More stories

  • in

    The emergence and development of behavioral individuality in clonal fish

    All animal care and experimental protocols complied with local and federal laws and guidelines and were approved by the appropriate governing body in Berlin, Germany, the Landesamt fur Gesundheit und Soziales (LaGeSo G-0224/20).Experimental breeding and designThe all-female Amazon molly (Poecilia formosa) is a naturally clonal, live-bearing fish species that gives birth to broods of genetically identical offspring. Like all unisexual vertebrates, Amazon mollies are the result of inter-specific hybridization44,45. As such, this ‘frozen hybrid’ has a heterozygous genome from its ancestral P. mexicana mother and P. latipinna father alleviating concerns about reduced genetic variation and the resulting inbreeding depression often associated with artificially selected isogenic animals. Additionally, despite their clonal nature, the Amazon’s genome shows no evidence of increased mutation accumulation, genomic decay or transposable element activity suggesting the genomes of these animals are evolving in similar ways as sexual species46. They reproduce through gynogenesis where the meiotic process is disrupted so that the eggs contain a full maternal genome. The egg must be fused with a sperm from one of their ancestral species to stimulate embryogenesis, but this paternal DNA is not incorporated into the egg. This provides the opportunity to control when reproduction occurs by controlling the females’ access to male sperm donors.We placed adult females, as potential mothers of experimental fish, in individual (5-gallon) breeding tanks with two Atlantic molly (P. mexicana) males for one week to act as sperm donors. Amazon mollies give birth to broods of generally ~8-30 individuals. A brood is born at once (i.e. all individuals are born within minutes of each other) and birth generally happens early in the day close to dawn. These parental fish were lab-bred and themselves sisters, so of the same age and lineage, and were kept at similar social densities and under standardized environmental conditions throughout their lives to further minimize potential variation in maternal experience. Each breeding tank contained an artificial plant as refuge and was checked frequently each day for the presence of offspring, especially during the morning hours when births are most likely. Newborn mollies were always found in the morning and then singly netted by trained animal caretakers, into individual experimental tanks where their behavior was automatically recorded for the next 70 days (see below). Moving the fish from the maternal tank to the experimental tanks was done in a standardized manner (i.e. individual fish were netted and placed into small dishes of water and then placed in the tracking tanks to limit exposure to the air) by the same caretakers to minimize variation in experience among individual fish. Altogether, eight mothers provided offspring that completed the entire 10-week experiment (Supplementary Table 1).Experimental tanks (27 x 27 cm), made of white Perspex, consisted of four equally sized compartments, and were evenly lit from below using 6500K-LEDs. Environmental conditions were highly standardized across tanks: all tanks were on the same 11:13 (L:D) light schedule, water depth was maintained at 10 cm depth, temperature was maintained at 25 ± 1 °C by a room air conditioning system, and fish received a standardized amount of powdered flake fish food (TetraMin™) twice daily. Opaque blinds surrounded the tanks to further limit outside disturbances. All experimental tanks were connected to the same filtration system where water could mix in the sump tank, allowing chemical cues to be shared across all experimental fish. Previous work has shown exposure to just chemical cues of conspecifics is sufficient in preventing the developmental of pathological behavior that could be associated with development in complete isolation14. We initially placed a total of 40 newborn individuals into the tracking tanks. At the end of the 10-week experiment, we were able to achieve complete tracking data on 26 individuals; camera malfunctions prevented data collection on four individuals, two individuals jumped into neighboring tanks causing the loss of data of all four individuals as we could not verify their identity; four newborn individuals escaped through holes in the water outlet of the tanks; and four individuals died as newborns. All results in the manuscript are on these 26 animals, though including data from all 40 (e.g. patterns of individual variation on the first day post birth) did not change the results or their interpretation (see Supplementary Table 2).Behavioral trackingWe developed a custom recording system using Raspberry Pi computers, which are an upcoming low-cost, highly adaptable solution for many applications in the biological sciences25. Specifically, we created a local network of Raspberry Pi 3B + ’s, each connected to a Raspberry Pi camera positioned exactly above an experimental tank, commanded by a lab computer, and connected to the server on the institute network (Supplementary Fig. 1). We programmed the Raspberry Pi’s using pirecorder26 to take timestamped photos every 3 s across the daily light period, each day, for 10 weeks, and store them automatically in dedicated, automatically named folders on the server. Image settings and resolution were thereby optimized to minimize file size while assuring image quality. After the experimental period, we created videos of all the recorded images of each fish of each day. These videos were subsequently tracked with the Biotracker software27, using background subtraction, providing the x, y coordinates of each fish in each frame. We then processed the data, including scaling and converting the coordinates to mm, and, for each frame, computed fish’s swimming speed (cm/s) and distance from the tank walls (cm). We then summarized these variables both on an hourly and daily basis to compute fish’s median swimming speed, inter-quartile range of swimming speeds, activity (proportion of time spent moving >0.5 cm/s), and median border distance. To quantify fish’s body size over time, we randomly selected five photos per week of each compartment, making sure the fish was away from the compartment walls and did not show strong body curvature, and then used ImageJ software to measure total body length (mm) from the tip of the snout to the end of the body. By averaging the measurements of the five images, we acquired one body size measurement per week.Error checkingWe collected up to 924,000 photos on each individual throughout the experimental period resulting in a total of over 24 million data points collected on our experimental animals (N = 26 individuals). To ensure that our tracking software accurately captured the behavior of our fish, we checked for potential tracking errors in two ways. First, we estimated overall error rates. To do this, we selected at random a starting frame from within a day; then we manually checked each of the subsequent 200 frames and identified whether an error was made (fish was not properly located by BioTracker) or not (fish was properly located) by visual inspection of the videos. We estimated the error rate as the number of errors divided by the total number of checked frames. The overall median error rate over the entire observation period was estimated to be 7%. Error rates increased earlier in the observation period when the fish were smaller (Supplementary Note I). As such, as a second step, we manually went through and corrected all frames for the very first day of tracking (i.e. day 1 post-birth) for all fish (~13,200 frames per individual) as this is a critical time period for one of our research questions. This ensured that the resulting behavioral data were completely accurate for this day. This manual correction allowed us the additional opportunity to compare how well our automatically tracked (i.e. not manually corrected) data performed compared to the manually corrected data. We found that the automatically tracked data re-created near identical estimates of among- and within-individual variance components and most importantly the among-individual correlation between the automatically tracked and manually corrected data was over 0.98 for our behavioral variables (Supplementary Note I). This strongly suggests that any errors introduced by our automated tracking software have minimal influence of our behavioral variables at best and do not affect our interpretation of the results.Statistical analysesWe used linear mixed, or hierarchical, models to partition the behavioral variation across different times periods into its among- and within-individual components. Throughout we focused our analysis on the 26 individuals for which we had complete data for the entire 10-week observation period to ensure comparable variation over time and across models.Our first question of interest was to test when individual differences in behavior first appeared over the course of the experiment. We started by investigating behavior on the first day post birth (Fig. 1A, Supplementary Table 2) and then planned to proceed in a day-by-day fashion until significant repeatability in behavior was apparent (Supplementary Table 3). We used hourly median swimming speed (11 observations for each of 26 individuals) as our response variable and included ‘hour’ and ‘total length (TL)’ as fixed effects and ‘individual’ was included as our random effect of interest. Including TL as a covariate allowed us to test whether behavior was related to an offspring’s body size on its first day of life. We set the first hour of the day as 0 and mean-centered TL as this would allow the among- (and within-) individual variance components to be estimated at these values (i.e. the earliest possible moment from when we could record behavior in the fish). We estimated the adjusted repeatability of median swimming speed as the variance attributable to individual identity over the total variance not explained by the fixed effects. We additionally estimated both marginal and conditional R-squared values which estimate the variance explained by the fixed effects only and the variance explained by the fixed and random effects combined, respectively. As our individual experimental fish came from different mothers, we first explored a number of different variance structures including random intercepts and slopes for both individual ID and maternal ID. This allowed us to test whether maternal identity explained variation in individual behavior. However, the most supported model included random intercepts and slopes for individual ID and not for mother ID, indicating that our methods to reduce variation among mothers were successful (Table 1). We used median swimming speed as our behavioral variable of interest throughout the main manuscript, as this behavior was tightly correlated with most of our other behavioral variables (Supplementary Fig. 2); though results using the other behavioral variables yielded the same interpretation (i.e. that significant individuality in (any) behavior was present on the very first day post-birth; Supplementary Table 2).Our second research question was to investigate how individual behavioral variance changed over the course of the entire observation period (70 days). Again, we first explored several different variance structures to test the importance of maternal identity and/or individual identity on behavioral variation. We found support for the inclusion of random slopes at the individual level, but not maternal level (Table 1). This indicates that levels of among- (and within-) individual variation may differ throughout the observation period. To investigate patterns of change in the variance components, we ran a series of models where we centered the observation covariate on different days. Individual intercepts are estimated when all covariates are set to zero, so this allowed us to ‘slice’ the data to estimate the among- and within-individual variance at different time points over the ten weeks. We ran 11 models as we chose to center the data every 7 days (first model was centered on observation 1; 11th model was centered on observation 70). The predicted individual intercepts (best linear unbiased predictors) and estimated variance components from each model are plotted in Fig. 3.We also closely investigated any potential influence of body size and/or growth rate differences on behavioral expression and individual behavioral variation in this entire 10-week data set. First, we estimated the repeatability of both weekly total length and weekly growth rates to determine if individuals consistently differed in these traits. Then, we ran a series of models with median weekly swimming speed as the response variable and included either weekly total length, weekly growth rate, and/or overall growth rate (estimated over the entire 10 weeks), as our fixed effects of interest. Each model also included the random effects of individual intercepts and slopes. Finally, because body size varies both among individuals (some individuals are on average larger than others) and within individuals (as they grow), we also performed within-individual centering of total length. In this fifth model, we included each individual’s average total length and their weekly deviation from their average length as the two fixed effects of interest. Individual identity and slopes were included as random effects. For all models, we estimated the variance explained by the fixed effects (marginal R2) and the fixed and random effects together (conditional R2). These results are reported in Table 2.For our third and final research question, we tested whether early-life behavior predicted later-life behavior. To test this, we estimated the among-individual correlation (including ‘individual ID’ as our random effect) in behavior using multivariate mixed models where the daily median swimming speeds in each week were the response variables (7 observations per week per individual; 10 weeks total; Fig. 4A). Then to investigate how the strength of these correlations may change over development, we used a linear model to test whether the correlation strength was predicted by the interaction between the first week included in the correlation and distance to the next week in the correlation (1, 2, 3, 4 or 5 weeks away in time; Fig. 4B).All models were performed using Markov Chain Monte Carlo estimation with the MCMCglmm package38 in R v3.6.139. We set our models to run 510,000 iterations with a 10,000 burn-in and thinning every 200 iterations. To ensure proper model mixing and convergence, we initially ran 5 independent chains and inspected posterior trace plots of parameter estimates (Supplementary Note II). In a preliminary analysis we tested three different prior settings (Supplementary Note II); results did not change with prior settings so we chose parameter-expanded priors for all models reported here as these are generally considered to be more robust. An R Markdown file with all the results presented here is included in Supplementary Note II.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Presence of algal symbionts affects denitrifying bacterial communities in the sea anemone Aiptasia coral model

    Darwin C. The structure and distribution of coral reefs, 3rd edn. D. Appleton & Company: New York, NY, USA, 1889.Lajeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, et al. Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. Curr Biol. 2018;28:2570–80.e6.CAS 
    PubMed 

    Google Scholar 
    Muscatine L, Porter JW. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience. 1977;27:454–60.
    Google Scholar 
    Rohwer F, Seguritan V, Azam F, Knowlton N. Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser. 2002;243:1–10.
    Google Scholar 
    Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5:355–62.CAS 
    PubMed 

    Google Scholar 
    Muscatine L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs. 1990;25:75–87.
    Google Scholar 
    Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L. Population control in symbiotic corals. Bioscience. 1993;43:606–11.
    Google Scholar 
    Baker DM, Freeman CJ, Wong JCY, Fogel ML, Knowlton N. Climate change promotes parasitism in a coral symbiosis. ISME J. 2018;12:921–30.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Perna G, Geißler L, et al. Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling. ISME J. 2022;16:1110–8.PubMed 

    Google Scholar 
    Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 2015;23:490–7.PubMed 

    Google Scholar 
    Bourne DG, Webster NS. Coral Reef Bacterial Communities. In: Rosenberg E, DeLong EF, editors. The Prokaryotes. Springer: Berlin Heidelberg; 2013. pp. 163–87.Ainsworth DT, Krause L, Bridge T, Torda G, Raina J-B, Zakrzewski M, et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 2015;9:2261–74.CAS 

    Google Scholar 
    Pernice M, Raina J-B, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 2020;14:325–34.PubMed 

    Google Scholar 
    Pogoreutz C, Oakley CA, Rädecker N, Cárdenas A, Perna G, Xiang N, et al. Coral holobiont cues prime Endozoicomonas for a symbiotic lifestyle. ISME J. 2022;16:1883–95.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pogoreutz C, Voolstra CR, Rädecker N, Weis V. The coral holobiont highlights the dependence of cnidarian animal hosts on their associated microbes. In: Bosch TCG, Hadfield MG, editors. Cellular Dialogues in the Holobiont. Boca Raton: CRC Press; 2020. pp. 91–118.Babbin AR, Tamasi T, Dumit D, Weber L, Rodríguez MVI, Schwartz SL, et al. Discovery and quantification of anaerobic nitrogen metabolisms among oxygenated tropical Cuban stony corals. ISME J. 2021;15:1222–35.CAS 
    PubMed 

    Google Scholar 
    Glaze TD, Erler DV, Siljanen HMP. Microbially facilitated nitrogen cycling in tropical corals. ISME J. 2022;16:68–77.CAS 
    PubMed 

    Google Scholar 
    Lesser MP, Morrow KM, Pankey SM, Noonan SHC. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J. 2018;12:813–24.CAS 
    PubMed 

    Google Scholar 
    Cardini U, Bednarz VN, Naumann MS, van Hoytema N, Rix L, Foster RA, et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc R Soc B. 2015;282:20152257.PubMed 
    PubMed Central 

    Google Scholar 
    Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front Microbiol. 2017;8:1187.PubMed 
    PubMed Central 

    Google Scholar 
    Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob Chang Biol. 2017;23:3838–48.PubMed 

    Google Scholar 
    Bednarz VN, van de Water JA, Rabouille S, Maguer JF, Grover R, Ferrier‐Pagès C. Diazotrophic community and associated dinitrogen fixation within the temperate coral Oculina patagonica. Environ Microbiol. 2019;21:480–95.CAS 
    PubMed 

    Google Scholar 
    Lema KA, Willis BL, Bourne DG. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl Environ Microbiol. 2012;78:3136–44.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lema KA, Clode PL, Kilburn MR, Thornton R, Willis BL, Bourne DG. Imaging the uptake of nitrogen-fixing bacteria into larvae of the coral Acropora millepora. ISME J. 2016;10:1804–8.CAS 
    PubMed 

    Google Scholar 
    Santos HF, Carmo FL, Duarte G, Dini-Andreote F, Castro CB, Rosado AS, et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 2014;8:2272–9.PubMed 
    PubMed Central 

    Google Scholar 
    Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Roth F, Bougoure J, et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc Natl Acad Sci USA. 2021;118:e2022653118.PubMed 
    PubMed Central 

    Google Scholar 
    Braker G, Fesefeldt A, Witzel K-P. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol. 1998;64:3769–75.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tilstra A, El-Khaled YC, Roth F, Rädecker N, Pogoreutz C, Voolstra CR, et al. Denitrification aligns with N2 fixation in Red Sea corals. Sci Rep. 2019;9:1–9.Tilstra A, Roth F, El-Khaled YC, Pogoreutz C, Rädecker N, Voolstra CR, et al. Relative abundance of nitrogen cycling microbes in coral holobionts reflects environmental nitrate availability. R Soc Open Sci. 2021;8:201835.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiang N, Hassenrück C, Pogoreutz C, Rädecker N, Simancas-Giraldo SM, Voolstra CR, et al. Contrasting microbiome dynamics of putative denitrifying bacteria in two octocoral species exposed to dissolved organic carbon (DOC) and warming. Appl Environ Microbiol. 2022;88:e01886-21.El-Khaled YC, Roth F, Tilstra A, Rädecker N, Karcher DB, Kürten B, et al. In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs. Mar Ecol Prog Ser. 2020;645:55–66.CAS 

    Google Scholar 
    Beauchamp EG, Trevors JT, Paul JW. Carbon sources for bacterial Denitrification. In: Stewart BA. Advances in Soil Science. Springer: New York, NY; 1989. pp. 113–42.Baker AC. Flexibility and Specificity in Coral-Algal Symbiosis: Diversity, Ecology, and Biogeography of Symbiodinium. Ann Rev Ecol Evol Syst. 2003;34:661–89.
    Google Scholar 
    Wang J-T, Chen Y-Y, Tew KS, Meng P-J, Chen CA. Physiological and Biochemical Performances of Menthol-Induced Aposymbiotic Corals. PLoS ONE. 2012;7:e46406.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cui G, Liew YJ, Li Y, Kharbatia N, Zahran NI, Emwas A-H, et al. Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLoS Genet. 2019;15:e1008189.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rädecker N, Raina J-B, Pernice M, Perna G, Guagliardo P, Kilburn MR, et al. Using Aiptasia as a Model to Study Metabolic Interactions in Cnidarian-Symbiodinium Symbioses. Front Physiol. 2018;9:214.PubMed 
    PubMed Central 

    Google Scholar 
    Voolstra CR. A journey into the wild of the cnidarian model systemAiptasiaand its symbionts. Mol Ecol. 2013;22:4366–8.PubMed 

    Google Scholar 
    Sunagawa S, Wilson EC, Thaler M, Smith ML, Caruso C, Pringle JR, et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genom. 2009;10:258.
    Google Scholar 
    Xiang T, Hambleton EA, DeNofrio JC, Pringle JR, Grossman AR. Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity1. J Phycol. 2013;49:447–58.CAS 
    PubMed 

    Google Scholar 
    Thornhill DJ, Lewis AM, Wham DC, Lajeunesse TC. Host‐specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution. 2014;68:352–67.CAS 
    PubMed 

    Google Scholar 
    Bieri T, Onishi M, Xiang T, Grossman AR, Pringle JR. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching. PLoS ONE. 2016;11:e0152693.PubMed 
    PubMed Central 

    Google Scholar 
    Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, et al. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci USA. 2015;112:11893–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Correa AMS, McDonald MD, Baker AC. Development of clade-specific Symbiodinium primers for quantitative PCR (qPCR) and their application to detecting clade D symbionts in Caribbean corals. Mar Biol. 2009;156:2403–11.CAS 

    Google Scholar 
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8.CAS 
    PubMed 

    Google Scholar 
    Lee JA, Francis CA. DeepnirSamplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition. Environ Microbiol. 2017;19:4897–912.CAS 
    PubMed 

    Google Scholar 
    Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005;6:279–84.CAS 
    PubMed 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBO J. 2011;17:10–2.
    Google Scholar 
    Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/Swiss-Prot: the manually annotated section of the UniProt KnowledgeBase. Methods Mol Biol. 2007;406:89–112.Abascal F, Zardoya R, Telford MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 2010;38:7–13.
    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.PubMed 
    PubMed Central 

    Google Scholar 
    Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, et al. FunGene: the functional gene pipeline and repository. Front Microbiol. 2013;4:291.PubMed 
    PubMed Central 

    Google Scholar 
    Wickham H. ggplot2. Wiley Interdiscip Rev Comput Stat. 2011;3:180–5.Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Commun Ecol Package. 2007;10:719.
    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020;11:1–11.CAS 

    Google Scholar 
    Meunier V, Geissler L, Bonnet S, Rädecker N, Perna G, Grosso O, et al. Microbes support enhanced nitrogen requirements of coral holobionts in a high CO 2 environment. Mol Ecol. 2021;30:5888–99.CAS 
    PubMed 

    Google Scholar 
    Geissler L, Meunier V, Rädecker N, Perna G, Rodolfo-Metalpa R, Houlbrèque F, et al. Highly Variable and Non-complex Diazotroph Communities in Corals From Ambient and High CO2 Environments. Front Mar Sci. 2021;8:754682.Thornhill DJ, Xiang Y, Pettay DT, Zhong M, Santos SR. Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Mol Ecol. 2013;22:4499–515.CAS 
    PubMed 

    Google Scholar 
    Röthig T, Costa RM, Simona F, Baumgarten S, Torres AF, Radhakrishnan A, et al. Distinct bacterial communities associated with the coral model Aiptasia in aposymbiotic and symbiotic states with Symbiodinium. Front Mar Sci. 2016;3:234.
    Google Scholar 
    Hartman LM, Blackall LL, van Oppen MJH. Antibiotics reduce bacterial load in Exaiptasia diaphana, but biofilms hinder its development as a gnotobiotic coral model. Access Microbiol. 2022;4:000314.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lawson CA, Raina JB, Kahlke T, Seymour JR, Suggett DJ. Defining the core microbiome of the symbiotic dinoflagellate, Symbiodinium. Environ Microbiol Rep. 2018;10:7–11.CAS 
    PubMed 

    Google Scholar 
    Matthews JL, Raina JB, Kahlke T, Seymour JR, van Oppen MJ, Suggett DJ. Symbiodiniaceae‐bacteria interactions: rethinking metabolite exchange in reef‐building corals as multi‐partner metabolic networks. Environ Microbiol. 2020;22:1675–87.PubMed 

    Google Scholar 
    Costa RM, Cárdenas A, Loussert-Fonta C, Toullec G, Meibom A, Voolstra CR. Surface Topography, Bacterial Carrying Capacity, and the Prospect of Microbiome Manipulation in the Sea Anemone Coral Model Aiptasia. Front Microbiol. 2021;12:637834.Pelve EA, Fontanez KM, DeLong EF. Bacterial succession on sinking particles in the ocean’s interior. Front Microbiol. 2017;8:2269.PubMed 
    PubMed Central 

    Google Scholar 
    Welles L, Lopez-Vazquez CM, Hooijmans CM, Van Loosdrecht MCM, Brdjanovic D. Prevalence of ‘Candidatus Accumulibacter phosphatis’ type II under phosphate limiting conditions. AMB Express. 2016;6:1–12.Kaneko T. Complete Genomic Sequence of Nitrogen-fixing Symbiotic Bacterium Bradyrhizobium japonicum USDA110. DNA Res. 2002;9:189–97.PubMed 

    Google Scholar 
    Cziesielski MJ, Liew YJ, Cui G, Schmidt-Roach S, Campana S, Marondedze C, et al. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc R Soc B: Biol Sci. 2018;285:20172654.
    Google Scholar 
    Xiang T, Lehnert E, Jinkerson RE, Clowez S, Kim RG, Denofrio JC, et al. Symbiont population control by host-symbiont metabolic interaction in Symbiodiniaceae-cnidarian associations. Nat Commun. 2020;11:1–9.CAS 

    Google Scholar  More

  • in

    The Blob marine heatwave transforms California kelp forest ecosystems

    The Santa Barbara Coastal Long Term Ecological Research program has monitored benthic communities in five kelp forests seasonally since 2008 using fixed transect diver surveys, and moored sensors at each reef have recorded bottom temperatures every 15 min. Blob-associated positive bottom temperature anomalies began in winter 2014 and persisted through autumn 2016 (Fig. 1a)18. Peak temperature anomalies occurred during the summer and autumn of 2014 and 2015 (Fig. 1a), and the average temperature anomaly in autumn 2015 was +3.1 °C, equivalent to an average daily temperature of 19.6 °C. In 2014 and 2015, 91 and 69% of autumn days, respectively, were classified as heatwave days as defined by Hobday et al.20. Seasonal chlorophyll-a concentration, a proxy for phytoplankton abundance, was obtained from satellite imagery at each of the five reefs over the 14-year period. The average chlorophyll-a concentration was anomalously low throughout the warming period, and exceptionally low during the springs of 2014 and 2015 (Fig. 1a), when upwelling-driven nutrient enrichment typically supports dense phytoplankton blooms.Fig. 1: Average seasonal bottom temperature anomaly, chlorophyll-a concentration anomaly, and percent cover and species richness of sessile invertebrates across five sites.The Blob, an anomalous warming period from spring of 2014 to winter of 2016, is highlighted in gray, coincident with (a) positive temperature anomalies (°C; solid line), negative chlorophyll-a anomalies (mg/m3; dashed line), and declines in (b) invertebrate cover (solid line) and species richness (number of unique species/taxa/80 contact points; dashed line). Seasons are denoted by Sp (Spring), Su (Summer), A (Autumn) and W (Winter).Full size imageMean sessile invertebrate cover averaged across all sites declined 71% during the Blob, reaching a 14-year minimum of 7% in autumn of 2015 (Fig. 1b and Supplementary Fig. 1). Species richness declined 69% during the same period (Fig. 1b and Supplementary Fig. 1). The responses of invertebrates to warming were not consistent across time even though the duration and intensity of warming was similar in 2014 and 2015, suggesting that extended periods of elevated seawater temperature were not solely responsible for the most severe loss of invertebrates. For ectotherms, increases in ambient seawater temperature should be met with increases in metabolic rate and food requirements to sustain metabolism21. Because of their sedentary lifestyle, sessile invertebrates cannot actively forage for food or seek spatial refuge from thermal extremes, and limitations in their planktonic food supply can result in metabolic stress over extended periods22,23. Anomalously low chlorophyll-a concentrations during the Blob (Fig. 1a), particularly in the spring of 2015, indicated that food limitation was a likely driver of invertebrate decline. Results from piecewise structural equation modeling (Fig. 2) that incorporated biological interactions with space competitors (understory macroalgae), predators (sea urchins), and foundation species (giant kelp) showed that the severity of warming had both a direct and indirect effect on the sessile invertebrate community. The proportion of heatwave days was a direct negative predictor of sessile invertebrate cover (−0.11) and species richness (−0.21). The proportion of heatwave days was an even stronger negative predictor of chlorophyll-a concentration (−0.26), yielding negative indirect effects on invertebrate cover (−0.07) and species richness (−0.05) due to the positive influence of chlorophyll-a concentration on sessile invertebrate cover (+0.26) and richness (+0.20).Fig. 2: Piecewise structural equation modeling (SEM) for sessile invertebrate cover and species richness.Arrows indicate directionality of effects on (a) invertebrate cover and (b) species richness. Red arrows show negative relationships; black arrows show positive relationships. R2 values are conditional R2. Arrow widths are proportional to effect sizes as measured by standardized regression coefficients (shown next to arrows). ***p  More

  • in

    Droplet microfluidics-based high-throughput bacterial cultivation for validation of taxon pairs in microbial co-occurrence networks

    Conception of the workflow to demonstrate the microbial associations from co-occurrence networks with microbial cultivationMicrobial co-occurrence networks are composed of nodes and edges, which usually represent microbes and statistically significant associations between microbes, respectively. We hypothesized that the microbial associations could be validated if the topological properties of networks are simplified, and if the microbes representing the nodes can be cultivated. To test this hypothesis, we designed a workflow as shown in Fig. 1. A total of 12,096 wells from 126 96-well plates were inoculated with droplets of series diluted environmental samples, wells from each 96-well plate represented the same combination of given culture condition, sample type (plants, roots, and sediments) and dilution rate (from 10–1 to 10–7). After being cultivated at 30 °C for 10 days, 69 effective (Supplementary Table S3) plates with  > 30% wells showing microbial growth were retained for downstream microbial community analysis. Microbial DNA in each well was extracted, bar-coded, and sequenced for the inference of co-occurrence networks. The wells of plates showing high abundances of target Zotus were targeted for microbial isolations. Lastly, the cultivated microbial isolates were matched to Zotus in the network and used for demonstration of microbial interactions.Figure 1Overview of experimental demonstration of microbial interactions in co-occurrence networks. For detailed description, please refer to the method section.Full size imagePrevalent Zotu pairs in the co-occurrence networksDepending on the microbial density in samples, the 96-well plates harbored different numbers of wells with microbial growth. We obtained 65 96-well plates (6,091 wells) that were effective with microbial growth and data analysis for co-occurrence network reconstruction. After quality control and denoise, we obtained 130 Gbp sequence data. A total of 14,377 Zotus were annotated (Supplementary Table S4). There were 217 ± 94 (average ± standard deviation) prevalent Zotus, i.e., these Zotus appeared at frequencies ≥ 30% of wells in a given 96-well plate.Next, we analyzed Zotus compositions and abundances in each well of the 65 plates. Accordingly, we reconstructed 65 independent microbial co-occurrence networks and further retrieved the robust (Spearman’s |ρ| > 0.6 and P  More

  • in

    Kinship dynamics may drive selection of age-related traits

    “This new study is inspired by some our earlier theoretical work applied to killer whales that suggests that age-related changes in relatedness are important for the evolution of menopause,” says Samuel Ellis, the first author of the study. “Reproduction can be thought of as a form of generalized harm as the birth of an offspring increases within-group competition for resources. Kinship dynamics — the ways in which local relatedness changes over an individual’s lifetime — are one way that menopause could be favored, because older females are more inclined to cease reproduction to not harm their group mates than younger females. Here we wanted to generalize this concept to both sexes, and to other species without menopause.” More

  • in

    Phylogeny explains capture mortality of sharks and rays in pelagic longline fisheries: a global meta-analytic synthesis

    Estes, J. et al. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116 (2016).
    Google Scholar 
    Ferretti, F., Worm, B., Britten, G., Heithaus, M. & Lotze, H. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13, 1055–1071 (2010).PubMed 

    Google Scholar 
    Heithaus, M. R. et al. Seagrasses in the age of sea turtle conservation and shark overfishing. Front. Mar. Sci. 1, 1–6 (2014).
    Google Scholar 
    McCauley, D. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641 (2015).PubMed 

    Google Scholar 
    Pereira, H. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Oliver, S., Braccini, M., Newman, S. & Harvey, E. S. Global patterns in the bycatch of sharks and rays. Mar. Policy 54, 86–97 (2015).
    Google Scholar 
    Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–574 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gilman, E. et al. Shark interactions in pelagic longline fisheries. Mar. Policy 32, 1–18 (2008).
    Google Scholar 
    Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).
    Google Scholar 
    Bowlby, H. & Gibson, A. Implications of life history uncertainty when evaluating status in the Northwest Atlantic population of white shark (Carcharodon carcharias). Ecol. Evol. 10, 4990–5000 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Dulvy, N. et al. Overfishing drives over one third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31, 4773-4787.e8 (2021).CAS 
    PubMed 

    Google Scholar 
    Heino, M., Pauli, B. & Dieckmann, U. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46, 461–480 (2015).
    Google Scholar 
    Mitchell, J., McLean, D., Collins, S. & Langlois, T. Shark depredation in commercial and recreational fisheries. Rev. Fish Biol. Fish 28, 715–748 (2018).
    Google Scholar 
    Jaiteh, V. F., Loneragan, N. & Warren, C. The end of shark finning? Impacts of declining catches and fin demand on coastal community livelihoods. Mar. Policy 82, 224–233 (2017).
    Google Scholar 
    Seidu, I. et al. Fishing for survival: Importance of shark fisheries for the livelihoods of coastal communities in Western Ghana. Fish. Res. 246, 106157 (2022).
    Google Scholar 
    Gilman, E., Weijerman, M. & Suuronen, P. Ecological data from observer programs underpin ecosystem-based fisheries management. ICES J. Mar. Sci. 74, 1481–1495 (2017).
    Google Scholar 
    Melnychuk, M. et al. Identifying management actions that promote sustainable fisheries. Nat. Sustain. https://doi.org/10.1038/s41893-020-00668-1 (2021).Article 

    Google Scholar 
    Musyl, M. & Gilman, E. Meta-analysis of post-release fishing mortality in apex predatory pelagic sharks and white marlin. Fish Fish. 20, 466–500 (2019).
    Google Scholar 
    Clarke, S. A status snapshot of key shark species in the western and central pacific and potential management options. in WCPFC-SC7-2011/EB-WP-04. Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia (2011).Dapp, D., Walker, T., Huveneers, C. & Reina, R. Respiratory mode and gear type are important determinants of elasmobranch immediate and post-release mortality. Fish Fish. 17, 507–524 (2016).
    Google Scholar 
    ICES. Report of the working group on elasmobranch fishes. in ICES CM 2018/ACOM:16. International Council for the Exploration of the Sea, Copenhagen (2018).Dicks, L. et al. A transparent process for “evidence-informed” policy making. Conserv. Lett. 7, 119–125 (2014).
    Google Scholar 
    Nichols, J., Kendall, W. & Boomer, G. Accumulating evidence in ecology: Once is not enough. Ecol. Evol. 9, 13991–14004 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Nakagawa, S. et al. Meta-analysis of variation: Ecological and evolutionary applications and beyond. Methods Ecol. Evol. 6, 143–152 (2015).
    Google Scholar 
    Pfaller, J., Chaloupka, M., Bolten, A. & Bjorndal, K. Phylogeny, biogeography and methodology: A meta-analytic perspective on heterogeneity in adult marine turtle survival rates. Sci. Rep. 8, 5852. https://doi.org/10.1038/s41598-018-24262-w (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Godin, A., Carlson, J. & Burgener, V. The effect of circle hooks on shark catchability and at-vessel mortality rates in longlines fisheries. Bull. Mar. Sci. 88, 469–483 (2012).
    Google Scholar 
    Reinhardt, J. et al. Catch rate and at-vessel mortality of circle hooks versus J-hooks in pelagic longline fisheries: A global meta-analysis. Fish Fish. 19, 413–430 (2018).
    Google Scholar 
    Rosa, D., Santos, C. & Coelho, R. Assessing the effects of hook, bait and leader type as potential mitigation measures to reduce bycatch and mortality rates of shortfin mako: A meta-analysis with comparisons for target, bycatch and vulnerable fauna interactions. in ICCAT Collective Volume of Scientifics Papers 76, 247–278 (2020).Santos, C., Rosa, D. & Coelho, R. Hook, bait and leader type effects on surface pelagic longline retention and mortality rates: A meta-analysis with comparisons for target, bycatch and vulnerable fauna interactions. in IOTC-2019-WPEB15-39. Indian Ocean Tuna Commission, Mahe, Seychelles (2019).Santos, C., Rosa, D. & Coelho, R. Progress on a meta-analysis for comparing hook, bait and leader effects on target, bycatch and vulnerable fauna interactions. in Collective Volume of Scientifics Papers ICCAT 77, 182–217 (2020).Condamine, F., Romieu, J. & Guinot, G. Climate cooling and clade competition likely drove the decline of lamniform sharks. PNAS 116, 20584–20590 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P. Rank-normalization, folding, and localization: An improved Rhat for assessing convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).MathSciNet 

    Google Scholar 
    Cinar, O., Nakagawa, S. & Viechtbauer, W. Phylogenetic multilevel meta-analysis: A simulation study on the importance of modelling the phylogeny. Methods Ecol. Evol. 13, 383–395 (2022).
    Google Scholar 
    Lajeunesse, M. Meta-analysis and the comparative phylogenetic method. Am. Nat. 174, 369–381 (2009).PubMed 

    Google Scholar 
    Chamberlain, S. et al. Does phylogeny matter? Assessing the impact of phylogenetic information in ecological meta-analysis. Ecol. Lett. 15, 627–636 (2012).PubMed 

    Google Scholar 
    Burns, J. & Strauss, S. More closely related species are more ecologically similar in an experimental test. Proc. Natl. Acad. Sci. USA 108, 5302–5307 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cachera, M. & Le Loc’h, F. Assessing the relationships between phylogenetic and functional singularities in sharks (Chondrichthyes). Ecol. Evol. 7, 6292–6303 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Münkemüller, T., Boucher, F. C., Thuiller, W. & Lavergne, S. Phylogenetic niche conservatism—Common pitfalls and ways forward. Funct. Ecol. 29, 627–639 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Bazzi, M., Campione, N., Kear, B., Pimiento, C. & Ahlberg, P. Feeding ecology has shaped the evolution of modern sharks. Curr. Biol. 31, 5138–5148 (2021).CAS 
    PubMed 

    Google Scholar 
    Sepulveda, C., Wegner, N., Bernal, D. & Graham, J. The red muscle morphology of the thresher sharks (family Alopiidae). J. Exp. Biol. 208, 4255–4261 (2005).CAS 
    PubMed 

    Google Scholar 
    Wosnick, N. et al. Multispecies thermal dynamics of air-exposed ectothermic sharks and its implications for fisheries conservation. J. Exp. Mar. Biol. Ecol. 513, 1–9 (2019).
    Google Scholar 
    French, R. et al. High survivorship after catch-and-release fishing suggests physiological resilience in the endothermic shortfin mako shark (Isurus oxyrinchus). Conserv. Physiol. https://doi.org/10.1093/conphys/cov044 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, M. Key principles for understanding fish bycatch discard mortality. Can. J. Fish. Aquat. Sci. 59, 1834–1843 (2002).
    Google Scholar 
    Massey, Y., Sabarros, P., Rabearisoa, N. & Bach, P. Drivers of at-haulback mortality of sharks caught during pelagic longline fishing experiments. in IOTC-2019-WPEB15-14_Rev1. Indian Ocean Tuna Commission, Mahe, Seychelles (2019).Musyl, M., Moyes, C., Brill, R. & Fragoso, N. Factors influencing mortality estimates in post-release survival studies: Comment on Campana et al. (2009). Mar. Ecol. Prog. Ser. 396, 157–159 (2009).Pimiento, C., Cantalapiedra, J., Shimada, K., Field, D. & Smaers, J. Evolutionary pathways towards gigantism in sharks and rays. Evolution 73, 588–599 (2019).PubMed 

    Google Scholar 
    Musyl, M. & Gilman, E. Post-release fishing mortality of blue (Prionace glauca) and silky shark (Carcharhinus falciformes) from a Palauan-based commercial longline fishery. Rev. Fish Biol. Fish. 28, 567–658 (2018).
    Google Scholar 
    Childs, D., Sheldon, B. & Rees, M. The evolution of labile traits in sex- and age-structured populations. J. Anim. Ecol. 85, 329–342 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Comte, L., Murienne, J. & Grenouillet, G. Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nat. Commun. 5, 5053 (2014).ADS 
    PubMed Central 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-3. www.iucnredlist.org. ISSN 2307-8235 (International Union for the Conservation of Nature, Gland, Switzerland, 2022).García, V., Lucifora, L. & Ransom, M. The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proc. R. Soc. B 275, 83–89 (2008).PubMed 

    Google Scholar 
    Cortes, E. Perspectives on the intrinsic rate of population growth. Methods Ecol. Evol. 7, 1136–1145 (2016).
    Google Scholar 
    Ellis, J. et al. A review of capture and post-release mortality of elasmobranchs. J. Fish Biol. 90, 653–722 (2017).CAS 
    PubMed 

    Google Scholar 
    Gallagher, A., Orbesen, E., Hammerschlag, N. & Serafy, J. Vulnerability of oceanic sharks as pelagic longline bycatch. Glob. Ecol. Conserv. 1, 50–59 (2014).
    Google Scholar 
    Afonso, A., Santiago, R., Hazin, H. & Hazin, F. Shark bycatch and mortality and hook bite-offs in pelagic longlines: Interactions between hook types and leader materials. Fish. Res. 131–133, 9–14 (2012).
    Google Scholar 
    Gilman, E., Chaloupka, M. & Musyl, M. Effects of pelagic longline hook size on species- and size-selectivity and survival. Rev. Fish Biol. Fish. 28, 417–433 (2018).
    Google Scholar 
    Epperly, S., Watson, J., Foster, D. & Shah, A. Anatomical hooking location and condition of animals captured with pelagic longlines: The grand banks experiments 2002–2003. Bull. Mar. Sci. 88, 513–527 (2012).
    Google Scholar 
    Amorim, S., Santos, M., Coelho, R. & Fernandez-Carvalho, J. Effects of 17/0 circle hooks and bait on fish catches in a southern Atlantic swordfish longline fishery. Aquat. Conserv. 25, 518–533 (2014).
    Google Scholar 
    Coelho, R., Fernandez-Carvalho, J., Lino, P. & Santos, M. An overview of the hooking mortality of elasmobranchs caught in a swordfish pelagic longline fishery in the Atlantic Ocean. Aquat. Living Resour. 25, 311–319 (2012).
    Google Scholar 
    Gilman, E. et al. A decision support tool for integrated fisheries bycatch management. Rev. Fish Biol. Fish. https://doi.org/10.1007/s11160-021-09693-5 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pascoe, S. et al. Use of incentive-based management systems to limit bycatch and discarding. Int. Rev. Environ. Resour. Econ. 4, 123–161 (2010).
    Google Scholar 
    Somers, K., Pfeiffer, L., Miller, S. & Morrison, W. Using incentives to reduce bycatch and discarding: Results under the west coast catch share program. Coast. Manag. 46, 1–17 (2019).
    Google Scholar 
    Abbott, J. & Wilen, J. Regulation of fisheries bycatch with common-pool output quotas. J. Environ. Econ. Manag. 57, 195–204 (2009).MATH 

    Google Scholar 
    Gilman, E. et al. Increasing the functionalities and accuracy of fisheries electronic monitoring systems. Aquat. Conserv. 29, 901–926 (2019).
    Google Scholar 
    Watling, J. Fishing observers ‘intimidated and bribed by EU crews’. Quota checks allegedly being compromised aboard Northwest Atlantic fishery boats, as observers report surveillance and theft. The Guardian (2012, accessed 21 July 2022). https://www.theguardian.com/environment/2012/may/18/fishing-inspectors-intimidated-bribed-crews.Clarke, S., Harley, S., Hoyle, S. & Rice, J. Population trends in Pacific oceanic sharks and the utility of regulations on shark finning. Conserv. Biol. 27, 197–209 (2013).PubMed 

    Google Scholar 
    Tolotti, M. T. et al. Banning is not enough: The complexities of oceanic shark management by tuna regional fisheries management organizations. Glob. Ecol. Conserv. 4, 1–7 (2015).
    Google Scholar 
    Gilman, E., Chaloupka, M., Merrifield, M., Malsol, N. & Cook, C. Standardized catch and survival rates, and effect of a ban on shark retention, Palau pelagic longline fishery. Aquat. Conserv. 26, 1031–1062 (2016).
    Google Scholar 
    CITES. Appendices I, II and III. Valid from 22 June 2021. Convention on International Trade in Endangered Species of Wild Fauna and Flora, United Nations Environment Program, Geneva (2021).Ward-Paige, C. A global overview of shark sanctuary regulations and their impact on shark fisheries. Mar. Policy 82, 87–97 (2017).
    Google Scholar 
    E.U. Regulation (E.U.) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC. Official Journal of the European Union L354, 22–61 (2013).FAO. International Guidelines on Bycatch Management and Reduction of Discards (Food and Agriculture Organization of the United Nations, Rome, 2011).CCSBT. Resolution to Align CCSBT’s Ecologically Related Species Measures with those of other Tuna RFMOs (Commission for the Conservation of Southern Bluefin Tuna, Deakin West, Australia, 2021).IATTC. Active Resolutions and Recommendations (Inter-American Tropical Tuna Commission, La Jolla, 2022).ICCAT. Compendium. Management Recommendations and Resolutions Adopted by ICCAT for the Conservation of Atlantic Tunas and Tuna-like Species (International Commission for the Conservation of Atlantic Tunas, Madrid, 2021).IOTC. Compendium of Active Conservation and Management Measures for the Indian Ocean Tuna Commission (Indian Ocean Tuna Commission, Mahe, 2021).WCPFC. Conservation and Management Measures and Resolutions of the Western and Central Pacific Fisheries Commission. Compiled 31 August 2021 (Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia, 2021).Faith, D. Threatened species and the potential loss of phylogenetic diversity: Conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conserv. Biol. 22, 1461–1470 (2008).PubMed 

    Google Scholar 
    Dolce, J. & Wilga, C. Evolutionary and ecological relationships of gill slit morphology in extant sharks. Bull. Mus. Comp. 161, 79–109 (2013).
    Google Scholar 
    MacLeod, N. & Forey, P. Morphology, Shape and Phylogeny (CRC Press, 2002).
    Google Scholar 
    Haddaway, N., Macura, B., Whaley, P. & Pullin, A. ROSES RepOrting standards for Systematic Evidence Syntheses: pro forma, flow-diagram and descriptive summary of the plan and conduct of environmental systematic reviews and systematic maps. Environ. Evid. https://doi.org/10.1186/s13750-018-0121-7 (2018).Article 

    Google Scholar 
    Pullin, A., Frampton, G., Livoreil, B. & Petrokofsky, G., Eds. Section 5. Conducting a Search. Key CEE Standards for Conduct and Reporting. In Pullin, A., Frampton, G., Livoreil, B., Petrokofsky, G., Eds. Guidelines and Standards for Evidence Synthesis in Environmental Management. Version 5.0. Collaboration for Environmental Evidence (2020).Pullin, A., Frampton, G., Livoreil, B. & Petrokofsky, G. (eds) Section 3. Planning a CEE Evidence Synthesis. In Pullin, A., Frampton, G., Livoreil, B., Petrokofsky, G. (eds) Guidelines and Standards for Evidence Synthesis in Environmental Management. Version 5.0. Collaboration for Environmental Evidence (2021).Page, M. et al. The PRISMA statement: An updated guideline for reporting systematic reviews. BMJ https://doi.org/10.1136/bmj.n.71 (2020).Article 
    PubMed 

    Google Scholar 
    Tuyl, F., Gerlach, R. & Mengersen, K. Comparison of Bayes-Laplace, Jeffreys, and other priors: The case of zero events. Am. Stat. 62, 40–44 (2008).MathSciNet 

    Google Scholar 
    Dorai-Raj, S. binom: Binomial confidence intervals for several parameterizations. R package version 1.1-1. https://CRAN.R-project.org/package=binom (2014).van Lissa, C. Small sample meta-analyses: Exploring heterogeneity using MetaForest. Chapter 13. In Small Sample Size Solutions: A Guide for Applied Researchers and Practitioners (eds Van De Schoot, R. & Miočević, M.) 186–202 (Routledge, Oxford, 2020).
    Google Scholar 
    Wright, M. & Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).
    Google Scholar 
    Janitza, S., Celik, E. & Boulesteix, A. A computationally fast variable importance test for random forests for high-dimensional data. Adv. Data Anal. Classif. 12, 885–915 (2018).MathSciNet 
    MATH 

    Google Scholar 
    Mayer, M. missRanger: Fast imputation of missing values. R package version 2.1.3. https://CRAN.R-project.org/package=missRanger (2021).Konstantopoulos, S. Fixed effects and variance components estimation in three-level meta-analysis. Research Synthesis. Methods 2, 61–76 (2011).
    Google Scholar 
    Amaral, C., Pereira, F., Silva, D., Amorim, A. & de Carvalho, E. The mitogenomic phylogeny of the Elasmobranchii (Chondrichthyes). Mitochondrial DNA A 29, 867–878 (2017).
    Google Scholar 
    Hara, Y. et al. Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat. Ecol. Evol. 2, 1761–1771 (2018).PubMed 

    Google Scholar 
    Naylor, G. et al. A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bull. Am. Mus. Nat. 367, 1–262 (2012).
    Google Scholar 
    Stein, R. et al. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nat. Ecol. Evol. 2, 288–298 (2018).PubMed 

    Google Scholar 
    Maddison, D., Swofford, D., Maddison, W. & Cannatella, D. Nexus: An extensible file format for systematic information. Syst. Biol. 46, 590–621 (1997).CAS 
    PubMed 

    Google Scholar 
    Upham, N., Esselstyn, J. & Jetz, W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 

    Google Scholar 
    Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 69, e96. https://doi.org/10.1002/cpbi.96 (2020).Article 

    Google Scholar 
    Hadfield, J. & Nakagawa, S. General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol 23, 494–508 (2010).CAS 
    PubMed 

    Google Scholar 
    Lin, L. & Chu, H. Meta-analysis of proportions using generalized linear mixed models. Epidemiology 31, 713–717 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).
    Google Scholar 
    Bürkner, P. brms: An R Package for Bayesian multilevel models using Stan. J. Stat. Softw. 81, 1–28 (2017).
    Google Scholar 
    Günhan, B., Röver, C. & Friede, T. Random-effects meta-analysis of few studies involving rare events. Res. Synth. Methods 11, 74–90 (2020).PubMed 

    Google Scholar 
    Pappalardo, P. et al. Comparing traditional and Bayesian approaches to ecological meta-analysis. Methods Ecol. Evol. 11, 1286–1295 (2020).
    Google Scholar 
    Ott, M., Plummer, M. & Roos, M. How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. Stat. Med. 40, 4505–4521 (2021).MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, S. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall, 2017).MATH 

    Google Scholar 
    Kruschke, J. & Liddell, T. The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon. Bull. Rev. 25, 178–206 (2018).PubMed 

    Google Scholar 
    Kay, M. tidybayes: Tidy data and geoms for Bayesian models. R package version 2.1.1. https://doi.org/10.5281/zenodo.1308151 (2020).Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).ADS 

    Google Scholar 
    Searle, S., Speed, F. & Milliken, G. Population marginal means in the linear model: An alternative to least squares means. Am. Stat. 34, 216–221 (1980).MathSciNet 
    MATH 

    Google Scholar 
    Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.2-1. https://CRAN.R-project.org/package=emmeans (2020).Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).
    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).MathSciNet 
    MATH 

    Google Scholar 
    Yao, Y., Vehtari, A., Simpson, D. & Gelman, A. Using stacking to average Bayesian predictive distributions (with Discussion). Bayesian Anal. 13, 917–1003 (2018).MathSciNet 
    MATH 

    Google Scholar 
    Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Soc. Ser. A 182, 1–14 (2019).MathSciNet 

    Google Scholar 
    Lazic, S., Mellor, J., Ashby, M. & Munafo, M. A Bayesian predictive approach for dealing with pseudoreplication. Sci. Rep. 10, 2020. https://doi.org/10.1038/s41598-020-59384-7 (2020).Article 
    CAS 

    Google Scholar 
    Page, M., Sterne, J., Higgins, J. & Egger, M. Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Res. Synth. Methods 12, 248–259 (2021).PubMed 

    Google Scholar 
    Peters, J., Sutton, A., Jones, D., Abrams, K. & Rushton, L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J. Clin. Epidemiol. 61, 991–996 (2008).PubMed 

    Google Scholar 
    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
    Google Scholar 
    Gasparrini, A., Armstrong, B. & Kenward, M. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat. Med. 31, 3821–3839 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Viral metagenomics reveals persistent as well as dietary acquired viruses in Antarctic fur seals

    After massive parallel sequencing of the nucleic acids obtained from fur seal scats, a wide variety of invertebrate and vertebrate viral hosts assignations with low nucleotidic and amino-acidic identities were obtained, most of them corresponding to animal species not described before in Antarctica. These results make us reconsider the use of closed RefSeq databases for viral discovery, especially because the studied area was a remote geographical area where a high number of new viral species is expected to occur22.After repeating the analysis of the contigs obtained using BLASTn, a high number of miss-assignments was observed, corresponding almost entirely to contigs newly assigned as unclassified Eukaryotic Circular Rep-Encoding Single-Stranded DNA (CRESS-DNA) viral sequences. CRESS viruses have been detected ubiquitously in many different animals without any recognised role in the development of any disease23,24,25,26.These results are in accordance with the recent reporting of CRESS sequences also being ubiquitous in a wide variety of environments and at high proportions, including Antarctica, where they have been described to represent more than 50% of sequences obtained from glacier waters27.Viral-host distributionVirome studies in other Arctocephalus species from subantarctic and South American regions revealed a 5% of viral sequences with predominance of bacteriophages followed by viruses from the Parvoviridae family28. The methodology here applied provided an increase of 12–25% viral reads when probe-based Target Enrichment Sequencing (TES) was applied, that in comparison with Untargeted Viral Metagenomics (UVM) approaches conducted in these type of samples28 could be considered an optimal result.Most of the viral species detected in feces corresponded to unknown viruses, 83.59% from the total of sequences, followed by viruses that infect invertebrates, 8.75%, bacteriophages, 4.46%, and vertebrate viruses, 3.11% (Fig. 1).Figure 1Host distribution of viral assignations sequenced from fecal (A) and serum (B) samples collected from male A. gazella.Full size imageAs expected, when applying both targeted and untargeted sequencing methodologies, TES approach resulted in a recovery of many vertebrate viral assignations (Table 1) whereas untargeted sequencing enabled a better detection of viruses known to infect invertebrates (Table 2). To describe the complete A. gazella fecal virome, sequences obtained by both sequencing methodologies were considered all together, representing a total of 2.62 million reads.Table 1 Vertebrate viral assignations obtained from fecal samples sequencing from male A. gazella. Ranges of Genome coverage, nucleotide identity and aminoacidic identity are expressed in percentages.Full size tableTable 2 Invertebrate viral assignations obtained from fecal samples sequencing from male A. gazella. Colours represent the presence of each assignation in the processed pools. Ranges of Coverage, NT ID and AA ID are represented in percentages.Full size table
    A. gazella virusesFur seal picorna-like virusFur seal picorna-like virus was firstly described in a fecal sample obtained from A. gazella in King George Island in the South Shetland Islands, Antarctica by Krumbholz and co-workers16.In this study, we report a total of 19 contigs resulting after assembling 2671 reads obtained from 4/4 fecal pools analysed being the most prevalent virus described in this study. One of the contigs covered 96.91% of the fur seal picorna-like virus genome and presented a nucleotide homology of 99.38% with the reference strain described in 2017. The other contigs coverage ranged from 19.75 to 21.22% with a 45.92 to 90.5% nucleotide identity with reference strain NC_035110. Four contigs matching the ORF2 polyprotein are represented in Fig. 2 where differences among them and with the reference strain are showed.Figure 2Nucleotide alignment of ORF2 sequences from the A. gazella picorna-like contigs compared to the ORF2 from RefSeq NC_0351110. In consensus strain, position 1 represents position 6523 from RefSeqs genome.Full size imagePicornaviruses are known to cause a wide variety of diseases in vertebrate hosts, especially mammals29, but the role of Fur seal picorna-like virus in pathogenesis development is still unknown30. Many picornaviruses are transmitted horizontally via fecal–oral or airborne routes29. The fact that these sequences were detected in all the fecal pools obtained from animals with no evidence of disease may that suggest the virus may have a stable endemic relationship within that seal population.Torque teno pinniped virusLambdatorquevirus is a genus within the Anelloviridae family. The genus comprises 8 species named Torque teno pinniped virus 2 to 9 isolated from different pinniped species: A. gazella (Torque teno pinniped virus 6 and 7)17, Phoca vitulina (Torque teno pinniped virus 2, 3, 4)31, Zalophus californianus (Torque teno pinniped virus 5)32 and Leptonychotes weddellii (Torque teno pinniped 8 and 9)33.One contig with a nuleotide similarity of 95.12% against Torque teno pinniped virus 7 was obtained from one of the fecal pools. This virus had been described in these animals inhabiting Livingston Island in 2016, using rolling circle amplification and subsequent Sanger sequencing from buccal swabs17. However, sequences obtained in this study belong to partial ORF2 which is not the optimal genome region for typing purposes or phylogenetic analysis.These members of the Anelloviridae represent the more abundant viruses found in human, animals and environmental samples although their etiological role in any disease has not been clearly identified being considered a persistent virus ubiquitous to several different tissues34,35No Torque teno virus sequences were detected in serum samples which agree with what was observed for Zalophus californianus anellovirus prevalently detected in different tissues, like lung and liver, but not in blood samples. Interestingly, other known anelloviruses are typically found in blood or plasma samples32.MamastrovirusTwo of the fecal pools analyzed presented Mamastrovirus sequences. The presence of these viruses in humans and other mammals is widely known, as well as their involvement in gastroenteritis development36. The four contigs obtained (comprising 1008 sequences) showed homologies against reference genomes, ranging from 45.70% to 59.37% when compared at nucleotide level and 36.69% to 46.69% when compared at aminoacidic level. Phylogenetic analysis of partial OFR2 regions of these contigs indicate its closer similarity with sequences from California Sea Lion astroviruses, a virus that was determined as to be the most prevalent in fecal samples from these animals (Z. californianus)37. This finding suggests that these sequences may belong to a yet unknown virus like Z. californianus astrovirus and may indicate that such virus is prevalent in the sampled area (detected in 2/4 fecal pools studied) and the second more abundant virus (1008 reads) in the studied fecal samples (Fig. 3).Figure 3Phylogenetic consensus tree based on partial ORF2 sequences from the Mamastrovirus contigs sequenced from A. gazella scats (in bold). Bootstrap resampling with 1000 replicates.Full size imageAdeno associated virus 2Two of the studied fecal pools presented 138 sequences, forming 3 contigs with nucleotide identities ranging from 46.91 to 48.04% (Table 1), that matched adeno associated viruses previously described in Z. californianus, humans and other mammals with and unknow etiologic role (Fig. 4). The detected sequences probably correspond to fur seal adeno associated viruses never described before. The detection of these viruses is quite common in other mammals suggesting they could cause persistent infections in their hosts, but no etiological role has been attributed to them38.Figure 4Phylogenetic consensus tree of the Adeno-associated virus contigs sequenced from A. gazella scats (in bold). Bootstrap resampling with 1000 replicates.Full size imageNorovirusA norovirus contig was obtained in one of the four pools analyzed. Noroviruses are the most relevant non-bacterial gastroenteritis etiological agents in humans39, with its presence widely described in other mammals40. The contig detected in the fecal samples, represented the 4.43% of the viral genome, was in the VP1 region and comprised 56 reads with an identity  > 99% to California sea lion norovirus described by Teng and collaborators in 201841 (Fig. 5). Results obtained suggest these sequences belong to a putative new norovirus specie.Figure 5Phylogenetic consensus tree of the Norovirus contig sequenced from A. gazella scats (in bold). Bootstrap resampling with 1000 replicates.Full size imageViruses in serum samplesAll the viral sequences obtained from serum samples (970 reads) matched to CRESS-DNA viral sequences from unknown hosts.The fact that no other viruses were identified in serum samples suggests the animals tested were not under active viremia at the time of sample collection or it was not detectable by the applied methodology.Diet related virusesSeveral virus sequences similar to viruses known to have invertebrate animals as hosts were detected in fecal pools, mainly by UVM although some also by TES. These viruses are probably present in fur seal feces because of dietary habits although, since scats were collected from the ground nearby the animals, environmental cross-contamination should not be ruled out.Sequences with high coverage or similarities to any described virus are showed in Table 2.The high prevalence of virus sequences from crustaceans in the feces analyzed is hardly surprising because A. gazella inhabiting the Antarctic peninsula and the Atlantic sector of the Southern Ocean feed mostly on Antarctic krill Euphasia superba during the summer months42,43,44,45,46,47,48. Sequences from cephalopod viruses were also detected, although were much scarcer than those from crustaceans. This also agrees with current knowledge about the diet of A. gazella in the Atlantic sector of the Southern Ocean, where octopuses and squids are regularly consumed, although in low numbers44,45,46. It is worth noting than not cephalopod beak was recovered from the scats analyzed here48. Among all invertebrate viruses identified, some sequences present low identities with genomes from available databases, probably because Antarctica wildlife has been scarcely explored, forcing bioinformatic analysis to match them with the most similar viruses from these databases.No fish viruses were found in this study. Hard skeletal remains of fishes are often recovered from the scats of A. gazella from the Atlantic sector of the Southern Ocean42,43,44,45,46,47 and occurred indeed in the samples analysed here48, but stable isotope analysis of blood and whiskers revealed a negligible contribution of fish to the assimilate diet of juvenile and subadult male A. gazella49, which likely explain the absence of fish viruses in the samples analized here. Additionaly, no data on the virome present in the fish species regularly consumed by A. gazella has been published to our knowledge, with information limited to the bacteriome32, so even in case fish viruses were sequenced, it might not be correctly assigned to a fish host. Nevertheless, the methodology applied in this study had been successfully applied to the identification of the virome of Atlantic fishes50. Furthermore, Li and coworkers.37 and Wille and coworkers.22 also observed viral sequences probably corresponding to fish when analyzing the fecal virome of the California sea lions and Antarctic penguins.On the other hand, sequences highly similar to Coelho and Khabarov viral polymerases (greater than 98% of aminoacid identity), previously described in chinstrap penguins (Pygoscelis antarcticus) by Wille and coworkers22, were found in this study. The consumption of penguins by A. gazella during the summer months has been reported widely51,52,53,54,55, penguins feathers were reported from the scats analyzed in this study48 and stable isotope analysis of blood and whiskers revealed penguins as the second most relevant prey from juvenile and subadult male A. gazella in the population studied here49. This evidence is consistent with the presence of virus from chinstrap penguins in the samples analysed here. All in all, the study of fecal virome constitutes a very promising tool to explore the consumers’ diet. More

  • in

    Estimates of regeneration potential in the Pannonian sand region help prioritize ecological restoration interventions

    Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. (eds). Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. https://doi.org/10.5281/zenodo.3831673 (IPBES Secretariat, 2019).UNEP/FAO. The UN Decade on Ecosystem Restoration 2021-2030 “Prevent, halt and reverse the degradation of ecosystems worldwide.” https://www.decadeonrestoration.org/ (2020).Fischer, J., Riechers, M., Loos, J., Martin-Lopez, B. & Temperton, V. M. Making the UN decade on ecosystem restoration a social-ecological endeavour. Trends Ecol. Evol. 36, 1 (2021).
    Google Scholar 
    Tolvanen, A. & Aronson, J. Ecological reastoration, ecosystem services, and land use: a European perspective. Ecol. Soc. 21, 47 (2016).
    Google Scholar 
    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS 
    PubMed 

    Google Scholar 
    Temperton, V. M. et al. Step back from the forest and step up to the Bonn Challenge: how a broad ecological perspective can promote successful landscape restoration. Restor. Ecol. 27, 705–719 (2019).
    Google Scholar 
    Prach, K. & Hobbs, R. J. Spontaneous succession versus technical reclamation in the restoration of disturbed sites. Restor. Ecol. 16, 363–366 (2008).
    Google Scholar 
    Prach, K., Šebelíková, L., Řehounková, K. & del Moral, R. Possibilities and limitations of passive restoration of heavily disturbed sites. Landsc. Res. 45, 247–253 (2019).
    Google Scholar 
    Gilby, B. L. et al. Applying systematic conservation planning to improve the allocation of restoration actions at multiple spatial scales. Restor. Ecol. 29, e13403 (2021).
    Google Scholar 
    Erdős, L. et al. The edge of two worlds: a new review and synthesis on Eurasian forest-steppes. Appl. Veg. Sci. 21, 345–362 (2018).
    Google Scholar 
    Poschlod, P. & WallisDeVries, M. F. The historical and socioeconomic perspective of calcareous grasslands. Lessons learnt from the distant and recent past. Biol. Conserv. 104, 361–376 (2022).
    Google Scholar 
    Wesche, K. et al. The Palaearctic steppe biome: a new synthesis. Biodivers. Conserv. 25, 2197–2231 (2016).
    Google Scholar 
    Butaye, J., Dries, A. & Honnay, O. Conservation and restoration of calcareous grasslands: a concise review of the effects of fragmentation and management on plant species. Biotechnol. Agron. Soc. Environ. 9, 111–118 (2005).
    Google Scholar 
    Strassburg, B. B. N. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3, 62–70 (2019).PubMed 

    Google Scholar 
    Knight, M. L. & Overbeck, G. E. How much does is cost to restore a grassland? Restor. Ecol. 29, e13463 (2021).
    Google Scholar 
    Albert, Á.-J. et al. Trait-based analysis of spontaneous grassland recovery in sandy old-fields. Appl. Veg. Sci. 17, 214–224 (2014).
    Google Scholar 
    Crouzeilles, R. et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709 (2020).
    Google Scholar 
    Seregélyes, T., Molnár, Z. S., Csomós, Á. & Bölöni, J. Regeneration potential of the Hungarian (semi)-natural habitats I. Concepts and basic data of the MÉTA database. Acta Bot. Hung. 50, 229–248 (2008).
    Google Scholar 
    Käyhkö, N. & Skånes, H. Change trajectories and key biotopes – Assessing landscape dynamics and sustainability. Landsc. Urban Plan 75, 300–321 (2006).
    Google Scholar 
    Käyhkö, N. & Skånes, H. Retrospective land cover/land use change trajectories as drivers behind the local distribution and abundance patterns of oaks in south-western Finland. Landsc. Urban Plan 88, 12–22 (2008).
    Google Scholar 
    Swetnam, R. D. Rural land use in England and Wales between 1930 and 1998: Mapping trajectories of change with a high resolution spatio-temporal dataset. Landsc. Urban Plan 81, 91–103 (2007).
    Google Scholar 
    Ruiz, J. & Domon, G. 2009. Analysis of landscape pattern change trajectories within areas of intensive agricultural use: case study in a watershed of southern Québec, Canada. Landsc. Ecol. 24, 419–432 (2009).
    Google Scholar 
    Eremiášová, R. & Skokanová, H. Land use changes (recorded in old maps) and delimitation of the most stable areas from the perspective of land use in the Kašperské Hory region. Landsc. Ecol. 88, 20–34 (2009).
    Google Scholar 
    Frondoni, R. B. M. & Capotorti, G. A landscape analysis of land cover change in the Municipality of Rome (Italy): spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landsc. Urban Plan 100, 117–128 (2011).
    Google Scholar 
    Biró, M., Szitár, K., Horváth, F., Bagi, I. & Molnár, Z. S. Detection of long-term landscape changes and trajectories in a Pannonian sand region: comparing land-cover and habitat-based approaches at two spatial scales. Community Ecol. 14, 219–230 (2013).
    Google Scholar 
    Molnár, Z. S, Biró, M., Bartha, S. & Fekete, G. in Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World (eds Werger, M. J. A. & van Staalduinen, M. A.) Ch. 7 (Springer, 2012).Mezősi, G. in The Physical Geography of Hungary. Geography of the Physical Environment (ed. Mezősi, G) Ch. 11 (Springer, 2017).Biró, M., Bölöni, J. & Molnár, Z. Use of long-term data to evaluate loss and endangerment status of Natura 2000 habitats and effects of protected areas. Conserv. Biol. 32, 660–671 (2018).PubMed 

    Google Scholar 
    Pe’er, G. et al. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. 2, 305–316 (2020).
    Google Scholar 
    Benton, T. G., Bieg, C., Harwatt, H., Pudasaini, R. & Wellesley, L. Food system impacts on biodiversity loss. Three levers for food system transformation in support of nature. Chatham House, the Royal Institute of International Affairs. ISBN: 978 1 78413 433 4 (2021).Kuemmerle, T. et al. Cross-border comparison of post-socialist farmland abandonment in the Carpathians. Ecosystems 11, 614 (2008).
    Google Scholar 
    Feranec, J. et al. Inventory of major landscape changes in the Czech Republic, Hungary, Romania and Slovak Republic 1970s – 1990s. Int. J. Appl. Earth Observ. Geoinf. 2, 129–139 (2000).
    Google Scholar 
    Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).PubMed 

    Google Scholar 
    Csákvári, E. et al. Conservation biology research priorities for 2050: a Central-Eastern European perspective. Biol. Conserv. 264, 109396 (2021).
    Google Scholar 
    Molnár, Z. S., Bölöni, J. & Horváth, F. Threatening factors encountered: actual endangerment of the Hungarian (semi-)natural habitats. Acta Bot. Hung. 50, 199–217 (2008).
    Google Scholar 
    Király, G., Molnár, ZS., Bölöni, J., Csiky, J. & Vojtkó, A. Magyarország földrajzi kistájainak növényzete (in Hungarian). MTA ÖBKI, Vácrátót, 248 (2008).Botta-Dukát, Z. Invasion of alien species to Hungarian (semi-)natural habitats. Acta Bot. Hung. 50, 219–227 (2008).
    Google Scholar 
    Csákvári, E., Bede-Fazekas, Á., Horváth, F., Molnár, Z. & Halassy, M. Do environmental predictors affect the regeneration capacity of sandy habitats? A country-wide survey from Hungary. Glob. Ecol. Conserv. 27, e01547 (2021).
    Google Scholar 
    Somodi, I. et al. Implementation and application of multiple potential natural vegetation models–a case study of Hungary. J. Veg. Sci. 28, 1260–1269 (2017).
    Google Scholar 
    Bölöni, J., Molnár, Zs. & Kun, A. (Eds.), Magyarország élőhelyei. A hazai vegetációtípusok leírása és határozója (in Hungarian) (Habitats – Description and Identification of Vegetation Types of Hungary, ÁNÉR 2011). MTA Ökológiai és Botanikai Kutatóintézet, Vácrátót, pp. 439. ISBN 978-963-8391-51 (2011).Choi, Y. D. et al. Ecological restoration for future sustainability in a changing environment. Ecoscience 15, 53–64 (2008).CAS 

    Google Scholar 
    Valkó, O. et al. Abandonment of croplands: problem or chance for grassland restoration? Case studies from Hungary. Ecosyst. Health Sustain. 2, e01208 (2016).
    Google Scholar 
    Csecserits, A. et al. Tree plantations are hot-spots of plant invasion in a landscape with heterogeneous land-use. Agric. Ecosyst. Environ. 226, 88–98 (2016).
    Google Scholar 
    Pyšek P. & Richardson D. M. in Biological Invasions. Ecological Studies (Analysis and Synthesis) (ed. Nentwig, W) Ch. 7 (Springer, 2008).Reis, B. P. et al. The long-term effect of initial restoration intervention, landscape composition, and time on the progress of Pannonic sand grassland restoration. Landsc. Ecol. Eng. https://doi.org/10.1007/s11355-022-00512-y (2022).Article 

    Google Scholar 
    Ruprecht, E. Successfully recovered grassland: a promising example from Romanian old‐fields. Restor. Ecol. 14, 473–480 (2006).
    Google Scholar 
    Török, P. et al. Restoring grassland biodiversity: sowing low-diversity seed mixtures can lead to rapid favourable changes. Biol. Conserv. 143, 3 (2010).
    Google Scholar 
    Török, P., Vida, E., Deák, B., Lengyel, S. & Tóthmérész, B. Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs. Biodivers. Conserv. 20, 2311–2332 (2011).
    Google Scholar 
    Prach, K., Jongepierová, I., Řehounková, K. & Fajmon, K. Restoration of grasslands on ex-arable land using regional and commercial seed mixtures and spontaneous succession: successional trajectories and changes in species richness. Agric. Ecosyst. Environ. 182, 131–136 (2014).
    Google Scholar 
    Prach, K., Chenoweth, J. & del Moral, R. Spontaneous and assisted restoration of vegetation on the bottom of a former water reservoir, the Elwha River, Olympic National Park, WA, USA. Restor. Ecol. 27, 592–599 (2019).
    Google Scholar 
    Török, P., Helm, A., Kiehl, K., Buisson, E. & Valkó, O. Beyond the species pool: modification of species dispersal, establishment, and assembly by habitat restoration. Restor. Ecol. 26, S65–S72 (2018).
    Google Scholar 
    Török, P., Bullock James M, J. M., Jiménez‐Alfaro, B. & Sonkoly, J. The importance of dispersal and species establishment in vegetation dynamics and resilience. J. Veg. Sci. 31, 935–942 (2020).
    Google Scholar 
    Saura, S., Bodin, Ö. & Fortin, M. J. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).
    Google Scholar 
    Kirmer, A., Baasch, A. & Tischew, S. Sowing of low and high diversity seed mixtures in ecological restoration of surface mined-land. Appl. Veg. Sci. 15, 198–207 (2012).
    Google Scholar 
    Llumiquinga, Y. B. et al. Long-term results of initial seeding, mowing and carbon amendment on the restoration of Pannonian sand grassland on old fields. Tuxenia 41, 361–379 (2021).
    Google Scholar 
    Edwards, A. R. et al. Hay strewing, brush harvesting of seed and soil disturbance as tools for the enhancement of botanical diversity in grasslands. Biol. Conserv. 134, 372–382 (2007).
    Google Scholar 
    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience 65, 1011–1018 (2015).
    Google Scholar 
    Bussion, E., Archibald, S., Fidelis, A. & Sudling, K. N. Ancient grasslands guide ambitious goals in grassland restoration. Science 377, 594–598 (2022).
    Google Scholar 
    Csecserits, A. et al. Regeneration of sandy old-field in the forest steppe region of Hungary. Plant Biosyst. 145, 715–726 (2011).
    Google Scholar 
    Szitár, K. et al. Az országos zöldinfrastruktúrahálózat kijelölésének módszertana többszempontú állapotértékelés alapján. (in Hungarian) (Methodology for designating the national green infrastructure network based on multi-criteria assessment). Term.észetvédelmi K.özlemények 27, 145–157 (2021).
    Google Scholar 
    Szalai, S., Szinell, C. S. & Zoboki, J. Early warning systems for drought preparedness and drought management. In Proc. Expert Group Meeting (eds Wilhite, D. A., Sivakumar, M. V. K. & Wood, D. A.) (World Meteorological Organization, 2000).Szilassi, P. et al. The link between landscape pattern and vegetation naturalness on a regional scale. Ecol. Indic. 81, 252–259 (2017).
    Google Scholar 
    Demeter, I., Makádi, M., Végső, B., Aranyos, T. J. & Posta, K. The effect of recycled plant residues on the microbial activity of typical sandy soil of the Nyírség region. In Abstract Book, 18th Alps-Adria Scientific Workshop https://doi.org/10.34116/NTI.2019.AA.13 (2019).Borhidi, A. Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Bot. Hung. 39, 97–181 (1995).
    Google Scholar 
    Horváth, F. et al. Flóra adatbázis 1.2. Taxonlista és attribútum-állomány (Flora database 1.2. Taxon list and attribute file). MTA Ökológiai és Botanikai Kutatóintézet, Vácrátót, ISBN 9638391197 (1995).Király, G. Új Magyar Füvészkönyv. Magyarország hajtásos növényei (New Herbal Guide to the Hungarian Flora). Aggteleki Nemzeti Park Igazgatóság, Jósvafő, Hungary, 628p. (2009).Máté, A. 6260 pannon homoki gyepek. In: Haraszthy, L. (Eds.), Natura 2000 fajok és élőhelyek Magyarországon. (in Hungarian) Pro Vértes Közalapítvány, Csákvár, Hungary, pp. 817-823. ISBN: 9789630888530 (2014).Molnár, Z. S. et al. Magyarországi Élőhelytérképezési Adatbázisának (MÉTA) térképezési módszertani és Adatlapkitöltési Útmutatója (AL-KÚ) 3.3 Kézirat, (Guide on the methods of MÉTA and on the completion of the MÉTA datasheets). MTA ÖBKI, Vácrátót, Hungary, 54 pp. (2003).Molnár, Z. S. et al. A grid-based, satellite-image supported multi-attributed vegetation mapping method (MÉTA). Folia Geobotanica 42, 225–247 (2007).
    Google Scholar 
    Horváth, F. et al. Fact sheet of the MÉTA database 1.2. Acta Bot. Hung. 50, 11–34 (2008).
    Google Scholar 
    Bölöni, J., Kun, A. & Molnár, Z. S. Élőhely-ismereti Útmutató (Habitat guide). MTA ÖBKI, Vácrátót, Hungary (2003).European Environment Agency. Corine Land Cover 2006 seamless vector data (Version 17). https://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-3 (2013).European Environment Agency. CLC2006 Technical Guidelines. Report No. 17/2007, ISNN 1725-2237 (2017).ESRI ArcGIS Vers. 10.2. (Environmental System Research Institute Inc., 2013).Pásztor, L. et al. Compilation of novel and renewed, goal oriented digital soil maps using geostatistical and data mining tools. Hungarian Geogr. Bull. 64, 49–64 (2015).
    Google Scholar 
    Hijmans, R. J. raster: geographic data analysis and modeling. R package version 2.4-20, https://cran.r-project.org/web/packages/raster/index.html (2015).R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/ (2019).USGS. Shuttle Radar Topography Mission, 3 Arc Second scene SRTM_u03_n045e016-SRTM_ff03_n048e022, Unfilled Unfinished 2.0, Global Land Cover Facility, February 2000. College Park, MD, USA, University of Maryland (2004).SRTM. SRTM Mission Summary. URL: lta.cr.usgs.gov/srtm/mission_summary (2015). [Last accesed: 2016.04.22.].Szalai, S. et al. Climate of the Greater Carpathian Region. Final Technical Report. http://www.carpatclim-eu.org/ (2013).Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22, https://CRAN.R-project.org/doc/Rnews/ (2002).
    Google Scholar 
    Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. Classification and Regression Trees (CRC Press, 1984).Sarica, A., Cerasa, A. & Quattrone, A. Random Forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Front. Aging Neurosci. 6, 329 (2017).
    Google Scholar 
    Hothorn, T., Hornik, K. & Zeileis, A. Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph Stat. 15, 651–674 (2006).
    Google Scholar 
    Pebesma, E. Simple features for R: standardized support for spatial vector. Data. R. J. 10, 439–446 (2018).
    Google Scholar 
    Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R 2nd ed. (Springer, 2013).Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).
    Google Scholar 
    Bölöni, J., Molnár, Z. S., Horváth, F. & Illyés, E. Naturalness-based habitat quality of the Hungarian (semi-)natural habitats. Acta Bot. Hung. 50, 149–159 (2008).
    Google Scholar 
    Czúcz, B., Molnár, Z. S., Horváth, F. & Botta-Dukát, Z. The natural capital index of Hungary. Acta Bot. Hung. 50, 161–177 (2008).
    Google Scholar  More