More stories

  • in

    Using hyrax latrines to investigate climate change

    This might look like an ordinary rock formation, but the black material is actually preserved faeces and urine from a small mammal called a rock hyrax (Procavia capensis).Hyraxes, which are common in Africa and the Middle East, look like groundhogs but are more closely related to manatees and elephants. They live in crevasses and pick one spot to use as a latrine. The use of the same spot over tens of thousands of years creates a layered refuse heap known as a midden that scientists can mine for palaeoclimatic data. I specialize in examining the pollen in these dungheaps for information about the vegetation and climate of the past.Our team found this site in May, in the Cape Fold Belt mountains of South Africa, using a drone to help investigate crevasses. We were excited when we saw the extent of this midden; we think it covers at least 20,000 years. We came back after the winter to take a sample. This photograph was taken in September. My colleague and project leader Brian Chase, who has rock-climbing skills, used a circular saw to extract a wedge that we brought back to the lab for analysis.The team will first look at radioactive carbon to determine the age of the midden layers. Then, we will analyse the stable carbon isotopes to learn what plants the hyraxes were eating, which in turn provides clues to the climate of that time. When I examine the samples, I look for pollen grains, which enter the midden both in the hyrax’s urine and faeces and by being blown in by the wind. I’ll also look for charcoal, to tell how many wildfires occurred in the region over time, and fungal spores, which can reveal which animals were nearby.We now have a much more nuanced and detailed view of climate changes in southern Africa. The fieldwork is very demanding, requiring long days of hiking, but I love it. More

  • in

    The spread of Carpophilus truncatus is on the razor's edge between an outbreak and a pest invasion

    Paini, D. R. et al. Global threat to agriculture from invasive species. PNAS 113, 7575–7579. https://doi.org/10.1073/pnas.1602205113 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Molfini, M. et al. A preliminary prioritized list of Italian alien terrestrial invertebrate species. Biol. Invasions 22, 2385–2399. https://doi.org/10.1007/s10530-020-02274-w (2020).Article 

    Google Scholar 
    Sweeney, J. et al. Special issue on invasive pests of forests and urban trees: pathways, early detection, and management. J. Pest Sci. 92, 1–2. https://doi.org/10.1007/s10340-018-01073-6 (2019).Article 

    Google Scholar 
    Pace, R. et al. The bugs in the bags : The risk associated with the introduction of small quantities of fruit and plants by airline passengers. Insects 13, 617. https://doi.org/10.3390/insects13070617 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nugnes, F., Russo, E., Viggiani, G. & Bernardo, U. First record of an invasive fruit fly belonging to Bactrocera dorsalis complex (Diptera: Tephritidae) in Europe. Insects 9, 182. https://doi.org/10.3390/insects9040182 (2018).Article 
    PubMed Central 

    Google Scholar 
    Bernardo, U. et al. Characterization, distribution, biology and impact on Italian walnut orchards of the invasive North-American leafminer Coptodisca lucifluella (Lepidoptera: Heliozelidae). Bull. Entomol. Res. 105, 210–224. https://doi.org/10.1017/S0007485314000947 (2015).Article 
    PubMed 
    CAS 

    Google Scholar 
    Saxena, R. C. & Barrion, A. A. Biotypes of insect pests of agricultural crops. Int. J. Trop. Insect Sci. 8, 453–458. https://doi.org/10.1017/s1742758400022475 (1987).Article 

    Google Scholar 
    Bentur, J. S., Cheralu, C. & Rao, P. R. M. Monitoring virulence in Asian rice gall midge populations in India. Entomol. Exp. Appl. 129, 96–106. https://doi.org/10.1111/j.1570-7458.2008.00756.x (2008).Article 

    Google Scholar 
    Lee, C. E. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17, 386–391 (2002).Article 

    Google Scholar 
    Prentis, P. J. et al. Adaptive evolution in invasive species. Trends Plant. Sci. 13, 288–294. https://doi.org/10.1016/j.tplants.2008.03.004 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    Lack, J. B. et al. Comparative phylogeography of invasive Rattus rattus and Rattus norvegicus in the U.S. reveals distinct colonization histories and dispersal. Biol. Invasions 15, 1067–1087. https://doi.org/10.1007/s10530-012-0351-5 (2013).Article 

    Google Scholar 
    Fišer Pečnikar, Ž. & Buzan EV. 20 years since the introduction of DNA barcoding: From theory to application. J. Appl. Genet. 55, 43–52, https://doi.org/10.1007/s13353-013-0180-y (2014).Nugnes, F. et al. Genetic diversity of the invasive Gall Wasp Leptocybe invasa (Hymenoptera: Eulophidae) and of its Rickettsia endosymbiont, and associated sex-ratio differences. PLoS ONE 10, e0124660. https://doi.org/10.1371/journal.pone.0124660 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Nugnes, F., Bernardo, U. & Viggiani, G. An integrative approach to species discrimination in the Anagrus atomus group sensu stricto (Hymenoptera: Mymaridae), with a description of a new species. Syst. Biodivers. 15, 582–599. https://doi.org/10.1080/14772000.2017.1299811 (2017).Article 

    Google Scholar 
    Packer, L., Gibbs, J., Sheffield, C. & Hanner, R. DNA barcoding and the mediocrity of morphology. Mol. Ecol. Resour. 9, 42–50. https://doi.org/10.1111/j.1755-0998.2009.02631.x (2009).Article 
    PubMed 

    Google Scholar 
    Dayrat, B. Towards integrative taxonomy. Biol. J. Linn. Soc. 85, 407–415 (2005).Article 

    Google Scholar 
    Hebert, P. D. N. & Gregory, T. R. The promise of DNA barcoding for taxonomy. Syst. Biol. 54, 852–859. https://doi.org/10.1080/10635150500354886 (2005).Article 
    PubMed 

    Google Scholar 
    Faccoli, M., Simonato, M. & Rassati, D. Life history and geographical distribution of the walnut twig beetle, Pityophthorus juglandis (Coleoptera: Scolytinae), in southern Europe. J. Appl. Entomol. 140, 697–705. https://doi.org/10.1111/jen.12299 (2016).Article 

    Google Scholar 
    Verheggen, F. et al. Walnut husk fly, Rhagoletis completa (Diptera: Tephritidae), invades Europe: Invasion potential and control strategies. Appl. Entomol. Zool. 52, 1–7. https://doi.org/10.1007/s13355-016-0459-7 (2017).Article 

    Google Scholar 
    Gargiulo, S. et al. Insetti endemici e nuove invasioni: il complicato quadro dei fitofagi del noce. Entomata. 15, 73–83 (2021).
    Google Scholar 
    de Benedetta, F. et al. Carpophilus dimidiatus, nuova minaccia per la nocicoltura. Inf. Agr. 17, 57–59 (2020).
    Google Scholar 
    Dobson, R. M. The species of Carpophilus Stephens (Col. Nitidulidae) associated with stored products. Bull. Entomol. Res. 45, 389–402 (1954).Article 

    Google Scholar 
    Audisio, P. Coleoptera: Nitidulidae – Kateretidae. Coleoptera Nitidulidaee Kateretidae Carpophilinae in Fauna d’Italia XXXII 226–269 (Calderini, 1993).Powell, G. S., Cline, A. R., Duffy, A. G. & Zaspel, J. M. Phylogeny and reclassification of Carpophilinae (Coleoptera: Nitidulidae), with insights into the origins of anthophily. Zool. J. Linn. Soc. 189, 1359–1369. https://doi.org/10.1093/zoolinnean/zlaa001 (2020).Article 

    Google Scholar 
    Bartelt, R. & Hossain, M. Chemical ecology of Carpophilus sap beetles (Coleoptera: Nitidulidae) and development of an environmentally friendly method of crop protection. Terr. Arthropod. Rev. 3, 29–61. https://doi.org/10.1163/187498310×489981 (2010).Article 

    Google Scholar 
    Audisio, P. Fauna Europaea: Coleoptera, Carpophilinae, Carpophilus in Fauna Europaea version 2021.07 https://fauna-eu.org/ (2021).Tremblay, E., Espinosa, B. & Baldini, C. Dannosità dei Carpofili (Coleoptera: Nitidulidae) alle pesche in Campania. Inf. Fitopatol. 34, 43–45 (1984).
    Google Scholar 
    Reales, N. et al. Morphological and molecular identification of Carpophilus dimidiatus (Coleoptera: Nitidulidae) associated with stored walnut in Northwestern Argentina. J. Stored Prod. Res. 76, 37–42. https://doi.org/10.1016/j.jspr.2017.12.002 (2018).Article 
    ADS 

    Google Scholar 
    Hossain, M. Management of Carpophilus Beetle in Almonds. Hort Innovation – Final Report Project #A:1–93 (2018).Powell, G. S. & Hamilton, M. L. Notes on the Carpophilus Stephens (Coleoptera: Nitidulidae) of Australia, with a new species from Victoria. Zootaxa 4701, 192–196. https://doi.org/10.1017/S0009840X0002730X (2019).Article 

    Google Scholar 
    Boston, W., Leemon, D. & Cunningham, J. P. Virulence screen of Beauveria bassiana isolates for Australian Carpophilus (Coleoptera: Nitidulidae) beetle biocontrol. Agronomy 10, 1207. https://doi.org/10.3390/agronomy10081207 (2020).Article 

    Google Scholar 
    Connell, W.A. A key to Carpophilus sap beetle associated with stored foods in the United States (Coleoptera: Nitidulidae). Department of Agriculture Cooperative Plant Pest Reports 23, 398–404 (1977).Brown, S. D. J., Armstrong, K. F. & Cruickshank, R. H. Molecular phylogenetics of a South Pacific sap beetle species complex (Carpophilus spp., Coleoptera: Nitidulidae). Mol. Phylogenetics Evol. 64, 428–440. https://doi.org/10.1016/j.ympev.2012.04.018 (2012).Article 

    Google Scholar 
    Leica Application Suite software version 3.8.0; Leica: Switzerland, (2011).Murray, A. X. I. I. I. Monograph of the family of Nitidulariae. Trans. Linn. Soc. Lond. 24, 211–414. https://doi.org/10.1111/j.1096-3642.1863.tb00163.x (1864).Article 

    Google Scholar 
    Gillogly, L. R. Insects of Micronesia Coleoptera: Nitidulidae*. Insects Micronesia 16, 133–188 (1962).
    Google Scholar 
    Connell, W.A. Sap Beetles (Nitidulidae, Coleoptera). in Insect and Mite pests in food, an illustrated key. 151–174 (1991).DiLorenzo, C.L., Powell, G.S., Cline, A.R. & McHugh, J.V. Carpophiline-ID, a taxonomic web resource for the identification of Carpophilinae (Nitidulidae) of eastern North America. (2021a). https://site.caes.uga.edu/carpophiline-id/DiLorenzo, C. L., Powell, G. S., Cline, A. R. & McHugh, J. V. Carpophiline-ID: An interactive matrix-based key to the Carpophiline sap beetles (Coleoptera, Nitidulidae) of Eastern North America. ZooKeys 1028, 85–93. https://doi.org/10.3897/zookeys.1024.59467 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Motschulsky, V. Insectes des Indes orientales. Etudes entomologiques 7, 20–122 (1858).
    Google Scholar 
    Fall, H. C. Miscellaneous notes and descriptions of North American Coleoptera. Am. Entomol. Soc. 36, 89–197 (1910).
    Google Scholar 
    Dobson, R. M. A new species of Carpophilus Stephens (Col. Nitidulidae) found on stored produce. Entomol’s Mon. Mag. 90, 299–300 (1954).
    Google Scholar 
    Connell, W. A. Carpophilus pilosellus Motschulsky, new synonymy and distribution (Coleoptera: Nitidulidae). Coleopt. Bull. 17, 89–90 (1963).
    Google Scholar 
    Kirejtshuk, A.G. Some results of study on the Nitidulidae from Namibia and adjacent territories. Part 1 Coleoptera, Cucujoidea, Nitidulidae. Mitteilungen aus dem Museum für Naturkunde in Berlin Zoologisches Museum und Institut für Spezielle Zoologie (Berlin) 72, 21–52, https://doi.org/10.1002/mmnz.19960720106 (1996).Wang, D., Bai, X., Zhou, Y., Zhao, Y. Illustrated book of stored grain insects in China. 63–66 (China Press, 2008).Brown, S.D.J. Molecular systematics and colour variation of Carpophilus species (Coleoptera: Nitidulidae) of the South Pacific. Dissertation, Lincoln University (2009).Dasgupta, J., Pal, T. K. & Powell, G. S. Taxonomy of Carpophilinae (Coleoptera: Nitidulidae) from Tripura, India with a new species. Annal. Zool. 71, 627–649. https://doi.org/10.3161/00034541ANZ2021.71.3.003 (2021).Article 

    Google Scholar 
    Gebiola, M. et al. Pnigalio agraules (Walker) and Pnigalio mediterraneus Ferrière and Delucchi (Hymenoptera: Eulophidae): Two closely related valid species. J. Nat. Hist. 43, 2465–2480. https://doi.org/10.1080/00222930903105088 (2009).Article 

    Google Scholar 
    Folmer, R. H. A., Nilges, M., Folkers, P. J. M., Konings, R. N. H. & Hilbers, C. W. A model of the complex between single-stranded DNA and the single-stranded DNA binding protein encoded by gene V of filamentous bacteriophage M13. J. Mol. Biol. 240(4), 341–357 (1994).Article 
    PubMed 
    CAS 

    Google Scholar 
    Simon, C. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701. https://doi.org/10.1093/aesa/87.6.651 (1994).Article 
    CAS 

    Google Scholar 
    Schulmeister, S., Wheeler, W. C. & Carpenter, J. M. Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics 18, 455–484. https://doi.org/10.1111/j.1096-0031.2002.tb00287.x (2002).Article 
    PubMed 

    Google Scholar 
    Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 1–11. https://doi.org/10.1186/1471-2105-13-134 (2012).Article 
    CAS 

    Google Scholar 
    Campbell, B. C., Steffen-Campbell, J. D. & Werren, J. H. Phylogeny of the Nasonia species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect. Mol. Biol. 2, 225–237. https://doi.org/10.1111/j.1365-2583.1994.tb00142.x (1994).Article 

    Google Scholar 
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Edler, D., Klein, J., Antonelli, A. & Silvestro, D. RaxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 12, 373–377. https://doi.org/10.1111/2041-210X.13512 (2021).Article 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61(3), 539–542 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods. 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. Partition Finder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).Article 
    PubMed 
    CAS 

    Google Scholar 
    Rambaut, A., FigTree v1.4.2, A Graphical Viewer of Phylogenetic Trees. http://tree.bio.ed.ac.uk/software/figtree/ (2014).Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729. https://doi.org/10.1093/molbev/mst197 (2013).Article 
    CAS 

    Google Scholar 
    Kingman, J. F. C. The coalescent. Stoch. Process. Appl. 13, 235–248. https://doi.org/10.1016/0304-4149(82)90011-4 (1982).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Austerlitz, F. et al. DNA barcode analysis: A comparison of phylogenetic and statistical classification methods. BMC Bioinform. 10, 1–13. https://doi.org/10.1186/1471-2105-10-S14-S10 (2009).Article 
    CAS 

    Google Scholar 
    Grewe, P. M. et al. Mitochondrial DNA variation among lake trout (Salvelinus namaycush) strains stocked into Lake Ontario. Can. J. Fish. Aquat. Sci. 50, 2397–2403. https://doi.org/10.1139/f93-264 (1993).Article 

    Google Scholar 
    Rossmo, D.K. Geographic profiling. CRC press, 1–378 (1999).Le Comber, S. C. et al. Geographic profiling as a novel spatial tool for targeting infectious disease control. Int. J. Health Geogr. 10, 1–8. https://doi.org/10.1186/1476-072X-10-35 (2011).Article 

    Google Scholar 
    Stevenson, M. D., Rossmo, D. K., Knell, R. J. & Le Comber, S. C. Geographic profiling as a novel spatial tool for targeting the control of invasive species. Ecography 35, 704–715. https://doi.org/10.1111/j.1600-0587.2011.07292.x (2012).Article 

    Google Scholar 
    Gutiérrez, D. & Menéndez, R. Patterns in the distribution, abundance and body size of carabid beetles (Coleoptera: Caraboidea) in relation to dispersal ability. J. Biogeogr. 24, 903–914. https://doi.org/10.1046/j.1365-2699.1997.00144.x (1997).Article 

    Google Scholar 
    Canter, D., Coffey, T., Huntley, M. & Missen, C. Predicting serial killers’ home base using a decision support system. J. Quant. Criminol. 16, 457–478. https://doi.org/10.1023/A:1007551316253 (2000).Article 

    Google Scholar 
    Muirhead, J. R. et al. Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America. Divers. Distrib. 12, 71–79. https://doi.org/10.1111/j.1366-9516.2006.00218.x (2006).Article 

    Google Scholar 
    Marchioro, M. & Faccoli, M. Dispersal and colonization risk of the walnut twig beetle, Pityophthorus juglandis, in southern Europe. J. Pest Sci. 95, 303–313. https://doi.org/10.1007/s10340-021-01372-5 (2022).Article 

    Google Scholar 
    Meurisse, N. & Pawson, S. Quantifying dispersal of a non-aggressive saprophytic bark beetle. PLoS ONE 12, 1–24. https://doi.org/10.1371/journal.pone.0174111 (2017).Article 
    CAS 

    Google Scholar 
    Papini, A. et al. The use of jackknifing for the evaluation of geographic profiling reliability. Ecol. Inform. 38, 76–81. https://doi.org/10.1016/j.ecoinf.2017.02.001 (2017).Article 

    Google Scholar 
    Statgraphics Plus Version 3.0; Manugistics: Rockville, MD, USA, (1997).Bagnaia, R. et al. Carta della Natura della Regione Campania: Carta degli habitat alla scala 1:25.000. ISPRA (2017).Martoni, F., Piper, A. M., Rodoni, B. C. & Blacket, M. J. Disentangling bias for non-destructive insect metabarcoding. PeerJ 10, e12981. https://doi.org/10.7717/peerj.12981 (2022).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Jelinek, J. & Audisio, P. Elateroidea, Derodontoidea, Bostrichoidea, Lymexyloidea, Cleroidea and Cucujoidea in Catalogue of Palaearctic Coleoptera. 459–490 (Apollo Books, 2007)Mbenoun, M., Garnas, J. R., Wingfield, M. J., Begoude Boyogueno, A. D. & Roux, J. Metacommunity analyses of Ceratocystidaceae fungi across heterogeneous African savanna landscapes. Fungal Ecol. 28, 76–85. https://doi.org/10.1016/j.funeco.2016.09.007 (2017).Article 

    Google Scholar 
    Norris, L. C. & Norris, D. E. Phylogeny of anopheline (Diptera: Culicidae) species in southern Africa, based on nuclear and mitochondrial genes. J. Vector Ecol. 40, 16–27. https://doi.org/10.1111/jvec.12128 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernardo, U. et al. A new gall midge species of Asphondylia (Diptera: Cecidomyiidae) inducing flower galls on Clinopodium nepeta (Lamiaceae) from Europe, its phenology, and associated fungi. Environ. Entomol. 47, 609–622. https://doi.org/10.1093/ee/nvy028 (2018).Article 
    PubMed 

    Google Scholar 
    Bernardo, U. et al. An integrative study on Asphondylia spp. (Diptera: Cecidomyiidae), causing flower galls on Lamiaceae, with description, phenology, and associated fungi of two new species. Insetcs 12, 958. https://doi.org/10.3390/insects12110958 (2021).Article 

    Google Scholar 
    Wacławik, B. et al. An integrative revision of the subgenus Liophloeodes (Coleoptera: Curculionidae: Entiminae: Polydrusini): taxonomic, systematic, biogeographic and evolutionary insights. Arthropod Syst. Phylogeny. 79, 419–441. https://doi.org/10.3897/asp.79.e64252 (2021).Article 

    Google Scholar 
    Colautti, R. I. & MacIsaac, H. J. A neutral terminology to define ‘invasive’ species. Divers Distrib. 10, 135–141 (2004).Article 

    Google Scholar 
    Crooks, J. A. Lag times and exotic species: The ecology and management of biological invasions in slow-motion. Ecoscience 12, 316–329. https://doi.org/10.2980/i1195-6860-12-3-316.1 (2005).Article 

    Google Scholar 
    Jelínek, J. et al. Epuraea imperialis (Reitter, 1877). New invasive species of Nitidulidae (Coleoptera) in Europe, with a checklist of Sap Beetles introduced to Europe and Mediterranean areas. APP | Physical, Math. Nat. Sci. Accademia Peloritana dei Pericolanti, 94, 1–24, https://doi.org/10.1478/AAPP.942A4 (2016).Benchi, D., Conelli, L. & Bernardo, U. L. mosca delle noci minaccia le produzioni campane. Inf Agr. 66, 74–76 (2010).
    Google Scholar 
    Pollini, A. Entomologia Applicata. (Edagricole, 2013).Van Steenwyk, R.A. et al. Walnut husk fly control with reduced risk insecticides. Acta Hortic 861, 375–382, https://doi.org/10.17660/ActaHortic.2010.861.5 (2010).EU (2019). Commission Implementing Regulation (EU) 2019/2072 of 28 November 2019 establishing uniform conditions for the implementation of Regulation (EU) 2016/2031 of the European Parliament and the Council, as regards protective measures against pests of plants, and repealing Commission Regulation (EC) No 690/2008 and amending Commission Implementing Regulation (EU) 2018/2019. Off. j. Eur. Union, Legis., L 319/1, 1–279. Retrieved from https://eur-lex.europa.eu/eli/reg_impl/2019/2072/ojRusso, E. et al. Biological and molecular characterization of Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae), an emerging pest of stone fruits in Europe. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-020-63959-9 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hsu, F. et al. Introduction of a non-native lineage is linked to the recent black cocoa ant, Dolichoderus thoracicus (Smith, 1860), outbreaks in Taiwan. Taiwania 67, 271–279. https://doi.org/10.6165/tai.2022.67.271 (2022).Article 

    Google Scholar 
    Porter, J. Some studies on the life history and oviposition of Carpophilus dimidiatus (F.) (Coleoptera: Nitidulidae) at various temperatures and humidities. J. Stored Prod. Res. 22, 135–139. https://doi.org/10.1016/0022-474X(86)90006-8 (1986).Article 
    ADS 

    Google Scholar 
    Potter, M. A. et al. A survey of sap beetles (Coleoptera: Nitidulidae) in strawberry fields in West Central Florida. Fla. Entomol. 96, 1188–1189. https://doi.org/10.1653/024.096.0363 (2013).Article 

    Google Scholar 
    Burks, C.S., Yasin, M., El-Shafie, H.A.F. & Wakil, W. Pests of stored dates in Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges (eds Wakil, W., Romeno Faleiro J., Miller, T.A.) 237–286 (Springer, Zürich, Switzerland, 2015). https://doi.org/10.1007/978-3-319-24397-9Akşit, T., Özsemerci, F. & Çakmak, İ. Studies on determination of harmful fauna in the fig orchards in Aydin province (Turkey). Türkiye Entomoloji Dergisi 27, 181–189 (2003).
    Google Scholar  More

  • in

    A colonial-nesting seabird shows no heart-rate response to drone-based population surveys

    Ratcliffe, N. et al. A protocol for the aerial survey of penguin colonies using UAVs. J. Unmanned Veh. Syst. 3, 95–101 (2015).
    Google Scholar 
    Albores-Barajas, Y. V. et al. A new use of technology to solve an old problem: Estimating the population size of a burrow nesting seabird. PLoS ONE 13, 1–15 (2018).
    Google Scholar 
    Rush, G. P., Clarke, L. E., Stone, M. & Wood, M. J. Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds. Ecol. Evol. 8, 12322–12334 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Chabot, D., Craik, S. R. & Bird, D. M. Population census of a large Common tern colony with a small unmanned aircraft. PLoS ONE 10, 1–14 (2015).
    Google Scholar 
    McClelland, G. T. W., Bond, A. L., Sardana, A. & Glass, T. Rapid population estimate of a surface-nesting seabird on a remote island using a low-cost unmanned aerial vehicle. Mar. Ornithol. 44, 215–220 (2016).
    Google Scholar 
    Lynch, H. J., White, R., Black, A. D. & Naveen, R. Detection, differentiation, and abundance estimation of penguin species by high-resolution satellite imagery. Polar Biol. 35, 963–968 (2012).
    Google Scholar 
    Fretwell, P. T. et al. An Emperor penguin population estimate: The first global, synoptic survey of a species from space. PLoS ONE 7, e33751 (2012).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xue, Y., Wang, T. & Skidmore, A. K. Automatic counting of large mammals from very high resolution panchromatic satellite imagery. Remote Sens. 9, 1–16 (2017).
    Google Scholar 
    Laliberte, A. S. & Ripple, W. J. Automated wildlife counts from remotely sensed imagery. Wildl. Soc. Bull. 31, 362–371 (2003).
    Google Scholar 
    Lyons, M. B. et al. Monitoring large and complex wildlife aggregations with drones. Methods Ecol. Evol. 10, 1024–1035 (2019).
    Google Scholar 
    LaRue, M. A., Stapleton, S. & Anderson, M. Feasibility of using high-resolution satellite imagery to assess vertebrate wildlife populations. Conserv. Biol. 31, 213–220 (2017).PubMed 

    Google Scholar 
    Sardà-Palomera, F., Bota, G., Padilla, N., Brotons, L. & Sardà, F. Unmanned aircraft systems to unravel spatial and temporal factors affecting dynamics of colony formation and nesting success in birds. J. Avian Biol. 48, 1273–1280 (2017).
    Google Scholar 
    Schofield, G., Katselidis, K. A., Lilley, M. K. S., Reina, R. D. & Hays, G. C. Detecting elusive aspects of wildlife ecology using drones: New insights on the mating dynamics and operational sex ratios of sea turtles. Funct. Ecol. 31, 2310–2319 (2017).
    Google Scholar 
    Lachman, D., Conway, C., Vierling, K. & Matthews, T. Drones provide a better method to find nests and estimate nest survival for colonial waterbirds: A demonstration with Western grebes. Wetl. Ecol. Manag. 28, 837–845 (2020).
    Google Scholar 
    Torres, L. G., Nieukirk, S. L., Lemos, L. & Chandler, T. E. Drone up! Quantifying whale behavior from a new perspective improves observational capacity. Front. Mar. Sci. 5, 1–14 (2018).
    Google Scholar 
    Jagielski, P. M., Dey, C. J., Gilchrist, H. G., Richardson, E. S. & Semeniuk, C. A. D. Polar bear foraging on common eider eggs: Estimating the energetic consequences of a climate-mediated behavioural shift. Anim. Behav. 171, 63–75 (2021).
    Google Scholar 
    Jagielski, P. M. et al. Polar bears are inefficient predators of seabird eggs. R. Soc. Open Sci. 8, 210391 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callaghan, C. T., Brandis, K. J., Lyons, M. B., Ryall, S. & Kingsford, R. T. A comment on the limitations of UAVS in wildlife research—The example of colonial nesting waterbirds. J. Avian Biol. 49, e01825 (2018).
    Google Scholar 
    Brisson-Curadeau, É. et al. Seabird species vary in behavioural response to drone census. Sci. Rep. 7, 1–9 (2017).
    Google Scholar 
    Nowak, M. M., Dziób, K. & Bogawski, P. Unmanned aerial vehicles (UAVs) in environmental biology: A review. Eur. J. Ecol. 4, 56–74 (2019).
    Google Scholar 
    Watts, A. C. et al. Small unmanned aircraft systems for low-altitude aerial surveys. J. Wildl. Manag. 74, 1614–1619 (2010).
    Google Scholar 
    Sasse, D. B. Job-related mortality of wildlife workers in the United States, 1937–2000. Wildl. Soc. Bull. 31, 1015–1020 (2003).
    Google Scholar 
    Carey, M. J. The effects of investigator disturbance on procellariiform seabirds: A review. N. Z. J. Zool. 36, 367–377 (2009).
    Google Scholar 
    Carney, K. M. & Sydeman, W. J. A review of human disturbance effects on nesting colonial waterbirds. Int. J. Waterbird Biol. 22, 68–79 (1999).
    Google Scholar 
    Barber-Meyer, S. M., Kooyman, G. L. & Ponganis, P. J. Estimating the relative abundance of Emperor penguins at inaccessible colonies using satellite imagery. Polar Biol. 30, 1565–1570 (2007).
    Google Scholar 
    Lyons, M. et al. A protocol for using drones to assist monitoring of large breeding bird colonies. EcolEvol https://doi.org/10.32942/osf.io/p9j3f (2019).Article 

    Google Scholar 
    Hodgson, J. C. et al. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 9, 1160–1167 (2018).
    Google Scholar 
    Hodgson, J. C., Baylis, S. M., Mott, R., Herrod, A. & Clarke, R. H. Precision wildlife monitoring using unmanned aerial vehicles. Sci. Rep. 6, 1–7 (2016).
    Google Scholar 
    Weston, M. A., O’Brien, C., Kostoglou, K. N. & Symonds, M. R. E. Escape responses of terrestrial and aquatic birds to drones: Towards a code of practice to minimize disturbance. J. Appl. Ecol. 57, 777–785 (2020).
    Google Scholar 
    Korczak-Abshire, M. et al. Preliminary study on nesting Adélie penguins disturbance by unmanned aerial vehicles. CCAMLR Sci. 23, 1–16 (2016).
    Google Scholar 
    Mesquita, G. P., Rodríguez-Teijeiro, J. D., Wich, S. A. & Mulero-Pázmány, M. Measuring disturbance at a swift breeding colonies due to the visual aspects of a drone: A quasi-experiment study. Curr. Zool. 41, 259–266 (2020).
    Google Scholar 
    Weimerskirch, H., Prudor, A. & Schull, Q. Flights of drones over sub-Antarctic seabirds show species- and status-specific behavioural and physiological responses. Polar Biol. 41, 259–266 (2018).
    Google Scholar 
    Mulero-Pázmány, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE 12, 1–14 (2017).
    Google Scholar 
    Barnas, A. et al. Evaluating behavioral responses of nesting Lesser snow geese to unmanned aircraft surveys. Ecol. Evol. 8, 1328–1338 (2018).PubMed 

    Google Scholar 
    Ellis-felege, S. N. et al. Nesting Common eiders (Somateria mollissima) show little behavioral response to fixed-wing drone surveys. J. Unmanned Veh. Syst. https://doi.org/10.1139/juvs-2021-0012 (2021).Article 

    Google Scholar 
    Wilson, R. P., Culik, B., Danfeld, R. & Adelung, D. People in Antarctica—how much do Adélie penguins Pygoscelis adeliae care?. Polar Biol. 11, 363–370 (1991).
    Google Scholar 
    Ricklefs, R. E. An analysis of nesting mortality in birds. Smithson. Contrib. Zool. 9, 1–48 (1969).
    Google Scholar 
    Ditmer, M. A. et al. Bears show a physiological but limited behavioral response to unmanned aerial vehicles. Curr. Biol. 25, 2278–2283 (2015).PubMed 

    Google Scholar 
    Ditmer, M. A. et al. Bears habituate to the repeated exposure of a novel stimulus, unmanned aircraft systems. Conserv. Physiol. 6, 1–7 (2018).
    Google Scholar 
    Jaatinen, K., Seltmann, M. W. & Öst, M. Context-dependent stress responses and their connections to fitness in a landscape of fear. J. Zool. 294, 147–153 (2014).
    Google Scholar 
    Seltmann, M. W. et al. Stress responsiveness, age and body condition interactively affect flight initiation distance in breeding female eiders. Anim. Behav. 84, 889–896 (2012).
    Google Scholar 
    Cockrem, J. F. Stress, corticosterone responses and avian personalities. J. Ornithol. 148, S169–S178 (2007).
    Google Scholar 
    Criscuolo, F. Does blood sampling during eider incubation induce nest desertion in the female Common eider Somateria mollissima?. Mar. Ornithol. 29, 47–50 (2001).
    Google Scholar 
    Ellenberg, U., Mattern, T. & Seddon, P. J. Heart rate responses provide an objective evaluation of human disturbance stimuli in breeding birds. Conserv. Physiol. 1, 1–11 (2013).
    Google Scholar 
    DeRose-Wilson, A., Fraser, J. D., Karpanty, S. M. & Hillman, M. D. Effects of overflights on incubating Wilson’s plover behavior and heart rate. J. Wildl. Manag. 79, 1246–1254 (2015).
    Google Scholar 
    de Villiers, M., Bause, M., Giese, M. & Fourie, A. Hardly hard-hearted: Heart rate responses of incubating Northern giant petrels (Macronectes halli) to human disturbance on sub-Antarctic Marion Island. Polar Biol. 29, 717–720 (2006).
    Google Scholar 
    Borneman, T. E., Rose, E. T. & Simons, T. R. Minimal changes in heart rate of incubating American oystercatchers (Haematopus palliatus) in response to human activity. Condor 116, 493–503 (2014).
    Google Scholar 
    Felton, S. K., Pollock, K. H. & Simons, T. R. Response of beach-nesting American oystercatchers to off-road vehicles: An experimental approach reveals physiological nuances and decreased nest attendance. Condor 120, 47–62 (2018).
    Google Scholar 
    Bolduc, F. & Guillemette, M. Human disturbance and nesting success of Common eiders: Interaction between visitors and gulls. Biol. Conserv. 110, 77–83 (2003).
    Google Scholar 
    Hennin, H. L. et al. Plasma mammalian leptin analogue predicts reproductive phenology, but not reproductive output in a capital-income breeding seaduck. Ecol. Evol. 9, 1512–1521 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Culik, B., Adelung, D. & Woakes, A. J. The effect of disturbance on the heart rate and behaviour of Adélie penguins (Pygoscelis adeliae) during the breeding season. In Antarctic Ecosystems. Ecological Change and Conservation (eds Kerry, K. R. & Hempel, G.) 177–182 (Springer, 1990).
    Google Scholar 
    Weimerskirch, H. et al. Heart rate and energy expenditure of incubating Wandering albatrosses: Basal levels, natural variation, and the effects of human disturbance. J. Exp. Biol. 205, 475–483 (2002).PubMed 

    Google Scholar 
    Egan, C. C., Blackwell, B. F., Fernández-Juricic, E. & Klug, P. E. Testing a key assumption of using drones as frightening devices: Do birds perceive drones as risky?. Condor 122, 1–15 (2020).
    Google Scholar 
    McEvoy, J. F., Hall, G. P. & McDonald, P. G. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: Disturbance effects and species recognition. PeerJ 4, e1831 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Goebel, M. E. et al. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biol. 38, 619–630 (2015).
    Google Scholar 
    Bevan, E. et al. Measuring behavioral responses of sea turtles, saltwater crocodiles, and Crested terns to drone disturbance to define ethical operating thresholds. PLoS ONE 13, 4–6 (2018).
    Google Scholar 
    Rümmler, M. C., Mustafa, O., Maercker, J., Peter, H. U. & Esefeld, J. Measuring the influence of unmanned aerial vehicles on Adélie penguins. Polar Biol. 39, 1329–1334 (2016).
    Google Scholar 
    Vas, E., Lescroël, A., Duriez, O., Boguszewski, G. & Grémillet, D. Approaching birds with drones: First experiments and ethical guidelines. Biol. Lett. 11, 20140754 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Ecol. Soc. 6, 11 (2002).
    Google Scholar 
    Forbes, M. R. L., Clark, R. G., Weatherhead, P. J. & Armstrong, T. Risk-taking by female ducks: Intra-and interspecific tests of nest defense theory. Behav. Ecol. Sociobiol. 34, 79–85 (1994).
    Google Scholar 
    Viblanc, V. A., Smith, A. D., Gineste, B., Kauffmann, M. & Groscolas, R. Modulation of heart rate response to acute stressors throughout the breeding season in the King penguin Aptenodytes patagonicus. J. Exp. Biol. 218, 1686–1692 (2015).PubMed 

    Google Scholar 
    Montgomerie, R. D. & Weatherhead, P. J. Risks and rewards of nest defence by parent birds. Q. Rev. Biol. 63, 167–187 (1988).
    Google Scholar 
    Criscuolo, F., Gabrielsen, G. W., Gendner, J.-P. & Maho, Y. L. Body mass regulation during incubation in female Common eiders Somateria mollissima. J. Avian Biol. 33, 83–88 (2002).
    Google Scholar 
    Cyr, N. E., Wikelski, M. & Romero, L. M. Increased energy expenditure but decreased stress responsiveness during molt. Physiol. Biochem. Zool. Ecol. Evol. Approaches 81, 452–462 (2008).
    Google Scholar 
    Kralj-Fišer, S., Scheiber, I. B. R., Kotrschal, K., Weiß, B. M. & Wascher, C. A. F. Glucocorticoids enhance and suppress heart rate and behaviour in time dependent manner in Greylag geese (Anser anser). Physiol. Behav. 100, 394–400 (2010).PubMed 

    Google Scholar 
    Hodgson, J. C. & Koh, L. P. Best practice for minimising unmanned aerial vehicle disturbance to wildlife in biological field research. Curr. Biol. 26, R404–R405 (2016).PubMed 

    Google Scholar 
    Parker, H. & Holm, H. Patterns of nutrient and energy expenditure in female Common eiders nesting in the high Arctic. Auk 107, 660–668 (1990).
    Google Scholar 
    Mehlum, F. Eider Studies in Svalbard Vol. 195 (Norsk Polarinstitutt Skrifter, 1991).
    Google Scholar 
    Markowitz, E. M., Nisbet, M. C., Danylchuk, A. J. & Engelbourg, S. I. What’s that buzzing noise? Public opinion on the use of drones for conservation science. Bioscience 67, 382–385 (2017).
    Google Scholar 
    Legagneux, P. et al. Unpredictable perturbation reduces breeding propensity regardless of pre-laying reproductive readiness in a partial capital breeder. J. Avian Biol. 47, 880–886 (2016).
    Google Scholar 
    Love, O. P., Gilchrist, H. G., Descamps, S., Semeniuk, C. A. D. & Bêty, J. Pre-laying climatic cues can time reproduction to optimally match offspring hatching and ice conditions in an Arctic marine bird. Oecologia 164, 277–286 (2010).ADS 
    PubMed 

    Google Scholar 
    Fast, P. L. F., Gilchrist, H. G. & Clark, R. G. Nest-site materials affect nest-bowl use by Common eiders (Somateria mollissima). Can. J. Zool. 88, 214–218 (2010).
    Google Scholar 
    McKinnon, L., Gilchrist, H. G. & Scribner, K. T. Genetic evidence for kin-based female social structure in Common eiders (Somateria mollissima). Behav. Ecol. 17, 614–621 (2006).
    Google Scholar 
    Descamps, S., Forbes, M. R., Gilchrist, H. G., Love, O. P. & Bêty, J. Avian cholera, post-hatching survival and selection on hatch characteristics in a long-lived bird, the Common eider Somateria mollissima. J. Avian Biol. 42, 39–48 (2011).
    Google Scholar 
    Buttler, E. I. Avian Cholera Among Arctic Breeding Common eiders Somateria mollissima: Temporal Dynamics and the Role of Handling Stress in Reproduction and Survival (Carleton University, 2009).
    Google Scholar 
    Descamps, S., Gilchrist, H. G., Bêty, J., Buttler, E. I. & Forbes, M. R. Costs of reproduction in a long-lived bird: large clutch size is associated with low survival in the presence of a highly virulent disease. Biol. Lett. 5, 278–281 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Iverson, S. A., Gilchrist, H. G., Smith, P. A., Gaston, A. J. & Forbes, M. R. Longer ice-free seasons increase the risk of nest depredation by Polar bears for colonial breeding birds in the Canadian Arctic. Proc. R. Soc. B Biol. Sci. 281, 20133128 (2014).
    Google Scholar 
    Dey, C. J. et al. Increasing nest predation will be insufficient to maintain Polar bear body condition in the face of sea ice loss. Glob. Change Biol. 23, 1821–1831 (2017).ADS 

    Google Scholar 
    Giese, M., Handsworth, R. & Stephenson, R. Measuring resting heart rates in penguins using an artificial egg. J. Field Ornithol. 70, 49–54 (1999).
    Google Scholar 
    Weller, M. W. A simple field candler for waterfowl eggs. J. Wildl. Manag. 20, 111–113 (1956).
    Google Scholar 
    Barnas, A. F. et al. A standardized protocol for reporting methods when using drones for wildlife research. J. Unmanned Veh. Syst. 8, 89–98 (2020).
    Google Scholar 
    Audacity Team. Audacity(R): Free Audio Editor and Recorder [Computer Application]. Version 2.3.2 retrieved Oct 10th 2019 from https://www.audacityteam.org/ (2019).Nimon, A. J., Schroter, R. C. & Oxenham, R. K. C. Artificial eggs: Measuring heart rate and effects of disturbance in nesting penguins. Physiol. Behav. 60, 1019–1022 (1996).PubMed 

    Google Scholar 
    SAS Institute Inc. SAS® Studio 3.8: User’s Guide (SAS Institute Inc, 2018).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Akaike, H. Information theory and an extension of the maximum likelihood principle. In Breakthroughs in Statistics, Volume I, Foundations and Basic Theory (eds Kotz, S. & Johnson, N. L.) 610–624 (Springer, New York, 1998).
    Google Scholar 
    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 0.8.3. https://CRAN.R-project.org/package=dplyr (2015).Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw. 40, 1–25 (2011).
    Google Scholar 
    Hijmans, R. J., Williams, E. & Vennes, C. Geosphere: Spherical Trigonometry. https://CRAN.R-project.org/package=geosphere (2017).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Found. Stat. Comput., Vienna, 2017).
    Google Scholar  More

  • in

    Phototroph-heterotroph interactions during growth and long-term starvation across Prochlorococcus and Alteromonas diversity

    All Alteromonas strains support long-term survival of Prochlorococcus under N starvationPrevious research showed that Prochlorococcus, and to some extent Synechococcus depend on co-occurring heterotrophic bacteria to survive various types of stress, including nitrogen starvation [33, 34, 42, 43]. At the first encounter between previously axenic Prochlorococcus and Alteromonas (E1), all co-cultures and axenic controls grew exponentially (Fig. 1B, C). However, all axenic cultures showed a rapid and mostly monotonic decrease in fluorescence starting shortly after the cultures stopped growing, reaching levels below the limit of detection after ~20–30 days. None of the axenic Prochlorococcus cultures were able to re-grow when transferred into fresh media after 60 days (Fig. 1C). In contrast, the decline of co-cultures rapidly slowed, and in some cases was interrupted by an extended “plateau” or second growth stage (Fig. 1B). Across multiple experiments, 92% of the co-cultures contained living Prochlorococcus cells for at least 140 days, meaning that they could be revived by transfer into fresh media. Thus, the ability of Alteromonas to support long-term N starvation in Prochlorococcus was conserved in all analyzed strains.Fig. 1: Experimental designs and overview of the dynamics of Prochlorococcus-Alteromonas co-cultures from first encounter and over multiple transfers.A Schematic illustration of the experimental design. One ml from Experiment E1 was transferred into 20 ml fresh media after 100 days, starting experiment E2. Experiment E2 was similarly transferred into fresh media after 140 days, starting experiment E3. Additional experiments replicating these transfers are described in Supplementary Fig. S1. B Overview of the growth curves of the 25 Prochlorococcus-Alteromonas co-cultures over three transfers spanning ~1.2 years (E1, E2 and E3). Results show mean + standard error from biological triplicates, colored by Prochlorococcus strain as in panel D. C Axenic Prochlorococcus grew exponentially in E1 but failed to grow when transferred into fresh media after 60, 100, or 140 days. Axenic Alteromonas cultures were counted after 60 and 100 days, as their growth cannot be monitored sensitively and non-invasively using fluorescence (optical density is low at these cell numbers). D High reproducibility and strain-specific dynamics of the initial contact between Prochlorococcus and Alteromonas strains (E1). Three biological replicates for each mono-culture and co-culture are shown. Note that the Y axis is linear in panels B, C and logarithmic in panel D. Au: arbitrary units.Full size imageIt has previously been shown that Prochlorococcus MIT9313 is initially inhibited by co-culture with Alteromonas HOT1A3, while Prochlorococcus MED4 is not [12, 32]. This “delayed growth” phenotype was observed here too, was specific to MIT9313 (not observed in other Prochlorococcus strains) and occurred with all Alteromonas strains tested (Fig. 1D). MIT9313 belongs to the low-light adapted clade IV (LLIV), which are relatively distant from other Prochlorococcus strains and differ from them in multiple physiological aspects including the structure of their cell wall [44], the use of different (and nitrogen-containing) compatible solutes [45], and the production of multiple peptide secondary metabolites (lanthipeptides, [46, 47]). LLIV cells also have larger genomes, and are predicted to take up a higher diversity of organic compounds such as sugars and amino acids [48]. It is intriguing that specifically this strain, which has higher predicted metabolic and regulatory flexibilities [49], is the only one initially inhibited in co-culture with Alteromonas.Differences in co-culture phenotype are related to Prochlorococcus and not Alteromonas strains and occur primarily during the decline stageWhile co-culture with all Alteromonas strains had a major effect on Prochlorococcus viability after long-term starvation, there was no significant effect of co-culture on traditional metrics of growth such as maximal growth rate, maximal fluorescence, and lag phase (with the exception of the previously described inhibition of MIT9313; Fig. 2A–C). However, a visual inspection of the growth curves suggested subtle yet consistent differences in the shape of the growth curve, and especially the decline phase, between the different Prochlorococcus strains in the co-cultures (Fig. 1D). To test this, we used the growth curves as input for a principal component analysis (PCA), revealing that the growth curves from each Prochlorococcus strain clustered together, regardless of which Alteromonas strain they were co-cultured with (Fig. 2D). The growth curves of all high-light adapted strains (MED4, MIT9312, and MIT0604) were relatively similar, the low-light I strain NATL2A was somewhat distinct, and the low-light IV strain MIT9313 was a clear outlier (Fig. 2D), consistent with this strain being the only one initially inhibited in all co-cultures. Random forest classification supported the observation that the growth curve shapes were affected more by the Prochlorococcus rather than Alteromonas strains, and also confirmed the visual observation that most of the features differentiating between Prochlorococcus strains occurred during culture decline (random forest is a supervised machine learning algorithm explained in more detail in Supplementary Text S2; see also Supplementary Fig. S2). Thus, co-culture with Alteromonas affects the decline stage of Prochlorococcus in co-culture in a way that differs between Prochlorococcus but not Alteromonas strains.Fig. 2: Growth analysis and principal component analysis (PCA) of the growth curves from all co-cultures during 140 days of E1.A Growth rate, B Maximum fluorescence, and C duration of lag phase during experiment E1. Box-plots represent mean and 75th percentile of co-cultures, circles represent measurements of individual cultures of the axenic controls. The only significant difference between axenic and co-cultures is in the length of the lag phase for MIT9313 (Bonferroni corrected ANOVA, p  More

  • in

    Residual levels and dietary intake risk assessment of 11 pesticides in apricots from different ecological planting regions in China

    Chromatographic separation and mass spectrometric optimizationTo obtain the best monitoring conditions for each compound, a 0.5 mg/L mixed standard solution of 11 pesticides was mixed with the mobile phase through a syringe pump and then injected into the mass spectrometer for tuning. The precursor ion of the compound to be tested was determined by the primary mass spectrometry scan under ESI+ and ESI- modes, and then the product ion was scanned by the secondary mass spectrometry. Two groups of ion pairs with the best sensitivity were selected for detection; one group was used for quantification, and another, for qualitative analysis. The optimization results showed high sensitivity of all the 11 pesticides under the ESI+ mode. Among them, abamectin (B1a), β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin were [M + NH4]+, and other compounds were [M + H]+. MS parameters of 11 pesticides are mentioned in Table S2.Formic acid and ammonium acetate are commonly used reagents to enhance the ionization of target compounds [M + H]+ and [M + NH4]+ under the ESI+ mode, and they can effectively improve the peak pattern, making the peak sharper and more symmetrical; therefore, they need to be added during gradient elution38. To improve work efficiency, it is necessary to separate and complete the monitoring of 11 pesticides in the shortest possible time; therefore, we selected two different types of chromatographic columns (ACQUITY UPLC HSS C18 and ACQUITY UPLC HSS T3) and three different mobile phases (Ι: 0.1% formic acid aqueous solution—ACN, II: 0.05% formic acid aqueous solution—ACN, and III: 0.1% formic acid/5 mmol/L ammonium acetate aqueous solution—ACN) for optimization experiments. We observed that when using the HSS T3 chromatographic column, β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin did not show a good retention effect under the three mobile phase systems, and there was substantial tailing of the chromatographic peak. The shape of the chromatographic peak and sensitivity of the target compound were used as evaluation indicators. Compared with Ι and II, mobile phase III produced better sensitivity for all target compounds (Fig. 1), with sharper and more symmetrical peaks of β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin. This may be because the addition of 5 mmol/L ammonium acetate improved the retention performance of the HSS C18 chromatography columns without affecting the ionization efficiency of all target compounds. In summary, we selected the HSS C18 column for chromatographic separation and used 0.1% formic acid/5 mmol/L ammonium acetate aqueous solution—ACN as the mobile phase to further optimize the gradient elution procedure and effectively separate and detect all the target compounds within 8 min.Figure 1When using HSS C18, the peak areas of 11 pesticides in three different mobile phases.Full size imageOptimization of purification materialsThe flesh of apricot contains sugar, protein, calcium, phosphorus, carotene, thiamine, riboflavin, niacin, and vitamin C. Due to these diverse impurities, the analysis of the sample matrix becomes highly complex. Therefore, these impurities need to be removed from the matrix samples before analysis. Currently, PSA, C18, and MWCNTs are widely used to adsorb to the fruit substrate39. PSA has a strong adsorption capacity for metal ions, fatty acids, sugars, and fat-soluble pigments, C18 has a strong adsorption capacity for non-polar impurities (such as fat, sterol, and volatile oil), while MWCNTs have a strong adsorption capacity for pigments, which can effectively remove chlorophyll, lutein, and carotene. However, C18 and MWCNTs can also simultaneously adsorb pesticides, resulting in poor recovery. Nano-ZrO2 has a large specific surface area and good adsorption stability and has recently been used to purify substrates. It can selectively remove fats and pigments from samples compared to conventional C18 fillers.In the current study, different purification materials were combined for the analysis of 11 pesticide residues and to propose the best purification strategy in the pretreatment of apricot samples. As displayed in Fig. 2, the average recovery of 11 pesticides in the apricot was higher using the C18/nano-ZrO2/MWCNTs than other combinations. Nano-ZrO2 showed better adsorption than PSA in purifying fatty acids, organic acids, polar pigments, and sugars in apricot, owing to its larger specific surface area, better adsorption capacity, and stability. To conclude, the combination of 10 mg C18, 30 mg nano-ZrO2, and 5 mg MWCNTs demonstrated the best recovery for 11 pesticides, with recovery in the range of 72% to 114%, at a pesticide spiking level of 0.01 mg/kg. In summary, we finally determined that among the tested combinations, C18/nano-ZrO2/MWCNTs (10 mg/ 30 mg/5 mg) is the best purification combination for the pre-treatment of apricot samples.Figure 2The recoveries of 11 pesticides in apricot matrix under different scavenger combinations (2–1 C18/nano-ZrO2/MWCNTs, 2–2 PSA/C18/MWCNTs, 2–3 nano-ZrO2/PSA/MWCNTs; 0.01 mg/kg, n = 3).Full size imageLinearity, matrix effects, limit of detection and limit of quantificationThe standard curve obtained from the standard working solutions of 11 pesticides and the calibration curve from blank apricot matrix spiked with 11 pesticides showed good linearity (0.001, 0.005, 0.01, 0.05, 0.1, and 0.5 mg/L), with R2 ≥ 0.9959 for all tested samples (Table 1).Table 1 The standard curves, R2 and MEs of 11 pesticides in apricot.Full size tableTo evaluate MEs, the slopes of matching 11 pesticide standards with solvent and apricot matrix were calculated at the same concentration. According to the derived slope of the matrix-matched calibration curve, MEs of 11 pesticides in apricot were between 89 and 113% (Table 1), well within the range of 80% to 120%, indicating that the MEs could be ignored. It also suggests that the current pre-treatment method has a good purification effect and eliminates the matrix effect very well, laying a robust foundation for the subsequent step of quantitative analysis of samples. We next used the standard solution curve to quantify the 11 pesticide residues in apricot.The LOD refers to the minimum concentration or minimum amount of a component to be tested that can be detected from a test sample under a given confidence level by an analytical method. Its physical meaning is the amount of the measured component when the signal is 3 times the standard deviation (S = 3σ) of the reagent blank signal (background signal). Sometimes it also refers to the amount of the measured component corresponding to when the signal is three times the background signal generated by the reagent blank (S = 3 N). The LOQ refers to the minimum amount of the analyte in the sample that can be quantitatively determined, and the determination result should have a certain accuracy40. The LOQ reflects whether the analytical method has the sensitive quantitative detection ability. The LOQ is the lowest validated level with sufficient recovery and precision, which was estimated to be 0.001 mg/L, while the LOD is the lowest calibration level, which was 2 µg/kg, according to SANTE/12,682/2020.Accuracy and precisionIn the matrix, 11 pesticides were spiked at four levels (0.002, 0.02, 0.1, and 1 mg/kg), and for each spiked sample, there were six replicates. The recoveries of 11 pesticides in apricot at all levels ranged between 72 and 119%. The inter- and intra-level relative standard deviations (RSDs, %) of 11 pesticides in apricot were  More

  • in

    Religiosity is associated with greater size, kin density, and geographic dispersal of women’s social networks in Bangladesh

    Lim, C. & Putnam, R. D. Religion, social networks, and life satisfaction. Am. Sociol. Rev. 75, 914–933 (2010).
    Google Scholar 
    Fox, R. Kinship and marriage: an anthropological perspective/by Robin Fox. (1967).Lévi-Strauss, C. The elementary structures of kinship. (Beacon Press, 1969).Murdock, G. P. Social structure. Macmillan 387 (1949).Chapais, B. Primeval kinship: how pair-bonding gave birth to human society. (Harvard University Press, 2009).Walker, R. S. & Hill, K. R. Causes, consequences, and kin bias of human group fissions. Hum. Nat. 25, 465–475 (2014).PubMed 

    Google Scholar 
    Shenk, M. K., Towner, M. C., Voss, E. A. & Alam, N. Consanguineous marriage, kinship ecology, and market transition. Curr. Anthropol. 57, S167–S180 (2016).
    Google Scholar 
    Swann, W. B. Jr., Gómez, A., Seyle, D. C., Morales, J. F. & Huici, C. Identity fusion: The interplay of personal and social identities in extreme group behavior. J. Pers. Soc. Psychol. 96, 995–1011 (2009).PubMed 

    Google Scholar 
    Richerson, P. J. & Boyd, R. Complex societies. Hum. Nat. 10, 253–289 (1999).CAS 
    PubMed 

    Google Scholar 
    Zelinsky, W. The hypothesis of the mobility transition. Geogr. Rev. 61, 219–249 (1971).
    Google Scholar 
    Gurven, M., Jaeggi, A. V., von Rueden, C., Hooper, P. L. & Kaplan, H. Does market integration buffer risk, erode traditional sharing practices and increase inequality? A test among Bolivian forager-farmers. Hum. Ecol. Interdiscip. J. 43, 515–530 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Godoy, R. A. et al. Do markets worsen economic inequalities? Kuznets in the Bush. Hum. Ecol. 32, 339–364 (2004).
    Google Scholar 
    Kaplan, H. A theory of fertility and parental investment in traditional and modern human societies. Am. J. Phys. Anthropol. 101, 91–135 (1996).
    Google Scholar 
    Duernecker, G. & Vega-Redondo, F. Social Networks and the Process of Globalization. Rev. Econ. Stud. 85, 1716–1751 (2017).MathSciNet 
    MATH 

    Google Scholar 
    Colleran, H. Market integration reduces kin density in women’s ego-networks in rural Poland. Nat. Commun. 11, 266 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilding, R. Families, intimacy and globalization. (Macmillan International Higher Education, 2018).Hackman, J. V. & Kramer, K. L. Kin Ties and market integration in a Yucatec Mayan Village. Soc. Sci. 10, 216 (2021).
    Google Scholar 
    Norenzayan, A. Big gods: How religion transformed cooperation and conflict. (Princeton University Press, 2013).Lauder, W., Mummery, K. & Sharkey, S. Social capital, age and religiosity in people who are lonely. J. Clin. Nurs. 15, 334–340 (2006).PubMed 

    Google Scholar 
    Agate, S. T., Zabriskie, R. B. & Eggett, D. L. Praying, playing, and successful families. Marriage Fam. Rev. 42, 51–75 (2007).
    Google Scholar 
    Day, R. D. et al. Family processes and adolescent religiosity and religious practice: View from the NLSY97. Marriage Fam. Rev. 45, 289–309 (2009).
    Google Scholar 
    Fagan, P. F. Why religion matters even more: The impact of religious practice on social stability. Backgrounder 1992, 1–19 (2006).
    Google Scholar 
    Ellison, C. G. & George, L. K. Religious involvement, social ties, and social support in a Southeastern Community. J. Sci. Study Relig. 33, 46–61 (1994).
    Google Scholar 
    Ellison, C. G. & Xu, X. Religion and families. The Wiley Blackwell companion to the sociology of families 277–299 (2014).Ginges, J., Hansen, I. & Norenzayan, A. Religion and support for suicide attacks. Psychol. Sci. 20, 224–230 (2009).PubMed 

    Google Scholar 
    Lynch, R., Palestis, B. G. & Trivers, R. Religious devotion and extrinsic religiosity affect in-group altruism and out-group hostility oppositely in rural Jamaica. Evol. Psychol. Sci. 3, 335 (2017).
    Google Scholar 
    Walker, R. S. & Bailey, D. H. Marrying kin in small-scale societies. Am. J. Hum. Biol. 26, 384–388 (2014).PubMed 

    Google Scholar 
    Putnam, R. D., Leonardi, R. & Nanetti, R. Y. Making Democracy Work: Civic Traditions in Modern Italy. (Princeton University Press, 1994).Coleman, J. Foundations of Social Theory. (Belknap Press of Harvard University Press, Cambridge, Mass, 1990).Wuthnow, R. The Left Behind: Decline and Rage in Rural America. (Princeton University Press, 2018).Sunstein, C. R. # Republic: Divided democracy in the age of social media. (Princeton University Press, 2018).Putnam, R. D. E Pluribus Unum: Diversity and Community in the Twenty-first Century The 2006 Johan Skytte Prize Lecture. Scan. Polit. Stud. 30, (2007).Putnam, R. Bowling alone: The collapse and revival of American community. (Simon and Schuster, 2000).Olson, M. The Logic of Collective Action: Public Goods and the Theory of Groups, Second printing with new preface and appendix (Harvard Economic Studies). Harvard economic studies, v. 124 (Harvard University Press, 1971).Granovetter, M. S. The strength of weak ties. Am. J. Sociol. (1973).Lynch, R., Lummaa, V. & Panchanathan, K. Integration involves a trade-off between fertility and status for World War II evacuees. Nature Human Behaviour (2019).Beyerlein, K. & Hipp, J. R. Social capital, too much of a good thing? American Religious Traditions and Community Crime. Soc. Forces 84, 995–1013 (2005).
    Google Scholar 
    Lewis, V. A., Macgregor, C. A. & Putnam, R. D. Religion, networks, and neighborliness: The impact of religious social networks on civic engagement. Soc. Sci. Res. 42, 331–346 (2013).PubMed 

    Google Scholar 
    Yu, M. & Stiffman, A. R. Positive family relationships and religious affiliation as mediators between negative environment and illicit drug symptoms in American Indian adolescents. Addict. Behav. 35, 694–699 (2010).PubMed 

    Google Scholar 
    Regnerus, M. D. & Burdette, A. Religious change and adolescent family dynamics. Sociol. Q. 47, 175–194 (2006).
    Google Scholar 
    Marks, L. Religion and family relational health: An overview and conceptual model. J. Relig. Health (2006).Thornton, A. Reciprocal Influences of Family and Religion in a Changing World. J. Marriage Fam. Couns. 47, 381–394 (1985).
    Google Scholar 
    Mahoney, A., Pargament, K. I., Murray-Swank, A. & Murray-Swank, N. Religion and the Sanctification of Family Relationships. Rev. Relig. Res. 44, 220–236 (2003).
    Google Scholar 
    Mahoney, A. Religion in families 1999 to 2009: A relational spirituality framework. J. Marriage Fam. 72, 805–827 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Ebstyne King, P. & Furrow, J. L. Religion as a resource for positive youth development: religion, social capital, and moral outcomes. Dev. Psychol. 40, 703–713 (2004).PubMed 

    Google Scholar 
    Dudley, M. G. & Kosinski, F. A. Religiosity and marital satisfaction: A research note. Rev. Relig. Res. 32, 78–86 (1990).
    Google Scholar 
    Milevsky, A., Smoot, K., Leh, M. & Ruppe, A. Familial and contextual variables and the nature of sibling relationships in emerging adulthood. Marriage Fam. Rev. 37, 123–141 (2005).
    Google Scholar 
    Galbraith, D. & Shaver, J. H. Religion and Fertility Bibliography. evolutionarydemographyofreligion.Shaver, J. H., Sibley, C. G., Sosis, R., Galbraith, D. & Bulbulia, J. Alloparenting and religious fertility: A test of the religious alloparenting hypothesis. Evol. Hum. Behav. 40, 315–324 (2019).
    Google Scholar 
    Kaufmann, E. Shall the Religious Inherit the Earth?: Demography and Politics in the Twenty-First Century. (Profile Books, 2010).Ebaugh, H. R. & Curry, M. Fictive Kin as social capital in new immigrant communities. Sociol. Perspect. 43, 189–209 (2000).
    Google Scholar 
    Taylor, R. J., Chatters, L. M., Woodward, A. T. & Brown, E. Racial and ethnic differences in extended family, friendship, fictive kin and congregational informal support networks. Fam. Relat. 62, 609–624 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Durkheim, E. The elementary forms of the religious life. Preprint at (1915).Rappaport, R. A. Ritual and Religion in the Making of Humanity. vol. 110 (Cambridge University Press, 1999).Hastings, O. P. Not a lonely crowd? Social connectedness, religious service attendance, and the spiritual but not religious. Soc. Sci. Res. 57, 63–79 (2016).PubMed 

    Google Scholar 
    Putnam, R. & Campbell, D. E. American grace: How religion is reshaping our civic and political lives. Preprint at (2010).Turke, P. W. Evolution and the demand for children. Popul. Dev. Rev. 15, 61–90 (1989).
    Google Scholar 
    Sear, R. & Coall, D. How much does family matter? Cooperative breeding and the demographic transition. Popul. Dev. Rev. 37, 81–112 (2011).PubMed 

    Google Scholar 
    Jenkins, P. Fertility and Faith: The Demographic Revolution and the Transformation of World Religions. (Baylor University Press, 2020).Rothstein, B. Corruption and social trust: Why the fish rots from the head down. Soc. Res. 80, 1009–1032 (2013).
    Google Scholar 
    Lynch, R, Schaffnit, S. and Shenk, M. OSF preregistration – Does religion help to preserve the density of kin networks often disrupted by globalization? Open Science Framework Registries. https://osf.io/xvyqm/registrations (2020).Alam, N. et al. Health and demographic surveillance system (HDSS) in Matlab, Bangladesh. Int. J. Epidemiol. 46, 809–816 (2017).PubMed 

    Google Scholar 
    Icddr, B. Health and Demographic Surveillance System-Matlab. 2005 Socioeconomic Census (2007).Imf. International Monetary Fund. World Economic Outlook Database. (2016).Razzaque, A., Streatfield, P. K. & Evans, A. Family size and children’s education in Matlab, Bangladesh. J. Biosoc. Sci. 39, 245–256 (2007).PubMed 

    Google Scholar 
    Afsar, R. Unravelling the vicious cycle of recruitment: Labour migration from Bangladesh to the gulf states. http://ilo.org/wcmsp5/groups/public/—ed_norm/—declaration/documents/publication/wcms_106536.pdf (2009).Kabeer, N. Ideas, economics and ‘the sociology of supply’: Explanations for fertility decline in Bangladesh. J. Dev. Stud. 38, 29–70 (2001).
    Google Scholar 
    Novak, J. J. Bangladesh: Reflections on the water. (Indiana University Press, 1993).Shenk, M. K., Towner, M. C., Kress, H. C. & Alam, N. A model comparison approach shows stronger support for economic models of fertility decline. Proc. Natl. Acad. Sci. USA 110, 8045–8050 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Devine, J., Hinks, T. & Naveed, A. Happiness in Bangladesh: The role of religion and connectedness. J. Happiness Stud. 20, 351–371 (2019).
    Google Scholar 
    Henrich, J. Market incorporation, agricultural change, and sustainability among the Machiguenga Indians of the Peruvian Amazon. Hum. Ecol. 25, 319–351 (1997).
    Google Scholar 
    Lu, F. Integration into the market among indigenous peoples: A cross-cultural perspective from the Ecuadorian Amazon. Curr. Anthropol. 48, 593–602 (2007).
    Google Scholar 
    Bürkner, P.-C. Advanced Bayesian Multilevel Modeling with the R Package brms. arXiv [stat.CO] (2017).Team, R. C. & Others. R: A language and environment for statistical computing. (2013).Lynch, R. Kin_density_and-religiosity. (2021).McElreath, R. Statistical rethinking. (2017).Clarke, M. New kinship, Islam, and the liberal tradition: sexual morality and new reproductive technology in Lebanon. J. R. Anthropol. Inst. 14, 153–169 (2008).
    Google Scholar 
    Swann, W. B. et al. What makes a group worth dying for? Identity fusion fosters perception of familial ties, promoting self-sacrifice. J. Pers. Soc. Psychol. 106, 912–926 (2014).PubMed 

    Google Scholar 
    Benítez, D. M. Bangladesh: Economy Overview and Structural Changes. (2018).Viry, G. Residential mobility and the spatial dispersion of personal networks: Effects on social support. Soc. Networks 34, 59–72 (2012).
    Google Scholar 
    Mok, D., Wellman, B. & Carrasco, J. Does distance matter in the age of the internet?. Urban Stud. 47, 2747–2783 (2010).
    Google Scholar 
    Rivera, M. T., Soderstrom, S. B. & Uzzi, B. Dynamics of dyads in social networks: Assortative, relational, and proximity mechanisms. Annu. Rev. Sociol. 36, 91–115 (2010).
    Google Scholar 
    Pollet, T. V., Roberts, S. G. B. & Dunbar, R. I. M. Going that extra mile: Individuals travel further to maintain face-to-face contact with highly related kin than with less related kin. PLoS ONE 8, e53929 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Madhavan, S., Clark, S., Araos, M. & Beguy, D. Distance or location? How the geographic distribution of kin networks shapes support given to single mothers in urban Kenya. Geogr. J. 184, 75–88 (2018).
    Google Scholar 
    Curry, O., Roberts, S. G. B. & Dunbar, R. I. M. Altruism in social networks: evidence for a ‘kinship premium’. Br. J. Psychol. 104, 283–295 (2013).PubMed 

    Google Scholar 
    Sullivan, K. & Sullivan, A. Adolescent–parent separation. Dev. Psychol. 16, 93 (1980).
    Google Scholar 
    Roberts, S. G. B. & Dunbar, R. I. M. Communication in social networks: Effects of kinship, network size, and emotional closeness. Pers. Relatsh. 18, 439–452 (2011).
    Google Scholar 
    Shenk, M. K. et al. Social support, nutrition and health among women in rural Bangladesh: complex tradeoffs in allocare, kin proximity and support network size. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 207 (2021).Snopkowski, K. & Sear, R. Grandparental help in Indonesia is directed preferentially towards needier descendants: A potential confounder when exploring grandparental influences on child health. Soc. Sci. Med. 128, 105–114 (2015).PubMed 

    Google Scholar 
    Schaffnit, S. B. & Sear, R. Support for new mothers and fertility in the United Kingdom: Not all support is equal in the decision to have a second child. Popul. Stud. 71, 345–361 (2017).
    Google Scholar 
    Boyer, P. The Naturalness of Religious Ideas: A Cognitive Theory of Religion. (University of California Press, 1994).Thomas, M. G. et al. Kinship underlies costly cooperation in Mosuo villages. R Soc Open Sci 5, 171535 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maqsood, A. Love as understanding. Am. Ethnol. https://doi.org/10.1111/amet.13000 (2021).Article 

    Google Scholar 
    Schurmann, A. T. & Mahmud, S. Civil society, health, and social exclusion in Bangladesh. J. Health Popul. Nutr. 27, 536–544 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Haque, M. R., Hasan, M. S., Alam, N., Barkat, S. & Others. Fertility preferences in Bangladesh. in Family Demography in Asia (Edward Elgar Publishing, 2018).Mattison, S. M. Economic impacts of tourism and erosion of the visiting system among the Mosuo of Lugu Lake. Asia Pac. J. Anthropol. 11, 159–176 (2010).
    Google Scholar 
    Mattison, S. M. et al. Context specificity of ‘market integration’ among the matrilineal Mosuo of Southwest China. Curr. Anthropol. 63, 118–124 (2022).
    Google Scholar 
    Uchida, Y., Kitayama, S., Mesquita, B., Reyes, J. A. S. & Morling, B. Is perceived emotional support beneficial? Well-being and health in independent and interdependent cultures. Pers. Soc. Psychol. Bull. 34, 741–754 (2008).PubMed 

    Google Scholar 
    Reblin, M. & Uchino, B. N. Social and emotional support and its implication for health. Curr. Opin. Psychiatry 21, 201–205 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Inglehart, R. Faith and freedom: Traditional and modern ways to happiness. Int. Differ. Well-being 351, 397 (2010).
    Google Scholar 
    Ferriss, A. L. Religion and the Quality of Life. J. Happiness Stud. 3, 199–215 (2002).
    Google Scholar 
    Greeley, A. & Hout, M. Happiness and lifestyle among conservative Christians. The truth about conservative Christians 1, 150–161 (2006).
    Google Scholar 
    Pilisuk, M. Kinship, social networks, social support and health. Soc. Sci. Med. 12, 273–280 (1978).CAS 
    PubMed 

    Google Scholar 
    Schaffnit, S. B. & Sear, R. Supportive families versus support from families: The decision to have a child in the Netherlands. Demogr. Res. 37, 417–454 (2017).
    Google Scholar 
    Hassan, A., Lawson, D., Schaffnit, S. B., Urassa, M. & Sear, R. Childcare in transition: evidence that patterns of childcare differ by degree of market integration in north-western Tanzania. (2021).https://doi.org/10.31219/osf.io/gtc6kPutnam, R. D. Democracies in Flux: The Evolution of Social Capital in Contemporary Society. (Oxford University Press, 2004). More

  • in

    Long term environmental variability modulates the epigenetics of maternal traits of kelp crabs in the coast of Chile

    Gibney, E. R. & Nolan, C. M. Epigenetics and gene expression. Heredity 105, 4–13 (2010).CAS 
    PubMed 

    Google Scholar 
    Vogt, G. Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: Insights from clonal, invasive, polyploid, and domesticated animals. Environ. Epigenet. 3, 1–17 (2017).
    Google Scholar 
    Beal, A., Rodriguez-Casariego, J., Rivera-Casas, C., Suarez-Ulloa, V. & Eirin-Lopez, J. M. Environmental Epigenomics and Its Applications in Marine Organisms 325–359 (Springer, 2018). https://doi.org/10.1007/13836_2018_28.Book 

    Google Scholar 
    Hofmann, G. E. Ecological epigenetics in marine metazoans. Front. Mar. Sci. 4, 1–7 (2017).CAS 

    Google Scholar 
    Richards, C. L. et al. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol. Lett. 20, 1576–1590 (2017).PubMed 

    Google Scholar 
    Ryu, T., Veilleux, H. D., Donelson, J. M., Munday, P. L. & Ravasi, T. The epigenetic landscape of transgenerational acclimation to ocean warming. Nat. Clim. Chang. 8, 504–509 (2018).ADS 

    Google Scholar 
    Liew, Y. J. et al. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci. Adv. 4, 6 (2018).
    Google Scholar 
    Anastasiadi, D., Díaz, N. & Piferrer, F. Small ocean temperature increases elicit stage-dependent changes in DNA methylation and gene expression in a fish, the European sea bass. Sci. Rep. 7, 1–12 (2017).CAS 

    Google Scholar 
    Strader, M. E., Wong, J. M., Kozal, L. C., Leach, T. S. & Hofmann, G. E. Parental environments alter DNA methylation in offspring of the purple sea urchin, Strongylocentrotus purpuratus. J. Exp. Mar. Bio. Ecol. 517, 54–64 (2019).
    Google Scholar 
    Rey, O. et al. Linking epigenetics and biological conservation: Towards a conservation epigenetics perspective. Funct. Ecol. 34, 414–427 (2020).
    Google Scholar 
    Eirin-Lopez, J. M. & Putnam, H. Editorial: Marine environmental epigenetics. Front. Mar. Sci. 8, 5 (2021).
    Google Scholar 
    Herrera, C. M. & Bazaga, P. Untangling individual variation in natural populations: Ecological, genetic and epigenetic correlates of longterm inequality in herbivory. Mol. Ecol. 20, 1675–1688 (2011).CAS 
    PubMed 

    Google Scholar 
    Varriale, A. DNA methylation, epigenetics, and evolution in vertebrates: Facts and challenges. Int. J. Evol. Biol. 2014, 1–7 (2014).
    Google Scholar 
    Liebl, A. L., Wesner, J. S., Russell, A. F. & Schrey, A. W. Methylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird. PLoS ONE 16, e0252227 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Metzger, D. C. H. & Schulte, P. M. Persistent and plastic effects of temperature on DNA methylation across the genome of threespine stickleback (Gasterosteus aculeatus). Proc. R. Soc. B Biol. Sci. 284, 5 (2017).
    Google Scholar 
    Putnam, H. M., Davidson, J. M. & Gates, R. D. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol. Appl. 9, 1165–1178 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watson, R. G. A., Baldanzi, S., Pérez-Figueroa, A., Gouws, G. & Porri, F. Morphological and epigenetic variation in mussels from contrasting environments. Mar. Biol. 165, 8 (2018).
    Google Scholar 
    Baldanzi, S., Watson, R., McQuaid, C. D., Gouws, G. & Porri, F. Epigenetic variation among natural populations of the South African sandhopper Talorchestia capensis. Evol. Ecol. 31, 77–91 (2017).
    Google Scholar 
    Ardura, A., Zaiko, A., Morán, P., Planes, S. & Garcia-Vazquez, E. Epigenetic signatures of invasive status in populations of marine invertebrates. Sci. Rep. 7, 5 (2017).
    Google Scholar 
    Baldanzi, S., Storch, D., Navarrete, S. A., Graeve, M. & Fernández, M. Latitudinal variation in maternal investment traits of the kelp crab Taliepus dentatus along the coast of Chile. Mar. Biol. 165, 1 (2018).
    Google Scholar 
    Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J. & Schneider, W. Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile. Prog. Oceanogr. 75, 363–382 (2007).ADS 

    Google Scholar 
    Letelier, J., Pizarro, O. & Nuñez, S. Seasonal variability of coastal upwelling and the upwelling front off central Chile. J. Geophys. Res. Ocean. 114, 12009 (2009).ADS 

    Google Scholar 
    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 1–7 (2017).CAS 

    Google Scholar 
    Pérez, C. A. et al. Influence of climate and land use in carbon biogeochemistry in lower reaches of rivers in central southern Chile: Implications for the carbonate system in river-influenced rocky shore environments. J. Geophys. Res. Biogeosciences 120, 673–692 (2015).ADS 

    Google Scholar 
    Saldías, G. S. et al. Satellite-measured interannual variability of turbid river plumes off central-southern Chile: Spatial patterns and the influence of climate variability. Prog. Oceanogr. 146, 212–222 (2016).ADS 

    Google Scholar 
    Lara, C. et al. Coastal biophysical processes and the biogeography of rocky intertidal species along the south-eastern Pacific. J. Biogeogr. 46, 420–431 (2019).
    Google Scholar 
    Wieters, E. A. Upwelling control of positive interactions over mesoscales: A new link between bottom-up and top-down processes on rocky shores. Mar. Ecol. Prog. Ser. 301, 43–54 (2005).ADS 

    Google Scholar 
    Pérez-Matus, A., Carrasco, S. A., Gelcich, S., Fernandez, M. & Wieters, E. A. Exploring the effects of fishing pressure and upwelling intensity over subtidal kelp forest communities in Central Chile. Ecosphere 8, e01808 (2017).
    Google Scholar 
    Iranon, N. N. & Miller, D. L. Interactions between oxygen homeostasis, food availability, and hydrogen sulfide signaling. Front. Genet. 3, 5 (2012).
    Google Scholar 
    Ramajo, L., Lagos, N. A. & Duarte, C. M. Seagrass Posidonia oceanica diel pH fluctuations reduce the mortality of epiphytic forams under experimental ocean acidification. Mar. Pollut. Bull. 146, 247–254 (2019).CAS 
    PubMed 

    Google Scholar 
    Aiken, C. & Navarrete, S. Environmental fluctuations and asymmetrical ­dispersal: Generalized stability theory for studying metapopulation persistence and marine protected areas. Mar. Ecol. Prog. Ser. 428, 77–88 (2011).ADS 

    Google Scholar 
    Baldanzi, S. et al. Combined effects of temperature and hypoxia shape female brooding behaviors and the early ontogeny of the Chilean kelp crab Taliepus dentatus. Mar. Ecol. Prog. Ser. 646, 93–107 (2020).ADS 
    CAS 

    Google Scholar 
    Moran, A. L. & McAlister, J. S. Egg size as a life history character of marine invertebrates: Is it all it’s cracked up to be?. Biol. Bull. 216, 226–242 (2009).PubMed 

    Google Scholar 
    Doherty-Weason, D. et al. Bioenergetics of parental investment in two polychaete species with contrasting reproductive strategies: The planktotrophic Boccardia chilensis and the poecilogonic Boccardia wellingtonensis (Spionidae). Mar. Ecol. 41, 1 (2020).
    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).
    Google Scholar 
    Sayols-Baixeras, S., Irvin, M. R., Arnett, D. K., Elosua, R. & Aslibekyan, S. W. Epigenetics of lipid phenotypes. Curr. Cardiovasc. Risk Rep. 10, 1–205 (2016).
    Google Scholar 
    Adam, A. C. et al. Profiling DNA methylation patterns of zebrafish liver associated with parental high dietary arachidonic acid. PLoS ONE 14, e0220934 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Fernández, P., García-Souto, D., Almansa, E., Morán, P. & Gestal, C. Epigenetic DNA methylation mediating Octopus vulgaris early development: Effect of essential fatty acids enriched diet. Front. Physiol. 8, 1–9 (2017).
    Google Scholar 
    Hearn, J., Pearson, M., Blaxter, M., Wilson, P. J. & Little, T. J. Genome-wide methylation is modified by caloric restriction in Daphnia magna. BMC Genomics 20, 1–11 (2019).
    Google Scholar 
    Palma, A. T., Henríquez, L. A. & Ojeda, F. P. Phytoplanktonic primary production modulated by coastal geomorphology in a highly dynamic environment of central Chile. Rev. Biol. Mar. Oceanogr. 44, 325–334 (2009).
    Google Scholar 
    Faúndez-Báez, P., Morales, C. E. & Arcos, D. Variabilidad espacial y temporal en la hidrografía invernal del sistema de bahías frente a la VIII región (Chile centro-sur). Rev. Chil. Hist. Nat. 74, 817–831 (2001).
    Google Scholar 
    Osma, N. et al. Response of phytoplankton assemblages from naturally acidic coastal ecosystems to elevated pCO2. Front. Mar. Sci. 1, 323 (2020).
    Google Scholar 
    Rebolledo, L. et al. Siliceous productivity changes in Gulf of Ancud sediments (42°S, 72°W), southern Chile, over the last ∼150 years. Cont. Shelf Res. 31, 356–365 (2011).ADS 

    Google Scholar 
    Sun, Y. et al. Genome-wide analysis of DNA methylation in five tissues of Zhikong Scallop, Chlamys farreri. PLoS ONE 9, e86232 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernhardt, J. R., O’Connor, M. I., Sunday, J. M. & Gonzalez, A. Life in fluctuating environments. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375, 20190454 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Feinberg, A. P. & Irizarry, R. A. Colloquium Paper: Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc. Natl. Acad. Sci. USA 107, 1757 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tapia, F. J., Largier, J. L., Castillo, M., Wieters, E. A. & Navarrete, S. A. Latitudinal discontinuity in thermal conditions along the nearshore of Central-Northern Chile. PLoS ONE 9, e110841 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reyna-López, G. E., Simpson, J. & Ruiz-Herrera, J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol. Gen. Genet. 253, 703–710 (1997).PubMed 

    Google Scholar 
    Pérez-Figueroa, A. msap: A tool for the statistical analysis of methylation-sensitive amplified polymorphism data. Mol. Ecol. Resour. 13, 522–527 (2013).PubMed 

    Google Scholar 
    Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).CAS 
    PubMed 

    Google Scholar 
    Valladares, F., Sanches-Gomez, D. & Zavala, M. A. Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. J. Ecol. 94, 1103–1116 (2006).
    Google Scholar 
    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More