Estes, J. et al. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116 (2016).
Google Scholar
Ferretti, F., Worm, B., Britten, G., Heithaus, M. & Lotze, H. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13, 1055–1071 (2010).PubMed
Google Scholar
Heithaus, M. R. et al. Seagrasses in the age of sea turtle conservation and shark overfishing. Front. Mar. Sci. 1, 1–6 (2014).
Google Scholar
McCauley, D. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641 (2015).PubMed
Google Scholar
Pereira, H. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).ADS
CAS
PubMed
Google Scholar
Oliver, S., Braccini, M., Newman, S. & Harvey, E. S. Global patterns in the bycatch of sharks and rays. Mar. Policy 54, 86–97 (2015).
Google Scholar
Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–574 (2021).ADS
CAS
PubMed
Google Scholar
Gilman, E. et al. Shark interactions in pelagic longline fisheries. Mar. Policy 32, 1–18 (2008).
Google Scholar
Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).
Google Scholar
Bowlby, H. & Gibson, A. Implications of life history uncertainty when evaluating status in the Northwest Atlantic population of white shark (Carcharodon carcharias). Ecol. Evol. 10, 4990–5000 (2020).PubMed
PubMed Central
Google Scholar
Dulvy, N. et al. Overfishing drives over one third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31, 4773-4787.e8 (2021).CAS
PubMed
Google Scholar
Heino, M., Pauli, B. & Dieckmann, U. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46, 461–480 (2015).
Google Scholar
Mitchell, J., McLean, D., Collins, S. & Langlois, T. Shark depredation in commercial and recreational fisheries. Rev. Fish Biol. Fish 28, 715–748 (2018).
Google Scholar
Jaiteh, V. F., Loneragan, N. & Warren, C. The end of shark finning? Impacts of declining catches and fin demand on coastal community livelihoods. Mar. Policy 82, 224–233 (2017).
Google Scholar
Seidu, I. et al. Fishing for survival: Importance of shark fisheries for the livelihoods of coastal communities in Western Ghana. Fish. Res. 246, 106157 (2022).
Google Scholar
Gilman, E., Weijerman, M. & Suuronen, P. Ecological data from observer programs underpin ecosystem-based fisheries management. ICES J. Mar. Sci. 74, 1481–1495 (2017).
Google Scholar
Melnychuk, M. et al. Identifying management actions that promote sustainable fisheries. Nat. Sustain. https://doi.org/10.1038/s41893-020-00668-1 (2021).Article
Google Scholar
Musyl, M. & Gilman, E. Meta-analysis of post-release fishing mortality in apex predatory pelagic sharks and white marlin. Fish Fish. 20, 466–500 (2019).
Google Scholar
Clarke, S. A status snapshot of key shark species in the western and central pacific and potential management options. in WCPFC-SC7-2011/EB-WP-04. Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia (2011).Dapp, D., Walker, T., Huveneers, C. & Reina, R. Respiratory mode and gear type are important determinants of elasmobranch immediate and post-release mortality. Fish Fish. 17, 507–524 (2016).
Google Scholar
ICES. Report of the working group on elasmobranch fishes. in ICES CM 2018/ACOM:16. International Council for the Exploration of the Sea, Copenhagen (2018).Dicks, L. et al. A transparent process for “evidence-informed” policy making. Conserv. Lett. 7, 119–125 (2014).
Google Scholar
Nichols, J., Kendall, W. & Boomer, G. Accumulating evidence in ecology: Once is not enough. Ecol. Evol. 9, 13991–14004 (2019).PubMed
PubMed Central
Google Scholar
Nakagawa, S. et al. Meta-analysis of variation: Ecological and evolutionary applications and beyond. Methods Ecol. Evol. 6, 143–152 (2015).
Google Scholar
Pfaller, J., Chaloupka, M., Bolten, A. & Bjorndal, K. Phylogeny, biogeography and methodology: A meta-analytic perspective on heterogeneity in adult marine turtle survival rates. Sci. Rep. 8, 5852. https://doi.org/10.1038/s41598-018-24262-w (2018).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Godin, A., Carlson, J. & Burgener, V. The effect of circle hooks on shark catchability and at-vessel mortality rates in longlines fisheries. Bull. Mar. Sci. 88, 469–483 (2012).
Google Scholar
Reinhardt, J. et al. Catch rate and at-vessel mortality of circle hooks versus J-hooks in pelagic longline fisheries: A global meta-analysis. Fish Fish. 19, 413–430 (2018).
Google Scholar
Rosa, D., Santos, C. & Coelho, R. Assessing the effects of hook, bait and leader type as potential mitigation measures to reduce bycatch and mortality rates of shortfin mako: A meta-analysis with comparisons for target, bycatch and vulnerable fauna interactions. in ICCAT Collective Volume of Scientifics Papers 76, 247–278 (2020).Santos, C., Rosa, D. & Coelho, R. Hook, bait and leader type effects on surface pelagic longline retention and mortality rates: A meta-analysis with comparisons for target, bycatch and vulnerable fauna interactions. in IOTC-2019-WPEB15-39. Indian Ocean Tuna Commission, Mahe, Seychelles (2019).Santos, C., Rosa, D. & Coelho, R. Progress on a meta-analysis for comparing hook, bait and leader effects on target, bycatch and vulnerable fauna interactions. in Collective Volume of Scientifics Papers ICCAT 77, 182–217 (2020).Condamine, F., Romieu, J. & Guinot, G. Climate cooling and clade competition likely drove the decline of lamniform sharks. PNAS 116, 20584–20590 (2019).ADS
CAS
PubMed
PubMed Central
Google Scholar
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P. Rank-normalization, folding, and localization: An improved Rhat for assessing convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).MathSciNet
Google Scholar
Cinar, O., Nakagawa, S. & Viechtbauer, W. Phylogenetic multilevel meta-analysis: A simulation study on the importance of modelling the phylogeny. Methods Ecol. Evol. 13, 383–395 (2022).
Google Scholar
Lajeunesse, M. Meta-analysis and the comparative phylogenetic method. Am. Nat. 174, 369–381 (2009).PubMed
Google Scholar
Chamberlain, S. et al. Does phylogeny matter? Assessing the impact of phylogenetic information in ecological meta-analysis. Ecol. Lett. 15, 627–636 (2012).PubMed
Google Scholar
Burns, J. & Strauss, S. More closely related species are more ecologically similar in an experimental test. Proc. Natl. Acad. Sci. USA 108, 5302–5307 (2011).ADS
CAS
PubMed
PubMed Central
Google Scholar
Cachera, M. & Le Loc’h, F. Assessing the relationships between phylogenetic and functional singularities in sharks (Chondrichthyes). Ecol. Evol. 7, 6292–6303 (2017).PubMed
PubMed Central
Google Scholar
Münkemüller, T., Boucher, F. C., Thuiller, W. & Lavergne, S. Phylogenetic niche conservatism—Common pitfalls and ways forward. Funct. Ecol. 29, 627–639 (2015).PubMed
PubMed Central
Google Scholar
Bazzi, M., Campione, N., Kear, B., Pimiento, C. & Ahlberg, P. Feeding ecology has shaped the evolution of modern sharks. Curr. Biol. 31, 5138–5148 (2021).CAS
PubMed
Google Scholar
Sepulveda, C., Wegner, N., Bernal, D. & Graham, J. The red muscle morphology of the thresher sharks (family Alopiidae). J. Exp. Biol. 208, 4255–4261 (2005).CAS
PubMed
Google Scholar
Wosnick, N. et al. Multispecies thermal dynamics of air-exposed ectothermic sharks and its implications for fisheries conservation. J. Exp. Mar. Biol. Ecol. 513, 1–9 (2019).
Google Scholar
French, R. et al. High survivorship after catch-and-release fishing suggests physiological resilience in the endothermic shortfin mako shark (Isurus oxyrinchus). Conserv. Physiol. https://doi.org/10.1093/conphys/cov044 (2015).Article
PubMed
PubMed Central
Google Scholar
Davis, M. Key principles for understanding fish bycatch discard mortality. Can. J. Fish. Aquat. Sci. 59, 1834–1843 (2002).
Google Scholar
Massey, Y., Sabarros, P., Rabearisoa, N. & Bach, P. Drivers of at-haulback mortality of sharks caught during pelagic longline fishing experiments. in IOTC-2019-WPEB15-14_Rev1. Indian Ocean Tuna Commission, Mahe, Seychelles (2019).Musyl, M., Moyes, C., Brill, R. & Fragoso, N. Factors influencing mortality estimates in post-release survival studies: Comment on Campana et al. (2009). Mar. Ecol. Prog. Ser. 396, 157–159 (2009).Pimiento, C., Cantalapiedra, J., Shimada, K., Field, D. & Smaers, J. Evolutionary pathways towards gigantism in sharks and rays. Evolution 73, 588–599 (2019).PubMed
Google Scholar
Musyl, M. & Gilman, E. Post-release fishing mortality of blue (Prionace glauca) and silky shark (Carcharhinus falciformes) from a Palauan-based commercial longline fishery. Rev. Fish Biol. Fish. 28, 567–658 (2018).
Google Scholar
Childs, D., Sheldon, B. & Rees, M. The evolution of labile traits in sex- and age-structured populations. J. Anim. Ecol. 85, 329–342 (2016).PubMed
PubMed Central
Google Scholar
Comte, L., Murienne, J. & Grenouillet, G. Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nat. Commun. 5, 5053 (2014).ADS
PubMed Central
Google Scholar
IUCN. The IUCN Red List of Threatened Species. Version 2021-3. www.iucnredlist.org. ISSN 2307-8235 (International Union for the Conservation of Nature, Gland, Switzerland, 2022).García, V., Lucifora, L. & Ransom, M. The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proc. R. Soc. B 275, 83–89 (2008).PubMed
Google Scholar
Cortes, E. Perspectives on the intrinsic rate of population growth. Methods Ecol. Evol. 7, 1136–1145 (2016).
Google Scholar
Ellis, J. et al. A review of capture and post-release mortality of elasmobranchs. J. Fish Biol. 90, 653–722 (2017).CAS
PubMed
Google Scholar
Gallagher, A., Orbesen, E., Hammerschlag, N. & Serafy, J. Vulnerability of oceanic sharks as pelagic longline bycatch. Glob. Ecol. Conserv. 1, 50–59 (2014).
Google Scholar
Afonso, A., Santiago, R., Hazin, H. & Hazin, F. Shark bycatch and mortality and hook bite-offs in pelagic longlines: Interactions between hook types and leader materials. Fish. Res. 131–133, 9–14 (2012).
Google Scholar
Gilman, E., Chaloupka, M. & Musyl, M. Effects of pelagic longline hook size on species- and size-selectivity and survival. Rev. Fish Biol. Fish. 28, 417–433 (2018).
Google Scholar
Epperly, S., Watson, J., Foster, D. & Shah, A. Anatomical hooking location and condition of animals captured with pelagic longlines: The grand banks experiments 2002–2003. Bull. Mar. Sci. 88, 513–527 (2012).
Google Scholar
Amorim, S., Santos, M., Coelho, R. & Fernandez-Carvalho, J. Effects of 17/0 circle hooks and bait on fish catches in a southern Atlantic swordfish longline fishery. Aquat. Conserv. 25, 518–533 (2014).
Google Scholar
Coelho, R., Fernandez-Carvalho, J., Lino, P. & Santos, M. An overview of the hooking mortality of elasmobranchs caught in a swordfish pelagic longline fishery in the Atlantic Ocean. Aquat. Living Resour. 25, 311–319 (2012).
Google Scholar
Gilman, E. et al. A decision support tool for integrated fisheries bycatch management. Rev. Fish Biol. Fish. https://doi.org/10.1007/s11160-021-09693-5 (2022).Article
PubMed
PubMed Central
Google Scholar
Pascoe, S. et al. Use of incentive-based management systems to limit bycatch and discarding. Int. Rev. Environ. Resour. Econ. 4, 123–161 (2010).
Google Scholar
Somers, K., Pfeiffer, L., Miller, S. & Morrison, W. Using incentives to reduce bycatch and discarding: Results under the west coast catch share program. Coast. Manag. 46, 1–17 (2019).
Google Scholar
Abbott, J. & Wilen, J. Regulation of fisheries bycatch with common-pool output quotas. J. Environ. Econ. Manag. 57, 195–204 (2009).MATH
Google Scholar
Gilman, E. et al. Increasing the functionalities and accuracy of fisheries electronic monitoring systems. Aquat. Conserv. 29, 901–926 (2019).
Google Scholar
Watling, J. Fishing observers ‘intimidated and bribed by EU crews’. Quota checks allegedly being compromised aboard Northwest Atlantic fishery boats, as observers report surveillance and theft. The Guardian (2012, accessed 21 July 2022). https://www.theguardian.com/environment/2012/may/18/fishing-inspectors-intimidated-bribed-crews.Clarke, S., Harley, S., Hoyle, S. & Rice, J. Population trends in Pacific oceanic sharks and the utility of regulations on shark finning. Conserv. Biol. 27, 197–209 (2013).PubMed
Google Scholar
Tolotti, M. T. et al. Banning is not enough: The complexities of oceanic shark management by tuna regional fisheries management organizations. Glob. Ecol. Conserv. 4, 1–7 (2015).
Google Scholar
Gilman, E., Chaloupka, M., Merrifield, M., Malsol, N. & Cook, C. Standardized catch and survival rates, and effect of a ban on shark retention, Palau pelagic longline fishery. Aquat. Conserv. 26, 1031–1062 (2016).
Google Scholar
CITES. Appendices I, II and III. Valid from 22 June 2021. Convention on International Trade in Endangered Species of Wild Fauna and Flora, United Nations Environment Program, Geneva (2021).Ward-Paige, C. A global overview of shark sanctuary regulations and their impact on shark fisheries. Mar. Policy 82, 87–97 (2017).
Google Scholar
E.U. Regulation (E.U.) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC. Official Journal of the European Union L354, 22–61 (2013).FAO. International Guidelines on Bycatch Management and Reduction of Discards (Food and Agriculture Organization of the United Nations, Rome, 2011).CCSBT. Resolution to Align CCSBT’s Ecologically Related Species Measures with those of other Tuna RFMOs (Commission for the Conservation of Southern Bluefin Tuna, Deakin West, Australia, 2021).IATTC. Active Resolutions and Recommendations (Inter-American Tropical Tuna Commission, La Jolla, 2022).ICCAT. Compendium. Management Recommendations and Resolutions Adopted by ICCAT for the Conservation of Atlantic Tunas and Tuna-like Species (International Commission for the Conservation of Atlantic Tunas, Madrid, 2021).IOTC. Compendium of Active Conservation and Management Measures for the Indian Ocean Tuna Commission (Indian Ocean Tuna Commission, Mahe, 2021).WCPFC. Conservation and Management Measures and Resolutions of the Western and Central Pacific Fisheries Commission. Compiled 31 August 2021 (Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia, 2021).Faith, D. Threatened species and the potential loss of phylogenetic diversity: Conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conserv. Biol. 22, 1461–1470 (2008).PubMed
Google Scholar
Dolce, J. & Wilga, C. Evolutionary and ecological relationships of gill slit morphology in extant sharks. Bull. Mus. Comp. 161, 79–109 (2013).
Google Scholar
MacLeod, N. & Forey, P. Morphology, Shape and Phylogeny (CRC Press, 2002).
Google Scholar
Haddaway, N., Macura, B., Whaley, P. & Pullin, A. ROSES RepOrting standards for Systematic Evidence Syntheses: pro forma, flow-diagram and descriptive summary of the plan and conduct of environmental systematic reviews and systematic maps. Environ. Evid. https://doi.org/10.1186/s13750-018-0121-7 (2018).Article
Google Scholar
Pullin, A., Frampton, G., Livoreil, B. & Petrokofsky, G., Eds. Section 5. Conducting a Search. Key CEE Standards for Conduct and Reporting. In Pullin, A., Frampton, G., Livoreil, B., Petrokofsky, G., Eds. Guidelines and Standards for Evidence Synthesis in Environmental Management. Version 5.0. Collaboration for Environmental Evidence (2020).Pullin, A., Frampton, G., Livoreil, B. & Petrokofsky, G. (eds) Section 3. Planning a CEE Evidence Synthesis. In Pullin, A., Frampton, G., Livoreil, B., Petrokofsky, G. (eds) Guidelines and Standards for Evidence Synthesis in Environmental Management. Version 5.0. Collaboration for Environmental Evidence (2021).Page, M. et al. The PRISMA statement: An updated guideline for reporting systematic reviews. BMJ https://doi.org/10.1136/bmj.n.71 (2020).Article
PubMed
Google Scholar
Tuyl, F., Gerlach, R. & Mengersen, K. Comparison of Bayes-Laplace, Jeffreys, and other priors: The case of zero events. Am. Stat. 62, 40–44 (2008).MathSciNet
Google Scholar
Dorai-Raj, S. binom: Binomial confidence intervals for several parameterizations. R package version 1.1-1. https://CRAN.R-project.org/package=binom (2014).van Lissa, C. Small sample meta-analyses: Exploring heterogeneity using MetaForest. Chapter 13. In Small Sample Size Solutions: A Guide for Applied Researchers and Practitioners (eds Van De Schoot, R. & Miočević, M.) 186–202 (Routledge, Oxford, 2020).
Google Scholar
Wright, M. & Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).
Google Scholar
Janitza, S., Celik, E. & Boulesteix, A. A computationally fast variable importance test for random forests for high-dimensional data. Adv. Data Anal. Classif. 12, 885–915 (2018).MathSciNet
MATH
Google Scholar
Mayer, M. missRanger: Fast imputation of missing values. R package version 2.1.3. https://CRAN.R-project.org/package=missRanger (2021).Konstantopoulos, S. Fixed effects and variance components estimation in three-level meta-analysis. Research Synthesis. Methods 2, 61–76 (2011).
Google Scholar
Amaral, C., Pereira, F., Silva, D., Amorim, A. & de Carvalho, E. The mitogenomic phylogeny of the Elasmobranchii (Chondrichthyes). Mitochondrial DNA A 29, 867–878 (2017).
Google Scholar
Hara, Y. et al. Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat. Ecol. Evol. 2, 1761–1771 (2018).PubMed
Google Scholar
Naylor, G. et al. A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bull. Am. Mus. Nat. 367, 1–262 (2012).
Google Scholar
Stein, R. et al. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nat. Ecol. Evol. 2, 288–298 (2018).PubMed
Google Scholar
Maddison, D., Swofford, D., Maddison, W. & Cannatella, D. Nexus: An extensible file format for systematic information. Syst. Biol. 46, 590–621 (1997).CAS
PubMed
Google Scholar
Upham, N., Esselstyn, J. & Jetz, W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).CAS
PubMed
PubMed Central
Google Scholar
Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS
PubMed
Google Scholar
Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 69, e96. https://doi.org/10.1002/cpbi.96 (2020).Article
Google Scholar
Hadfield, J. & Nakagawa, S. General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol 23, 494–508 (2010).CAS
PubMed
Google Scholar
Lin, L. & Chu, H. Meta-analysis of proportions using generalized linear mixed models. Epidemiology 31, 713–717 (2020).PubMed
PubMed Central
Google Scholar
Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).
Google Scholar
Bürkner, P. brms: An R Package for Bayesian multilevel models using Stan. J. Stat. Softw. 81, 1–28 (2017).
Google Scholar
Günhan, B., Röver, C. & Friede, T. Random-effects meta-analysis of few studies involving rare events. Res. Synth. Methods 11, 74–90 (2020).PubMed
Google Scholar
Pappalardo, P. et al. Comparing traditional and Bayesian approaches to ecological meta-analysis. Methods Ecol. Evol. 11, 1286–1295 (2020).
Google Scholar
Ott, M., Plummer, M. & Roos, M. How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. Stat. Med. 40, 4505–4521 (2021).MathSciNet
PubMed
PubMed Central
Google Scholar
Wood, S. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall, 2017).MATH
Google Scholar
Kruschke, J. & Liddell, T. The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon. Bull. Rev. 25, 178–206 (2018).PubMed
Google Scholar
Kay, M. tidybayes: Tidy data and geoms for Bayesian models. R package version 2.1.1. https://doi.org/10.5281/zenodo.1308151 (2020).Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).ADS
Google Scholar
Searle, S., Speed, F. & Milliken, G. Population marginal means in the linear model: An alternative to least squares means. Am. Stat. 34, 216–221 (1980).MathSciNet
MATH
Google Scholar
Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.2-1. https://CRAN.R-project.org/package=emmeans (2020).Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS
CAS
PubMed
Google Scholar
Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).
Google Scholar
Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).MathSciNet
MATH
Google Scholar
Yao, Y., Vehtari, A., Simpson, D. & Gelman, A. Using stacking to average Bayesian predictive distributions (with Discussion). Bayesian Anal. 13, 917–1003 (2018).MathSciNet
MATH
Google Scholar
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Soc. Ser. A 182, 1–14 (2019).MathSciNet
Google Scholar
Lazic, S., Mellor, J., Ashby, M. & Munafo, M. A Bayesian predictive approach for dealing with pseudoreplication. Sci. Rep. 10, 2020. https://doi.org/10.1038/s41598-020-59384-7 (2020).Article
CAS
Google Scholar
Page, M., Sterne, J., Higgins, J. & Egger, M. Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Res. Synth. Methods 12, 248–259 (2021).PubMed
Google Scholar
Peters, J., Sutton, A., Jones, D., Abrams, K. & Rushton, L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J. Clin. Epidemiol. 61, 991–996 (2008).PubMed
Google Scholar
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
Google Scholar
Gasparrini, A., Armstrong, B. & Kenward, M. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat. Med. 31, 3821–3839 (2012).MathSciNet
CAS
PubMed
PubMed Central
Google Scholar More