More stories

  • in

    Quantifying the impacts of land cover change on gross primary productivity globally

    GPP dataAs our primary productivity product we used the GOSIF GPP dataset21 which utilizes the linear relationship between GPP and remotely-sensed SIF34. GOSIF GPP is available globally at 0.05° spatial resolution for the period 2000–2021, with the period 2001–2015 selected here (for a short summary of all datasets used in this study see Supplementary Table 3). GOSIF GPP is based on a gridded SIF product (GOSIF)34 which uses MODIS enhanced vegetation index and meteorological data for spatial scaling and is trained with millions of SIF observations from the coarser-resolution Orbiting Carbon Observatory-235. The global coverage of GOSIF and the close relationship between SIF and GPP allow for an independent assessment of how land cover changes affect GPP in different regions around the world. For instance, SIF has been shown to capture the high GPP in the US Corn Belt derived from flux towers, while ecosystem models underestimated it36. While GPP can thus be empirically estimated from satellite SIF observations relatively reliably (even though some assumptions like the linear GPP–SIF relationship and its universality across biomes are still debated20,37,38,39), the calculation of NPP needs additional assumptions of autotrophic respiration. Therefore, we focused our study on GPP, but we included an NPP product in our uncertainty analysis. In addition to that, to account for the challenges and uncertainties in global GPP estimates we included four alternative GPP products in our sensitivity analysis (see below).Land cover mappingGridded land cover was derived from ESA-CCI22, a global land cover product designed for climate science. ESA-CCI is available at 300 m spatial resolution for the 1992–2020 period (https://cds.climate.copernicus.eu/). We first classified ESA-CCI land covers to forests, grasslands, and croplands according to IPCC classification: classes 50–100, 160, 170 forests (2,022,283 grid cells); classes 110 and 130 grasslands (509,297 grid cells); classes 10–40 croplands (950,025 grid cells). We focus on these three major land cover types to facilitate our analysis. We then converted the resulting map to 0.05° resolution by determining the prevalent (i.e., mode) land cover for each grid cell using the aggregate function from the raster package40 and only included grid cells in our training data in which the prevalent land cover was constant over the period 2001–2015. Other classes (e.g., cropland/natural vegetation mosaics) and grid cells where the land cover changed over the 2001–2015 period were not used for the RF training.Random forestsRF is a popular and efficient supervised machine learning technique which can be applied for classification and regression problems41. While complex, it is still easier to interpret compared to other machine learning methods such as Artificial Neural Networks. It has recently been applied to a wide range of ecological research questions, including the prediction of food42 and bioenergy43 crop yields, potential natural vegetation31, forest aboveground biomass44, soil respiration45, and soil carbon emissions from land-use change5 and is thus well suited for our approach. The “Forests” refer to a number of individual decision trees. For each tree, a random sample of the training data is selected and split multiple times based on a random subset of variables from which the one minimizing the weighted variance is selected by the algorithm. Model performance is computed directly on out-of-bag (OOB) data which is randomly omitted from the training data (36.8% of all grid cells). When RF is applied to new data, a weighted prediction of each individual decision tree contributes to the overall prediction. Variance in the individual trees, e.g., by selecting random subsets of the observations and random variables at each node improves the overall RF predictive skill. Model training and prediction were done using the R ranger package46. After initial testing (see Supplementary Fig. S11) we decided to set the number of individual decision trees to 800 and the number of variables to possibly split at in each node to 10. As the good evaluation measures of RF algorithms can be related to spatial autocorrelation24 we also tested a coordinate-only model and performed a leave-one-out cross validation including spatial buffers (Supplementary Discussion 2, Supplementary Fig. S3). Due to the large computational effort we reduced the number of decision trees to 100 for the buffered leave-one-out cross validation.Predictor variablesWe predicted forest, grassland, and cropland potential GPP using the following 20 predictor variables in our RF algorithm: mean annual surface temperature (Tmean), mean diurnal temperature range (Tdiurnal), temperature seasonality (Tseason; standard deviation), minimum temperature of the coldest month (Tmin), annual temperature range (Tannual), mean temperature of the warmest quarter (Twarmest), mean annual precipitation (Pmean), precipitation seasonality (Pseason; coefficient of variation), precipitation of the wettest quarter (Pwettest), precipitation of the driest quarter (Pdriest), precipitation of the warmest quarter (Pwarmest), mean annual solar radiation (SR), growing degree days (GDD), relative humidity (RH), soil clay content (Clay), elevation (EL), nitrogen deposition (Ndep), nitrogen fertilization (NF), pesticide application (Pest), and gross domestic product (GDP; a proxy for agricultural management input other than NF and Pest). Overall Tmean, Tannual, and Pmean were the most important predictor variables (see Supplementary Discussion 3 and Fig. S12). We also tested other predictors (including additional bioclimatic variables, soil pH, irrigation, or phosphate fertilization) but found only negligible improvements in RF evaluation metrics and hence decided to restrict our analysis to the 20 predictors mentioned above.Climate variables were taken from the CHELSA dataset47,48, remapped to 0.05° spatial resolution using the aggregate function from the raster package40. To only include years overlapping with our GPP data we used the CHELSA time-series data for the 2001–2013 period if available and 1979–2013 climatologies elsewise. Clay was derived from the Regridded Harmonized World Soil Database v1.249. Ndep was taken from ISIMIP2b50, bilinear remapped from 0.5° to 0.05° spatial resolution using Climate Data Operators33. Elevation was obtained from WorldClim51. NF and Pest were derived from country-specific FAO data (e.g., https://ourworldindata.org/grapher/pesticide-use-per-hectare-of-cropland), i.e., we used the same value for all grid cells in a country. GDP was obtained from ref.52.Suitable areaFor the comparison of potential forest, grassland, and cropland GPP in Fig. 1g–i we only included grid cells suitable for all three land cover types. For forests, we assumed forest cover possible if the grid cell is currently forested (e.g., all grid cells of our forest training data) or if the potential natural forest cover exceeds 36.3%. This threshold represents the 5th percentile of all currently forested grid cells. Potential natural forest cover was derived from a potential natural vegetation map, available for 20 biomes at 0.00833° spatial resolution31. To convert these biomes into potential natural forest cover we assumed 100% forest cover for the ten forest biomes and 30% forest cover for tropical savannah. Other biomes were not considered. We then aggregated the map to 0.05° spatial resolution by computing the mean of 36 grid cells using the aggregate function form the raster package40 (see Supplementary Fig. S5 for the resulting map). For grasslands and croplands, we computed the 5th percentile of Tmean and Pmean in the training data (− 9.9 °C and 165 mm for grasslands and 2.7 °C and 295 mm for croplands, respectively) and removed all grid cells below those thresholds, assuming these areas to be too cold or too dry for the respective land cover type. Finally, we calculated the land cover with the highest potential GPP for all overlapping grid cells.Sensitivity analysisTo explore the sensitivity and uncertainty of our RF approach we repeated our prediction using different input datasets, potential forest cover, and machine-learning approaches. The importance of the underlying potential forest map was estimated by replacing our potential forest map (Supplementary Fig. S5) by the LUH2 potential forest map (Supplementary Fig. S13)23. To explore the dependency on the land cover product we repeated our RF prediction using the spatially aggregated MODIS land cover map (MCD12C1; IGBP scheme), available at 0.05° spatial resolution53. We classified grid cells of classes 1, 2, 3, 4, 5, (all forests), 8 (woody savannahs) and 9 (savannahs) as forest. Classes 8 and 9 were included in forest because otherwise forest cover would be underestimated in the temperate and boreal zone. Class 10 was classified as grassland and class 12 as cropland. A comparison of ESA-CCI with MODIS reveals a substantially larger cropland area in ECA-CCI but a smaller grassland area (Supplementary Fig. S14).The sensitivity to the climate product was tested by repeating our analysis using predictor variables from the WorldClim climatologies (1970–2000)51, aggregated from 30 s to 0.05° spatial resolution using the aggregate function from the raster package40. In contrast to CHELSA, growing degree days and relative humidity were not available from WorldClim but we included water vapour pressure as additional predictor.We also tested four alternative global GPP products. The vegetation photosynthesis model (VPM) product, available for the period of interest at 0.05° spatial resolution, is based on improved light use efficiency theory and is driven by remotely sensed datasets and reanalysis climate data and land cover classification which also distinguishes C3 vs. C4 photosynthesis pathways54. The second product is derived from remote sensing considering radiation and canopy conductance limitations on GPP and is available at 0.05° resolution for the 2001–2012 period55. Land cover is not an input variable. The third product, FLUXCOM, uses machine learning to scale FLUXNET site GPP to the globe56,57. FLUXCOM is available at 0.0833° resolution and was conservative remapped to 0.05° using Climate Data Operators33 meaning that the GPP of different land cover types might be mixed in regions with heterogeneous land cover patterns. The forth product is the MODIS MOD17A3 GPP product58, available for the 2001–2013 period and aggregated to 0.05° resolution using the raster package40. It is derived from meteorological data, fraction of absorbed photosynthetic active radiation/leaf area index, and land cover. As there is also a MOD17A3 NPP product available we additionally conducted a prediction for potential NPP. The MOD17A3 NPP product is calculated as GPP minus maintenance and growth respiration estimated from allometric relationships linking daily biomass and annual growth of plant tissues to leaf area index58. This leads to additional uncertainty compared to the MOD17A3 GPP product.To test the effect of an alternative RF algorithm we repeated our prediction with the RF algorithm from the Python scikit-learn library59 using the same number of decision trees (800). Additionally, we tested another machine-learning technique, a deep neural network (DNN), using the PyTorch library60. We selected 10 linear layers with 5 times alternating 128 and 256 nodes and a sigmoid output function. All layers were connected using the rectified linear unit activation function. We used the adamW optimizer with 0.0003 learning rate and 2000 epochs of training. To prevent overfitting, we included a 10% dropout after the 7th layer. Lastly, we included a very simple estimate of the most productive land cover based on the nearest neighbour using scikit-learn’s BallTree implementation together with the Haversine formula. For each grid cell we searched for the nearest forest, grassland, and cropland grid cell and assigned the respective GPP also to this grid cell. We thus assumed that environmental conditions are more or less identical in these grid cells, which might be a reasonable assumption for many locations but less reliable in complex terrain or in large homogeneous regions like the central Amazon rainforest where the nearest cropland/grassland grid cell might be located far away.Land-use change scenariosTo estimate the effects of historical and potential future land cover changes on global GPP we applied LUH2 scenarios23 which also serve as input data for ESMs participating in CMIP6. Land-use changes over the historical period are based on the HYDE reconstruction3, while future projections were developed by different Integrated Assessment Models combining various assumptions of socio-economic behaviour (SSPs) with climate mitigation targets (RCPs). Annual fractions for the two land cover classes cropland (sum of 5 crop types) and managed grassland (sum of pasture and rangeland) were available for each scenario at 0.25° resolution (https://luh.umd.edu/). We converted to 0.05° resolution assuming the same land cover fractions for all 25 grid cells around the LUH2 grid cells. We considered the following land cover transitions: forest to managed grassland, forest to cropland, and natural grassland to cropland (and reverse transitions for future scenarios). Transitions in areas suitable for only two land cover types were also included. Conversions of natural grasslands to managed grasslands were assumed not to affect productivity. We assumed the original land cover of a grid cell to be either forest (i.e., potential forest cover  > 36.3%) or natural grassland and accordingly multiplied the converted areas by the differences in potential GPP derived from our RF approach. Our broad forest definition including open tree cover (see above) and the fact that we assumed a change from 100 to 0% forest area in deforested grid cells results in a total historical deforestation area substantially larger than estimated in a recent study (2.4 Mkm2 vs. 1.6 Mkm2)61. These assumptions, however, do not impair our GPP estimate as our approach implicitly accounts for gradients in forest productivity (open forests tend to have lower GPP than closed forests). To test the sensitivity of the resulting GPP reduction we also applied the potential GPP maps from our uncertainty analysis to historical land-use changes (Supplementary Fig. S6). For future land cover changes we investigated changes over the 2015–2100 period for all available LUH2 scenarios: SSP1-1.9, SSP2-2.6, SSP4-3.4, SSP5-3.4, SSP2-4.5, SSP4-6.0, SSP3-7.0, and SSP5-8.5. Land-use activities in these scenarios range from large-scale deforestation (e.g., SSP3-7.0) to reforestation (e.g., SSP1-1.9) (Supplementary Fig. S7).Earth System ModelsWe compared the potential GPP estimated by our RF algorithm to simulations of eight ESMs participating in CMIP6 (CESM2-CLM562, CNRM-ESM2.1-Surfex 8.0c63, EC-Earth3-Veg-LPJ-GUESSv464, GFDL-ESM4-GFDL-LM4.165, IPSL-CM6A-LR-ORCHIDEEv2.066, MIROC-ES2L-MATSIRO6.0 + VISIT-e ver.1.067, MPI-ESM1-2-LR-JSBACH3.2068, UKESM1-0-LL-JULES-ES-1.069) with an explicit representation of natural vegetation and at least one agricultural land cover class (cropland or managed grassland) in their vegetation sub-model. We selected these ESMs so that all vegetation models implemented in more than one ESM were represented only once (e.g., the JSBACH vegetation model is a component of both MPI-ESM1-2-LR and AWI-ESM). For each ESM, the variable gppLut was downloaded from the CMIP6 archive (https://esgf-data.dkrz.de/search/cmip6-dkrz/) for the historical simulations. These files contain simulated GPP for natural vegetation, pasture, and cropland for which we calculated the 2001–2014 mean (2014 is the last year of the historical period). ESMs use fractional land covers for each grid cell, meaning that climatic drivers are inherently the same for all land cover types within a grid cell and simulated productivities can therefore be directly compared. As ESMs differ in their spatial resolution we bilinear remapped all output to 0.05° resolution using Climate Data Operators33 to allow for a fair comparison across models. To assess the sensitivity of our results to the interpolation method we also tested conservative remapping which results in slightly different maps (Supplementary Fig. S15) and usually larger model biases (Supplementary Table 2). In addition, ESMs differ in where they simulate forests in natural vegetation areas, and therefore we removed all grid cells from the comparison where at least one ESM simulated no tree productivity/cover/biomass in order to avoid comparing the GPP of natural grasslands to managed grasslands. We provide maps based on the original output for each ESM in Supplementary Fig. S10.FLUXNET dataWe compared our predictions of potential GPP to FLUXNET Tier 1 eddy covariance measurements (Supplementary Fig. S16)70. We included all forest, woody savannah (classified as forest), grassland and cropland sites21 which were located in suitable areas for the respective land cover. Mean GPP was calculated as the mean of the GPP estimates based on the night-time (GPP_NT_VUT_REF) and day-time (GPP_DT_VUT_REF) partitioning method. As some sites only had a few years of data, all available years were considered (i.e., site mean GPP was calculated for a different time period than 2001–2015). Comparisons were made with the potential GPP in the respective grid cell in which the site was located (i.e., not calibrated to site conditions). More

  • in

    Impact of host age on viral and bacterial communities in a waterbird population

    Woolhouse MEJ, Gowtage-Sequeria S. Host range and emerging and reemerging pathogens. Emerg Infect Dis. 2005;11:1842–7.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allen T, Murray KA, Zambrana-Torrelio C, Morse SS, Rondinini C, Di Marco M, et al. Global hotspots and correlates of emerging zoonotic diseases. Nat Commun. 2017;8:1–10.Article 
    CAS 

    Google Scholar 
    Van Kerkhove MD, Ly S, Holl D, Guitian J, Mangtani P, Ghani AC, et al. Frequency and patterns of contact with domestic poultry and potential risk of H5N1 transmission to humans living in rural Cambodia. Influenza Other Respir Viruses. 2008;2:155–63.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaythorpe KAM, Hamlet A, Cibrelus L, Garske T, Ferguson NM. The effect of climate change on yellow fever disease burden in Africa. eLife. 2020;9:1–27.Article 

    Google Scholar 
    Faust CL, McCallum HI, Bloomfield LSP, Gottdenker NL, Gillespie TR, Torney CJ, et al. Pathogen spillover during land conversion. Ecol Lett. 2018;21:471–83.Article 
    PubMed 

    Google Scholar 
    Gog J, Woodroffe R, Swinton J. Disease in endangered metapopulations: The importance of alternative hosts. Proc R Soc B Biol Sci. 2002;269:671–6.Article 

    Google Scholar 
    Jones BA, Grace D, Kock R, Alonso S, Rushton J, Said MY, et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci USA. 2013;110:8399–404.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    White LA, Forester JD, Craft ME. Disease outbreak thresholds emerge from interactions between movement behavior, landscape structure, and epidemiology. Proc Natl Acad Sci USA. 2018;115:7374–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altizer S, Bartel R, Han BA. Animal migration and infectious disease risk. Science. 2011;331:296–302.Article 
    CAS 
    PubMed 

    Google Scholar 
    Ludwig SC, Roos S, Bubb D, Baines D. Long-term trends in abundance and breeding success of red grouse and hen harriers in relation to changing management of a Scottish grouse moor. Wildl Biol. 2017;2017:wlb.00246.Article 

    Google Scholar 
    Newton I. Weather-related mass-mortality events in migrants. Ibis. 2007;149:453–67.Article 

    Google Scholar 
    Ropert-Coudert Y, Kato A, Meyer X, Pellé M, MacIntosh AJJ, Angelier F, et al. A complete breeding failure in an Adélie penguin colony correlates with unusual and extreme environmental events. Ecography. 2015;38:111–3.Article 

    Google Scholar 
    Newmark WD, Stanley TR. Habitat fragmentation reduces nest survival in an Afrotropical bird community in a biodiversity hotspot. Proc Natl Acad Sci USA. 2011;108:11488–93.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tuyttens FaM, Macdonald DW, Rogers LM, Cheeseman CL, Roddam AW. Comparative study on the consequences of culling badgers (Meles meles) on biometrics, population dynamics and movement. J Anim Ecol. 2000;69:567–80.Article 

    Google Scholar 
    Frafjord K. Influence of reproductive status: Home range size in water voles (Arvicola amphibius). PLoS ONE. 2016;11:1–13.Article 

    Google Scholar 
    Begg CM, Begg KS, Du Toit JT, Mills MGL. Spatial organization of the honey badger Mellivora capensis in the southern Kalahari: Home-range size and movement patterns. J Zool. 2005;265:23–35.Article 

    Google Scholar 
    Bronikowski AM, Cords M, Alberts SC, Altmann J, Brockman DK, Fedigan LM, et al. Female and male life tables for seven wild primate species. Sci Data. 2016;3:1–8.Article 

    Google Scholar 
    Mitchell GW, Woodworth BK, Taylor PD, Norris DR. Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird. Mov Ecol. 2015;3:1–13.Article 

    Google Scholar 
    Frankish CK, Manica A, Phillips RA. Effects of age on foraging behavior in two closely related albatross species. Mov Ecol. 2020;8:1–17.Article 

    Google Scholar 
    Tirpak JM, Giuliano WM, Allen TJ, Bittner S, Edwards JW, Friedhof S, et al. Ruffed grouse-habitat preference in the central and southern Appalachians. Ecol Manag. 2010;260:1525–38.Article 

    Google Scholar 
    Zhu WW, Garber PA, Bezanson M, Qi XG, Li BG. Age- and sex-based patterns of positional behavior and substrate utilization in the golden snub-nosed monkey (Rhinopithecus roxellana). Am J Primatol. 2015;77:98–108.Article 
    PubMed 

    Google Scholar 
    Tian H, Yu P, Bjørnstad ON, Cazelles B, Yang J, Tan H, et al. Anthropogenically driven environmental changes shift the ecological dynamics of hemorrhagic fever with renal syndrome. PLOS Pathog. 2017;13:e1006198.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    George DB, Webb CT, Farnsworth ML, O’Shea TJ, Bowen RA, Smith DL, et al. Host and viral ecology determine bat rabies seasonality and maintenance. Proc Natl Acad Sci USA. 2011;108:10208–13.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Dijk JG, Verhagen JH, Wille M, Waldenström J. Host and virus ecology as determinants of influenza A virus transmission in wild birds. Curr Opin Virol. 2018;28:26–36.Article 
    PubMed 

    Google Scholar 
    Chong R, Shi M, Grueber CE, Holmes EC, Hogg CJ, Belov K, et al. Fecal Viral Diversity of Captive and Wild Tasmanian Devils Characterized Using Virion-Enriched Metagenomics and Metatranscriptomics. J Virol. 2019;93:e00205–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    François S, Pybus OG. Towards an understanding of the avian virome. J Gen Virol. 2020;101:785–90.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Springer A, Fichtel C, Al-Ghalith GA, Koch F, Amato KR, Clayton JB, et al. Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux’s sifakas (Propithecus verreauxi). Ecol Evol. 2017;7:5732–45.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aivelo T, Laakkonen J, Jernvall J. Population-and individual-level dynamics of the intestinal microbiota of a small primate. Appl Environ Microbiol. 2016;82:3537–45.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Dongen WFD, White J, Brandl HB, Moodley Y, Merkling T, Leclaire S, et al. Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecol. 2013;13:11.Cleaveland S, Laurenson MK, Taylor LH. Diseases of humans and their domestic mammals: Pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc B Biol Sci. 2001;356:991–9.Article 
    CAS 

    Google Scholar 
    Wille M, Shi M, Hurt AC, Klaassen M, Holmes EC. RNA virome abundance and diversity is associated with host age in a bird species. Virology. 2021;561:98–106.Article 
    CAS 
    PubMed 

    Google Scholar 
    Negrey JD, Thompson ME, Langergraber KE, Machanda ZP, Mitani JC, Muller MN, et al. Demography, life-history trade-offs, and the gastrointestinal virome of wild chimpanzees. Philos Trans R Soc B Biol Sci. 2020;375:20190613.Article 

    Google Scholar 
    Hill SC, Manvell RJ, Schulenburg B, Shell W, Wikramaratna PS, Perrins C, et al. Antibody responses to avian influenza viruses in wild birds broaden with age. Proc R Soc B Biol Sci. 2016;283:20162159.Article 

    Google Scholar 
    Perrins CM, Ogilvie MA. A study of the Abbotsbury mute swans (Cygnus olor). Wildfowl. 1981;32:35–47.
    Google Scholar 
    Perrins CM, McCleery RH, Ogilvie MA. A study of the breeding Mute Swans Cygnus olor at Abbotsbury. Wildfowl. 1994;45:1–14.
    Google Scholar 
    Perrins C. Survival rates of young mute swans Cygnus olor. Wildfowl Suppl. 1991;45:95–103.
    Google Scholar 
    McCleery RH, Perrins C, Wheeler D, Groves S. Population structure, survival rates and productivity of mute swans breeding in a colony at Abbotsbury, Dorset, England. Waterbirds Waterbird Soc. 2002;25:201.
    Google Scholar 
    Matrozis R A 30-year (1988–2017) study of Mute Swans Cygnus olor in Riga, Latvia. Wildfowl. 2019;14:164–77.Charmantier A, Perrins C, McCleery RH, Sheldon BC. Quantitative genetics of age at reproduction in wild swans: Support for antagonistic pleiotropy models of senescence. Proc Natl Acad Sci USA. 2006;103:6587–92.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hill SC, Hansen R, Watson S, Coward V, Russell C, Cooper J, et al. Comparative micro-epidemiology of pathogenic avian influenza virus outbreaks in a wild bird population. Philos Trans R Soc B Biol Sci. 2019;374:20180259.Cotten M, Oude Munnink B, Canuti M, Deijs M, Watson SJ, Kellam P, et al. Full genome virus detection in fecal samples using sensitive nucleic acid preparation, deep sequencing, and a novel iterative sequence classification algorithm. PLoS ONE. 2014;9:e93269.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boom R, Sol CJA, Salimans MMM, Janses CL, Wertheim Van Dillen PME, Van Der Noordaa J. Rapid and simple method for purification of nucleic acids R. J Clin Microbiol. 1990;28:495–503.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Endoh D, Mizutani T, Kirisawa R, Maki Y, Saito H, Kon Y, et al. Species-independent detection of RNA virus by representational difference analysis using non-ribosomal hexanucleotides for reverse transcription. Nucleic Acids Res. 2005;33:1–11.Article 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMB. 2011;17:10–12.
    Google Scholar 
    Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.Article 
    PubMed 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.Article 
    CAS 
    PubMed 

    Google Scholar 
    Langmead B Aligning short sequencing reads with Bowtie. Curr Protoc Bioinforma. 2010; Chapter 11: Unit 11.7.Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinforma Oxf Engl. 2012;28:1647–9.Article 

    Google Scholar 
    Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muhire BM, Varsani A, Martin DP SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE. 2014;9:e108277.Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinforma Oxf Engl. 2011;27:1164–5.Article 
    CAS 

    Google Scholar 
    Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kapoor A, Simmonds P, Lipkin WI, Zaidi S, Delwart E. Use of nucleotide composition analysis to infer hosts for three novel picorna-like viruses. J Virol. 2010;84:10322–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood DE, Salzberg SL Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46.Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci. 2017;3:e104.Article 

    Google Scholar 
    Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:633–42.Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. 2019. R Foundation for Statistical Computing, Vienna, Austria.RStudio Team. RStudio: Integrated Development for R. 2015. Boston, MA, USA.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.Article 

    Google Scholar 
    Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
    Google Scholar 
    Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88.Article 

    Google Scholar 
    Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, et al. The chicken gastrointestinal microbiome. FEMS Microbiol Lett. 2014;360:100–12.Article 
    CAS 
    PubMed 

    Google Scholar 
    Waite DW, Taylor MW. Characterizing the avian gut microbiota: Membership, driving influences, and potential function. Front Microbiol. 2014;5:1–12.Article 

    Google Scholar 
    Waite DW, Taylor MW. Exploring the avian gut microbiota: Current trends and future directions. Front Microbiol. 2015;6:1–12.Article 

    Google Scholar 
    Zell R, Delwart E, Gorbalenya AE, Hovi T, King AMQ, Knowles NJ, et al. ICTV virus taxonomy profile: Picornaviridae. J Gen Virol. 2017;98:2421–2.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cotmore SF, Agbandje-McKenna M, Canuti M, Chiorini JA, Eis-Hubinger AM, Hughes J, et al. ICTV virus taxonomy profile: Parvoviridae. J Gen Virol. 2019;100:367–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bosch A, Guix S, Krishna N, Méndez E, Monroe SS, Pantin-Jackwood M, et al. Astroviridae. In: King A, Adams M, Carstens E, Lefkowitz E (eds). Virus taxonomy. Classification and nomenclature of viruses: ninth report of the International Committee on the Taxonomy of Viruses. 2011. Elsevier, London, pp 953-9.Risely A. Applying the core microbiome to understand host–microbe systems. J Anim Ecol. 2020;89:1549–58.Article 
    PubMed 

    Google Scholar 
    Piepenbring AK, Enderlein D, Herzog S, Kaleta EF, Heffels-Redmann U, Ressmeyer S, et al. Pathogenesis of avian bornavirus in experimentally infected Cockatiels. Emerg Infect Dis. 2012;18:234–41.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anzil AP, Blinzinger K, Mayr A. Persistent Borna virus infection in adult hamsters. Arch Für Gesamt Virusforsch. 1973;40:52–57.Article 
    CAS 

    Google Scholar 
    Heffels-Redmann U, Enderlein D, Herzog S, Piepenbring A, Bürkle M, Neumann D, et al. Follow-Up Investigations on Different Courses of Natural Avian Bornavirus Infections in Psittacines. Avian Dis. 2012;56:153–9.Article 
    PubMed 

    Google Scholar 
    Rubbenstroth D, Brosinski K, Rinder M, Olbert M, Kaspers B, Korbel R, et al. No contact transmission of avian bornavirus in experimentally infected cockatiels (Nymphicus hollandicus) and domestic canaries (Serinus canaria forma domestica). Vet Microbiol. 2014;172:146–56.Article 
    PubMed 

    Google Scholar 
    Olsen I The Family Fusobacteriaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Firmicutes and Tenericutes, 4th ed. 2014. pp 109-32.Imhoff JF The Family Chlorobiaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Other Major Lineages of Bacteria and The Archaea, 4th ed. 2014. pp 501-14.Cho JC The Family Lentisphaeraceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Other Major Lineages of Bacteria and The Archaea, 4th ed. 2014. pp 705-10.Karami A, Sarshar M, Ranjbar R, Zanjani RS The Phylum Spirochaetaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Other Major Lineages of Bacteria and The Archaea, 4th ed. 2014. pp 915-29.McBride MJ The Family Flavobacteriaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Other Major Lineages of Bacteria and The Archaea, 4th ed. 2014. pp 643-76.Van Dijk JGB, Hoye BJ, Verhagen JH, Nolet BA, Fouchier RAM, Klaassen M. Juveniles and migrants as drivers for seasonal epizootics of avian influenza virus. J Anim Ecol. 2014;83:266–75.Article 
    PubMed 

    Google Scholar 
    Chevalier V, Marsot M, Molia S, Rasamoelina H, Rakotondravao R, Pedrono M, et al. Serological evidence of West Nile and Usutu viruses circulation in domestic and wild birds in wetlands of Mali and Madagascar in 2008. Int J Environ Res Public Health. 2020;17:1998.Guy, JS Turkey Viral Hepatitis. Diseases of Poultry, 12th Edition. 2008. Wiley Blackwell, pp 426-30.Davies ZG, Fuller RA, Dallimer M, Loram A, Gaston KJ. Household factors influencing participation in bird feeding activity: a national scale analysis. PLOS ONE. 2012;7:e39692.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shutt JD, Trivedi UH, Nicholls JA. Faecal metabarcoding reveals pervasive long-distance impacts of garden bird feeding. Proc R Soc B Biol Sci. 2021;288:20210480.Article 

    Google Scholar 
    Minich JJ, Sanders JG, Amir A, Humphrey G, Gilbert JA, Knight R. Quantifying and understanding well-to-well contamination in microbiome research. mSystems. 2019;4:e00186–19.Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Honey compositional convergence and the parallel domestication of social bees

    Allsop, K. A. & Miller, J. B. Honey revisited: A reappraisal of honey in pre-industrial diets. Br. J. Nutr. 75, 513–520 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dams, M. & Dams, L. Spanish rock art depicting honey gathering during the Mesolithic. Nature 268, 228–230 (1977).Article 
    ADS 

    Google Scholar 
    Bradbear, N. Bees and their role in forest livelihoods: A guide to the services provided by bees and the sustainable harvesting, processing and marketing of their products. Non-Wood Forests Products Series, Vol. 19 (FAO, Rome, 2009).
    Google Scholar 
    Crane, E. The World History of Beekeeping and Honey Hunting (Routledge, 1999).Book 

    Google Scholar 
    Kritsky, G. Beekeeping from Antiquity through the middle ages. Annu. Rev. Entomol. 62, 249–264 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grüter, C. Stingless Bees: Their Behaviour, Ecology and Evolution (Springer International Publishing, 2020).Book 

    Google Scholar 
    Weaver, N. & Weaver, E. C. Beekeeping with the stingless bee Melipona beecheii, by the Yucatecan Maya. Bee World 62, 7–19 (1981).Article 

    Google Scholar 
    Quezada-Euán, J. J. G. Stingless Bees of Mexico: The Biology, Management and Conservation of an Ancient Heritage (Springer, 2018).Book 

    Google Scholar 
    Medellín Morales, S. Meliponicultura Maya: Perspectivas para su sostenibilidad. Reporte de sostenibilidad Maya no. 2; 67 pp. (1991).González-Acereto, J. A. La meliponicultura yucateca en crisis: Una actividad indígena a punto de desaparecer, 1er Seminario Nacional sobre Abejas sin Aguijón. Boca Río Ver México 9–12 (1999).Russell, P. The History of Mexico: From Pre-conquest to Present (Routledge, 2010).
    Google Scholar 
    Quezada-Euan, J. J., May-Itzá, W. & González-Acereto, J. Meliponiculture in Mexico: Problems and perspective for development. Bee World 82, 160–167 (2001).Article 

    Google Scholar 
    Freitas, B. M. et al. Diversity, threats and conservation of native bees in the Neotropics. Apidologie 40, 332–346 (2009).Article 

    Google Scholar 
    Toledo-Hernández, E. et al. The stingless bees (Hymenoptera: Apidae: Meliponini): A review of the current threats to their survival. Apidologie 53, 8 (2022).Article 

    Google Scholar 
    Guzman-Novoa, E. et al. The process and outcome of the Africanization of honey bees in Mexico: Lessons and future directions. Front. Ecol. Evol. 8, 404 (2020).Article 

    Google Scholar 
    Fletcher, M. et al. Stingless bee honey, a novel source of trehalulose: A biologically active disaccharide with health benefits. Sci. Rep. 10, 12128 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rao, P. V., Krishnan, K. T., Salleh, N. & Gan, S. H. Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Rev. Bras. Farmacogn. 26, 657–664 (2016).Article 
    CAS 

    Google Scholar 
    Rattanawannee, A. & Duangphakdee, O. Southeast Asian meliponiculture for sustainable livelihood. In Modern Beekeeping – Bases for Sustainable Production (ed. Ranz, R. E. R.) (IntechOpen, 2019).
    Google Scholar 
    Heard, T. The role of stingless bees in crop pollination. Annu. Rev. Entomol. 44, 183–206 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Slaa, E. J., Chaves, L. A. S., Malagodi-Braga, K. S. & Hofstede, F. E. Stingless bees in applied pollination: Practice and perspectives. Apidologie 37, 293–315 (2006).Article 

    Google Scholar 
    Kendall, L. K., Stavert, J. R., Gagic, V., Hall, M. & Rader, R. Initial floral visitor identity and foraging time strongly influence blueberry reproductive success. Basic Appl. Ecol. https://doi.org/10.1016/j.baae.2022.02.009 (2022).Article 

    Google Scholar 
    Kiatoko, N. et al. Effective pollination of greenhouse Galia musk melon (Cucumis melo L. var. reticulatus ser.) by afrotropical stingless bee species. J. Apic. Res. https://doi.org/10.1080/00218839.2021.2021641 (2022).Article 

    Google Scholar 
    Nkoba, K. et al. African endemic stingless bees as an efficient alternative pollinator to honey bees in greenhouse cucumber (Cucumis sativus L.). J. Apic. Res. https://doi.org/10.1080/00218839.2021.2013421 (2022).Article 

    Google Scholar 
    FAO, A. Good beekeeping practices for sustainable apiculture. (FAO, IZSLT, Apimondia and CAAS, 2020). doi:https://doi.org/10.4060/cb5353en.Patel, V., Pauli, N., Biggs, E., Barbour, L. & Boruff, B. Why bees are critical for achieving sustainable development. Ambio 50, 49–59 (2021).Article 
    PubMed 

    Google Scholar 
    Fuller, D. Q. et al. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc. Natl. Acad. Sci. 111, 6147–6152 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Purugganan, M. D. An evolutionary genomic tale of two rice species. Nat. Genet. 46, 931–932 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kleisner, K. & Stella, M. Monsters we met, monsters we made: On the parallel emergence of phenotypic similarity under domestication. Σημειωτκή – Sign Syst. Stud. 37, 454–476 (2009).Article 

    Google Scholar 
    Wilkins, A. S., Wrangham, R. W. & Fitch, W. T. The, “Domestication Syndrome” in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lecocq, T. Insects: The disregarded domestication histories. In Animal Domestication (ed. Teletchea, F.) (IntechOpen, 2018).
    Google Scholar 
    Pollan, M. The botany of desire: A plant’s-eye view of the world. Econ. Bot. 57(1), 146–147 (2002).
    Google Scholar 
    Chuttong, B., Chanbang, Y., Sringarm, K. & Burgett, M. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem. 192, 149–155 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Spivak, M. & Danka, R. G. Perspectives on hygienic behavior in Apis mellifera and other social insects. Apidologie 52, 1–16 (2021).Article 

    Google Scholar 
    Breed, M. D., Guzmán-Novoa, E. & Hunt, G. J. 3. Defensive behavior of honey bees: Organization, genetics, and comparisons with other bees. Annu. Rev. Entomol. 49, 271–298 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, G. J. et al. Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften 94, 247–267 (2007).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Faegri, K. & van der Pijl,. Principles of Pollination Ecology (Pergamon Press, 1979).
    Google Scholar 
    Nicolson, S. W. & Thornburg, R. W. Nectar chemistry. In Nectaries and Nectar (eds Nicolson, S. W. et al.) (Springer Netherlands, 2007).Chapter 

    Google Scholar 
    Abrahamczyk, S. et al. Pollinator adaptation and the evolution of floral nectar sugar composition. J. Evol. Biol. 30, 112–127 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Parachnowitsch, A. L., Manson, J. S. & Sletvold, N. Evolutionary ecology of nectar. Ann. Bot. 123, 247–261 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rasmussen, C. & Cameron, S. A. Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biol. J. Linn. Soc. 99, 206–232 (2010).Article 

    Google Scholar 
    Bantle, J. P. Dietary fructose and metabolic syndrome and diabetes. J. Nutr. 139, 1263S-1268S (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Erejuwa, O. O., Sulaiman, S. A. & Wahab, M. S. A. fructose might contribute to the hypoglycemic effect of honey. Molecules 17, 1900–1915 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwakman, P. H. S. & Zaat, S. A. J. Antibacterial components of honey. IUBMB Life 64, 48–55 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J. & Pérez-Álvarez, J. A. Functional properties of honey, propolis, and royal jelly. J. Food Sci. 73, R117–R124 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Machado De-Melo, A. A., de Almeida-Muradian, L. B., Sancho, M. T. & Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 57, 5–37 (2018).Article 

    Google Scholar 
    Nordin, A., Sainik, N. Q. A. V., Chowdhury, S. R., Saim, A. B. & Idrus, R. B. H. Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. J. Food Compos. Anal. 73, 91–102 (2018).Article 
    CAS 

    Google Scholar 
    Viteri, R., Zacconi, F., Montenegro, G. & Giordano, A. Bioactive compounds in Apis mellifera monofloral honeys. J. Food Sci. 86, 1552–1582 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bueno, F. G. B. et al. Stingless bee floral visitation in the global tropics and subtropics. BioRxiv. https://doi.org/10.1101/2021.04.26.440550 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rasmussen, C. & Cameron, S. A. A molecular phylogeny of the Old World stingless bees (Hymenoptera: Apidae: Meliponini) and the non-monophyly of the large genus Trigona. Syst. Entomol. 32, 26–39 (2007).Article 

    Google Scholar 
    Mokaya, H. O., Nkoba, K., Ndunda, R. M. & Vereecken, N. J. Characterization of honeys produced by sympatric species of Afrotropical stingless bees (Hymenoptera, Meliponini). Food Chem. 366, 130597 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Souza, E. C. A., Menezes, C. & Flach, A. Stingless bee honey (Hymenoptera, Apidae, Meliponini): A review of quality control, chemical profile, and biological potential. Apidologie 52, 113–132 (2021).Article 

    Google Scholar 
    Ohmenhaeuser, M., Monakhova, Y. B., Kuballa, T. & Lachenmeier, D. W. Qualitative and quantitative control of honeys using NMR spectroscopy and chemometrics. ISRN Anal. Chem. 2013, 1–9 (2013).Article 

    Google Scholar 
    Mazzoni, V., Bradesi, P., Tomi, F. & Casanova, J. Direct qualitative and quantitative analysis of carbohydrate mixtures using 13C NMR spectroscopy: Application to honey. Magn. Reson. Chem. 35, S81–S90 (1997).Article 
    CAS 

    Google Scholar 
    Consonni, R. & Cagliani, L. R. Geographical characterization of polyfloral and acacia honeys by nuclear magnetic resonance and chemometrics. J. Agric. Food Chem. 56, 6873–6880 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schievano, E., Peggion, E. & Mammi, S. H1 nuclear magnetic resonance spectra of chloroform extracts of honey for chemometric determination of its botanical origin. J. Agric. Food Chem. 58, 57–65 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development Environment for R. Rstudio, PBC, Boston, MA. URL http://www.rstudio.com (2020).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2021).Oksanen J., et al. Vegan: Community ecology package. McGlinn lab URL https://CRAN.R-project.org/package=vegan (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).Book 
    MATH 

    Google Scholar 
    Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinforma. 69, e96. https://doi.org/10.1002/cpbi.96 (2020).Article 

    Google Scholar 
    Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).Article 
    PubMed 

    Google Scholar  More

  • in

    Mechanisms of prey division in striped marlin, a marine group hunting predator

    Jolles, J. W., King, A. J. & Killen, S. S. The Role of Individual Heterogeneity in Collective Animal Behaviour. Trends Ecol. Evol. 35, 278–291 (2020).Article 
    PubMed 

    Google Scholar 
    Lang, S. D. J. & Farine, D. R. A multidimensional framework for studying social predation strategies. Nat. Ecol. Evol. 1, 1230–1239 (2017).Article 
    PubMed 

    Google Scholar 
    Kissui, B. M. & Packer, C. Top–down population regulation of a top predator: lions in the Ngorongoro Crater. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 1867–1874 (2004).Article 

    Google Scholar 
    Atwood, T. C. & Gese, E. M. Coyotes and recolonizing wolves: social rank mediates risk-conditional behaviour at ungulate carcasses. Anim. Behav. 75, 753–762 (2008).Article 

    Google Scholar 
    Pitman, R. L. & Durban, J. W. Cooperative hunting behavior, prey selectivity and prey handling by pack ice killer whales (Orcinus orca), type B, in Antarctic Peninsula waters. Mar. Mammal. Sci. 28, 16–36 (2012).Article 

    Google Scholar 
    Machovsky-Capuska, G. E. & Raubenheimer, D. The nutritional ecology of marine apex predators. Ann. Rev. Mar. Sci. 12, 361–387 (2020).Article 
    PubMed 

    Google Scholar 
    Hubel, T. Y. et al. Energy cost and return for hunting in African wild dogs and cheetahs. Nat. Commun. 7, 1–13 (2016).Article 

    Google Scholar 
    Hubel, T. Y. et al. Additive opportunistic capture explains group hunting benefits in African wild dogs. Nat. Commun. 7, 1–11 (2016).Article 

    Google Scholar 
    Schaller, G. B. The Serengeti Lion.,(University of Chicago Press: Chicago, IL.). (1972).Packer, C., Pusey, A. E. & Eberly, L. E. Egalitarianism in female African lions. Science 293, 690–693 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tilson, R. L. & Hamilton, W. J. III Social dominance and feeding patterns of spotted hyaenas. Anim. Behav. 32, 715–724 (1984).Article 

    Google Scholar 
    Frank, L. G. Social organization of the spotted hyaena Crocuta crocuta. II. Dominance and reproduction. Anim. Behav. 34, 1510–1527 (1986).Article 

    Google Scholar 
    Mech, L. D. & Boitani, L. Wolves: behavior, ecology, and conservation. (University of Chicago Press, 2007).Frame, L. H., Malcolm, J. R., Frame, G. W. & Van Lawick, H. Social Organization of African Wild Dog on the Serengeti Plains. Z. Tierpsychol. 50, 225–249 (1979).Article 

    Google Scholar 
    Bertram, B. C. R. Social factors influencing reproduction in wild lions. J. Zool. 177, 463–482 (1975).Article 

    Google Scholar 
    Packer, C. & Pusey, A. Asymmetric contests in social mammals: respect, manipulation and age-specific aspects. Evol. essays honour John Maynard Smith 173–186 (1985).Domenici, P., Batty, R. S., Similä, T. & Ogam, E. Killer whales (Orcinus orca) feeding on schooling herring (Clupea harengus) using underwater tail-slaps: Kinematic analyses of field observations. J. Exp. Biol. 203, 283–294 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Benoit-Bird, K. J. & Au, W. W. L. Cooperative prey herding by the pelagic dolphin, Stenella longirostris. J. Acoust. Soc. Am. 125, 125–137 (2009).Article 
    PubMed 

    Google Scholar 
    Gazda, S. K. Driver-barrier feeding behavior in bottlenose dolphins (Tursiops truncatus): New insights from a longitudinal study. Mar. Mammal. Sci. 32, 1152–1160 (2016).Article 

    Google Scholar 
    Herbert-Read, J. E. et al. Proto-Cooperation: Group hunting sailfish improve hunting success by alternating attacks on grouping prey. Proc. R. Soc. B Biol. Sci. 283, 1–14 (2016).
    Google Scholar 
    Rieucau, G., Holmin, A. J., Castillo, J. C., Couzin, I. D. & Handegard, N. O. School level structural and dynamic adjustments to risk promote information transfer and collective evasion in herring. Anim. Behav. 117, 69–78 (2016).Article 

    Google Scholar 
    Rieucau, G., Fernö, A., Ioannou, C. C. & Handegard, N. O. Towards of a firmer explanation of large shoal formation, maintenance and collective reactions in marine fish. Rev. Fish. Biol. Fish. 25, 21–37 (2014).Article 

    Google Scholar 
    Ford, J. K. B. & Ellis, G. M. Transients: mammal-hunting killer whales of British Columbia, Washington, and southeastern Alaska. (UBC Press, 1999).Bailey, I., Myatt, J. P. & Wilson, A. M. Group hunting within the Carnivora: Physiological, cognitive and environmental influences on strategy and cooperation. Behav. Ecol. Sociobiol. 67, 1–17 (2013).Article 

    Google Scholar 
    Packer, C., Scheel, D. & Pusey, A. E. Why Lions Form Groups: Food is Not Enough. Am. Nat. 136, 1–19 (1990).Article 

    Google Scholar 
    Creel, S. & Creel, N. M. The African wild dog: behavior, ecology, and conservation. (Princeton University Press, 2002).Carbone, C. et al. Feeding success of African wild dogs (Lycaon pictus) in the Serengeti: The effects of group size and kleptoparasitism. J. Zool. 266, 153–161 (2005).Article 

    Google Scholar 
    Chakrabarti, S. & Jhala, Y. V. Selfish partners: Resource partitioning in male coalitions of Asiatic lions. Behav. Ecol. 28, 1532–1539 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amorós, M., Gil-Sánchez, J. M., López-Pastor, B., de las, N. & Moleón, M. Hyaenas and lions: how the largest African carnivores interact at carcasses. Oikos 129, 1820–1832 (2020).Article 

    Google Scholar 
    Wilmers, C. C. & Stahler, D. R. Constraints on active-consumption rates in gray wolves, coyotes, and grizzly bears. Can. J. Zool. 80, 1256–1261 (2002).Article 

    Google Scholar 
    Schmidt, P. A. & Mech, L. D. Wolf pack size and food acquisition. Am. Nat. 150, 513–517 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Major, P. F. Predator-prey interactions in two schooling fishes, Caranx ignobilis and Stolephorus purpureus. Anim. Behav. 26, 760–777 (1978).Article 

    Google Scholar 
    Thiebault, A., Semeria, M., Lett, C. & Tremblay, Y. How to capture fish in a school? Effect of successive predator attacks on seabird feeding success. J. Anim. Ecol. 85, 157–167 (2016).Article 
    PubMed 

    Google Scholar 
    Handegard, N. O. et al. The dynamics of coordinated group hunting and collective information transfer among schooling prey. Curr. Biol. 22, 1213–1217 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    King, A. J., Fehlmann, G., Biro, D., Ward, A. J. & Fürtbauer, I. Re-wilding Collective Behaviour: An Ecological Perspective. Trends Ecol. Evol. 33, 347–357 (2018).Article 
    PubMed 

    Google Scholar 
    Hansen, M. J. et al. Linking hunting weaponry to attack strategies in sailfish and striped marlin. Proc. R. Soc. B Biol. Sci. 287, 20192228 (2020).Rieucau, G. et al. Using unmanned aerial vehicle (UAV) surveys and image analysis in the study of large surface-associated marine species: a case study on reef sharks Carcharhinus melanopterus shoaling behaviour. J. Fish. Biol. 93, 119–127 (2018).Article 
    PubMed 

    Google Scholar 
    Krause, J. The relationship between foraging and shoal position in a mixed shoal of roach (Rutilus rutilus) and chub (Leuciscus cephalus): a field study. Oecologia 93, 356–359 (1993).Article 
    PubMed 

    Google Scholar 
    DeBlois, E. M. & Rose, G. A. Cross-shoal variability in the feeding habits of migrating Atlantic cod (Gadus morhua). Oecologia 108, 192–196 (1996).Article 
    PubMed 

    Google Scholar 
    Hansen, M. J., Schaerf, T. M. & Ward, A. J. W. The influence of nutritional state on individual and group movement behaviour in shoals of crimson-spotted rainbowfish (Melanotaenia duboulayi). Behav. Ecol. Sociobiol. 69, 1713–1722 (2015).Article 

    Google Scholar 
    Hansen, M. J., Schaerf, T. M., Krause, J. & Ward, A. J. W. Crimson spotted rainbowfish (Melanotaenia duboulayi) change their spatial position according to nutritional requirement. PLoS One 11, 1–17 (2016).Article 

    Google Scholar 
    McLean, S., Persson, A., Norin, T. & Killen, S. S. Metabolic costs of feeding predictively alter the spatial distribution of individuals in fish schools. Curr. Biol. 28, 1144–1149 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Domenici, P. et al. How sailfish use their bills to capture schooling prey. Proc. R. Soc. B Biol. Sci. 281, 20140444 (2014).Kurvers, R. H. J. M. et al. The Evolution of Lateralization in Group Hunting Sailfish. Curr. Biol. 27, 521–526 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ward, A. & Webster, M. Sociality: The behaviour of group-living animals. (Springer, 2016).Wiley, D. et al. Underwater components of humpback whale bubble-net feeding behaviour Published by: Brill Stable URL: http://www.jstor.org/stable/23034261 REFERENCES Linked references are available on JSTOR for this article: You may need to log in to JSTOR to access th. 148, 575–602 (2017).D’Vincent, C. G., Nilson, R. M. & Hanna, R. E. Vocalization and coordinated feeding behavior of the humpback whale Megaptera novaeangliae in Southeastern Alaska, USA. Sci. Rep. Whale Res. Inst. Tokyo 36, 41–47 (1985).
    Google Scholar 
    Jurasz, C. M. & Jurasz, V. P. Feeding modes of the humpback whale, Megaptera novaeangliae, in southeast Alaska. Sci. Rep. Whales Res. Inst. 31, 69–83 (1979).
    Google Scholar 
    Similä, T. & Ugarte, F. Surface and underwater observations of cooperatively feeding killer whales in northern Norway. Can. J. Zool. 71, 1494–1499 (1993).Article 

    Google Scholar 
    Clua, É. & Grosvalet, F. Mixed-species feeding aggregation of dolphins, large tunas and seabirds in the Azores. Aquat. Living Resour. 14, 11–18 (2001).Article 

    Google Scholar 
    Uchiyama, J. H. & Kazama, T. K. Updated weight-on-length relationships for pelagic fishes caught in the central North Pacific Ocean and bottomfishes from the northwestern Hawaiian Islands. (2003).Ponce-Díaz, G., Ortega-García, S. & González-Ramírez, P. G. Analysis of sizes and weight-length relation of the striped marlin, Tetrapturus sudax (Philippi, 1887) in Baja California Sur, Mexico. Cienc. Mar. 17, 69–82 (1991).Article 

    Google Scholar 
    Abitı́a-Cárdenas, L. A., Muhlia-Melo, A., Cruz-Escalona, V. & Galván-Magaña, F. Trophic dynamics and seasonal energetics of striped marlin Tetrapturus audax in the southern Gulf of California, Mexico. Fish. Res. 57, 287–295 (2002).Article 

    Google Scholar 
    R Core Team. (2021). R: A Language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/Hansen, Matthew Mechanisms prey Div. a Mar. group-Hunt. Predat., Dryad, Dataset https://doi.org/10.5061/dryad.b2rbnzshx (2022).Article 

    Google Scholar  More

  • in

    Uropygial gland microbiota differ between free-living and captive songbirds

    Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723–735 (2008).Article 
    PubMed 

    Google Scholar 
    Archie, E. A. & Theis, K. R. Animal behaviour meets microbial ecology. Anim. Behav. 82, 425–436 (2011).Article 

    Google Scholar 
    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. 110, 3229–3236 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cresci, G. A. & Bawden, E. Gut microbiome: What we do and don’t know. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 30, 734–746 (2015).
    Google Scholar 
    Martin, C. R., Osadchiy, V., Kalani, A. & Mayer, E. A. The brain–gut–microbiome axis. Cell. Mol. Gastroenterol. Hepatol. 6, 133–148 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davidson, G. L., Raulo, A. & Knowles, S. C. Identifying microbiome-mediated behaviour in wild vertebrates. Trends Ecol. Evol. 35, 972–980 (2020).Article 
    PubMed 

    Google Scholar 
    Ushida, K., Kock, R. & Sundset, M. A. Wildlife microbiology. Microorganisms 9, 1968 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezenwa, V. O., Gerardo, N. M., Inouye, D. W., Medina, M. & Xavier, J. B. Animal behavior and the microbiome. Science 338, 198–199 (2012).Article 
    ADS 
    PubMed 

    Google Scholar 
    Ezenwa, V. O. & Williams, A. E. Microbes and animal olfactory communication: Where do we go from here?. BioEssays 36, 847–854 (2014).Article 
    PubMed 

    Google Scholar 
    Carthey, A. J. R., Gillings, M. R. & Blumstein, D. T. The extended genotype: Microbially mediated olfactory communication. Trends Ecol. Evol. 33, 885–894 (2018).Article 
    PubMed 

    Google Scholar 
    Maraci, Ö., Engel, K. & Caspers, B. A. Olfactory communication via microbiota: What is known in birds?. Genes 9, 387 (2018).Article 
    PubMed Central 

    Google Scholar 
    Hird, S. M. Evolutionary biology needs wild microbiomes. Front. Microbiol. 8, 725 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberdi, A., Martin Bideguren, G. & Aizpurua, O. Diversity and compositional changes in the gut microbiota of wild and captive vertebrates: A meta-analysis. Sci. Rep. 11, 22660 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leclaire, S., Nielsen, J. F. & Drea, C. M. Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. Behav. Ecol. 25, 996–1004 (2014).Article 

    Google Scholar 
    Theis, K. R., Schmidt, T. M. & Holekamp, K. E. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci. Rep. 2, 615 (2012).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Theis, K. R. et al. Symbiotic bacteria appear to mediate hyena social odors. Proc. Natl. Acad. Sci. 110, 1983219837 (2013).Article 
    ADS 

    Google Scholar 
    Gassett, J. W., Dasher, K. A., Miller, K. V., Osborn, D. A. & Russell, S. M. White-tailed deer tarsal glands: Sex and age-related variation in microbial flora. Mammalia 64, 371–377 (2000).Article 

    Google Scholar 
    Sin, Y. W., Buesching, C. D., Burke, T. & Macdonald, D. W. Molecular characterization of the microbial communities in the subcaudal gland secretion of the European badger (Meles meles). FEMS Microbiol. Ecol. 81, 648–659 (2012).Article 
    PubMed 

    Google Scholar 
    Albone, E. S., Eglinton, G., Walker, J. M. & Ware, G. C. The anal sac secretion of the red fox (Vulpes vulpes); its chemistry and microbiology. A comparison with the anal sac secretion of the lion (Panthera leo). Life Sci. 14, 387–400 (1974).Article 
    PubMed 

    Google Scholar 
    Greene, L. K. et al. The importance of scale in comparative microbiome research: New insights from the gut and glands of captive and wild lemurs. Am. J. Primatol. 81, e22974 (2019).Article 
    PubMed 

    Google Scholar 
    Leclaire, S., Jacob, S., Greene, L. K., Dubay, G. R. & Drea, C. M. Social odours covary with bacterial community in the anal secretions of wild meerkats. Sci. Rep. 7, 3240 (2017).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grieves, L. A., Gloor, G. B., Kelly, T. R., Bernards, M. A. & MacDougall-Shackleton, E. A. Preen gland microbiota of songbirds differ across populations but not sexes. J. Anim. Ecol. 90, 2202–2212 (2021).Article 
    PubMed 

    Google Scholar 
    Whittaker, D. J. et al. Social environment has a primary influence on the microbial and odor profiles of a chemically signaling songbird. Front. Ecol. Evol. 4, 1–15 (2016).Article 

    Google Scholar 
    Grieves, L. A., Gloor, G. B., Bernards, M. A. & MacDougall-Shackleton, E. A. Preen gland microbiota covary with major histocompatibility complex genotype in a songbird. R. Soc. Open Sci. 8, 210936 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whittaker, D. J. et al. Experimental evidence that symbiotic bacteria produce chemical cues in a songbird. J. Exp. Biol. 222, jeb202978 (2019).Article 
    PubMed 

    Google Scholar 
    Martín-Vivaldi, M. et al. Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc. R. Soc. B Biol. Sci. 277, 123–130 (2010).Article 

    Google Scholar 
    Whittaker, D. J. et al. Intraspecific preen oil odor preferences in dark-eyed juncos (Junco hyemalis). Behav. Ecol. 22, 1256–1263 (2011).Article 

    Google Scholar 
    Grieves, L. A., Bernards, M. A. & MacDougall-Shackleton, E. A. Behavioural responses of songbirds to preen oil odour cues of sex and species. Anim. Behav. 156, 57–65 (2019).Article 

    Google Scholar 
    Grieves, L. A., Gloor, G. B., Bernards, M. A. & MacDougall-Shackleton, E. A. Songbirds show odour-based discrimination of similarity and diversity at the major histocompatibility complex. Anim. Behav. 158, 131–138 (2019).Article 

    Google Scholar 
    Pearce, D. S., Hoover, B. A., Jennings, S., Nevitt, G. A. & Docherty, K. M. Morphological and genetic factors shape the microbiome of a seabird species (Oceanodroma leucorhoa) more than environmental and social factors. Microbiome 5, 146 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leclaire, S. et al. Plumage microbiota covaries with the major histocompatibility complex in blue petrels. Mol. Ecol. 28, 833–846 (2019).PubMed 

    Google Scholar 
    Bisson, I.-A., Marra, P. P., Burtt, E. H. Jr., Sikaroodi, M. & Gillevet, P. M. Variation in plumage microbiota depends on season and migration. Microb. Ecol. 58, 212 (2009).Article 
    PubMed 

    Google Scholar 
    Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. 116, 23588–23593 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arcese, P., Sogge, M. K., Marr, A. B. & Patten, M. A. Song sparrow (Melospiza melodia), version 2.0. In The Birds of North America (ed. Rodewald, P. G.) (Cornell Lab of Ornithology, 2002).
    Google Scholar 
    Breton, J. et al. Ecotoxicology inside the gut: Impact of heavy metals on the mouse microbiome. BMC Pharmacol. Toxicol. 14, 62 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ruan, Y. et al. High doses of copper and mercury changed cecal microbiota in female mice. Biol. Trace Elem. Res. 189, 134–144 (2019).Article 
    PubMed 

    Google Scholar 
    Lin, X. et al. Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicol. Environ. Saf. 190, 110130 (2020).Article 
    PubMed 

    Google Scholar 
    Grieves, L. A. et al. Food stress, but not experimental exposure to mercury, affects songbird preen oil composition. Ecotoxicology 29, 275–285 (2020).Article 
    PubMed 

    Google Scholar 
    Christian, V. J., Miller, K. R. & Martindale, R. G. Food insecurity, malnutrition, and the microbiome. Curr. Nutr. Rep. 9, 356–360 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Genton, L., Cani, P. D. & Schrenzel, J. Alterations of gut barrier and gut microbiota in food restriction, food deprivation and protein-energy wasting. Clin. Nutr. 34, 341–349 (2015).Article 
    PubMed 

    Google Scholar 
    Noguera, J. C., Aira, M., Pérez-Losada, M., Domínguez, J. & Velando, A. Glucocorticoids modulate gastrointestinal microbiome in a wild bird. R. Soc. Open Sci. 5, 171743 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wienemann, T. et al. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Syst. Appl. Microbiol. 34, 542–551 (2011).Article 
    PubMed 

    Google Scholar 
    Salgado-Flores, A., Tveit, A. T., Wright, A.-D., Pope, P. B. & Sundset, M. A. Characterization of the cecum microbiome from wild and captive rock ptarmigans indigenous to Arctic Norway. PLoS One 14, e0213503 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. T. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, R. H. et al. Use of TLC-FID and GC-MS⁄FID to examine the effects of migratory state, diet and captivity on preen wax composition in White-throated Sparrows Zonotrichia albicollis. Ibis 152, 782–792 (2010).Article 

    Google Scholar 
    Xie, Y. et al. Effects of captivity and artificial breeding on microbiota in feces of the red-crowned crane (Grus japonensis). Sci. Rep. 6, 33350 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    San Juan, P. A., Castro, I. & Dhami, M. K. Captivity reduces diversity and shifts composition of the Brown Kiwi microbiome. Anim. Microbiome 3, 48 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, H., Wu, F.-T., Zhou, Q.-H. & Zhao, D.-P. Comparative analysis of gut microbiota in captive and wild oriental white storks: Implications for conservation biology. Front. Microbiol. 12, 649466 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Ruano, S. M. et al. The hoopoe’s uropygial gland hosts a bacterial community influenced by the living conditions of the bird. PLoS One 10, e0139734 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xenoulis, P. G. et al. Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet. Microbiol. 146, 320–325 (2010).Article 
    PubMed 

    Google Scholar 
    Kelly, T. R., Vinson, A. E., King, G. M. & Lattin, C. R. No guts about it: Captivity, but not neophobia phenotype, influences the cloacal microbiome of house sparrows (Passer domesticus). Integr. Org. Biol. 4, obac010 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grond, K., Sandercock, B. K., Jumpponen, A. & Zeglin, L. H. The avian gut microbiota: Community, physiology and function in wild birds. J. Avian Biol. 49, e01788 (2018).Article 

    Google Scholar 
    Videvall, E., Strandh, M., Engelbrecht, A., Cloete, S. & Cornwallis, C. K. Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Mol. Ecol. Resour. 18, 424–434 (2018).Article 
    PubMed 

    Google Scholar 
    McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kohl, K. D., Skopec, M. M. & Dearing, M. D. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv. Physiol. 2, cou009 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martínez-Mota, R., Kohl, K. D., Orr, T. J. & Denise Dearing, M. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 14, 67–78 (2020).Article 
    PubMed 

    Google Scholar 
    Chatelain, M., Frantz, A., Gasparini, J. & Leclaire, S. Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon. J. Avian Biol. 47, 521–529 (2016).Article 

    Google Scholar 
    Jacob, S. et al. Uropygial gland size and composition varies according to experimentally modified microbiome in great tits. BMC Evol. Biol. 14, 134 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jacob, J. & Ziswiler, V. The uropygial gland. In Avian Biology Vol. 6 (eds Farner, D. S. et al.) 199–324 (Academic Press, 1982).Chapter 

    Google Scholar 
    Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143 (2018).Article 
    PubMed 

    Google Scholar 
    Egert, M. & Simmering, R. The microbiota of the human skin. Microbiota Hum. Body 902, 61–81 (2016).Article 

    Google Scholar 
    Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome Res. 18, 1043–1050 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, B. et al. Molecular and biochemical characterization of a novel xylanase from Massilia sp. RBM26 isolated from the feces of Rhinopithecus bieti. J. Microbiol. Biotechnol. 26, 9–19 (2016).Article 
    PubMed 

    Google Scholar 
    Rosenberg, E. The Prokaryotes (Springer, 2014).Book 

    Google Scholar 
    Tang, J., Huang, J., Qiao, Z., Wang, R. & Wang, G. Mucilaginibacter pedocola sp. Nov., isolated from a heavy-metal-contaminated paddy field. Int. J. Syst. Evol. Microbiol. 66, 4033–4038 (2016).Article 
    PubMed 

    Google Scholar 
    Vasconcelos, A. L. et al. Mucilaginibacter sp. strain metal (loid) and antibiotic resistance isolated from estuarine soil contaminated mine tailing from the Fundão dam. Genes 13, 174 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dewi, G. & Kollanoor Johny, A. Lactobacillus in food animal production—A forerunner for clean label prospects in animal-derived products. Front. Sustain. Food Syst. 6, 831195 (2022).Article 

    Google Scholar 
    Dworkin, M. The Prokaryotes Proteobacteria: Alpha and Beta Subclasses (Springer Science & Business Media, 2006).Book 

    Google Scholar 
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B 286, 20182448 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).Article 
    PubMed 

    Google Scholar 
    Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).Article 
    PubMed 

    Google Scholar 
    Bottini, C. L., MacDougall-Shackleton, S. A., Branfireun, B. A. & Hobson, K. A. Feathers accurately reflect blood mercury at time of feather growth in a songbird. Sci. Total Environ. 775, 145739 (2021).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kelly, T. R., Bonner, S. J., MacDougall-Shackleton, S. A. & MacDougall-Shackleton, E. A. Exposing migratory sparrows to Plasmodium suggests costs of resistance, not necessarily of infection itself. J. Exp. Zool. Part Ecol. Integr. Physiol. 329, 5–14 (2018).Article 

    Google Scholar 
    Whittaker, D. J. & Hagelin, J. C. Female-based patterns and social function in avian chemical communication. J. Chem. Ecol. 47, 53–62 (2020).
    Google Scholar 
    Griffiths, R., Double, M. C., Orr, K. & Dawson, R. J. A DNA test to sex most birds. Mol. Ecol. 7, 1071–1075 (1998).Article 
    PubMed 

    Google Scholar 
    Canadian Council on Animal Care (CCAC). Three Rs | Trois R :: About the Three Rs. https://3rs.ccac.ca/.Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. 82, 6955–6959 (1985).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).Article 
    ADS 
    PubMed 

    Google Scholar 
    Gloor, G. B. et al. Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products. PLoS One 5, e15406 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bian, G. et al. The gut microbiota of healthy aged Chinese is similar to that of the healthy young. Msphere 2, e00327-e417 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stoler, N. & Nekrutenko, A. Sequencing error profiles of Illumina sequencing instruments. NAR Genom. Bioinform. 3, lqab019 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).Article 
    PubMed 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aitchison, J. The Statistical Analysis of Compositional Data (Chapman and Hall, 1986).Book 
    MATH 

    Google Scholar 
    Gloor, G. B. & Reid, G. Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data. Can. J. Microbiol. 62, 692–703 (2016).Article 
    PubMed 

    Google Scholar 
    Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as compositions: An outlook and review. Bioinformatics 34, 2870–2878 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palarea-Albaladejo, J. & Martin-Fernandez, J. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 143, 85–96 (2015).Article 

    Google Scholar 
    Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aitchison, J. & Greenacre, M. Biplots of compositional data. J. R. Stat. Soc. Ser. C Appl. Stat. 51, 375–392 (2002).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Dixon, P. & Palmer, M. W. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G. & Gloor, G. B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One 8, e67019 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nearing, J. T. et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342 (2022).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Halsey, L. G., Curran-Everett, D., Vowler, S. L. & Drummond, G. B. The fickle P value generates irreproducible results. Nat. Methods 12, 179–185 (2015).Article 
    PubMed 

    Google Scholar  More

  • in

    Spotting hopeful signs for coral health in Barbados’s backyard

    I’m a coral-reef ecologist at the University of the West Indies at Cave Hill in Barbados. Every five years, as often as our funding allows, my team and I survey coral reefs for the government. I was born in Spain and earned my PhD at McGill University in Montreal, Canada. But I decided to work in the Caribbean, where I think I am more useful.We monitor the abundance and diversity of corals, algae, sponges and fish. Barbados no longer has populations of large fish, such as groupers and snappers, because of overfishing. The populations of parrotfish, Barbados’s most important species ecologically and economically, have seemed stable for the past decade.Reefs are under threat globally, and the biggest losses of corals here occurred in the 1970s and 1980s. Since the 1990s, the shallow reefs have stabilized, but the deeper reefs have continued to deteriorate. And numbers of sponges and algae, which can damage corals when too abundant, have gradually increased in the deeper reefs. Still, there are positive signs. Staghorn corals (Acropora cervicornis), which nearly went extinct here in the 1970s, are making a slow comeback.This photo was taken in early September and the water was 28 °C or 29 °C. But I still wore a wetsuit with a hood, because after 90 minutes of scuba diving, you get cold.We survey 43 sites in two months, doing one or two dives a day, three times a week. Four of us dive together; we are like a well-oiled machine.I wish we could do surveys more frequently; in a rapidly changing environment, we need to know what is happening. But there’s not enough money. Still, new technology can model reefs in 3D. Those tools are becoming more affordable, and I think we’ll be using them in the next decade. Then, we could monitor more sites more often with the same resources.I’ve wanted to be a biologist since I was a young boy. And it doesn’t get any better than studying coral reefs in your backyard. More

  • in

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Surface energy fluxes and componentsIn our study, we focused on the circumpolar land north of 60° latitude, and specifically on the extent of the circumpolar Arctic vegetation map (CAVM20, Supplementary Fig. 1–3). We obtained half-hourly and hourly in situ observations of energy fluxes and meteorological variables from the monitoring networks FLUXNET28 (fluxnet.org; FLUXNET2015 dataset), AmeriFlux29 (ameriflux.lbl.gov), AON31,32 (aon.iab.uaf.edu), ICOS (icos-cp.eu), GEM35,36 (g-e-m.dk), GC-Net33,34 (cires1.colorado.edu/steffen/gcnet) and PROMICE30; (promice.dk; Supplementary Table 3). We did not include observations from the Baseline Surface Radiation Network (BSRN; bsrn.awi.de) and Global Energy Balance Archive (GEBA; geba.ethz.ch) because they typically lack information on non-radiative energy fluxes. Finally, we did not include observations from the European Flux Database Cluster (EFDC, europe-fluxdata.eu) because these data are largely located outside the domain of the CAVM20.We aggregated surface energy fluxes and components (Supplementary Table 1) to daily resolution as follows: (i) we extracted only directly measured data and excluded gap-filled data by filtering according to quality information; (ii) we performed a basic outlier filtering (excluding shortwave and longwave radiation flux values >1400 Wm−2 and in case of incoming/outgoing radiation More

  • in

    Intermediate snowpack melt-out dates guarantee the highest seasonal grasslands greening in the Pyrenees

    Battaglini, L., Bovolenta, S., Gusmeroli, F., Salvador, S. & Sturaro, E. Environmental sustainability of alpine livestock farms. Ital. J. Anim. Sci. 13, 3155 (2014).
    Google Scholar 
    Lavorel, S. et al. Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Reg. Environ. Change 17, 2251–2264 (2017).PubMed Central 

    Google Scholar 
    Pan, Y., Wu, J. & Xu, Z. Analysis of the tradeoffs between provisioning and regulating services from the perspective of varied share of net primary production in an alpine grassland ecosystem. Ecol. Complex. 17, 79–86 (2014).
    Google Scholar 
    Rossi, M. et al. A comparison of the signal from diverse optical sensors for monitoring alpine grassland dynamics. Remote Sens. 11, 296 (2019).ADS 

    Google Scholar 
    Körner, C. Plant ecology at high elevations. In Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (ed. Körner, C.) 1–7 (Springer, 2003). https://doi.org/10.1007/978-3-642-18970-8_1.Jonas, T., Rixen, C., Sturm, M. & Stoeckli, V. How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res. Biogeosci. 113 (2008).Körner, C. Impact of atmospheric changes on high mountain vegetation. In Mountain Environments in Changing Climates 155–166 (Routledge, 1994).Choler, P. Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration. Biogeosciences 12, 3885–3897 (2015).ADS 

    Google Scholar 
    Schirmer, M., Wirz, V., Clifton, A. & Lehning, M. Persistence in intra-annual snow depth distribution: 1. Measurements and topographic control. Water Resour. Res. 47, 09516 (2011).ADS 

    Google Scholar 
    Revuelto, J., Jonas, T. & López-Moreno, J.-I. Backward snow depth reconstruction at high spatial resolution based on time-lapse photography. Hydrol. Process. 30, 2976–2990 (2016).ADS 

    Google Scholar 
    López-Moreno, J. I. et al. Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Adv. Water Resour. 55, 40–52 (2013).ADS 

    Google Scholar 
    Clark, M. P. et al. Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review. Water Resour. Res. 47, (2011).Wayand, N. E., Hamlet, A. F., Hughes, M., Feld, S. I. & Lundquist, J. D. Intercomparison of meteorological forcing data from empirical and mesoscale model sources in the north fork american river basin in northern sierra Nevada, California. J. Hydrometeorol. 14, 677–699 (2013).ADS 

    Google Scholar 
    Revuelto, J., López-Moreno, J. I., Azorin-Molina, C. & Vicente-Serrano, S. M. Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: Intra- and inter-annual persistence. Cryosphere 8, 1989–2006 (2014).ADS 

    Google Scholar 
    Winkler, D. E., Butz, R. J., Germino, M. J., Reinhardt, K. & Kueppers, L. M. Snowmelt timing regulates community composition, phenology, and physiological performance of alpine plants. Front. Plant Sci. (2018).Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).
    Google Scholar 
    Billings, W. D. Arctic and alpine vegetations: Similarities, differences, and susceptibility to disturbance. Bioscience 23, 697–704 (1973).
    Google Scholar 
    Hua, X., Ohlemüller, R. & Sirguey, P. Differential effects of topography on the timing of the growing season in mountainous grassland ecosystems. Environ. Adv. 8, 100234 (2022).
    Google Scholar 
    Xie, J. et al. Land surface phenology and greenness in Alpine grasslands driven by seasonal snow and meteorological factors. Sci. Total Environ. 725, 138380 (2020).ADS 
    CAS 

    Google Scholar 
    Carlson, B. Z., Choler, P., Renaud, J., Dedieu, J.-P. & Thuiller, W. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities. Ann. Bot. 116, 1023–1034 (2015).PubMed Central 

    Google Scholar 
    Beniston, M. et al. The European mountain cryosphere: A review of its current state, trends, and future challenges. Cryosphere 12, 759–794 (2018).ADS 

    Google Scholar 
    Stöckli, R. & Vidale, P. L. European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. Int. J. Remote Sens. 25, 3303–3330 (2004).
    Google Scholar 
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).ADS 
    CAS 

    Google Scholar 
    Fazeli Farsani, I., Farzaneh, M. R., Besalatpour, A. A., Salehi, M. H. & Faramarzi, M. Assessment of the impact of climate change on spatiotemporal variability of blue and green water resources under CMIP3 and CMIP5 models in a highly mountainous watershed. Theor. Appl. Climatol. 136, 169–184 (2019).ADS 

    Google Scholar 
    Kharin, V. V., Zwiers, F. W., Zhang, X. & Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Change 119, 345–357 (2013).ADS 

    Google Scholar 
    Engler, R. et al. 21st century climate change threatens mountain flora unequally across Europe. Glob. Change Biol. 17, 2330–2341 (2011).ADS 

    Google Scholar 
    Qiao, D. & Wang, N. Relationship between winter snow cover dynamics, climate and spring grassland vegetation phenology in Inner Mongolia, China. ISPRS Int. J. Geo-Inf. 8, 42 (2019).
    Google Scholar 
    Zong, S. et al. Upward range shift of a dominant alpine shrub related to 50 years of snow cover change. Remote Sens. Environ. 268, 112773 (2022).ADS 

    Google Scholar 
    Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Change Biol. 20, 3256–3269 (2014).ADS 

    Google Scholar 
    Zheng, J., Jia, G. & Xu, X. Earlier snowmelt predominates advanced spring vegetation greenup in Alaska. Agric. For. Meteorol. 315, 108828 (2022).ADS 

    Google Scholar 
    Dedieu, J.-P. et al. On the importance of high-resolution time series of optical imagery for quantifying the effects of snow cover duration on alpine plant habitat. Remote Sens. 8, 481 (2016).ADS 

    Google Scholar 
    Virtanen, T. & Ek, M. The fragmented nature of tundra landscape. Int. J. Appl. Earth Obs. Geoinf. 27, 4–12 (2014).ADS 

    Google Scholar 
    Fontana, F., Rixen, C., Jonas, T., Aberegg, G. & Wunderle, S. Alpine grassland phenology as seen in AVHRR, VEGETATION, and MODIS NDVI time series—A comparison with in situ measurements. Sensors 8, 2833–2853 (2008).ADS 
    PubMed Central 

    Google Scholar 
    Carlson, B. Z. et al. Observed long-term greening of alpine vegetation—A case study in the French Alps. Environ. Res. Lett. 12, 114006 (2017).ADS 

    Google Scholar 
    Tomaszewska, M. A., Nguyen, L. H. & Henebry, G. M. Land surface phenology in the highland pastures of montane Central Asia: Interactions with snow cover seasonality and terrain characteristics. Remote Sens. Environ. 240, 111675 (2020).ADS 

    Google Scholar 
    Rumpf, S. B. et al. From white to green: Snow cover loss and increased vegetation productivity in the European Alps. Science 376, 1119–1122 (2022).ADS 
    CAS 

    Google Scholar 
    Myneni, R. B. & Williams, D. L. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 49, 200–211 (1994).ADS 

    Google Scholar 
    Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).
    Google Scholar 
    Asam, S. et al. Relationship between spatiotemporal variations of climate, snow cover and plant phenology over the alps—An earth observation-based analysis. Remote Sens. 10, 1757 (2018).ADS 

    Google Scholar 
    Rossini, M. et al. Remote sensing-based estimation of gross primary production in a subalpine grassland. Biogeosciences 9, 2565–2584 (2012).ADS 

    Google Scholar 
    Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 28, 9–22 (1989).ADS 

    Google Scholar 
    Hall, D. K. & Riggs, G. A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 21, 1534–1547 (2007).ADS 

    Google Scholar 
    Julitta, T. et al. Using digital camera images to analyse snowmelt and phenology of a subalpine grassland. Agric. For. Meteorol. 198–199, 116–125 (2014).ADS 

    Google Scholar 
    Francon, L. et al. Assessing the effects of earlier snow melt-out on alpine shrub growth: The sooner the better?. Ecol. Ind. 115, 106455 (2020).
    Google Scholar 
    Assmann, J. J., Myers-Smith, I. H., Kerby, J. T., Cunliffe, A. M. & Daskalova, G. N. Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Environ. Res. Lett. 15, 125002 (2020).ADS 
    CAS 

    Google Scholar 
    Revuelto, J. et al. Meteorological and snow distribution data in the Izas Experimental Catchment (Spanish Pyrenees) from 2011 to 2017. Earth Syst. Sci. Data 9, 993–1005 (2017).ADS 

    Google Scholar 
    Nadal Romero, E. et al. Sediment balance in four small catechumen’s with different land cover in the Central Pyrenes (Spain). (2009).Gartzia, M., Alados, C. L. & Pérez-Cabello, F. Assessment of the effects of biophysical and anthropogenic factors on woody plant encroachment in dense and sparse mountain grasslands based on remote sensing data. Progr. Phys. Geogr. Earth Environ. 38, 201–217 (2014).
    Google Scholar 
    Fillat, F., González, R. G., García, D. G., Gómez, D. & Reiné, R. Pastos del Pirineo. (Editorial CSIC-CSIC Press, 2008).Gómez-García, D., Ferrández, J. V., Tejero, P. & Font, X. Spatial distribution and environmental analysis of the alpine flora in the Pyrenees. Pirineos 172, e027–e027 (2017).
    Google Scholar 
    Gascoin, S. et al. A snow cover climatology for the Pyrenees from MODIS snow products. Hydrol. Earth Syst. Sci. 19, 2337–2351 (2015).ADS 

    Google Scholar 
    López-Moreno, J. I. et al. Different sensitivities of snowpacks to warming in Mediterranean climate mountain areas. Environ. Res. Lett. 12, 074006 (2017).ADS 

    Google Scholar 
    Cernusca, A. Standörtliche Variabilität in Mikroklima und Energiehaushalt Alpiner Zwergstrauchbestände. In Verhandlungen der Gesellschaft für Ökologie Wien 1975: 5. Jahresversammlung vom 22. bis 24. September 1975 in Wien (ed. Müller, P.) 9–21 (Springer Netherlands, 1976). https://doi.org/10.1007/978-94-015-7168-5_2.Cernusca, A. & Seeber, M. C. Canopy structure, microclimate and the energy budget in different alpine plant communities. In Symposium—British Ecological Society (1981).Kudo, G., Nordenhäll, U. & Molau, U. Effects of snowmelt timing on leaf traits, leaf production, and shoot growth of alpine plants: Comparisons along a snowmelt gradient in northern Sweden. Écoscience 6, 439–450 (1999).
    Google Scholar 
    Baptist, F. & Choler, P. A simulation of the importance of length of growing season and canopy functional properties on the seasonal gross primary production of temperate alpine meadows. Ann. Bot. 101, 549–559 (2008).PubMed Central 

    Google Scholar 
    Baptist, F., Flahaut, C., Streb, P. & Choler, P. No increase in alpine snowbed productivity in response to experimental lengthening of the growing season. Plant Biol. 12, 755–764 (2010).CAS 

    Google Scholar 
    Wipf, S., Rixen, C. & Mulder, C. P. H. Advanced snowmelt causes shift towards positive neighbour interactions in a subarctic tundra community. Glob. Change Biol. 12, 1496–1506 (2006).ADS 

    Google Scholar 
    Sierra-Almeida, A. & Cavieres, L. A. Summer freezing resistance decreased in high-elevation plants exposed to experimental warming in the central Chilean Andes. Oecologia 163, 267–276 (2010).ADS 

    Google Scholar 
    Camarero, J. J., Gutiérrez, E. & Fortin, M.-J. Spatial pattern of subalpine forest-alpine grassland ecotones in the Spanish Central Pyrenees. For. Ecol. Manag. 134, 1–16 (2000).
    Google Scholar 
    Dadic, R., Mott, R., Lehning, M. & Burlando, P. Parameterization for wind-induced preferential deposition of snow. Hydrol. Process. 24, 1994–2006 (2010).
    Google Scholar 
    Vionnet, V. et al. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model. Cryosphere 8, 395–415 (2014).ADS 

    Google Scholar 
    Burns, S. F., Tonkin, P. J. & Thorn, C. E. Soil-geomorphic models and the spatial distribution and development of alpine soils. In Space and Time in Geomorphology: Binghamton Geomorphology Symposium, vol. 12 (2020).Lana-Renault, N. et al. Comparative analysis of the response of various land covers to an exceptional rainfall event in the central Spanish Pyrenees, October 2012. Earth Surf. Proc. Land. 39, 581–592 (2014).ADS 

    Google Scholar 
    Freppaz, M., Williams, B. L., Edwards, A. C., Scalenghe, R. & Zanini, E. Simulating soil freeze/thaw cycles typical of winter alpine conditions: Implications for N and P availability. Appl. Soil. Ecol. 35, 247–255 (2007).
    Google Scholar 
    López-Moreno, J. I. et al. Long-term trends (1958–2017) in snow cover duration and depth in the Pyrenees. Int. J. Climatol. 40, 6122–6136 (2020).
    Google Scholar 
    López-Moreno, J. I., Vicente-Serrano, S. M. & Lanjeri, S. Mapping snowpack distribution over large areas using GIS and interpolation techniques. Clim. Res. 33, 257–270 (2007).
    Google Scholar 
    Revuelto, J., López-Moreno, J. I. & Alonso-González, E. Light and shadow in mapping alpine snowpack with unmanned aerial vehicles in the absence of ground control points. Water Resour. Res. 57, e2020WR028980 (2021).ADS 

    Google Scholar 
    Eberhard, L. A. et al. Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping. Cryosphere 15, 69–94 (2021).ADS 

    Google Scholar 
    Harder, P., Schirmer, M., Pomeroy, J. & Helgason, W. Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle. Cryosphere 10, 2559–2571 (2016).ADS 

    Google Scholar 
    Stanton, M. L., Rejmánek, M. & Galen, C. Changes in vegetation and soil fertility along a predictable snowmelt gradient in the mosquito range, Colorado, USA. Arct. Alp. Res. 26, 364–374 (1994).
    Google Scholar 
    Winkler, D. E., Chapin, K. J. & Kueppers, L. M. Soil moisture mediates alpine life form and community productivity responses to warming. Ecology 97, 1553–1563 (2016).
    Google Scholar 
    Litaor, M. I., Williams, M. & Seastedt, T. R. Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. J. Geophys. Res. Biogeosci. 113, (2008).Keller, F., Kienast, F. & Beniston, M. Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps. Reg. Environ. Change 1, 70–77 (2000).
    Google Scholar 
    Running, S. W. Estimating terrestrial primary productivity by combining remote sensing and ecosystem simulation. In Remote Sensing of Biosphere Functioning (eds. Hobbs, R. J. & Mooney, H. A.) 65–86 (Springer, 1990). https://doi.org/10.1007/978-1-4612-3302-2_4.Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 33, 481–486 (1995).ADS 

    Google Scholar 
    Huang, S., Tang, L., Hupy, J. P., Wang, Y. & Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 32, 1–6 (2021).
    Google Scholar 
    Floyd, D. A. & Anderson, J. E. A comparison of three methods for estimating plant cover. J. Ecol. 75, 221–228 (1987).
    Google Scholar 
    Peet, R. K. The measurement of species diversity. Annu. Rev. Ecol. Syst. 5, 285–307 (1974).
    Google Scholar 
    Mouillot, D. & Leprêtre, A. A comparison of species diversity estimators. Res. Popul. Ecol. 41, 203–215 (1999).
    Google Scholar  More