More stories

  • in

    Factors influencing lion movements and habitat use in the western Serengeti ecosystem, Tanzania

    Pacifici, M., Di Marco, M. & Watson, J. E. M. Protected areas are now the last strongholds for many imperiled mammal species. Conserv. Lett. 13, 1–7 (2020).
    Google Scholar 
    Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol. 2, 909–914 (2004).CAS 

    Google Scholar 
    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the anthropocene: the great acceleration. Anthr. Rev. 2, 81–98 (2015).
    Google Scholar 
    Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4, 170052 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wolf, C. & Ripple, W. J. Prey depletion as a threat to the world’s large carnivores. R. Soc. Open Sci. 3, 160252 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).PubMed 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).
    Google Scholar 
    Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).ADS 
    PubMed 

    Google Scholar 
    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).ADS 
    PubMed 

    Google Scholar 
    Rija, A. A., Critchlow, R., Thomas, C. D. & Beale, C. M. Global extent and drivers of mammal population declines in protected areas under illegal hunting pressure. PLoS One 15, 1–14 (2020).
    Google Scholar 
    Bamford, A. J., Ferrol-Schulte, D. & Wathan, J. Human and wildlife usage of a protected area buffer zone in an area of high immigration. Oryx 48, 504–513 (2014).
    Google Scholar 
    Snyder, K. D., Mneney, P. B. & Wittemyer, G. Predicting the risk of illegal activity and evaluating law enforcement interventions in the western Serengeti. Conserv. Sci. Pract. 1, 1–13 (2019).
    Google Scholar 
    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lynagh, F. M. & Urich, P. B. A critical review of buffer zone theory and practice: A Philippine case study. Soc. Nat. Resour. 15, 129–145 (2002).
    Google Scholar 
    Paolino, R. M. et al. Buffer zone use by mammals in a Cerrado protected area. Biota Neotrop. 16, (2016).
    Mills, K. L. et al. Comparable space use by lions between hunting concessions and national parks in West Africa. J. Appl. Ecol. 57, 975–984 (2020).ADS 

    Google Scholar 
    Lindsey, P. A. et al. The performance of African protected areas for lions and their prey. Biol. Conserv. 209, 137–149 (2017).
    Google Scholar 
    Tyrrell, P., Russell, S. & Western, D. Seasonal movements of wildlife and livestock in a heterogenous pastoral landscape: Implications for coexistence and community based conservation. Glob. Ecol. Conserv. 12, 59–72 (2017).
    Google Scholar 
    Veldhuis, M. P. et al. Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science 363, 1424–1428 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Everatt, K. T., Andresen, L. & Somers, M. J. The influence of prey, pastoralism and poaching on the hierarchical use of habitat by an apex predator. Afr. J. Wildl. Res. 45, 187–196 (2015).
    Google Scholar 
    Oriol-Cotterill, A., Macdonald, D. W., Valeix, M., Ekwanga, S. & Frank, L. G. Spatiotemporal patterns of lion space use in a human-dominated landscape. Anim. Behav. 101, 27–39 (2015).
    Google Scholar 
    Schuette, P., Creel, S. & Christianson, D. Coexistence of African lions, livestock, and people in a landscape with variable human land use and seasonal movements. Biol. Conserv. 157, 148–154 (2013).
    Google Scholar 
    Beattie, K., Olson, E. R., Kissui, B., Kirschbaum, A. & Kiffner, C. Predicting livestock depredation risk by African lions (Panthera leo) in a multi-use area of northern Tanzania. Eur. J. Wildl. Res. 66, 1–4 (2020).
    Google Scholar 
    Loveridge, A. J., Hemson, G., Davidson, Z. & Macdonald, D. W. African lions on the edge: Reserve boundaries as ‘attractive sinks’. In Biology and Conservation of Wild Felids (eds. Macdonald, D. W. & Loveridge, A. J.) 283–304 (Oxford University Press, 2010).Boyers, M., Parrini, F., Owen-Smith, N., Erasmus, B. F. N. & Hetem, R. S. How free-ranging ungulates with differing water dependencies cope with seasonal variation in temperature and aridity. Conserv. Physiol. 7, 1–12 (2019).
    Google Scholar 
    Abade, L. et al. The relative effects of prey availability, anthropogenic pressure and environmental variables on lion (Panthera leo) site use in Tanzania’s Ruaha landscape during the dry season. J. Zool. 310, 135–144 (2020).
    Google Scholar 
    Hopcraft, J. G. C., Sinclair, A. R. E. & Packer, C. Planning for success: Serengeti lions seek prey accessibility rather than abundance. J. Anim. Ecol. 74, 559–566 (2005).
    Google Scholar 
    Treves, A. & Karanth, K. U. Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17, 1491–1499 (2003).
    Google Scholar 
    Kisingo, A. W. Governance of Protected Areas in the Serengeti Ecosystem, Tanzania (University of Victoria, 2013).UNEP-WCMC & IUCN. Protected planet: the world database on protected areas (WDPA). www.protectedplanet.net (2020).Zella, A. Y. The management of protected areas in Serengeti ecosystem: A case study of Ikorongo and Grumeti Game Reserves (IGGRs). Int. J. Eng. Sci. 6, 22–50 (2016).
    Google Scholar 
    IUCN. Ngorongoro Conservation Area conservation outlook assessment. The IUCN World Heritage Outlook https://worldheritageoutlook.iucn.org/explore-sites/wdpaid/2010 (2020).Kittle, A. M., Bukombe, J. K., Sinclair, A. R. E., Mduma, S. A. R. & Fryxell, J. M. Landscape-level movement patterns by lions in western Serengeti: Comparing the influence of inter-specific competitors, habitat attributes and prey availability. Mov. Ecol. 4, 1–18 (2016).
    Google Scholar 
    Packer, C. et al. Ecological change, group territoriality, and population dynamics in Serengeti lions. Science 307, 390–393 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mwampeta, S. B. et al. Lion and spotted hyena distributions within a buffer area of the Serengeti-Mara ecosystem. Sci. Rep. 11, 1–8 (2021).
    Google Scholar 
    Grumeti Fund. Protecting wildlife and human lives in the western corridor of the Serengeti. https://www.grumetifund.org/blog/updates/protecting-wildlife-and-human-lives-in-the-western-corridor-of-the-serengeti/ (2020).IUCN. Serengeti National Park conservation outlook assessment. The IUCN World Heritage Outlook https://worldheritageoutlook.iucn.org/explore-sites/wdpaid/2575 (2017).Veldhuis, M. P. et al. Data from: Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Dryad https://doi.org/10.5061/dryad.b303788 (2021).Larsen, F. et al. Wildebeest migration drives tourism demand in the Serengeti. Biol. Conserv. 248, 108688 (2020).
    Google Scholar 
    Norton-Griffiths, M., Herlocker, D. & Pennycuick, L. The patterns of rainfall in the Serengeti Ecosystem, Tanzania. Afr. J. Ecol. 13, 347–374 (1975).
    Google Scholar 
    McNaughton, S. J. Serengeti grassland ecology: The role of composite environmental factors and contingency in community organization. Ecol. Monogr. 53, 291–320 (1983).
    Google Scholar 
    Buchhorn, M. et al. Copernicus global land service: land cover 100m: version 3 globe 2015-2019. Copernicus Global Land Operations. Zenodo. https://doi.org/10.5281/zenodo.3938963.Boone, R. B., Thirgood, S. J. & Hopcraft, J. G. C. Serengeti wildebeest migratory patterns modeled from rainfall and new vegetation growth. Ecology 87, 1987–1994 (2006).PubMed 

    Google Scholar 
    Ogutu, J. O. & Dublin, H. T. The response of lions and spotted hyaenas to sound playbacks as a technique for estimating population size. Afr. J. Ecol. 36, 83–95 (1998).
    Google Scholar 
    Fyumagwa, R. D. et al. Comparison of anaesthesia and cost of two immobilization protocols in free-ranging lions. S. Afr. J. Wildl. Res. 42, 67–70 (2012).
    Google Scholar 
    Rija, A. A. Spatial Pattern of Illegal Activities and the Impact on Wildlife Populations in Protected Areas in the Serengeti Ecosystem. (University of York, 2017).Kideghesho, J. R. Wildlife Conservation and Local Land Use Conflicts in Western Serengeti Corridor, Tanzania (Norwegian University of Science and Technology, 2006).Holmern, T., Muya, J. & Røskaft, E. Local law enforcement and illegal bushmeat hunting outside the Serengeti National Park, Tanzania. Environ. Conserv. 34, 55–63 (2007).
    Google Scholar 
    Schmitt, J. A. Improving Conservation Efforts in the Serengeti Ecosystem, Tanzania: An Examination of Knowledge, Benefits, Costs, and Attitudes (University of Minnesota, 2010).Kaaya, E. & Chapman, M. Micro-credit and community wildlife management: Complementary strategies to improve conservation outcomes in Serengeti National Park, Tanzania. Environ. Manag. 60, 464–475 (2017).ADS 

    Google Scholar 
    Kideghesho, J. R., Røskaft, E. & Kaltenborn, B. P. Factors influencing conservation attitudes of local people in Western Serengeti, Tanzania. Biodivers. Conserv. 16, 2213–2230 (2007).
    Google Scholar 
    Kegamba, J. J., Sangha, K. K., Wurm, P. & Garnett, S. T. A review of conservation-related benefit-sharing mechanisms in Tanzania. Glob. Ecol. Conserv. 33, e01955 (2022).
    Google Scholar 
    Rija, A. A. & Kideghesho, J. R. Poachers’ strategies to surmount anti-poaching efforts in Western Serengeti, Tanzania. In Protected Areas in Northern Tanzania (eds. Durrant, J. O. et al.) 91–112 (Springer Nature Switzerland AG, 2020).Mfunda, I. M. & Røskaft, E. Wildlife or crop production: The dilemma of conservation and human livelihoods in Serengeti, Tanzania. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 7, 39–49 (2011).
    Google Scholar 
    Kideghesho, J. R. Reversing the trend of wildlife crime in Tanzania: Challenges and opportunities. Biodivers. Conserv. 25, 427–449 (2016).
    Google Scholar 
    Sisya, E., Frankfurt Zoological Society & Tanzania National Parks Authority. Serengeti Park Roads. Serengeti GIS and Data Centre and ArcGIS Online. ArcGIS online https://www.arcgis.com/home/item.html?id=f8d9e2cb6ab24b92bd6d645a0d659963. (2018).Maliti, H., von Hagen, C., Frankfurt Zoological Society, Tanzania National Parks Authority & Hopcraft, J. G. C. Serengeti Park rivers. https://serengetidata.weebly.com/rivers-and-lakes.html (2008).Worldpop & Center for International Earth Science Information Network. The spatial distribution of population density in 2018, Tanzania. https://doi.org/10.5258/SOTON/WP00674 (2018).Gilbert, M. et al. Global cattle distribution in 2010 (5 minutes of arc). Harvard Dataverse, Version 3. https://doi.org/10.7910/DVN/GIVQ7 (2018).Gilbert, M. et al. [dataset] Global goat distribution in 2010 (5 minutes of arc). Harvard Dataverse, Version 3. https://doi.org/10.7910/DVN/OCPH42 (2018).Gilbert, M. et al. Global sheep distribution in 2010 (5 minutes of arc). Harvard Dataverse, Version 3. https://doi.org/10.7910/DVN/BLWPZN (2018).Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 1–11 (2018).
    Google Scholar 
    Swihart, R. K. & Slade, N. A. Testing for independence of observations in animal movements. Ecology 66, 1176–1184 (1985).
    Google Scholar 
    Seaman, D. E. & Powell, R. A. An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology 77, 2075–2085 (1996).
    Google Scholar 
    Calenge, C. The package adehabitat for the R software: Tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Version 4.0.4. https://www.r-project.org/ (2021).Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).
    Google Scholar 
    Thomas, D. L. & Taylor, E. J. Study designs and tests for comparing resource use and availability II. J. Wildl. Manag. 70, 324–336 (2006).
    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Sommer, S. & Huggins, R. M. Variables selection using the Wald test and a robust CP. J. R. Stat. Soc. 45, 15–29 (1996).MATH 

    Google Scholar 
    Burnham, K. P. & Anderson, D. D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2020).Ogutu, J. O. & Dublin, H. T. Demography of lions in relation to prey and habitat in the Maasai Mara National Reserve, Kenya. Afr. J. Ecol. 40, 120–129 (2002).
    Google Scholar 
    Henschel, P. et al. Determinants of distribution patterns and management needs in a critically endangered lion (Panthera leo) population. Front. Ecol. Evol. 4, 1–14 (2016).
    Google Scholar 
    Melubo, K. & Lovelock, B. Living inside a UNESCO World Heritage Site: The perspective of the Maasai community in Tanzania. Tour. Plan. Dev. 16, 197–216 (2019).
    Google Scholar 
    Makupa, E. E. Conservation Efforts and Local Livelihoods in Western Serengeti, Tanzania: Experiences from Ikona Community Wildlife Management Area (University of Victoria, 2013).Ndibalema, V. G. & Songorwa, A. N. Illegal meat hunting in serengeti: Dynamics in consumption and preferences. Afr. J. Ecol. 46, 311–319 (2008).
    Google Scholar 
    Geldmann, J., Joppa, L. N. & Burgess, N. D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 28, 1604–1616 (2014).PubMed 

    Google Scholar 
    Tuqa, J. H. et al. Impact of severe climate variability on lion home range and movement patterns in the Amboseli ecosystem, Kenya. Glob. Ecol. Conserv. 2, 1–10 (2014).
    Google Scholar 
    Blackburn, S., Hopcraft, J. G. C., Ogutu, J. O., Matthiopoulos, J. & Frank, L. Human–wildlife conflict, benefit sharing and the survival of lions in pastoralist community-based conservancies. J. Appl. Ecol. 53, 1195–1205 (2016).
    Google Scholar 
    Thirgood, S. et al. Can parks protect migratory ungulates? The case of the Serengeti wildebeest. Anim. Conserv. 7, 113–120 (2004).
    Google Scholar 
    Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O. & Brashares, J. S. Accelerated human population growth at protected area edges. Science 321, 123–126 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hayward, M. W. & Kerley, G. I. H. Prey preferences and dietary overlap amongst Africa’s large predators. S. Afr. J. Wildl. Res. 38, 93–108 (2008).
    Google Scholar 
    Mkonyi, F. J., Estes, A. B., Lichtenfeld, L. L. & Durant, S. M. Large carnivore distribution in relationship to environmental and anthropogenic factors in a multiple-use landscape of northern Tanzania. Afr. J. Ecol. 56, 972–983 (2018).
    Google Scholar 
    Hill, J. E., De Vault, T. L. & Belant, J. L. A review of ecological factors promoting road use by mammals. Mamm. Rev. 51, 214–227 (2021).
    Google Scholar 
    Hägerling, H. G. & Ebersole, J. J. Roads as travel corridors for mammals and ground birds in Tarangire National Park, Tanzania. Afr. J. Ecol. 55, 701–704 (2017).
    Google Scholar 
    Bateman, P. W. & Fleming, P. A. Are negative effects of tourist activities on wildlife over-reported? A review of assessment methods and empirical results. Biol. Conserv. 211, 10–19 (2017).
    Google Scholar 
    de Boer, W. F. et al. Spatial distribution of lion kills determined by the water dependency of prey species. J. Mammal. 91, 1280–1286 (2010).
    Google Scholar 
    Loveridge, A. J., Valeix, M., Elliot, N. B. & Macdonald, D. W. The landscape of anthropogenic mortality: How African lions respond to spatial variation in risk. J. Appl. Ecol. 54, 815–825 (2017).
    Google Scholar 
    Suraci, J. P. et al. Behavior-specific habitat selection by African lions may promote their persistence in a human-dominated landscape. Ecology 100, 1–11 (2019).
    Google Scholar 
    Snyman, A., Raynor, E., Chizinski, C., Powell, L. & Carroll, J. African lion (Panthera leo) space use in the Greater Mapungubwe Transfrontier Conservation Area. Afr. J. Wildl. Res. 48, 023001 (2018).
    Google Scholar 
    Mwakaje, A. G. et al. Community-based conservation, income governance, and poverty alleviation in Tanzania: The case of the Serengeti Ecosystem. J. Environ. Dev. 22, 51–73 (2013).
    Google Scholar 
    Everatt, K. T., Moore, J. F. & Kerley, G. I. H. Africa’s apex predator, the lion, is limited by interference and exploitative competition with humans. Glob. Ecol. Conserv. 20, e00758 (2019).
    Google Scholar  More

  • in

    The diel vertical distribution and carbon biomass of the zooplankton community in the Caroline Seamount area of the western tropical Pacific Ocean

    Roemmich, D. & Mcgowan, J. Climatic warming and the decline of zooplankton in the California current. Science 267(5202), 1324–1326 (1995).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–507 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Irigoien, X., Huisman, J. & Harris, R. P. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–867 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ware, D. M. & Thomson, R. E. Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific. Science 308(5726), 1280–1284 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Beaugrand, G., Edwards, M. & Legendre, L. Marine biodiversity, ecosystem functioning, and carbon cycles. Proc. Natl. Acad. Sci. 107, 10120–10124 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ewald, W. F. Über Orientierung Lokomotion und Lichtreaktionen einiger Cladoceren und deren Bedeutung für die Theorie der Tropismen. Biol. Zentralblatt 30, 1–16 (1910).
    Google Scholar 
    Dam, H. G., Roman, M. R. & Youngbluth, M. J. Downward export of respiratory carbon and dissolved nitrogen by diel-migrant mesozooplankton at the JGOFS Bermuda time-series station. Deep Sea Res. Part I Oceanogr. Res. Pap. 42, 1187–1197 (1995).ADS 
    CAS 

    Google Scholar 
    Morales, C. E. Carbon and nitrogen fluxes in the ocean: the contribution by zooplankton migrants to active transport in the North Atlantic during the Joint Global Flux Study. J. Plankton Res. 21, 1799–1808 (1999).
    Google Scholar 
    Steinberg, D. K., Cope, J. S., Wilson, S. E. & Kobari, T. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 55(14–15), 1615–1635 (2008).ADS 

    Google Scholar 
    Brugnano, C., Granata, A., Guglielmo, L. & Zagami, G. Spring diel vertical distribution of copepod abundances and diversity in the open Central Tyrrhenian Sea (Western Mediterranean). J. Mar. Syst. 105, 207–220 (2012).
    Google Scholar 
    Werner, T. & Buchholz, F. Diel vertical migration behaviour in Euphausiids of the northern Benguela current: seasonal adaptations to food availability and strong gradients of temperature and oxygen. J. Plankton Res. 35(4), 792–812 (2013).CAS 

    Google Scholar 
    Palmer, M. R. & Pearson, P. N. A 23,000-year record of surface water pH and PCO2 in the western equatorial Pacific Ocean. Science 300(5618), 480–482 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Nino. Nat. Geosci. 3(6), 391–397 (2010).ADS 
    CAS 

    Google Scholar 
    Hu, D. et al. Pacific western boundary currents and their roles in climate. Nature 522, 299–308 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Epp, D. & Smoot, N. C. Distribution of seamounts in the North Atlantic. Nature 337, 254–257 (1989).ADS 

    Google Scholar 
    Yesson, C., Clark, M. R., Taylor, M. L. & Rogers, A. D. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep Sea Res. Part I Oceanogr. Res. Pap. 58(4), 442–453 (2011).ADS 

    Google Scholar 
    Rogers, A. D. The biology of seamounts: 25 Years on. Adv. Mar. Biol. 79, 137–224 (2018).PubMed 

    Google Scholar 
    Rowden, A. A., Dower, J. F., Schlacher, T. A., Consalvey, M. & Clark, M. R. Paradigms in seamount ecology: fact, fiction and future. Mar. Ecol. 31, 226–241 (2010).ADS 

    Google Scholar 
    Wilson, R. R. & Kaufmann, R. S. Seamount biota and biogeography. Geophys. Monogr. Ser. 43, 355–377 (2013).ADS 

    Google Scholar 
    Clark, M. R., Schlacher, T. A., Rowden, A. A., Stocks, K. I. & Consalvey, M. Science priorities for seamounts: research links to conservation and management. PLoS ONE 7(1), e29232 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schlacher, T. A., Rowden, A. A., Dower, J. F. & Consalvey, M. Seamount science scales undersea mountains: new research and outlook. Mar. Ecol. 31, 1–13 (2010).ADS 

    Google Scholar 
    Stocks, K. I. et al. CenSeam, an international program on seamounts within the census of marine life: achievements and lessons learned. PLoS ONE 7(2), e32031 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cascao, I., Domokos, R., Lammers, M. O., Santos, R. S. & Silva, M. A. Seamount effects on the diel vertical migration and spatial structure of micronekton. Prog. Oceanogr. 175, 1–13 (2019).ADS 

    Google Scholar 
    Denda, A., Stefanowitsch, B. & Christiansen, B. From the epipelagic zone to the abyss: trophic structure at two seamounts in the subtropical and tropical Eastern Atlantic – Part II Benthopelagic fishes. Deep Sea Res I Oceanogr. Res. Pap. 130, 78–92 (2017).ADS 
    CAS 

    Google Scholar 
    Dai, L. et al. Zooplankton abundance, biovolume and size spectra down to 3000 m depth in the western tropical North Pacific during autumn 2014. Deep Sea Res. Part I Oceanogr. Res. Pap. 121, 1–13 (2017).ADS 

    Google Scholar 
    Sun, D., Zhang, D. S., Zhang, R. Y. & Wang, C. S. Different vertical distribution of zooplankton community between North Pacific Subtropical Gyre and Western Pacific Warm Pool: its implication to carbon flux. Acta Oceanol. Sin. 38(6), 32–45 (2019).CAS 

    Google Scholar 
    Behrenfeld, M. J. et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 576, 257–261 (2019).CAS 
    PubMed 

    Google Scholar 
    Haury, L., Fey, C., Newland, C. & Genin, A. Zooplankton distribution around four eastern North Pacific seamounts. Prog. Oceanogr. 45(1), 69–105 (2000).ADS 

    Google Scholar 
    Genin, A. Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies. J. Mar. Syst. 50(1–2), 3–20 (2004).
    Google Scholar 
    Valle-Levinson, A., Castro, A. T., de Velasco, G. G. & Armas, R. G. Diurnal vertical motions over a seamount of the southern Gulf of California. J. Mar. Syst. 50(1–2), 61–77 (2004).
    Google Scholar 
    Martin, B. & Christiansen, B. Distribution of zooplankton biomass at three seamounts in the NE Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 56, 2671–2682 (2009).ADS 
    CAS 

    Google Scholar 
    Rawlinson, K. A., Davenport, J. & Barnes, D. K. A. Vertical migration strategies with respect to advection and stratification in a semi-enclosed lough: a comparison of mero- and holozooplankton. Mar. Biol. 144, 935–946 (2004).
    Google Scholar 
    Forward, R. B. Diel vertical migration: zooplankton photobiology and behaviour. Oceanogr. Mar. Biol. Ann. Rev. 26, 361–393 (1988).
    Google Scholar 
    Tao, Z. C., Wang, Y. Q., Wang, J. J., Liu, M. T. & Zhang, W. C. Photobehaviors of the calanoid copepod Calanus sinicus from the Yellow Sea to visible and UV-B radiation as a function of wavelength and intensity. J. Oceanol. Limnol. 37(4), 1289–1300 (2019).ADS 

    Google Scholar 
    Fragopoulu, N. & Lykakis, J. J. Vertical distribution and nocturnal migration of zooplankton in relation to the development of the seasonal thermocline in Patraikos Gulf. Mar. Biol. 104(3), 381–387 (1990).
    Google Scholar 
    Lougee, L. A., Bollens, S. M. & Avent, S. R. The effects of haloclines on the vertical distribution and migration of zooplankton. J. Exp. Mar. Biol. Ecol. 278(2), 111–134 (2002).
    Google Scholar 
    Saltzman, J. & Wishner, K. F. Zooplankton ecology in the eastern tropical Pacific oxygen minimum zone above a seamount: 2. Vertical distribution of copepods. Deep Sea Res. Part I Oceanogr. Res. Pap. 44(6), 931–954 (1997).ADS 
    CAS 

    Google Scholar 
    Antezana, T. Species-specific patterns of diel migration into the oxygen minimum zone by euphausiids in the Humboldt Current Ecosystem. Prog. Oceanogr. 83, 228–236 (2009).ADS 

    Google Scholar 
    Johnsen, G. H. & Jakobsen, P. J. The effect of food limitation on vertical migration in Daphnia longispina. Limnol. Oceanogr. 32(4), 873–880 (1987).ADS 

    Google Scholar 
    Spinelli, M. et al. Diel vertical distribution of the larvacean Oikopleura dioica in a North Patagonian tidal frontal system (42 degrees-45 degrees S) of the SW Atlantic Ocean. Mar. Biol. Res. 11(6), 633–643 (2015).
    Google Scholar 
    Guillam, M. et al. Vertical distribution of brittle star larvae in two contrasting coastal embayments: implications for larval transport. Sci. Rep. 10(1), 1–5 (2020).
    Google Scholar 
    Stramma, L. et al. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change 2(1), 33–37 (2012).ADS 
    CAS 

    Google Scholar 
    Ma, J. et al. The OMZ and its influence on POC in the Tropical Western Pacific Ocean: based on the survey in March 2018. Front. Earth Sci. 9, 632229 (2021).
    Google Scholar 
    Sun, Q. Q., Song, J. M., Li, X. G., Yuan, H. M. & Wang, Q. D. The bacterial diversity and community composition altered in the oxygen minimum zone of the Tropical Western Pacific Ocean. J. Oceanol. Limnol. 39(5), 1690–1704 (2021).ADS 
    CAS 

    Google Scholar 
    Wang, Q. D. et al. Characteristics and biogeochemical effects of oxygen minimum zones in typical seamount areas, Tropical Western Pacific. J. Oceanol. Limnol. 39(5), 1651–1661 (2021).ADS 
    CAS 

    Google Scholar 
    Fernández-Álamo, M. A. & Färber-Lorda, J. Zooplankton and the oceanography of the eastern tropical Pacific: a review. Prog. Oceanogr. 69(2–4), 318–359 (2006).ADS 

    Google Scholar 
    Wishner, K. F., Gowing, M. M. & Gelfman, C. Living in suboxia: Ecology of an Arabian Sea oxygen minimum zone copepod. Limnol. Oceanogr. 45(7), 1576–1593 (2000).ADS 

    Google Scholar 
    Wishner, K. F. et al. Vertical zonation and distributions of calanoid copepods through the lower oxycline of the Arabian Sea oxygen minimum zone. Prog. Oceanogr. 78(2), 163–191 (2008).ADS 

    Google Scholar 
    Ekau, W., Auel, H., Portner, H. O. & Gilbert, D. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7(5), 1669–1699 (2010).ADS 
    CAS 

    Google Scholar 
    Hernández-León, S. et al. Zooplankton and micronekton active flux across the tropical and subtropical Atlantic Ocean. Front. Mar. Sci. 6, 535 (2019).
    Google Scholar 
    Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).PubMed 

    Google Scholar 
    Le Borgne, R. & Rodier, M. Net zooplankton and the biological pump: a comparison between the oligotrophic and mesotrophic equatorial Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 44, 2003–2023 (1997).ADS 

    Google Scholar 
    Al-Mutairi, H. & Landry, M. R. Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton. Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 2083–2103 (2001).ADS 
    CAS 

    Google Scholar 
    Ge, R., Chen, H., Zhuang, Y. & Liu, G. Active carbon flux of mesozooplankton in South China Sea and Western Philippine Sea. Front. Mar. Sci. 8, 1324 (2021).
    Google Scholar 
    Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53(4), 1327–1338 (2008).ADS 

    Google Scholar 
    Hirch, S., Martin, B. & Christiansen, B. Zooplankton metabolism and carbon demand at two seamounts in the NE Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 56(25), 2656–2670 (2009).ADS 
    CAS 

    Google Scholar 
    Denda, A. & Christiansen, B. Zooplankton distribution patterns at two seamounts in the subtropical and tropical NE Atlantic. Mar. Ecol. 35(2), 159–179 (2014).ADS 

    Google Scholar 
    Dower, J. F. & Mackas, D. L. “Seamount effects” in the zooplankton community near Cobb Seamount. Deep Sea Res. Part I Oceanogr. Res. Pap. 43, 837–858 (1996).ADS 

    Google Scholar 
    Ma, J. et al. Analysis of differences in nutrients chemistry in seamount seawaters in the Kocebu and M5 seamounts in Western Pacific Ocean. J. Oceanol. Limnol. 39(5), 1662–1674 (2021).ADS 

    Google Scholar 
    Denda, A., Mohn, C., Wehrmann, H. & Christiansen, B. Microzooplankton and meroplanktonic larvae at two seamounts in the subtropical and tropical NE Atlantic. J. Mar. Biol. Assoc. U. K. 97(1), 1–27 (2017).
    Google Scholar 
    Tutasi, P. & Escribano, R. Zooplankton diel vertical migration and downward C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile. Biogeosciences 17(2), 455–473 (2020).ADS 
    CAS 

    Google Scholar 
    Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R. & Huntley, M. ICES Zooplankton Methodology Manual (Academic Press, 2000).
    Google Scholar 
    Zhang, X. & Dam, H. G. Downward export of carbon by diel migrant mesozooplankton in the central equatorial Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 44, 2191–2202 (1997).ADS 
    CAS 

    Google Scholar 
    Isla, A., Scharek, R. & Latasa, M. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. J. Mar. Syst. 143, 86–97 (2015).
    Google Scholar 
    Ikeda, T. Respiration and ammonia excretion by marine metazooplankton taxa: synthesis toward a global-bathymetric model. Mar. Biol. 161(12), 2753–2766 (2014).CAS 

    Google Scholar 
    Steinberg, D. K. et al. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 47(1), 137–158 (2000).ADS 
    CAS 

    Google Scholar 
    Andersen, V. et al. Vertical distributions of zooplankton across the Almeria-Oran frontal zone (Mediterranean Sea). J. Plankton Res. 26(3), 275–293 (2004).
    Google Scholar  More

  • in

    A large-scale dataset reveals taxonomic and functional specificities of wild bee communities in urban habitats of Western Europe

    Here we assessed how species and functional diversity components of wild bee assemblages responded to increasing urbanization levels, using a large dataset encompassing recent surveys gathering 838 sampling sites located in natural, semi-natural and urban habitats of France, Belgium and Switzerland.We found a weak, but significant negative effect of the proportion of impervious surfaces in a 500 m radius around each site on local species richness of bee communities. Thus, sites with high soil sealing tended to host less species than those with low soil sealing. However, this trend was not observed when using human population density as an urbanization metric: sites with denser human populations hosted on average the same number of species as less densely populated sites.Concerning taxonomic homogenization of communities, we did not record any effects of urbanization, both in terms of impervious surfaces or human population density.Analyses of occurrence rates of bee functional traits revealed significant differences between poorly and highly urbanized communities, for both urbanization metrics. With higher human population density, probabilities of occurrence of above-ground nesters, generalist and small species increased, and a higher probability of occurrence of above-ground nesters, generalists and social bees were recorded in areas with high soil sealing.Therefore, we found overall consistent results linking urbanization and wild bees taxonomic as well as functional trait diversity, even though analyses stemmed from a combination of many independent studies covering a broad range of anthropized and natural aeras from western Europe. This further highlights the greater generalizability of those ecological trends throughout European temperate biomes compared to other studies typically focusing on a single city and its immediate vicinity.Two complementary metrics of urbanization intensityTo quantify urbanization, we used two variables: soil sealing12,16,19,36 in a 500 m radius, and the mean human population density, also in a 500 m radius, the latter variable being used only recently to assess pollinator responses to urban environments37,38. These two variables return different but complementary information concerning urban environments. Indeed, if soil sealing gives an idea as to how human activities impact land use, human population density helps distinguish between very dense urban areas and very impervious areas with lower densities of buildings. High human population density areas are usually associated with high levels of soil sealing, but the contrary is not true. Similarly, areas with low soil sealing are usually associated with low human population densities, but again, the opposite is not always true. Therefore, we found it informative to consider both variables when analyzing the response of wild bee assemblages to urbanization.Note that some specific habitat types, for example business districts, are exceptions to the rule. These places are indeed very densely urbanized, but with very low population density. However, no inventories have been carried out in these places, and thus will not be a problem for our study.Response of bee community species richness to urbanizationOne of our goals was to position this study in the context of the contrasting findings on pollinator communities and urbanization. Whereas no consistent trend is reported in literature15, our large dataset reveals that high soil sealing is detrimental to wild bee species richness. This offers a unified view of a trend that has been unequally evidenced from studies focusing on a single or few cities only. High proportions of soil sealing reduce the availability of nesting sites for ground-nesting bee species. This may in turn lower the species diversity of local assemblages, by filtering out ground-nesting bees, leaving mainly cavity-nesting bees. Furthermore, high levels of soil sealing can lead to depletion of floral resources, of extreme importance for bees, especially in highly disturbed environments such as cities39,40. Note that several previous studies report the opposite, with high local species richness of wild bees in urbanized habitats. However, these positive effects are often associated with intermediate levels of urbanization15,16, where private gardens and other green spaces may supply abundant floral resources, in conjunction with intermediate levels of soil sealing16,17,18,19,20,24.On the contrary, there was no significant relationship between local species richness and human population density. Recently, two recent studies have used this metric to analyze how urbanization impacts local diversity of bee, hoverfly37 or butterfly38 assemblages, and both studies report negative impacts of human population density. However, high levels of human population density do not necessarily correlate with low availability of floral resources or nesting sites for pollinating insects. Several studies show that densely-populated urban environments may be adequate habitats for pollinating insects, due to alternative management practices of urban green space41 and the year-round availability of ornamental flowers42,43. Here, the absence of a clear effect of human population density on local bee species richness masks a change in the species composition of the communities, as shown by the increasing proportion of cavity nesters, compared with ground nesters. Indeed, despite the lower availability of nesting resources for ground-nesters, cavity-nesters take over in high-density areas, where more concrete structures and buildings are present15, thus they may compensate for the loss of ground-nesting bee species.Wild bee community homogenization and urbanizationWe did not observe any relationship between mean pairwise β-diversity and the two metrics of urbanization. This result contrasts with those of Banaszak-Cibicka and Żmihorski (2020)44 who found more homogeneous wild bee communities in urban environments compared to non-urban ones. Similar results have been reported for bees, with homogenization of urban pollinator communities compared to rural ones28,45. Biotic homogenization in urban environments has also been reported for other taxa, for example birds46.In our study, when considering urbanization levels, either in terms of soil sealing or human population density, urban wild bee communities are not more or less taxonomically homogeneous than non-urban ones. It is important to note that this result does not imply that urban and non-urban wild bee communities are similar, but that the homogenization of wild bee communities is constant throughout the urbanization gradient. In other words, urban communities are as dissimilar as non-urban ones. Here, the β diversity values are quite high (ranging from 0.68 to 0.96), emphasizing that even urban areas have quite dissimilar communities when compared to each other. This high level of dissimilarity among wild bee communities in urban environments can be explained by the large range of biogeographical regions encompassed in our dataset (Fig. 5), as each of these regions harbors a specific wild bee fauna34.Local factors in cities might also explain these high levels of dissimilarity. We know for example that green space connectivity has effects on species richness, with more wild bee species and abundance in cities with more connected green spaces47. Another local explanation might come from contrasting green space management practices among cities. Not all cities have the same policies, and urban green space management is crucial to the establishment and sustainability of diverse pollinator communities14,15,48. Thus, we expect more dissimilar wild bee communities among cities with differing green space layout and management.Figure 5Grouped sampling sites (n = 532) in France, Belgium and Switzerland, with the biogeographical regions. In total, 238 sites belong to the Continental region, 178 to the Atlantic, 106 to de Mediterranean and 10 to the Alpine. This figure was generated using QGIS software, v3.10.13 (https://www.qgis.org/).Full size imageFunctional responses of bee communities to urbanizationSeveral studies have already shown trends on how urban areas filter wild bee communities based on their functional traits (see30 and49 for reviews). However, as for taxonomic diversity, it is often difficult to identify clear variation patterns50. Using our large dataset, we could identify typical wild bee functional traits that are favored in urban environments, thus informing on the average functional profiles of wild bee species that may thrive in cities. We found urban wild bees in general to be typically above-ground nesters and generalists, while different trends were established for their body size and sociality, depending on the considered urbanization metric (Fig. 6).Figure 6Summary picture of an urban bee community, compared to a non-urban one. This figure was generated using Inkscape v1.2 (https://inkscape.org/).Full size imageNesting habitsAbove-ground nesting species were more frequent with increasing urbanization than below-ground nesting ones, and this result was recorded with both urbanization metrics.This result is consistent with what was previously reported in the literature16,49,51,52. Indeed, cities, with high proportions of impervious surfaces and buildings, offer fewer nesting habitats to ground-nesting species15, nesting sites becoming a limiting factor39. On the other hand, above-ground nesters can do well in cities with the presence of man-made structures, depending on their ability to use them and on their availability53.The presence of green areas in cities can help ground-nesting bee species by offering more nesting opportunities and resources17. Several studies highlight the importance of parks and gardens in supporting bee biodiversity in cities12,18,31,54, which otherwise are constraining environments due to soil sealing.DietGeneralist species were more frequent in more urbanized sites than specialist ones, and this was recorded for both urbanization metrics.This is in accordance with what was previously found in the literature32,50,51,52,54,55, as specialist bee species depend on the presence of their host plants to complete their life-cycle, which are often scarce due to the rarefaction of native flowering resources. As one can find many exotic flowers in cities, especially in residential gardens and urban parks56, we expect to detect less oligolectic bee species in densely urbanized habitats57.Notwithstanding, Banaszak-Cibicka et al. (2018)20 found more oligolectic species in urban parks of Poznań (Poland) compared to a national park. Thus, urban areas are not always depleted of specialist species, and well-managed parks with preserved native floral resources can obviously support specialist wild bee species in cities58.Additionally, it is important to emphasize that the presence of an exotic plant species may concomitantly support an associated specialist bee species. In Poland, for instance, the spread of Bryonia dioica in urban environments also brought the Andrena florea wild bee species, specialized on this plant59.Body sizeWe recorded contrasting effects of the two urbanization metrics on wild bee body size: small species were more frequent in relation to higher human population density compared to large species, but we found no difference with the proportion of impervious surfaces. Contrasting impacts of urbanization on bee body size are also reported in the literature, with some studies finding little to no effect32,50, and some finding that urbanization often favors smaller bee species12,30,60. Bee body size is of particular importance because it is related to the foraging range of individuals61,62. In fragmented habitats, such as dense urban environments, distances between suitable nesting and feeding habitats may select for smaller species that can remain on small green spaces and rarely need to commute across several green spaces. Furthermore, small bees may be favored given that they need fewer floral resources than large bees, even though large bees can fly further62.This might also explain the difference in the response of bee body size to the two urbanization metric results. In densely populated cities, it is harder to fly between suitable habitats, even for larger bees, as higher buildings and structures may act as barriers to their movement. Indeed, it has been recently shown that the 3D structure of cities impacts wild bee community composition63. Thus, being able to fly further might no longer be an advantage, and larger bees, requiring more floral resources than smaller ones, might be selected against. On the contrary, very impervious areas do not always host high building density (for example, as in the case of parking lots), thus making it easier for large wild bees to fly between bare soil areas.Densely populated areas might also exhibit warmer temperatures due to the urban heat island effect, and this could, in turn, result in the selection of smaller individuals, as we know that in cities, higher temperature results in smaller body sizes64.SocialityWe also recorded contrasting effects of the two urbanization metrics on sociality: social species were more frequent in relation to higher proportion of impervious surface compared to solitary ones, but no effect was recorded with human population density. This is in agreement with a recent literature review that reports on no consensus concerning the response of this trait to urbanization30.However, some urban habitats are shown to host more social species than rural habitats20,32, which may be linked to better reproductive success in cities compared to rural habitats such as agricultural environments65, an explanation that is consistent with our results on the soil sealing—sociality relationship.Conclusion, limits & future directionsOverall, our findings suggest that urban environment filters wild bee communities based on their functional traits. Our results also underscore different impacts of urbanization metrics on local species diversity, with a significant negative impact of soil sealing. On the contrary, both soil sealing and human population densities create strong functional filtering of trait assemblages.These results are particularly relevant since they arise from a range of independent studies, thus providing a general view on the wild bee communities in urban environments from western Europe. Since this study covers different biogeographical zones, it further underlines its applicability to other temperate countries. We therefore expect similar patterns to shape wild bee communities in urbanized areas from other temperate regions, but further confirmatory studies would be welcome.Our study also delivers a clear message concerning wild bee communities in urban environments. Urban environments cannot compare with non-urban ones in terms of species richness and trait diversities of bee communities. However, simple management practices of urban green spaces, such as differentiated management, or simply low management66, may help in maintaining this diversity. Indeed, not all green spaces are equally valuable in supporting wild bees, and pollinator assemblages in general49. For example, it has been shown that pollinator richness was positively influenced by green space size, but also by management measures such as mowing67. Increasing the quantity of floral resources and their spatio-temporal availability and diversity40,68 could also help conserving pollinator communities and pollination function in cities69, as long as these resources are native or attractive to pollinators.We can then hypothesize that changes in managing practices could help increase functional diversity of bees in cities, with specialist and ground-nesting species being found more frequently in these low-managed urban areas.Finally, if managing urban green space is of great importance to protect biodiversity in cities, it is crucial to involve all stakeholders, especially residents70 to achieve efficient and socially-accepted measures.In the future, it will be important to consider intra-city landscape variation, and see how urban characteristics might influence taxonomic and trait diversity. This will surely allow us to better understand the dynamics shaping wild bee communities in urban environments. More

  • in

    High rates of daytime river metabolism are an underestimated component of carbon cycling

    Study sites and data collectionDuring 2017 and 2018, we carried out 14 experiments in rivers located in temperate, tropical, and subarctic biomes to capture a gradient of river productivity and climatic characteristics (Table 1, Fig. 1). Apart from the Mekong and Sekong rivers in Cambodia that were impacted by plantations, rice cultivation, grassland, and urban areas (56% impacted land cover in the Mekong and 38% in the Sekong), the selected rivers were predominantly in pristine areas (impacted land-use ≤ 8%), although two rivers in Mongolia were affected by livestock grazing (with 26% of land cover at the Khovd and 59% in the two Zavkhan rivers).We conducted traditional O2 concentration metabolic assessments, assessments of isotopic fractionation, and 24 h characterization of δ18O2 at each site. We measured changes in dissolved O2 concentrations and temperature every 10 min over at least 24 h with at least one MiniDOT logger (PME, Vista, California, USA). We calibrated for drift using the average measurement values made in 100% saturated water for at least 30 min before and after each deployment to allow adjustment to temperature and placed sensors in the river for at least 30 min prior to using data to allow equilibration to temperature (following methods detailed in ref. 52).We collected δ18O2 samples by hand every 2 h during the same 24-h period of the O2 concentration measurements in pre-evacuated 100 mL vials loaded with 50 µl HgCl2 as a preservative and sealed with septum stoppers (Bellco Glass Inc., Supelco, Vineland NJ). We analyzed samples for δ18O2 at the Nevada Stable Isotope Lab of the University of Nevada, Reno with a Micromass Isoprime (Middlewich, UK) stable isotope ratio mass spectrometer. We followed the method described by ref. 17 and injected 1.0–2.5 mL of headspace gas taken from the serum bottles using a gastight syringe (SGE, Australia) into a Eurovector (Pavia, Italy) elemental analyzer equipped with a septum injector port, and a 1.5 m long molecular sieve gas chromatography column. Water-δ18O was also collected at each site every 2 h and analyses were performed using a Picarro L2130-i cavity ringdown spectrometer at the Nevada Stable Isotope Lab of the University of Nevada, Reno. δ18O2 values are reported in the usual δ notation vs. VSMOW in units of ‰, with an analytical uncertainty of ±0.2‰ for δ18O2, or an analytical uncertainty of ±0.1‰ for water-δ18O.We characterized physical characteristics at each site to provide parameters to estimate whole-system metabolism. We measured conductivity, slope, and flow velocity and depth at ten transects using a flow meter when wadeable or with an Acoustic Doppler Velocimeter (Sontek, Xylem, San Diego, CA) when rivers were not wadeable. At each site, we measured light as photosynthetically active radiation (PAR) every 10 min, using Odyssey PAR loggers (Data Flow Systems, Christchurch, New Zealand) calibrated with a Li-Cor PAR sensor (Lincoln, Nebraska, USA).At each site, we also directly measured biofilm ash-free dry mass (AFDM) from 8 to 12 rocks (53). The material was scrubbed from the rocks, agitated, filtered (Whatman glass microfiber GF/F filters). Rock area was estimated with calibrated pictures processed with the ImageJ processing program (National Institutes of Health and the Laboratory for Optical and Computational Instrumentation LOCI, University of Wisconsin). For AFDM analyses, samples were dried, and weighed before and after combustion.Additionally, we collected data on the percentage of impacted land use in the watershed above each sampling site: for the Mekong and the Sekong we used Landsat satellite imagery from ref. 54, for the US and Mongolian sites land use characteristics were derived from the National Land Cover Database55 and for Patagonia we used the Chilean national land use inventory maps from ref. 56.δ18O2 stable isotope fractionation during respiration in sealed recirculating chambersModels based on oxygen isotopes are sensitive to the oxygen isotope fractionation factor (αR) during respiration used; αR can vary widely among sites and is influenced by temperature and water velocity30. We used in our models the range of αR values measured by30 using sealed Plexiglas recirculating chambers as in ref. 57. These measurements were done at the same time as the 24 h δ18O2 sample collections in the rivers of this study. We placed rocks, sediment, macrophytes (macrophytes dominated in the Zavkhan 1 site) inside the chambers, depending on the site’s dominant substrata (see ref. 30 for more details on chamber measurements). We collected water samples in the chambers for δ18O2 analyses before and after the incubations and the O2 isotope fractionation factor was calculated using Eq. (2).$$delta =(delta i+1000){F}^{left(alpha -1right)}-1000$$
    (2)
    where δ is the O2 isotopic composition of dissolved oxygen at the end of the dark incubation, δi is the O2 isotopic composition of dissolved oxygen at the beginning of the dark incubation, F the fractional abundance of O2 concentration remaining at the end of the dark incubation, and α is the isotopic fractionation factor during respiration.Ecosystem metabolism O2 single station modelingWe modeled metabolism as a function of GPP, ER, and reaeration with the atmosphere, using the single-station open-channel metabolism method4 using the same approach as15, given in Eq. (3).$${O}_{{2}_{(t)}}={O}_{{2}_{(t-1)}}+left(left(frac{{GPP}}{z}xfrac{{{PPFD}}_{left(t-1right)}}{sum {{PPFD}}_{24h}}right)+frac{{ER}}{z}+{K}_{{O}_{2}}left({O}_{{2}_{{sat}left(t-1right)}}-{O}_{{2}_{left(t-1right)}}right)right)triangle t$$
    (3)
    where GPP is gross primary production in g O2 m−2 d−1, ER is ecosystem respiration in g O2 m−2 d−1, ({K}_{{O}_{2}}) is the reaeration coefficient (d−1). PPFD is photosynthetic photon flux density (µmol m−2 s−1), z is mean stream depth (m), and ∆t is time increment between logging intervals (d). We used Bayesian inverse modeling approach to estimate the probability distribution of parameters GPP and ER that produce the best model fit between observed and modeled O2 data. We fixed site-specific ({K}_{{O}_{2}}) estimates using K600 (d−1) (normalized beyond gas-specific Schmidt number conversions among gases58) based on prior work characterizing K using BASE59, and converted these prior estimates of K600 to ({K}_{{O}_{2}})using appropriate temperature corrections. We estimated daily GPP and ER from diel O2 data only (Eq. (3)) to be used as prior estimates of daily GPPO2 and ERO2 in the coupled O2 and δ18O2 model (Eqs. (4a) and (4b))15, where the mean and SD of GPP and ER from the O2 _only method were used as prior estimates of GPPO2 and ERO2 in the dual O2 and δ18O2 model described below.Ecosystem metabolism: Diel δ18O2 modelingWe also modeled metabolism using an updated version of the model developed by ref. 15 coupling high-frequency O2 concentration data with δ18O2 collected every 2 h throughout the same 24 h period of the O2 concentration measurements. With this model, daily rates of ecosystem metabolism are derived from diel changes in δ18O2 and O2, where values of δ18O2 are converted to g 18O m−3 (18O2 in Eq. 4b) and modeled as a function of water isotope values, isotope fractionation, reaeration with the atmosphere, ER, and GPP. As with Eq. 3, the ratio of light at the previous logging time (({{PPFD}}_{left(t-1right)})) relative to the sum of light over 24 h (({sum {PPFD}}_{24h})) is used to characterize times when GPP is zero and only ER is taking place (Eqs. (4a) and (4b)):$${O}_{{2}_{left(tright)}}= , {O}_{{2}_{left(t-1right)}}+left(frac{{{GPP}}_{O2}}{z}xfrac{{{PPFD}}_{left(t-1right)}}{sum {{PPFD}}_{24h}}right)+left(frac{{{ER}}_{O2},xtriangle t}{z}right)\ +left({K}_{{O}_{2}}xleft({O}_{{2}_{{sat}left(t-1right)}}-{O}_{{2}_{left(t-1right)}}right)xtriangle tright)$$
    (4a)
    $${18O}_{{2}_{(t)}}=, {18O}_{{2}_{(t-1)}}+left(frac{left({{GPP}}_{O2}+{dielMET}right)}{z}xfrac{{{PPFD}}_{left(t-1right)}}{{sum {PPFD}}_{24h}}x,{alpha }_{P},x,{{AF}}_{W}right)\ +left(frac{{{ER}}_{O2},xtriangle t}{z}x,{alpha }_{R},x,{{AF}}_{{DO}}left(t-1right)right)\ +left(frac{left(-{dielMET}right)}{z}xfrac{{{PPFD}}_{left(t-1right)}}{sum {{PPFD}}_{24h}}x,{alpha }_{R},x,{{AF}}_{{DO}}left(t-1right)right)\ +left({K}_{{O}_{2}}x,{alpha }_{g}xtriangle t,xleft(left({O}_{{2}_{{sat}left(t-1right)}}x,{alpha }_{g},x,{{AF}}_{{atm}}right)-{18O}_{{2}_{(t-1)}}right)right)$$
    (4b)
    Where GPPO2 and ERO2 (g O2 m−2 d−1) refer to the values obtained from diel O2 only, dielMET (g O2 m−2 d−1) is the diel metabolism term that allows for the estimation of diel ER and GPP from 18O2, KO2 is the O2 gas exchange rate (d−1), z is mean stream depth (m), PPFD is photosynthetic photon flux density (µmol m−2 s−1), Δt is time step between measurements (d), 18O2 is the concentration of 18O in dissolved O2 (g 18O m−3), AFDO is atomic fraction of dissolved O2 (mol18O:mol O2, measured), AFw is atomic fraction of H2O (mol 18O:mol O2, measured), AFatm is atomic fraction of atmospheric air (mol18O:mol O2, literature), αg is the fractionation factor during air–water gas exchange (0.9972, from ref. 60), αR is the fractionation factor during respiration measured in the chambers (varied by site30; Fig. 1), αp is the fractionation factor during photosynthesis (1.0000 from ref. 60).The inverse modeling approach finds the best estimates of parameters to match measured and modeled dissolved O2. The model assumes that the measured changes in O2 concentration represent the actual net diel changes in O2 concentration and uses an additional parameter, dielMET, that is a function of the isotopic enrichment occurring during respiration, derived from diel 18O2. This parameter increases daily ERO2 and GPPO2 of the same amount, adding and subtracting dielMET, to obtain daily δ18O2-ER and δ18O2-GPP, respectively.We estimated the posterior distributions of unknown parameters (ERO2, GPPO2, and dielMET) using a Bayesian inverse modeling approach15 and Markov chain Monte Carlo sampling with the R metrop function in the mcmc package61,62. Each model was run for at least 200,000 iterations using nominally informative priors based on the range of ERO2 and GPPO2. For dielMET, we used a minimally informative uniform prior distribution (0–100 g O2 m−2 d−1). We removed the first 10,000 iterations of model burn-in and assessed quality of model fit. Model runs using the minimum, average, and maximum αR values measured in the field recirculating chambers were also compared, and we selected the αR and report associated model metabolism estimates that generated the lowest sum of squared differences between the observed and modeled O2 and 18O2 diel values.Temperature-normalized comparisonsTo test the effect of temperature from the daily δ18O2-ER and δ18O2-GPP rates and account for daily variations in temperature, we normalized estimates from models to 20 °C (and report them as 20δ18O2-ER and 20δ18O2-GPP) for comparison with O2-derived metabolism estimates following33 with Eq. (5):$${rate},{at},20,{}^circ C=frac{{2.523* e}^{(0.0552* 20)}}{{2.523* e}^{(0.0552* {t}_{1})},* {rate},{at},{t}_{1}}$$
    (5)
    Where t1 is site temperature and rate is the measured rate (i.e., GPP or ER) at t1.Statistical analysesWe used multiple linear regression to find the best predictor of the magnitude of diel 20δ18O2-ER and differences between sites. To select the best model, we performed a stepwise variable selection and selected the best model based on the lowest AIC. Tested variables included percentage of impacted land use (%), 20δ18O2-GPP (g O2 m−2 d−1), conductivity (µS/cm), ash-free dry mass (AFDM, g), slope (%), water depth (m), and flow velocity (m/s) measured in the field. We used ANOVA to test the relative contribution of each variable selected with the AIC to total variance. Analyses were run with the R software61.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Characterization of bacterial diversity between two coastal regions with heterogeneous soil texture

    Soil sampling and determination of soil physical properties and synoptic dataSoil samples were taken from two coastal deserts in the north and south of Iran. Details of their geographic distribution and eco-physiological characterization were shown in Table 1. A total of 2 kg of soil samples were collected from 2 distinct sampling locations ranging in depth from 0 to 30 cm, and the samples were dried for 3 days at room temperature and in the dark before sifting. The soil samples were sieved using a 2 mm sieve to remove stones and other inert material before being stored in zip-top bags. Table 1 lists the soil samples’ physical characteristics, including soil texture (sand 2–0.02 mm; silt 0.02–0.002 mm; clay 0.002 mm), pH, and the proportions of clay, silt, and sand. Synoptic data from the past 10 years (2009–2019), including the average annual temperature, maximum temperature, minimum temperature, average rainfall, average annual wind speed, and maximum wind speed, were obtained from the I.R.OF Iran Meteor (http://www.irimo.ir/far/index.php).Bacterial isolation and effect of manure-based medium on their growthAccording to Chen et al. 2005, the soil-borne bacteria were isolated using direct-spreading method. For this essence soil samples were treated through a series of dilutions. The mixture of 1 g of soil sample was vortexed for 1 min after being suspended in 2 ml of sterile physiological saline (0.9% w/v NaCl). The mixture was then diluted serially (typically 10–1 to 10–7), and level 100 μl of the diluted soil samples were scattered on the surface of solidified plates using glass spreaders. The samples were then incubated for 1 to 3 days at 30 °C in an inverted posture without light. For bacterial isolation, we used eleven culture media including Nutrient Agar (NA), Nutrient Agar plus MnSO4 (NA + MnSO4), LB, Moller Hinton Agar (MHA), Acidithiobacillus (APH) medium, Violet Red Bile Lactose (VRB) agar medium, GYM Streptomyces medium, DPM medium, Azospirillum medium, Azotobacter medium and Manure based medium (MB).To prepare MB medium, dry animal manure and distilled water (1:6 w/v) were combined to create MB medium, which was then let to sit at room temperature for 16 h. The resulting mixture was then centrifuged at 5000 rcf for 30 min after being filtered twice. The next stage involved adding Hoagland salts (10% w/v) to the final extract, adjusting the medium’s pH to 5.8 ± 0.02, and autoclaving it for 20 min at 121 °C and 1.5 kPa. Before sterilization, bacteriological agar (1.5 w/v) was employed as a gelling agent to solidify the medium.After bacterial isolation on NA, NA+ MnSO4, LB, MHA, APH, VRB, GYM, DPM, and Azospibrillum media, the growth of all isolates was evaluated on an MB medium. To investigate isolates biomass in the same condition, we elected MB medium. First, the bacteria were grown in the liquid form of NA, NA+ MnSO4, LB, MHA, APH, VRB, GYM, DPM, and Azospirillum and Azotobacter media at 30 °C for 48 h, then 103 cells of each isolate were transferred to 48 wells plates containing MB medium, and plates were incubated at 30 °C for 10 h. Then, the growth of bacteria was read at an optical density (OD) of 630 nm 10 h after inoculation, the experiment was performed with three replicates. In the following step, CFU/ml equivalent to each OD was obtained by inoculating the uniform amount of liquid culture of the isolates on the solid form of MB medium at 30 °C for 16 h.Phenotypic characterization and biochemical identification of bacterial isolatesThe morphological analysis of the cell shape, colony (i.e., shape, color, and size), and biochemical tests were used to identify the bacterial isolates. Biochemical characterization was carried out By using gram staining, KOH27, oxidase, and catalase tests. For this essence, following Bartholomew’s method28, gram staining of bacteria was studied 48 h after inoculation on MHA, and the non-staining KOH method was used to confirm the results. Using 0.5 ml of a 10% hydrogen peroxide solution, a catalase test was conducted, and the generation of gas bubbles was monitored. Using biochemical oxidase discs, the oxidative activity of 27 isolates was investigated.Effect of abiotic stresses on bacterial isolatesTo determine the effect of abiotic stresses on isolates alkaline (MH medium with pH  10), salinity (MH medium supplemented with the final concentration of 100 mM NaCl), osmotic [MH medium supplemented with 25% polyethylene glycol (PEG) Mn6000], and thermal stresses (MH medium incubated at 15 °C for cold stress and 60 °C for heat stress) were screened. For all experiments, the incubation period was 15 h, and plates were kept in a dark condition.MALDI-TOF MS identification of isolatesSoil bacterial isolates were subcultured twice on MHA and incubated at 30 °C for 24 h before MALDI-TOF MS measurement. Then ∼0.1 µg of cell material was directly transferred from a bacterial colony or smear of colonies to a MALDI target spot. After drying at laboratory temperature, sample spots were overlaid with 1 μl of matrix solution (10 mg/mL a-cyano-4-hydroxycinnamic acid in 50% acetonitrile and 2.5% trifluoroacetic acid) and each measurement was carried out in triplicate (technical replicates). MS analysis was performed on an Autoflex MALDI-TOF mass spectrometer (Bruker Daltonics, Germany) using Flex Control 3.4 software (Bruker Daltonics, Germany). Calibration was carried out with the use of the Bacterial Test Standard (Bruker Daltonics, Germany). Soil isolates with a valid MALDI-TOF MS score of 2 were undoubtedly assigned to the genus/species level. For bacterial classification and identification, BioTyper 3.1 software (Bruker Daltonics, Germany) equipped with MBT 6903 MPS Library (released in April 2016), the MALDI Biotyper Preprocessing Standard Method, and the MALDI Biotyper MSP Identification Standard Method adjusted by the manufacturer (Bruker Daltonics, Germany) were used. Only the highest score value of all mass spectra belonging to individual cultures (biological and technical replicates) was recorded25. The score between 2.3 and 3.00 shows highly probable species-level identification and between 2.0 and 2.29 represents genus-level identification and probable species level of identification. A score between 1.7 and 1.99 indicates probable genus-level identification29.Effects of bacterial isolates on plants growthThe Seed and Plant Improvement Institute of Karaj (Karaj, Iran; http://www.spii.ir/homepage.aspx?site=DouranPortal&tabid=1&lang=faIR) provided the maize, canola, and wheat seeds (Zea mays. Var Kosha; Brassica napus Var Nima; Triticum aestivum Var Kalate). In greenhouse trials, 2 × 103 cells/seed of soil-borne isolates cultured in a manure-based medium were inoculated to maize, canola, and wheat plants. During the studies, sand that had been acid washed and autoclaved was used for planting. For three weeks, seedlings were kept under a 16/8 h day/night photoperiod with a 25 °C temperature. Three replications of a complete randomized block design were used for the colonization experiment’s treatments. Under the bacterial treatments, measurements were made of the plant growth parameters including shoot dry biomass (mg), root dry biomass (mg), shoot length (cm), root length (cm), shoot density (mg/cm), root density (mg/cm), and shoot/root weight (mg). Samples were dried at 60 °C for three days to measure dry biomass.Statistical analysisStatistical analysis was done by R software (version 4.1.3). One-way analysis of variance (ANOVA) was used to determine the significance of the experiment, and Fisher’s protected Least Significant Difference (LSD) test with a P-value of 0.01 was performed to separate the means. Furthermore, PCA analysis has been carried out based on the Clustvis package and the SVD imputation approach.Ethics approval and consent to participateAll authors agree to the ethics and consent to participate in this article and declare that this submission follows the policies of Scientific Reports. Accordingly, the material is the author’s original work, which has not been previously published elsewhere. The paper is not being considered for publication elsewhere. All authors have been personally and actively involved in substantial work leading to the paper and will take public responsibility for its content.Ethics for research involving plantsAll authors confirmed that experimental research and field studies on plants, including receiving the seeds from the Seed and Plant Improvement Institute of Karaj, complied with relevant institutional, national, and international guidelines and legislation. Furthermore, methods were conducted according to the relevant guidelines and regulations. More

  • in

    Long term environmental variability modulates the epigenetics of maternal traits of kelp crabs in the coast of Chile

    Gibney, E. R. & Nolan, C. M. Epigenetics and gene expression. Heredity 105, 4–13 (2010).CAS 
    PubMed 

    Google Scholar 
    Vogt, G. Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: Insights from clonal, invasive, polyploid, and domesticated animals. Environ. Epigenet. 3, 1–17 (2017).
    Google Scholar 
    Beal, A., Rodriguez-Casariego, J., Rivera-Casas, C., Suarez-Ulloa, V. & Eirin-Lopez, J. M. Environmental Epigenomics and Its Applications in Marine Organisms 325–359 (Springer, 2018). https://doi.org/10.1007/13836_2018_28.Book 

    Google Scholar 
    Hofmann, G. E. Ecological epigenetics in marine metazoans. Front. Mar. Sci. 4, 1–7 (2017).CAS 

    Google Scholar 
    Richards, C. L. et al. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol. Lett. 20, 1576–1590 (2017).PubMed 

    Google Scholar 
    Ryu, T., Veilleux, H. D., Donelson, J. M., Munday, P. L. & Ravasi, T. The epigenetic landscape of transgenerational acclimation to ocean warming. Nat. Clim. Chang. 8, 504–509 (2018).ADS 

    Google Scholar 
    Liew, Y. J. et al. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci. Adv. 4, 6 (2018).
    Google Scholar 
    Anastasiadi, D., Díaz, N. & Piferrer, F. Small ocean temperature increases elicit stage-dependent changes in DNA methylation and gene expression in a fish, the European sea bass. Sci. Rep. 7, 1–12 (2017).CAS 

    Google Scholar 
    Strader, M. E., Wong, J. M., Kozal, L. C., Leach, T. S. & Hofmann, G. E. Parental environments alter DNA methylation in offspring of the purple sea urchin, Strongylocentrotus purpuratus. J. Exp. Mar. Bio. Ecol. 517, 54–64 (2019).
    Google Scholar 
    Rey, O. et al. Linking epigenetics and biological conservation: Towards a conservation epigenetics perspective. Funct. Ecol. 34, 414–427 (2020).
    Google Scholar 
    Eirin-Lopez, J. M. & Putnam, H. Editorial: Marine environmental epigenetics. Front. Mar. Sci. 8, 5 (2021).
    Google Scholar 
    Herrera, C. M. & Bazaga, P. Untangling individual variation in natural populations: Ecological, genetic and epigenetic correlates of longterm inequality in herbivory. Mol. Ecol. 20, 1675–1688 (2011).CAS 
    PubMed 

    Google Scholar 
    Varriale, A. DNA methylation, epigenetics, and evolution in vertebrates: Facts and challenges. Int. J. Evol. Biol. 2014, 1–7 (2014).
    Google Scholar 
    Liebl, A. L., Wesner, J. S., Russell, A. F. & Schrey, A. W. Methylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird. PLoS ONE 16, e0252227 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Metzger, D. C. H. & Schulte, P. M. Persistent and plastic effects of temperature on DNA methylation across the genome of threespine stickleback (Gasterosteus aculeatus). Proc. R. Soc. B Biol. Sci. 284, 5 (2017).
    Google Scholar 
    Putnam, H. M., Davidson, J. M. & Gates, R. D. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol. Appl. 9, 1165–1178 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watson, R. G. A., Baldanzi, S., Pérez-Figueroa, A., Gouws, G. & Porri, F. Morphological and epigenetic variation in mussels from contrasting environments. Mar. Biol. 165, 8 (2018).
    Google Scholar 
    Baldanzi, S., Watson, R., McQuaid, C. D., Gouws, G. & Porri, F. Epigenetic variation among natural populations of the South African sandhopper Talorchestia capensis. Evol. Ecol. 31, 77–91 (2017).
    Google Scholar 
    Ardura, A., Zaiko, A., Morán, P., Planes, S. & Garcia-Vazquez, E. Epigenetic signatures of invasive status in populations of marine invertebrates. Sci. Rep. 7, 5 (2017).
    Google Scholar 
    Baldanzi, S., Storch, D., Navarrete, S. A., Graeve, M. & Fernández, M. Latitudinal variation in maternal investment traits of the kelp crab Taliepus dentatus along the coast of Chile. Mar. Biol. 165, 1 (2018).
    Google Scholar 
    Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J. & Schneider, W. Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile. Prog. Oceanogr. 75, 363–382 (2007).ADS 

    Google Scholar 
    Letelier, J., Pizarro, O. & Nuñez, S. Seasonal variability of coastal upwelling and the upwelling front off central Chile. J. Geophys. Res. Ocean. 114, 12009 (2009).ADS 

    Google Scholar 
    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 1–7 (2017).CAS 

    Google Scholar 
    Pérez, C. A. et al. Influence of climate and land use in carbon biogeochemistry in lower reaches of rivers in central southern Chile: Implications for the carbonate system in river-influenced rocky shore environments. J. Geophys. Res. Biogeosciences 120, 673–692 (2015).ADS 

    Google Scholar 
    Saldías, G. S. et al. Satellite-measured interannual variability of turbid river plumes off central-southern Chile: Spatial patterns and the influence of climate variability. Prog. Oceanogr. 146, 212–222 (2016).ADS 

    Google Scholar 
    Lara, C. et al. Coastal biophysical processes and the biogeography of rocky intertidal species along the south-eastern Pacific. J. Biogeogr. 46, 420–431 (2019).
    Google Scholar 
    Wieters, E. A. Upwelling control of positive interactions over mesoscales: A new link between bottom-up and top-down processes on rocky shores. Mar. Ecol. Prog. Ser. 301, 43–54 (2005).ADS 

    Google Scholar 
    Pérez-Matus, A., Carrasco, S. A., Gelcich, S., Fernandez, M. & Wieters, E. A. Exploring the effects of fishing pressure and upwelling intensity over subtidal kelp forest communities in Central Chile. Ecosphere 8, e01808 (2017).
    Google Scholar 
    Iranon, N. N. & Miller, D. L. Interactions between oxygen homeostasis, food availability, and hydrogen sulfide signaling. Front. Genet. 3, 5 (2012).
    Google Scholar 
    Ramajo, L., Lagos, N. A. & Duarte, C. M. Seagrass Posidonia oceanica diel pH fluctuations reduce the mortality of epiphytic forams under experimental ocean acidification. Mar. Pollut. Bull. 146, 247–254 (2019).CAS 
    PubMed 

    Google Scholar 
    Aiken, C. & Navarrete, S. Environmental fluctuations and asymmetrical ­dispersal: Generalized stability theory for studying metapopulation persistence and marine protected areas. Mar. Ecol. Prog. Ser. 428, 77–88 (2011).ADS 

    Google Scholar 
    Baldanzi, S. et al. Combined effects of temperature and hypoxia shape female brooding behaviors and the early ontogeny of the Chilean kelp crab Taliepus dentatus. Mar. Ecol. Prog. Ser. 646, 93–107 (2020).ADS 
    CAS 

    Google Scholar 
    Moran, A. L. & McAlister, J. S. Egg size as a life history character of marine invertebrates: Is it all it’s cracked up to be?. Biol. Bull. 216, 226–242 (2009).PubMed 

    Google Scholar 
    Doherty-Weason, D. et al. Bioenergetics of parental investment in two polychaete species with contrasting reproductive strategies: The planktotrophic Boccardia chilensis and the poecilogonic Boccardia wellingtonensis (Spionidae). Mar. Ecol. 41, 1 (2020).
    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).
    Google Scholar 
    Sayols-Baixeras, S., Irvin, M. R., Arnett, D. K., Elosua, R. & Aslibekyan, S. W. Epigenetics of lipid phenotypes. Curr. Cardiovasc. Risk Rep. 10, 1–205 (2016).
    Google Scholar 
    Adam, A. C. et al. Profiling DNA methylation patterns of zebrafish liver associated with parental high dietary arachidonic acid. PLoS ONE 14, e0220934 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Fernández, P., García-Souto, D., Almansa, E., Morán, P. & Gestal, C. Epigenetic DNA methylation mediating Octopus vulgaris early development: Effect of essential fatty acids enriched diet. Front. Physiol. 8, 1–9 (2017).
    Google Scholar 
    Hearn, J., Pearson, M., Blaxter, M., Wilson, P. J. & Little, T. J. Genome-wide methylation is modified by caloric restriction in Daphnia magna. BMC Genomics 20, 1–11 (2019).
    Google Scholar 
    Palma, A. T., Henríquez, L. A. & Ojeda, F. P. Phytoplanktonic primary production modulated by coastal geomorphology in a highly dynamic environment of central Chile. Rev. Biol. Mar. Oceanogr. 44, 325–334 (2009).
    Google Scholar 
    Faúndez-Báez, P., Morales, C. E. & Arcos, D. Variabilidad espacial y temporal en la hidrografía invernal del sistema de bahías frente a la VIII región (Chile centro-sur). Rev. Chil. Hist. Nat. 74, 817–831 (2001).
    Google Scholar 
    Osma, N. et al. Response of phytoplankton assemblages from naturally acidic coastal ecosystems to elevated pCO2. Front. Mar. Sci. 1, 323 (2020).
    Google Scholar 
    Rebolledo, L. et al. Siliceous productivity changes in Gulf of Ancud sediments (42°S, 72°W), southern Chile, over the last ∼150 years. Cont. Shelf Res. 31, 356–365 (2011).ADS 

    Google Scholar 
    Sun, Y. et al. Genome-wide analysis of DNA methylation in five tissues of Zhikong Scallop, Chlamys farreri. PLoS ONE 9, e86232 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernhardt, J. R., O’Connor, M. I., Sunday, J. M. & Gonzalez, A. Life in fluctuating environments. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375, 20190454 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Feinberg, A. P. & Irizarry, R. A. Colloquium Paper: Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc. Natl. Acad. Sci. USA 107, 1757 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tapia, F. J., Largier, J. L., Castillo, M., Wieters, E. A. & Navarrete, S. A. Latitudinal discontinuity in thermal conditions along the nearshore of Central-Northern Chile. PLoS ONE 9, e110841 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reyna-López, G. E., Simpson, J. & Ruiz-Herrera, J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol. Gen. Genet. 253, 703–710 (1997).PubMed 

    Google Scholar 
    Pérez-Figueroa, A. msap: A tool for the statistical analysis of methylation-sensitive amplified polymorphism data. Mol. Ecol. Resour. 13, 522–527 (2013).PubMed 

    Google Scholar 
    Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).CAS 
    PubMed 

    Google Scholar 
    Valladares, F., Sanches-Gomez, D. & Zavala, M. A. Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. J. Ecol. 94, 1103–1116 (2006).
    Google Scholar 
    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Religiosity is associated with greater size, kin density, and geographic dispersal of women’s social networks in Bangladesh

    Lim, C. & Putnam, R. D. Religion, social networks, and life satisfaction. Am. Sociol. Rev. 75, 914–933 (2010).
    Google Scholar 
    Fox, R. Kinship and marriage: an anthropological perspective/by Robin Fox. (1967).Lévi-Strauss, C. The elementary structures of kinship. (Beacon Press, 1969).Murdock, G. P. Social structure. Macmillan 387 (1949).Chapais, B. Primeval kinship: how pair-bonding gave birth to human society. (Harvard University Press, 2009).Walker, R. S. & Hill, K. R. Causes, consequences, and kin bias of human group fissions. Hum. Nat. 25, 465–475 (2014).PubMed 

    Google Scholar 
    Shenk, M. K., Towner, M. C., Voss, E. A. & Alam, N. Consanguineous marriage, kinship ecology, and market transition. Curr. Anthropol. 57, S167–S180 (2016).
    Google Scholar 
    Swann, W. B. Jr., Gómez, A., Seyle, D. C., Morales, J. F. & Huici, C. Identity fusion: The interplay of personal and social identities in extreme group behavior. J. Pers. Soc. Psychol. 96, 995–1011 (2009).PubMed 

    Google Scholar 
    Richerson, P. J. & Boyd, R. Complex societies. Hum. Nat. 10, 253–289 (1999).CAS 
    PubMed 

    Google Scholar 
    Zelinsky, W. The hypothesis of the mobility transition. Geogr. Rev. 61, 219–249 (1971).
    Google Scholar 
    Gurven, M., Jaeggi, A. V., von Rueden, C., Hooper, P. L. & Kaplan, H. Does market integration buffer risk, erode traditional sharing practices and increase inequality? A test among Bolivian forager-farmers. Hum. Ecol. Interdiscip. J. 43, 515–530 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Godoy, R. A. et al. Do markets worsen economic inequalities? Kuznets in the Bush. Hum. Ecol. 32, 339–364 (2004).
    Google Scholar 
    Kaplan, H. A theory of fertility and parental investment in traditional and modern human societies. Am. J. Phys. Anthropol. 101, 91–135 (1996).
    Google Scholar 
    Duernecker, G. & Vega-Redondo, F. Social Networks and the Process of Globalization. Rev. Econ. Stud. 85, 1716–1751 (2017).MathSciNet 
    MATH 

    Google Scholar 
    Colleran, H. Market integration reduces kin density in women’s ego-networks in rural Poland. Nat. Commun. 11, 266 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilding, R. Families, intimacy and globalization. (Macmillan International Higher Education, 2018).Hackman, J. V. & Kramer, K. L. Kin Ties and market integration in a Yucatec Mayan Village. Soc. Sci. 10, 216 (2021).
    Google Scholar 
    Norenzayan, A. Big gods: How religion transformed cooperation and conflict. (Princeton University Press, 2013).Lauder, W., Mummery, K. & Sharkey, S. Social capital, age and religiosity in people who are lonely. J. Clin. Nurs. 15, 334–340 (2006).PubMed 

    Google Scholar 
    Agate, S. T., Zabriskie, R. B. & Eggett, D. L. Praying, playing, and successful families. Marriage Fam. Rev. 42, 51–75 (2007).
    Google Scholar 
    Day, R. D. et al. Family processes and adolescent religiosity and religious practice: View from the NLSY97. Marriage Fam. Rev. 45, 289–309 (2009).
    Google Scholar 
    Fagan, P. F. Why religion matters even more: The impact of religious practice on social stability. Backgrounder 1992, 1–19 (2006).
    Google Scholar 
    Ellison, C. G. & George, L. K. Religious involvement, social ties, and social support in a Southeastern Community. J. Sci. Study Relig. 33, 46–61 (1994).
    Google Scholar 
    Ellison, C. G. & Xu, X. Religion and families. The Wiley Blackwell companion to the sociology of families 277–299 (2014).Ginges, J., Hansen, I. & Norenzayan, A. Religion and support for suicide attacks. Psychol. Sci. 20, 224–230 (2009).PubMed 

    Google Scholar 
    Lynch, R., Palestis, B. G. & Trivers, R. Religious devotion and extrinsic religiosity affect in-group altruism and out-group hostility oppositely in rural Jamaica. Evol. Psychol. Sci. 3, 335 (2017).
    Google Scholar 
    Walker, R. S. & Bailey, D. H. Marrying kin in small-scale societies. Am. J. Hum. Biol. 26, 384–388 (2014).PubMed 

    Google Scholar 
    Putnam, R. D., Leonardi, R. & Nanetti, R. Y. Making Democracy Work: Civic Traditions in Modern Italy. (Princeton University Press, 1994).Coleman, J. Foundations of Social Theory. (Belknap Press of Harvard University Press, Cambridge, Mass, 1990).Wuthnow, R. The Left Behind: Decline and Rage in Rural America. (Princeton University Press, 2018).Sunstein, C. R. # Republic: Divided democracy in the age of social media. (Princeton University Press, 2018).Putnam, R. D. E Pluribus Unum: Diversity and Community in the Twenty-first Century The 2006 Johan Skytte Prize Lecture. Scan. Polit. Stud. 30, (2007).Putnam, R. Bowling alone: The collapse and revival of American community. (Simon and Schuster, 2000).Olson, M. The Logic of Collective Action: Public Goods and the Theory of Groups, Second printing with new preface and appendix (Harvard Economic Studies). Harvard economic studies, v. 124 (Harvard University Press, 1971).Granovetter, M. S. The strength of weak ties. Am. J. Sociol. (1973).Lynch, R., Lummaa, V. & Panchanathan, K. Integration involves a trade-off between fertility and status for World War II evacuees. Nature Human Behaviour (2019).Beyerlein, K. & Hipp, J. R. Social capital, too much of a good thing? American Religious Traditions and Community Crime. Soc. Forces 84, 995–1013 (2005).
    Google Scholar 
    Lewis, V. A., Macgregor, C. A. & Putnam, R. D. Religion, networks, and neighborliness: The impact of religious social networks on civic engagement. Soc. Sci. Res. 42, 331–346 (2013).PubMed 

    Google Scholar 
    Yu, M. & Stiffman, A. R. Positive family relationships and religious affiliation as mediators between negative environment and illicit drug symptoms in American Indian adolescents. Addict. Behav. 35, 694–699 (2010).PubMed 

    Google Scholar 
    Regnerus, M. D. & Burdette, A. Religious change and adolescent family dynamics. Sociol. Q. 47, 175–194 (2006).
    Google Scholar 
    Marks, L. Religion and family relational health: An overview and conceptual model. J. Relig. Health (2006).Thornton, A. Reciprocal Influences of Family and Religion in a Changing World. J. Marriage Fam. Couns. 47, 381–394 (1985).
    Google Scholar 
    Mahoney, A., Pargament, K. I., Murray-Swank, A. & Murray-Swank, N. Religion and the Sanctification of Family Relationships. Rev. Relig. Res. 44, 220–236 (2003).
    Google Scholar 
    Mahoney, A. Religion in families 1999 to 2009: A relational spirituality framework. J. Marriage Fam. 72, 805–827 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Ebstyne King, P. & Furrow, J. L. Religion as a resource for positive youth development: religion, social capital, and moral outcomes. Dev. Psychol. 40, 703–713 (2004).PubMed 

    Google Scholar 
    Dudley, M. G. & Kosinski, F. A. Religiosity and marital satisfaction: A research note. Rev. Relig. Res. 32, 78–86 (1990).
    Google Scholar 
    Milevsky, A., Smoot, K., Leh, M. & Ruppe, A. Familial and contextual variables and the nature of sibling relationships in emerging adulthood. Marriage Fam. Rev. 37, 123–141 (2005).
    Google Scholar 
    Galbraith, D. & Shaver, J. H. Religion and Fertility Bibliography. evolutionarydemographyofreligion.Shaver, J. H., Sibley, C. G., Sosis, R., Galbraith, D. & Bulbulia, J. Alloparenting and religious fertility: A test of the religious alloparenting hypothesis. Evol. Hum. Behav. 40, 315–324 (2019).
    Google Scholar 
    Kaufmann, E. Shall the Religious Inherit the Earth?: Demography and Politics in the Twenty-First Century. (Profile Books, 2010).Ebaugh, H. R. & Curry, M. Fictive Kin as social capital in new immigrant communities. Sociol. Perspect. 43, 189–209 (2000).
    Google Scholar 
    Taylor, R. J., Chatters, L. M., Woodward, A. T. & Brown, E. Racial and ethnic differences in extended family, friendship, fictive kin and congregational informal support networks. Fam. Relat. 62, 609–624 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Durkheim, E. The elementary forms of the religious life. Preprint at (1915).Rappaport, R. A. Ritual and Religion in the Making of Humanity. vol. 110 (Cambridge University Press, 1999).Hastings, O. P. Not a lonely crowd? Social connectedness, religious service attendance, and the spiritual but not religious. Soc. Sci. Res. 57, 63–79 (2016).PubMed 

    Google Scholar 
    Putnam, R. & Campbell, D. E. American grace: How religion is reshaping our civic and political lives. Preprint at (2010).Turke, P. W. Evolution and the demand for children. Popul. Dev. Rev. 15, 61–90 (1989).
    Google Scholar 
    Sear, R. & Coall, D. How much does family matter? Cooperative breeding and the demographic transition. Popul. Dev. Rev. 37, 81–112 (2011).PubMed 

    Google Scholar 
    Jenkins, P. Fertility and Faith: The Demographic Revolution and the Transformation of World Religions. (Baylor University Press, 2020).Rothstein, B. Corruption and social trust: Why the fish rots from the head down. Soc. Res. 80, 1009–1032 (2013).
    Google Scholar 
    Lynch, R, Schaffnit, S. and Shenk, M. OSF preregistration – Does religion help to preserve the density of kin networks often disrupted by globalization? Open Science Framework Registries. https://osf.io/xvyqm/registrations (2020).Alam, N. et al. Health and demographic surveillance system (HDSS) in Matlab, Bangladesh. Int. J. Epidemiol. 46, 809–816 (2017).PubMed 

    Google Scholar 
    Icddr, B. Health and Demographic Surveillance System-Matlab. 2005 Socioeconomic Census (2007).Imf. International Monetary Fund. World Economic Outlook Database. (2016).Razzaque, A., Streatfield, P. K. & Evans, A. Family size and children’s education in Matlab, Bangladesh. J. Biosoc. Sci. 39, 245–256 (2007).PubMed 

    Google Scholar 
    Afsar, R. Unravelling the vicious cycle of recruitment: Labour migration from Bangladesh to the gulf states. http://ilo.org/wcmsp5/groups/public/—ed_norm/—declaration/documents/publication/wcms_106536.pdf (2009).Kabeer, N. Ideas, economics and ‘the sociology of supply’: Explanations for fertility decline in Bangladesh. J. Dev. Stud. 38, 29–70 (2001).
    Google Scholar 
    Novak, J. J. Bangladesh: Reflections on the water. (Indiana University Press, 1993).Shenk, M. K., Towner, M. C., Kress, H. C. & Alam, N. A model comparison approach shows stronger support for economic models of fertility decline. Proc. Natl. Acad. Sci. USA 110, 8045–8050 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Devine, J., Hinks, T. & Naveed, A. Happiness in Bangladesh: The role of religion and connectedness. J. Happiness Stud. 20, 351–371 (2019).
    Google Scholar 
    Henrich, J. Market incorporation, agricultural change, and sustainability among the Machiguenga Indians of the Peruvian Amazon. Hum. Ecol. 25, 319–351 (1997).
    Google Scholar 
    Lu, F. Integration into the market among indigenous peoples: A cross-cultural perspective from the Ecuadorian Amazon. Curr. Anthropol. 48, 593–602 (2007).
    Google Scholar 
    Bürkner, P.-C. Advanced Bayesian Multilevel Modeling with the R Package brms. arXiv [stat.CO] (2017).Team, R. C. & Others. R: A language and environment for statistical computing. (2013).Lynch, R. Kin_density_and-religiosity. (2021).McElreath, R. Statistical rethinking. (2017).Clarke, M. New kinship, Islam, and the liberal tradition: sexual morality and new reproductive technology in Lebanon. J. R. Anthropol. Inst. 14, 153–169 (2008).
    Google Scholar 
    Swann, W. B. et al. What makes a group worth dying for? Identity fusion fosters perception of familial ties, promoting self-sacrifice. J. Pers. Soc. Psychol. 106, 912–926 (2014).PubMed 

    Google Scholar 
    Benítez, D. M. Bangladesh: Economy Overview and Structural Changes. (2018).Viry, G. Residential mobility and the spatial dispersion of personal networks: Effects on social support. Soc. Networks 34, 59–72 (2012).
    Google Scholar 
    Mok, D., Wellman, B. & Carrasco, J. Does distance matter in the age of the internet?. Urban Stud. 47, 2747–2783 (2010).
    Google Scholar 
    Rivera, M. T., Soderstrom, S. B. & Uzzi, B. Dynamics of dyads in social networks: Assortative, relational, and proximity mechanisms. Annu. Rev. Sociol. 36, 91–115 (2010).
    Google Scholar 
    Pollet, T. V., Roberts, S. G. B. & Dunbar, R. I. M. Going that extra mile: Individuals travel further to maintain face-to-face contact with highly related kin than with less related kin. PLoS ONE 8, e53929 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Madhavan, S., Clark, S., Araos, M. & Beguy, D. Distance or location? How the geographic distribution of kin networks shapes support given to single mothers in urban Kenya. Geogr. J. 184, 75–88 (2018).
    Google Scholar 
    Curry, O., Roberts, S. G. B. & Dunbar, R. I. M. Altruism in social networks: evidence for a ‘kinship premium’. Br. J. Psychol. 104, 283–295 (2013).PubMed 

    Google Scholar 
    Sullivan, K. & Sullivan, A. Adolescent–parent separation. Dev. Psychol. 16, 93 (1980).
    Google Scholar 
    Roberts, S. G. B. & Dunbar, R. I. M. Communication in social networks: Effects of kinship, network size, and emotional closeness. Pers. Relatsh. 18, 439–452 (2011).
    Google Scholar 
    Shenk, M. K. et al. Social support, nutrition and health among women in rural Bangladesh: complex tradeoffs in allocare, kin proximity and support network size. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 207 (2021).Snopkowski, K. & Sear, R. Grandparental help in Indonesia is directed preferentially towards needier descendants: A potential confounder when exploring grandparental influences on child health. Soc. Sci. Med. 128, 105–114 (2015).PubMed 

    Google Scholar 
    Schaffnit, S. B. & Sear, R. Support for new mothers and fertility in the United Kingdom: Not all support is equal in the decision to have a second child. Popul. Stud. 71, 345–361 (2017).
    Google Scholar 
    Boyer, P. The Naturalness of Religious Ideas: A Cognitive Theory of Religion. (University of California Press, 1994).Thomas, M. G. et al. Kinship underlies costly cooperation in Mosuo villages. R Soc Open Sci 5, 171535 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maqsood, A. Love as understanding. Am. Ethnol. https://doi.org/10.1111/amet.13000 (2021).Article 

    Google Scholar 
    Schurmann, A. T. & Mahmud, S. Civil society, health, and social exclusion in Bangladesh. J. Health Popul. Nutr. 27, 536–544 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Haque, M. R., Hasan, M. S., Alam, N., Barkat, S. & Others. Fertility preferences in Bangladesh. in Family Demography in Asia (Edward Elgar Publishing, 2018).Mattison, S. M. Economic impacts of tourism and erosion of the visiting system among the Mosuo of Lugu Lake. Asia Pac. J. Anthropol. 11, 159–176 (2010).
    Google Scholar 
    Mattison, S. M. et al. Context specificity of ‘market integration’ among the matrilineal Mosuo of Southwest China. Curr. Anthropol. 63, 118–124 (2022).
    Google Scholar 
    Uchida, Y., Kitayama, S., Mesquita, B., Reyes, J. A. S. & Morling, B. Is perceived emotional support beneficial? Well-being and health in independent and interdependent cultures. Pers. Soc. Psychol. Bull. 34, 741–754 (2008).PubMed 

    Google Scholar 
    Reblin, M. & Uchino, B. N. Social and emotional support and its implication for health. Curr. Opin. Psychiatry 21, 201–205 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Inglehart, R. Faith and freedom: Traditional and modern ways to happiness. Int. Differ. Well-being 351, 397 (2010).
    Google Scholar 
    Ferriss, A. L. Religion and the Quality of Life. J. Happiness Stud. 3, 199–215 (2002).
    Google Scholar 
    Greeley, A. & Hout, M. Happiness and lifestyle among conservative Christians. The truth about conservative Christians 1, 150–161 (2006).
    Google Scholar 
    Pilisuk, M. Kinship, social networks, social support and health. Soc. Sci. Med. 12, 273–280 (1978).CAS 
    PubMed 

    Google Scholar 
    Schaffnit, S. B. & Sear, R. Supportive families versus support from families: The decision to have a child in the Netherlands. Demogr. Res. 37, 417–454 (2017).
    Google Scholar 
    Hassan, A., Lawson, D., Schaffnit, S. B., Urassa, M. & Sear, R. Childcare in transition: evidence that patterns of childcare differ by degree of market integration in north-western Tanzania. (2021).https://doi.org/10.31219/osf.io/gtc6kPutnam, R. D. Democracies in Flux: The Evolution of Social Capital in Contemporary Society. (Oxford University Press, 2004). More