More stories

  • in

    Extreme escalation of heat failure rates in ectotherms with global warming

    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford Univ. Press, 2009).Cossins, A. R. & Bowler, K. Temperature Biology of Animals (Chapman and Hall, 1987).Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).CAS 
    PubMed 

    Google Scholar 
    Kellermann, V. et al. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl Acad. Sci. USA 109, 16228–16233 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Hofmann, G. E. & Todgham, A. E. Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu. Rev. Physiol. 72, 127–145 (2010).CAS 
    PubMed 

    Google Scholar 
    Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).PubMed 

    Google Scholar 
    Sunday, J. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).
    Google Scholar 
    Parratt, S. R. et al. Temperatures that sterilize males better match global species distributions than lethal temperatures. Nat. Clim. Change 11, 481–484 (2021).
    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
    Google Scholar 
    Schmidt-Nielsen, K. Animal physiology: Adaptation and Environment 5th edn (Cambridge Univ. Press, 1997).Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2014).
    Google Scholar 
    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).CAS 
    PubMed 

    Google Scholar 
    Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).CAS 
    PubMed 

    Google Scholar 
    Jørgensen, L. B., Malte, H. & Overgaard, J. How to assess Drosophila heat tolerance: unifying static and dynamic tolerance assays to predict heat distribution limits. Funct. Ecol. 33, 629–642 (2019).
    Google Scholar 
    Hollingsworth, M. J. Temperature and length of life in Drosophila. Exp. Gerontol. 4, 49–55 (1969).CAS 
    PubMed 

    Google Scholar 
    Fry, F. E. J., Hart, J. S. & Walker, K. F. Lethal Temperature Relations for a Sample of Young Speckled Trout, Salvelinus fontinalis 9–35 (Univ. Toronto, 1946).MacLean, H. J. et al. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Philos. Trans. R. Soc. B 374, 20180548 (2019).
    Google Scholar 
    Pörtner, H.-O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).PubMed 

    Google Scholar 
    Ørsted, M., Jørgensen, L. B. & Overgaard, J. Finding the right thermal limit: a framework to reconcile ecological, physiological, and methodological aspects of CTmax in ectotherms. J. Exp. Biol. 225, jeb244514 (2022).Brown, J. H., Gillooly, J. F., Alle, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Google Scholar 
    Munch, S. B. & Salinas, S. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proc. Natl Acad. Sci. USA 106, 13860–13864 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jørgensen, L. B., Malte, H., Ørsted, M., Klahn, N. A. & Overgaard, J. A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Sci. Rep. 11, 12840 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Rezende, E. L., Castañeda, L. E. & Santos, M. Tolerance landscapes in thermal ecology. Funct. Ecol. 28, 799–809 (2014).
    Google Scholar 
    Bowler, K. Heat death in poikilotherms: is there a common cause? J. Therm. Biol. 76, 77–79 (2018).PubMed 

    Google Scholar 
    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).CAS 
    PubMed 

    Google Scholar 
    Buckley, L. B., Huey, R. B. & Kingsolver, J. G. Asymmetry of thermal sensitivity and the thermal risk of climate change. Glob. Ecol. Biogeogr. 31, 2231–2244 (2022).Overgaard, J., Kearney, M. R. & Hoffmann, A. A. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Glob. Change Biol. 20, 1738–1750 (2014).
    Google Scholar 
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).CAS 
    PubMed 

    Google Scholar 
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).
    Google Scholar 
    Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc. Natl Acad. Sci. USA 106, 3835–3840 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woods, H. A., Dillon, M. E. & Pincebourde, S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol 54, 86–97 (2015).PubMed 

    Google Scholar 
    Stevenson, R. D. The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am. Nat. 126, 362–386 (1985).
    Google Scholar 
    Chen, I., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 
    PubMed 

    Google Scholar 
    Buckley, L. B. & Kingsolver, J. G. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Annu. Rev. Ecol. Evol. Syst. 43, 205–226 (2012).
    Google Scholar 
    Roeder, K. A., Bujan, J., de Beurs, K. M., Weiser, M. D. & Kaspari, M. Thermal traits predict the winners and losers under climate change: an example from North American ant communities. Ecosphere 12, e03645 (2021).
    Google Scholar 
    Penick, C. A., Diamond, S. E., Sanders, N. J. & Dunn, R. R. Beyond thermal limits: comprehensive metrics of performance identify key axes of thermal adaptation in ants. Funct. Ecol. 31, 1091–1100 (2017).
    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Integr. Comp. Biol. 19, 357–366 (1979).
    Google Scholar 
    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19, 1372–1385 (2016).PubMed 

    Google Scholar 
    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals the scale of prediction. Science 320, 1296–1297 (2008).CAS 
    PubMed 

    Google Scholar 
    Kingsolver, J. G., Diamond, S. E. & Buckley, L. B. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct. Ecol. 27, 1415–1423 (2013).
    Google Scholar 
    Kingsolver, J. G. & Woods, H. A. Beyond thermal performance curves: modeling time-dependent effects of thermal stress on ectotherm growth rates. Am. Nat. 187, 283–294 (2016).PubMed 

    Google Scholar 
    Kingsolver, J. G., Higgins, J. K. & Augustine, K. E. Fluctuating temperatures and ectotherm growth: distinguishing non-linear and time-dependent effects. J. Exp. Biol. 218, 2218–2225 (2015).PubMed 

    Google Scholar 
    Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).PubMed 

    Google Scholar 
    Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl Acad. Sci. USA 116, 5588–5596 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).CAS 
    PubMed 

    Google Scholar 
    Hausfather, Z. & Peters, G. P. Emissions—the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).CAS 
    PubMed 

    Google Scholar 
    Tollefson, J. How hot will Earth get by 2100? Nature 580, 443–445 (2020).CAS 
    PubMed 

    Google Scholar 
    Assis, J. et al. Bio‐ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).
    Google Scholar 
    Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).
    Google Scholar 
    Jørgensen, L. B., Ørsted, M., Malte, H., Wang, T. & Overgaard, J. Data from: Extreme escalation of heat failure rates in ectotherms with global warming. Zenodo https://doi.org/10.5281/zenodo.6979789 (2022).Grove, T. J., McFadden, L. A., Chase, P. B. & Moerland, T. S. Effects of temperature, ionic strength and pH on the function of skeletal muscle myosin from a eurythermal fish, Fundulus heteroclitus. J. Muscle Res. Cell Motil. 26, 191–197 (2005).CAS 
    PubMed 

    Google Scholar 
    Doudoroff, P. The resistance and acclimatization of marine fishes to temperature changes. II. Experiments with Fundulus and Atherinops. Biol. Bull. 88, 194–206 (1945).
    Google Scholar 
    Sirikharin, R., Söderhäll, I. & Söderhäll, K. Characterization of a cold-active transglutaminase from a crayfish, Pacifastacus leniusculus. Fish Shellfish Immunol. 80, 546–549 (2018).CAS 
    PubMed 

    Google Scholar 
    Becker, C. D. & Genoway, R. G. Resistance of crayfish to acute thermal shock: preliminary studies. in Proc. Thermal Ecology NTIS Conf. 730505 (eds Gibbons, J. W. & Sharitz, R. R.) 146–150 (NTIS, 1974).Widdows, J. Effect of temperature and food on the heart beat, ventilation rate and oxygen uptake of Mytilus edulis. Mar. Biol. 20, 269–276 (1973).
    Google Scholar 
    Wallis, R. L. Thermal tolerance of Mytilus edulis of eastern Australia. Mar. Biol. 30, 183–191 (1975).
    Google Scholar 
    Gray, J. The mechanism of ciliary movement. III. The effect of temperature. Proc. R. Soc. B 95, 6–15 (1923).CAS 

    Google Scholar 
    Shertzer, R. H., Hart, R. G. & Pavlick, F. M. Thermal acclimation in selected tissues of the leopard frog Rana pipiens. Comp. Biochem. Physiol. A 51, 327–334 (1975).CAS 
    PubMed 

    Google Scholar 
    Orr, P. R. Heat death. II. Differential response of entire animal (Rana pipiens) and several organ systems. Physiol. Zool. 28, 294–302 (1955).
    Google Scholar 
    Lighton, J. R. B. & Duncan, F. D. Energy cost of locomotion: validation of laboratory data by in situ respirometry. Ecology 83, 3517–3522 (2002).
    Google Scholar 
    Heatwole, H. & Harrington, S. Heat tolerances of some ants and beetles from the pre-Saharan steppe of Tunisia. J. Arid Environ. 16, 69–77 (1989).
    Google Scholar  More

  • in

    Foundation plant species provide resilience and microclimatic heterogeneity in drylands

    Hantson, S., Huxman, T. E., Kimball, S., Randerson, J. T. & Goulden, M. L. Warming as a driver of vegetation loss in the Sonoran Desert of California. J. Geophys. Res. Biogeosci. 126, e2020JG005942. https://doi.org/10.1029/2020JG005942 (2021).Article 
    ADS 

    Google Scholar 
    Lortie, C. J., Filazzola, A., Kelsey, R., Hart, A. K. & Butterfield, H. S. Better late than never: A synthesis of strategic land retirement and restoration in California. Ecosphere 9, e02367. https://doi.org/10.1002/ecs2.2367 (2018).Article 

    Google Scholar 
    Ye, J.-S., Reynolds, J. F., Sun, G.-J. & Li, F.-M. Impacts of increased variability in precipitation and air temperature on net primary productivity of the Tibetan Plateau: A modeling analysis. Clim. Change 119, 321–332. https://doi.org/10.1007/s10584-013-0719-2 (2013).Article 
    ADS 

    Google Scholar 
    Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966. https://doi.org/10.1038/s41598-017-17966-y (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, W. et al. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 7, eabf8021. https://doi.org/10.1126/sciadv.abf8021 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stahle David, W. Anthropogenic megadrought. Science 368, 238–239. https://doi.org/10.1126/science.abb6902 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318. https://doi.org/10.1126/science.aaz9600 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bryant, B. P. et al. Shaping land use change and ecosystem restoration in a water-stressed agricultural landscape to achieve multiple benefits. Front. Sustain. Food Syst. 4, 138 (2020).Article 

    Google Scholar 
    Ross, C. W. et al. Woody-biomass projections and drivers of change in sub-Saharan Africa. Nat. Clim. Chang. 11, 449–455. https://doi.org/10.1038/s41558-021-01034-5 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E. & Dennehy, K. F. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob. Change Biol. 11, 1577–1593. https://doi.org/10.1111/j.1365-2486.2005.01026.x (2005).Article 
    ADS 

    Google Scholar 
    Scanlon, B. R. et al. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 20, 3335–3370. https://doi.org/10.1002/hyp.6335 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Kelsey, R., Hart, A., Butterfield, H. S. & Vink, D. Groundwater sustainability in the San Joaquin Valley: Multiple benefits if agricultural lands are retired and restored strategically. Calif. Agric. 2, 151–154 (2018).Article 

    Google Scholar 
    Capdevila, P. et al. Reconciling resilience across ecological systems, species and subdisciplines. J. Ecol. 109, 3102–3113. https://doi.org/10.1111/1365-2745.13775 (2021).Article 

    Google Scholar 
    Thebault, A., Mariotte, P., Lortie, C. & MacDougall, A. Land management trumps the effects of climate change and elevated CO2 on grassland functioning. J. Ecol. 102, 896–904. https://doi.org/10.1111/1365-2745.12236 (2014).Article 

    Google Scholar 
    Turney, C., Ausseil, A.-G. & Broadhurst, L. Urgent need for an integrated policy framework for biodiversity loss and climate change. Nature Ecol. Evol. 4, 996–996. https://doi.org/10.1038/s41559-020-1242-2 (2020).Article 

    Google Scholar 
    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729. https://doi.org/10.1038/s41586-020-2784-9 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ellison, A. M. Foundation species, non-trophic interactions, and the value of being common. iScience 13, 254–268. https://doi.org/10.1016/j.isci.2019.02.020 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Brien, M. J., Carbonell, E. P., Losapio, G., Schlüter, P. M. & Schöb, C. Foundation species promote local adaptation and fine-scale distribution of herbaceous plants. J. Ecol. 109, 191–203. https://doi.org/10.1111/1365-2745.13461 (2021).Article 
    CAS 

    Google Scholar 
    Bagley, J. E. et al. The influence of land cover on surface energy partitioning and evaporative fraction regimes in the U.S. Southern Great Plains. J. Geophys. Res.: Atmos. 122, 5793–5807. https://doi.org/10.1002/2017JD026740 (2017).Article 
    ADS 

    Google Scholar 
    Norris, C., Hobson, P. & Ibisch, P. L. Microclimate and vegetation function as indicators of forest thermodynamic efficiency. J. Appl. Ecol. 49, 562–570. https://doi.org/10.1111/j.1365-2664.2011.02084.x (2012).Article 

    Google Scholar 
    Brooker, R. W. et al. Tiny niches and translocations: The challenge of identifying suitable recipient sites for small and immobile species. J. Appl. Ecol. 55, 621–630. https://doi.org/10.1111/1365-2664.13008 (2018).Article 

    Google Scholar 
    Forzieri, G. et al. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Chang. 10, 356–362. https://doi.org/10.1038/s41558-020-0717-0 (2020).Article 
    ADS 

    Google Scholar 
    Milling, C. R. et al. Habitat structure modifies microclimate: An approach for mapping fine-scale thermal refuge. Methods Ecol. Evol. 9, 1648–1657. https://doi.org/10.1111/2041-210X.13008 (2018).Article 

    Google Scholar 
    Ghazian, N., Zuliani, M. & Lortie, C. J. Micro-climatic amelioration in a california desert: Artificial shelter versus shrub canopy. J. Ecol. Eng. 21, 216–228. https://doi.org/10.12911/22998993/126875 (2020).Article 

    Google Scholar 
    Wright, A. J., Barry, K. E., Lortie, C. J. & Callaway, R. M. Biodiversity and ecosystem functioning: Have our experiments and indices been underestimating the role of facilitation?. J. Ecol. 109, 1962–1968. https://doi.org/10.1111/1365-2745.13665 (2021).Article 

    Google Scholar 
    Germano, D. J. et al. The San Joaquin Desert of California: Ecologically misunderstood and overlooked. Nat. Areas J. 31, 138–147. https://doi.org/10.3375/043.031.0206 (2011).Article 

    Google Scholar 
    Fairbairn, M., LaChance, J., De Master, K. T. & Ashwood, L. In vino veritas, in aqua lucrum: Farmland investment, environmental uncertainty, and groundwater access in California’s Cuyama Valley. Agric. Hum. Values 38, 285–299. https://doi.org/10.1007/s10460-020-10157-y (2021).Article 

    Google Scholar 
    Filazzola, A., Lortie, C. J., Westphal, M. F. & Michalet, R. Species-specificity challenges the predictability of facilitation along a regional desert gradient. J. Veg. Sci. 1, 1–12. https://doi.org/10.1111/jvs.12909 (2020).Article 

    Google Scholar 
    Cutlar, H. C. Monograph of the North American species of the genus Ephedra. Ann. Mo. Bot. Gard. 26, 373–428 (1939).Article 

    Google Scholar 
    Hollander, J. L., Wall, S. B. V. & Baguley, J. G. Evolution of seed dispersal in North American Ephedra. Evol. Ecol. 24, 333–345. https://doi.org/10.1007/s10682-009-9309-1 (2010).Article 

    Google Scholar 
    Filazzola, A., Brown, C., Westphal, M. & Lortie, C. J. Establishment of a desert foundation species is limited by exotic plants and light but not herbivory or water. Appl. Veg. Sci. 1, 1–12. https://doi.org/10.1111/avsc.12515 (2020).Article 

    Google Scholar 
    Lortie, C. J., Gruber, E., Filazzola, A., Noble, T. & Westphal, M. The Groot effect: Plant facilitation and desert shrub regrowth following extensive damage. Ecol. Evol. 8, 706–715. https://doi.org/10.1002/ece3.3671 (2018).Article 
    PubMed 

    Google Scholar 
    Lortie, C. J. et al. Telemetry of the lizard species Gambelia sila at Carrizo plain national monument. Figshare. Dataset. https://doi.org/10.6084/m9.figshare.8239667.v2 (2019).Article 

    Google Scholar 
    Braun, J., Westphal, M. & Lortie, C. J. The shrub Ephedra californica facilitates arthropod communities along a regional desert climatic gradient. Ecosphere 12, e03760. https://doi.org/10.1002/ecs2.3760 (2021).Article 

    Google Scholar 
    Terando, A., Youngsteadt, E., Meineke, E. & Prado, S. Accurate near surface air temperature measurements are necessary to gauge large-scale ecological responses to global climate change. Ecol. Evol. 8, 5233–5234. https://doi.org/10.1002/ece3.3972 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tielborger, K. & Kadmon, R. Indirect effects in a desert plant community: Is competition among annuals more intense under shrub canopies?. Plant Ecol. 150, 53–63 (2000).Article 

    Google Scholar 
    Holzapfel, C., Tielbörger, K., Parag, H. A., Kigel, J. & Sternberg, M. Annual plant–shrub interactions along an aridity gradient. Basic Appl. Ecol. 7, 268–279. https://doi.org/10.1016/j.baae.2005.08.003 (2006).Article 

    Google Scholar 
    Jankju, M. Role of nurse shrubs in restoration of an arid rangeland: Effects of microclimate on grass establishment. J. Arid Environ. 89, 103–109. https://doi.org/10.1016/j.jaridenv.2012.09.008 (2013).Article 
    ADS 

    Google Scholar 
    Baldelomar, M., Atala, C. & Molina-Montenegro, M. A. Top-down and Bottom-up effects deployed by a nurse shrub allow facilitating an endemic mediterranean orchid. Front. Ecol. Evol. 7, 466 (2019).Article 

    Google Scholar 
    Tielborger, K. & Kadmon, R. Temporal environmental variation tips the balance between facilitation and interference in desert plants. Ecology 81, 1544–1553. https://doi.org/10.1890/0012-9658(2000)081[1544:TEVTTB]2.0.CO;2 (2000).Article 

    Google Scholar 
    Walter, J. Effects of changes in soil moisture and precipitation patterns on plant-mediated biotic interactions in terrestrial ecosystems. Plant Ecol. https://doi.org/10.1007/s11258-018-0893-4 (2018).Article 

    Google Scholar 
    Schob, C., Armas, C. & Pugnaire, F. Direct and indirect interactions co-determine species composition in nurse plant systems. Oikos 122, 1371–1379. https://doi.org/10.1111/j.1600-0706.2013.00390.x (2013).Article 

    Google Scholar 
    Eldridge, D. J., Beecham, G. & Grace, J. B. Do shrubs reduce the adverse effects of grazing on soil properties?. Ecohydrology 8, 1503–1513. https://doi.org/10.1002/eco.1600 (2015).Article 

    Google Scholar 
    Nerlekar, A. N. & Veldman, J. W. High plant diversity and slow assembly of old-growth grasslands. Proc. Natl. Acad. Sci. 117, 18550. https://doi.org/10.1073/pnas.1922266117 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tielbörger, K. et al. Middle-Eastern plant communities tolerate 9 years of drought in a multi-site climate manipulation experiment. Nat. Commun. 5, 5102. https://doi.org/10.1038/ncomms6102 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Griffin, D. & Anchukaitis, K. J. How unusual is the 2012–2014 California drought?. Geophys. Res. Lett. 41, 9017–9023. https://doi.org/10.1002/2014GL062433 (2014).Article 
    ADS 

    Google Scholar 
    Data, U. C. In US Climate Data Product, New Cuyama, vol. 1. https://www.usclimatedata.com (2021).Gherardi, L. A. & Sala, O. E. Effect of interannual precipitation variability on dryland productivity: A global synthesis. Glob. Change Biol. 25, 269–276. https://doi.org/10.1111/gcb.14480 (2019).Article 
    ADS 

    Google Scholar 
    Ding, Y., Li, Z. & Peng, S. Global analysis of time-lag and -accumulation effects of climate on vegetation growth. Int. J. Appl. Earth Obs. Geoinf. 92, 102179. https://doi.org/10.1016/j.jag.2020.102179 (2020).Article 

    Google Scholar 
    Liu, H. et al. Analysis of the time-lag effects of climate factors on grassland productivity in Inner Mongolia. Glob. Ecol. Conserv. 30, e01751. https://doi.org/10.1016/j.gecco.2021.e01751 (2021).Article 

    Google Scholar 
    Liancourt, P., Song, X., Macek, M., Santrucek, J. & Dolezal, J. Plant’s-eye view of temperature governs elevational distributions. Glob. Change Biol. 26, 4094–4103. https://doi.org/10.1111/gcb.15129 (2020).Article 
    ADS 

    Google Scholar 
    Ryan, M. J. et al. Too dry for lizards: Short-term rainfall influence on lizard microhabitat use in an experimental rainfall manipulation within a pinon-juniper woodland. Funct. Ecol. https://doi.org/10.1111/1365-2435.12595 (2015).Article 

    Google Scholar 
    Moore, D., Stow, A. & Kearney, M. R. Under the weather?—The direct effects of climate warming on a threatened desert lizard are mediated by their activity phase and burrow system. J. Anim. Ecol. 87, 660–671. https://doi.org/10.1111/1365-2656.12812 (2018).Article 
    PubMed 

    Google Scholar 
    Gaudenti, N., Nix, E., Maier, P., Westphal, M. F. & Taylor, E. N. Habitat heterogeneity affects the thermal ecology of an endangered lizard. Ecol. Evol. 11, 14843–14856. https://doi.org/10.1002/ece3.8170 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lortie, C. J., Filazzola, A. & Sotomayor, D. A. Functional assessment of animal interactions with shrub-facilitation complexes: A formal synthesis and conceptual framework. Funct. Ecol. 30, 41–51. https://doi.org/10.1111/1365-2435.12530 (2016).Article 

    Google Scholar 
    Lortie, C. J. et al. Shrub and vegetation cover predict resource selection use by an endangered species of desert lizard. Sci. Rep. 10, 4884. https://doi.org/10.1038/s41598-020-61880-9 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nature Ecol. Evol. 3, 744–749. https://doi.org/10.1038/s41559-019-0842-1 (2019).Article 

    Google Scholar 
    Avolio, M. L. et al. Determinants of community compositional change are equally affected by global change. Ecol. Lett. 24, 1892–1904. https://doi.org/10.1111/ele.13824 (2021).Article 
    PubMed 

    Google Scholar 
    Cook-Patton, S. C. et al. Protect, manage and then restore lands for climate mitigation. Nat. Clim. Chang. 11, 1027–1034. https://doi.org/10.1038/s41558-021-01198-0 (2021).Article 
    ADS 

    Google Scholar 
    Hedden-Nicely, D. R. Climate change and the future of western US water governance. Nat. Clim. Chang. https://doi.org/10.1038/s41558-021-01141-3 (2021).Article 

    Google Scholar 
    Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Chang. 8, 713–717. https://doi.org/10.1038/s41558-018-0231-9 (2018).Article 
    ADS 

    Google Scholar 
    Hanson, R. T., Flint, L. E., Faunt, C. C., Gibbs, D. R. & Schmid, W. Hydrologic models and analysis of water availability in Cuyama Valley, California. In U.S. Geological Survey Scientific Investigations Report, 2015 1–126 (2015).John, S. In Encyclopedia of World Climatology (ed John, E. O.) 89–94 (Springer Netherlands, 2005).James-Jeremy, J. et al. A systems approach to restoring degraded drylands. J. Appl. Ecol. 50, 730–739. https://doi.org/10.1111/1365-2664.12090 (2013).Article 

    Google Scholar 
    Upson, J. E. & Worts, G. F. In Ground water in the Cuyama Valley, California. Report No. 1110B 1–82 (1951).Hanson, M. T., Randall, T. & Sweetkind, D. Cuyama Valley, California hydrologic study—an assessment of water availability. In U.S. Geological Survey Scientific Investigations Report 2014 1–4. https://doi.org/10.3133/fs20143075 (2014).Greicius, T. NASA data show California’s San Joaquin Valley Still Sinking. JPL 28, 1–9 (2017).
    Google Scholar 
    Döll, P. et al. Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 59–60, 143–156. https://doi.org/10.1016/j.jog.2011.05.001 (2012).Article 

    Google Scholar 
    Lortie, C. J. & Filazzola, A. US climate data, New Cuyama, CA, 2016–2017. Figshare 1, 2016–2017. https://doi.org/10.6084/m9.figshare.17162600.v1 (2021).Article 

    Google Scholar 
    Lortie, C. J. & Filazzola, A. Vegetation surveys in Cuyama Valley, CA, USA in 2016 and 2017 at the peak of megadrought. Knowl. Netw. Biocompl. 1, 1–15. https://doi.org/10.5063/F1MG7MZH (2021).Article 

    Google Scholar 
    Hickman, J. C. The Jepson Manual (University of California Press, 1996).
    Google Scholar 
    Villanueva-Almanza, L. & Fonseca, R. M. In Taxonomic review and geographic distribution of Ephedra (Ephedraceae) in Mexico. ACTA BOTANICA MEXICANA 96 (2011).Alfieri, F. J. & Mottola, P. M. Seasonal changes in the phloem of Ephedra californica Wats. Bot. Gaz. 144, 240–246 (1983).Article 

    Google Scholar 
    Hoffman, O., de-Falco, N., Yizhaq, H. & Boeken, B. Annual plant diversity decreases across scales following widespread ecosystem engineer shrub mortality. J. Veg. Sci. https://doi.org/10.1111/jvs.12372 (2016).Article 

    Google Scholar 
    Ivey, K. N. et al. Thermal ecology of the federally endangered blunt-nosed leopard lizard (Gambelia sila). Conserv. Physiol. 2020, 8. https://doi.org/10.1093/conphys/coaa014 (2020).Article 

    Google Scholar 
    Grimes, A. J., Corrigan, G., Germano, D. J. & Smith, P. T. Mitochondrial phylogeography of the endangered blunt-nosed leopard lizard, Gambelia sila. Southwestern Natural. 59, 38–46. https://doi.org/10.1894/F06-GC-233.1 (2014).Article 

    Google Scholar 
    Stewart, J. A. E. et al. Habitat restoration opportunities, climatic niche contraction, and conservation biogeography in California’s San Joaquin Desert. PLoS ONE 14, e0210766. https://doi.org/10.1371/journal.pone.0210766 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Germano, D. J., Rathbun, G. B. & Saslaw, L. R. Effects of grazing and invasive grasses on desert vertebrates in California. J. Wildl. Manag. 76, 670–682. https://doi.org/10.1002/jwmg.316 (2012).Article 

    Google Scholar 
    Moss, B. The water framework directive: Total environment or political compromise?. Sci. Total Environ. 400, 32–41. https://doi.org/10.1016/j.scitotenv.2008.04.029 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Denevan, W. M. The “Pristine Myth ” revisited. Geogr. Rev. 101, 576–591. https://doi.org/10.1111/j.1931-0846.2011.00118.x (2011).Article 

    Google Scholar 
    da Cunha, A. R. Evaluation of measurement errors of temperature and relative humidity from HOBO data logger under different conditions of exposure to solar radiation. Environ. Monit. Assess. 187, 236. https://doi.org/10.1007/s10661-015-4458-x (2015).Article 
    PubMed 

    Google Scholar 
    Terando, A. J., Youngsteadt, E., Meineke, E. K. & Prado, S. G. Ad hoc instrumentation methods in ecological studies produce highly biased temperature measurements. Ecol. Evol. 7, 9890–9904. https://doi.org/10.1002/ece3.3499 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nature, I. I. U. f. C. o. The IUCN red list of threatened species. IUCN 2019-1 1–142 (2019).Lortie, C. J., Filazzola, A., Butterfield, H. S. & Westphal, M. Cuyama Micronet. Figshare 1, 1–6. https://doi.org/10.6084/m9.figshare.11888199.v2 (2020).Article 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing. Vol. 4.2.1 (R foundation for Statistical Computing, 2022).Pinheiro, J., Bates, D., DebRoy, S. & Deepayan, S. nlme: Linear and nonlinear mixed effects models. CRAN 3, 1–153 (2021).
    Google Scholar 
    Pebesma, E. spacetime: Spatio-temporal data in R. J. Stat. Softw. 1(7), 2012. https://doi.org/10.18637/jss.v051.i07 (2012).Article 

    Google Scholar 
    Bates, D. et al. lme4: Linear mixed-effects models using “Eigen” and S4. CRAN 2020, 1–122 (2020).
    Google Scholar 
    Lenth, R. V. emmeans: Estimated marginal means. CRAN 1, 1–89 (2022).
    Google Scholar  More

  • in

    Dark plumes of glacial meltwater affect vertical distribution of zooplankton in the Arctic

    Meredith, M. et al. Polar regions. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (Pörtner, H.‐O. et al. Eds.). 203–320 (2019).Nummelin, A., Ilicak, M., Li, C. & Smedsrud, L. H. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. J. Geophys. Res. Oceans 121, 617–637 (2016).ADS 

    Google Scholar 
    Smedsrud, L. H., Sorteberg, A. & Kloster, K. Recent and future changes of the Arctic sea-ice cover. Geophys. Res. Lett. 35, L20503 (2008).ADS 

    Google Scholar 
    Ardyna, M. & Arrigo, K. R. Phytoplankton dynamics in a changing Arctic Ocean. Nat. Clim. Change 10, 892–903. https://doi.org/10.1038/s41558-020-0905-y (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Tripathy, S. C. et al. Summer variability in bio-optical properties and phytoplankton pigment signatures in two adjacent high Arctic fjords, Svalbard. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-021-03767-4 (2021).Article 

    Google Scholar 
    Sagan, S. & Darecki, M. Inherent optical properties and particulate matter distribution in summer season in waters of Hornsund and Kongsfjordenen, Spitsbergen. Oceanologia 60, 65–75 (2018).
    Google Scholar 
    Mouginot, J. et al. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. in Proceedings of the National Academy of Sciences of the United States of America. Vol. 116. 9239–9244. Preprint at https://doi.org/10.1073/pnas.1904242116 (2019).Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around antarctica. Science 1979(341), 266–270 (2013).ADS 

    Google Scholar 
    Konik, M., Darecki, M., Pavlov, A. K., Sagan, S. & Kowalczuk, P. Darkening of the Svalbard Fjords waters observed with satellite ocean color imagery in 1997–2019. Front. Mar. Sci. 8, 27 (2021).
    Google Scholar 
    IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2022).Szeligowska, M. et al. The interplay between plankton and particles in the Isfjorden waters influenced by marine- and land-terminating glaciers. Sci. Total Environ. 780, 146491 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Trudnowska, E., Dąbrowska, A. M., Boehnke, R., Zajączkowski, M. & Blachowiak-Samolyk, K. Particles, protists, and zooplankton in glacier-influenced coastal svalbard waters. Estuar. Coast Shelf Sci. 242, 106842 (2020).
    Google Scholar 
    Maekakuchi, M., Matsuno, K., Yamamoto, J., Abe, Y. & Yamaguchi, A. Abundance, horizontal and vertical distribution of epipelagic ctenophores and scyphomedusae in the northern Bering Sea in summer 2017 and 2018: Quantification by underwater video imaging analysis. Deep Sea Res. 2 Top. Stud. Oceanogr. 181–182, 104818 (2020).
    Google Scholar 
    Norrbin, F., Eilertsen, H. C. & Degerlund, M. Vertical distribution of primary producers and zooplankton grazers during different phases of the Arctic spring bloom. Deep Sea Res. 2 Top. Stud. Oceanogr. 56, 1945–1958 (2009).
    Google Scholar 
    Stemmann, L. et al. Vertical distribution (0–1000 m) of macrozooplankton, estimated using the Underwater Video Profiler, in different hydrographic regimes along the northern portion of the Mid-Atlantic Ridge. Deep Sea Res. 2 Top. Stud. Oceanogr. 55, 94–105 (2008).
    Google Scholar 
    Arendt, K. E. et al. Effects of suspended sediments on copepods feeding in a glacial influenced sub-Arctic fjord. J. Plankton Res. 33, 1526–1537 (2011).CAS 

    Google Scholar 
    Arimitsu, M., Piatt, J. & Mueter, F. Influence of glacier runoff on ecosystem structure in Gulf of Alaska fjords. Mar. Ecol. Prog. Ser. 560, 19–40 (2016).ADS 

    Google Scholar 
    Renner, M., Arimitsu, M. L. & Piatt, J. F. Structure of marine predator and prey communities along environmental gradients in a glaciated fjord. Can. J. Fish. Aquat. Sci. 69, 2029–2045 (2012).
    Google Scholar 
    Lydersen, C. et al. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J. Mar. Syst. 129, 452–471. https://doi.org/10.1016/j.jmarsys.2013.09.006 (2014).Article 

    Google Scholar 
    Falk-Petersen, S., Pavlov, V., Timofeev, S. & Sargent, J. R. Climate variability and possible effects on arctic food chains: The role of Calanus. in Arctic Alpine Ecosystems and People in a Changing Environment. 147–166. https://doi.org/10.1007/978-3-540-48514-8_9 (Springer, 2007).Stempniewicz, L. et al. Visual prey availability and distribution of foraging little auks (Alle alle) in the shelf waters of West Spitsbergen. Polar Biol. 36, 949–955 (2013).
    Google Scholar 
    CAFF. Arctic Coastal Biodiversity Monitoring Plan (CAFF Monitoring Series Report No. 29). (2019).Arendt, K. E., Nielsen, T. G., Rysgaard, S. & Tönnesson, K. Differences in plankton community structure along the Godthåbsfjord, from the Greenland Ice Sheet to offshore waters. Mar. Ecol. Prog. Ser. 401, 49–62 (2010).ADS 
    CAS 

    Google Scholar 
    Blachowiak-Samolyk, K. et al. Arctic zooplankton do not perform diel vertical migration (DVM) during periods of midnight sun. Mar. Ecol. Prog. Ser. 308, 101–116 (2006).ADS 

    Google Scholar 
    Cottier, F. R., Tarling, G. A., Wold, A. & Falk-Petersen, S. Unsynchronized and synchronized vertical migration of zooplankton in a high arctic fjord. Limnol. Oceanogr. 51, 2586–2599 (2006).ADS 

    Google Scholar 
    Hobbs, L. et al. A marine zooplankton community vertically structured by light across diel to interannual timescales. Biol Lett 17, 20200810 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Wallace, M. I. et al. Comparison of zooplankton vertical migration in an ice-free and a seasonally ice-covered Arctic fjord: An insight into the influence of sea ice cover on zooplankton behavior. Limnol. Oceanogr. 55, 831–845 (2010).ADS 

    Google Scholar 
    Bandara, K. et al. Seasonal vertical strategies in a high-Arctic coastal zooplankton community. Mar. Ecol. Prog. Ser. 555, 49–64 (2016).ADS 

    Google Scholar 
    Rabindranath, A. et al. Seasonal and diel vertical migration of zooplankton in the High Arctic during the autumn midnight sun of 2008. Mar. Biodivers. 41, 365–382 (2011).
    Google Scholar 
    Piwosz, K. et al. Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in mid-summer 2002. Polar Biol. 32, 549–559 (2009).
    Google Scholar 
    Frank, T. M. & Widder, E. A. Effects of a decrease in downwelling irradiance on the daytime vertical distribution patterns of zooplankton and micronekton. Mar. Biol. 140, 1181–1193 (2002).
    Google Scholar 
    Ortega, J. C. G., Figueiredo, B. R. S., da Graça, W. J., Agostinho, A. A. & Bini, L. M. Negative effect of turbidity on prey capture for both visual and non-visual aquatic predators. J. Anim. Ecol. 89, 2427–2439. https://doi.org/10.1111/1365-2656.13329 (2020).Article 
    PubMed 

    Google Scholar 
    Aksnes, D. et al. Coastal water darkening and implications for mesopelagic regime shifts in Norwegian fjords. Mar. Ecol. Prog. Ser. 387, 39–49 (2009).ADS 
    CAS 

    Google Scholar 
    Urbanski, J. A. et al. Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays. Sci. Rep. 7, 1–12 (2017).
    Google Scholar 
    Weslawski, J. M., Pedersen, G., Petersen, S. F. & Porazinski, K. Entrapment of macroplankton in an Arctic fjord basin, Kongsfjorden, Svalbard. Oceanologia 42, 1 (2000).
    Google Scholar 
    Berge, J. et al. Arctic complexity: A case study on diel vertical migration of zooplankton. J. Plankton Res. 36, 1279–1297 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Darnis, G. et al. From polar night to midnight sun: Diel vertical migration, metabolism and biogeochemical role of zooplankton in a high Arctic fjord (Kongsfjorden, Svalbard). Limnol. Oceanogr. 62, 1586–1605 (2017).ADS 
    CAS 

    Google Scholar 
    Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago – Svalbard, Norway. Glob. Chang Biol. 23, 490–502 (2017).ADS 
    PubMed 

    Google Scholar 
    Cottier, F. R. et al. Arctic fjords: A review of the oceanographic environment and dominant physical processes. Geol. Soc. Spec. Publ. 344, 35–50 (2010).ADS 

    Google Scholar 
    Inall, M. E., Nilsen, F., Cottier, F. R. & Daae, R. Shelf/fjord exchange driven by coastal-trapped waves in the Arctic. J. Geophys. Res. Oceans 120, 8283–8303 (2015).ADS 

    Google Scholar 
    Promińska, A., Cisek, M. & Walczowski, W. Kongsfjorden and Hornsund hydrography—Comparative study based on a multiyear survey in fjords of west Spitsbergen. Oceanologia 59, 397–412 (2017).
    Google Scholar 
    Agrawal, Y. C. & Pottsmith, H. C. Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol. 168, 89–114 (2000).ADS 

    Google Scholar 
    Basedow, S. L., Tande, K. S. & Zhou, M. Biovolume spectrum theories applied: Spatial patterns of trophic levels within a mesozooplankton community at the polar front. J. Plankton Res. 32, 1105–1119 (2010).PubMed 

    Google Scholar 
    Trudnowska, E., Basedow, S. L. & Blachowiak-Samolyk, K. Mid-summer mesozooplankton biomass, its size distribution, and estimated production within a glacial Arctic fjord (Hornsund, Svalbard). J. Mar. Syst. 137, 55–66 (2014).
    Google Scholar 
    Jakubas, D. et al. Foraging closer to the colony leads to faster growth in little auks. Mar. Ecol. Prog. Ser. 489, 263–278 (2013).ADS 

    Google Scholar 
    Basedow, S. L., Tande, K. S., Norrbin, M. F. & Kristiansen, S. A. Capturing quantitative zooplankton information in the sea: Performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation. Prog. Oceanogr. 108, 72–80 (2013).ADS 

    Google Scholar 
    Woźniak, S. B., Darecki, M., Zabłocka, M., Burska, D. & Dera, J. New simple statistical formulas for estimating surface concentrations of suspended particulate matter (SPM) and particulate organic carbon (POC) from remote-sensing reflectance in the southern Baltic Sea. Oceanologia 58, 161–175 (2016).
    Google Scholar 
    Marker, A. The measurement of photosynthetic pigments in freshwaters and standardization of methods : Conclusions and recommendations. Arch. Hydrobiol. Beih 14, 91–106 (1980).CAS 

    Google Scholar 
    Stramska, M. Bio-optical relationships and ocean color algorithms for the north polar region of the Atlantic. J. Geophys. Res. 108, 3143 (2003).ADS 

    Google Scholar 
    Picheral, M. et al. The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Methods 8, 462–473 (2010).
    Google Scholar 
    Gabrielsen, T. M. et al. Potential misidentifications of two climate indicator species of the marine arctic ecosystem: Calanus glacialis and C. finmarchicus. Polar Biol. 35, 1621–1628 (2012).
    Google Scholar 
    Trudnowska, E. et al. In a comfort zone and beyond—Ecological plasticity of key marine mediators. Ecol. Evol. 10, 14067–14081 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Jakobsson, M. et al. The International Bathymetric Chart of the Arctic Ocean version 4.0. Sci Data 7, 1–14 (2020).
    Google Scholar 
    van Rossum, G. & Drake, F. L. Python 3 Reference Manual. Preprint (2009).Caswell, T. A. et al. matplotlib/matplotlib: REL: v3.1.1. https://doi.org/10.5281/ZENODO.3264781 (2019).Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
    Google Scholar 
    Mckinney, W. Data Structures for Statistical Computing in Python. (2010).Reback, J. et al. pandas-dev/pandas: Pandas 1.0.5. https://doi.org/10.5281/ZENODO.3898987 (2020).Pond, S. & Pickard, G. L. Introductory dynamical oceanography. 2nd Ed. (1983).Mojica, K. D. A. et al. Phytoplankton community structure in relation to vertical stratification along a north-south gradient in the Northeast Atlantic Ocean. Limnol. Oceanogr. 60, 1498–1521 (2015).ADS 

    Google Scholar 
    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. http://www.primer-e.com (2008).Clarke, K. R. & Gorley, R. N. Getting Started with PRIMER v7 Plymouth Routines in Multivariate Ecological Research. www.primer-e.com (2015).Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).Terpilowski, M. scikit-posthocs: Pairwise multiple comparison tests in Python. J. Open Source Softw. 4, 1169 (2019).ADS 

    Google Scholar 
    Alcaraz, M. et al. The role of arctic zooplankton in biogeochemical cycles: Respiration and excretion of ammonia and phosphate during summer. Polar Biol. 33, 1719–1731 (2010).
    Google Scholar 
    Soviadan, Y. D. et al. Patterns of mesozooplankton community composition and vertical fluxes in the global ocean. Prog. Oceanogr. 200, 102717 (2022).
    Google Scholar 
    Falk-Petersen, S. et al. Vertical migration in high Arctic waters during autumn 2004. Deep Sea Res. 2 Top. Stud. Oceanogr. 55, 2275–2284 (2008).
    Google Scholar 
    Lane, P. V. Z., Llinás, L., Smith, S. L. & Pilz, D. Zooplankton distribution in the western Arctic during summer 2002: Hydrographic habitats and implications for food chain dynamics. J. Mar. Syst. 70, 97–133 (2008).
    Google Scholar 
    Kulk, G., Poll, W. H. & Buma, A. G. J. Photophysiology of nitrate limited phytoplankton communities in Kongsfjorden, Spitsbergen. Limnol. Oceanogr. 63, 2606–2617 (2018).ADS 
    CAS 

    Google Scholar 
    Moskalik, M. et al. Spatiotemporal changes in the concentration and composition of suspended particulate matter in front of Hansbreen, a tidewater glacier in Svalbard. Oceanologia 60, 446–463 (2018).
    Google Scholar 
    Svendsen, H. et al. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res. 21, 133–166 (2002).
    Google Scholar 
    Chiswell, S. M., Calil, P. H. R. & Boyd, P. W. Spring blooms and annual cycles of phytoplankton: A unified perspective. J. Plankton Res. 37, 500–508 (2015).
    Google Scholar 
    Kaartvedt, S., Melle, W., Knutsen, T. & Skjoldal, H. Vertical distribution of fish and krill beneath water of varying optical properties. Mar. Ecol. Prog. Ser. 136, 51–58 (1996).ADS 

    Google Scholar 
    Schmid, M. S., Maps, F. & Fortier, L. Lipid load triggers migration to diapause in Arctic Calanus copepods—Insights from underwater imaging. J. Plankton Res. 40, 311–325 (2018).CAS 

    Google Scholar 
    Campbell, R. G. et al. Mesozooplankton prey preference and grazing impact in the western Arctic Ocean. Deep Sea Res. 2 Top. Stud. Oceanogr. 56, 1274–1289 (2009).
    Google Scholar 
    Hirche, H. J. Diapause in the marine copepod, calanus finmarchicus—A review. Ophelia 44, 129–143 (1996).
    Google Scholar 
    Pedersen, S. A. & Smidt, E. L. B. Zooplankton Investigations Off West Greenland, 1956–1984. (ICES, 1995).Reiner Vonnahme, T. et al. Early spring subglacial discharge plumes fuel under-ice primary production at a Svalbard tidewater glacier. Cryosphere 15, 2083–2107 (2021).ADS 

    Google Scholar 
    Majaneva, S. et al. Aggregations of predators and prey affect predation impact of the Arctic ctenophore Mertensia ovum. Mar. Ecol. Prog. Ser. 476, 87–100 (2013).ADS 

    Google Scholar 
    Purcell, J. E., Hopcroft, R. R., Kosobokova, K. N. & Whitledge, T. E. Distribution, abundance, and predation effects of epipelagic ctenophores and jellyfish in the western Arctic Ocean. Deep Sea Res. 2 Top Stud Oceanogr 57, 127–135 (2010).
    Google Scholar 
    Condon, R. H. et al. Questioning the rise of gelatinous zooplankton in the world’s oceans. Bioscience 62, 160–169 (2012).
    Google Scholar 
    Balazy, K., Trudnowska, E. & Błachowiak-Samołyk, K. Dynamics of Calanus copepodite structure during little Auks’ breeding seasons in two different Svalbard locations. Water (Basel) 11, 1405 (2019).CAS 

    Google Scholar 
    Karnovsky, N. J. & Hunt, G. L. Estimation of carbon flux to dovekies (Alle alle) in the North Water. Deep Sea Res. 2 Top. Stud. Oceanogr. 49, 5117–5130 (2002).CAS 

    Google Scholar 
    Renaud, P. E. et al. Is the poleward expansion by Atlantic cod and haddock threatening native polar cod, Boreogadus saida?. Polar Biol. 35, 401–412. https://doi.org/10.1007/s00300-011-1085-z (2012).Article 

    Google Scholar 
    Szeligowska, M. et al. Spatial patterns of particles and plankton in the warming Arctic Fjord (Isfjorden, West Spitsbergen) in seven consecutive mid-summers (2013–2019). Front. Mar. Sci. 7, 584 (2020).
    Google Scholar  More

  • in

    Drivers of global mangrove loss and gain in social-ecological systems

    Mangrove cover change variables. We used the Global Mangrove Watch (GMW) v2.0 dataset from 1996 to 201656 to calculate four response variables across landscape mangrove geomorphic units24 over two time periods, 1996–2007 and 2007–2016: (1) percent net loss (units that had a net change in mangrove cover of 0), (3) percent gross loss (units that had a decrease in mangrove cover, not accounting for any increase), and (4) percent gross gain (units that had an increase in mangrove cover, not accounting for any decrease). Percent variables were calculated relative to the area at the start of the time period and were log transformed to meet the assumptions of the statistical models. We initially also considered 5 primary response variables (Supplementary Table 3), including net change in mangrove area ranging from negative (loss) to zero (no change) to positive (gain), however, the data did not meet model assumptions of equal variance (Supplementary Table 9). It was therefore necessary to separate areas of net loss and net gain and areas of gross loss and gross gain to remove zeros and log-transform to achieve normal distribution. Area of mangrove change was correlated with size of the mangrove geomorphic unit (higher area of mangrove loss or gain in bigger units), therefore we included geomorphic unit size as an explanatory variable in the models with primary response variables. We selected the transformations of these primary variables – percent net loss, percent net gain, percent gross loss, and percent gross gain to include in the analysis, because the percent changes control for differences in relative sizes of geomorphic units and because net change alone can underestimate the extent of change57.Examining mangrove change across geomorphic settings is likely to be relevant to socioeconomic and environmental conditions. Mangroves occur in the intertidal zone in diverse coastal geomorphic settings (e.g., deltas, estuaries, lagoons) shaped by rivers, tides, and waves58,59. The distribution, structure, and productivity of mangroves varies spatially with regional climate and local geomorphological processes (e.g., river discharge, tidal range, hydroperiod, and wave activity) that control soil biogeochemistry60,61,62,63. These geomorphic settings are defined by natural landscape boundaries (e.g., catchments/bays) which also often delineate boundaries of human settlements. A global mangrove biophysical typology v2.2 dataset64 was used for the delineation of landscape mangrove geomorphic units, which used a composite of the GMW dataset from the 1996, 2007, 2010, and 2016 timesteps to classify the maximal extent of mangrove cover into 4394 units (classified as delta, estuarine, lagoon or open coast). The mangrove geomorphic units do not include non-mangrove patches, unless they have been lost from the unit over time. The mean size of geomorphic units was 33.63 ha. Some splits of geomorphic units were undertaken to reduce size and divide by country boundaries. The four largest deltas (northern Brazil Delta ID 70000, Sundarbans Delta ID 70004, Niger Delta ID 70009, and Papua coast Delta ID 70013) were split into 4, 5, 4, and 2 units, respectively to aid with data processing. Mangrove geomorphic units that overlapped two countries (Peru/Ecuador, Singapore/Malaysia, and Papua New Guinea/Australia) were split by the national boundary.The country governing each geomorphic unit was assigned to match national-level variables to geomorphic units. To capture mangroves that are mapped outside of country coastline boundaries, we did a union of the GADM country shapefile v3.665 and the Exclusive Economic Zones (EEZs) v1166. The following manual country designations were made to resolve overlapping claims in the EEZs: (1) Hong Kong was merged with China as Hong Kong does not have a mapped EEZ; (2) The overlapping claim of Sudan/Egypt was maintained as a joint Sudan/Egypt designation, as this is an area of disputed land called the Halayib Triangle. However, for this study, mangrove units within this area were assigned to Egypt because Egypt currently has military control over the area; (3) Mayotte (claimed by France and Comoros) was assigned to Mayotte as it is a separate overseas territory of France recognised in GADM that has different socioeconomic variables; (4) The protected zone established under the Torres Strait Treaty was assigned to Australia as these islands are Australian territory.Areas of mangrove cover in 1996, 2007, and 2016, and gross losses and gains in each geomorphic units over the two time periods were assessed in ArcMap 10.867. Percent losses and gains were calculated in R 4.0.268. In using the GMW mapping, a minimum mapping unit of 1 ha is recommended for reliable results5, therefore we removed all geomorphic units less than 1 ha from the analysis, which reduced the available sample size from 4394 across 108 countries to 4235 units across 108 countries. In calculating percent net gains, 11 and 12 of the units returned infinity values for 1996–2007 and 2007–2016, respectively, because there was no initial mangrove cover. In these instances, 100% gain was assigned to these units.Socioeconomic variables (Supplementary Table 4)Economic growthPrevious global analyses of mangroves have been limited by data availability on economic activity to national metrics, such as a country’s Gross Domestic Product (GDP)12,18. Night-time lights satellite data provide local measures of economic activity that are comparable through time and available globally9,69. The data improve estimates of GDP in low to middle income countries69 and are strongly correlated with local indicators of human development70 and electricity consumption and GDP at the national-level71. We used the Night-time Lights Time Series v472 stable lights data, where transient lights that are deemed ephemeral, e.g., fires, have been filtered out and non-lit areas set to zero73, choosing the newer satellites where applicable70. As a proxy for local economic growth, we calculated the change in annual average stable lights within a 100 km buffer of the centroid of each geomorphic unit from 1996 to 2007 and 2007 to 2013 (no data available past 2013) using the ‘raster’ package in R74. The 100 km buffer was chosen to account for pressures from human activity within and surrounding the mangrove area, and to avoid bias with larger spatial units70.Market accessibilityTravel time to the nearest major market (national or provincial capital, landmark city, or major population centre) has been shown to be a stronger predictor of fish biomass on coral reefs than population density or linear distance to markets27. We used the global map of travel time to cities for 201575 to estimate the average travel time from each geomorphic unit to the nearest city via surface transport using the ‘raster’ package in R74, as an indicator of access to markets to trade commodities (e.g., rice, shrimp, palm oil).Economic complexityPrevious studies have examined the effect of GDP on mangrove change18, however, this is a blunt measure of country capability. Measuring a country’s economic complexity, that is the diversified capability of a nation’s economy, is preferable. For example, a country with high GDP but low economic complexity can be prone to regulatory capture by high-value natural resource industries and resource corruption26. Therefore, we used the Economic Complexity Index (ECI)76 for countries as an indicator of regulatory independence. The ECI had better coverage of countries in later years (Supplementary Table 4), therefore the ECI for the end of the time periods was used (2007 and 2016), although we recognise this may reduce the detection of trends because of potential time lags in impacts.DemocracyWe used the Varieties of Democracy (VDEM) index v10 which measures a country’s degree of freedom of association, clean elections, freedom of expression, elected executives, and suffrage77, and has been indicated to influence NDC ambition in countries to address climate change78. We adopted the VDEM index for the start of the time periods (1996 and 2007) to account for potential time lags in impacts.Community forestry supportWe determined the extent that community forestry (CF) is implemented across countries through a systematic review of articles returned in the Web of Science database (Core collection; Thomson Reuters, New York, U.S.A.). We used the search terms: TS = (“community forestry” OR “community-based forestry” OR “social forestry”) AND (TI = ”country” OR AB = ”country”) to identify how many CF case studies were reported in each country, and whether any were in mangroves. As scientific literature is biased towards particular regions, we also reviewed relevant FAO global studies79,80,81 and online databases (ICCA registry82 and REDD projects database83) to identify additional case studies (Supplementary Fig. 5). We then generated scores of 0–3 for each country based on summing values assessed using these criteria: +1 (1–50 CF case studies); +2 ( >50 CF case studies); +1 (CF case study in mangroves). There may have been some double counting as we counted the number of case studies in each article, and we will have missed CF projects not published or communicated in English. However, this is likely to have had a limited impact on the scoring method.Indigenous landThe proportion of Indigenous peoples’ land versus other land per country was calculated from national-level data84. Whilst this study involved Indigenous peoples’ land mapping at a global scale, the spatial data was not published, and thus we could only evaluate the influence of Indigenous land at the national level rather than local level.Restoration effortThe number of mangrove restoration sites per country was calculated from combining two datasets collated by C. Lovelock (2020) and Y.M. Gatt and T.A. Worthington (2020) identifying mangrove restoration project locations from web searches in English and for scientific and grey literature using Google Scholar. Duplications were removed and the number of sites was used as an indicator of effort. This will underrepresent effort in countries with few, large sites, and where restoration projects are not published or communicated in English.Climate commitmentsThe Paris Agreement is a global programme for countries to commit to climate action by submitting Nationally Determined Contributions (NDCs) to the United Nations Framework for the Convention of Climate Change (UNFCCC). First, we reviewed NDCs for mangrove-holding nations from the NDC Registry85 submitted as of 07/01/2021 to determine the extent that mangroves or coastal ecosystems were included in national climate policy (scoring method in Supplementary Table 4). We hypothesised that countries with mangrove or coastal ecosystem NDCs may be more likely to promote mangrove conservation or restoration. While the first NDCs were submitted around 2015, at the end of our time series, we suspected higher commitments would point towards a stronger baseline in environmental governance. Most countries submitted updated or second NDCs during 2021 however these were not considered relevant to the time periods assessed. Google Translate was used to interpret NDCs in languages other than English.Ramsar wetlandsThe ecological character of Ramsar wetlands have been found to be significantly better than those of wetlands generally86. The area of Ramsar coastal and marine wetlands from the Ramsar Sites Information Service87 was calculated per country. Thirty-eight mangrove-holding countries are not signatories to the Ramsar Convention, and these countries were assigned a value of 0. The area of Ramsar wetlands per country was scaled by dividing by the country’s area of mangroves in 1996.Environmental governanceWe assessed the Environmental Performance Index (EPI)88 as an indicator of a country’s effectiveness in environmental governance. The biodiversity and habitat (BDH) issue category assesses countries’ actions toward retaining natural ecosystems and protecting the full range of biodiversity within their borders. We took the BDH score for 2020 for the 2007–2016 time period and the BDH score for 2010 for the 1996–2007 time period (calculated by subtracting the ten-year change from BDH 2020). However, due to collinearity with other variables this index was excluded from the analysis (see statistical analysis).Protected area managementWe also assessed Marine Protected Area (MPA) staff capacity as an indicator of the effectiveness of management of protected areas for countries. We used published global marine protected area (MPA) management data14 which is based on the Management Effectiveness Tracking Tool (METT), the World Bank MPA Score Card, and the NOAA Coral Reef Conservation Programme’s MPA Management Assessment Checklist. Adequate staff capacity was the most important factor in explaining fish responses to MPA management globally, followed by budget capacity, but they were significantly correlated14. We, therefore, calculated the mean staff capacity across MPAs per country as our indicator. Mangroves can be included in terrestrial protected areas, which are not represented in this dataset, however, this measure provides an indicator of national governance of protected areas. However, due to collinearity with other variables this indicator was excluded from the analysis (see statistical analysis). The extent of protected areas was not included in the analysis because it has already been found to influence mangrove loss18.Biophysical variables (Supplementary Table 5)Coastal geomorphic typeMangrove extent change likely varies among different coastal geomorphic settings because human activities or environmental changes occur more commonly in some geomorphic settings than others. For example, losses of lagoonal mangroves were nearly twice as large as those in other geomorphic types24. Landscape geomorphic units from the global mangrove typology dataset v2.264 were classified as delta, estuary, lagoon or open coast.Sediment availabilityMangrove expansion and retreat are driven by sediment deposition and erosion, which are influenced by sediment availability from rivers and wave action, and alterations in hydrodynamic regimes47,89. We used the sediment trapping index from the global free-flowing rivers (FFR) dataset90 to indicate sediment availability from rivers within different geomorphic units. A mangrove catchment dataset was created based on the HydroSHEDS database91. River networks that intersected with mangrove geomorphic units were linked to that unit’s ID. Where rivers intersected multiple units, they were manually assigned by visual inspection. River basins that intersected either with the geomorphic units directly or the river networks were also linked to that unit’s ID. The FFR dataset90 was then spatially joined to the mangrove catchment dataset to identify the most downstream (i.e., the coastal outlet) segment of each FFR and its associated sediment trapping index. Not all geomorphic units (n = 3475) were linked to an FFR, however, an individual unit could be linked with several FFRs. Therefore, the unit sediment trapping index was the weighted mean of the river values, with weighting based on each FFR’s average long-term (1971–2000) naturalised discharge (m3s−1), with discharge set to the minimum value for segments with zero flow. Geomorphic units without connecting FFRs were given an index of zero (no sediment trapping). The sediment trapping index represents the percentage of the potential sediment load trapped by anthropogenic barriers along the river section. The focus on river barriers may obscure larger scale oceanic patterns that influence mangrove losses and gains (e.g., movement of mud banks from the Amazon River over 1000’s of kilometres92) or increases in sediment that could be coming from soils with catchment deforestation and erosion.Habitat fragmentationMany countries with high mangrove loss have been associated with elevated fragmentation of mangrove forests, although the relationship is not consistent at the global scale93. We calculated the clumpiness index of mangrove patches within geomorphic units within each time period, as this habitat fragmentation metric is independent of areal extent93. Whilst habitat fragmentation can be human-driven, clumpiness measures the patchy distribution of mangroves, which can also be due to natural factors inducing edge effects. We used a similar approach to Bryan-Brown, et al.86 to quantify the clumpiness index. The ‘landscape’ was defined as the combined extent of the mangrove geomorphic units across four timesteps (1996, 2007, 2010, and 2016) from the GMW dataset56. For the three focal years in this study (1996, 2007, and 2016) each geomorphic unit (n = 4394) was converted into a two-class polygon, where class one represented mangroves present during that time step and class two mangroves present in the other time steps (i.e., areas of mangrove loss). The polygons were transformed to a projected coordinate system (World Cylindrical Equal Area) and converted to rasters with a resolution of 25 m. Each raster was imported into R version 3.6.394, with clumpiness calculated using the package ‘landscapemetrics’ v1.5.095.Clumpiness describes how patches are dispersed across the landscape and ranges between minus one, where patches are maximally disaggregated, to one, where patches are maximally aggregated, a value of zero represents a case whereby patches are randomly distributed across the landscape. The clumpiness index requires that both classes are present in the landscape, therefore a no data value (NA) was returned for units where no loss of mangroves had occurred, or where there was 100% gain of mangroves in a later time period. The number of directions in which patches were connected was set to eight. The following manual fixes were conducted for NA values returned: 1) Where NA was returned for units where no loss of mangroves had occurred in another time period, i.e., class 1 (mangrove present) = 1 and class 2 (mangrove loss) = 0, assume +1 (maximally clumped); and 2) Where NA was returned for units where there was 100% gain of mangroves in a later time period, i.e., class 1 (mangrove present) = 0, class 2 (mangrove present) = 1 (100% gain), assume −1 (maximally disaggregated).Tidal amplitudeIn settings of low tidal range, mangrove vertical accretion is less likely to keep pace with rapid sea level rise3. However, in settings of high tidal range, mangroves may be more extensive and vulnerable to conversion to aquaculture or agriculture because of larger tidal flat extents. The Finite Element Solution global tide model (FES2014)96 is considered one of the most accurate tide models for shallow coastal areas97 and was selected to estimate the mean tidal amplitude within each geomorphic unit using the principal lunar semi-diurnal or M2 tidal amplitude as this is this most dominant tidal constituent98. To account for potential variation in the tidal amplitude across large geomorphic units, the raster pixel value for M2 tidal amplitude96 closest to the centroid of each mangrove patch within each unit was calculated, with the smallest value set at 0.01 m. For each geomorphic unit, the tidal amplitude was calculated as the weighted mean of the patch values, with weighting based on the patch area relative to the total unit area.Antecedent sea-level riseThe distribution of mangroves on shorelines changes over time with sediment accretion, erosion, subsidence, and sea-level rise (SLR)99, and periods of low sea level can cause mangrove dieback100. We used regional mean sea-level trends between January 1993 and December 2015 from the global sea level Essential Climate Variable (ECV) product v.2101,102 to estimate the mean antecedent SLR for each geomorphic unit. Spatial variation in regional sea-level trends generally range between −5 and +5 mm yr−1 (global mean of 3 mm yr−1)13. Extreme values ( >5 mm yr−1) observed in the dataset are subject to high levels of uncertainty (Sea Level CCI team, pers. comm.), and were therefore truncated to 5 mm yr−1. The raster pixel value for SLR102 closest to the centroid of each mangrove patch within each geomorphic unit was calculated. The geomorphic unit antecedent SLR values was calculated as the weighted mean of the patch values within the unit.DroughtWhilst long-term precipitation and temperature influence mangrove distribution globally62, periods of low rainfall have been reported to cause extensive mangrove dieback at regional scales, particularly when combined with high temperatures and low sea levels103. We used the Standardized Precipitation-Evapotranspiration Index (SPEI) from the global SPEI database v.2.6104 as an index of drought severity. SPEI is derived from precipitation and temperature and is considered an improved drought index that allows spatial and temporal comparability105,106. The mean SPEI raster pixel value was calculated for each time period and then averaged across the geomorphic units using the ‘ncdf4’107 and ‘raster’ packages74 in R.Tropical storm frequencyLarge-scale destruction of mangroves across regions have been reported from strong winds, high energy waves, and storm surges associated with tropical storms108. We used the International Best Track Archive for Climate Stewardship (IBTrACS) dataset since 1980 v4109 to calculate the number of tropical cyclone occurrences (points along their paths) within a 200 km buffer of the centroid of geomorphic units within each time period using the sf package110 in R. Maximum wind velocity and surface pressures are likely experienced within 100 km of a cyclone’s eye111, therefore the 200 km buffer zone was selected to cover the average size of geomorphic units (33.63 ha), and all tropical storms potentially influencing mangrove growth. Whilst tropical storms affect only 42% of the world’s mangroves60, they are likely to be important stressors within cyclone-impacted countries.Minimum temperatureExtreme low temperature events were a driver of mangrove loss in subtropical regions, such as Florida and Louisianan of the US, and China28,112. We used the WorldClim bioclimatic variable 6 (minimum temperature of the coldest month averaged for the years 1970–2000)113 to calculate the mean minimum temperature across the geomorphic units using the ‘sf’110 and ‘raster’ packages74 in R. Where NAs were returned due to no overlapping raster layer, the value of the closest raster pixel to the centroid of the geomorphic unit was assigned.Statistical analysisWe used multi-level linear modelling to investigate relationships between mangrove cover change variables and socioeconomic and biophysical variables to consider landscape (level 1) and country (level 2) predictors in a hierarchical approach114. For each response variable, we modelled the response for 1996–2007 and 2007–2016, using explanatory variables specific to the time-period where available. Data inspection revealed that high percent loss or gain was concentrated in small geomorphic units, therefore to avoid bias in our results, we removed geomorphic units less than 100 ha from the analysis, which further reduced the available sample size to 3134 units across 95 countries. Statistical analysis was undertaken in R 4.0.268.The response variables were log-transformed to fit normal distribution. We tested for collinearity between our explanatory variables using Pearson’s correlation coefficient (r  > 0.5) (Supplementary Tables 6 and 7). MPA staff capacity and EPI were excluded from our models because MPA staff capacity was correlated with ECI 2007 and ECI 2016 (both r = 0.54), and EPI 2020 was correlated with VDEM 2016 (r = 0.63). To improve model fit, travel time to the nearest city, mangrove restoration effort and Ramsar wetland area (relative) were log+1-transformed, and tidal amplitude was log-transformed.Two linear multi-level (mixed-effects) models were fitted for each response variable using the lme function in the ‘lme4’ package115 (Supplementary Table 8). First, a random intercept model with intercepts of landscape-level predictors varying by country was fitted. Then a random intercept and slope (coefficients) model with intercepts of landscape-level predictors varying by country, as well as slopes for socioeconomic predictors considered to have between-country variation (travel time to nearest city and night-time lights growth) was fitted, as we expect that mangrove cover change may respond to economic growth and market accessibility depending on national governance. A likelihood ratio test between the null linear model and the null random intercept model for each response variable showed that effects varied across countries and therefore we included country as a random effect (Supplementary Table 9). We also conducted likelihood ratio tests between the random intercept model and the random coefficient model to test whether the effect of travel time and night-time lights on mangrove change varies across countries. If significant, the model including random slopes for travel time and night-time lights was used (Supplementary Table 9). Mixed-effects models were fitted by maximum likelihood and model fit was validated by inspection of residual plots for the four response variables included in the analysis; percent net loss, percent net gain, percent gross loss, and percent gross gain (Supplementary Table 9).To test for spatial autocorrelation we performed spatial autoregressive (SAR) models using the errorsarlm function in the ‘spatialreg’ package116. SAR models were first fitted using a range of neighbourhood distances (50, 500, and 1000 km in 100 km intervals) for the net change variable117. Distance of 500 km showed the smallest AIC and was therefore adopted for all response variables. Neighbourhood lists of the centroid coordinates of the geomorphic units were defined with the row-standardised (‘W’) coding using the ‘spdep’ package118. We then produced Moran’s I correlograms using the correlog function in the ‘ncf’ package119 and the centroid coordinates of the geomorphic units. Correlograms for the multi-level model and SAR model were compared for each response variable (Supplementary Fig. 4). The SAR models did not improve spatial autocorrelation for any of the mangrove cover change variables and therefore the multi-level models were adopted.Hotspot estimatesWe defined hotspots as geomorphic units where raw values of percent net and gross loss and gain between 2007 and 2016 ((gamma)) differed by more than two standard deviations (sd) from the country average ((mu)).$${{{{{{rm{More}}}}}}},{{{{{{rm{loss}}}}}}}/{{{{{{rm{more}}}}}}},{{{{{{rm{gain}}}}}}}=left(gamma -mu right) , > , (2,times {{{{{{rm{sd}}}}}}})$$
    (1)
    $${{{{{{rm{Less}}}}}}},{{{{{{rm{loss}}}}}}},/,{{{{{{rm{less}}}}}}},{{{{{{rm{gain}}}}}}}=left(gamma -mu right) , < , -(2,times {{{{{{rm{sd}}}}}}})$$ (2) We excluded countries with only one geomorphic unit. Large deviations of the raw value from the country average were found for small units at a threshold below 50 km2, therefore we removed all units smaller than 50 km2 to overcome bias of hotspots towards smaller sites. This likely removed the identification of several hotspots. For example, Myanmar has had some large gains due to river sediments in the Gulf of Martaban (net gain of 100 % in Estuary 5834 and 39 % in Open Coast 62244), however, these areas were small (8 and 2 km2, respectively) and were therefore removed from the hotspot estimates.We analysed the factors contributing to hotspots by spatial investigation of satellite imagery in Google Earth with mangrove specialists from those countries. The hotspots were also assessed against protected area datasets for those countries120,121,122,123.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Intrinsic individual variation in daily activity onset and plastic responses on temporal but not spatial scales in female great tits

    Carothers, J. H. & Jaksić, F. M. Time as a Niche difference: The role of interference competition. Oikos 42, 403–406 (1984).
    Google Scholar 
    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).
    Google Scholar 
    Lesmeister, D. B., Nielsen, C. K., Schauber, E. M. & Hellgren, E. C. Spatial and temporal structure of a mesocarnivore guild in midwestern North America. Wildl. Monogr. 191, 1–61 (2015).
    Google Scholar 
    Chmura, H. E. et al. Plasticity and repeatability of activity patterns in free-living Arctic ground squirrels. Anim. Behav. 169, 81–91 (2020).
    Google Scholar 
    Helm, B. et al. Two sides of a coin: Ecological and chronobiological perspectives of timing in the wild. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160246 (2017).
    Google Scholar 
    Alós, J., Martorell-Barceló, M. & Campos-Candela, A. Repeatability of circadian behavioural variation revealed in free-ranging marine fish. R. Soc. Open Sci. 4, 160791 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Schlicht, L. & Kempenaers, B. The effects of season, sex, age and weather on population-level variation in the timing of activity in Eurasian Blue Tits Cyanistes caeruleus. Ibis 162, 1146–1162 (2020).
    Google Scholar 
    Helm, B. & Visser, M. E. Heritable circadian period length in a wild bird population. Proc. R. Soc. B Biol. Sci. 277, 3335–3342 (2010).
    Google Scholar 
    Nikhil, K. L., Abhilash, L. & Sharma, V. K. Molecular correlates of circadian clocks in fruit fly drosophila melanogaster populations exhibiting early and late emergence chronotypes. J. Biol. Rhythms 31, 125–141 (2016).CAS 
    PubMed 

    Google Scholar 
    Allebrandt, K. V. et al. CLOCK gene variants associate with sleep duration in two independent populations. Biol. Psychiatry 67, 1040–1047 (2010).CAS 
    PubMed 

    Google Scholar 
    Maukonen, M. et al. Genetic associations of chronotype in the finnish general population. J. Biol. Rhythms 35, 501–511 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roecklein, K. A. et al. Melanopsin gene variations interact with season to predict sleep onset and chronotype. Chronobiol. Int. 29, 1036–1047 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinmeyer, C., Kempenaers, B. & Mueller, J. C. Testing for associations between candidate genes for circadian rhythms and individual variation in sleep behaviour in blue tits. Genetica 140, 219–228 (2012).CAS 
    PubMed 

    Google Scholar 
    Stuber, E. F., Baumgartner, C., Dingemanse, N. J., Kempenaers, B. & Mueller, J. C. Genetic correlates of individual differences in sleep behavior of free-living great tits (Parus major). G3 GenesGenomesGenetics 6, 599–607 (2016).CAS 

    Google Scholar 
    Cuthill, I. C. & Macdonald, W. A. Experimental manipulation of the dawn and dusk chorus in the blackbird Turdus merula. Behav. Ecol. Sociobiol. 26, 209–216 (1990).
    Google Scholar 
    Grava, T., Grava, A. & Otter, K. A. Supplemental feeding and dawn singing in black-capped chickadees. Condor 111, 560–564 (2009).
    Google Scholar 
    Saggese, K., Korner-Nievergelt, F., Slagsvold, T. & Amrhein, V. Wild bird feeding delays start of dawn singing in the great tit. Anim. Behav. 81, 361–365 (2011).
    Google Scholar 
    Dominoni, D. M. Effects of artificial light at night on daily and seasonal organization of European blackbirds (Turdus merula). https://kops.uni-konstanz.de/handle/123456789/32198 Accessed 23 February 2022 (2013).
    Lehmann, M., Spoelstra, K., Visser, M. E. & Helm, B. Effects of temperature on circadian clock and chronotype: An experimental study on a passerine bird. Chronobiol. Int. 29, 1062–1071 (2012).PubMed 

    Google Scholar 
    Zsebők, S. et al. Short- and long-term repeatability and pseudo-repeatability of bird song: Sensitivity of signals to varying environments. Behav. Ecol. Sociobiol. 71, 154 (2017).
    Google Scholar 
    Raap, T., Pinxten, R. & Eens, M. Artificial light at night disrupts sleep in female great tits (Parus major) during the nestling period and is followed by a sleep rebound. Environ. Pollut. 215, 125–134 (2016).CAS 
    PubMed 

    Google Scholar 
    Grunst, M. L., Grunst, A. S., Pinxten, R. & Eens, M. Variable and consistent traffic noise negatively affect the sleep behavior of a free-living songbird. Sci. Total Environ. 778, 146338 (2021).CAS 
    PubMed 

    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).CAS 
    PubMed 

    Google Scholar 
    Stuber, E. F. et al. Perceived predation risk affects sleep behaviour in free-living great tits Parus major. Anim. Behav. 98, 157–165 (2014).
    Google Scholar 
    Niemelä, P. T. & Dingemanse, N. J. Individual versus pseudo-repeatability in behaviour: Lessons from translocation experiments in a wild insect. J. Anim. Ecol. 86, 1033–1043 (2017).PubMed 

    Google Scholar 
    Garamszegi, L. Z. & Møller, A. P. Partitioning within-species variance in behaviour to within- and between-population components for understanding evolution. Ecol. Lett. 20, 599–608 (2017).PubMed 

    Google Scholar 
    Niemelä, P. T. & Dingemanse, N. J. On the usage of single measurements in behavioural ecology research on individual differences. Anim. Behav. 145, 99–105 (2018).
    Google Scholar 
    Browne, W. J., McCleery, R. H., Sheldon, B. C. & Pettifor, R. A. Using cross-classified multivariate mixed response models with application to life history traits in great tits (Parus major). Stat. Model. 7, 217–238 (2007).MathSciNet 
    MATH 

    Google Scholar 
    Pettifor, R. A., Sheldon, B. C., Browne, W. J., Rasbash, J. & McCleery, R.
    H. Partitioning of Phenotypic Variance in Life-history Traits in the Great Tit, Parus major.
    https://seis.bristol.ac.uk/~frwjb/materials/phenovar.pdf (2003). Accessed 23 February 2022.Casasole, G. et al. Neither artificial light at night, anthropogenic noise nor distance from roads are associated with oxidative status of nestlings in an urban population of songbirds. Comp. Biochem. Physiol. A 210, 14–21 (2017).CAS 

    Google Scholar 
    Payevsky, V. A. Mortality rate and population density regulation in the great tit, Parus major L.: A review. Russ. J. Ecol. 37, 180 (2006).
    Google Scholar 
    Vermeulen, A., Eens, M., Van Dongen, S. & Müller, W. Does baseline innate immunity change with age? A multi-year study in great tits. Exp. Gerontol. 92, 67–73 (2017).CAS 
    PubMed 

    Google Scholar 
    Haftorn, S. Incubation during the egg-laying period in relation to clutch-size and other aspects of reproduction in the great tit Parus major. Ornis Scand. Scand. J. Ornithol. 12, 169–185 (1981).
    Google Scholar 
    Grunst, M. L., Grunst, A. S., Pinxten, R., Eens, G. & Eens, M. An experimental approach to investigating effects of artificial light at night on free-ranging animals: Implementation, results and directions for future research. J. Vis. Exp. 180, e63381 (2022).

    Google Scholar 
    Halfwerk, W. et al. Low-frequency songs lose their potency in noisy urban conditions. Proc. Natl. Acad. Sci. 108, 14549–14554 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Specht, R. Avisoft-saslab pro: Sound analysis and synthesis laboratory. Avis. Bioacoustics
    http://avisoft.com/SASLab_deutsch.pdf Accessed 23 February 2022 (2002).Iserbyt, A., Griffioen, M., Borremans, B., Eens, M. & Müller, W. How to quantify animal activity from radio-frequency identification (RFID) recordings. Ecol. Evol. 8, 10166–10174 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Raap, T., Pinxten, R. & Eens, M. Light pollution disrupts sleep in free-living animals. Sci. Rep. 5, 13557 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Meijdam, M., Müller, W., Thys, B. & Eens, M. No relationship between chronotype and timing of breeding when variation in daily activity patterns across the breeding season is taken into account. Ecol. Evol. 12, e9353 (2022).PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. R Found. Stat. Comput. https://www.R-project.org/ Accessed 23 February 2022 (2013).Rousset, F. & Ferdy, J.-B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37, 781–790 (2014).
    Google Scholar 
    Araya-Ajoy, Y. G., Mathot, K. J. & Dingemanse, N. J. An approach to estimate short-term, long-term and reaction norm repeatability. Methods Ecol. Evol. 6, 1462–1473 (2015).
    Google Scholar 
    Mitchell, D. J., Dujon, A. M., Beckmann, C. & Biro, P. A. Temporal autocorrelation: A neglected factor in the study of behavioral repeatability and plasticity. Behav. Ecol. 31, 222–231 (2020).
    Google Scholar 
    Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Graham, J. L., Cook, N. J., Needham, K. B., Hau, M. & Greives, T. J. Early to rise, early to breed: A role for daily rhythms in seasonal reproduction. Behav. Ecol. 28, 1266–1271 (2017).
    Google Scholar 
    Maury, C., Serota, M. W. & Williams, T. D. Plasticity in diurnal activity and temporal phenotype during parental care in European starlings Sturnus vulgaris. Anim. Behav. 159, 37–45 (2020).
    Google Scholar 
    Schlicht, L., Valcu, M., Loës, P., Girg, A. & Kempenaers, B. No relationship between female emergence time from the roosting place and extrapair paternity. Behav. Ecol. 25, 650–659 (2014).
    Google Scholar 
    Steinmeyer, C., Schielzeth, H., Mueller, J. C. & Kempenaers, B. Variation in sleep behaviour in free-living blue tits, Cyanistes caeruleus: Effects of sex, age and environment. Anim. Behav. 80, 853–864 (2010).
    Google Scholar 
    Stuber, E. F., Dingemanse, N. J., Kempenaers, B. & Mueller, J. C. Sources of intraspecific variation in sleep behaviour of wild great tits. Anim. Behav. 106, 201–221 (2015).
    Google Scholar 
    Raap, T., Pinxten, R. & Eens, M. Cavities shield birds from effects of artificial light at night on sleep. J. Exp. Zool. Part Ecol. Integr. Physiol. 329, 449–456 (2018).
    Google Scholar 
    Edelaar, P., Siepielski, A. M. & Clobert, J. Matching habitat choice causes directed gene flow: A neglected dimension in evolution and ecology. Evolution 62, 2462–2472 (2008).PubMed 

    Google Scholar 
    Gorissen, L. & Eens, M. Interactive communication between male and female great tits (Parus major) during the dawn chorus. Auk 121, 184–191 (2004).
    Google Scholar 
    Halfwerk, W., Bot, S. & Slabbekoorn, H. Male great tit song perch selection in response to noise-dependent female feedback. Funct. Ecol. 26, 1339–1347 (2012).
    Google Scholar 
    Steinmeyer, C., Mueller, J. C. & Kempenaers, B. Individual variation in sleep behaviour in blue tits Cyanistes caeruleus: Assortative mating and associations with fitness-related traits. J. Avian Biol. 44, 159–168 (2013).
    Google Scholar 
    Cain, J. R. & Wilson, W. O. The influence of specific environmental parameters on the circadian rhythms of chickens. Poult. Sci. 53, 1438–1447 (1974).CAS 
    PubMed 

    Google Scholar 
    Zhang, Z. C. et al. Circadian clock genes are rhythmically expressed in specific segments of the hen oviduct. Poult. Sci. 95, 1653–1659 (2016).CAS 
    PubMed 

    Google Scholar 
    Womack, R. J. Clocks in the wild: biological rhythms of great tits and the environment. https://theses.gla.ac.uk/81345/ Accessed 23 February 2022 (2020).Dominoni, D., Smit, J. A. H., Visser, M. E. & Halfwerk, W. Multisensory pollution: Artificial light at night and anthropogenic noise have interactive effects on activity patterns of great tits (Parus major). Environ. Pollut. 256, 113314 (2020).CAS 
    PubMed 

    Google Scholar 
    Matthysen, E., Adriaensen, F. & Dhondt, A. A. Multiple responses to increasing spring temperatures in the breeding cycle of blue and great tits (Cyanistes caeruleus, Parus major). Glob. Change Biol. 17, 1–16 (2011).
    Google Scholar  More

  • in

    Impacts of Lysinibacillus sphaericus on mosquito larval community composition and larval competition between Culex pipiens and Aedes albopictus

    Project 1: mesocosm field experimentsMesocosm experiments took place at Lockwood Farm located in Hamden, Connecticut. Individual mesocosms were composed of black 20 L cylindrical plastic containers filled with 12 L tap water and seeded with 10 mg of a 3:2 ratio liver powder/brewer’s yeast mixture and 1 g of grass hay. Drain-holes were drilled into the sides of each container 5 mm from the 12 L surface to allow flooding for Aedes spp. egg emergence and to allow overflow beyond this level due to precipitation. Four experimental mesocosm clusters were dispersed throughout the Lockwood Farm in microhabitats previously sampled in Eastwood et al.22. Clusters contained 4 mesocosms spaced 3 m apart in a 2 × 2 grid. We utilized four L. sphaericus treatment levels in each cluster: no L. sphaericus, the LC50 (0.053 ITU/ml) and LC95 (1.0 ITU/ml) for Culex pipiens derived from Burtis et al.3, and the label rate of L. sphaericus (~ 1.2 ITU/ml). All treatments were derived from VectoLex WDG. Prior to insecticide application, we prepared 1 L of a 1000 ITU/ml stock solution. To inoculate each mesocosm, we measured the depth of the container’s water column, calculated water volume, and applied the appropriate amount of stock to achieve the target LC value. Replicate insecticide treatments were randomized within each cluster, and insecticides were applied 30-days post mesocosm seeding with nutrients. All mesocosms in each cluster were rotated within the 2 × 2 grid each week. Two clusters were then randomly chosen for a second application of L. sphaericus 30-days post initial insecticide application.To sample the larval habitat of each mesocosm, we performed a figure-8 sweep with an aquarium fish net (4 × 3-in. opening, Penn-Plax) each Monday and Thursday of the week for each week of the experiment. Sweep contents were washed from the net into a white photo development pan, and pupae were removed for in-lab identification after eclosion following a dichotomous key23. All larvae were then returned to the mesocosm. This sampling protocol minimized destruction of larval habitats and influence of interspecific interactions due to removal sampling.In addition to sampling containers for pupae, we collected water samples from each container for an in-lab bioassay to determine the realized mortality of the larval environment. Due to time constraints of the field crew, a 50% randomized sample of containers were sampled on Monday with the remaining 50% sampled on Thursday of each sampling week. Bioassay procedures followed McMillan et al.24 for Cx. pipiens with the addition of screening mortality in CAES’ Ae. albopictus colonies. We finally performed in-lab susceptibility trials to L. sphaericus with larvae from CAES’ Cx. pipiens and Ae. albopictus colonies to confirm each species’ colony varied in their sensitivity to the product. Briefly, 15 3rd to 4th instar larvae of each species per replicate dose were exposed to a wide range of L. sphaericus concentrations and mortality was recorded 24-h post-exposure. Lethal concentrations were then estimated from a generalized linear model with mortality (corrected for mortality in untreated control replicates) as the response term and the log10-dose as the predictor term.Primary endpoints from the field experiment included the number and species identity of pupae collected from each mesocosm. We compared total weekly pupal collections per mesocosm using a generalized linear mixed model (GLMM) framework with treatment level and cluster ID as fixed effects, species ID and week of collection as a random effect, and a Poisson-error distribution. We repeated this analysis excluding all collected Culex spp. to examine how the L. sphaericus treatments impacted the more tolerant Aedes spp. The primary endpoint for the mortality assays was the corrected larval mortality. We initially compared mortality using a species-specific GLMM with L. sphaericus treatment concentration and treatment period as fixed effects, week of collection as a random effect, and a binomial-error distribution. Preliminary analyses revealed negligible variance attributed to week of collection, so all subsequent models were a GLM. All analyses were performed in R V4.1.325 using the following packages: tidyverse26, gridExtra27, ggplot228, ggeffects29, and glmmTMB30.Project 2: laboratory competition assaysCompetition assays took place at CAES’ main facility in New Haven, CT. This facility contains an Ae. albopictus colony (founded circa 2014 from Stratford, CT) and a Cx. pipiens colony (founded circa 2018 from New Haven, CT;). Colony maintenance for each species was similar: larval rearing pans consisted of approx. 200 eggs (on papers, Ae. albopictus, or as egg rafts, Cx. pipiens) in ~ 2 L RO water and initiated with ~ 20 ml of a 1% 3:2 liver powder/brewer’s yeast slurry. Pans were held at 25.5 °C and 80% humidity and fed ~ 20 ml of the 1% slurry every other day. Pupae were removed to an eclosion chamber and adults were allowed access to 10% sucrose solution ad libitum. Aedes albopictus females were given access to defibrinated sheep’s blood (HemoStat©) through a Hemotek membrane feeder for 1 h every 2–3 weeks and moistened, fluted filter paper was provided to collect eggs. Culex pipiens females were given access to a live, restrained buttonquail overnight once per week and a small cup seeded with 5 ml 1% slurry and 15 RO ml water was provided to collect egg rafts. The use of buttonquail was reviewed and approved in accordance with CAES Institutional Animal Care and Use Committee.We performed two experiments. All experiments consisted of the following treatments: variable ratios of Ae:Cx larvae and two L. sphaericus treatments (no treatment and 0.01 ITU/ml). Larval density (40 per container) remained constant across all replicate treatments, but Ae:Cx ratios varied from 40/0, 30/10, 20/20, 10/30, and 0/40. Nutrients supplied were a low concentration (3 mg larva−1) of a 3:2 liver powder/brewer’s yeast mix applied at the beginning of the experiment. Temperature was held constant at the colony maintenance level. Assays took place in 300 ml disposable plastic cups filled with 100 ml of RO water. The first experiments consisted of the addition of the 40 larvae as newly hatched individuals (+/− 1 day between species’ hatch) at the appropriate ratios, the larval diet, and the 0.01 ITU/ml concentration (diluted from a lab stock of 1000 ITU/ml). Assays were monitored daily until all larvae were dead and/or all larvae pupated. Experiment 2 consisted of the addition of only the Cx. pipiens larvae and the larval diet. After all Cx. pipiens had pupated, containers were treated with L. sphaericus and then the Ae. Albopictus larvae were added.Primary endpoints included species-specific pupation success. Preliminary analyses in a GLMM framework revealed negligible variance attributed to a replicate ID random effect; replicate as a random term also interfered with model convergence. Preliminary analyses further revealed there was neither a significant interaction nor an improvement in the Akaike Information Criterion between the L. sphaericus treatment and initial starting condition terms. Thus, we adopted a GLM rather than a GLMM framework in all further analyses, and species-specific mortality was analyzed as a binomial response term with treatment and initial starting conditions included as fixed effects All analyses were performed in R V4.1.325 using the following packages: tidyverse26, gridExtra27, and ggplot228. More

  • in

    Flexible embryonic shell allies large offspring size and anti-predatory protection in viviparous snails

    The studied viviparous clausiliids developed four types of morphological adaptations that facilitate the delivery of embryos through the shell aperture: (1) reduction of the clausiliar apparatus, (2) decrease of embryonic shell width, (3) widening of the shell canal, and (4) development of a flexible embryonic shell.Reduction of the clausiliar apparatusMembers of the Reinia genus, arboreal species from Japan (Fig. 1), show the most advanced adaptations to live-bearing compared to hypothetical ancestral Phaedusinae. The shell shape in these species is more conical than fusiform, the number of whorls decreases, and the aperture widens. One of the species, R. variegata, features almost full reduction of the clausiliar apparatus that consists of only vestigial folds (Fig. 1F). This species also lacks the clausilium, so the entrance through the aperture is unprotected.Figure 1Different stages of reduction of apertural barriers in members of genus Reinia: R. ashizuriensis (A–C; upper row) and R. variegata (D–F; lower row). (A,D) Adult shells; (B,C,E,F) adult shells with body whorl cut open dorsally in microCT visualisation. cp clausilium plate, il inferior lamella, pr principal plica, sc subcolumellar lamella, sl superior lamella, sp spiral lamella, upp upper palatal plica.Full size imageDecrease of embryonic shell widthAnother adaptation concerns the shape of the embryonic shell (“protoconch”), which becomes very narrow in some viviparous species. This feature is conspicuous because embryonic whorls remain in the adult shell as apical whorls. For instance in S. addisoni (Fig. 2A–D), the apical part being much narrower than the first whorls of the teleoconch is a clear evidence that the growth trajectory has changed abruptly after birth. Other examples include E. cylindrella and E. steetzneri, in which both the protoconch and the teleoconch are very narrow, yet at the borderline between these parts, the shell axis is slightly bent (Fig. 2E–L). We suppose that this feature develops as a result of obstruction during birth.Figure 2Width difference between protoconch and teleoconch in Stereophaedusa addisoni (A–D, upper row), Euphaedusa cylindrella (E–H, middle row), Euphaedusa steetzneri (I–L, lower row). (A,C,E,G,I,K) Adult shells with very narrow apical whorls; (B,F,J) X-rayed adults; (F,J) with retained embryos inside; (D,H,L) X-rays of apical part of adult shell with schematic drawings of a neonate.Full size imageWidening of the shell canalThe third type of adaptation is the widening of the shell canal in the body whorl, allowing for easier passage of the embryo between the lamellae and plicae of the apertural barriers. In this case, the outline of the shell changes only slightly giving the body whorl a more convex appearance. A substantial difference to egg-laying species concerns the apertural barriers: the clausiliar includes a broad clausilium plate and a spirally ascending inferior lamella (Fig. 3A–D). These modifications result in a spacious shell canal in the body whorl, for example in S. addisoni and E. sheridani, that can accommodate the transfer of a large embryo. Table 1 presents neonatal size in these species (shell width ca. 1.2 mm), which is very similar to their clausilium width (ca. 1.1–1.2 mm).Figure 3Two types of clausiliar apparatus occurring in Phaedusinae in microCT visualisation: with spirally ascending inferior lamella and wide clausilium plate (upper row), and with straight ascending inferior lamella and narrow clausilium plate (lower row). (A) T. sheridani adult shell with the body whorl cut open dorsally; (B) clausilium of T. sheridani; (C) clausilium of S. addisoni; (D) clausilium of R. ashizuriensis; (E) Zaptyx ventriosa adult shell with body whorl cut open dorsally; (F) clausilium of Z. ventriosa; (G,H) clausilia of O. miranda. Note, that all depicted species are viviparous.Full size imageTable 1 Shell size of studied Phaedusinae species.Full size tableMost viviparid clausiliids develop one of these three types of modification; some adaptations co-occur within a single species, for example a wide clausilium accompanies a narrow apex. Interestingly, the Reinia genus includes taxa with a gradual escalation of viviparity-related adaptations: R. ashizurensis, with a stout shell shape and a low number of whorls, has fully developed apertural barriers with a broad clausilium plate (Fig. 1A–C), while its congener, R. variegata, has reduced apertural barriers (Fig. 1D–F).Development of a flexible embryonic shellThe fourth type of adaptation found in Phaedusinae concerns the structure of the embryonic shells. We report this adaptation in O. miranda and Z. ventriosa.Oospira miranda is a dextral, often decollated, ground-dwelling species from Vietnam (Fig. 4A). The species is viviparous: during microCT scanning of museum specimens, we found embryos within a parental shell (Fig. 4B); in laboratory culture, we observed neonates immediately after live birth (Fig. 4C,D). Morphological characters recognized in the adult shell, i.e., a wide apex (= wide embryonic shell), straightly ascending inferior lamella, and a narrow clausilium plate (Fig. 3G,H), seemed to exclude the possibility of live-bearing reproduction, as embryos are too large to pass through the shell canal at the narrowest point. The height and width of the neonatal shell (mean values: 5.19 mm, 3.59 mm) evidently exceeds the width of the clausilium plate in this species (1.97 mm) (Table 1). However, under closer examination, we found the shell to be thin and delicate, which we refer to as a ‘soft shell’. In direct examination, the neonatal shell of O. miranda resembles cellophane, which may keep a given shape for a long time but becomes distorted already under slight pressure.Figure 4Viviparous clausiliids and their ‘soft-shelled’ neonates born in laboratory culture. (A–D) O. miranda: adult shell, X-rayed shell with embryo visible inside, neonates; (E–H) Z. ventriosa: adult shell, X-rayed shell with eggs visible inside, neonates.Full size imageA similar adaptation exists in Z. ventriosa, a Taiwanese species with a very wide apex, never decollated, a straight ascending inferior lamella, and a narrow clausilium plate (Figs. 3E,F, 4E,F). This species produces neonates in laboratory culture (Fig. 4G–H). The dimensions of the neonates (mean values: height 3.37 mm, width 2.51 mm) exceed at last twofold the width of the clausilium plate (1.08 mm). The shells of such freshly delivered juveniles, when gently touched with laboratory tweezers, became dented, but not fractured. More intense and stronger pressing can break this dentation.These initial observations, that we made during the maintenance of the laboratory culture, suggested that the neonatal shells of O. miranda and Z. ventriosa have flexible walls. These ‘soft-shells’ seem to be highly malleable during the entire embryonic development period and delivery through apertural barriers, hardening shortly after birth. We further investigated the physical properties of the embryonic shell by means of microcomputed tomography and scanning electron microscopy.Microcomputed tomographyWe scanned ‘soft-shelled’ neonates of O. miranda and Z. ventriosa, together with ‘hard-shelled’ embryos and neonates of S. addisoni and T. sheridani, in order to compare the density and thickness of the shells (Fig. 5).Figure 5Comparison of embryonic shell thickness in clausiliids: ‘soft-shelled’ neonates of Z. ventriosa (A,B,G,H) and O. miranda (C,D,I,J); “hard-shelled” neonate of S. addisoni (E,K) and embryo of T. sheridani (F,L) scanned inside a parental shell. Upper row—microCT visualisation of shell surface; middle row—microCT sections of those specimens; (M–O) X-ray photographs of S. addisoni (embryo from dissected adult) and Z. ventriosa (neonate) enlarged in (N,O), respectively, showing the difference in shell density and thickness; (P) microCT based volume rendering of O. miranda (left) and S. addisoni (right) neonates, showing difference between relative density of their shells.Full size imagePreliminary observations using the two-dimensional X-ray photographs showed a difference in thickness and density between S. addisoni and Z. ventriosa (Fig. 5M, enlarged in N and O, respectively). The 3D visualization of O. miranda and S. addisoni (the same microCT scanning and reconstruction parameters) confirmed the difference between density and shell thickness of these two species (Fig. 5P).Due to variations in wall thickness within the neonatal shell (e.g., between the first and the second whorls), it is not possible to precisely determine the thickness of the shell wall. The accuracy of the measurement is also limited by the resolution of the microCT scans, especially in the case of the relatively large neonates of O. miranda and Z. ventriosa. When scanning the whole embryonic shell of Z. ventriosa (approximately 3.5 mm in height), the size of the voxel was approximately 1 µm. Thus, we cannot determine the shell thickness down to the nearest micron, but we can estimate it from a few to a dozen microns. A direct comparison between virtual microCT sections of specimens scanned under the same conditions shows a clear difference between the ‘soft-shelled’ and ‘hard-shelled’ taxa (Fig. 5G–L). The ’hard-shelled’ neonates have a shell wall of 30–40 µm thick. We examined the sequence of three ’soft-shelled’ O. miranda specimens that differed in size (the exact time of birth of each of the cultured neonates is unknown, ca. 1–2 days). The larger (older) the neonate was, the thicker the shell. The shell of the largest of the studied O. miranda was up to 20 µm thick. However, the shell wall of this relatively large juvenile (several millimeters in height) still did not reach the thickness of the small ’hard-shelled’ T. sheridani embryo, which was already about 30–40 µm thick, stiff and rigid during the retention in the genital tract. The neonates of O. miranda and Z. ventriosa were much larger than the embryos and neonates of S. addisoni and R. variegata (Table 1), however, the former taxa has much thinner shells.Scanning electron microscopyAfter the non-invasive microCT scan, we scanned embryos and neonates using SEM (Fig. 6). The different properties of the shells of Z. ventriosa and O. miranda vs. S. addisoni and R. variegata were already visible during the preparation of the analysis. Under vacuum conditions, the soft shells of Z. ventriosa and O. miranda shrank and crumpled, creating a cellophane-like surface (Fig. 6A). Embryos and neonates of S. addisoni and R. variegata did not require any special preparation and their shell shape remained unchanged under the vacuum conditions applied during the SEM examination (Fig. 6D,E). To reduce the shell deformations, we freeze-dried the next group of thin-shelled neonates prior to SEM analyses (Fig. 6B,C).Figure 6Neonates of O. miranda (A,B,F,I,L,M,O) and Z. ventriosa (C,G,J,P) in direct comparison with hard-shelled embryos and neonates of R. variegata (D,N,Q) and S. addisoni (E,H,K); SEM microphotographs. The vacuum conditions in SEM led to the shrinkage of the thin O. miranda shell (A); freeze-drying of ‘soft-shelled’ neonates prior to SEM imaging reduced the level of deformity (B,C). Contrastingly, R. variegata and S. addisoni shells do not require special preparation and retain their shape (D,E). (F) The dented surface of O. miranda neonate and SEM-close-up (I) on a cross-section of the shell just a few micrometers thick (arrow in F indicates the region enlarged in I). (G,J) Shell of Z. ventriosa in comparison with similarly ornamented fragment of S. addisoni (H,K); note several times thicker shell in the latter (arrows in G,H indicate the regions enlarged in J,K, respectively). (L,M) Inner surface of intact periostracum which still connects two fragments of broken aragonite shell of O. miranda (the arrow in M indicates the region enlarged in L); note the difference between shell thickness in O. miranda (L,M) and R. variegata (N). All observed specimens have similar crossed-lamellar microstructure (L–Q). However, just as shell thickness, also the number of lamellar layers of alternate orientation within the shell differs (L,M,O,P vs N,Q).Full size imageThe SEM studies allowed for complementary measurements of the shells. In the broken fragments of Z. ventriosa and O. miranda, the thickness of the shell wall ranged from 2–3 µm (Fig. 6F,G,I,J,L,M) to 18 µm in the largest neonate of O. miranda (Fig. 6O). The shells of S. addisoni (Fig. 6H,K) and R. variegata (Fig. 6N) are several times thicker.All analyzed samples have a thin ( More

  • in

    Predation impact on threatened spur-thighed tortoises by golden eagles when main prey is scarce

    Roff, D. A. The Evolution of Life Histories: Theory and Analysis (Chapman and Hall, 1992).
    Google Scholar 
    Sæther, B. E. & Bakke, O. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).
    Google Scholar 
    Koons, D. N., Pavard, S., Baudisch, A. & Metcalf, J. E. C. Is life-history buffering or lability adaptive in stochastic environments?. Oikos 118, 972–980 (2009).
    Google Scholar 
    Boyce, M. S., Haridas, C. V. & Lee, C. T. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).PubMed 

    Google Scholar 
    Morris, W. F. & Doak, D. F. Buffering of life histories against environmental stochasticity: Accounting for a spurious correlation between the variabilities of vital rates and their contributions to fitness. Am. Nat. 163, 579–590 (2004).PubMed 

    Google Scholar 
    Ripple, W. J. et al. Saving the world’s terrestrial megafauna. Bioscience 66(10), 807–812 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    He, F. et al. Disappearing giants: A review of threats to freshwater megafauna. WIREs Water 4, e1208 (2017).
    Google Scholar 
    Blackburn, T. M., Cassey, P., Duncan, R. P., Evans, K. L. & Gaston, K. J. Avian extinction and mammalian introductions on oceanic islands. Science 305(5692), 1955–1958 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Courchamp, F., Langlais, M. & Sugihara, G. Rabbits killing birds: Modelling the hyperpredation process. J. Anim. Ecol. 69, 154–164 (2000).
    Google Scholar 
    Roemer, G. W., Coonan, T. J., Garcelon, D. K., Bascompte, J. & Laughrin, L. Feral pigs facilitate hyperpredation by golden eagles and indirectly cause the decline of the island fox. Anim. Conserv. 4, 307–318 (2001).
    Google Scholar 
    Kristan, W. B. & Boarman, W. I. Spatial patterns of risk of common raven predation on desert tortoises. Ecology 84, 2432–2443 (2003).
    Google Scholar 
    Whelan, C. J., Brown, J. S. & Maina, G. Search biases, frequency-dependent predation and species co-existence. Evol. Ecol. Res. 5, 329–343 (2003).
    Google Scholar 
    Moleón, M., Almaraz, P. & Sánchez-Zapata, J. A. An emerging infectious disease triggering large-scale hyperpredation. PLoS ONE 3, e2307 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moleón, M., Almaraz, P. & Sánchez-Zapata, J. A. Inferring ecological mechanisms from hunting bag data in wildlife management: A reply to blanco-aguiar et al. 2012. Eur. J. Wildl. Res. 59, 599–608 (2013).
    Google Scholar 
    Bate, A. M. & Hilker, F. M. Rabbits protecting birds: Hypopredation and limitations of hyperpredation. J. Theor. Biol. 297, 103–115 (2012).ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Turner, F. B., Medica, P. A. & Lyons, C. L. Reproduction and survival of the desert tortoise (Scaptochelys agassizii) in Ivanpah Valley California. Copeia 1984(4), 811–820 (1984).
    Google Scholar 
    Graciá, E. et al. Assessment of the key evolutionary traits that prevent extinctions in human altered habitats using a spatially explicit individual-based model. Ecol. Model. 415, 108823 (2020).
    Google Scholar 
    Segura, A., Jiménez, J. & Acevedo, P. Predation of young tortoises by rabbits: The effect of habitat structure on tortoise detectability and abundance. Sci. Rep. 10, 1–9 (2020).
    Google Scholar 
    Watson, J. The golden eagle (Bloomsbury Publishing, 2010).
    Google Scholar 
    Fischer, W., Zenker, D. & Baumgart, W. Ein beitrag zum bestand und zur ernährung des steinadlers Aquila chrysaetos af der balkanhalbinsel. Beiträge zur Vogelskunde 21, 275–287 (1975).
    Google Scholar 
    Delibes, M., Calderón, J. & Hiraldo, F. Selección de presa y alimentación en españa del águila real (Aquila chrysaetos). Ardeola 21, 285–303 (1975).
    Google Scholar 
    Handrinos, G. The Golden Eagle in Greece. Actes 1er Coll. Intern. Aigle Royal en Europe, Arvieux, 1986: 18–22 (1987).Bautista, J., Gil-Sánchez, J. M. & Moleón, M. Dieta del águila real en el sur de españa. Quercus 364, 17–23 (2016).
    Google Scholar 
    Bautista, J., Castillo, S., Paz, J. L., Llamas, J. & Ellis, D. H. Golden eagles (Aquila chrysaetos) as potential predators of barbary macaques (Macaca sylvanus) in northern Morocco: Evidences of predation. Go-South Bull. 15, 172–179 (2018).
    Google Scholar 
    Kouzmanov, G., Stoyanov, R. & Todorov, V. Sur la biologie et la Protection de l`Aigle royal Aquila chrysaetos en Bulgarie. In Eagle studies (eds Meyburg, B. & Chancellor, R.) 505–516 (World Working Group on Birds of Prey, 1996).
    Google Scholar 
    Capper, S. The predation of Testudo spp. By Golden Eagles Aquila chrysaetos in Dadia Forest Reserve, NE Greece. University of Reading (1998).Karyakin, I. V., Kovalenko, A. V., Levin, A. S. & Pazhenkov, A. S. Eagles of the Aral-Caspian region Kazakhstan. Raptors Conserv. 22, 92–152 (2011).
    Google Scholar 
    Papageorgiou, N., Vlachos, C., Bakaloudis, D. E., Kazaklis, A., Birtsas, P. Study on the biology and management of raptors in Dadia forest–Evros. Thessaloniki, GR (1995).Sidiropoulos, L. et al. Pronounced seasonal diet diversity expansion of golden eagles (Aquila chrysaetos) in Northern Greece during the non-breeding season: The role of tortoises. Diversity 14(2), 135 (2022).
    Google Scholar 
    IUCN. The IUCN red list of threatened species. Version 2020–3 (2020).Graciá, E. et al. Expansion after expansion: dissecting the phylogeography of the widely distributed spur-thighed tortoise, Testudo graeca (Testudines: Testudinidae). Biol. J. Linn. Soc. 121, 641–654 (2017).
    Google Scholar 
    Graciá, E. et al. Genetic patterns of a range expansion: The spur-thighed tortoise Testudo graeca graeca in southeastern Spain. Amphib. Reptil. 32, 49–61 (2011).
    Google Scholar 
    Graciá, E. et al. The uncertainty of late pleistocene range expansions in the western Mediterranean: A case study of the colonization of south-eastern Spain by the spur-thighed tortoise, Testudo graeca.. J. Biogeogr 40, 323–334 (2013).
    Google Scholar 
    Anadón, J. D., Giménez, A., Perez, I., Martinez, M. & Esteve-Selma, M. A. Habitat selection by the spur-thighed tortoise Testudo graeca in a multisuccessional landscape: implications for habitat management. Biodivers. Conserv. 15, 2287–2299 (2006).
    Google Scholar 
    Rodríguez-Caro, R. C. et al. Low tortoise abundances in pine forest plantations in forest-shrubland transition areas. PLoS ONE 12, e0173485 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Caro, R. C. et al. The limits of demographic buffering in coping with environmental variation. Oikos 130(8), 1346–1358 (2021).
    Google Scholar 
    Rodríguez-Caro, R. C., Lima, M., Anadón, J. D., Graciá, E. & Giménez, A. Density dependence, climate and fires determine population fluctuations of the spur-thighed tortoise, Testudo graeca. J. Zool. 300, 265–273 (2016).
    Google Scholar 
    Rodríguez-Caro, R. C. et al. A low cost approach to estimate demographic rates using inverse modeling. Biol. Conserv. 237, 358–365 (2019).
    Google Scholar 
    Jiménez-Franco, M. V. et al. Sperm storage reduces the strength of the mate-finding allee effect. Ecol. Evol. 10(4), 1938–1948 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Graciá, E. et al. From troubles to solutions: Conservation of mediterranean tortoises under global change. Basic Appl. Herpetol. 34, 5–16 (2020).
    Google Scholar 
    Pérez, I. et al. Exurban sprawl increases the extinction probability of a threatened tortoise due to pet collections. Ecol. Model. 245, 19–30 (2012).
    Google Scholar 
    Del Moral, J. C. El águila real en España. Población reproductora en 2008 y método de censo. SEO/BirdLife. Madrid. pp. 30–50 (2009).Virgós, E., Cabezas-Díaz, S. & Lozano, J. Is the wild rabbit (Oryctolagus cuniculus) a threatened species in Spain? Sociological constraints in the conservation of species. Biodivers. Conserv. 16, 3489–3504 (2007).
    Google Scholar 
    Fernández, C. Effect of the viral haemorrhagic pneumonia of the wild rabbit on the diet and breeding success of the golden eagle Aquila chrysaetos (L.). Rev. Ecol. Terre et Vie 48, 323–329 (1993).
    Google Scholar 
    Villafuerte, R., Luco, D. F., Gortázar, C. & Blanco, J. C. Effect on red fox litter size and diet after rabbit haemorrhagic disease in northeastern Spain. J. Zool. 240, 764–767 (1996).
    Google Scholar 
    Martínez, J. A. & Zuberogoitia, I. The response of eagle owl (Bubo bubo) to an outbreak of the rabbit haemorrhagic disease. J. Ornithol. 142, 204–211 (2001).
    Google Scholar 
    Moleón, M. et al. Large-scale spatiotemporal shifts in the diet of a predator mediated by an emerging infectious disease of its main prey. J. Biogeogr. 36, 1502–1515 (2009).
    Google Scholar 
    Adamakopoulos, T., Gatzoyannis, S., Poirazidis, K. Study on the assessment, the enhancement of the legal infrastructure and the management of the protected area in the forest of Dadia. Specific Environmental Study, WWF-Greece, Athens (1995).Delibes, M., Hiraldo, F. The rabbit as prey in the Iberian Mediterranean ecosystem. In Proceedings of the World Lagomorph Conference. Guelph: University of Guelph. 1979: 614–622 (1979).Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).
    Google Scholar 
    Moleón, M. et al. Predator–prey relationships in a mediterranean vertebrate system: Bonelli’s eagles, rabbits and partridges. Oecologia 168, 679–689 (2012).ADS 
    PubMed 

    Google Scholar 
    Fedriani, J. M., Ferreras, P. & Delibes, M. Dietary response of the Eurasian badger, Meles meles, to a decline of its main prey in the Doñana national park. J. Zool. 245, 214–218 (1998).
    Google Scholar 
    Ferrer, M. & Negro, J. J. The near extinction of two large European predators: Super specialists pay a price. Conserv. Biol. 18, 344–349 (2004).
    Google Scholar 
    Lozano, J., Moleón, M. & Virgós, E. Biogeographical patterns in the diet of the wildcat, Felis silvestris Schreber, in Eurasia: Factors affecting the trophic diversity. J. Biogeogr. 33, 1076–1085 (2006).
    Google Scholar 
    Burgos, T. et al. Prey density determines the faecal-marking behaviour of a solitary predator, the Iberian lynx (Lynx pardinus). Ethol. Ecol. Evol. 31, 219–230 (2019).
    Google Scholar 
    Ontiveros, D. & Pleguezuelos, J. M. Influence of prey densities in the distribution and breeding success of Bonelli’s eagle (Hieraaetus fasciatus): Management implications. Biol. Conserv. 93, 19–25 (2000).
    Google Scholar 
    Araújo, M. S. & Gonzaga, M. O. Individual specialization in the hunting wasp Trypoxylon (Trypargilum) albonigrum (Hymenoptera, Crabronidae). Behav. Ecol. Sociobiol. 61, 1855–1863 (2007).
    Google Scholar 
    Stephens, D. W. & Krebs, J. R. Foraging Theory 1st edn. (Monographs in Behavior and Ecology. Princeton University Press, 1986).
    Google Scholar 
    Heath, J. A. et al. Golden Eagle dietary shifts following wildfire and shrub loss have negative consequences for nestling survivorship. Ornithol. Appl. 123(4), duabo34 (2021).
    Google Scholar 
    Anadón, J. D., Wiegand, T. & Giménez, A. Individual-based movement models reveal sex-biased effects of landscape fragmentation on animal movement. Ecosphere 3, 1–32 (2012).
    Google Scholar 
    Sanz-Aguilar, A., Anadón, J. D., Giménez, A., Ballestar, R. & Oro, D. Coexisting with fire: The case of the terrestrial tortoise Testudo graeca in mediterranean shrublands. Biol. Conserv. 144, 1040–1049 (2011).
    Google Scholar 
    Arroyo, B. Águila real – Aquila chrysaetos. In: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Morales, M. B. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/ (2017).Arroyo, B., Ferreiro, E., Garza, V. El águila real (Aquila chrysaetos) en España. Censo, distribución, reproducción y conservación. Serie Técnica, ICONA. Madrid (1990).Bautista, J., Gil-Sánchez, J. M., González Miras, E., Gómez, G. J. & Sánchez Balsera, J. L. Increase in the population of golden eagle in andalusian baetic system mountain ranges (southern of Spain): evidences of competition with the Bonelli’s eagle. Quercus 332, 16–22 (2013).
    Google Scholar 
    Rodríguez-Caro, R. C., Graciá, E., Anadón, J. D. & Giménez, A. Maintained effects of fire on individual growth and survival rates in a spur-thighed tortoise population. Eur. J. Wildl. Res. 59, 911–913 (2013).
    Google Scholar 
    Beissinger, S. R. & McCullough, D. R. Population viability analysis (University of Chicago Press, 2002).
    Google Scholar 
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed 

    Google Scholar 
    Real, J. Biases in diet study methods in the Bonelli’s eagle. J. Wildl. Manag. 60(3), 632–638 (1996).
    Google Scholar 
    Moleón, M. et al. Laying the foundations for a human-predator conflict solution: Assessing the impact of Bonelli’s eagle on rabbits and partridges. PLoS ONE 6, e22851 (2011).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Esteve-Selma, M. A., et al. Effects of climate change on the potential distribution of Testudo graeca in southeastern Iberian Peninsula. In Graciá E, Rodríguez-Caro RC and Giménez A. Conservation of Mediterranean tortoises under global change. Madrid. Asociación Herpetológica Española. ISBN: 978-84-921999-6-9.Anadón, J. D., Giménez, A., Ballestar, R. & Pérez, I. Evaluation of local ecological knowledge as a method for collecting extensive data on animal abundance. Conserv. Biol. 23, 617–625 (2009).PubMed 

    Google Scholar 
    Abad, V. Variaciones del Índice corporal en una población de tortuga mora (Testudo graeca) del Sureste Ibérico. MSc thesis, Universidad Miguel Hernández de Elche, Spain (2007).Linden, H., Wikman, M. Goshawk predation on tetraonids: Availability of prey and diet of the predator in the breeding season. J. Anim. Ecol., 953–968 (1983).Fevold, H. R. & Craighead, J. J. Food requirements of the golden eagle. Auk 75, 312–317 (1958).
    Google Scholar 
    Collopy, M. W. Food consumption and growth energetics of nestling golden eagles. Wilson Bull. 445–458 (1986).Blanco, J. C., Villafuerte, R. Factores ecológicos que influyen sobre las poblaciones de conejos. Efectos de la enfermedad hemorrágico vírica. TRAGSA, Madrid Spain (1993). More