More stories

  • in

    Site-specific temporal variation of population dynamics in subalpine endemic plant species

    Theurillat, J.-P. & Guisan, A. Potential impact of climate change on vegetation in the European Alps: A review. Clim. Change 50, 77–109 (2001).CAS 

    Google Scholar 
    Diaz, H. F. & Eischeid, J. K. Disappearing “alpine tundra” Köppen climatic type in the western United States. Geophys. Res. Lett. 34, L18707 (2007).ADS 

    Google Scholar 
    Dirnböck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Change Biol. 17, 990–996 (2011).ADS 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pauli, H., Gottfried, M., Dirnböck, T., Dullinger, S. & Grabherr, G. Assessing the long-term dynamics of endemic plants at summit habitats. In Alpine Biodiversity in Europe (eds. Nagy, L., Grabherr, G., Körner, C., & Thompson, D. B.) 195–207 (Springer, 2003).Cogoni, D., Sulis, E., Bacchetta, G. & Fenu, G. The unpredictable fate of the single population of a threatened narrow endemic Mediterranean plant. Biodivers. Conserv. 28, 1799–1813 (2019).
    Google Scholar 
    Cursach, J., Besnard, A., Rita, J. & Fréville, H. Demographic variation and conservation of the narrow endemic plant Ranunculus weyleri. Acta Oecol. 53, 102–109 (2013).ADS 

    Google Scholar 
    Dibner, R. R., DeMarche, M. L., Louthan, A. M. & Doak, D. F. Multiple mechanisms confer stability to isolated populations of a rare endemic plant. Ecol. Monogr. 89, e01360 (2019).
    Google Scholar 
    Boyce, M. S., Haridas, C. V., Lee, C. T., NCEAS Stochastic Demography Working Group. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).PubMed 

    Google Scholar 
    Buckley, Y. M. et al. Causes and consequences of variation in plant population growth rate: A synthesis of matrix population models in a phylogenetic context. Ecol. Lett. 13, 1182–1197 (2010).PubMed 

    Google Scholar 
    Abbott, R. E., Doak, D. F. & DeMarche, M. L. Portfolio effects, climate change, and the persistence of small populations: Analyses on the rare plant Saussurea weberi. Ecology 98, 1071–1081 (2017).PubMed 

    Google Scholar 
    Villellas, J., Doak, D. F., García, M. B. & Morris, W. F. Demographic compensation among populations: What is it, how does it arise and what are its implications?. Ecol. Lett. 18, 1139–1152 (2015).PubMed 

    Google Scholar 
    Doak, D. F. & Morris, W. F. Demographic compensation and tipping points in climate-induced range shifts. Nature 467, 959–962 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    García-Camacho, R., Albert, M. J. & Escudero, A. Small-scale demographic compensation in a high-mountain endemic: The low edge stands still. Plant Ecol. Divers. 5, 37–44 (2012).
    Google Scholar 
    Andrello, M. et al. Accounting for stochasticity in demographic compensation along the elevational range of an alpine plant. Ecol. Lett. 23, 870–880 (2020).PubMed 

    Google Scholar 
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed 

    Google Scholar 
    Ægisdóttir, H. H., Kuss, P. & Stöcklin, J. Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann. Bot. 104, 1313–1322 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Morente-López, J. et al. Geography and environment shape landscape genetics of Mediterranean alpine species Silene ciliata Poiret. (Caryophyllaceae). Front. Plant Sci. 9, 1698 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Franks, S. J., Weber, J. J. & Aitken, S. N. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 7, 123–139 (2014).PubMed 

    Google Scholar 
    Jeong, H., Cho, Y.-C. & Kim, E. Differential plastic responses to temperature and nitrogen deposition in the subalpine plant species, Primula farinosa subsp. modesta. AoB Plants 13, plab061 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sulis, E., Bacchetta, G., Cogoni, D. & Fenu, G. From global to local scale: Where is the best for conservation purpose?. Biodivers. Conserv. 30, 183–200 (2021).
    Google Scholar 
    Hambler, D. & Dixon, J. Primula farinosa L. J. Ecol. 91, 694–705 (2003).
    Google Scholar 
    Arnold, E. & Richards, A. On the occurrence of unilateral incompatibility in Primula section Aleuritia Duby and the origin of Primula scotica Hook. Bot. J. Linn. Soc. 128, 359–368 (1998).
    Google Scholar 
    Tribsch, A. Areas of endemism of vascular plants in the eastern Alps in relation to Pleistocene glaciation. J. Biogeogr. 31, 747–760 (2004).
    Google Scholar 
    Chung, J.-M., Son, S.-W., Kim, S.-Y., Park, G.-W. & Kim, S.-S. Genetic diversity and geographic differentiation in the endangered Primula farinosa subsp. modesta, a subalpine endemic to Korea. Korean J. Plant. Taxon. 43, 236–243 (2013).
    Google Scholar 
    Lindborg, R. & Ehrlén, J. Evaluating the extinction risk of a perennial herb: Demographic data versus historical records. Conserv. Biol. 16, 683–690 (2002).
    Google Scholar 
    Caswell, H. Matrix Population Models, 2nd ed (Sinauer Associates Inc, 2000).Salguero-Gómez, R. & De Kroon, H. Matrix projection models meet variation in the real world. J. Ecol. 98, 250–254 (2010).
    Google Scholar 
    Jongejans, E. et al. Region versus site variation in the population dynamics of three short-lived perennials. J. Ecol. 98, 279–289 (2010).
    Google Scholar 
    Jongejans, E. & De Kroon, H. Space versus time variation in the population dynamics of three co-occurring perennial herbs. J. Ecol. 93, 681–692 (2005).
    Google Scholar 
    Suggitt, A. J. et al. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120, 1–8 (2011).
    Google Scholar 
    Tomimatsu, H. & Ohara, M. Demographic response of plant populations to habitat fragmentation and temporal environmental variability. Oecologia 162, 903–911 (2010).ADS 
    PubMed 

    Google Scholar 
    Kudernatsch, T., Fischer, A., Bernhardt-Römermann, M. & Abs, C. Short-term effects of temperature enhancement on growth and reproduction of alpine grassland species. Basic Appl. Ecol. 9, 263–274 (2008).
    Google Scholar 
    Kim, E. & Donohue, K. Local adaptation and plasticity of Erysimum capitatum to altitude: Its implications for responses to climate change. J. Ecol. 101, 796–805 (2013).
    Google Scholar 
    Forbis, T. A. Seedling demography in an alpine ecosystem. Am. J. Bot. 90, 1197–1206 (2003).PubMed 

    Google Scholar 
    Yenni, G., Adler, P. B. & Ernest, S. M. Strong self-limitation promotes the persistence of rare species. Ecology 93, 456–461 (2012).PubMed 

    Google Scholar 
    Doak, D. F. Source-sink models and the problem of habitat degradation: General models and applications to the Yellowstone grizzly. Conserv. Biol. 9, 1370–1379 (1995).
    Google Scholar 
    Lesica, P. & Crone, E. E. Arctic and boreal plant species decline at their southern range limits in the Rocky Mountains. Ecol. Lett. 20, 166–174 (2017).PubMed 

    Google Scholar 
    Oldfather, M. F. & Ackerly, D. D. Microclimate and demography interact to shape stable population dynamics across the range of an alpine plant. New Phytol. 222, 193–205 (2019).PubMed 

    Google Scholar 
    Ågren, J., Fortunel, C. & Ehrlén, J. Selection on floral display in insect-pollinated Primula farinosa: Effects of vegetation height and litter accumulation. Oecologia 150, 225–232 (2006).ADS 
    PubMed 

    Google Scholar 
    Ehrlén, J., Syrjänen, K., Leimu, R., Begona Garcia, M. & Lehtilä, K. Land use and population growth of Primula veris: An experimental demographic approach. J. Appl. Ecol. 42, 317–326 (2005).
    Google Scholar 
    Ehrlén, J. & Morris, W. F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 18, 303–314 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio package in R. J. Stat. Softw. 22, 1–23 (2007).
    Google Scholar 
    Weiss, N. Package ‘wPerm’. https://cran.r-project.org/web/packages/wPerm/wPerm.pdf. (2015).Frossard, J. & Renaud, O. Permutation tests for regression, ANOVA, and comparison of signals: The permuco package. J. Stat. Softw. 99, 1–32 (2021).
    Google Scholar  More

  • in

    Living on the sea-coast: ranging and habitat distribution of Asiatic lions

    Study areaSituated in western India’s southwestern part of the Gujarat state, the Saurashtra region typically represents the semi-arid Gujarat-Rajputana province 4B23, which covers 11 out of 33 districts of the state. The region forms a rocky tableland (altitude 300–600 m) fringed by coastal plains with an undulating central plain broken by hills and dissected by various rivers that flow in all directions24. With the longest coastline (~ 1600 km) in India, Gujarat is endowed with rich coastal biodiversity25,26. The Saurashtra coast in Gujarat is encircled by the open sea between two Gulfs (68° 58′–71° 30′ N and 22° 15′–20° 50′ E) and divided into two segments, viz. the southwestern coast from Dwarka to Diu (~ 300 km stretch) and south-eastern coast from Diu to Bhavnagar (~ 250 km stretch)26.The Asiatic Lion Landscape covers an area of ~ 30,000 km2 (permanent lion distribution range: ~ 16,000 km2; visitation record range: ~ 14,000 km2) of varied habitat types within Saurashtra. The landscape includes five protected areas (Gir National Park, Gir Wildlife Sanctuary, Paniya Wildlife Sanctuary, Mitiyala Wildlife Sanctuary, and Girnar Wildlife Sanctuary) and other forest classes (reserved forests, protected forests, and unclassed forests).The coastal habitats extend across the districts of Bhavnagar, Amreli, Gir-Somnath, and Junagadh (Fig. 1). Within these districts (Fig. 1), the tehsils (sub-divisions/taluka) of Mangrol, Malia, Patan-Veraval, Sutrapada, Kodinar and Una are categorized under the southwestern coast (hereafter western coastal habitat), Jafrabad, Rajula, form the south-eastern coast and Mahuva and Talaja constitute the Bhavnagar coast and represent distinct lion range units (Fig. 1). The total area covered in the study is 2843 km2 on the eastern coast and 1413 km2 on the western coast (Fig. 1).The Saurashtra region is bestowed with three distinct seasons, viz. dry and hot summer (March–June), monsoon (July–October), and primarily dry winter (November–February). It receives a mean annual rainfall of ~ 600 mm, with most rainfall during the southwest monsoon27. The mean maximum and minimum temperatures are 34 °C and 19 °C, respectively28. There is a 110 km2 stretch of forests along the coast. The rest of the areas are multi-use consisting of private, industrial, pastoral and wastelands of varied ownerships. The natural vegetation primarily consists of Prosopis juliflora and Casuarina equistsetifolia. On the beach and dune areas, vegetation such as Ipomea pescaprae, Sporobolus trinules, Fimrystylis sp., Crotalaria sp., and Euphorbia nivuleria29. The mudflats along the coast are restricted to Talaja, Mahuva, Pipavav Port, Jafrabad creek, and Porbandar, sparsely covered by the Avicennia marina29. Fisheries, agriculture, horticulture, livestock rearing, and some large- and small-scale industries are the leading economies in the coastal belt.Coastal segments are characterized by the variety of vegetation, sandy beaches, small cliffs, wave-cut platforms, open and submerged dunes, minor estuaries, embankments, and transition from the open sea to gulf environment with tidal mud26,29 and also support a diverse assemblage of biodiversity25. This biodiversity is further enriched by several perennial/ephemeral rivers originating from the Gir PA (Shetrunji, Machundari, Raval, Ardak, Bhuvatirth, Shinghoda, Hiran, Saraswati, etc.)12. These rivers meet the sea at different sections of the coast, forming prominent coastal ecosystems25. The riverine tracts act as important corridors for wildlife movement9,12,30. Dispersing through these corridors, lions have started inhabiting these coastal habitats30,31.MethodsAll the research activities involved in this study on Asiatic lions were carried out after taking due permission from the Ministry of Environment, Forests & Climate Change (MoEF&CC), Government of India (Letter No.: F. No. 1-50/2018 WL) and Principal Chief Conservator of Forests (Wildlife) & Chief Wildlife Warden, Gujarat State, Gandhinagar (Letter No.: WLP 26B 781-83/2019-20). Procedures and protocols were followed as per the Standard Operating Procedures of the Gujarat Forest Department, Government of Gujarat, concerning the handling of wild animals. Qualified and experienced veterinarians and their team carried out all procedures related to radio-collaring. Moreover, the study is reported in accordance with ‘Animal Research: Reporting of In Vivo Experiments’ (ARRIVE) guidelines as applicable.A long-term lion monitoring project was initiated in 2019 by the Gujarat Forest Department to understand the movement patterns and ecology of lions in the Asiatic Lion Landscape. Looking at the heterogeneity and vastness of the coastal areas, ten individuals were carefully selected for satellite radio-collaring based on their frequent movement in different coastal habitats and monitored from 2019 to 2021.The lions were deployed with Vertex Plus GPS Collars (Vectronics Aerospace GmbH, Berlin, Germany) that weighed less than three per cent of the individual’s body weight, irrespective of age and sex. The lions were immobilized using a combination of Ketamine hydrochloride (2.2 mg per kg body weight; Ketamine, Biowet, Pulawy) and Xylazine hydrochloride (1.1 mg per kg body weight; Xylaxil, Brilliant Bio Pharma Pvt. Ltd., Telangana)32 administered intramuscularly using a gas-powered Telinject™ G.U.T 50 (Telinject Inc., Dudenhofen, Germany) dart delivery system. A blindfold was placed to protect the eyes and decrease visual stimuli33,34. Each sedated individual was sexed, aged, and measured as per the standard operating procedure (SOP) of the Gujarat Forest Department, Government of Gujarat, and recorded the data in the trapping datasheet. The radio-collars were deployed considering the neck girth of the individual, ensuring free movement of it so as not to hamper the individual’s routine activities. After deploying the radio-collar, we used the specific antidote for Xylazine, i.e., Yohimbine hydrochloride (0.1–0.15 mg per kg body weight; Yohimbe, Equimed, USA) intravenously, resulting in the total recovery of immobilized individuals32 within 5–10 min. The individuals were intensively monitored for 72 h and, after that, regularly monitored throughout the functional period of the radio-collars. The entire radio-collaring exercise was carried out by trained and experienced veterinary officers and their teams that constituted wildlife health care personnel and field staff.Each collar had a unique VHF and UHF frequency. The radio-collars were equipped with a programmable GPS schedule and configured to record the location fixes at every hour and provided the data through the constellation of low-earth-orbit Iridium satellite data service (Iridium Communications Inc., Virginia, USA) at four-hour intervals after getting activated. The data logs included location fixes in degree decimal format (latitude/longitude), speed (km/hour), altitude (meters above mean sea level), UTC timestamp (dd-mm-yyyy h:m:s), direction (degrees), and temperature (Celsius). Radio-collars were equipped with mortality sensors and a programmable drop-off activation system. Gir Hi-Tech Monitoring Unit, Sasan-Gir, Gujarat, monitored and coordinated these activities. The location data from each radio-collar was downloaded using the GPS Plus X software (Vectronics Aerospace GmbH, Berlin, Germany) in the Gir Hi-Tech Monitoring Unit (a technology-driven scientific monitoring initiative in the landscape established in 2019 at Sasan-Gir, Gujarat).Data analysisIn this study, we calculated the home range of lions resident in the coastal region using the Fixed Kernel method. We expressed them as 90% and 50% Fixed Kernel (FK) to summarize the overall home range and core area, respectively35,36,37. Additionally, the home range of lions categorized as “link lions” and lions of the protected area was summarized for comparison (Table 1).MaxEnt (version 3.4.1) stand-alone software38 was applied for fine-scaled lion distribution modelling39,40. The logistic output format was set for the MaxEnt output. 30% random lion occurrence points were used as test data to evaluate model performance. The area under the receiver operating characteristic curve (AUC) was used to evaluate the discriminative ability of the model based on the values of sensitivity (correct discrimination of true positive location points) and specificity (correct discrimination of true negative absence points)41. The Jackknife regularised training gain for the species was used to understand the effect of each variable in model building. The logical output by the MaxEnt was presented in a table format as “percent contribution” and “permutation importance” values (from 0 to 100%). Spatial inputs were prepared on the GIS platform using ArcMap (version 10.8.1, ESRI, Redlands, USA)42. Input data for MaxEnt were categorized as (i) lion occurrence data, (ii) model variables were prepared as described below:

    i.

    Occurrence data
    At the first level, inconsistent location fixes (records with missing coordinates, time stamps, and elevation) and outliers were filtered out. Next, each lion’s hourly GPS location fixes obtained from remotely monitored radio-telemetry data were randomized to overcome spatial and temporal biases. The data was reduced by taking every three-hour location fix43,44. The data was further categorized season-wise, viz. summer, monsoon and winter. This consolidated data was then subject to spatial thinning of one kilometre using SDMtoolbox (version 2.0)45,46.

    ii.

    Model variables

    The variables used for distribution modelling broadly included different categories of land use, including both natural habitats and anthropogenic factors, namely, roads and human settlement areas. All variables were rasterized at 10 m spatial resolution.Land Use Land Cover (LULC) data of Saurashtra was obtained from Bhaskaracharya National Institute for Space Applications and Geo-informatics (BISAG-N), Gandhinagar, Gujarat. The data was then further classified into 18 sub-classes—Forest, Sandy areas, Salt-affected, Saltpan, open scrub, dense scrub (Wastelands), Waterlogged, River/Stream/Drain, Lakes and Ponds, Mining/Industrial areas, Reservoir/Tanks, Mangrove/Swamp Area, Crop Land, Agriculture Plantation (horticulture and agro-forestry), Core urban, Mixed settlement, Peri-urban, Village (Fig. 2).Roads and highways were also analyzed as separate variables in the model. Roads were classified as village roads, major district roads, and state and national highways and digitized individually to estimate Euclidean distance further (Table 2). Euclidean distance from the human settlement (Core-urban, Peri-urban, villages and mixed settlement) was analyzed and taken as a separate input variable for the model. More

  • in

    Plant-frugivore network simplification under habitat fragmentation leaves a small core of interacting generalists

    Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton Univ. Press, Princeton, NJ, 2013).Cordeiro, N. J. & Howe, H. F. Forest fragmentation severs mutualism between seed dispersers and an endemic African tree. Proc. Natl Acad. Sci. USA 100, 14052–14056 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wandrag, E. M., Dunham, A. E., Duncan, R. P. & Rogers, H. S. Seed dispersal increases local species richness and reduces spatial turnover of tropical tree seedlings. Proc. Natl Acad. Sci. USA 114, 10689–10694 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).
    Google Scholar 
    Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).
    Google Scholar 
    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Fricke, E. C. & Svenning, J. C. Accelerating homogenization of the global plant-frugivore meta-network. Nature 585, 74–78 (2020).CAS 
    PubMed 

    Google Scholar 
    Fontúrbel, F. E. et al. Meta-analysis of anthropogenic habitat disturbance effects on animal-mediated seed dispersal. Glob. Change Biol. 21, 3951–3960 (2015).
    Google Scholar 
    Poisot, T. et al. Global knowledge gaps in species interaction networks data. J. Biogeogr. 48, 1552–1563 (2021).
    Google Scholar 
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
    Google Scholar 
    Magrach, A., Laurance, W. F., Larrinaga, A. R. & Santamaria, L. Meta-analysis of the effects of forest fragmentation on interspecific interactions. Conserv. Biol. 28, 1342–1348 (2014).PubMed 

    Google Scholar 
    Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).CAS 
    PubMed 

    Google Scholar 
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed 

    Google Scholar 
    de Assis Bomfim, J., Guimarães, P. R. Jr., Peres, C. A., Carvalho, G. & Cazetta, E. Local extinctions of obligate frugivores and patch size reduction disrupt the structure of seed dispersal networks. Ecography 41, 1899–1909 (2018).
    Google Scholar 
    Emer, C. et al. Seed dispersal networks in tropical forest fragments: Area effects, remnant species, and interaction diversity. Biotropica 52, 81–89 (2020).
    Google Scholar 
    Evans, D. M., Pocock, M. J. O. & Memmott, J. The robustness of a network of ecological networks to habitat loss. Ecol. Lett. 16, 844–852 (2013).PubMed 

    Google Scholar 
    Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nat. Ecol. Evol. 2, 1408–1417 (2018).PubMed 

    Google Scholar 
    Neff, F. M. et al. Changes in plant-herbivore network structure and robustness along land-use intensity gradients in grasslands and forests. Sci. Adv. 7, eabf3985 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
    Google Scholar 
    James, A., Pitchford, J. W. & Plank, M. J. Disentangling nestedness from models of ecological complexity. Nature 487, 227–230 (2012).CAS 
    PubMed 

    Google Scholar 
    Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (1987).
    Google Scholar 
    Vieira, M. C. & Almeida-Neto, M. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol. Lett. 18, 144–152 (2015).PubMed 

    Google Scholar 
    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilarranz, L. J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J. & Gonzalez, A. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357, 199–201 (2017).CAS 
    PubMed 

    Google Scholar 
    Liu, H. et al. Geographic variation in the robustness of pollination networks is mediated by modularity. Glob. Ecol. Biogeogr. 30, 1447–1460 (2021).
    Google Scholar 
    Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).CAS 
    PubMed 

    Google Scholar 
    Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B. 271, 2605–2611 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 9, 16–36 (2019).
    Google Scholar 
    Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).PubMed 

    Google Scholar 
    Song, C., Rohr, R. P. & Saavedra, S. Why are some plant-pollinator networks more nested than others? J. Anim. Ecol. 86, 1417–1424 (2017).PubMed 

    Google Scholar 
    Schleuning, M., Böhning-Gaese, K., Dehling, D. M. & Burns, K. C. At a loss for birds: insularity increases asymmetry in seed-dispersal networks. Glob. Ecol. Biogeogr. 23, 385–394 (2014).
    Google Scholar 
    Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).CAS 
    PubMed 

    Google Scholar 
    Fortuna, M. A. & Bascompte, J. Habitat loss and the structure of plant-animal mutualistic networks. Ecol. Lett. 9, 278–283 (2006).
    Google Scholar 
    Spiesman, B. J. & Inouye, B. D. Habitat loss alters the architecture of plant-pollinator interaction networks. Ecology 94, 2688–2696 (2013).PubMed 

    Google Scholar 
    Traveset, A. et al. Bird-flower visitation networks in the Galápagos unveil a widespread interaction release. Nat. Commun. 6, 6376 (2015).CAS 
    PubMed 

    Google Scholar 
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).PubMed 

    Google Scholar 
    Monteiro, E. C. S., Pizo, M. A., Vancine, M. H. & Ribeiro, M. C. Forest cover and connectivity have pervasive effects on the maintenance of evolutionary distinct interactions in seed dispersal networks. Oikos 2022, e08240 (2022).
    Google Scholar 
    Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K. & Triantis, K. A. Island biogeography: taking the long view of nature’s laboratories. Science 357, eaam8326 (2017).PubMed 

    Google Scholar 
    Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai’i. Science 364, 78–82 (2019).CAS 
    PubMed 

    Google Scholar 
    Diamond, J. Dammed experiments! Science 294, 1847–1848 (2001).CAS 
    PubMed 

    Google Scholar 
    Jones, I. L., Bunnefeld, N., Jump, A. S., Peres, C. A. & Dent, D. H. Extinction debt on reservoir land-bridge islands. Biol. Conserv. 199, 75–83 (2016).
    Google Scholar 
    Wu, J., Huang, J., Han, X., Xie, Z. & Gao, X. Three-Gorges dam–experiment in habitat Fragmentation? Science 300, 1239–1240 (2003).CAS 
    PubMed 

    Google Scholar 
    Wilson, M. C. et al. Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc. Ecol. 31, 219–227 (2016).
    Google Scholar 
    Trøjelsgaard, K. et al. Island biogeography of mutualistic interaction networks. J. Biogeogr. 40, 2020–2031 (2013).
    Google Scholar 
    Emer, C., Venticinque, E. M. & Fonseca, C. R. Effects of dam-induced landscape fragmentation on amazonian ant-plant mutualistic networks. Conserv. Biol. 27, 763–773 (2013).PubMed 

    Google Scholar 
    Zhu, C. et al. Arboreal camera trapping: a reliable tool to monitor plant-frugivore interactions in the trees on large scales. Remote Sens. Ecol. Conserv. 8, 92–104 (2022).
    Google Scholar 
    Zhu, C., Li, W., Wang, D., Ding, P. & Si, X. Plant-frugivore interactions revealed by arboreal camera trapping. Front. Ecol. Environ. 19, 149–151 (2021).
    Google Scholar 
    Galiana, N. et al. The spatial scaling of species interaction networks. Nat. Ecol. Evol. 2, 782–790 (2018).PubMed 

    Google Scholar 
    Hanski, I., Zurita, G. A., Bellocq, M. I. & Rybicki, J. Species-fragmented area relationship. Proc. Natl Acad. Sci. USA 110, 12715–12720 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sugiura, S. Species interactions-area relationships: biological invasions and network structure in relation to island area. Proc. R. Soc. B. 277, 1807–1815 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Galiana, N. et al. Ecological network complexity scales with area. Nat. Ecol. Evol. 6, 307–314 (2022).PubMed 

    Google Scholar 
    Santos, M., Cagnolo, L., Roslin, T., Marrero, H. J. & Vázquez, D. P. Landscape connectivity explains interaction network patterns at multiple scales. Ecology 100, e02883 (2019).PubMed 

    Google Scholar 
    Si, X., Pimm, S. L., Russell, G. J. & Ding, P. Turnover of breeding bird communities on islands in an inundated lake. J. Biogeogr. 41, 2283–2292 (2014).
    Google Scholar 
    Si, X. et al. Functional and phylogenetic structure of island bird communities. J. Anim. Ecol. 86, 532–542 (2017).PubMed 

    Google Scholar 
    Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).
    Google Scholar 
    Sebastián-González, E. Drivers of species’ role in avian seed-dispersal mutualistic networks. J. Anim. Ecol. 86, 878–887 (2017).PubMed 

    Google Scholar 
    Donoso, I. et al. Downsizing of animal communities triggers stronger functional than structural decay in seed-dispersal networks. Nat. Commun. 11, 1582 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).PubMed 

    Google Scholar 
    Dalsgaard, B. et al. Opposed latitudinal patterns of network-derived and dietary specialization in avian plant-frugivore interaction systems. Ecography 40, 1395–1401 (2017).
    Google Scholar 
    Borrvall, C., Ebenman, B. & Jonsson, T. Biodiversity lessens the risk of cascading extinction in model food webs. Ecol. Lett. 3, 131–136 (2000).
    Google Scholar 
    Liao, J. et al. Robustness of metacommunities with omnivory to habitat destruction: disentangling patch fragmentation from patch loss. Ecology 98, 1631–1639 (2017).PubMed 

    Google Scholar 
    Rumeu, B. et al. Predicting the consequences of disperser extinction: richness matters the most when abundance is low. Funct. Ecol. 31, 1910–1920 (2017).
    Google Scholar 
    Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673 (2015).
    Google Scholar 
    Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239 (2019).CAS 
    PubMed 

    Google Scholar 
    Menke, S., Böhning-Gaese, K. & Schleuning, M. Plant-frugivore networks are less specialized and more robust at forest–farmland edges than in the interior of a tropical forest. Oikos 121, 1553–1566 (2012).
    Google Scholar 
    Redhead, J. W. et al. Potential landscape-scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover. Ecol. Lett. 21, 1821–1832 (2018).PubMed 

    Google Scholar 
    Si, X. et al. The importance of accounting for imperfect detection when estimating functional and phylogenetic community structure. Ecology 99, 2103–2112 (2018).PubMed 

    Google Scholar 
    Schoereder, J. H. et al. Should we use proportional sampling for species-area studies? J. Biogeogr. 31, 1219–1226 (2004).
    Google Scholar 
    Liu, J. et al. The distribution of plants and seed dispersers in response to habitat fragmentation in an artificial island archipelago. J. Biogeogr. 46, 1152–1162 (2019).
    Google Scholar 
    Olson, E. R. et al. Arboreal camera trapping for the Critically Endangered greater bamboo lemur Prolemur simus. Oryx 46, 593–597 (2012).
    Google Scholar 
    Li, H.-D. et al. The functional roles of species in metacommunities, as revealed by metanetwork analyses of bird-plant frugivory networks. Ecol. Lett. 23, 1252–1262 (2020).PubMed 

    Google Scholar 
    Snow, B. & Snow, D. Birds and berries: a study of an ecological interaction (T & AD Poyser, Calton, 1988).Si, X., Kays, R. & Ding, P. How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps. PeerJ 2, e374 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Vázquez, D. P. et al. Species abundance and asymmetric interaction strength in ecological networks. Oikos 116, 1120–1127 (2007).
    Google Scholar 
    Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).PubMed 

    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 
    Beckett, S. J. Improved community detection in weighted bipartite networks. R. Soc. Open. Sci. 3, 140536 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Modell. Softw. 26, 173–178 (2011).
    Google Scholar 
    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).CAS 
    PubMed 

    Google Scholar 
    Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Nic Lughadha, E. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3, 1043–1047 (2019).PubMed 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
    PubMed 

    Google Scholar 
    Rogers, H. S., Donoso, I., Traveset, A. & Fricke, E. C. Cascading impacts of seed disperser loss on plant communities and ecosystems. Annu. Rev. Ecol. Evol. Syst. 52, 641–666 (2021).
    Google Scholar 
    Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).
    Google Scholar 
    Patefield, W. M. Algorithm AS 159: An efficient method of generating random R × C tables with given row and column totals. Appl. Stat. 30, 91–97 (1981).
    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
    Google Scholar 
    Kabacoff, R. R in Action: Data Analysis and Graphics with R (Manning Publications Co, 2015).R Core Team. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2021). More

  • in

    Acoustic and visual cetacean surveys reveal year-round spatial and temporal distributions for multiple species in northern British Columbia, Canada

    Williams, R. et al. Prioritizing global marine mammal habitats using density maps in place of range maps. Ecography 37, 212–220 (2014).
    Google Scholar 
    Tyack, P. L. & Clark, C. W. Communication and acoustic behavior of dolphins and whales in Hearing by whales and dolphins 156–224 (Springer, 2000).Davis, G. E. et al. Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Glob. Change Biol. 26, 4812 (2020).ADS 

    Google Scholar 
    Lomac-MacNair, K. S. et al. Marine mammal visual and acoustic surveys near the Alaskan Colville River Delta. Polar Biol. 42, 441–448 (2018).
    Google Scholar 
    Keen, E., Hendricks, B., Wray, J., Alidina, H. & Picard, C. Integrating passive acoustic and visual surveys for marine mammals in coastal habitats in 176th Meeting of Acoustical Society of America. 1 edn.Gregr, E. J., Baumgartner, M. F., Laidre, K. L. & Palacios, D. M. Marine mammal habitat models come of age: The emergence of ecological and management relevance. Endang. Species Res. 22, 205–212 (2013).
    Google Scholar 
    Hastie, G. D., Wilson, B., Wilson, L., Parsons, K. M. & Thompson, P. M. Functional mechanisms underlying cetacean distribution patterns: Hotspots for bottlenose dolphins are linked to foraging. Mar. Biol. 144, 397–403 (2004).
    Google Scholar 
    Lambert, C., Mannocci, L., Lehodey, P. & Ridoux, V. Predicting cetacean habitats from their energetic needs and the distribution of their prey in two contrasted tropical regions. PLoS ONE 9, e105958 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huot, Y. et al. Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies?. Biogeosci. Discuss. 4, 707–745 (2007).ADS 

    Google Scholar 
    Etnoyer, P. et al. Sea-surface temperature gradients across blue whale and sea turtle foraging trajectories off the Baja California Peninsula, Mexico. Deep Sea Res. II 53, 340–358 (2006).ADS 

    Google Scholar 
    Shabangu, F. W. et al. Seasonal occurrence and diel calling behaviour of Antarctic blue whales and fin whales in relation to environmental conditions off the west coast of South Africa. J. Mar. Syst. 190, 25–39 (2019).
    Google Scholar 
    Haida Nation & Parks Canada Agency. Gwaii Haanas Gina ’Waadluxan Kilguhlga. Land-Sea-People Management Plan. 33 (© Council of the Haida Nation and Her Majesty the Queen in Right of Canada, represented by the Chief Executive Officer of Parks Canada, 2018).Ford, J. K. B. Marine Mammals of British Columbia. (Royal BC Museum, 2014).Allen, A. S., Yurk, H., Vagle, S., Pilkington, J. & Canessa, R. The underwater acoustic environment at SGaan Kinghlas-Bowie Seamount Marine Protected Area: Characterizing vessel traffic and associated noise using satellite AIS and acoustic datasets. Mar. Pollut. Bull. 128, 82–88 (2018).CAS 
    PubMed 

    Google Scholar 
    Ainslie, M. A. Principles of Sonar Performance Modeling. (Springer, 2010).Collins, M. D. A split-step Padé solution for the parabolic equation method. J. Acoust. Soc. Am. 93, 1736–1742 (1993).ADS 

    Google Scholar 
    Porter, M. B. & Bucker, H. P. Gaussian beam tracing for computing ocean acoustic fields. J. Acoust. Soc. Am. 82, 1349–1359 (1987).ADS 

    Google Scholar 
    Mouy, X., MacGillivray, A. O., Vallarta, J. H., Martin, B. & Delarue, J. J.-Y. Ambient Noise and Killer Whale Monitoring near Port Metro Vancouver’s Proposed Terminal 2 Expansion Site: July–September 2012. (Technical report by JASCO Applied Sciences for Hemmera, 2012).Ford, J. et al. Distribution and relative abundance of cetaceans in western Canadian waters from ship surveys, 2002–2008. Can. Tech. Rep. Fish. Aquat. Sci. 2913, 51 (2010).
    Google Scholar 
    Wright, B. M., Nichol, L. M. & Doniol-Valcroze, T. Spatial density models of cetaceans in the Canadian Pacific estimated from 2018 ship-based surveys. DFO Can. Sci. Advis. Sec. Res. Doc. 2021, 49 (2021).
    Google Scholar 
    Devred, E., Hardy, M. & Hannah, C. Satellite observations of the Northeast Pacific Ocean. Can. Tech. Rep. Hydrogr. Ocean Sci. 335, 46 (2021).
    Google Scholar 
    Saha, K. et al. NOAA National centers for environmental information. Dataset https://doi.org/10.7289/v52j68xx (2018).Article 

    Google Scholar 
    NASA Goddard Space Flight Center, Ocean Ecology Laboratory & Ocean Biology Processing Group. (NASA OB.DAAC, Greenbelt, MD, USA. https://doi.org/10.5067/AQUA/MODIS/L3B/CHL/2018. Accessed 3 Feb 2021.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B Stat. Methodol. 73, 3–36 (2011).MathSciNet 
    MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).Ogle, D. H., Wheeler, P. & Dinno, A. FSA: Fisheries Stock Analysis. R package version 0.8.32. https://github.com/droglenc/FSA (2021).Payne, R. S. & McVay, S. Songs of humpback whales. Science 173, 585–597 (1971).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rekdahl, M. L. et al. Non-song social call bouts of migrating humpback whales. J. Acoust. Soc. Am. 137, 3042–3053 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oswald, J. N., Rankin, S. & Barlow, J. To whistle or not to whistle? Geographic variation in the whistling behavior of small odontocetes. Aquat. Mamm. 34, 288–302 (2008).
    Google Scholar 
    Rankin, S., Oswald, J., Barlow, J. P. & Lammers, M. Patterned burst-pulse vocalizations of the northern right whale dolphin, Lissodelphis borealis. J. Acoust. Soc. Am. 121, 1213–1218. https://doi.org/10.1121/1.2404919 (2007).Article 
    ADS 
    PubMed 

    Google Scholar 
    Arranz, P. et al. Discrimination of fast click-series produced by tagged Risso’s dolphins (Grampus griseus) for echolocation or communication. J. Exp. Biol. 219, 2898–2907. https://doi.org/10.1242/jeb.144295 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Halpin, L. R., Towers, J. R. & Ford, J. K. First record of common bottlenose dolphin (Tursiops truncatus) in Canadian Pacific waters. Mar. Biodivers. Rec. 11, 1–5 (2018).
    Google Scholar 
    Nikolich, K. & Towers, J. R. Vocalizations of common minke whales (Balaenoptera acutorostrata) in an eastern North Pacific feeding ground. Bioacoustics 29, 97–108 (2020).
    Google Scholar 
    Money, J. H. & Trites, A. W. A preliminary assessment of the status of marine mammal populations and associated research needs for the west coast of Canada. Report No. Final Report, 80 (Fisheries and Oceans Canada, 1998).Gregr, E. J. & Trites, A. W. Predictions of critical habitat for five whale species in the waters of coastal British Columbia. Can. J. Fish. Aquat. Sci. 58, 1265–1285 (2001).
    Google Scholar 
    Ou, H., Au, W. W. L., Van Parijs, S., Oleson, E. M. & Rankin, S. Discrimination of frequency-modulated Baleen whale downsweep calls with overlapping frequencies. J. Acoust. Soc. Am. 137, 3024–3032. https://doi.org/10.1121/1.4919304 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Mellinger, D. K., Stafford, K. M., Moore, S. E., Dziak, R. P. & Matsumoto, H. An overview of fixed passive acoustic observation methods for cetaceans. Oceanography 20, 36–45 (2007).
    Google Scholar 
    Stafford, K. M., Citta, J. J., Moore, S. E., Daher, M. A. & George, J. E. Environmental correlates of blue and fin whale call detections in the North Pacific Ocean from 1997 to 2002. Mar. Ecol. Prog. Ser. 395, 37–53 (2009).ADS 

    Google Scholar 
    Burnham, R., Duffus, D. & Mouy, X. The presence of large whale species in Clayoquot Sound and its offshore waters. Cont. Shelf Res. 177, 15–23 (2019).ADS 

    Google Scholar 
    Burtenshaw, J. C. et al. Acoustic and satellite remote sensing of blue whale seasonality and habitat in the Northeast Pacific. Deep Sea Res. II 51, 967–986 (2004).ADS 

    Google Scholar 
    Calambokidis, J., Barlow, J., Ford, J. K. B., Chandler, T. E. & Douglas, A. B. Insights into the population structure of blue whales in the Eastern North Pacific from recent sightings and photographic identification. Mar. Mamm. Sci. 25, 816–832 (2009).
    Google Scholar 
    Jackson, J. M., Thomson, R. E., Brown, L. N., Willis, P. G. & Borstad, G. A. Satellite chlorophyll off the British Columbia Coast, 1997–2010. J. Geophys. Res. Oceans 120, 4709–4728 (2015).ADS 

    Google Scholar 
    Evans, R., English, P. A., Anderson, S. C., Gauthier, S. & Robinson, C. L. Factors affecting the seasonal distribution and biomass of E. pacifica and T. spinifera along the Pacific coast of Canada: A spatiotemporal modelling approach. PLoS ONE 16, e0249818 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, S. E., Watkins, W. A., Daher, M. A., Davies, J. R. & Dahlheim, M. E. Blue whale habitat associations in the Northwest Pacific: Analysis of remotely-sensed data using a Geographic Information System. Oceanography 15, 1–10 (2002).
    Google Scholar 
    Lockyer, C. Review of Baleen Whale (Mysticeti) reproduction and implications for management. Rep. Int. Whal. Commn Spec. Issue 6, 27–50 (1984).
    Google Scholar 
    Ohsumi, S. M. N. Growth of fin whale in the Northern Pacific Ocean. Sci. Rep. Whale Res. Inst. 13, 97–133 (1958).
    Google Scholar 
    Watkins, W. A. et al. Seasonality and distribution of whale calls in the North Pacific. Oceanography 13, 62–67 (2000).
    Google Scholar 
    Watkins, W. A., Tyack, P., Moore, K. E. & Bird, J. E. The 20-Hz signals of finback whales (Balaenoptera physalus). J. Acoust. Soc. Am. 82, 1901–1912 (1987).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stafford, K. M., Mellinger, D. K., Moore, S. E. & Fox, C. G. Seasonal variability and detection range modeling of baleen whale calls in the Gulf of Alaska, 1999–2002. J. Acoust. Soc. Am. 122, 3378–3390 (2007).ADS 
    PubMed 

    Google Scholar 
    Koot, B. Winter Behaviour and Population Structure of Fin Whales (Balaenoptera physalus) in British Columbia inferred from passive acoustic data (University of British Columbia, 2015).
    Google Scholar 
    Pilkington, J. F., Stredulinsky, E. H., Abernethy, R. M. & Ford, J. K. B. Patterns of Fin whale (Balaenoptera physalus) Seasonality and Relative Distribution in Canadian Pacific Waters Inferred from Passive Acoustic Monitoring. DFO Can. Sci. Advis. Sec. Res. Doc. (2018).Best, B. D., Fox, C. H., Williams, R., Halpin, P. H. & Paquet, P. C. Updated Marine Mammal Distribution and Abundance Estimates in British Columbia (Springer, 2015).
    Google Scholar 
    Clarke, C. & Jamieson, G. Identification of ecologically and biologically significant areas in the Pacific North Coast integrated management area: Phase II: Final report. Can. Tech. Rep. Fish. Aquat. Sci. 2678, 59 (2006).
    Google Scholar 
    Nichol, L. M. et al. Distribution, movements and habitat fidelity patterns of Fin Whales (Balaenoptera physalus) in Canadian Pacific Waters. DFO Can. Sci. Advis. Sec. Res. Doc. (2018).Nichol, L. M. & Ford, J. K. B. Information in Support of the Identification of Habitat of Special Importance to Fin Whales (Balaenoptera physalus) in Canadian Pacific Waters. DFO Can. Sci. Advis. Sec. Res. Doc. (2018).Mizroch, S. A., Rice, D. W., Zwiefelhofer, D., Waite, J. & Perryman, W. L. Distribution and movements of fin whales in the North Pacific Ocean. Mammal Rev. 39, 193–227 (2009).
    Google Scholar 
    Širović, A., Williams, L. N., Kerosky, S. M., Wiggins, S. M. & Hildebrand, J. A. Temporal separation of two fin whale call types across the eastern North Pacific. Mar. Biol. 160, 47–57 (2013).PubMed 

    Google Scholar 
    Flinn, R. D., Trites, A. W., Gregr, E. J. & Perry, R. I. Diets of fin, sei, and sperm whales in British Columbia: an analysis of commercial whaling records, 1963–1967. Mar. Mamm. Sci. 18, 663–679 (2002).
    Google Scholar 
    Barnes, R. S. K. & Hughes, R. N. An Introduction to Marine Ecology (Wiley, 1999).
    Google Scholar 
    Romagosa, M. et al. Food talks: 40-hz fin whale calls are associated with prey biomass. Proc. R. Soc. B 288, 20211156 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Gregr, E. J., Nichol, L., Ford, J. K., Ellis, G. & Trites, A. W. Migration and population structure of northeastern Pacific whales off coastal British Columbia: An analysis of commercial whaling records from 1908–1967. Mar. Mamm. Sci. 16, 699–727 (2000).
    Google Scholar 
    Williams, R. & Thomas, L. Distribution and abundance of marine mammals in the coastal waters of British Columbia, Canada. J. Cetac. Res. Manage. 9, 15 (2007).
    Google Scholar 
    Dalla Rosa, L., Ford, J. K. & Trites, A. W. Distribution and relative abundance of humpback whales in relation to environmental variables in coastal British Columbia and adjacent waters. Contin. Shelf Res. 36, 89–104 (2012).ADS 

    Google Scholar 
    Winn, H. E. & Winn, L. K. The song of the humpback whale Megaptera novaeangliae in the West Indies. Mar. Biol. 47, 97–114. https://doi.org/10.1007/BF00395631 (1978).Article 

    Google Scholar 
    Baker, C. S. et al. Population characteristics and migration of summer and late-season humpback whales (Megaptera novaeangliae) in southeastern Alaska. Mar. Mamm. Sci. 1, 304–323 (1985).ADS 

    Google Scholar 
    McSweeney, D., Chu, K., Dolphin, W. & Guinee, L. North Pacific humpback whale songs: A comparison of southeast Alaskan feeding ground songs with Hawaiian wintering ground songs. Mar. Mamm. Sci. 5, 139–148 (1989).
    Google Scholar 
    Norris, T. F., McDonald, M. & Barlow, J. Acoustic detections of singing humpback whales (Megaptera novaeangliae) in the eastern North Pacific during their northbound migration. J. Acoust. Soc. Am. 106, 506–514 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Clark, C. W. & Clapham, P. J. Acoustic monitoring on a humpback whale (Megaptera novaeangliae) feeding ground shows continual singing into late spring. Proc. R. Soc. Lond. B 271, 1051–1057 (2004).
    Google Scholar 
    Stimpert, A. K., Peavey, L. E., Friedlaender, A. S. & Nowacek, D. P. Humpback whale song and foraging behavior on an Antarctic feeding ground. PLoS ONE 7, e51214 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kowarski, K., Evers, C., Moors-Murphy, H., Martin, B. & Denes, S. L. Singing through winter nights: Seasonal and diel occurrence of humpback whale (Megaptera novaeangliae) calls in and around the Gully MPA, offshore eastern Canada. Mar. Mamm. Sci. 34, 169–189 (2018).
    Google Scholar 
    Nichol, L. M., Abernethy, R., Flostrand, L., Lee, T. S. & Ford, J. K. B. Information relevant for the identification of critical habitats of north pacific humpback whales (Megaptera novaeangliae) in British Columbia. DFO Can. Sci. Advis. Sec. Res. Doc. (2010).Williams, R., Erbe, C., Ashe, E. & Clark, C. W. Quiet (er) marine protected areas. Mar. Pollut. Bull. 100, 154–161 (2015).CAS 
    PubMed 

    Google Scholar 
    Gaston, A. J., Pilgrim, N. G. & Pattison, V. Humpback Whale (Megaptera novaeangliae) observations in Laskeek Bay, western Hecate Strait, in spring and early summer, 1990–2018. Can. Field Nat. 133, 263–269 (2019).
    Google Scholar 
    Robinson, C. L., Gower, J. F. & Borstad, G. Twenty years of satellite observations describing phytoplankton blooms in seas adjacent to Gwaii Haanas National Park Reserve, Canada. Can. J. Remote Sens. 30, 36–43 (2004).ADS 

    Google Scholar 
    Swartz, S. L., Taylor, B. L. & Rugh, D. J. Gray whale Eschrichtius robustus population and stock identity. Mamm. Rev. 36, 66–84 (2006).
    Google Scholar 
    Gaston, A. J. & Heise, K. Results of cetacean observations in Laskeek Bay, 1990–2003. Laskeek Bay Res. 55, 1–10 (2004).
    Google Scholar 
    Ford, J. K. et al. New insights into the northward migration route of gray whales between Vancouver Island, British Columbia, and southeastern Alaska. Mar. Mamm. Sci. 29, 325–337 (2013).
    Google Scholar 
    Burnham, R. E. & Duffus, D. A. The use of passive acoustic monitoring as a census tool of gray whale (Eschrichtius robustus) migration. Ocean Coast. Manag. 188, 105070 (2020).
    Google Scholar 
    Best, P. B. Social organization in sperm whales. In Physeter macrocephalus in Behavior of Marine Animals (eds Winn, H. E. & Olla, B. L.) 227–289 (Springer, 1979).
    Google Scholar 
    Jaquet, N. & Gendron, D. Distribution and relative abundance of sperm whales in relation to key environmental features, squid landings and the distribution of other cetacean species in the Gulf of California, Mexico. Mar. Biol. 141, 591–601 (2002).
    Google Scholar 
    Rice, D. W. Sperm whale Physeter macrocephalus Linnaeus, 1758. Handb. Mar. Mamm. 4, 177–233 (1989).
    Google Scholar 
    Whitehead, H. & Arnbom, T. Social organization of sperm whales off the Galapagos Islands, February–April 1985. Can. J. Zool. 65, 913–919 (1987).
    Google Scholar 
    Whitehead, H. Sperm whale: Physeter macrocephalus. In Encyclopedia of Marine Mammals 3rd edn (eds Würsig, B. et al.) 919–925 (Academic Press, 2018).
    Google Scholar 
    Mizroch, S. A. & Rice, D. W. Ocean nomads: Distribution and movements of sperm whales in the North Pacific shown by whaling data and Discovery marks. Mar. Mamm. Sci. 29, E136–E165 (2013).
    Google Scholar 
    Diogou, N. et al. Sperm whale (Physeter macrocephalus) acoustic ecology at Ocean Station PAPA in the Gulf of Alaska-Part 2: Oceanographic drivers of interannual variability. Deep Sea Res. I 150, 103044 (2019).
    Google Scholar 
    Ford, J. K. & Ellis, G. M. You are what you eat: Foraging specializations and their influence on the social organization and behavior of killer whales. in Primates and Cetaceans 75–98 (Springer, 2014).Ford, J. K. B. et al. Habitats of special importance to resident killer whales (Orcinus orca) off the West Coast of Canada. DFO Can. Sci. Advis. Sec. Res. Doc. (2017).Ford, J. K. B., Stredulinsky, E. H., Ellis, G. M., Durban, J. W. & Pilkington, J. F. Offshore Killer whales in Canadian pacific waters: Distribution, seasonality, foraging ecology, population status and potential for recovery. DFO Can. Sci. Advis. Sec. Res. Doc. (2014).Nichol, L. M. & Shackleton, D. M. Seasonal movements and foraging behaviour of northern resident killer whales (Orcinus orca) in relation to the inshore distribution of salmon (Oncorhynchus spp.) in British Columbia. Can. J. Zool. 74, 983–991 (1996).
    Google Scholar 
    Olesiuk, P. F., Ellis, G. M. & Ford, J. K. Life History and Population Dynamics of Northern Resident Killer Whales (Orcinus orca) in British Columbia (Canadian Science Advisory Secretariat Ottawa, 2005).
    Google Scholar 
    Newman, K. & Springer, A. Nocturnal activity by mammal-eating killer whales at a predation hot spot in the Bering Sea. Mar. Mamm. Sci. 24, 990 (2008).
    Google Scholar 
    Ford, J. K. B. et al. Dietary specialization in two sympatric populations of killer whales (Orcinus orca) in coastal British Columbia and adjacent waters. Can. J. Zool. 76, 1456–1471 (1998).
    Google Scholar 
    Barrett-Lennard, L. G., Ford, J. K. B. & Heise, K. A. The mixed blessing of echolocation: Differences in sonar use by fish-eating and mammal-eating killer whales. Anim. Behav. 51, 553–565 (1996).
    Google Scholar 
    Deecke, V. B., Ford, J. K. B. & Slater, P. J. B. The vocal behaviour of mammal-eating killer whales: Communicating with costly calls. Anim. Behav. 69, 395–405 (2005).
    Google Scholar 
    Ford, J. K. B. Call traditions and vocal dialects of killer whales (Orcinus orca) in British Columbia Ph.D. thesis, University of British Columbia (1984).Baird, R. W. Status of killer whales, Orcinus orca, Canada. Can. Field. Nat. 115, 676–701 (2001).
    Google Scholar 
    Ford, J. K. B., Stredulinsky, E. H., Towers, J. R. & Ellis, G. M. Information in Support of the Identification of Critical Habitat for Transient Killer Whales (Orcinus orca) off the West Coast of Canada. DFO Can. Sci. Advis. Sec. Res. Doc. (2013).Tyack, P. L., Johnson, M., Soto, N. A., Sturlese, A. & Madsen, P. T. Extreme diving of beaked whales. J. Exp. Biol. 209, 4238–4253 (2006).PubMed 

    Google Scholar 
    Baumann-Pickering, S. et al. Species-specific beaked whale echolocation signals. J. Acoust. Soc. Am. 134, 2293–2301 (2013).ADS 
    PubMed 

    Google Scholar 
    Pike, G. C. Two records of Berardius bairdi from the coast of British Columbia. J. Mammal. 34, 98–104 (1953).
    Google Scholar 
    Pike, G. C. & MacAskie, I. Marine mammals of British Columbia. Fish. Res. Board Can. Bull. 171, 1–10 (1969).
    Google Scholar 
    Willis, P. M. & Baird, R. W. Sightings and strandings of beaked whales on the west coast of. Aquat. Mamm. 24, 21–25 (1998).
    Google Scholar 
    Jefferson, T. A. Phocoenoides dalli. Mamm. Spec. https://doi.org/10.2307/3504170 (1988).Article 

    Google Scholar 
    Boyd, C. et al. Estimation of population size and trends for highly mobile species with dynamic spatial distributions. Divers. Distrib. 24, 1–12 (2018).
    Google Scholar 
    Carretta, J. V., Taylor, B. L. & Chivers, S. J. Abundance and depth distribution of harbor porpoise (Phocoena phocoena) in northern California determined from a 1995 ship survey. Fish. Bull. 99, 29–29 (2001).
    Google Scholar 
    Willis, P. M. & Baird, R. W. Status of the dwarf sperm whale, Kogia simus, with special reference to Canada. Can. Field Nat. 112, 114–125 (1998).
    Google Scholar 
    Kyhn, L. A. et al. Clicking in a killer whale habitat: Narrow-band, high-frequency biosonar cliks of harbour porpoise (Phocoena phocoena) and Dall’s porpoise (Phocoenoides dalli). PLoS ONE 8, e63763 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Madsen, P., Carder, D., Bedholm, K. & Ridgway, S. Porpoise clicks from a sperm whale nose—Convergent evolution of 130 kHz pulses in toothed whale sonars?. Bioacoustics 15, 195–206 (2005).
    Google Scholar 
    Merkens, K. et al. Clicks of dwarf sperm whales (Kogia sima). Mar. Mamm. Sci. 34, 963–978 (2018).
    Google Scholar 
    Griffiths, E. T. et al. Detection and classification of narrow-band high frequency echolocation clicks from drifting recorders. J. Acoust. Soc. Am. 147, 3511–3522 (2020).ADS 
    PubMed 

    Google Scholar 
    Baird, R. W. & Stacey, P. J. Status of Risso’s Dolphin, Grampus griseus, in Canada. Naturalist 5, 233142 (1991).
    Google Scholar 
    Benoit-Bird, K. J. & Au, W. W. Prey dynamics affect foraging by a pelagic predator (Stenella longirostris) over a range of spatial and temporal scales. Behav. Ecol. Sociobiol. 53, 364–373 (2003).
    Google Scholar 
    Benoit-Bird, K. J., Würsig, B. & Mfadden, C. J. Dusky dolphin (Lagenorhynchus obscurus) foraging in two different habitats: active acoustic detection of dolphins and their prey. Mar. Mamm. Sci. 20, 215–231 (2004).
    Google Scholar 
    Soldevilla, M. S., Wiggins, S. M. & Hildebrand, J. A. Spatial and temporal patterns of Risso’s dolphin echolocation in the Southern California Bight. J. Acoust. Soc. Am. 127, 124–132 (2010).ADS 
    PubMed 

    Google Scholar 
    Soldevilla, M. S., Wiggins, S. M. & Hildebrand, J. A. Spatio-temporal comparison of Pacific white-sided dolphin echolocation click types. Aquat. Biol. 9, 49–62 (2010).
    Google Scholar 
    Taylor, F. The relationship of midwater trawl catches to sound scattering layers off the coast of northern British Columbia. J. Fish. Board Can. 25, 457–472 (1968).
    Google Scholar 
    Curtis, K. R., Howe, B. M. & Mercer, J. A. Low-frequency ambient sound in the North Pacific: Long time series observations. J. Acoust. Soc. Am. 106, 3189–3200 (1999).ADS 

    Google Scholar 
    Aroyan, J. L. et al. Acoustic models of sound production and propagation in Hearing by whales and dolphins 409–469 (Springer, 2000).
    Google Scholar 
    Cummings, W. C. & Thompson, P. O. Underwater sounds from the blue whale, Balaenoptera musculus. J. Acoust. Soc. Am. 50, 1193–1198 (1971).ADS 

    Google Scholar 
    McDonald, M. A., Calambokidis, J., Teranishi, A. M. & Hildebrand, J. A. The acoustic calls of blue whales off California with gender data. J. Acoust. Soc. Am. 109, 1728–1735 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Weirathmueller, M. J., Wilcock, W. S. D. & Soule, D. C. Source levels of fin whale 20 Hz pulses measured in the Northeast Pacific Ocean. J. Acoust. Soc. Am. 133, 741–749 (2013).ADS 
    PubMed 

    Google Scholar 
    Vihtakari, M. ggOceanMaps: Plot Data on Oceanographic Maps using ‘ggplot2’. R package version 1.2.14. https://mikkovihtakari.github.io/ggOceanMaps/ (2022). More

  • in

    Machine learning algorithm for estimating karst rocky desertification in a peak-cluster depression basin in southwest Guangxi, China

    Wang, S., Liu, Q. & Zhang, D. Karst rocky desertification in southwestern China: Geomorphology, landuse, impact and rehabilitation. Land Degrad. Dev. 15(2), 115–121 (2004).
    Google Scholar 
    Jiang, M. et al. Geologic factors leadingly drawing the macroecological pattern of rocky desertification in southwest China. Sci. Total Environ. 458–460, 419–426 (2013).
    Google Scholar 
    Jiang, Z., Lian, Y. & Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 132, 1–12 (2014).ADS 

    Google Scholar 
    Xu, E., Zhang, H. & Li, M. Object-based mapping of karst rocky desertification using a support vector machine. Land Degrad. Dev. 26(2), 158–167 (2012).
    Google Scholar 
    Li, Y., Bai, X., Wang, S. & Tian, Y. Integrating mitigation measures for karst rocky desertification land in the Southwest mountains of China. Carbonates Evaporites 34, 1095–1106 (2018).
    Google Scholar 
    Lan, J. Responses of soil organic carbon components and their sensitivity to karst rocky desertification control measures in Southwest China. J. Soil. Sediment. 21, 978–989 (2020).
    Google Scholar 
    Gao, J., Du, F., Zuo, L. & Jiang, Y. Integrating ecosystem services and rocky desertification into identification of karst ecological security pattern. Landscape Ecol. 36, 2113–2133 (2020).
    Google Scholar 
    Huang, X. et al. Driving factors and prediction of rock desertification of non-tillage lands in a karst basin, Southwest China. Pol. J. Environ. Stud. 30(4), 3627–3635 (2021).CAS 

    Google Scholar 
    Chen, S., Zhou, Z., Yan, L. & Li, B. Quantitative evaluation of ecosystem health in a karst area of South China. Sustain. Basel 8(10), 975 (2016).
    Google Scholar 
    Liu, F., He, B. Y. & Kou, J. F. Landsat thermal remote sensing to investigate the present situation and variation characteristics of karst rocky desertification in Pingguo County of Guangxi, Southwest China. Sci. Soil Water Conserv. 15(02), 125–131 (2017).
    Google Scholar 
    Zhang, X., Shang, K., Cen, Y., Shuai, T. & Sun, Y. Estimating ecological indicators of karst rocky desertification by linear spectral unmixing method. Int. J. Appl. Earth Obs. Geoinf. 31, 86–94 (2014).ADS 
    CAS 

    Google Scholar 
    Zhang, Z., Ouyang, Z., Xiao, Y., Xiao, Y. & Xu, W. Using principal component analysis and annual seasonal trend analysis to assess karst rocky desertification in southwestern China. Environ. Monit. Assess. 189(6), 1–19 (2017).
    Google Scholar 
    Li, S. & Wu, H. Mapping karst rocky desertification using Landsat 8 images. Remote Sens. Lett. 6(9), 657–666 (2015).
    Google Scholar 
    Yang, S. X., Lin, H., Hou, F., Zhang, L. P. & Hu, Z. L. Estimating karst area vegetation coverage by pixel unmixing. Bull. Surv. Mapp. 5, 23–27 (2014).
    Google Scholar 
    Xiong, Y., Yue, Y. M. & Wang, K. L. Comparative study of indicator extraction for assessment of karst rocky desertification based on hyperion and ASTER images. Bull. Soil Water Conserv. 33(03), 186–190 (2013).
    Google Scholar 
    Dai, G., Sun, H., Wang, B., Huang, C., Wang, W., Yao, Y., et al. Assessment of karst rocky desertification from the local to regional scale based on unmanned aerial vehicle images: Acase-study of Shilin County, Yunnan Province, China. Land Degrad. Dev. 1–14 (2021).Pu, J., Zhao, X., Dong, P., Wang, Q. & Yue, Q. Extracting information on rocky desertification from satellite images: A comparative study. Remote Sens. 13(13), 2497 (2021).ADS 

    Google Scholar 
    Yue, Y. M. et al. Remote sensing of indicators for evaluating karst rocky desertification. Procedia Environ. Sci. 15(04), 722–736 (2011).
    Google Scholar 
    Huang, Q. & Cai, Y. Spatial pattern of Karst rock desertification in the middle of Guizhou Province. Southwestern China. Environ. Geol. 52(7), 1325–1330 (2006).MathSciNet 

    Google Scholar 
    Wang, J., Li, S., Li, H., Luo, H. & Wang, M. Classifying indices and remote sensing image characters of rocky desertification lands: a case of karst region in Northern Guangdong Province. J. Desert Res. 5, 765–770 (2007).
    Google Scholar 
    Chen, F. et al. Assessing spatial-temporal evolution processes and driving forces of karst rocky desertification. Geocarto Int. 1–22 (2019).Qi, X., Zhang, C. & Wang, K. Comparing remote sensing methods for monitoring karst rocky desertification at sub-pixel scales in a highly heterogeneous karst region. Sci. Rep-UK https://doi.org/10.1038/s41598-019-49730-9 (2019).Article 

    Google Scholar 
    Yue, Y. et al. Spectral indices for estimating ecological indicators of karst rocky desertification. Int. J. Remote Sens. 31(8), 2115–2122 (2010).
    Google Scholar 
    Yan, Y., Hu, B. Q., Han, Q. Y. & Li, Y. L. Early warning for karst rocky desertification in agricultural land base on the 3S and ANN technique: A case study in Du’an County, Guangxi. Carsologica Sin. 31(01), 52–58 (2012).
    Google Scholar 
    Zhang, J. et al. Spectral analysis of seasonal rock and vegetation changes for detecting karst rocky desertification in southwest China. Int. J. Appl. Earth Obs. Geoinf. https://doi.org/10.1016/j.jag.2021.102337 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Y., Wang, J. & Deng, X. Rocky land desertification and its driving forces in the karst areas of rural Guangxi, Southwest China. J. Mt. Sci-Engl. 5(4), 350–357 (2008).
    Google Scholar 
    Li, Y., Xie, J., Luo, G., Yang, H. & Wang, S. The evolution of a karst rocky desertification land ecosystem and its driving forces in the Houzhaihe Area, China. J. Ecol. 5, 501–512 (2015).
    Google Scholar 
    Zhang, Y. R., Zhou, Z. F. & Ma, S. B. Rocky desertification and climate change characteristics in typical karst area of Guizhou Province over past two decades. Environ. Sci. Technol. 37(09), 192–197 (2014).
    Google Scholar 
    Bai, X. Y., Wang, S. J., Chen, Q. W. & Cheng, A. Y. Constrains of lithological background of carbonate rock on spatio-temporal evolution of karst rocky desertification land. Earth Sci. 35(4), 691–696 (2010).
    Google Scholar 
    Li, L. & Xiong, K. Study on peak-cluster-depression rocky desertification landscape evolution and human activity-influence in South of China. Eur. J. Remote Sens. 1–9 (2020).Yao, Y. H., Shuo, N. D. Z., Zhang, J. Y., Hu, Y. F. & Kou, Z. X. Spatiotemporal characteristics of karst rocky desertification and the impact of human activities from 2010 to 2015 in Guanling County, Guizhou Province. Prog. Geogr. 38(11), 1759–1769 (2019).
    Google Scholar 
    Shi, K., Yang, Q. & Li, Y. Are karst rocky desertification areas affected by increasing human activity in Southern China? An empirical analysis from nighttime light data. Int. J. Environ. Res. Public Health. 16(21), 4175 (2019).PubMed Central 

    Google Scholar 
    Luo, X. L. et al. Analysis on the spatio- temporal evolution process of rocky desertification in Southwest Karst area. Acta Ecol. Sin. 41(02), 680–693 (2021).
    Google Scholar 
    Yang, Q., Jiang, Z., Yuan, D., Ma, Z. & Xie, Y. Temporal and spatial changes of karst rocky desertification in ecological reconstruction region of Southwest China. Envirov. Earth Sci. 72(11), 4483–4489 (2014).
    Google Scholar 
    Zhang, C., Qi, X., Wang, K., Zhang, M. & Yue, Y. The application of geospatial techniques in monitoring karst vegetation recovery in southwest China. Prog. Phys. Geog. 41(4), 450–477 (2017).
    Google Scholar 
    Ying, B., Xiao, S., Xiong, K., Cheng, Q. & Luo, J. Comparative studies of the distribution characteristics of rocky desertification and land use/land cover classes in typical areas of Guizhou province, China. Envirov. Earth Sci. 71(2), 631–645 (2013).
    Google Scholar 
    Luo, X. et al. Analysis on the spatio-temporal evolution process of rocky desertification in Southwest Karst area. Acta Ecol. Sin. 41(2), 680–693 (2021).
    Google Scholar 
    Chong, G. et al. Characteristics of changes in karst rocky desertification in southtern and western china and driving mechanisms. Chin. Geogr. Sci. 31, 1082–1096 (2021).
    Google Scholar 
    Guo, B. et al. A novel-optimal monitoring model of rocky desertification based on feature space models with typical surface parameters derived from LANDSAT_8 OLI. Degrad. Dev. 32(17), 5023–5036 (2021).
    Google Scholar 
    Chen, F. et al. Spatio-temporal evolution and future scenario prediction of karst rocky desertification based on CA–Markov model. Arab. J. Geosci. 14, 1262 (2021).
    Google Scholar 
    Wu, X., Liu, H., Huang, X. & Zhou, T. Human driving forces: Analysis of rocky desertification in karst region in Guanling County, Guizhou Province. Chin. Geogr. Sci. 21(5), 600–608 (2011).
    Google Scholar 
    Chen, H. et al. The evolution of rocky desertification and its response to land use changes in Wanshan Karst area, Tongren City, Guizhou Province, China. J. Agr. Resour. Environ. 37(01), 24–35 (2020).
    Google Scholar 
    Zerrouki, N., Dairi, A., Harrou, F., Zerrouki, Y. & Sun, Y. Efficient land desertification detection using a deep learning-driven generative adversarial network approach: A case study. Concurr. Comp-Pract. E. https://doi.org/10.1002/cpe.6604 (2021).Article 

    Google Scholar 
    Keskin, H., Grunwald, S. & Harris, W. Digital mapping of soil carbon fractions with machine learning. Geoderma 339, 40–58 (2019).ADS 
    CAS 

    Google Scholar 
    Tian, Y. et al. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.146816 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xi, H. et al. Spatio-temporal characteristics of rocky desertification in typical Karst areas of Southwest China: A case study of Puding county, Guizhou province. Acta Ecol. Sin. 38(24), 8919–8933 (2018).
    Google Scholar 
    Deng, Y. et al. Relationship among land surface temperature and LUCC, NDVI in typical karst area. Sci. Rep-UK. 296–306 (2018).Li, S. M., Yu, L. W., Gan, S. & Yang, Y. M. Study on inversion relationship between vegetation lndex and leaf area index of rocky desertification area in southeast Yunnan based on ETM+. J. Kunming Univ. Sci. Technol. (Natl Sci.) 40(06), 31–36 (2015).
    Google Scholar 
    Yan, X. & Cai, Y. Multi-Scale anthropogenic driving forces of karst rocky desertification in Southwest China. Land Degrad. Dev. 26(2), 193–200 (2013).
    Google Scholar 
    Meyer, H., Reudenbach, C., Wollauer, S. & Nauss, T. Importance of spatial predictor variable selection in machine learning applications – Moving from data reproduction to spatial prediction. Ecol. Model. https://doi.org/10.1016/j.ecolmodel.2019.108815 (2019).Article 

    Google Scholar 
    Cracknell, M. & Reading, A. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci-UK 63, 22–33 (2014).
    ADS 

    Google Scholar 
    Feng, K. et al. Monitoring desertification using machine-learning techniques with multiple indicators derived from MODIS images in Mu Us Sandy Land, China. Remote Sens. 14, 2663. https://doi.org/10.3390/rs14112663 (2022).Article 
    ADS 

    Google Scholar 
    Belgiu, M. & Drăguţ, L. Random Forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm 114, 24–31 (2016).
    Google Scholar 
    Chutia, D., Bhattacharyya, D. K., Sarma, K. K., Kalita, R. & Sudhakar, S. Hyperspectral remote sensing classifications: A perspective survey. Trans. GIS https://doi.org/10.1111/tgis.12164 (2015).Article 

    Google Scholar 
    Song, T. Q., Peng, W. X., Du, H., Wang, K. & Zeng, F. Occurrence spatial-temporal dynamics and regulation strategies of karst rocky desertification in southwest China. Acta Ecol. Sin. 34(18), 5328–5341 (2014).
    Google Scholar 
    Zhu, L.F. Study on the Spatial-Temporal Variation of Vegetation Coverage and Karst Rocky Desertification based on MODIS Data. Ph.D. Dissertation, Southwestern University. Chongqing, China (2018).Yang, Q. et al. Spatio-temporal evolution of rocky desertification and its driving forces in karst areas of Northwestern Guangxi, China. Environ. Earth Sci. 64, 383–393 (2011).
    Google Scholar 
    Mishra, N. & Chaudhuri, G. Spatio-temporal analysis of trends in seasonal vegetation productivity across Uttarakhand, Indian Himalayas, 2000–2014. Appl. Geogr. 56, 29–41 (2015).
    Google Scholar 
    Zhang, X., Shang, K., Cen, Y., Shuai, T. & Sun, Y. Estimating ecological indicators of karst rocky desertification by linear spectral unmixing method. Int. J. Appl. Earth. Obs. 31, 86–94 (2014).CAS 

    Google Scholar 
    Reshef, D. et al. Detecting novel associations in large data sets. Science 334(6062), 1518–1524 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Li, W. et al. Concentration estimation of dissolved oxygen in Pearl River Basin using input variable selection and machine learning techniques. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139099 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abdelhakim, A., El, H., Luis, E., Salah, E. & Abdelghani, C. Retrieving crop albedo based on radar sentinel-1 and random forest. Approach. Remote Sens. 13(16), 3181 (2021).ADS 

    Google Scholar 
    Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M. & Rigol-Sanchez, J. P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm 67, 93–104 (2012).
    Google Scholar 
    Dharumarajan, S., Bishop, T., Hegde, R. & Singh, S. Desertification vulnerability index-an effective approach to assess desertification processes: A case study in Anantapur District, Andhra Pradesh, India. Land Degrad. Dev. 29(1), 150–161 (2017).
    Google Scholar 
    Li, P. et al. Dynamic monitoring of desertification in ningdong based on landsat images and machine learning. Sustainability 14, 7470. https://doi.org/10.3390/su14127470 (2022).Article 

    Google Scholar 
    Pacheco, A. D. P., Junior, J. A. D. S., Ruiz-Armenteros, A. M. & Henriques, R. F. F. Assessment of k-nearest neighbor and random forest classifiers for mapping forest fire areas in Central Portugal using landsat-8, sentinel-2, and terra imagery. Remote Sens. 13, 1345. https://doi.org/10.3390/rs13071345 (2021).Article 
    ADS 

    Google Scholar  More

  • in

    Distinct effects of three Wolbachia strains on fitness and immune traits in Homona magnanima

    Ahmed MZ, Li SJ, Xue X, Yin XJ, Ren SX, Jiggins FM et al. (2015) The Intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathog 11:1–19
    Google Scholar 
    Arai H, Hirano T, Akizuki N, Abe A, Nakai M, Kunimi Y et al. (2019) Multiple infection and reproductive manipulations of Wolbachia in Homona magnanima (Lepidoptera: Tortricidae). Microb Ecol 77:257–266PubMed 

    Google Scholar 
    Arai H, Lin SR, Nakai M, Kunimi Y, Inoue MN (2020) Closely related male-killing and nonmale-killing Wolbachia strains in the oriental tea tortrix Homona magnanima. Microb Ecol 79:1011–1020CAS 
    PubMed 

    Google Scholar 
    Bailey NW, Zuk M (2008) Changes in immune effort of male field crickets infested with mobile parasitoid larvae. J Insect Physiol 54:96–104CAS 
    PubMed 

    Google Scholar 
    Ballad JWO, Hatzidakis J, Karr TL, Kreitman M (1996) Reduced variation in Drosophila simulans mitochondrial DNA. Genetics 144:1519–1528
    Google Scholar 
    Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15–26
    Google Scholar 
    Capobianco IIIF, Nandkumar S, Parker JD (2018) Wolbachia affects survival to different oxidative stressors dependent upon the genetic background in Drosophila melanogaster. Physiol Entomol 43:239–244
    Google Scholar 
    Danthanarayana W (1975) Factors determining variation in fecundity of the light brown apple moth, Epiphyas postvittana (Walker) (Tortricidae). Aust J Zool 23:309–319
    Google Scholar 
    Dean MD (2006) A Wolbachia-associated fitness benefit depends on genetic background in Drosophila simulans. Proc R Soc B 273:1415–1420CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deseo KV (1971) Study of factors influencing the fecundity and fertility of codling moth (Laspeyresia pomonella L., Lepidoptera, Tortricidae). Acta Phytopathol Hun 6:243–252
    Google Scholar 
    Dobson SL, Rattanadechakul W, Marsland EJ (2004) Fitness advantage and cytoplasmic incompatibility in Wolbachia single-and superinfected Aedes albopictus. Heredity 93:135–142CAS 
    PubMed 

    Google Scholar 
    Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, Hurst GD (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:1–12
    Google Scholar 
    Engelstädter J, Telschow A, Hammerstein P (2004) Infection dynamics of different Wolbachia-types within one host population. J Theor Biol 231:345–55PubMed 

    Google Scholar 
    Fleury F, Vavre F, Ris N, Fouillet P, Boulétreau M (2000) Physiological cost induced by the maternally-transmitted endosymbiont Wolbachia in the Drosophila parasitoid Leptopilina heterotoma. Parasitology 121:493–500PubMed 

    Google Scholar 
    Frank SA (1998) Dynamics of cytoplasmic incompatibility with multiple Wolbachia infections. J Theor Biol 192:213–18CAS 
    PubMed 

    Google Scholar 
    Frank SA, Hurst LD (1996) Mitochondria and male disease. Nature 383:224–224CAS 
    PubMed 

    Google Scholar 
    Fry AJ, Palmer MR, Rand DM (2004) Variable fitness effects of Wolbachia infection in Drosophila melanogaster. Heredity 93:379–389CAS 
    PubMed 

    Google Scholar 
    Gómez-Valero L, Soriano-Navarro M, Pérez-Brocal V, Heddi A, Moya A, García-Verdugo JM, Latorre A (2004) Coexistence of Wolbachia with Buchnera Aphidicola and a secondary symbiont in the aphid Cinara cedri. J Bacteriol 186:6626–33PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann AA, Turelli M, Harshman LG (1990) Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126:933–948CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hornett EA, Charlat S, Duplouy AMR, Davies N, Roderick GK, Wedell N et al. (2006) Evolution of male-killer suppression in a natural population. PLoS Biol 4:1643–1648CAS 

    Google Scholar 
    Hough JA, Pimentel D (1978) Influence of host foliage on development, survival, and fecundity of the gypsy moth. Environ Entomol 7:97–102
    Google Scholar 
    Ikeda T, Ishikawa H, Sasaki T (2003) Infection density of Wolbachia and level of cytoplasmic incompatibility in the Mediterranean flour moth, Ephestia kuehniella. J Invertebr Pathol 84:1–5PubMed 

    Google Scholar 
    Ishii T, Nakai M, Okuno S, Takatsuka J, Kunimi Y (2003) Characterization of Adoxophyes honmai single-nucleocapsid nucleopolyhedrovirus: morphology, structure, and effects on larvae. J Invertebr Pathol 83:206–214CAS 
    PubMed 

    Google Scholar 
    Kondo N, Shimada M, Fukatsu T (2005) Infection density of Wolbachia endosymbiont affected by coinfection and host genotype. Biol Lett 1:488–491PubMed 
    PubMed Central 

    Google Scholar 
    Lu P, Bian G, Pan X, Xi Z (2012) Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl Trop D 6:1–8CAS 

    Google Scholar 
    Maia AHN, Luiz AJB, Campanhola C (2000) Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J Econ Entomol 93:511–518
    Google Scholar 
    Mazzetto F, Gonella E, Alma A (2015) Wolbachia infection affects female fecundity in Drosophila suzukii. Bull Insectol 68:153–157
    Google Scholar 
    Meyer JS, Ingersoll CG, McDonald LL, Boyce MS (1986) Estimating uncertainty in population growth rates: jackknife vs. bootstrap techniques. Ecology 67:1156–1166
    Google Scholar 
    Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM et al. (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139:1268–1278PubMed 

    Google Scholar 
    Mouton L, Henri H, Bouletreau M, Vavre F (2006) Effect of temperature on Wolbachia density and impact on cytoplasmic incompatibility. Parasitology 132:49–56CAS 
    PubMed 

    Google Scholar 
    Narita S, Nomura M, Kageyama D (2007) Naturally occurring single and double infection with Wolbachia strains in the butterfly Eurema hecabe: transmission efficiencies and population density dynamics of each Wolbachia strain. FEMS Microb Ecol 61:235–245CAS 

    Google Scholar 
    Pigeault R, Braquart-Varnier C, Marcadé I, Mappa G, Mottin E, Sicard M (2014) Modulation of host immunity and reproduction by horizontally acquired Wolbachia. J Insect Physiol 70:125–133CAS 
    PubMed 

    Google Scholar 
    Rancès E, Ye YH, Woolfit M, McGraw EA, O´Neill SL (2012) The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog 8:e1002548. https://doi.org/10.1371/journal.ppat.1002548Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Stevanovic AL, Arnold PA, Johnson KN (2015) Wolbachia -mediated antiviral protection in Drosophila larvae and adults following oral infection. Appl Environ Micro 81:8215–8223CAS 

    Google Scholar 
    Takamatsu T, Arai H, Abe N, Nakai M, Kunimi Y, Inoue MN (2021) Coexistence of two male-killers and their impact on the development of oriental tea tortrix Homona magnanima. Microb Ecol 81:193–202CAS 
    PubMed 

    Google Scholar 
    Takehana A, Katsuyama T, Yano T, Oshima Y, Takada H, Aigaki T et al. (2002) Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc Natl Acad Sci USA 99:13705–13710CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takatsuka J, Okuno S, Ishii T, Nakai M, Kunimi Y (2010) Fitness-related traits of entomopoxviruses isolated from Adoxophyes honmai (Lepidoptera: Tortricidae) at three localities in Japan. J Invertebr Pathol 105:121–131PubMed 

    Google Scholar 
    Teixeira L, Ferreira Á, Ashburner M (2008) The Bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:e1000002. https://doi.org/10.1371/journal.pbio.1000002Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Thomas P, Kenny N, Eyles D, Moreira LA, O´Neill SL, Asgari S (2011) Infection with the wMel and wMelPop strains of Wolbachia leads to higher levels of melanization in the hemolymph of Drosophila melanogaster, Drosophila simulans and Aedes aegypti. Dev Comp Immunol 35:360–365CAS 
    PubMed 

    Google Scholar 
    Tsuruta K, Wennmann JT, Kunimi Y, Inoue MN, Nakai M (2018) Morphological properties of the occlusion body of Adoxophyes orana granulovirus. J Invertebr Pathol 154:58–64CAS 
    PubMed 

    Google Scholar 
    Turelli M, Hoffmann AA (1991) Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353:440–442CAS 
    PubMed 

    Google Scholar 
    Vautrin E, Vavre F (2009) Interactions between vertically transmitted symbionts: cooperation or conflict? Trends Microbiol 17:95–99CAS 
    PubMed 

    Google Scholar 
    Vavre F, Fleury F, Lepetit D, Fouillet P, Boulétreau M (1999) Phylogenetic evidence for horizontal transmission of Wolbachia in host- parasitoid associations. Mol Biol Evol 16:1711–1723CAS 
    PubMed 

    Google Scholar 
    Vollmer J, Schiefer A, Schneider T, Jülicher K, Johnston KL, Taylor MJ et al. (2013) Requirement of lipid II biosynthesis for cell division in cell wall-less Wolbachia, endobacteria of arthropods and filarial nematodes. Int J Med Microbiol 303:140–149CAS 
    PubMed 

    Google Scholar 
    Voronin D, Guimarães AF, Molyneux GR, Johnston KL, Ford L, Taylor MJ (2014) Wolbachia lipoproteins: abundance, localization and serology of Wolbachia peptidoglycan associated lipoprotein and the Type IV Secretion System component, VirB6 from Brugia malayi and Aedes albopictus. Parasite Vector 7:462
    Google Scholar 
    Watanabe M, Miura K, Hunter MS, Wajnberg E (2011) Superinfection of cytoplasmic incompatibility-inducing Wolbachia is not additive in Orius strigicollis (Hemiptera: Anthocoridae). Heredity 106:642–648CAS 
    PubMed 

    Google Scholar 
    Weeks AR, Turelli M, Harcombe WR, Reynolds KT, Hoffmann AA (2007) From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol 5:0997–1005CAS 

    Google Scholar 
    Werren JH, Baldo L, Clark ME (2008) Wolbachia: Master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751CAS 
    PubMed 

    Google Scholar 
    Xue X, Li S, Ahmed MZ, Barro PJ, Ren S, Qiu B (2012) Inactivation of Wolbachia reveals its biological roles in whitefly host. PLoS One 7:e48148. https://doi.org/10.1371/journal.pone.0048148Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7:e38544. https://doi.org/10.1371/journal.pone.0038544Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zug R, Hammerstein P (2015) Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. Front Microbiol 6:1–16
    Google Scholar  More

  • in

    Immune-mediated competition benefits protective microbes over pathogens in a novel host species

    Alizon S, de Roode JC, Michalakis Y (2013) Multiple infections and the evolution of virulence. Ecol Lett 16(4):556–67PubMed 

    Google Scholar 
    Bian G, Zhou G, Lu P, Xi Z (2013) Replacing a native Wolbachia with a novel strain results in an increase in endosymbiont load and resistance to dengue virus in a mosquito vector. PLoS Negl Trop Dis 7(6):e2250PubMed 
    PubMed Central 

    Google Scholar 
    Bjørnstad ON, Harvill ET (2005) Evolution and emergence of Bordetella in humans. Trends Microbiol 13(8):355–9PubMed 

    Google Scholar 
    Bosch TC (2013) Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu Rev Microbiol 67:499–518CAS 
    PubMed 

    Google Scholar 
    Bull JJ, Turelli M (2013) Wolbachia versus dengue: Evolutionary forecasts. Evol Med Public Health 2013(1):197–207PubMed 
    PubMed Central 

    Google Scholar 
    Cabreiro F, Gems D (2013) Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO Mol Med 5(9):1300–10CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen F, Krasity BC, Peyer SM, Koehler S, Ruby EG, Zhang X et al. (2017) Bactericidal permeability-increasing proteins shape host-microbe interactions. mBio 8:e00040–17CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chrostek E, Pelz-Stelinski K, Hurst GDD, Hughes GL (2017) Horizontal Transmission of Intracellular Insect Symbionts via Plants. Front Microbiol 8:2237PubMed 
    PubMed Central 

    Google Scholar 
    Chrostek E, Teixeira L (2015) Mutualism breakdown by amplification of Wolbachia genes. PLoS Biol 13(2):e1002065PubMed 
    PubMed Central 

    Google Scholar 
    Cisani G, Varaldo PE, Grazi G, Soro O (1982) High-level potentiation of lysostaphin anti-staphylococcal activity by lysozyme. Antimicrob Agents Chemother 21(4):531–5CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark LC, Hodgkin J (2014) Commensals, probiotics and pathogens in the Caenorhabditis elegans model. Cell Microbiol 16(1):27–38CAS 
    PubMed 

    Google Scholar 
    Coolon JD, Jones KL, Todd TC, Carr BC, Herman MA (2009) Caenorhabditis elegans genomic response to soil bacteria predicts environment-specific genetic effects on life history traits. PLOS Genet 5:e1000503PubMed 
    PubMed Central 

    Google Scholar 
    Dierking K, Yang W, Schulenburg H (2016) Antimicrobial effectors in the nematode Caenorhabditis elegans: an outgroup to the Arthropoda. Philos Trans R Soc Lond B Biol Sci 371:1695
    Google Scholar 
    Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5(5):e1000423PubMed 
    PubMed Central 

    Google Scholar 
    Drew GC, King KC (2022) More or less? The effect of symbiont density in protective mutualisms. Am Nat 199(4):443–54PubMed 

    Google Scholar 
    Ford SA, Kao D, Williams D, King KC (2016) Microbe-mediated host defence drives the evolution of reduced pathogen virulence. Nat Commun 7:13430CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ford SA, King KC (2016) Harnessing the Power of Defensive Microbes: Evolutionary Implications in Nature and Disease Control. PLoS Pathog 12(4):e1005465PubMed 
    PubMed Central 

    Google Scholar 
    Ford SA, King KC (2021) In Vivo Microbial Coevolution Favors Host Protection and Plastic Downregulation of Immunity. Mol Biol Evol 38(4):1330–1338CAS 
    PubMed 

    Google Scholar 
    Frank SA (1996) Models of parasite virulence. Q Rev Biol 71(1):37–78CAS 
    PubMed 

    Google Scholar 
    Félix MA, Braendle C (2010) The natural history of Caenorhabditis elegans. Curr Biol 20(22):R965–9PubMed 

    Google Scholar 
    Garsin DA, Sifri CD, Mylonakis E, Qin X, Singh KV, Murray BE et al. (2001) A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci USA 98(19):10892–7CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gerardo NM, Parker BJ (2014) Mechanisms of symbiont-conferred protection against natural enemies: an ecological and evolutionary framework. Curr Opin Insect Sci 4:8–14PubMed 

    Google Scholar 
    Gravato-Nobre MJ, Hodgkin J (2005) Caenorhabditis elegans as a model for innate immunity to pathogens. Cell Microbiol 7(6):741–51CAS 
    PubMed 

    Google Scholar 
    Habets MG, Rozen DE, Brockhurst MA (2012) Variation in Streptococcus pneumoniae susceptibility to human antimicrobial peptides may mediate intraspecific competition. Proc Biol Sci 279(1743):3803–11CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heath BD, Butcher RD, Whitfield WG, Hubbard SF (1999) Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Curr Biol 9(6):313–6CAS 
    PubMed 

    Google Scholar 
    Heikkilä MP, Saris PE (2003) Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol 95(3):471–8PubMed 

    Google Scholar 
    Hoffmann AA, Ross PA, Rašić G (2015) Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl 8(8):751–68PubMed 
    PubMed Central 

    Google Scholar 
    Hope IA (1999) C. elegans: a practical approach. Oxford University Press, Oxford
    Google Scholar 
    Huigens ME, de Almeida RP, Boons PA, Luck RF, Stouthamer R (2004) Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc Biol Sci 271(1538):509–15CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jaenike J, Polak M, Fiskin A, Helou M, Minhas M (2007) Interspecific transmission of endosymbiotic Spiroplasma by mites. Biol Lett 3(1):23–5CAS 
    PubMed 

    Google Scholar 
    Kaltenpoth M, Engl T (2014) Defensive microbial symbionts in Hymenoptera. Funct Ecol 28(2):315–27
    Google Scholar 
    King KC (2019) Quick guide: defensive symbionts. Curr Biol 29:R78–R80CAS 
    PubMed 

    Google Scholar 
    King KC, Brockhurst MA, Vasieva O, Paterson S, Betts A, Ford SA et al. (2016) Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J 10(8):1915–24CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kong C, Tan MW, Nathan S (2014) Orthosiphon stamineus protects Caenorhabditis elegans against Staphylococcus aureus infection through immunomodulation. Biol Open 3(7):644–55PubMed 
    PubMed Central 

    Google Scholar 
    Kopylova E, Noé L, Touzet H (2012) SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 14(24):3211–17
    Google Scholar 
    Koziel J, Potempa J (2013) Protease-armed bacteria in the skin. Cell Tissue Res 351:325–37CAS 
    PubMed 

    Google Scholar 
    Lysenko ES, Ratner AJ, Nelson AL, Weiser JN (2005) The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLoS Pathog 1(1):e1PubMed 
    PubMed Central 

    Google Scholar 
    Magalhaes T, Bergren NA, Bennett SL, Borland EM, Hartman DA, Lymperopoulos K et al. (2019) Induction of RNA interference to block Zika virus replication and transmission in the mosquito Aedes aegypti. Insect Biochem Mol Biol 111:103169CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Margolis E, Yates A, Levin BR (2010) The ecology of nasal colonization of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus: the role of competition and interactions with host’s immune response. BMC Microbiol 10:59PubMed 
    PubMed Central 

    Google Scholar 
    Marra A, Hanson MA, Kondo S, Erkosar B, Lemaitre B (2021) Drosophila Antimicrobial Peptides and Lysozymes Regulate Gut Microbiota Composition and Abundance. mBio 12(4):e0082421CAS 
    PubMed 

    Google Scholar 
    Martinez J, Cogni R, Cao C, Smith S, Illingworth CJ, Jiggins FM (2016) Addicted? Reduced host resistance in populations with defensive symbionts. Proc Biol Sci 283:1833
    Google Scholar 
    Martín-Platero AM, Valdivia E, Ruíz-Rodríguez M, Soler JJ, Martín-Vivaldi M, Maqueda M et al. (2006) Characterization of antimicrobial substances produced by Enterococcus faecalis MRR 10-3, isolated from the uropygial gland of the hoopoe (Upupa epops). Appl Environ Microbiol 72(6):4245–9PubMed 
    PubMed Central 

    Google Scholar 
    Mason KL, Stepien TA, Blum JE, Holt JF, Labbe NH, Rush JS et al. (2011) From commensal to pathogen: translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. MBio 2(3):e00065–11PubMed 
    PubMed Central 

    Google Scholar 
    Matthews AC, Mikonranta L, Raymond B (2019) Shifts along the parasite-mutualist continuum are opposed by fundamental trade-offs. Proc Biol Sci 286(1900):20190236CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    May G, Nelson P (2014) Defensive mutualisms: do microbial interactions within hosts drive the evolution of defensive traits? Funct Ecol 28(2):356–63
    Google Scholar 
    Mejía LC, Herre EA, Sparks JP, Winter K, García MN, Van Bael SA et al. (2014) Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol 5:479PubMed 
    PubMed Central 

    Google Scholar 
    Mergaert P (2018) Role of antimicrobial peptides in controlling symbiotic bacterial populations. Nat prod Rep. 35(4):336–56CAS 
    PubMed 

    Google Scholar 
    Metcalf CJE, Koskella B (2019) Protective microbiomes can limit the evolution of host pathogen defense. Evol Lett 3:534–43PubMed 
    PubMed Central 

    Google Scholar 
    Montalvo-Katz S, Huang H, Appel MD, Berg M, Shapira M (2013) Association with soil bacteria enhances p38-dependent infection resistance in Caenorhabditis elegans. Infect Immun 81(2):514–20CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM et al. (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139(7):1268–78PubMed 

    Google Scholar 
    O’Neill SL, Ryan PA, Turley AP, Wilson G, Retzki K, Iturbe-Ormaetxe I et al. (2018) Scaled deployment of Wolbachia to protect the community from Aedes transmitted arboviruses. Gates Open Res 2:36PubMed 

    Google Scholar 
    Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc Biol Sci 275(1632):293–9PubMed 

    Google Scholar 
    Oliver KM, Smith AH, Russell JA (2014) Defensive symbiosis in the real world ‘96 advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol 28(2):341–55
    Google Scholar 
    Pan X, Pike A, Joshi D, Bian G, McFadden MJ, Lu P et al. (2018) The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti. ISME J 12(1):277–88CAS 
    PubMed 

    Google Scholar 
    Parker BJ, Barribeau SM, Laughton AM, de Roode JC, Gerardo NM (2011) Non-immunological defense in an evolutionary framework. Trends Ecol Evol 26(5):242–8PubMed 

    Google Scholar 
    Pastar I, O’Neill K, Padula L, Head CR, Burgess JL, Chen V et al. (2020) Staphylococcus epidermidis Boosts Innate Immune Response by Activation of Gamma Delta T Cells and Induction of Perforin-2 in Human Skin. Front Immunol 11:550946CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pees B, Kloock A, Nakad R, Barbosa C, Dierking K (2017) Enhanced behavioral immune defenses in a C. elegans C-type lectin-like domain gene mutant. Dev Comp Immunol 74:237–42CAS 
    PubMed 

    Google Scholar 
    Peleg AY, Tampakakis E, Fuchs BB, Eliopoulos GM, Moellering RC, Mylonakis E (2008) Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc Natl Acad Sci USA 105(38):14585–90CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petersen C, Dirksen P, Schulenburg H (2015) Why we need more ecology for genetic models such as C. elegans. Trends Genet 31(3):120–7CAS 
    PubMed 

    Google Scholar 
    Pimentel H, Bray NL, Puente S, Melsted P, Pachter L (2017) Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods 14(7):687–90CAS 
    PubMed 

    Google Scholar 
    Portal-Celhay C, Blaser MJ (2012) Competition and resilience between founder and introduced bacteria in the Caenorhabditis elegans gut. Infect Immun 80(3):1288–99CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raberg L, de Roode JC, Bell AS, Stamou P, Gray D, Read AF (2006) The role of immune-mediated apparent competition in genetically diverse malaria infections. Am Nat 168(1):41–53PubMed 

    Google Scholar 
    Rafaluk-Mohr C, Ashby B, Dahan DA, King KC (2018) Mutual fitness benefits arise during coevolution in a nematode-defensive microbe model. Evol Lett 2(3):246–56PubMed 
    PubMed Central 

    Google Scholar 
    Ragland SA, Criss AK (2017) From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog 13(9):e1006512PubMed 
    PubMed Central 

    Google Scholar 
    Rancès E, Ye YH, Woolfit M, McGraw EA, O’Neill SL (2012) The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog 8(2):e1002548PubMed 
    PubMed Central 

    Google Scholar 
    Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H et al. (2019) g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47(W1):W191–W198CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raymann K, Shaffer Z, Moran NA (2017) Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol 15(3):e2001861PubMed 
    PubMed Central 

    Google Scholar 
    Rossouw W, Korsten L (2017) Cultivable microbiome of fresh white button mushrooms. Lett Appl Microbiol 64(2):164–70CAS 
    PubMed 

    Google Scholar 
    Russell JA, Moran NA (2005) Horizontal transfer of bacterial symbionts: heritability and fitness effects in a novel aphid host. Appl Environ Microbiol 71(12):7987–94CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryu H, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW et al. (2008) Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 319:777–82CAS 
    PubMed 

    Google Scholar 
    Sellegounder D, Liu Y, Wibisono P, Chen CH, Leap D, Sun J (2019) Neuronal GPCR NPR-8 regulates C. elegans defense against pathogen infection. Sci Adv 5(11):eaaw4717CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sifri CD, Begun J, Ausubel FM, Calderwood SB (2003) Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 71(4):2208–17CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singh UB, Malviya D, Wasiullah, Singh S, Pradhan JK, Singh BP et al. (2016) Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.). Microbiol Res 192:300–12CAS 
    PubMed 

    Google Scholar 
    Trevelline BK, Fontaine SS, Hartup BK, Kohl KD (2019) Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc Biol Sci 286(1895):20182448PubMed 
    PubMed Central 

    Google Scholar 
    Ulrich Y, Schmid-Hempel P (2012) Host modulation of parasite competition in multiple infections. Proc Biol Sci 279(1740):2982–9PubMed 
    PubMed Central 

    Google Scholar 
    Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O et al. (2011) The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334(653):255–8CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varahan S, Iyer VS, Moore WT, Hancock LE (2013) Eep confers lysozyme resistance to enterococcus faecalis via the activation of the extracytoplasmic function sigma factor SigV. J Bacteriol 195(14):3125–34CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Visvikis O, Ihuegbu N, Labed SA, Luhachack LG, Alves AF, Wollenberg AC et al. (2014) Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 40(6):896–909CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vorburger C, Ganesanandamoorthy P, Kwiatkowski M (2013) Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids. Ecol Evol 3(3):706–13PubMed 
    PubMed Central 

    Google Scholar 
    Wang S, Dos-Santos ALA, Huang W, Liu KC, Oshaghi MA, Wei G et al. (2017) Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science 357(6358):1399–1402CAS 
    PubMed 

    Google Scholar 
    Wilke AB, Marrelli MT (2015) Paratransgenesis: a promising new strategy for mosquito vector control. Parasit Vectors 8:342PubMed 
    PubMed Central 

    Google Scholar 
    Wong D, Bazopoulou D, Pujol N, Tavernarakis J, Ewbank J (2007) Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection. Genome Biol 8:R194PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The African Development Corridors Database: a new tool to assess the impacts of infrastructure investments

    The African Development Corridors database is publicly available. The visualisation of the database that can be explored interactively here: https://dcp-unep-wcmc.opendata.arcgis.com/. The data is deposited in the Dryad Digital Repository referenced as Thorn, J. P.R., Mwangi, B.; Juffe Bignoli, D., The African Development Corridors Database, Dryad, Dataset, https://doi.org/10.5061/dryad.9kd51c5hw (2022)43. The final data were compiled into an online Master database spreadsheet, using the project code data as the merging attribute of the spatial and tabular database (AfricanDevelopmentCorridorsDatabase2022.csv). The African Development Corridor Database is presented as a GeoPackage file (.gpkg) and ESRI file Geodatabase (.gdb) composed by line and point feature datasets with the 22 associated attributes for all mapped corridors, a table with corridors that could not be mapped (also with the attributes), and a table with all sources consulted for each project code.We created a data standard to ensure a systematic and standardised data collection (Supplementary Table 2). Each data record in the database represents a project within a development corridor. To group all projects within the same development corridor we used a unique identifier composed by three letters that identified the corridor plus a number unique for each project or record. For example, the Lamu port project in Kenya within the Lamu Port South Sudan Ethiopia Transport Corridor (LAPSSET) was represented as LAP000. In this corridor we identified 20 projects, from LAP0001 which is the Lamu Port to LAP0020 which is the Isiolo-Lokichar-Lodwar-Nadapal Highway in Kenya. In addition to the unique identifier for each project, the data standard includes data attributes that provide detailed information about each project. Table 1 describes the attributes included in the database. Supplementary Table 3 summarises the 79 corridors included in the database.Table 1 List of the attributes included in the African Development Corridors Database.Full size tableInfrastructure types and status of development corridors in AfricaThe data consists of a total of 79 corridors consisting of 184 projects (Fig. 2). Of the 12 infrastructure types, the most predominant form of infrastructure in Africa’s development corridors is roads (n = 64, 34.8%), followed by wet ports (n = 38, 20.7%), passenger and freight railways (n = 33, 17.9%), and airports (n = 14, 7.6%). Fewer resort cities, electricity transmission lines, dry ports, industrial parks, and water pipelines comprise development corridors (all ≤ n = 3, 1.6%) (Fig. 3). We acknowledge our study might not include many infrastructure developments that are components projects of larger programmes but are not yet labelled as corridors. A total of 107 (58.7%) projects are operational, 35 (19%) are in progress, 25 (13.6%) are planned, 25 (13.9%) are being upgraded, and 2(1%) are on hold.Fig. 2Map showing the distribution of all the development corridors included in the African Development Corridors Database and their infrastructure type.Full size imageFig. 3Subset of highest frequencies of key attributes captured in the database.Full size imageSpatial distributionThe linear distance of development corridors in Africa is 122,294 km – which approximates to three times the Earth’s circumference, with an average of 1703.84 ± 213.19 km (mean, SE), ranging from 4–11,141 km. In terms of number of projects per country, Kenya has the most projects (n = 34, 18.5%), followed by Tanzania (n = 18, 9.8%), South Africa and Democratic Republic of the Congo (n = 17, 9.2% ea.), Ethiopia (n = 15, 8.2%), Mozambique and Zambia (n = 14, 7.6%), Angola, Uganda, Guinea and Cameroon (n = 12, 6.5%), Namibia (n = 11, 6.0%), Republic of Congo (n = 10, 5.4%), Burundi and Chad (n = 9, 4.9%), Malawi, Senegal, and Zimbabwe (n = 8, 4.4%), and Burkina Faso and Ghana (n = 7, 3.8%). Due to differences in the frequency and quality that countries publish data on infrastructure and development corridor investments, coverage may be lower for some regions, or some periods (i.e., recent, or further in the past).Investments in development corridorsAdjusting for inflation, the total investment of development corridors that is captured in the database ranges between USD 547.29–658.62 billion. The average cost of a corridor ranges between USD 3.46 ± 1.92 billion and USD 4.17 ± 2.04 billion. This is a notable sum, considering the average GDP in sub-Saharan Africa is USD 1.48 billion44. The most expensive development corridor project is the first of the nine Trans African Highway projects at USD 78.20 billion (when adjusted for inflation) – comprising transcontinental roads across Africa. We were able to capture the budget (or at least a proportion of the budget) for 84.7% of all projects.Temporal evolution of growth of development corridorsInvestments started in the 1800s and have increased exponentially (Fig. 4). Over a fifty-year period, the greatest number of investments took place between 1950 and 2000. Spikes in investments occurred particularly around 1900, which was when there was a wave of new imperialism across the continent, followed in the 1960s when many countries across sub-Saharan Africa gained independence. The third spike in investment was in the last decade, particularly since 2013, when we have seen rapid growth in foreign direct investment in Africa under initiatives such as the Belt and Road Initiative. According to the Ernst and Young Africa Attractiveness Survey (2019)45, the largest foreign direct investment (in terms of capital) between 2014–2018 came from China (USD 72,235 million), France (USD 34,172 million), USA (USD 30,885 million), the United Arab Emirates (USD 25,278 million) and the United Kingdom (USD 17,768 million).Fig. 4(a) Temporal evolution of investment in development corridors in Africa. (b) Annual investments per annum in development corridors in Africa (USD maximum, before adjusting for inflation).Full size imageDonors that are funding development corridorsAcross Africa, regional development banks invested the most in development corridors (30.8%), with the African Development Bank funding the majority (24.3%) of all projects. Outside of Africa, the regional development banks that invested in the most projects are the Export-Import Bank of China (n = 13, 3.8%), the European Investment Bank (n = 10, 2.8%) and the Arab Bank for Economic Development in Africa (n = 4, 1.2% ea.). National governments funded about 29.8% of all projects. The Government of Kenya funded the most projects (n = 26; 7.5%), followed by the Governments of Tanzania (n = 7, 2.0%) and South Africa (n = 4, 1.2%). Multilateral banks funded 10.9% of projects – mostly from the World Bank (n = 33, 9.54%) and a few from the International Finance Corporation (n = 4, 1.6%). The international development community funded only 6.1% – of which the OPEC Fund for International Development funded four projects. Private companies continue to invest in a small percentage of development corridors (3.5%), but this is higher than national banks that invest in 3.2%. Regional Economic Community bodies have invested in 15 (4.8%) of all 184 projects. The average number of donors per corridor ranged from one to 12.Weighting of investments by donor typeIn terms capital funded per donor type, Regional Development Banks invested the most (totalling USD 30.72 billion), followed by national governments (USD 20.45 billion). The figure then drops substantially to international development agencies (USD6.17 billion) and multilateral banks (USD 3.76 billion). These results are limited by the fact that we were only able to capture the amount funded delineated by donor type for 22.58% (or USD 70.24 billion) of the minimum of all investments (USD 311.14 billion) before adjusting for inflation.Commodities transportedA total of 147 commodities were captured. The top twenty commodities traded were rice (n = 52, 28.7% of all projects), sugar (27.0%), fish and petroleum (24.3% ea.), passengers (21.6%), textiles (21.1%), maize (19.5%), coffee (18.9%), cement and timber (17.8% ea.) followed by cotton, crude petroleum, vehicle spare parts, beverages, copper, fruit, fertilisers, gold, pharmaceutical products, and tobacco.Beneficiaries and net supplier or receiverApproximately 213 different beneficiaries were identified – predominantly local communities (n = 134 of projects, 72.8%), followed by national and local governments (63.0%), traders (51.1%), agricultural farmers and livestock producers (27.7%), ports (27.2%), industries (25.5%), truck drivers (22.3%), tourists (17.4%), entrepreneurs (12.0%), and logistics companies (11.4%). Almost all (89.1%) of corridors are net receivers and suppliers of commodities, while only 13 (7.1%) are net suppliers and seven are net receivers (3.8%). More