More stories

  • in

    The expanding value of long-term studies of individuals in the wild

    Lack, D. J. Anim. Ecol. 33, 159–173 (1964).Article 

    Google Scholar 
    Pemberton, J. et al. The unusual value of long-term studies of individuals: the example of the Isle of Rum red deer project. Annu. Rev. Ecol. Evol. Syst. (in the press).Clutton-Brock, T. & Sheldon, B. C. Trends Ecol. Evol. 25, 562–573 (2010).Article 
    PubMed 

    Google Scholar 
    Weimerskirch, H. J. Anim. Ecol. 87, 945–955 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Höner, O. P. et al. Nature 448, 798–801 (2007).Article 
    PubMed 

    Google Scholar 
    Rodríguez-Muñoz, R. et al. Evolution 73, 317–328 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Czorlich, Y., Aykanat, T., Erkinaro, J., Orell, P. & Primmer, C. R. Science 376, 420–423 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sparkman, A. M., Arnold, S. J. & Bronikowski, A. M. Proc. R. Soc. Lond. B 274, 943–950 (2007).
    Google Scholar 
    Doak, D. F. & Morris, W. F. Nature 467, 959–962 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Campos, F. A. et al. Proc. Natl Acad. Sci. USA 119, e2117669119 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Forchhammer, M. C., Clutton-Brock, T. H., Lindström, J. & Albon, S. D. J. Anim. Ecol. 70, 721–729 (2001).Article 

    Google Scholar 
    Bonnet, T. et al. PLoS Biol. 17, e3000493 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCleery, R. H. & Perrins, C. M. Nature 391, 30–31 (1998).Article 
    CAS 

    Google Scholar 
    Charmantier, A. et al. Science 320, 800–803 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vedder, O., Bouwhuis, S. & Sheldon, B. C. PLoS Biol. 11, e1001605 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simmonds, E. G., Cole, E. F., Sheldon, B. C. & Coulson, T. Ecol. Lett. 23, 1766–1775 (2020).Article 
    PubMed 

    Google Scholar 
    Cole, E. F., Regan, C. E. & Sheldon, B. C. Nat. Clim. Chang. 11, 872–878 (2021).Article 

    Google Scholar 
    Huisman, J., Kruuk, L. E., Ellis, P. A., Clutton-Brock, T. & Pemberton, J. M. Proc. Natl Acad. Sci. USA 113, 3585–3590 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnston, S. E., Bérénos, C., Slate, J. & Pemberton, J. M. Genetics 203, 583–598 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stoffel, M. A., Johnston, S. E., Pilkington, J. G. & Pemberton, J. M. Nat. Commun. 12, 2972 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grieneisen, L. et al. Science 373, 181–186 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Björk, J. R. et al. Nat. Ecol. Evol. 6, 955–964 (2022).Article 
    PubMed 

    Google Scholar 
    Lamichhaney, S. et al. Science 352, 470–474 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bosse, M. et al. Science 358, 365–368 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    De Villemereuil, P. et al. Proc. Natl Acad. Sci. USA 117, 31969–31978 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bailey, L. D. et al. Nat. Commun. 13, 2112 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonnet, T. et al. Science 376, 1012–1016 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Culina, A. et al. J. Anim. Ecol. 90, 2147–2160 (2021).Article 
    PubMed 

    Google Scholar  More

  • in

    Phosphate limitation intensifies negative effects of ocean acidification on globally important nitrogen fixing cyanobacterium

    Laboratory experimentsCulturingThe marine cyanobacterium Trichodesmium erythraeum IMS101 was obtained from the National Center for Marine Algae and Microbiota (Maine, USA) and was grown in Aquil-tricho medium prepared with 0.22 µm-filtered and microwave-sterilized oligotrophic South China Sea surface water6. The medium was enriched with various concentrations of chelexed and filter-sterilized NaH2PO4 as where indicated, and filter-sterilized vitamins and trace metals buffered with 20 µM EDTA6. The cultures were unialgal, and although they were not axenic, sterile trace metal clean techniques were applied for culturing and experimental manipulations. T. erythraeum was pre-adapted to low P condition by semi-continuously culturing at 0.5 μM PO43− and at two pCO2 levels (400 and 750 µatm) for more than one year. To start the chemostat culture, three replicates per treatment were grown in 1-L Nalgene® magnetic culture vessels (Nalgene Nunc International, Rochester, NY, USA), in which the cultures were continuously mixed by bubbling with humidified and 0.22 µm-filtered CO2–air mixtures and stirring using a suspended magnetic stir bar. The reservoirs contained Aquil-tricho medium with 1.2 μM NaH2PO4, which was delivered to the culture vessels using a peristaltic pump (Masterflex® L/S®, USA) at the dilution rate of 0.2 d−1. In all experiments, cultures were grown at ;27 °C and ~80 μmol photons m−2 s−1 (14 h:10 h light–dark cycle) in an AL-41L4 algae chamber (Percival). The concentration of Chlorophyll a (Chla) was monitored daily in the middle of the photoperiod as an indicator of biomass. When the Chla concentration remained constant for more than one generation, the system was considered to have reached steady-state, and was maintained for at least another four generations prior to sampling for further analysis.Carbonate chemistry manipulationpCO2/pH of seawater media in the culture vessels and in the reservoir was controlled by continuously bubbling with humidified and 0.22 µm-filtered CO2-air mixtures generated by CO2 mixers (Ruihua Instrument & Equipment Ltd.). During the experimental period, the pHT (pH on the total scale) of media was monitored daily using a spectrophotometric method46. The dissolved inorganic carbon (DIC) of media was analyzed by acidification and subsequent quantification of released CO2 with a CO2 analyzer (LI 7000, Apollo SciTech). Calculations of alkalinity and pCO2 were made using the CO2Sys program47, based on measurements of pHT and DIC, and the carbonate chemistry of the experiments are shown in Supplementary Table 1.Chla concentration and cell density and sizeChla concentration was measured daily following Hong et al.6. Briefly, T. erythraeum was filtered onto 3 μm polycarbonate membrane filters (Millipore), followed by heating at 65 °C for 6 min in 90% (vol/vol) methanol. After extraction the filter was removed and cell debris were spun down via centrifugation (5 min at 20,000×g) before spectrophotometric analysis. Cell density and the average cell length and width were determined at regular intervals when the chemostat cultures reached steady-state using ImageJ software. Photographs of Trichodesmium were taken using a camera (Canon DS126281, Japan) connected with an inverted microscope (Olympus CKX41, Japan). Total number and length of filaments in 1 mL of culture were measured, and the cell number of ~20 filaments was counted. The average length of cells was obtained by dividing the total length of the 20 filaments by their total cell number. The cell density of the culture was then calculated by dividing the total length of filaments in 1 mL culture by the average cell length. The average cell width was determined by measuring the width of around 1000 cells in each treatment.Elemental compositionTo determine particulate organic C (POC) and N (PON), at the end of the chemostat culturing T. erythraeum cells were collected on pre-combusted 25 mm GF/F filters (Whatman) and stored at −80 °C. Prior to analysis, the filters were dried overnight at 60 °C, treated with fuming HCl for 6 h to remove all inorganic carbon, and dried overnight again at 60 °C. After being packed in tin cups, the samples were subsequently analyzed on a PerkinElmer Series II CHNS/O Analyzer 2400.Particulate organic P (POP) was measured following Solorzano et al.48. Cells were filtered on pre-combusted 25 mm GF/F filters and rinsed twice with 2 mL of 0.17 M Na2SO4. The filters were then placed in combusted glass bottles with the addition of 2 mL of 0.017 M MgSO4, and subsequently evaporated to dryness at 95 °C and baked at 450 °C for 2 h. After cooling, 5 mL of 0.2 M HCl was added to each bottle. The bottle was then tightly capped and heated at 80 °C for 30 min, after which 5 mL Milli-Q H2O was added. Dissolved phosphate from the digested POP sample was measured colorimetrically following the standard phosphomolybdenum blue method.C uptake and N2 fixation ratesRates of short-term C uptake were determined at the end of the chemostat culturing. 100 µM NaH14CO3 (PerkinElmer) was added to 50 mL of cultures in the middle of the photoperiod, which was then incubated for 20 min under the growth conditions. After incubation, the samples were collected onto 3 μm polycarbonate membrane filters (Millipore), which were then washed with 0.22 µm-filtered oligotrophic seawater and placed on the bottom of scintillation vials. The filters were acidified to remove inorganic C by adding 500 µL of 2% HCl. The radioactivity was determined using a Tri-Carb 2800TR Liquid Scintillation Analyzer (PerkinElmer). Rates of N2 fixation (nitrogenase activity) were measured in the middle of the photoperiod for 2 h by the acetylene reduction assay49, using a ratio of 4:1 to convert ethylene production to N2 fixation.Soluble reactive phosphate (SRP) analysisWhen the chemostat cultures reached a steady-state, SRP concentrations in the culture vessels were measured at regular intervals, using the classic phosphomolybdenum blue (PMB) method with an additional step to enrich PMB on an Oasis HLB cartridge50. Briefly, 100 mL of GF/F filtered medium sample was fortified with 2 mL of ascorbic acid (100 g L−1) and 2 mL of mixed reagent (MR, the mixture of 100 mL of 130 g L−1 ammonium molybdate tetrahydrate, 100 mL of 3.5 g L−1 potassium antimony tartrate, and 300 mL of 1:1 diluted H2SO4), and then mixed completely. After standing at room temperature for 5 min, the solution was loaded onto a preconditioned Oasis HLB cartridge (3 cm3/60 mg, P/N: WAT094226, Waters Corp.) via a peristaltic pump, and then 1 mL eluent solution (0.2 M NaOH) was added to elute the sample into a cuvette, to which 0.06 mL of MR and 0.03 mL of ascorbic acid solution was added to fully develop PMB. Finally, the absorbance of PMB was measured at 700 nm using a spectrophotometer.Alkaline phosphatase (AP) activityAP activities were measured in the middle of the photoperiod using p-nitrophenylphosphate (pNPP) as a substrate51. Briefly, 5 mL of culture was incubated with 250 μL of 10 mM pNPP, 675 μL of Tris-glycine buffer (50 mM, pH 8.5) and 67.5 μL of 1 mM MgCl2 for 2 h under growth conditions. The absorbance of formed p-nitrophenol (pNP) was measured at 410 nm using a spectrophotometer.PolyP analysisAt the end of the chemostat culturing, T. erythraeum cells were filtered in the middle of the photoperiod onto 3 μm polycarbonate membrane filters (Millipore), flash frozen in liquid nitrogen, and stored at −80 °C until analysis. PolyP was quantified fluorometrically following Martin and Van Mooy22 and Martin et al.23. Briefly, samples were re-suspended in 1 mL Tris buffer (pH 7.0), sonicated for 30 s, immersed in boiling water for 5 min, sonicated for another 30 s, and then digested by 10 U DNase (Takara), RNase (2.5 U RNase A + 100 U RNase T1) (Invitrogen) and 20 μl of 20 mg mL−1 proteinase K at 37 °C for 30 min. After centrifugation for 5 min at 14,000×g, the supernatant was diluted with Tris buffer according to the range of standards curve, stained with 60 μL of 100 μM 4, 6-diamidino-2-phenylindole (DAPI) per 500 μL of samples, incubated for 7 min and then vortexed. The samples were then loaded onto a black 96-well plate and the absorption of fluorescence at an excitation wavelength of 415 nm and emission wavelength of 550 nm was measured using a PerkinElmer EnSpire® Multimode Plate Reader. PolyP standard (sodium phosphate glass Type 45) was purchased from Sigma-Aldrich. This method gives a relative measure of polyP concentration23 that is expressed as femto-equivalents of the standard per cell (feq cell−1).Cellular ATP measurementCellular ATP contents were determined when the chemostat cultures reached a steady state. T. erythraeum cells were collected in the middle of the photoperiod using an ATP Assay Kit (Beyotime Biotechnology, Shanghai, China) according to the manufacturer’s instructions. Briefly, the sample was lysed and centrifuged, and the supernatant (100 μL) was mixed with ATP detection working reagent (100 μL) and loaded onto a black 96-well plate. The luminescence was measured using a PerkinElmer EnSpire® Multimode Plate Reader.Intracellular metabolites measurementsNAD(H), NADP(H), and Glu were measured at the end of the chemostat culturing, using the liquid chromatography-tandem quadrupole mass spectrometry (LC–MS/MS) method modified from Luo et al.52. Briefly, T. erythraeum cells were gently filtered at the middle of photoperiod onto 3 μm polycarbonate membrane filters (Millipore), rapidly suspended in −80 °C precooled methanol-water (60%, v/v) mixture. After being kept in −80 °C freezer for 30 min, the sample was sonicated for 30 s, centrifuged at 12,000×g and 4 °C for 5 min, and the supernatant was filtered through a 0.2 μm filter (Jinteng®, China) and stored at −80 °C for further LC–MS/MS analysis.A 2.0 × 50 mm Phenomenex® Gemini 5u C18 110 Å column (particle size 5.2 µm, Phenomenex, USA) was used for the analysis. The mobile phases consisted of two solvents: mobile phase A (10 mM tributylamine aqueous solution, pH 4.95 with 15 mM acetic acid) and mobile phase B (100% methanol), which were delivered using an Agilent 1290 UPLC binary pump (Agilent Technologies, Palo Alto, CA, USA) at a flow rate of 200 µL min−1, with a linear gradient program implemented as follows: hold isocratic at 0% B (0–2 min); linear gradient from 0% to 85% B (2–28 min); hold isocratic at 0% B (28–34 min). The effluent from the LC column was delivered to an Agilent 6490 triple-quadrupole mass spectrometer, equipped with an electrospray ionization source operating in negative-ion mode. NAD, NADH, NADP, NADPH, and Glu were monitored in the multiple reaction monitoring modes with the transition events at m/z 662.3  > 540, 664.3  > 79, 742  > 620, 744  > 79, and 147  > 84, respectively.RNA extraction, library preparation, and sequencingAt the end of the chemostat culturing, T. erythraeum was collected in the middle of the photoperiod by filtering onto 3 μm polycarbonate membrane filters (Millipore), flash frozen in liquid nitrogen and stored at −80 °C until extraction. Total RNA was extracted using TRIzol® Reagent (Invitrogen) combined with a physical cell disruption approach by glass beads according to the manufacturer’s instructions. Genomic DNA was removed thoroughly by treating it with RNAase-free DNase I (Takara, Japan). Ribosomal RNA was removed from a total amount of 3 µg RNA using Ribo-Zero rRNA Removal kit (Illumina, USA). Subsequently, cDNA libraries were generated according to the manufacturer’s protocol of NEBNext® UltraTM Directional RNA Library Prep Kit for Illumina® (NEB, USA). The quality of the library was assessed on the Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA). Libraries were sequenced on an Illumina Hiseq 2500 platform, yielding 136-bp paired-end reads.RNA-Seq bioinformaticsClean reads were obtained from raw data by removing reads containing adapter, ploy-N and low-quality read. Qualified sequences were mapped to the Trichodesmium erythraeum IMS101 genome (https://www.ncbi.nlm.nih.gov/nuccore/NC_008312.1) by using Bowtie2-2.2.353. Differential expression analysis for high/low pCO2 with P limitation was performed using the DESeq2 R package54. The resulting p-values were adjusted using Benjamini and Hochberg’s approach for controlling the false discovery rate. Genes with an adjusted p-value  More

  • in

    The spread of Carpophilus truncatus is on the razor's edge between an outbreak and a pest invasion

    Paini, D. R. et al. Global threat to agriculture from invasive species. PNAS 113, 7575–7579. https://doi.org/10.1073/pnas.1602205113 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Molfini, M. et al. A preliminary prioritized list of Italian alien terrestrial invertebrate species. Biol. Invasions 22, 2385–2399. https://doi.org/10.1007/s10530-020-02274-w (2020).Article 

    Google Scholar 
    Sweeney, J. et al. Special issue on invasive pests of forests and urban trees: pathways, early detection, and management. J. Pest Sci. 92, 1–2. https://doi.org/10.1007/s10340-018-01073-6 (2019).Article 

    Google Scholar 
    Pace, R. et al. The bugs in the bags : The risk associated with the introduction of small quantities of fruit and plants by airline passengers. Insects 13, 617. https://doi.org/10.3390/insects13070617 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nugnes, F., Russo, E., Viggiani, G. & Bernardo, U. First record of an invasive fruit fly belonging to Bactrocera dorsalis complex (Diptera: Tephritidae) in Europe. Insects 9, 182. https://doi.org/10.3390/insects9040182 (2018).Article 
    PubMed Central 

    Google Scholar 
    Bernardo, U. et al. Characterization, distribution, biology and impact on Italian walnut orchards of the invasive North-American leafminer Coptodisca lucifluella (Lepidoptera: Heliozelidae). Bull. Entomol. Res. 105, 210–224. https://doi.org/10.1017/S0007485314000947 (2015).Article 
    PubMed 
    CAS 

    Google Scholar 
    Saxena, R. C. & Barrion, A. A. Biotypes of insect pests of agricultural crops. Int. J. Trop. Insect Sci. 8, 453–458. https://doi.org/10.1017/s1742758400022475 (1987).Article 

    Google Scholar 
    Bentur, J. S., Cheralu, C. & Rao, P. R. M. Monitoring virulence in Asian rice gall midge populations in India. Entomol. Exp. Appl. 129, 96–106. https://doi.org/10.1111/j.1570-7458.2008.00756.x (2008).Article 

    Google Scholar 
    Lee, C. E. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17, 386–391 (2002).Article 

    Google Scholar 
    Prentis, P. J. et al. Adaptive evolution in invasive species. Trends Plant. Sci. 13, 288–294. https://doi.org/10.1016/j.tplants.2008.03.004 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    Lack, J. B. et al. Comparative phylogeography of invasive Rattus rattus and Rattus norvegicus in the U.S. reveals distinct colonization histories and dispersal. Biol. Invasions 15, 1067–1087. https://doi.org/10.1007/s10530-012-0351-5 (2013).Article 

    Google Scholar 
    Fišer Pečnikar, Ž. & Buzan EV. 20 years since the introduction of DNA barcoding: From theory to application. J. Appl. Genet. 55, 43–52, https://doi.org/10.1007/s13353-013-0180-y (2014).Nugnes, F. et al. Genetic diversity of the invasive Gall Wasp Leptocybe invasa (Hymenoptera: Eulophidae) and of its Rickettsia endosymbiont, and associated sex-ratio differences. PLoS ONE 10, e0124660. https://doi.org/10.1371/journal.pone.0124660 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Nugnes, F., Bernardo, U. & Viggiani, G. An integrative approach to species discrimination in the Anagrus atomus group sensu stricto (Hymenoptera: Mymaridae), with a description of a new species. Syst. Biodivers. 15, 582–599. https://doi.org/10.1080/14772000.2017.1299811 (2017).Article 

    Google Scholar 
    Packer, L., Gibbs, J., Sheffield, C. & Hanner, R. DNA barcoding and the mediocrity of morphology. Mol. Ecol. Resour. 9, 42–50. https://doi.org/10.1111/j.1755-0998.2009.02631.x (2009).Article 
    PubMed 

    Google Scholar 
    Dayrat, B. Towards integrative taxonomy. Biol. J. Linn. Soc. 85, 407–415 (2005).Article 

    Google Scholar 
    Hebert, P. D. N. & Gregory, T. R. The promise of DNA barcoding for taxonomy. Syst. Biol. 54, 852–859. https://doi.org/10.1080/10635150500354886 (2005).Article 
    PubMed 

    Google Scholar 
    Faccoli, M., Simonato, M. & Rassati, D. Life history and geographical distribution of the walnut twig beetle, Pityophthorus juglandis (Coleoptera: Scolytinae), in southern Europe. J. Appl. Entomol. 140, 697–705. https://doi.org/10.1111/jen.12299 (2016).Article 

    Google Scholar 
    Verheggen, F. et al. Walnut husk fly, Rhagoletis completa (Diptera: Tephritidae), invades Europe: Invasion potential and control strategies. Appl. Entomol. Zool. 52, 1–7. https://doi.org/10.1007/s13355-016-0459-7 (2017).Article 

    Google Scholar 
    Gargiulo, S. et al. Insetti endemici e nuove invasioni: il complicato quadro dei fitofagi del noce. Entomata. 15, 73–83 (2021).
    Google Scholar 
    de Benedetta, F. et al. Carpophilus dimidiatus, nuova minaccia per la nocicoltura. Inf. Agr. 17, 57–59 (2020).
    Google Scholar 
    Dobson, R. M. The species of Carpophilus Stephens (Col. Nitidulidae) associated with stored products. Bull. Entomol. Res. 45, 389–402 (1954).Article 

    Google Scholar 
    Audisio, P. Coleoptera: Nitidulidae – Kateretidae. Coleoptera Nitidulidaee Kateretidae Carpophilinae in Fauna d’Italia XXXII 226–269 (Calderini, 1993).Powell, G. S., Cline, A. R., Duffy, A. G. & Zaspel, J. M. Phylogeny and reclassification of Carpophilinae (Coleoptera: Nitidulidae), with insights into the origins of anthophily. Zool. J. Linn. Soc. 189, 1359–1369. https://doi.org/10.1093/zoolinnean/zlaa001 (2020).Article 

    Google Scholar 
    Bartelt, R. & Hossain, M. Chemical ecology of Carpophilus sap beetles (Coleoptera: Nitidulidae) and development of an environmentally friendly method of crop protection. Terr. Arthropod. Rev. 3, 29–61. https://doi.org/10.1163/187498310×489981 (2010).Article 

    Google Scholar 
    Audisio, P. Fauna Europaea: Coleoptera, Carpophilinae, Carpophilus in Fauna Europaea version 2021.07 https://fauna-eu.org/ (2021).Tremblay, E., Espinosa, B. & Baldini, C. Dannosità dei Carpofili (Coleoptera: Nitidulidae) alle pesche in Campania. Inf. Fitopatol. 34, 43–45 (1984).
    Google Scholar 
    Reales, N. et al. Morphological and molecular identification of Carpophilus dimidiatus (Coleoptera: Nitidulidae) associated with stored walnut in Northwestern Argentina. J. Stored Prod. Res. 76, 37–42. https://doi.org/10.1016/j.jspr.2017.12.002 (2018).Article 
    ADS 

    Google Scholar 
    Hossain, M. Management of Carpophilus Beetle in Almonds. Hort Innovation – Final Report Project #A:1–93 (2018).Powell, G. S. & Hamilton, M. L. Notes on the Carpophilus Stephens (Coleoptera: Nitidulidae) of Australia, with a new species from Victoria. Zootaxa 4701, 192–196. https://doi.org/10.1017/S0009840X0002730X (2019).Article 

    Google Scholar 
    Boston, W., Leemon, D. & Cunningham, J. P. Virulence screen of Beauveria bassiana isolates for Australian Carpophilus (Coleoptera: Nitidulidae) beetle biocontrol. Agronomy 10, 1207. https://doi.org/10.3390/agronomy10081207 (2020).Article 

    Google Scholar 
    Connell, W.A. A key to Carpophilus sap beetle associated with stored foods in the United States (Coleoptera: Nitidulidae). Department of Agriculture Cooperative Plant Pest Reports 23, 398–404 (1977).Brown, S. D. J., Armstrong, K. F. & Cruickshank, R. H. Molecular phylogenetics of a South Pacific sap beetle species complex (Carpophilus spp., Coleoptera: Nitidulidae). Mol. Phylogenetics Evol. 64, 428–440. https://doi.org/10.1016/j.ympev.2012.04.018 (2012).Article 

    Google Scholar 
    Leica Application Suite software version 3.8.0; Leica: Switzerland, (2011).Murray, A. X. I. I. I. Monograph of the family of Nitidulariae. Trans. Linn. Soc. Lond. 24, 211–414. https://doi.org/10.1111/j.1096-3642.1863.tb00163.x (1864).Article 

    Google Scholar 
    Gillogly, L. R. Insects of Micronesia Coleoptera: Nitidulidae*. Insects Micronesia 16, 133–188 (1962).
    Google Scholar 
    Connell, W.A. Sap Beetles (Nitidulidae, Coleoptera). in Insect and Mite pests in food, an illustrated key. 151–174 (1991).DiLorenzo, C.L., Powell, G.S., Cline, A.R. & McHugh, J.V. Carpophiline-ID, a taxonomic web resource for the identification of Carpophilinae (Nitidulidae) of eastern North America. (2021a). https://site.caes.uga.edu/carpophiline-id/DiLorenzo, C. L., Powell, G. S., Cline, A. R. & McHugh, J. V. Carpophiline-ID: An interactive matrix-based key to the Carpophiline sap beetles (Coleoptera, Nitidulidae) of Eastern North America. ZooKeys 1028, 85–93. https://doi.org/10.3897/zookeys.1024.59467 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Motschulsky, V. Insectes des Indes orientales. Etudes entomologiques 7, 20–122 (1858).
    Google Scholar 
    Fall, H. C. Miscellaneous notes and descriptions of North American Coleoptera. Am. Entomol. Soc. 36, 89–197 (1910).
    Google Scholar 
    Dobson, R. M. A new species of Carpophilus Stephens (Col. Nitidulidae) found on stored produce. Entomol’s Mon. Mag. 90, 299–300 (1954).
    Google Scholar 
    Connell, W. A. Carpophilus pilosellus Motschulsky, new synonymy and distribution (Coleoptera: Nitidulidae). Coleopt. Bull. 17, 89–90 (1963).
    Google Scholar 
    Kirejtshuk, A.G. Some results of study on the Nitidulidae from Namibia and adjacent territories. Part 1 Coleoptera, Cucujoidea, Nitidulidae. Mitteilungen aus dem Museum für Naturkunde in Berlin Zoologisches Museum und Institut für Spezielle Zoologie (Berlin) 72, 21–52, https://doi.org/10.1002/mmnz.19960720106 (1996).Wang, D., Bai, X., Zhou, Y., Zhao, Y. Illustrated book of stored grain insects in China. 63–66 (China Press, 2008).Brown, S.D.J. Molecular systematics and colour variation of Carpophilus species (Coleoptera: Nitidulidae) of the South Pacific. Dissertation, Lincoln University (2009).Dasgupta, J., Pal, T. K. & Powell, G. S. Taxonomy of Carpophilinae (Coleoptera: Nitidulidae) from Tripura, India with a new species. Annal. Zool. 71, 627–649. https://doi.org/10.3161/00034541ANZ2021.71.3.003 (2021).Article 

    Google Scholar 
    Gebiola, M. et al. Pnigalio agraules (Walker) and Pnigalio mediterraneus Ferrière and Delucchi (Hymenoptera: Eulophidae): Two closely related valid species. J. Nat. Hist. 43, 2465–2480. https://doi.org/10.1080/00222930903105088 (2009).Article 

    Google Scholar 
    Folmer, R. H. A., Nilges, M., Folkers, P. J. M., Konings, R. N. H. & Hilbers, C. W. A model of the complex between single-stranded DNA and the single-stranded DNA binding protein encoded by gene V of filamentous bacteriophage M13. J. Mol. Biol. 240(4), 341–357 (1994).Article 
    PubMed 
    CAS 

    Google Scholar 
    Simon, C. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701. https://doi.org/10.1093/aesa/87.6.651 (1994).Article 
    CAS 

    Google Scholar 
    Schulmeister, S., Wheeler, W. C. & Carpenter, J. M. Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics 18, 455–484. https://doi.org/10.1111/j.1096-0031.2002.tb00287.x (2002).Article 
    PubMed 

    Google Scholar 
    Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 1–11. https://doi.org/10.1186/1471-2105-13-134 (2012).Article 
    CAS 

    Google Scholar 
    Campbell, B. C., Steffen-Campbell, J. D. & Werren, J. H. Phylogeny of the Nasonia species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect. Mol. Biol. 2, 225–237. https://doi.org/10.1111/j.1365-2583.1994.tb00142.x (1994).Article 

    Google Scholar 
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Edler, D., Klein, J., Antonelli, A. & Silvestro, D. RaxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 12, 373–377. https://doi.org/10.1111/2041-210X.13512 (2021).Article 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61(3), 539–542 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods. 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. Partition Finder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).Article 
    PubMed 
    CAS 

    Google Scholar 
    Rambaut, A., FigTree v1.4.2, A Graphical Viewer of Phylogenetic Trees. http://tree.bio.ed.ac.uk/software/figtree/ (2014).Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729. https://doi.org/10.1093/molbev/mst197 (2013).Article 
    CAS 

    Google Scholar 
    Kingman, J. F. C. The coalescent. Stoch. Process. Appl. 13, 235–248. https://doi.org/10.1016/0304-4149(82)90011-4 (1982).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Austerlitz, F. et al. DNA barcode analysis: A comparison of phylogenetic and statistical classification methods. BMC Bioinform. 10, 1–13. https://doi.org/10.1186/1471-2105-10-S14-S10 (2009).Article 
    CAS 

    Google Scholar 
    Grewe, P. M. et al. Mitochondrial DNA variation among lake trout (Salvelinus namaycush) strains stocked into Lake Ontario. Can. J. Fish. Aquat. Sci. 50, 2397–2403. https://doi.org/10.1139/f93-264 (1993).Article 

    Google Scholar 
    Rossmo, D.K. Geographic profiling. CRC press, 1–378 (1999).Le Comber, S. C. et al. Geographic profiling as a novel spatial tool for targeting infectious disease control. Int. J. Health Geogr. 10, 1–8. https://doi.org/10.1186/1476-072X-10-35 (2011).Article 

    Google Scholar 
    Stevenson, M. D., Rossmo, D. K., Knell, R. J. & Le Comber, S. C. Geographic profiling as a novel spatial tool for targeting the control of invasive species. Ecography 35, 704–715. https://doi.org/10.1111/j.1600-0587.2011.07292.x (2012).Article 

    Google Scholar 
    Gutiérrez, D. & Menéndez, R. Patterns in the distribution, abundance and body size of carabid beetles (Coleoptera: Caraboidea) in relation to dispersal ability. J. Biogeogr. 24, 903–914. https://doi.org/10.1046/j.1365-2699.1997.00144.x (1997).Article 

    Google Scholar 
    Canter, D., Coffey, T., Huntley, M. & Missen, C. Predicting serial killers’ home base using a decision support system. J. Quant. Criminol. 16, 457–478. https://doi.org/10.1023/A:1007551316253 (2000).Article 

    Google Scholar 
    Muirhead, J. R. et al. Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America. Divers. Distrib. 12, 71–79. https://doi.org/10.1111/j.1366-9516.2006.00218.x (2006).Article 

    Google Scholar 
    Marchioro, M. & Faccoli, M. Dispersal and colonization risk of the walnut twig beetle, Pityophthorus juglandis, in southern Europe. J. Pest Sci. 95, 303–313. https://doi.org/10.1007/s10340-021-01372-5 (2022).Article 

    Google Scholar 
    Meurisse, N. & Pawson, S. Quantifying dispersal of a non-aggressive saprophytic bark beetle. PLoS ONE 12, 1–24. https://doi.org/10.1371/journal.pone.0174111 (2017).Article 
    CAS 

    Google Scholar 
    Papini, A. et al. The use of jackknifing for the evaluation of geographic profiling reliability. Ecol. Inform. 38, 76–81. https://doi.org/10.1016/j.ecoinf.2017.02.001 (2017).Article 

    Google Scholar 
    Statgraphics Plus Version 3.0; Manugistics: Rockville, MD, USA, (1997).Bagnaia, R. et al. Carta della Natura della Regione Campania: Carta degli habitat alla scala 1:25.000. ISPRA (2017).Martoni, F., Piper, A. M., Rodoni, B. C. & Blacket, M. J. Disentangling bias for non-destructive insect metabarcoding. PeerJ 10, e12981. https://doi.org/10.7717/peerj.12981 (2022).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Jelinek, J. & Audisio, P. Elateroidea, Derodontoidea, Bostrichoidea, Lymexyloidea, Cleroidea and Cucujoidea in Catalogue of Palaearctic Coleoptera. 459–490 (Apollo Books, 2007)Mbenoun, M., Garnas, J. R., Wingfield, M. J., Begoude Boyogueno, A. D. & Roux, J. Metacommunity analyses of Ceratocystidaceae fungi across heterogeneous African savanna landscapes. Fungal Ecol. 28, 76–85. https://doi.org/10.1016/j.funeco.2016.09.007 (2017).Article 

    Google Scholar 
    Norris, L. C. & Norris, D. E. Phylogeny of anopheline (Diptera: Culicidae) species in southern Africa, based on nuclear and mitochondrial genes. J. Vector Ecol. 40, 16–27. https://doi.org/10.1111/jvec.12128 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernardo, U. et al. A new gall midge species of Asphondylia (Diptera: Cecidomyiidae) inducing flower galls on Clinopodium nepeta (Lamiaceae) from Europe, its phenology, and associated fungi. Environ. Entomol. 47, 609–622. https://doi.org/10.1093/ee/nvy028 (2018).Article 
    PubMed 

    Google Scholar 
    Bernardo, U. et al. An integrative study on Asphondylia spp. (Diptera: Cecidomyiidae), causing flower galls on Lamiaceae, with description, phenology, and associated fungi of two new species. Insetcs 12, 958. https://doi.org/10.3390/insects12110958 (2021).Article 

    Google Scholar 
    Wacławik, B. et al. An integrative revision of the subgenus Liophloeodes (Coleoptera: Curculionidae: Entiminae: Polydrusini): taxonomic, systematic, biogeographic and evolutionary insights. Arthropod Syst. Phylogeny. 79, 419–441. https://doi.org/10.3897/asp.79.e64252 (2021).Article 

    Google Scholar 
    Colautti, R. I. & MacIsaac, H. J. A neutral terminology to define ‘invasive’ species. Divers Distrib. 10, 135–141 (2004).Article 

    Google Scholar 
    Crooks, J. A. Lag times and exotic species: The ecology and management of biological invasions in slow-motion. Ecoscience 12, 316–329. https://doi.org/10.2980/i1195-6860-12-3-316.1 (2005).Article 

    Google Scholar 
    Jelínek, J. et al. Epuraea imperialis (Reitter, 1877). New invasive species of Nitidulidae (Coleoptera) in Europe, with a checklist of Sap Beetles introduced to Europe and Mediterranean areas. APP | Physical, Math. Nat. Sci. Accademia Peloritana dei Pericolanti, 94, 1–24, https://doi.org/10.1478/AAPP.942A4 (2016).Benchi, D., Conelli, L. & Bernardo, U. L. mosca delle noci minaccia le produzioni campane. Inf Agr. 66, 74–76 (2010).
    Google Scholar 
    Pollini, A. Entomologia Applicata. (Edagricole, 2013).Van Steenwyk, R.A. et al. Walnut husk fly control with reduced risk insecticides. Acta Hortic 861, 375–382, https://doi.org/10.17660/ActaHortic.2010.861.5 (2010).EU (2019). Commission Implementing Regulation (EU) 2019/2072 of 28 November 2019 establishing uniform conditions for the implementation of Regulation (EU) 2016/2031 of the European Parliament and the Council, as regards protective measures against pests of plants, and repealing Commission Regulation (EC) No 690/2008 and amending Commission Implementing Regulation (EU) 2018/2019. Off. j. Eur. Union, Legis., L 319/1, 1–279. Retrieved from https://eur-lex.europa.eu/eli/reg_impl/2019/2072/ojRusso, E. et al. Biological and molecular characterization of Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae), an emerging pest of stone fruits in Europe. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-020-63959-9 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hsu, F. et al. Introduction of a non-native lineage is linked to the recent black cocoa ant, Dolichoderus thoracicus (Smith, 1860), outbreaks in Taiwan. Taiwania 67, 271–279. https://doi.org/10.6165/tai.2022.67.271 (2022).Article 

    Google Scholar 
    Porter, J. Some studies on the life history and oviposition of Carpophilus dimidiatus (F.) (Coleoptera: Nitidulidae) at various temperatures and humidities. J. Stored Prod. Res. 22, 135–139. https://doi.org/10.1016/0022-474X(86)90006-8 (1986).Article 
    ADS 

    Google Scholar 
    Potter, M. A. et al. A survey of sap beetles (Coleoptera: Nitidulidae) in strawberry fields in West Central Florida. Fla. Entomol. 96, 1188–1189. https://doi.org/10.1653/024.096.0363 (2013).Article 

    Google Scholar 
    Burks, C.S., Yasin, M., El-Shafie, H.A.F. & Wakil, W. Pests of stored dates in Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges (eds Wakil, W., Romeno Faleiro J., Miller, T.A.) 237–286 (Springer, Zürich, Switzerland, 2015). https://doi.org/10.1007/978-3-319-24397-9Akşit, T., Özsemerci, F. & Çakmak, İ. Studies on determination of harmful fauna in the fig orchards in Aydin province (Turkey). Türkiye Entomoloji Dergisi 27, 181–189 (2003).
    Google Scholar  More

  • in

    Using hyrax latrines to investigate climate change

    This might look like an ordinary rock formation, but the black material is actually preserved faeces and urine from a small mammal called a rock hyrax (Procavia capensis).Hyraxes, which are common in Africa and the Middle East, look like groundhogs but are more closely related to manatees and elephants. They live in crevasses and pick one spot to use as a latrine. The use of the same spot over tens of thousands of years creates a layered refuse heap known as a midden that scientists can mine for palaeoclimatic data. I specialize in examining the pollen in these dungheaps for information about the vegetation and climate of the past.Our team found this site in May, in the Cape Fold Belt mountains of South Africa, using a drone to help investigate crevasses. We were excited when we saw the extent of this midden; we think it covers at least 20,000 years. We came back after the winter to take a sample. This photograph was taken in September. My colleague and project leader Brian Chase, who has rock-climbing skills, used a circular saw to extract a wedge that we brought back to the lab for analysis.The team will first look at radioactive carbon to determine the age of the midden layers. Then, we will analyse the stable carbon isotopes to learn what plants the hyraxes were eating, which in turn provides clues to the climate of that time. When I examine the samples, I look for pollen grains, which enter the midden both in the hyrax’s urine and faeces and by being blown in by the wind. I’ll also look for charcoal, to tell how many wildfires occurred in the region over time, and fungal spores, which can reveal which animals were nearby.We now have a much more nuanced and detailed view of climate changes in southern Africa. The fieldwork is very demanding, requiring long days of hiking, but I love it. More

  • in

    First report of glyphosate-resistant downy brome (Bromus tectorum L.) in Canada

    Powles, S. B. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Manage. Sci. 64, 360–365 (2008).CAS 

    Google Scholar 
    Bradshaw, L. D., Padgette, S. R., Kimball, S. L. & Wells, B. J. Perspectives on glyphosate resistance. Weed Technol. 11, 189–198 (1997).CAS 

    Google Scholar 
    Duke, S. O. & Powles, S. B. Glyphosate: A once-in-a-century herbicide. Pest Manage. Sci. 64, 319–325 (2008).CAS 

    Google Scholar 
    Baek, Y., Bobadilla, L. K., Giacomini, D. A., Montgomery, J. S., Murphy, B. P. & Tranel, P. J. Evolution of glyphosate-resistant weeds In Reviews of Environmental Contamination and Toxicology Volume 225 (ed. Knaak, J. B.) 93–128 (Cham, CH: Springer Nature Switzerland AG 2021).Heap, I. The international herbicide-resistant weed database www.weedscience.org (2022).Beckie, H. J. et al. A decade of herbicide-resistant crops in Canada. Can. J. Plant Sci. 61, 1243–1264 (2006).
    Google Scholar 
    Geddes, C. M. Glyphosate overreliance threatens no-till agriculture: Is kochia a canary in the coal mine? In Proceedings of the 2019 ASA-CSSA-SSSA International Annual Meeting https://scisoc.confex.com/scisoc/2019am/meetingapp.cgi/Paper/121120 (San Antonio, TX: ASA-CSSA-SSSA, 2019).Alberta Environment and Parks. Overview of 2018 pesticide sales in Alberta https://open.alberta.ca/publications/9781460148167 (Government of Alberta ISBN 978-1-4601-4816-7, 2020).Statistics Canada. Table 32-10-0359-01: Estimated areas, yield, production, average farm price and total farm value of principal field crops, in metric and imperial units https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210035901 (2022).Brunharo, C. A. C. G. et al. Western United States and Canada perspective: Are herbicide-resistant crops the solution to herbicide-resistant weeds? Weed Sci. 66, 272–286 (2022).
    Google Scholar 
    Canadian Grain Commission. Grain varieties by acreage insured https://www.grainscanada.gc.ca/en/grain-research/statistics/varieties-by-acreage/ (2022).Statistics Canada. Table 32-10-0408-01: Tillage and seeding practices, Census of Agriculture, 2021 and 2016 https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210040801 (2022).Upadhyaya, M. K., McIlvride, D. & Turkington, R. The biology of Canadian weeds: 75. Bromus tectorum L.. Can. J. Plant Sci. 66, 689–709 (1986).
    Google Scholar 
    Hedrick, D. W. History of cheatgrass – present geographical range and importance of cheatgrass in management of rangelands. In Cheatgrass Symposium. 13–16 (Portland, OR: US Dep. Int., Bur. Land Manage., 1965).Mack, R. N. Invasion of Bromus tectorum L. into western North America: An ecological chronicle. Agro-Ecosystems 7, 145–165 (1981).
    Google Scholar 
    Mitich, L. W. Downy brome, Bromus tectorum L. Weed Technol. 13, 664–668 (1999).
    Google Scholar 
    Morrow, L. A. & Stahlman, P. W. The history and distribution of downy brome (Bromus tectorum) in North America. Weed Sci. 32, 2–6 (1984).
    Google Scholar 
    Pellant, M. & Hall, C. Distribution of two exotic grasses on public lands in the Great Basin: status in 1992. In Proceedings–Ecology and Management of Annual Rangelands. (eds. Monsen, S. B. & Kitchen, S. G.) 109–112 (Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Research Station, General Technical Report INT-GTR-313, 1994).Leeson, J. Y., Hall, L. M. Neeser, C., Tidemann, B., & Harker, K. N. Alberta survey of annual crops in 2017. (Saskatoon, SK: Agriculture and Agri-Food Canada Weed Survey Series Publ. 19–1, 2019).Douglas, B., Thomas, A. & Derksen, D. Downy brome (Bromus tectorum) invasion into southwestern Saskatchewan. Can. J. Plant Sci. 70, 1143–1151 (1990).
    Google Scholar 
    Miller, Z. J., Menalled, F. D. & Burrows, M. Winter annual grassy weeds increase over-winter mortality in autumn-sown wheat. Weed Res. 53, 102–109 (2013).
    Google Scholar 
    Rydrych, D. J. & Muzik, T. K. Downy brome competition and control in dryland wheat. Agron. J. 60, 279–280 (1968).
    Google Scholar 
    Stahlman, P. W. & Miller, S. D. Downy brome (Bromus tectorum) interference and economic thresholds in winter wheat (Triticum aestivum). Weed Sci. 38, 224–228 (1990).
    Google Scholar 
    Blackshaw, R. E. Downy brome (Bromus tectorum) density and relative time of emergence affects interference in winter wheat (Triticum aestivum). Weed Sci. 41, 551–556 (1993).
    Google Scholar 
    Johnson, E. N. et al. Pyroxasulfone is effective for management of Bromus spp. in winter wheat in Western Canada. Weed Technol. 32, 739–748 (2018).
    Google Scholar 
    Kumar, V., Jha, P. & Jhala, A. J. Using pyroxasulfone for downy brome (Bromus tectorum L.) control in winter wheat. Am. J. Plant Sci. 8, 2367–2378 (2017).CAS 

    Google Scholar 
    Ostlie, M. H. & Howatt, K. A. Downy brome (Bromus tectorum) competition and control in no-till spring wheat. Weed Technol. 27, 502–508 (2013).CAS 

    Google Scholar 
    Steward, G. & Hull, A. C. Cheatgrass (Bromus tectorum L.) – An ecological intruder in southern Idaho. Ecology 30, 57–74 (1949).
    Google Scholar 
    Hulbert, L. C. Ecological studies of Bromus tectorum and other annual brome grasses. Ecol. Monogr. 25, 181–213 (1955).
    Google Scholar 
    Young, J. A. & Evans, R. A. Population dynamics after wildfires in sagebrush grasslands. J. Range. Manag. 31, 283–289 (1978).
    Google Scholar 
    Mack, R. N. & Pyke, D. A. The demography of Bromus tectorum: Variation in time and space. J. Ecol. 71, 69–93 (1983).
    Google Scholar 
    Pyke, A. P. & Novak, S. J. Cheatgrass demography–establishment attributes, recruitment, ecotypes and genetic variability. In Proceedings–Ecology and Management of Annual Rangelands. (eds. Monsen, S. B. & Kitchen, S. G.) 12–21 (Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Research Station, General Technical Report INT-GTR-313, 1994).Burnside, O. C., Wilson, R. G., Weisberg, S. & Hubbard, K. G. Seed longevity of 41 weed species buried 17 years in eastern and western Nebraska. Weed Sci. 44, 74–86 (1996).CAS 

    Google Scholar 
    Smith, D. C., Meyer, S. E. & Anderson, V. J. Factors affecting Bromus tectorum seed bank carryover in western Utah. Rangel. Ecol. Manag. 61, 430–436 (2008).
    Google Scholar 
    Wicks, G. A. Survival of downy brome (Bromus tectorum) seed in four environments. Weed Sci. 45, 225–228 (1997).CAS 

    Google Scholar 
    Rydrych, D. J. Competition between winter wheat and downy brome. Weed Sci. 22, 211–214 (1974).
    Google Scholar 
    Sebastian, D. J., Nissen, S. J., Sebastian, J. R. & Beck, K. G. Seed bank depletion: The key to long-term downy brome (Bromus tectorum L.) management. Rangel. Ecol. Manage. 70, 477–483 (2017).
    Google Scholar 
    Asthana, P., Zuger, R. J., Brew-Appiah, R., Sanguinet, K. & Burke, I. EPSPS gene amplification confers glyphosate resistance in Bromus tectorum (Downy brome). In Proceedings of the 2020 Weed Science Society of America (WSSA)–Western Society of Weed Science Joint Meeting. 58 (Maui, HI: WSSA, 2020).Zuger, R. J. & Burke, I. C. Testing in Washington identifies widespread postemergence herbicide resistance in annual grasses. Crops Soils Mag. 53, 13–19 (2020).
    Google Scholar 
    Davies, L. R., Hull, R., Moss, S. & Neve, P. The first cases of evolving glyphosate resistance in UK poverty brome (Bromus sterilis) populations. Weed Sci. 67, 41–47 (2019).
    Google Scholar 
    Malone, J. M., Morran, S., Shirley, N., Boutsalis, P. & Preston, C. EPSPS gene amplification in glyphosate-resistant Bromus diandrus. Pest Manage. Sci. 72, 81–88 (2016).CAS 

    Google Scholar 
    Vázquez-García, J. G. et al. Glyphosate resistance confirmation and field management of red brome (Bromus rubens L.) in perennial crops grown in southern Spain. Agronomy 11, 535 (2021).
    Google Scholar 
    Park, K. W. & Mallory-Smith, C. A. Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Res. 44, 71–77 (2004).CAS 

    Google Scholar 
    Kumar, V. & Jha, P. First report of Ser653Asn mutation endowing high-level resistance to imazamox in downy brome (Bromus tectorum L.). Pest Manag. Sci. 73, 2585–2591 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Baerson, G. T. et al. Glyphosate resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129, 1265–1274 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaines, T. A. et al. Mechanism of resistance of evolved glyphosate-resistant palmer amaranth (Amaranthus palmeri). J. Agric. Food Chem. 59, 5886–5889 (2011).CAS 
    PubMed 

    Google Scholar 
    Jugulam, M. et al. Tandem amplification of a chromosomal segment harboring 5-enolpyruvylshikimate-3-phosphate synthase locus confers glyphosate resistance in Kochia scoparia. Plant Physiol. 166, 1200–1207 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Metier, E. P., Lehnhoff, E. A., Mangold, J., Rinella, M. J. & Rew, L. J. Control of downy brome (Bromus tectorum) and Japanese brome (Bromus japonicus) using glyphosate and four graminicides: Effects of herbicide rate, plant size, species, and accession. Weed Technol. 34, 284–291 (2020).
    Google Scholar 
    Reddy, S., Stahlman, P. & Geier, P. Downy brome (Bromus tectorum L.) and broadleaf weed control in winter wheat with acetolactate synthase-inhibiting herbicides. Agronomy 3, 340–348 (2013).CAS 

    Google Scholar 
    Blackshaw, R. E. Differential competitive ability of winter wheat cultivars against downy brome. Agron. J. 86, 649–654 (1994).
    Google Scholar 
    Blackshaw, R. E. Rotation affects downy brome (Bromus tectorum) in winter wheat (Triticum aestivum). Weed Technol. 8, 728–732 (1994).
    Google Scholar 
    Wicks, G. A. Integrated systems for control and management of downy brome (Bromus tectorum) in cropland. Weed Sci. 32, 26–31 (1984).CAS 

    Google Scholar 
    Anderson, R. L. Timing of nitrogen application affects downy brome (Bromus tectorum) growth in winter wheat. Weed Technol. 5, 582–585 (1991).
    Google Scholar 
    Blackshaw, R. E., Larney, F. J., Lindwall, C. W., Watson, P. R. & Derksen, D. A. Tillage intensity and crop rotation affect weed community dynamics in a winter wheat cropping system. Can. J. Plant Sci. 81, 805–813 (2001).
    Google Scholar 
    Evans, R. A. & Young, J. A. Microsite requirements of downy brome (Bromus tectorum) infestation and control on sagebrush rangelands. Weed Sci. 32, 13–17 (1984).
    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project https://qgis.org/en/site/ (2022).Sheldrake, T. Jr. & Boodley, J. W. Plant growing in light-weight artificial mixes. Acta Hortic. 4, 155–157 (1966).
    Google Scholar 
    Canadian Weed Science Society – Société Canadienne de Malherbologie (CWSS-SCM). Description of 0–100 rating scale for herbicide efficacy and phytotoxicity https://weedscience.ca/cwss_scm-rating-scale/ (2018).Littell, R. C., Milken, G. A., Stroup, W. W., Wolfinger, R. R. & Schabenberger, O. SAS for mixed models 2nd edn. (SAS Institute Inc., 2006).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (Vienna, Austria: R Foundation for Statistical Computing, 2019).Ritz, C., Baty, F., Streibig, F. C. & Gerhard, D. Dose-response analysis using R. PLoS ONE 10, e0146021 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Seefeldt, S. S., Jensen, J. E. & Fuerst, E. P. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9, 218–227 (1995).
    Google Scholar  More

  • in

    The diel vertical distribution and carbon biomass of the zooplankton community in the Caroline Seamount area of the western tropical Pacific Ocean

    Roemmich, D. & Mcgowan, J. Climatic warming and the decline of zooplankton in the California current. Science 267(5202), 1324–1326 (1995).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–507 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Irigoien, X., Huisman, J. & Harris, R. P. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–867 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ware, D. M. & Thomson, R. E. Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific. Science 308(5726), 1280–1284 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Beaugrand, G., Edwards, M. & Legendre, L. Marine biodiversity, ecosystem functioning, and carbon cycles. Proc. Natl. Acad. Sci. 107, 10120–10124 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ewald, W. F. Über Orientierung Lokomotion und Lichtreaktionen einiger Cladoceren und deren Bedeutung für die Theorie der Tropismen. Biol. Zentralblatt 30, 1–16 (1910).
    Google Scholar 
    Dam, H. G., Roman, M. R. & Youngbluth, M. J. Downward export of respiratory carbon and dissolved nitrogen by diel-migrant mesozooplankton at the JGOFS Bermuda time-series station. Deep Sea Res. Part I Oceanogr. Res. Pap. 42, 1187–1197 (1995).ADS 
    CAS 

    Google Scholar 
    Morales, C. E. Carbon and nitrogen fluxes in the ocean: the contribution by zooplankton migrants to active transport in the North Atlantic during the Joint Global Flux Study. J. Plankton Res. 21, 1799–1808 (1999).
    Google Scholar 
    Steinberg, D. K., Cope, J. S., Wilson, S. E. & Kobari, T. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 55(14–15), 1615–1635 (2008).ADS 

    Google Scholar 
    Brugnano, C., Granata, A., Guglielmo, L. & Zagami, G. Spring diel vertical distribution of copepod abundances and diversity in the open Central Tyrrhenian Sea (Western Mediterranean). J. Mar. Syst. 105, 207–220 (2012).
    Google Scholar 
    Werner, T. & Buchholz, F. Diel vertical migration behaviour in Euphausiids of the northern Benguela current: seasonal adaptations to food availability and strong gradients of temperature and oxygen. J. Plankton Res. 35(4), 792–812 (2013).CAS 

    Google Scholar 
    Palmer, M. R. & Pearson, P. N. A 23,000-year record of surface water pH and PCO2 in the western equatorial Pacific Ocean. Science 300(5618), 480–482 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Nino. Nat. Geosci. 3(6), 391–397 (2010).ADS 
    CAS 

    Google Scholar 
    Hu, D. et al. Pacific western boundary currents and their roles in climate. Nature 522, 299–308 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Epp, D. & Smoot, N. C. Distribution of seamounts in the North Atlantic. Nature 337, 254–257 (1989).ADS 

    Google Scholar 
    Yesson, C., Clark, M. R., Taylor, M. L. & Rogers, A. D. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep Sea Res. Part I Oceanogr. Res. Pap. 58(4), 442–453 (2011).ADS 

    Google Scholar 
    Rogers, A. D. The biology of seamounts: 25 Years on. Adv. Mar. Biol. 79, 137–224 (2018).PubMed 

    Google Scholar 
    Rowden, A. A., Dower, J. F., Schlacher, T. A., Consalvey, M. & Clark, M. R. Paradigms in seamount ecology: fact, fiction and future. Mar. Ecol. 31, 226–241 (2010).ADS 

    Google Scholar 
    Wilson, R. R. & Kaufmann, R. S. Seamount biota and biogeography. Geophys. Monogr. Ser. 43, 355–377 (2013).ADS 

    Google Scholar 
    Clark, M. R., Schlacher, T. A., Rowden, A. A., Stocks, K. I. & Consalvey, M. Science priorities for seamounts: research links to conservation and management. PLoS ONE 7(1), e29232 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schlacher, T. A., Rowden, A. A., Dower, J. F. & Consalvey, M. Seamount science scales undersea mountains: new research and outlook. Mar. Ecol. 31, 1–13 (2010).ADS 

    Google Scholar 
    Stocks, K. I. et al. CenSeam, an international program on seamounts within the census of marine life: achievements and lessons learned. PLoS ONE 7(2), e32031 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cascao, I., Domokos, R., Lammers, M. O., Santos, R. S. & Silva, M. A. Seamount effects on the diel vertical migration and spatial structure of micronekton. Prog. Oceanogr. 175, 1–13 (2019).ADS 

    Google Scholar 
    Denda, A., Stefanowitsch, B. & Christiansen, B. From the epipelagic zone to the abyss: trophic structure at two seamounts in the subtropical and tropical Eastern Atlantic – Part II Benthopelagic fishes. Deep Sea Res I Oceanogr. Res. Pap. 130, 78–92 (2017).ADS 
    CAS 

    Google Scholar 
    Dai, L. et al. Zooplankton abundance, biovolume and size spectra down to 3000 m depth in the western tropical North Pacific during autumn 2014. Deep Sea Res. Part I Oceanogr. Res. Pap. 121, 1–13 (2017).ADS 

    Google Scholar 
    Sun, D., Zhang, D. S., Zhang, R. Y. & Wang, C. S. Different vertical distribution of zooplankton community between North Pacific Subtropical Gyre and Western Pacific Warm Pool: its implication to carbon flux. Acta Oceanol. Sin. 38(6), 32–45 (2019).CAS 

    Google Scholar 
    Behrenfeld, M. J. et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 576, 257–261 (2019).CAS 
    PubMed 

    Google Scholar 
    Haury, L., Fey, C., Newland, C. & Genin, A. Zooplankton distribution around four eastern North Pacific seamounts. Prog. Oceanogr. 45(1), 69–105 (2000).ADS 

    Google Scholar 
    Genin, A. Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies. J. Mar. Syst. 50(1–2), 3–20 (2004).
    Google Scholar 
    Valle-Levinson, A., Castro, A. T., de Velasco, G. G. & Armas, R. G. Diurnal vertical motions over a seamount of the southern Gulf of California. J. Mar. Syst. 50(1–2), 61–77 (2004).
    Google Scholar 
    Martin, B. & Christiansen, B. Distribution of zooplankton biomass at three seamounts in the NE Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 56, 2671–2682 (2009).ADS 
    CAS 

    Google Scholar 
    Rawlinson, K. A., Davenport, J. & Barnes, D. K. A. Vertical migration strategies with respect to advection and stratification in a semi-enclosed lough: a comparison of mero- and holozooplankton. Mar. Biol. 144, 935–946 (2004).
    Google Scholar 
    Forward, R. B. Diel vertical migration: zooplankton photobiology and behaviour. Oceanogr. Mar. Biol. Ann. Rev. 26, 361–393 (1988).
    Google Scholar 
    Tao, Z. C., Wang, Y. Q., Wang, J. J., Liu, M. T. & Zhang, W. C. Photobehaviors of the calanoid copepod Calanus sinicus from the Yellow Sea to visible and UV-B radiation as a function of wavelength and intensity. J. Oceanol. Limnol. 37(4), 1289–1300 (2019).ADS 

    Google Scholar 
    Fragopoulu, N. & Lykakis, J. J. Vertical distribution and nocturnal migration of zooplankton in relation to the development of the seasonal thermocline in Patraikos Gulf. Mar. Biol. 104(3), 381–387 (1990).
    Google Scholar 
    Lougee, L. A., Bollens, S. M. & Avent, S. R. The effects of haloclines on the vertical distribution and migration of zooplankton. J. Exp. Mar. Biol. Ecol. 278(2), 111–134 (2002).
    Google Scholar 
    Saltzman, J. & Wishner, K. F. Zooplankton ecology in the eastern tropical Pacific oxygen minimum zone above a seamount: 2. Vertical distribution of copepods. Deep Sea Res. Part I Oceanogr. Res. Pap. 44(6), 931–954 (1997).ADS 
    CAS 

    Google Scholar 
    Antezana, T. Species-specific patterns of diel migration into the oxygen minimum zone by euphausiids in the Humboldt Current Ecosystem. Prog. Oceanogr. 83, 228–236 (2009).ADS 

    Google Scholar 
    Johnsen, G. H. & Jakobsen, P. J. The effect of food limitation on vertical migration in Daphnia longispina. Limnol. Oceanogr. 32(4), 873–880 (1987).ADS 

    Google Scholar 
    Spinelli, M. et al. Diel vertical distribution of the larvacean Oikopleura dioica in a North Patagonian tidal frontal system (42 degrees-45 degrees S) of the SW Atlantic Ocean. Mar. Biol. Res. 11(6), 633–643 (2015).
    Google Scholar 
    Guillam, M. et al. Vertical distribution of brittle star larvae in two contrasting coastal embayments: implications for larval transport. Sci. Rep. 10(1), 1–5 (2020).
    Google Scholar 
    Stramma, L. et al. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change 2(1), 33–37 (2012).ADS 
    CAS 

    Google Scholar 
    Ma, J. et al. The OMZ and its influence on POC in the Tropical Western Pacific Ocean: based on the survey in March 2018. Front. Earth Sci. 9, 632229 (2021).
    Google Scholar 
    Sun, Q. Q., Song, J. M., Li, X. G., Yuan, H. M. & Wang, Q. D. The bacterial diversity and community composition altered in the oxygen minimum zone of the Tropical Western Pacific Ocean. J. Oceanol. Limnol. 39(5), 1690–1704 (2021).ADS 
    CAS 

    Google Scholar 
    Wang, Q. D. et al. Characteristics and biogeochemical effects of oxygen minimum zones in typical seamount areas, Tropical Western Pacific. J. Oceanol. Limnol. 39(5), 1651–1661 (2021).ADS 
    CAS 

    Google Scholar 
    Fernández-Álamo, M. A. & Färber-Lorda, J. Zooplankton and the oceanography of the eastern tropical Pacific: a review. Prog. Oceanogr. 69(2–4), 318–359 (2006).ADS 

    Google Scholar 
    Wishner, K. F., Gowing, M. M. & Gelfman, C. Living in suboxia: Ecology of an Arabian Sea oxygen minimum zone copepod. Limnol. Oceanogr. 45(7), 1576–1593 (2000).ADS 

    Google Scholar 
    Wishner, K. F. et al. Vertical zonation and distributions of calanoid copepods through the lower oxycline of the Arabian Sea oxygen minimum zone. Prog. Oceanogr. 78(2), 163–191 (2008).ADS 

    Google Scholar 
    Ekau, W., Auel, H., Portner, H. O. & Gilbert, D. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7(5), 1669–1699 (2010).ADS 
    CAS 

    Google Scholar 
    Hernández-León, S. et al. Zooplankton and micronekton active flux across the tropical and subtropical Atlantic Ocean. Front. Mar. Sci. 6, 535 (2019).
    Google Scholar 
    Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).PubMed 

    Google Scholar 
    Le Borgne, R. & Rodier, M. Net zooplankton and the biological pump: a comparison between the oligotrophic and mesotrophic equatorial Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 44, 2003–2023 (1997).ADS 

    Google Scholar 
    Al-Mutairi, H. & Landry, M. R. Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton. Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 2083–2103 (2001).ADS 
    CAS 

    Google Scholar 
    Ge, R., Chen, H., Zhuang, Y. & Liu, G. Active carbon flux of mesozooplankton in South China Sea and Western Philippine Sea. Front. Mar. Sci. 8, 1324 (2021).
    Google Scholar 
    Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53(4), 1327–1338 (2008).ADS 

    Google Scholar 
    Hirch, S., Martin, B. & Christiansen, B. Zooplankton metabolism and carbon demand at two seamounts in the NE Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 56(25), 2656–2670 (2009).ADS 
    CAS 

    Google Scholar 
    Denda, A. & Christiansen, B. Zooplankton distribution patterns at two seamounts in the subtropical and tropical NE Atlantic. Mar. Ecol. 35(2), 159–179 (2014).ADS 

    Google Scholar 
    Dower, J. F. & Mackas, D. L. “Seamount effects” in the zooplankton community near Cobb Seamount. Deep Sea Res. Part I Oceanogr. Res. Pap. 43, 837–858 (1996).ADS 

    Google Scholar 
    Ma, J. et al. Analysis of differences in nutrients chemistry in seamount seawaters in the Kocebu and M5 seamounts in Western Pacific Ocean. J. Oceanol. Limnol. 39(5), 1662–1674 (2021).ADS 

    Google Scholar 
    Denda, A., Mohn, C., Wehrmann, H. & Christiansen, B. Microzooplankton and meroplanktonic larvae at two seamounts in the subtropical and tropical NE Atlantic. J. Mar. Biol. Assoc. U. K. 97(1), 1–27 (2017).
    Google Scholar 
    Tutasi, P. & Escribano, R. Zooplankton diel vertical migration and downward C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile. Biogeosciences 17(2), 455–473 (2020).ADS 
    CAS 

    Google Scholar 
    Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R. & Huntley, M. ICES Zooplankton Methodology Manual (Academic Press, 2000).
    Google Scholar 
    Zhang, X. & Dam, H. G. Downward export of carbon by diel migrant mesozooplankton in the central equatorial Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 44, 2191–2202 (1997).ADS 
    CAS 

    Google Scholar 
    Isla, A., Scharek, R. & Latasa, M. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. J. Mar. Syst. 143, 86–97 (2015).
    Google Scholar 
    Ikeda, T. Respiration and ammonia excretion by marine metazooplankton taxa: synthesis toward a global-bathymetric model. Mar. Biol. 161(12), 2753–2766 (2014).CAS 

    Google Scholar 
    Steinberg, D. K. et al. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 47(1), 137–158 (2000).ADS 
    CAS 

    Google Scholar 
    Andersen, V. et al. Vertical distributions of zooplankton across the Almeria-Oran frontal zone (Mediterranean Sea). J. Plankton Res. 26(3), 275–293 (2004).
    Google Scholar  More

  • in

    Carcass appearance does not influence scavenger avoidance of carnivore carrion

    DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
    Google Scholar 
    Wilson, E. E. & Wolkovich, E. M. Scavenging: How carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).PubMed 

    Google Scholar 
    Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).ADS 
    PubMed 

    Google Scholar 
    Benbow, M. E. et al. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol. Monogr. 89, e01331 (2019).
    Google Scholar 
    Carter, D. O., Yellowlees, D. & Tibbett, M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94, 12–24 (2007).ADS 
    PubMed 
    CAS 

    Google Scholar 
    Bump, J. K., Peterson, R. O. & Vucetich, J. A. Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90, 3159–3167 (2009).PubMed 

    Google Scholar 
    Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological role of vertebrate scavengers. In Carrion Ecology, Evolution, and Their Applications (eds Benbow, E. M. et al.) 107–127 (CRC Press, 2015).
    Google Scholar 
    DeVault, T. L., Brisbin, I. L. Jr. & Rhodes, O. E. Jr. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).
    Google Scholar 
    Moleón, M., Sánchez-Zapata, J. A., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403 (2015).
    Google Scholar 
    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed 

    Google Scholar 
    Selva, N. The Role of Scavenging in the Predator Community of Białowieża Primeval Forest (E Poland) (Univeristy of Sevilla, 2004).
    Google Scholar 
    Moleón, M. et al. Carnivore carcasses are avoided by carnivores. J. Anim. Ecol. 86, 1179–1191 (2017).PubMed 

    Google Scholar 
    Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. R. Soc. B Biol. Sci. 274, 1101–1108 (2007).
    Google Scholar 
    Abernethy, E. F. et al. Carcasses of invasive species are predominantly utilized by invasive scavengers in an island ecosystem. Ecosphere 7, e01496 (2016).
    Google Scholar 
    DeVault, T. L., Seamans, T. W., Linnell, K. E., Sparks, D. W. & Beasley, J. C. Scavenger removal of bird carcasses at simulated wind turbines: Does carcass type matter?. Ecosphere 8, e01994 (2017).
    Google Scholar 
    Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, e0147798 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Muñoz-Lozano, C. et al. Avoidance of carnivore carcasses by vertebrate scavengers enables colonization by a diverse community of carrion insects. PLoS ONE 14, e0221890 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Peers, M. J. L. et al. Vertebrate scavenging dynamics differ between carnivore and herbivore carcasses in the northern boreal forest. Ecosphere 12, e03691 (2021).
    Google Scholar 
    Pfennig, D. W. Effect of predator-prey phylogenetic similarity on the fitness consequences of predation: A trade-off between nutrition and disease?. Am. Nat. 155, 335–345 (2000).PubMed 

    Google Scholar 
    Polis, G. A. The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Syst. 12, 225–251 (1981).
    Google Scholar 
    Elgar, M. A. & Crespi, B. J. Cannibalism: Ecology and Evolution Among Diverse Taxa (Oxford University Press, 1992).
    Google Scholar 
    Fouilloux, C., Ringler, E. & Rojas, B. Cannibalism. Curr. Biol. 29, R1295–R1297 (2019).PubMed 
    CAS 

    Google Scholar 
    Oliva-Vidal, P., Tobajas, J. & Margalida, A. Cannibalistic necrophagy in red foxes: Do the nutritional benefits offset the potential costs of disease transmission?. Mamm. Biol. https://doi.org/10.1007/s42991-021-00184-5 (2021).Article 

    Google Scholar 
    Mateo, J. M. Recognition systems and biological organization: The perception component of social recognition. Ann. Zool. Fenn. 41, 729745 (2004).
    Google Scholar 
    Dangles, O., Irschick, D., Chittka, L. & Casas, J. Variability in sensory ecology: Expanding the bridge between physiology and evolutionary biology. Q. Rev. Biol. 84, 51–74 (2009).PubMed 

    Google Scholar 
    Janzen, D. H. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 111, 691–713 (1977).CAS 

    Google Scholar 
    Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).PubMed 
    CAS 

    Google Scholar 
    Gonzálvez, M., Martínez-Carrasco, C., Sánchez-Zapata, J. A. & Moleón, M. Smart carnivores think twice: red fox delays scavenging on conspecific carcasses to reduce parasite risk. Appl. Anim. Behav. Sci. 243, 105462 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Selva, N., Jedrzejewska, B., Jedrzejewski, W. & Wajrak, A. Scavenging on European bison carcasses in Bialowieza Primeval Forest (eastern Poland). Écoscience 10, 303–311 (2003).
    Google Scholar 
    Carr, W. J., Hirsch, J. T., Campellone, B. E. & Marasco, E. Some determinants of a natural food aversion in Norway rats. J. Comp. Physiol. Psychol. 93, 899–906 (1979).
    Google Scholar 
    Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E. & Brashares, J. S. Landscapes of fear: Spatial patterns of risk perception and response. Trends Ecol. Evol. 34, 355–368 (2019).PubMed 

    Google Scholar 
    Moleón, M. & Sánchez-Zapata, J. A. The role of carrion in the landscapes of fear and disgust: a review and prospects. Diversity 13, 28 (2021).
    Google Scholar 
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (Springer, 2022).
    Google Scholar 
    Hothorn, T., Winell, H., Hornik, K., van de Wiel, M. A. & Zeileis, A. Coin: Conditional Inference Procedures in a Permutation Test Framework (Springer, 2021).
    Google Scholar 
    Owings, C. G., Gilhooly, W. P. & Picard, C. J. Blow fly stable isotopes reveal larval diet: A case study in community level anthropogenic effects. PLoS ONE 16, e0249422 (2021).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Matuszewski, S., Konwerski, S., Frątczak, K. & Szafałowicz, M. Effect of body mass and clothing on decomposition of pig carcasses. Int. J. Legal Med. 128, 1039–1048 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Cunningham, C. X. et al. Top carnivore decline has cascading effects on scavengers and carrion persistence. Proc. R. Soc. B. 285, 1–10 (2018).
    Google Scholar 
    Huang, S., Bininda-Emonds, O. R. P., Stephens, P. R., Gittleman, J. L. & Altizer, S. Phylogenetically related and ecologically similar carnivores harbour similar parasite assemblages. J. Anim. Ecol. 83, 671–680 (2014).PubMed 

    Google Scholar 
    Hill, D. E., Chirukandoth, S. & Dubey, J. P. Biology and epidemiology of Toxoplasma gondii in man and animals. Anim. Health Res. Rev. 6, 41–61 (2005).PubMed 

    Google Scholar 
    Hill, D. E. et al. Trichinella murrelli in scavenging mammals from south-central Wisconsin, USA. J. Wildl. Dis. 44, 629–635 (2008).PubMed 
    CAS 

    Google Scholar 
    Sandfoss, M., DePerno, C., Patton, S., Flowers, J. & Kennedy-Stoskopf, S. Prevalence of antibody to Toxoplasma gondii and Trichinella spp. in feral pigs (Sus scrofa) of eastern North Carolina. J. Wildl. Dis. 47, 338–343 (2011).PubMed 

    Google Scholar 
    Butler, J. R. A., du Toit, J. T. & Bingham, J. Free-ranging domestic dogs (Canis familiaris) as predators and prey in rural Zimbabwe: Threats of competition and disease to large wild carnivores. Biol. Conserv. 115, 369–378 (2004).
    Google Scholar 
    Mendenhall, I. H. et al. Evidence of canine parvovirus transmission to a civet cat (Paradoxurus musangus) in Singapore. One Health 2, 122–125 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Han, B. A., Castellanos, A. A., Schmidt, J. P., Fischhoff, I. R. & Drake, J. M. The ecology of zoonotic parasites in the Carnivora. Trends Parasitol. 37, 1096–1110 (2021).PubMed 

    Google Scholar 
    Malmberg, J. L., White, L. A. & VandeWoude, S. Bioaccumulation of pathogen exposure in top predators. Trends Ecol. Evol. 36, 411–420 (2021).PubMed 

    Google Scholar 
    Mammal Diversity Database (Version 1.9). https://doi.org/10.5281/zenodo.6407053 (2022).Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Digby, Z. et al. Evolutionary loss of inflammasomes in the Carnivora and implications for the carriage of zoonotic infections. Cell Rep. 36, 109614 (2021).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Buck, J. C., Weinstein, S. B. & Young, H. S. Ecological and evolutionary consequences of parasite avoidance. Trends Ecol. Evol. 33, 619–632 (2018).PubMed 
    CAS 

    Google Scholar 
    Hart, B. L. & Hart, L. A. How mammals stay healthy in nature: The evolution of behaviours to avoid parasites and pathogens. Philos. Trans. R. Soc. B 373, 20170205 (2018).
    Google Scholar 
    Brown, C. J. & Plug, I. Food choice and diet of the bearded vulture Gypaetus barbatus in southern Africa. S. Afr. J. Zool. 25, 169–177 (1990).
    Google Scholar 
    Rossi, L., Interisano, M., Deksne, G. & Pozio, E. The subnivium, a haven for Trichinella larvae in host carcasses. Int. J. Parasitol. Parasit. Wildl. 8, 229–233 (2019).
    Google Scholar 
    Micozzi, M. S. Experimental study of postmortem change under field conditions: Effects of freezing, thawing, and mechanical injury. J. Forensic Sci. 31, 953–961 (1986).PubMed 
    CAS 

    Google Scholar 
    Mayntz, D. & Toft, S. Nutritional value of cannibalism and the role of starvation and nutrient imbalance for cannibalistic tendencies in a generalist predator. J. Anim. Ecol. 75, 288–297 (2006).PubMed 

    Google Scholar 
    Margalida, A. Bearded vultures (Gypaetus barbatus) prefer fatty bones. Behav. Ecol. Sociobiol. 63, 187–193 (2008).
    Google Scholar 
    Parmenter, R. R. & MacMahon, J. A. Carrion decomposition and nutrient cycling in a semiarid shrub–steppe ecosystem. Ecol. Monogr. 79, 637–661 (2009).
    Google Scholar 
    Evans, B. E., Mosby, C. E. & Mortelliti, A. Assessing arrays of multiple trail cameras to detect North American mammals. PLoS ONE 14, 1–18 (2019).
    Google Scholar 
    Ivan, J. S. & Newkirk, E. S. CPW Photo Warehouse: A custom database to facilitate archiving, identifying, summarizing and managing photo data collected from camera traps. Methods Ecol. Evol. 7, 499–504 (2016).
    Google Scholar 
    Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, 2000).MATH 

    Google Scholar 
    Kassambara, A., Kosinski, M. & Biecek, P. survminer: Drawing Survival Curves Using ‘ggplot2’ (Springer, 2020).
    Google Scholar 
    Nenadic, O. & Greenacre, M. Correspondence analysis in R, with two- and three-dimensional graphics: the ca package. J. Stat. Softw. 20, 1–13 (2007).
    Google Scholar 
    Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses (Springer, 2020).
    Google Scholar 
    Greenacre, M. The contributions of rare objects in correspondence analysis. Ecology 94, 241–249 (2013).PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
    Google Scholar  More

  • in

    Characterization of bacterial diversity between two coastal regions with heterogeneous soil texture

    Soil sampling and determination of soil physical properties and synoptic dataSoil samples were taken from two coastal deserts in the north and south of Iran. Details of their geographic distribution and eco-physiological characterization were shown in Table 1. A total of 2 kg of soil samples were collected from 2 distinct sampling locations ranging in depth from 0 to 30 cm, and the samples were dried for 3 days at room temperature and in the dark before sifting. The soil samples were sieved using a 2 mm sieve to remove stones and other inert material before being stored in zip-top bags. Table 1 lists the soil samples’ physical characteristics, including soil texture (sand 2–0.02 mm; silt 0.02–0.002 mm; clay 0.002 mm), pH, and the proportions of clay, silt, and sand. Synoptic data from the past 10 years (2009–2019), including the average annual temperature, maximum temperature, minimum temperature, average rainfall, average annual wind speed, and maximum wind speed, were obtained from the I.R.OF Iran Meteor (http://www.irimo.ir/far/index.php).Bacterial isolation and effect of manure-based medium on their growthAccording to Chen et al. 2005, the soil-borne bacteria were isolated using direct-spreading method. For this essence soil samples were treated through a series of dilutions. The mixture of 1 g of soil sample was vortexed for 1 min after being suspended in 2 ml of sterile physiological saline (0.9% w/v NaCl). The mixture was then diluted serially (typically 10–1 to 10–7), and level 100 μl of the diluted soil samples were scattered on the surface of solidified plates using glass spreaders. The samples were then incubated for 1 to 3 days at 30 °C in an inverted posture without light. For bacterial isolation, we used eleven culture media including Nutrient Agar (NA), Nutrient Agar plus MnSO4 (NA + MnSO4), LB, Moller Hinton Agar (MHA), Acidithiobacillus (APH) medium, Violet Red Bile Lactose (VRB) agar medium, GYM Streptomyces medium, DPM medium, Azospirillum medium, Azotobacter medium and Manure based medium (MB).To prepare MB medium, dry animal manure and distilled water (1:6 w/v) were combined to create MB medium, which was then let to sit at room temperature for 16 h. The resulting mixture was then centrifuged at 5000 rcf for 30 min after being filtered twice. The next stage involved adding Hoagland salts (10% w/v) to the final extract, adjusting the medium’s pH to 5.8 ± 0.02, and autoclaving it for 20 min at 121 °C and 1.5 kPa. Before sterilization, bacteriological agar (1.5 w/v) was employed as a gelling agent to solidify the medium.After bacterial isolation on NA, NA+ MnSO4, LB, MHA, APH, VRB, GYM, DPM, and Azospibrillum media, the growth of all isolates was evaluated on an MB medium. To investigate isolates biomass in the same condition, we elected MB medium. First, the bacteria were grown in the liquid form of NA, NA+ MnSO4, LB, MHA, APH, VRB, GYM, DPM, and Azospirillum and Azotobacter media at 30 °C for 48 h, then 103 cells of each isolate were transferred to 48 wells plates containing MB medium, and plates were incubated at 30 °C for 10 h. Then, the growth of bacteria was read at an optical density (OD) of 630 nm 10 h after inoculation, the experiment was performed with three replicates. In the following step, CFU/ml equivalent to each OD was obtained by inoculating the uniform amount of liquid culture of the isolates on the solid form of MB medium at 30 °C for 16 h.Phenotypic characterization and biochemical identification of bacterial isolatesThe morphological analysis of the cell shape, colony (i.e., shape, color, and size), and biochemical tests were used to identify the bacterial isolates. Biochemical characterization was carried out By using gram staining, KOH27, oxidase, and catalase tests. For this essence, following Bartholomew’s method28, gram staining of bacteria was studied 48 h after inoculation on MHA, and the non-staining KOH method was used to confirm the results. Using 0.5 ml of a 10% hydrogen peroxide solution, a catalase test was conducted, and the generation of gas bubbles was monitored. Using biochemical oxidase discs, the oxidative activity of 27 isolates was investigated.Effect of abiotic stresses on bacterial isolatesTo determine the effect of abiotic stresses on isolates alkaline (MH medium with pH  10), salinity (MH medium supplemented with the final concentration of 100 mM NaCl), osmotic [MH medium supplemented with 25% polyethylene glycol (PEG) Mn6000], and thermal stresses (MH medium incubated at 15 °C for cold stress and 60 °C for heat stress) were screened. For all experiments, the incubation period was 15 h, and plates were kept in a dark condition.MALDI-TOF MS identification of isolatesSoil bacterial isolates were subcultured twice on MHA and incubated at 30 °C for 24 h before MALDI-TOF MS measurement. Then ∼0.1 µg of cell material was directly transferred from a bacterial colony or smear of colonies to a MALDI target spot. After drying at laboratory temperature, sample spots were overlaid with 1 μl of matrix solution (10 mg/mL a-cyano-4-hydroxycinnamic acid in 50% acetonitrile and 2.5% trifluoroacetic acid) and each measurement was carried out in triplicate (technical replicates). MS analysis was performed on an Autoflex MALDI-TOF mass spectrometer (Bruker Daltonics, Germany) using Flex Control 3.4 software (Bruker Daltonics, Germany). Calibration was carried out with the use of the Bacterial Test Standard (Bruker Daltonics, Germany). Soil isolates with a valid MALDI-TOF MS score of 2 were undoubtedly assigned to the genus/species level. For bacterial classification and identification, BioTyper 3.1 software (Bruker Daltonics, Germany) equipped with MBT 6903 MPS Library (released in April 2016), the MALDI Biotyper Preprocessing Standard Method, and the MALDI Biotyper MSP Identification Standard Method adjusted by the manufacturer (Bruker Daltonics, Germany) were used. Only the highest score value of all mass spectra belonging to individual cultures (biological and technical replicates) was recorded25. The score between 2.3 and 3.00 shows highly probable species-level identification and between 2.0 and 2.29 represents genus-level identification and probable species level of identification. A score between 1.7 and 1.99 indicates probable genus-level identification29.Effects of bacterial isolates on plants growthThe Seed and Plant Improvement Institute of Karaj (Karaj, Iran; http://www.spii.ir/homepage.aspx?site=DouranPortal&tabid=1&lang=faIR) provided the maize, canola, and wheat seeds (Zea mays. Var Kosha; Brassica napus Var Nima; Triticum aestivum Var Kalate). In greenhouse trials, 2 × 103 cells/seed of soil-borne isolates cultured in a manure-based medium were inoculated to maize, canola, and wheat plants. During the studies, sand that had been acid washed and autoclaved was used for planting. For three weeks, seedlings were kept under a 16/8 h day/night photoperiod with a 25 °C temperature. Three replications of a complete randomized block design were used for the colonization experiment’s treatments. Under the bacterial treatments, measurements were made of the plant growth parameters including shoot dry biomass (mg), root dry biomass (mg), shoot length (cm), root length (cm), shoot density (mg/cm), root density (mg/cm), and shoot/root weight (mg). Samples were dried at 60 °C for three days to measure dry biomass.Statistical analysisStatistical analysis was done by R software (version 4.1.3). One-way analysis of variance (ANOVA) was used to determine the significance of the experiment, and Fisher’s protected Least Significant Difference (LSD) test with a P-value of 0.01 was performed to separate the means. Furthermore, PCA analysis has been carried out based on the Clustvis package and the SVD imputation approach.Ethics approval and consent to participateAll authors agree to the ethics and consent to participate in this article and declare that this submission follows the policies of Scientific Reports. Accordingly, the material is the author’s original work, which has not been previously published elsewhere. The paper is not being considered for publication elsewhere. All authors have been personally and actively involved in substantial work leading to the paper and will take public responsibility for its content.Ethics for research involving plantsAll authors confirmed that experimental research and field studies on plants, including receiving the seeds from the Seed and Plant Improvement Institute of Karaj, complied with relevant institutional, national, and international guidelines and legislation. Furthermore, methods were conducted according to the relevant guidelines and regulations. More