the Upper Permian insect beds at Belmont, New South Wales, Australia. Afr. Invertebr. 48, 18 (2007).
    Google Scholar 
    Bernardi, M. et al. Late Permian (Lopingian) terrestrial ecosystems: a global comparison with new data from the low-latitude Bletterbach Biota. Earth Sci. Rev. 175, 18–43 (2017).
    Google Scholar 
    Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211, 47–69 (2004).CAS 

    Google Scholar 
    Sláma, J. et al. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).
    Google Scholar 
    Wiedenbeck, M. et al. Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostand. Newsl. 19, 1–23 (2007).
    Google Scholar 
    Horstwood, M. S. A. et al. Community‐derived standards for LA ‐ ICP ‐ MS U‐(Th‐)Pb geochronology—uncertainty propagation, age interpretation and data reporting. Geostand. Geoanal. Res. 40, 311–332 (2016).CAS 

    Google Scholar 
    Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. Spectrom. 26, 2508–2518 (2011).CAS 

    Google Scholar 
    Petrus, J. A. & Kamber, B. S. VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand. Geoanal. Res. 36, 247–280 (2012).CAS 

    Google Scholar 
    Rees, P. Mc. A., Gibbs, M. T., Ziegler, A. M., Kutzbach, J. E. & Behling, P. J. Permian climates: evaluating model predictions using global paleobotanical data. Geology 27, 891 (1999).
    Google Scholar 
    Walter, H. Vegetation of the Earth and ecological systems of the geo-biosphere. (Springer-Verlag, 1985).Lucas, S. G., Schneider, J. W. & Cassinis, G. Non-marine Permian biostratigraphy and biochronology: an introduction. Geol. Soc. Lond. Spec. Publ. 265, 1–14 (2006).
    Google Scholar 
    Scotese, C. In Atlas of Permo-Triassic Paleogeographic Maps (Mollweide Projection), Maps 43–52, Volumes 3 & 4 of the PALEOMAP Atlas for ArcGIS. (PALEOMAP Project, 2014). More