More stories

  • in

    Long term environmental variability modulates the epigenetics of maternal traits of kelp crabs in the coast of Chile

    Gibney, E. R. & Nolan, C. M. Epigenetics and gene expression. Heredity 105, 4–13 (2010).CAS 
    PubMed 

    Google Scholar 
    Vogt, G. Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: Insights from clonal, invasive, polyploid, and domesticated animals. Environ. Epigenet. 3, 1–17 (2017).
    Google Scholar 
    Beal, A., Rodriguez-Casariego, J., Rivera-Casas, C., Suarez-Ulloa, V. & Eirin-Lopez, J. M. Environmental Epigenomics and Its Applications in Marine Organisms 325–359 (Springer, 2018). https://doi.org/10.1007/13836_2018_28.Book 

    Google Scholar 
    Hofmann, G. E. Ecological epigenetics in marine metazoans. Front. Mar. Sci. 4, 1–7 (2017).CAS 

    Google Scholar 
    Richards, C. L. et al. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol. Lett. 20, 1576–1590 (2017).PubMed 

    Google Scholar 
    Ryu, T., Veilleux, H. D., Donelson, J. M., Munday, P. L. & Ravasi, T. The epigenetic landscape of transgenerational acclimation to ocean warming. Nat. Clim. Chang. 8, 504–509 (2018).ADS 

    Google Scholar 
    Liew, Y. J. et al. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci. Adv. 4, 6 (2018).
    Google Scholar 
    Anastasiadi, D., Díaz, N. & Piferrer, F. Small ocean temperature increases elicit stage-dependent changes in DNA methylation and gene expression in a fish, the European sea bass. Sci. Rep. 7, 1–12 (2017).CAS 

    Google Scholar 
    Strader, M. E., Wong, J. M., Kozal, L. C., Leach, T. S. & Hofmann, G. E. Parental environments alter DNA methylation in offspring of the purple sea urchin, Strongylocentrotus purpuratus. J. Exp. Mar. Bio. Ecol. 517, 54–64 (2019).
    Google Scholar 
    Rey, O. et al. Linking epigenetics and biological conservation: Towards a conservation epigenetics perspective. Funct. Ecol. 34, 414–427 (2020).
    Google Scholar 
    Eirin-Lopez, J. M. & Putnam, H. Editorial: Marine environmental epigenetics. Front. Mar. Sci. 8, 5 (2021).
    Google Scholar 
    Herrera, C. M. & Bazaga, P. Untangling individual variation in natural populations: Ecological, genetic and epigenetic correlates of longterm inequality in herbivory. Mol. Ecol. 20, 1675–1688 (2011).CAS 
    PubMed 

    Google Scholar 
    Varriale, A. DNA methylation, epigenetics, and evolution in vertebrates: Facts and challenges. Int. J. Evol. Biol. 2014, 1–7 (2014).
    Google Scholar 
    Liebl, A. L., Wesner, J. S., Russell, A. F. & Schrey, A. W. Methylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird. PLoS ONE 16, e0252227 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Metzger, D. C. H. & Schulte, P. M. Persistent and plastic effects of temperature on DNA methylation across the genome of threespine stickleback (Gasterosteus aculeatus). Proc. R. Soc. B Biol. Sci. 284, 5 (2017).
    Google Scholar 
    Putnam, H. M., Davidson, J. M. & Gates, R. D. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol. Appl. 9, 1165–1178 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watson, R. G. A., Baldanzi, S., Pérez-Figueroa, A., Gouws, G. & Porri, F. Morphological and epigenetic variation in mussels from contrasting environments. Mar. Biol. 165, 8 (2018).
    Google Scholar 
    Baldanzi, S., Watson, R., McQuaid, C. D., Gouws, G. & Porri, F. Epigenetic variation among natural populations of the South African sandhopper Talorchestia capensis. Evol. Ecol. 31, 77–91 (2017).
    Google Scholar 
    Ardura, A., Zaiko, A., Morán, P., Planes, S. & Garcia-Vazquez, E. Epigenetic signatures of invasive status in populations of marine invertebrates. Sci. Rep. 7, 5 (2017).
    Google Scholar 
    Baldanzi, S., Storch, D., Navarrete, S. A., Graeve, M. & Fernández, M. Latitudinal variation in maternal investment traits of the kelp crab Taliepus dentatus along the coast of Chile. Mar. Biol. 165, 1 (2018).
    Google Scholar 
    Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J. & Schneider, W. Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile. Prog. Oceanogr. 75, 363–382 (2007).ADS 

    Google Scholar 
    Letelier, J., Pizarro, O. & Nuñez, S. Seasonal variability of coastal upwelling and the upwelling front off central Chile. J. Geophys. Res. Ocean. 114, 12009 (2009).ADS 

    Google Scholar 
    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 1–7 (2017).CAS 

    Google Scholar 
    Pérez, C. A. et al. Influence of climate and land use in carbon biogeochemistry in lower reaches of rivers in central southern Chile: Implications for the carbonate system in river-influenced rocky shore environments. J. Geophys. Res. Biogeosciences 120, 673–692 (2015).ADS 

    Google Scholar 
    Saldías, G. S. et al. Satellite-measured interannual variability of turbid river plumes off central-southern Chile: Spatial patterns and the influence of climate variability. Prog. Oceanogr. 146, 212–222 (2016).ADS 

    Google Scholar 
    Lara, C. et al. Coastal biophysical processes and the biogeography of rocky intertidal species along the south-eastern Pacific. J. Biogeogr. 46, 420–431 (2019).
    Google Scholar 
    Wieters, E. A. Upwelling control of positive interactions over mesoscales: A new link between bottom-up and top-down processes on rocky shores. Mar. Ecol. Prog. Ser. 301, 43–54 (2005).ADS 

    Google Scholar 
    Pérez-Matus, A., Carrasco, S. A., Gelcich, S., Fernandez, M. & Wieters, E. A. Exploring the effects of fishing pressure and upwelling intensity over subtidal kelp forest communities in Central Chile. Ecosphere 8, e01808 (2017).
    Google Scholar 
    Iranon, N. N. & Miller, D. L. Interactions between oxygen homeostasis, food availability, and hydrogen sulfide signaling. Front. Genet. 3, 5 (2012).
    Google Scholar 
    Ramajo, L., Lagos, N. A. & Duarte, C. M. Seagrass Posidonia oceanica diel pH fluctuations reduce the mortality of epiphytic forams under experimental ocean acidification. Mar. Pollut. Bull. 146, 247–254 (2019).CAS 
    PubMed 

    Google Scholar 
    Aiken, C. & Navarrete, S. Environmental fluctuations and asymmetrical ­dispersal: Generalized stability theory for studying metapopulation persistence and marine protected areas. Mar. Ecol. Prog. Ser. 428, 77–88 (2011).ADS 

    Google Scholar 
    Baldanzi, S. et al. Combined effects of temperature and hypoxia shape female brooding behaviors and the early ontogeny of the Chilean kelp crab Taliepus dentatus. Mar. Ecol. Prog. Ser. 646, 93–107 (2020).ADS 
    CAS 

    Google Scholar 
    Moran, A. L. & McAlister, J. S. Egg size as a life history character of marine invertebrates: Is it all it’s cracked up to be?. Biol. Bull. 216, 226–242 (2009).PubMed 

    Google Scholar 
    Doherty-Weason, D. et al. Bioenergetics of parental investment in two polychaete species with contrasting reproductive strategies: The planktotrophic Boccardia chilensis and the poecilogonic Boccardia wellingtonensis (Spionidae). Mar. Ecol. 41, 1 (2020).
    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).
    Google Scholar 
    Sayols-Baixeras, S., Irvin, M. R., Arnett, D. K., Elosua, R. & Aslibekyan, S. W. Epigenetics of lipid phenotypes. Curr. Cardiovasc. Risk Rep. 10, 1–205 (2016).
    Google Scholar 
    Adam, A. C. et al. Profiling DNA methylation patterns of zebrafish liver associated with parental high dietary arachidonic acid. PLoS ONE 14, e0220934 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Fernández, P., García-Souto, D., Almansa, E., Morán, P. & Gestal, C. Epigenetic DNA methylation mediating Octopus vulgaris early development: Effect of essential fatty acids enriched diet. Front. Physiol. 8, 1–9 (2017).
    Google Scholar 
    Hearn, J., Pearson, M., Blaxter, M., Wilson, P. J. & Little, T. J. Genome-wide methylation is modified by caloric restriction in Daphnia magna. BMC Genomics 20, 1–11 (2019).
    Google Scholar 
    Palma, A. T., Henríquez, L. A. & Ojeda, F. P. Phytoplanktonic primary production modulated by coastal geomorphology in a highly dynamic environment of central Chile. Rev. Biol. Mar. Oceanogr. 44, 325–334 (2009).
    Google Scholar 
    Faúndez-Báez, P., Morales, C. E. & Arcos, D. Variabilidad espacial y temporal en la hidrografía invernal del sistema de bahías frente a la VIII región (Chile centro-sur). Rev. Chil. Hist. Nat. 74, 817–831 (2001).
    Google Scholar 
    Osma, N. et al. Response of phytoplankton assemblages from naturally acidic coastal ecosystems to elevated pCO2. Front. Mar. Sci. 1, 323 (2020).
    Google Scholar 
    Rebolledo, L. et al. Siliceous productivity changes in Gulf of Ancud sediments (42°S, 72°W), southern Chile, over the last ∼150 years. Cont. Shelf Res. 31, 356–365 (2011).ADS 

    Google Scholar 
    Sun, Y. et al. Genome-wide analysis of DNA methylation in five tissues of Zhikong Scallop, Chlamys farreri. PLoS ONE 9, e86232 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernhardt, J. R., O’Connor, M. I., Sunday, J. M. & Gonzalez, A. Life in fluctuating environments. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375, 20190454 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Feinberg, A. P. & Irizarry, R. A. Colloquium Paper: Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc. Natl. Acad. Sci. USA 107, 1757 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tapia, F. J., Largier, J. L., Castillo, M., Wieters, E. A. & Navarrete, S. A. Latitudinal discontinuity in thermal conditions along the nearshore of Central-Northern Chile. PLoS ONE 9, e110841 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reyna-López, G. E., Simpson, J. & Ruiz-Herrera, J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol. Gen. Genet. 253, 703–710 (1997).PubMed 

    Google Scholar 
    Pérez-Figueroa, A. msap: A tool for the statistical analysis of methylation-sensitive amplified polymorphism data. Mol. Ecol. Resour. 13, 522–527 (2013).PubMed 

    Google Scholar 
    Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).CAS 
    PubMed 

    Google Scholar 
    Valladares, F., Sanches-Gomez, D. & Zavala, M. A. Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. J. Ecol. 94, 1103–1116 (2006).
    Google Scholar 
    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Microbial community shifts induced by plastic and zinc as substitutes of tire abrasion

    Hirai, H. et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62(8), 1683–1692. https://doi.org/10.1016/j.marpolbul.2011.06.004 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Masó, M., Garcés, E., Pagès, F. & Camp, J. Drifting plastic debris as a potential vector for dispersing harmful algal bloom (HAB) species. Sci. Mar. 67(1), 107–111. https://doi.org/10.3989/scimar.2003.67n1107 (2003).Article 

    Google Scholar 
    Pandey, D., Singh, A., Ramanathan, A. & Kumar, M. The combined exposure of microplastics and toxic contaminants in the floodplains of North India: A review. J. Environ. Manag. 279, 111557. https://doi.org/10.1016/j.jenvman.2020.111557 (2021).Article 
    CAS 

    Google Scholar 
    Peng, L. et al. Micro- and nano-plastics in marine environment: Source, distribution and threats—A review. Sci. Total Environ. 698, 134254. https://doi.org/10.1016/j.scitotenv.2019.134254 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rillig, M. C. & Lehmann, A. Microplastic in terrestrial ecosystems and the soil?. Environ. Sci. Technol. 46(12), 6453–6454. https://doi.org/10.1021/es302011r (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rochman, C. M. & Hoellein, T. The global odyssey of plastic pollution. Science 368(6496), 1184–1185. https://doi.org/10.1126/science.abc4428 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jan Kole, P., Löhr, A. J., van Belleghem, F. G. A. J. & Ragas, A. M. J. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph14101265 (2017).Article 

    Google Scholar 
    Sommer, F. et al. Tire abrasion as a major source of microplastics in the environment. Aerosol Air Qual. Res. 18(8), 2014–2028. https://doi.org/10.4209/aaqr.2018.03.0099 (2018).Article 
    CAS 

    Google Scholar 
    Beita-Sandí, W., Selbes, M., Ersan, M. S. & Karanfil, T. Release of nitrosamines and nitrosamine precursors from scrap tires. Environ. Sci. Technol. Lett. 6(4), 251–256. https://doi.org/10.1021/acs.estlett.9b00172 (2019).Article 
    CAS 

    Google Scholar 
    Kaminsky, W. & Mennerich, C. Pyrolysis of synthetic tire rubber in a fluidised-bed reactor to yield 1,3-butadiene, styrene and carbon black. J. Anal. Appl. Pyrolysis 58–59, 803–811. https://doi.org/10.1016/S0165-2370(00)00129-7 (2001).Article 

    Google Scholar 
    Sundt, P., Schulze, P. E. & Syversen, F. Sources of microplastic- pollution to the marine environment. Mepex Nor. Environ. Agency 86, 20 (2014).
    Google Scholar 
    White, W. C. Butadiene production process overview. Chem. Biol. Interact. 166(1–3), 10–14. https://doi.org/10.1016/j.cbi.2007.01.009 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52(4), 1704–1724. https://doi.org/10.1021/acs.est.7b05559 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cooper, D. A. & Corcoran, P. L. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Mar. Pollut. Bull. 60(5), 650–654. https://doi.org/10.1016/j.marpolbul.2009.12.026 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    O’Brine, T. & Thompson, R. C. Degradation of plastic carrier bags in the marine environment. Mar. Pollut. Bull. 60(12), 2279–2283. https://doi.org/10.1016/j.marpolbul.2010.08.005 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Song, Y. K. et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci Technol. 51(8), 4368–4376. https://doi.org/10.1021/acs.est.6b06155 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Adobe Inc. (2019). Adobe illustrator. Retrieved from https://www.adobe.com/Products/Illustrator.Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8(9), 3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635 (2020).Article 
    CAS 

    Google Scholar 
    Councell, T. B., Duckenfield, K. U., Landa, E. R. & Callender, E. Tire-wear particles as a source of zinc to the environment. Environ. Sci. Technol. 38(15), 4206–4214. https://doi.org/10.1021/es034631f (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Awet, T. T. et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environ. Sci. Eur. https://doi.org/10.1186/s12302-018-0140-6 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chung, H., Son, Y., Yoon, T. K., Kim, S. & Kim, W. The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol. Environ. Saf. 74(4), 569–575. https://doi.org/10.1016/j.ecoenv.2011.01.004 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Huber, M., Welker, A. & Helmreich, B. Critical review of heavy metal pollution of traffic area runoff: Occurrence, influencing factors, and partitioning. Sci. Total Environ. 541, 895–919. https://doi.org/10.1016/j.scitotenv.2015.09.033 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M. & Nizami, A. S. Catalytic pyrolysis of plastic waste: A review. Process Saf. Environ. Prot. 102, 822–838. https://doi.org/10.1016/j.psep.2016.06.022 (2016).Article 
    CAS 

    Google Scholar 
    Zhang, X., Li, H., Cao, Q., Jin, L. & Wang, F. Upgrading pyrolytic residue from waste tires to commercial carbon black. Waste Manag. Res. 36(5), 436–444. https://doi.org/10.1177/0734242X18764292 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhu, D., Li, G., Wang, H. T. & Duan, G. L. Effects of nano- or microplastic exposure combined with arsenic on soil bacterial, fungal, and protistan communities. Chemosphere 281, 130998. https://doi.org/10.1016/j.chemosphere.2021.130998 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pathan, S. I. et al. Soil Pollution from micro-and nanoplastic debris: A hidden and unknown biohazard. Sustainability 12(18), 1–31. https://doi.org/10.3390/su12187255 (2020).Article 
    CAS 

    Google Scholar 
    Rillig, M. C. & Bonkowski, M. Microplastic and soil protists: A call for research. Environ. Pollut. 241, 1128–1131. https://doi.org/10.1016/j.envpol.2018.04.147 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the “Plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 47(13), 7137–7146. https://doi.org/10.1021/es401288x (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Burns, E. E. & Boxall, A. B. A. Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps. Environ. Toxicol. Chem. 37(11), 2776–2796. https://doi.org/10.1002/etc.4268 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bradney, L. et al. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ. Int. 2019(131), 104937. https://doi.org/10.1016/j.envint.2019.104937 (2018).Article 
    CAS 

    Google Scholar 
    Duis, K. & Coors, A. Microplastics in the Aquatic and Terrestrial Environment: Sources (with a Specific Focus on Personal Care Products), fate and effects. Environ. Sci. Eur. 28(1), 1–25. https://doi.org/10.1186/s12302-015-0069-y (2016).Article 
    CAS 

    Google Scholar 
    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3(7), 25–29. https://doi.org/10.1126/sciadv.1700782 (2017).Article 
    CAS 

    Google Scholar 
    Jayasiri, H. B., Purushothaman, C. S. & Vennila, A. Quantitative analysis of plastic debris on recreational beaches in Mumbai, India. Mar. Pollut. Bull. 77(1–2), 107–112. https://doi.org/10.1016/j.marpolbul.2013.10.024 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lassen, C., Hansen, S. F., Magnusson, K., Hartmann, N. B., Rehne Jensen, P., Nielsen, T. G. & Brinch, A. Microplastics occurrence, effects and sources of releases (2015).Weithmann, N. et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. https://doi.org/10.1126/sciadv.aap8060 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46(6), 3060–3075. https://doi.org/10.1021/es2031505 (2012).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boenigk, J., Matz, C., Jürgens, K. & Arndt, H. Confusing selective feeding with differential digestion in bacterivorous nanoflagellates. J. Eukaryot. Microbiol. 48(4), 425–432. https://doi.org/10.1111/j.1550-7408.2001.tb00175.x (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Boenigk, J., Matz, C., Jürgens, K. & Arndt, H. Food concentration-dependent regulation of food selectivity of interception-feeding bacterivorous nanoflagellates. Aquat. Microb. Ecol. 27(2), 195–202. https://doi.org/10.3354/ame027195 (2002).Article 

    Google Scholar 
    Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moore, C. J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 108(2), 131–139. https://doi.org/10.1016/j.envres.2008.07.025 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fu, S. F. et al. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system. Sci. Total Environ. 625, 64–70. https://doi.org/10.1016/j.scitotenv.2017.12.158 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bock, C. et al. Factors shaping community patterns of protists and bacteria on a European scale. Environ. Microbiol. 22(6), 2243–2260. https://doi.org/10.1111/1462-2920.14992 (2020).Article 
    PubMed 

    Google Scholar 
    Besseling, E., Wang, B., Lürling, M. & Koelmans, A. A. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ. Sci. Technol. 48(20), 12336–12343. https://doi.org/10.1021/es503001d (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, D. M., Wilson, M. R., MacNee, W., Stone, V. & Donaldson, K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 175(3), 191–199. https://doi.org/10.1006/taap.2001.9240 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jeong, C. B. et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-P38 activation in the monogonont rotifer (Brachionus Koreanus). Environ. Sci. Technol. 50(16), 8849–8857. https://doi.org/10.1021/acs.est.6b01441 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kang, H. C., Jeong, H. J., Jang, S. H. & Lee, K. H. Feeding by common heterotrophic protists on the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) compared to that of other suessioid dinoflagellates. Algae 34(2), 127–140. https://doi.org/10.4490/algae.2019.34.5.29 (2019).Article 
    CAS 

    Google Scholar 
    Sjollema, S. B., Redondo-Hasselerharm, P., Leslie, H. A., Kraak, M. H. S. & Vethaak, A. D. Do plastic particles affect microalgal photosynthesis and growth?. Aquat. Toxicol. 170, 259–261. https://doi.org/10.1016/j.aquatox.2015.12.002 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rossi, G., Barnoud, J. & Monticelli, L. Polystyrene nanoparticles perturb lipid membranes. J. Phys. Chem. Lett. 5(1), 241–246. https://doi.org/10.1021/jz402234c (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brandts, I. et al. Effects of nanoplastics on mytilus galloprovincialis after individual and combined exposure with carbamazepine. Sci. Total Environ. 643, 775–784. https://doi.org/10.1016/j.scitotenv.2018.06.257 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ciacci, C. et al. Nanoparticle-biological interactions in a marine benthic foraminifer. Sci. Rep. https://doi.org/10.1038/s41598-019-56037-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, J. A. et al. Low dose of amino-modified nanoparticles induces cell cycle arrest. ACS Nano 7(9), 7483–7494 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mao, Y. et al. Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period. Chemosphere https://doi.org/10.1016/j.chemosphere.2018.05.170 (2018).Article 
    PubMed 

    Google Scholar 
    Wang, F. et al. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale 5(22), 10868–10876. https://doi.org/10.1039/c3nr03249c (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Xia, T. et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6(8), 1794–1807. https://doi.org/10.1021/nl061025k (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lagarde, F. et al. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 215, 331–339. https://doi.org/10.1016/j.envpol.2016.05.006 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bhattacharya, P., Lin, S., Turner, J. P. & Ke, P. C. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J. Phys. Chem. C 114(39), 16556–16561. https://doi.org/10.1021/jp1054759 (2010).Article 
    CAS 

    Google Scholar 
    Johansen, J. L., Rønn, R. & Ekelund, F. Toxicity of cadmium and zinc to small soil protists. Environ. Pollut. 242, 1510–1517. https://doi.org/10.1016/j.envpol.2018.08.034 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Díaz, S., Martín-González, A. & Carlos Gutiérrez, J. Evaluation of heavy metal acute toxicity and bioaccumulation in soil ciliated protozoa. Environ. Int. 32(6), 711–717. https://doi.org/10.1016/j.envint.2006.03.004 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Subba, P. et al. Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus Reticulata Blanco) seedlings. Physiol. Mol. Biol. Plants 20(4), 461–473. https://doi.org/10.1007/s12298-014-0254-2 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corcoll, N. et al. The effect of metals on photosynthesis processes and diatom metrics of biofilm from a metal-contaminated river: A translocation experiment. Ecol. Indic. 18, 620–631. https://doi.org/10.1016/j.ecolind.2012.01.026 (2012).Article 
    CAS 

    Google Scholar 
    Moffett, B. F. et al. Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol. Ecol. 43(1), 13–19. https://doi.org/10.1016/S0168-6496(02)00448-8 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kuperman, R. G. & Carreiro, M. M. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol. Biochem. 29(2), 179–190. https://doi.org/10.1016/S0038-0717(96)00297-0 (1997).Article 
    CAS 

    Google Scholar 
    Masmoudi, S. et al. Cadmium, copper, sodium and zinc effects on diatoms: From heaven to hell-a review. Cryptogam Algol 34(2), 185–225. https://doi.org/10.7872/crya.v34.iss2.2013.185 (2013).Article 

    Google Scholar 
    Gadd, G. M. & de Rome, L. Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol. 29(6), 610–617. https://doi.org/10.1007/BF00260993 (1988).Article 
    CAS 

    Google Scholar 
    Khan, M. & Scullion, J. Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Appl. Soil. Ecol. 20(2), 145–155. https://doi.org/10.1016/S0929-1393(02)00018-5 (2002).Article 

    Google Scholar 
    Guillard, R. R. L. & Lorenzen, C. J. Yellow-green algae with chlorophyllide C12. J. Phycol. 8(1), 10–14. https://doi.org/10.1111/j.1529-8817.1972.tb03995.x (1972).Article 
    CAS 

    Google Scholar 
    Zagata, P., Kopańska, M., Greczek-Stachura, M. & Burnecki, T. Acute toxicity of metals: Nickel and zinc to Paramecium bursaria and its endosymbionts. J. Microbiol. Biotechnol. Food Sci. 04, 128–131. https://doi.org/10.15414/jmbfs.2015.4.special2.128-131 (2015).Article 
    CAS 

    Google Scholar 
    Lenz, R., Enders, K. & Nielsen, T. G. Microplastic exposure studies should be environmentally realistic. Proc. Natl. Acad. Sci. U. S. A. 113(29), E4121–E4122. https://doi.org/10.1073/pnas.1606615113 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schertzinger, G., Ruchter, N. & Sures, B. Metal accumulation in sediments and amphipods downstream of combined sewer overflows. Sci. Total Environ. 616–617, 1199–1207. https://doi.org/10.1016/j.scitotenv.2017.10.199 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Erasmus, J. H. et al. Metal accumulation in riverine macroinvertebrates from a platinum mining region. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134738 (2020).Article 
    PubMed 

    Google Scholar 
    Pradhan, S., Hedberg, J., Blomberg, E., Wold, S. & Odnevall Wallinder, I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanopart. Res. 18(9), 1–14. https://doi.org/10.1007/s11051-016-3597-5 (2016).Article 
    CAS 

    Google Scholar 
    Taurozzi, J. S., Hackley, V. A. & Wiesner, M. R. Preparation of nanoparticle dispersions from powdered material using ultrasonic disruption. NIST Spec. Publ. 1200–2, 1–15 (2012).
    Google Scholar 
    Graupner, N. et al. Effects of short-term flooding on aquatic and terrestrial microeukaryotic communities: A mesocosm approach. Aquat. Microb. Ecol. 80(3), 257–272. https://doi.org/10.3354/ame01853 (2017).Article 

    Google Scholar 
    Strasser, R., Srivastava, A. & Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis Mechanisms, Regulation and Adaption (eds Yanus, M. et al.) (Taylor and Francis, 2020).
    Google Scholar 
    Thwe, A. & Kasemsap, P. Quantification of OJIP fluorescence transient in tomato plants under acute ozone stress (2015).Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4(7), 1–9. https://doi.org/10.1371/journal.pone.0006372 (2009).Article 
    CAS 

    Google Scholar 
    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like RRNA-coding regions. Gene 71(2), 491–499. https://doi.org/10.1016/0378-1119(88)90066-2 (1988).Article 
    CAS 
    PubMed 

    Google Scholar 
    Andrews, S. FastQC: A quality control tool for high throughput sequence data (2015).Lange, A. et al. AmpliconDuo: A split-sample filtering protocol for high-throughput amplicon sequencing of microbial communities. PLoS ONE 10(11), 1–22. https://doi.org/10.1371/journal.pone.0141590 (2015).Article 
    CAS 

    Google Scholar 
    Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6), 863–864. https://doi.org/10.1093/bioinformatics/btr026 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Masella, P. A., Bartram, A. K., Truszkowski, J. M., Brow, D. G. & Neufeld, J. D. PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. https://doi.org/10.1186/1471-2105-13-31 (2012).Article 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: Robust and fast clustering method for amplicon-based studies. PeerJ 2014(1), 1–13. https://doi.org/10.7717/peerj.593 (2014).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from illumina amplicon data. Nat. Methods 13(7), 581–583. https://doi.org/10.1038/nmeth.3869 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Welzel, M. et al. Natrix: A snakemake-based workflow for processing, clustering, and taxonomically assigning amplicon sequencing reads. BMC Bioinform. 21(1), 1–14. https://doi.org/10.1186/s12859-020-03852-4 (2020).Article 
    CAS 

    Google Scholar 
    Oksanen, J. Package “vegan” Title Community Ecology Package (2022).R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.Chen, W., Simpson, J. & Leveque, C. RAM: R for amplicon-sequencing-based microbial-ecology (2018).Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S RRNA gene sequences. Nat. Rev. Microbiol. 12(9), 635–645. https://doi.org/10.1038/nrmicro3330 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 1–21. https://doi.org/10.1186/s13059-014-0550-8 (2014).Article 
    CAS 

    Google Scholar 
    Palarea-Albaladejo, J. & Martín-Fernández, J. A. ZCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 143, 85–96. https://doi.org/10.1016/j.chemolab.2015.02.019 (2015).Article 
    CAS 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 1–6. https://doi.org/10.3389/fmicb.2017.02224 (2017).Article 

    Google Scholar 
    Dusaucy, J., Gateuille, D., Perrette, Y. & Naffrechoux, E. Microplastic pollution of worldwide lakes. Environ. Pollut. 284, 117075. https://doi.org/10.1016/j.envpol.2021.117075 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vardhan, K. H., Kumar, P. S. & Panda, R. C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197 (2019).Article 
    CAS 

    Google Scholar 
    Damare, V. S. Diversity of thraustochytrid protists isolated from brown alga, Sargassum cinereum using 18S RDNA sequencing and their morphological response to heavy metals. J. Mar. Biol. Assoc. 95(2), 265–276. https://doi.org/10.1017/S0025315414001696 (2015).Article 
    CAS 

    Google Scholar 
    Giongo, A. et al. Adaption of Microbial communities to the hostile environment in the Doce river after the collapse of two iron ore tailing dams. Heliyon https://doi.org/10.1016/j.heliyon.2020.e04778 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kelly, J. J., Häggblom, M. M. & Tate, R. L. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biol. Fertil. Soils 38(2), 65–71. https://doi.org/10.1007/s00374-003-0642-1 (2003).Article 
    CAS 

    Google Scholar 
    Baddar, Z. E., Peck, E. & Xu, X. Temporal deposition of copper and zinc in the sediments of metal removal constructed wetlands. PLoS ONE 16, 1–14. https://doi.org/10.1371/journal.pone.0255527 (2021).Article 
    CAS 

    Google Scholar 
    Li, X., Shen, Z., Wai, O. W. H. & Li, Y. S. Chemical partitioning of heavy metal contaminants in sediments of the Pearl River Estuary. Chem. Speciat. Bioavailab. 12(1), 17–25. https://doi.org/10.3184/095422900782775607 (2000).Article 
    CAS 

    Google Scholar 
    Müller, B. & Sigg, L. Interaction of trace metals with natural particle surfaces: Comparison between adsorption experiments and field measurements—Dedicated to Werner Stumm for his 65th birthday. Aquat. Sci. 52(1), 75–92. https://doi.org/10.1007/BF00878242 (1990).Article 

    Google Scholar 
    Bradl, H. B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 277(1), 1–18. https://doi.org/10.1016/j.jcis.2004.04.005 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Siegel, F. R. Environmental Geochemistry of Potentially Toxic Heavy Metals (Springer-Verlag, 2002).Book 

    Google Scholar 
    Vig, K., Megharaj, M., Sethunathan, N. & Naidu, R. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Adv. Environ. Res. 8(1), 121–135. https://doi.org/10.1016/S1093-0191(02)00135-1 (2003).Article 
    CAS 

    Google Scholar 
    Nicolau, A., Mota, M. & Lima, N. Physiological responses of tetrahymena pyriformis to copper, zinc, cycloheximide and triton X-100. FEMS Microbiol. Ecol. 30(3), 209–216. https://doi.org/10.1016/S0168-6496(99)00057-4 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Admiraal, W. et al. Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Water Res. 33(9), 1989–1996. https://doi.org/10.1016/S0043-1354(98)00426-6 (1999).Article 
    CAS 

    Google Scholar 
    Bradac, P., Navarro, E., Odzak, N., Behra, R. & Sigg, L. Kinetics of cadmium accumulation in periphyton under freshwater conditions. Environ. Toxicol. Chem. 28(10), 2108–2116. https://doi.org/10.1897/08-511R1.1 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Collard, J. & Matagne, R. F. Cd2+ resistance in wild-type and mutant strains of Chlamydomonas reinhardtii. Environ. Exp. Bot. 34(2), 235–244 (1994).Article 
    CAS 

    Google Scholar 
    Wright, R. J., Gibson, M. I. & Christie-Oleza, J. A. Understanding microbial community dynamics to improve optimal microbiome selection. Microbiome 7(1), 1–14. https://doi.org/10.1186/s40168-019-0702-x (2019).Article 

    Google Scholar 
    Buffle, J. The key role of environmental colloids/nanoparticles for the sustainability of life. Environ. Chem. 3(3), 155–158. https://doi.org/10.1071/ENv3n3_ES (2006).Article 
    CAS 

    Google Scholar 
    Nowack, B. & Bucheli, T. D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150(1), 5–22. https://doi.org/10.1016/j.envpol.2007.06.006 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fetzer, I. et al. The extent of functional redundancy changes as species’ roles shift in different environments. Proc. Natl. Acad. Sci. U. S. A. 112(48), 14888–14893. https://doi.org/10.1073/pnas.1505587112 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Biggs, C. R. et al. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere https://doi.org/10.1002/ecs2.3184 (2020).Article 

    Google Scholar 
    Fleeger, J. W. How do indirect effects of contaminants inform ecotoxicology? A review. Processes https://doi.org/10.3390/pr8121659 (2020).Article 

    Google Scholar 
    Oriekhova, O. & Stoll, S. Heteroaggregation of nanoplastic particles in the presence of inorganic colloids and natural organic matter. Environ. Sci. Nano. 5(3), 792–799. https://doi.org/10.1039/c7en01119a (2018).Article 
    CAS 

    Google Scholar 
    Rowenczyk, L. et al. Heteroaggregates of polystyrene nanospheres and organic matter: Preparation, characterization and evaluation of their toxicity to algae in environmentally relevant conditions. Nanomaterials 11(2), 1–15. https://doi.org/10.3390/nano11020482 (2021).Article 
    CAS 

    Google Scholar 
    Saavedra, J., Stoll, S. & Slaveykova, V. I. Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton. Environ. Pollut. 252, 715–722. https://doi.org/10.1016/j.envpol.2019.05.135 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bižic-Ionescu, M., Ionescu, D. & Grossart, H. P. Organic particles: Heterogeneous hubs for microbial interactions in aquatic ecosystems. Front. Microbiol. 9, 1–15. https://doi.org/10.3389/fmicb.2018.02569 (2018).Article 

    Google Scholar 
    Lespes, G., Faucher, S. & Slaveykova, V. I. natural nanoparticles, anthropogenic nanoparticles, where is the Frontier?. Front. Environ. Sci. 8, 1–5. https://doi.org/10.3389/fenvs.2020.00071 (2020).Article 

    Google Scholar 
    Stabnikova, O. et al. Microbial life on the surface of microplastics in natural waters. Appl. Sci. 11(24), 1–19. https://doi.org/10.3390/app112411692 (2021).Article 
    CAS 

    Google Scholar 
    Suominen, S., Doorenspleet, K., Sinninghe Damsté, J. S. & Villanueva, L. Microbial community development on model particles in the deep sulfidic waters of the Black Sea. Environ. Microbiol. 23(6), 2729–2746. https://doi.org/10.1111/1462-2920.15024 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wagner, S., Gondikas, A., Neubauer, E., Hofmann, T. & von der Kammer, F. Spot the difference: Engineered and natural nanoparticles in the environment-release, behavior, and fate. Angew. Chem. Int. Ed. 53(46), 12398–12419. https://doi.org/10.1002/anie.201405050 (2014).Article 
    CAS 

    Google Scholar 
    Amelia, T. S. et al. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Prog. Earth Planet. Sci. https://doi.org/10.1186/s40645-020-00405-4 (2021).Article 

    Google Scholar 
    Liu, J., Huang, J. & Che, F. Microalgae as feedstocks for biodiesel production. In Biodiesel—Feedstocks and Processing Technologies (ed. Stoytcheva, M.) (InTech, 2011). https://doi.org/10.5772/25600.Chapter 

    Google Scholar 
    Takamura, N., Kasai, F. & Watanabe, M. M. Effects of Cu, Cd and Zn on photosynthesis of freshwater benthic algae. J. Appl. Phycol. 1(1), 39–52. https://doi.org/10.1007/BF00003534 (1989).Article 
    CAS 

    Google Scholar 
    Brembu, T., Jørstad, M., Winge, P., Valle, K. C. & Bones, A. M. Genome-wide profiling of responses to cadmium in the diatom Phaeodactylum tricornutum. Environ. Sci. Technol. 45(18), 7640–7647. https://doi.org/10.1021/es2002259 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fernandez, J. C. & Henriques, F. S. Biochemical, physiological and structural effects of excess copper in plants. Bot. Rev. 57(3), 246–273 (1991).Article 

    Google Scholar 
    Haq, R. U., Rehman, A. & Shakoori, A. R. Effect of dichromate on population and growth of various protozoa isolated from industrial effluents. Folia Microbiol. 45(3), 275–278. https://doi.org/10.1007/bf02908959 (2000).Article 
    CAS 

    Google Scholar 
    Rehman, A., Shakoori, F. R. & Shakoori, A. R. Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals. Bioresour. Technol. 99(9), 3890–3895. https://doi.org/10.1016/j.biortech.2007.08.007 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rehman, A., Ashraf, S., Qazi, J. I. & Shakoori, A. R. Uptake of lead by a ciliate, stylonychia mytilus, isolated from industrial effluents: Potential use in bioremediation of wastewater. Bull. Environ. Contam. Toxicol. 75(2), 290–296. https://doi.org/10.1007/s00128-005-0751-7 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shakoori, A. R., Rehman, A. & ul-Haq, R. Multiple metal resistance in the ciliate protozoan, vorticella microstoma, isolated from industrial effluents and its potential in bioremediation of toxic wastes. Bull. Environ. Contam. Toxicol. 72(5), 1046–1051. https://doi.org/10.1007/s00128-004-0349-5 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Falasco, E. et al. Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. Water SA 35(5), 595–606. https://doi.org/10.4314/wsa.v35i5.49185 (2009).Article 
    CAS 

    Google Scholar 
    Tadros, M. G., Mbuthia, P. & Smith, W. Differential response of marine diatoms to trace metals. Bull. Environ. Contam. Toxicol. 44(6), 826–831. https://doi.org/10.1007/BF01702170 (1990).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wanner, M. et al. Soil testate amoebae and diatoms as bioindicators of an old heavy metal contaminated floodplain in Japan. Microb. Ecol. 79(1), 123–133. https://doi.org/10.1007/s00248-019-01383-x (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shi, J., Podola, B. & Melkonian, M. Application of a prototype-scale twin-layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour. Technol. 154, 260–266. https://doi.org/10.1016/j.biortech.2013.11.100 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, T., Lin, G., Podola, B. & Melkonian, M. Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR. J. Hazard. Mater. 297, 112–118. https://doi.org/10.1016/j.jhazmat.2015.04.080 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bruning, K. Infection of the diatom Asterionella by a chytrid. I. Effects of light on reproduction and infectivity of the parasite. J. Plankton Res. 13(1), 103–117. https://doi.org/10.1093/plankt/13.1.103 (1991).Article 

    Google Scholar 
    Carney, L. T. & Lane, T. W. Parasites in algae mass culture. Front. Microbiol. 5, 1–8. https://doi.org/10.3389/fmicb.2014.00278 (2014).Article 

    Google Scholar 
    Hanic, L. A., Sekimoto, S. & Bates, S. S. Oomycete and chytrid infections of the marine diatom Pseudo-nitzschia pungens (Bacillariophyceae) from Prince Edward Island. Botany 87(11), 1096–1105. https://doi.org/10.1139/B09-070 (2009).Article 
    CAS 

    Google Scholar 
    Sun, A. et al. Fertilization alters protistan consumers and parasites in crop-associated microbiomes. Environ. Microbiol. 23(4), 2169–2183. https://doi.org/10.1111/1462-2920.15385 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Scholz, B., Guillou, L., Marano, A. V., Neuhauser, S. & Brooke, K. Europe PMC funders group zoosporic parasites infecting marine diatoms—A black box that needs to be opened. Fungal Ecol. https://doi.org/10.1016/j.funeco.2015.09.002.Zoosporic (2017).Article 

    Google Scholar 
    Peacock, E. E., Olson, R. J. & Sosik, H. M. Parasitic infection of the diatom Guinardia delicatula, a recurrent and ecologically important phenomenon on the New England Shelf. Mar. Ecol. Prog. Ser. 503, 1–10. https://doi.org/10.3354/meps10784 (2014).Article 
    ADS 

    Google Scholar 
    Duarte, S., Pascoal, C. & Cássio, F. Effects of zinc on leaf decomposition by fungi in streams: Studies in microcosms. Microb. Ecol. 48(3), 366–374. https://doi.org/10.1007/s00248-003-2032-5 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kammerlander, B. et al. High diversity of protistan plankton communities in remote high mountain lakes in the European Alps and the Himalayan Mountains. FEMS Microbiol. Ecol. 91(4), 1–10. https://doi.org/10.1093/femsec/fiv010 (2015).Article 
    CAS 

    Google Scholar 
    Sieber, G., Beisser, D., Bock, C. & Boenigk, J. Protistan and fungal diversity in soils and freshwater lakes are substantially different. Sci. Rep. 10(1), 1–11. https://doi.org/10.1038/s41598-020-77045-7 (2020).Article 
    CAS 

    Google Scholar 
    Gunaalan, K., Fabbri, E. & Capolupo, M. The hidden threat of plastic leachates: A critical review on their impacts on aquatic organisms. Water Res. https://doi.org/10.1016/j.watres.2020.116170 (2020).Article 
    PubMed 

    Google Scholar 
    Tetu, S. G., Sarker, I., Schrameyer, V., Pickford, R., Elbourne, L. D., Moore, L.R. & Paulsen, I.T. Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Commun. Biol. 2(1), 1–9. https://doi.org/10.1038/s42003-019-0410-x (2019).Gouin, T., Roche, N., Lohmann, R. & Hodges, G. A Thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environ. Sci. Technol. 45(4), 1466–1472. https://doi.org/10.1021/es1032025 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lohmann, R. Microplastics are not important for the cycling and bioaccumulation of organic pollutants in the oceans—But should microplastics be considered POPs themselves?. Integr. Environ. Assess. Manag. 13(3), 460–465. https://doi.org/10.1002/ieam.1914 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sukkasem, C. & Laehlah, S. An economical upflow bio-filter circuit (UBFC): A biocatalyst microbial fuel cell for sulfate-sulfide rich wastewater treatment. Environ. Sci. 1(2), 161–168. https://doi.org/10.1039/c4ew00028e (2015).Article 
    CAS 

    Google Scholar 
    Abatenh, E., Gizaw, B., Tsegaye, Z. & Wassie, M. The role of microorganisms in bioremediation-A review. Open J. Environ. Biol. 2(1), 38–46. https://doi.org/10.17352/ojeb (2017).Article 

    Google Scholar 
    Zrimec, J., Kokina, M., Jonasson, S., Zorrilla, F. & Zelezniak, A. Plastic-degrading potential across the global microbiome correlates with recent pollution trends. MBio https://doi.org/10.1128/mBio (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siver, P. A. Synurophyte algae. In Freshwater Algae of North America. Ecology and classification (eds Wehr, J. D. & Sheath, R. G.) 523–558 (Elsevier, 2003).Chapter 

    Google Scholar 
    Andersen, R. A. Molecular systematics of the chrysophyceae and synurophyceae. In Unravelling the Algae: The Past, Present, and Future of Algal Systematics (eds Brodie, J. & Lewis, J.) 285–314 (CRC Press, Boca Raton, 2007).Chapter 

    Google Scholar 
    Engin, I. K., Cekmecelioglu, D., Yücel, A. M. & Oktem, H. A. Evaluation of heterotrophic and mixotrophic cultivation of novel Micractinium Sp. ME05 on vinasse and its scale up for biodiesel production. Bioresour. Technol. 251, 128–134. https://doi.org/10.1016/j.biortech.2017.12.023 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Patrick, R. Ecology of freshwater diatoms and diatom communities. In The Biology of Diatoms (ed. Werner, D.) 284–332 (University of California Press, 1977).
    Google Scholar 
    Findenig, B. M., Chatzinotas, A. & Boenigk, J. Taxonomic and ecological characterization of stomatocysts of spumella-like flagellates (Chrysophyceae). J. Phycol. 46(5), 868–881. https://doi.org/10.1111/j.1529-8817.2010.00892.x (2010).Article 

    Google Scholar 
    Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E. & Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 45(1), 11–36. https://doi.org/10.1016/j.watres.2010.08.037 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Preisig, H. R. & Hibberd, D. J. Ultrastructure and taxonomy of Paraphysomonas (Chrysophyceae) and related genera 3. Nord. J. Bot. 3(6), 695–723. https://doi.org/10.1111/j.1756-1051.1983.tb01481.x (1983).Article 

    Google Scholar 
    Atkins, M. S. et al. Tolerance of flagellated protists to high sulfide and metal concentrations potentially encountered at deep-sea hydrothermal vents. Mar. Ecol. Prog. Ser. 226, 63–75. https://doi.org/10.3354/meps226063 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Manru, G., Weisong, F. & Yunfen, S. Ecological study on protozoa in the sediment of the three-gorges area of the Changjiang River. Chin. J. Oceanol. Limnol. 6(3), 272–280. https://doi.org/10.1007/BF02846505 (1988).Article 

    Google Scholar 
    Tomilina, I. I., Gremyachikh, V. A., Myl’Nikov, A. P. & Komov, V. T. The effect of metal oxide nanoparticles (CeO2, TiO2, and ZnO) on biological parameters of freshwater nanoflagellates and crustaceans. Dokl. Biol. Sci. 436(1), 53–55. https://doi.org/10.1134/S0012496611010169 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schampera, C. et al. Exposure to nanoplastics affects the outcome of infectious disease in phytoplankton. Environ. Pollut. https://doi.org/10.1016/j.envpol.2021.116781 (2021).Article 
    PubMed 

    Google Scholar 
    Gonçalves, J. M., Sousa, V. S., Teixeira, M. R. & Bebianno, M. J. Chronic toxicity of polystyrene nanoparticles in the marine mussel Mytilus galloprovincialis. Chemosphere https://doi.org/10.1016/j.chemosphere.2021.132356 (2021).Article 
    PubMed 

    Google Scholar 
    Kelpsiene, E., Torstensson, O., Ekvall, M. T., Hansson, L. A. & Cedervall, T. Long-term exposure to nanoplastics reduces life-time in Daphnia magna. Sci. Rep. 10(1), 1–7. https://doi.org/10.1038/s41598-020-63028-1 (2020).Article 
    CAS 

    Google Scholar 
    Amin, N. M. Techniques for assessment of heavy metal toxicity using Acanthamoeba Sp, a small, naked and free-living amoeba. Funct. Ecosyst. https://doi.org/10.5772/36008 (2012).Article 

    Google Scholar 
    Amin, N. M., Azhar, N. & Shazili, M. Cytotoxic effects of mercury, cadmium, lead and zinc on Acanthamoeba Castellanii (2006).Gnecco, I., Berretta, C., Lanza, L. G. & la Barbera, P. Storm water pollution in the urban environment of Genoa, Italy. Atmos. Res. 77, 60–73. https://doi.org/10.1016/j.atmosres.2004.10.017 (2005).Article 
    CAS 

    Google Scholar 
    Heim, R. R. An overview of weather and climate extremes—Products and trends. Weather Clim. Extrem. 10, 1–9. https://doi.org/10.1016/j.wace.2015.11.001 (2015).Article 

    Google Scholar 
    Saiki, M. K., Castleberry, D. T., May, T. W., Martin, B. A. & Bullard, F. N. Copper, cadmium, and zinc concentrations in aquatic food chains from the upper Sacramento River (California) and selected tributaries. Arch. Environ. Contam. Toxicol. 29(4), 484–491. https://doi.org/10.1007/BF00208378 (1995).Article 
    CAS 

    Google Scholar 
    Wagner, S. et al. Tire wear particles in the aquatic environment—A review on generation, analysis, occurrence, fate and effects. Water Res. 139, 83–100. https://doi.org/10.1016/j.watres.2018.03.051 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, L., Zhao, B., Xu, G. & Guan, Y. Characterizing fluvial heavy metal pollutions under different rainfall conditions: Implication for aquatic environment protection. Sci. Total Environ. 635, 1495–1506. https://doi.org/10.1016/j.scitotenv.2018.04.211 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zhao, B. et al. Characterization of nitrosamines and nitrosamine precursors as non-point source pollutants during heavy rainfall events in an urban water environment. J. Hazard. Mater. 424, 127552. https://doi.org/10.1016/j.jhazmat.2021.127552 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hüffer, T., Wagner, S., Reemtsma, T. & Hofmann, T. Sorption of organic substances to tire wear materials: Similarities and differences with other types of microplastic. TrAC Trends Anal. Chem. 113, 392–401. https://doi.org/10.1016/j.trac.2018.11.029 (2019).Article 
    CAS 

    Google Scholar 
    Tamis, J. E. et al. Environmental risks of car tire microplastic particles and other road runoff pollutants. Microplastics Nanoplastics 1(1), 1–17. https://doi.org/10.1186/s43591-021-00008-w (2021).Article 

    Google Scholar 
    Chèvre, N. et al. Substance flow analysis as a tool for urban water management. Water Sci. Technol. 63(7), 1341–1348. https://doi.org/10.2166/wst.2011.132 (2011).Article 
    PubMed 

    Google Scholar 
    Šourková, M., Adamcová, D. & Vaverková, M. D. The influence of microplastics from ground tyres on the acute, subchronical toxicity and microbial respiration of soil. Environ. MDPI 8(11), 1–14. https://doi.org/10.3390/environments8110128 (2021).Article 

    Google Scholar 
    Ye, G., Zhang, X., Yan, C., Lin, Y. & Huang, Q. Polystyrene microplastics induce microbial dysbiosis and dysfunction in surrounding seawater. Environ. Int. 156, 106724. https://doi.org/10.1016/j.envint.2021.106724 (2021).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Ornamental roses for conservation of leafcutter bee pollinators

    Potts, S. G. et al. (eds.). IPBES: The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany) (2016).Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).PubMed 

    Google Scholar 
    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).PubMed 

    Google Scholar 
    Majewska, A. A. & Altizer, S. Planting gardens to support insect pollinators. Conserv. Biol. 34, 15–25 (2020).PubMed 

    Google Scholar 
    Image, M. et al. Does agri-environment scheme participation in England increase pollinator populations and crop pollination services?. Agric. Ecosyst. Environ. 325, 107755 (2022).
    Google Scholar 
    Vaissière, B., Freitas, B. M. & Gemmill-Herren, B. Protocol to Detect and Assess Pollination Deficits in Crops: A Handbook for Its Use (FAO, 2011).
    Google Scholar 
    Archer, C. R., Pirk, C. W. W., Carvalheiro, L. G. & Nicolson, S. W. Economic and ecological implications of geographic bias in pollinator ecology in the light of pollinator declines. Oikos 123, 401–407 (2014).
    Google Scholar 
    M’Gonigle, L. K., Ponisio, L. C., Cutler, K. & Kremen, C. Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture. Ecol. Appl. 25, 1557–1565 (2015).PubMed 

    Google Scholar 
    Garbuzov, M. & Ratnieks, F. L. W. Listmania: The strengths and weaknesses of lists of garden plants to help pollinators. Bioscience 64, 1019–1026 (2014).
    Google Scholar 
    Garbuzov, M. & Ratnieks, F. L. W. Quantifying variation among garden plants in attractiveness to bees and other flower-visiting insects. Funct. Ecol. 28, 364–374 (2014).
    Google Scholar 
    Garbuzov, M., Alton, K. & Ratnieks, F. L. W. Most ornamental plants on sale in garden centres are unattractive to flower-visiting insects. PeerJ 5, e3066 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Nichols, R. N., Goulson, D. & Holland, J. M. The best wildflowers for wild bees. J. Insect Conserv. 23, 819–830 (2019).
    Google Scholar 
    Harmon-Threatt, A. Influence of nesting characteristics on health of wild bee communities. Annu. Rev. Entomol. 65, 39–56 (2020).CAS 
    PubMed 

    Google Scholar 
    Requier, F. & Leonhardt, S. D. Beyond flowers: Including non-floral resources in bee conservation schemes. J. Insect Conserv. 24, 5–16 (2020).
    Google Scholar 
    Sinu, P. A. & Bronstein, J. L. Foraging preferences of leafcutter bees in three contrasting geographical zones. Divers. Distrib. 24, 621–628 (2018).
    Google Scholar 
    Cecala, J. M. & Rankin, E. E. Pollinators and plant nurseries: How irrigation and pesticide treatment of native ornamental plants impact solitary bees. Proc. R. Soc. B Biol. Sci. 288, 20211287 (2021).
    CAS 

    Google Scholar 
    Gonzalez, V. H., Gustafson, G. T. & Engel, M. S. Morphological phylogeny of Megachilini and the evolution of leaf-cutter behavior in bees (Hymenoptera: Megachilidae). J. Melittology 85, 1–123 (2019).
    Google Scholar 
    Kambli̇, S. S. et al. M. S. Aiswarya, K. Manoj, S. Varma, G. Asha, T. P. Rajesh, P. A. Sinu, Leaf foraging sources of leafcutter bees in a tropical environment: Implications for conservation. Apidologie 48, 473–482 (2017).Ascher, J. S. & Pickering, J. Discover Life Bee Species Guide and World Checklist (Hymenoptera: Apoidea: Anthophila) (2019).McCabe, L. M., Aslan, S. E. & Cobb, N. S. Decreased bee emergence along an elevation gradient: implications for climate change revealed by a transplant experiment. Ecology 103, e03598 (2021).PubMed 

    Google Scholar 
    Pitts-Singer, T. L. & Cane, J. H. The Alfalfa leafcutting bee, Megachile rotundata: The worlds most intensively managed solitary bee. Annu. Rev. Entomol. 56, 221–237 (2011).CAS 
    PubMed 

    Google Scholar 
    MacIvor, J. S. & Packer, L. “Bee hotels” as tools for native pollinator conservation: A premature verdict?. PLoS ONE 10, e0122126 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Maclvor, J. S. DNA barcoding to identify leaf preference of leafcutting bees. R. Soc. Open Sci. 3, 150623 (2016).ADS 

    Google Scholar 
    Wissemann, V. & Ritz, C. M. The genus Rosa (Rosoideae, Rosaceae) revisited: Molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy. Botanical J. Linn. Soc. 147, 275–290 (2005).
    Google Scholar 
    Wang, G. Study on the history of Chinese roses from ancient works and images. Acta Hort. 751, 347–356 (2007).
    Google Scholar 
    Nybom, H. & Werlemark, G. Realizing the potential of health-promoting rosehips from dogroses (Rosa sect. Caninae). Curr. Bioact. Compd. 13, 3–17 (2016).
    Google Scholar 
    Chang, Y. Z., Chen, H. M. & Qi, R. S. Ornamental pest—studies on leafcutting bees Megachile subtranquilla Yasumatsu. Acta Agriculturae Universitatis Pekinensis 15, 208–213 (1989).
    Google Scholar 
    Stroom, K., Fetzer, J. & Krischik, V. Insect Pests of Roses. 1–12 (Minnesota Extension Service, University of Minnesota, 1997).Knox, G. W., Paret, M. & Mizell, R. F. III. Pests of roses in Florida (2008).Hayward, A. et al. The leafcutter bee, Megachile rotundata, is more sensitive to N-cyanoamidine neonicotinoid and butenolide insecticides than other managed bees. Nat. Ecol. Evol. 3, 1521–1524 (2019).PubMed 

    Google Scholar 
    Fox, J. et al. Package ‘car’, Vol. 16, (R Foundation for Statistical Computing, 2012).K. Barton, Package Multi-Model Inference (MuMIn). https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf (2013).Hartig, F. & Hartig M. F. Package ‘DHARMa’:R package (2017).R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).Boff, S., Raizer, J. & Lupi, D. Environmental display can buffer the effect of pesticides on solitary bees. Insects. 11, 1–15 (2020).
    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA. 108, 662–667 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232 (2020).CAS 
    PubMed 

    Google Scholar 
    Kopit, A. M. & Pitts-Singer, T. L. Routes of pesticide exposure in solitary, cavity-nesting bees. Environ. Entomol. 47, 499–510 (2018).CAS 

    Google Scholar 
    Pitts-Singer, T. L. & Barbour, J. D. Effects of residual novaluron on reproduction in alfalfa leafcutting bees, Megachile rotundata F. (Megachilidae). Pest Manag. Sci. 73, 153–159 (2017).CAS 
    PubMed 

    Google Scholar 
    McKinney, M. L. Urbanization, biodiversity, and conservation. Bioscience 52, 883–890 (2002).
    Google Scholar 
    Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Choate, B. A., Hickman, P. L. & Moretti, E. A. Wild bee species abundance and richness across an urban–rural gradient. J. Insect Conserv. 22, 391–403 (2018).
    Google Scholar 
    Theodorou, P. et al. Pollination services enhanced with urbanization despite increasing pollinator parasitism. Proc. R. Soc. B Biol. Sci. 283, 20160561 (2016).
    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 1–13 (2020).
    Google Scholar 
    Rocha-Filho, L. C., Martins, A. C. & Marchi, P. Notes on a nest of Megachile (Moureapis) apicipennis Schrottky (Megachilidae) constructed in an abandoned gallery of Xylocopa frontalis (Olivier) (Apidae). Sociobiology 64, 442–450 (2017).
    Google Scholar 
    Sheffield, C. S. Unusual nesting behavior in Megachile (Eutricharaea) rotundata (Hymenoptera: Megachilidae). J. Melittol. 69, 1–6 (2017).
    Google Scholar 
    Krischik, V., Rogers, M., Gupta, G. & Varshney, A. Soil-applied imidacloprid translocates to ornamental flowers and reduces survival of adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens lady beetles, and larval Danaus plexippus and Vanessa cardui butterflies. PLoS ONE 10, e0119133 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Senapathi, D. et al. The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proc. R. Soc. B Biol. Sci. 282, 20150294 (2015).
    Google Scholar 
    Potts, S. G. et al. Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol. Entomol. 30, 78–85 (2005).
    Google Scholar 
    Acar, C., Acar, H. & Eroǧlu, E. Evaluation of ornamental plant resources to urban biodiversity and cultural changing: A case study of residential landscapes in Trabzon city (Turkey). Build. Environ. 42, 218–229 (2007).
    Google Scholar 
    Wang, H. F., Qureshi, S., Knapp, S., Friedman, C. R. & Hubacek, K. A basic assessment of residential plant diversity and its ecosystem services and disservices in Beijing, China. Appl. Geogr. 64, 121–131 (2015).
    Google Scholar 
    Pergl, J. et al. Dark side of the fence: ornamental plants as a source of wildgrowing flora in the Czech Republic. Preslia 88, 163–184 (2016).
    Google Scholar 
    Avolio, M. et al. Urban plant diversity in Los Angeles, California: Species and functional type turnover in cultivated landscapes. Plants People Planet. 2, 144–156 (2020).
    Google Scholar 
    Orr, M. C. et al. Global patterns and drivers of bee distribution. Curr. Biol. 31, 451–458 (2021).CAS 
    PubMed 

    Google Scholar 
    Sinu, P. A., Kuriakose, G. & Shivanna, K. R. Is the bumblebee (Bombus haemorrhoidalis) the only pollinator of large cardamom in central Himalayas, India?. Apidologie 42, 690–695 (2012).
    Google Scholar 
    Veereshkumar, V. V. & Gupta, A. Parasitisation of leaf-cutter bees (Megachilidae: Apoidea) by Melittobia. Entomon 40, 105–112 (2015).
    Google Scholar 
    Cecala, J. M. & Wilson Rankin, E. E. Petals and leaves: Quantifying the use of nest building materials by the world’s most valuable solitary bee. Ecology 103, e03584 (2021).PubMed 

    Google Scholar 
    Soh, E. J. Y., Soh, Z. W. W., Ascher, J. S. & Tan, H. T. W. Diversity of plants with leaves cut by bees of the genus Megachile in Singapore. Nat. Singap. 12, 63–74 (2019).
    Google Scholar 
    MacIvor, J. S. & Moore, A. E. Bees collect polyurethane and polyethylene plastics as novel nest materials. Ecosphere 4, 155 (2013).
    Google Scholar 
    Allasino, M. L., Marrero, H. J., Dorado, J. & Torretta, J. P. Scientific note: First global report of a bee nest built only with plastic. Apidologie 50, 230–233 (2019).
    Google Scholar  More

  • in

    Radiation dose and gene expression analysis of wild boar 10 years after the Fukushima Daiichi Nuclear Plant accident

    SamplesThe intestine and muscle samples from 22 wild boars were collected between September 4 and March 2, 2020, in Namie town in Fukushima prefecture. Furthermore, control intestine samples were collected from three wild boars in Hyogo prefecture. Each location is depicted in Fig. 1. In each case, after the licensed hunters slaughtered the wild boar to be exterminated, only the tissue was transferred to the study.Measurement of radioactivityRadioactivity in the muscle samples was determined by gamma-ray spectrometry using high-purity germanium (HPGe) detectors (Ortec Co., Oak Ridge, TN, USA), as described in our previous report3. Gamma rays from 137Cs were observed.Exposure dose estimationIn order to estimate internal and external dose rates of the wild boars according to the ICRP publication 10826, we supposed the shapes of wild boars as prolate spheroids whose long axis was to be their body lengths. The short axis was given from their weight assuming their specific gravities were the same
    as water. The dose rates were calculated from the contribution of 137Cs, not including
    natural radionuclides. The energy deposition to the spheroids by beta and gamma rays from radionuclides were calculated by the numerical simulation with the use of the Particle and Heavy Ion Transport code System (PHITS)27. For the sake of simplicity, we supposed the spheroids consisted of only muscle, which would give overestimated values because muscle contains more radio cesium than other organs. The external exposure dose was calculated from the air dose rates which were observed from the monitoring post near the boars captured place. The average values of the air dose rates were obtained from fitting observed data of two years with decay curve. The background due to the natural radionuclides was estimated to be 0.05 µGy/h which was observed before the Fukushima Daiichi accident, and was removed before the fittings. The half-lives of the air dose rates were 2000–3000 days depending on the environment. Assuming the external exposure dose was ascribed to the 137Cs included in the surface of the ground. The amount of the 137Cs was calculated so as to reproduce the observed air does rates. Since the maximum range of the beta ray from 137Cs is a few millimeters, almost all of the beta ray from inside the body should be absorbed in the boar’s body, but the beta ray from outside the body would stop in its fur. The beta rays contribute 100% to internal exposure dose but 0% to external one. Since the linear attenuation coefficient for gamma rays from 137Cs is 0.084 cm−1 = (12 cm)−1, some of the gamma rays cannot stop in the body depending on the size of the body. The numerical simulation suggested that 65–90 percent of the gamma rays from 137Cs inside the body would go out, and 40–65 percent of the gamma rays from 137Cs outside would go through the body.Pathological analysisA piece of the small intestine was fixed in 10% neutral formalin at 4 °C for 24–48 h. Then, paraffin blocks were prepared for pathomorphological examination using hematoxylin and eosin (HE) staining.Gene expression analysisTotal RNA was extracted from the whole tissue of the intestine using TRIzol Reagent (Life Technologies, Inc., Frederic, MD, USA) according to the manufacturer’s instructions. RNA concentration was measured using a NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE, USA), and cDNA was synthesized using random primers and SuperScript II (Life Technologies, Inc.). Real-time PCR for IFN-γ, TLR3, and CyclinG1 was performed using Brilliant SYBR Green QPCR Master Mix III (Stratagene, La Jolla, CA, USA) with an AriaMx system (Agilent Technologies, Santa Clara, CA, USA). Primer sequences were designed using Primer-BLAST with sequences obtained from GenBank as described in the previous report4. Amplification conditions were 95 °C for 3 min, 40 cycles at 95 °C for 5 s, and 60 °C for 20 s. Fluorescence signals measured during the amplification were analyzed. Ribosomal RNA primers were used as an internal control, and all data were normalized to constitutive rRNA values. Quantitative differences between the groups were analyzed using the AriaMx software (Agilent Technologies).Statistical analysisAll data are presented as mean ± standard error (SE) for each treatment group. Differences in mRNA expression among the groups were determined using the unpaired t-test with Welch’s correction. (Prism: GraphPad Software Inc., La Jolla, CA, USA). Differences were considered to be statistically significant at a P value of  More

  • in

    A combined microbial and biogeochemical dataset from high-latitude ecosystems with respect to methane cycle

    Sites overview and characteristicsThis study focused on three regions located in subantarctic, arctic, and subarctic latitudes. The respective latitudinal and longitudinal ranges covered in this study were: 54.95 to 52.08 °S, and 72.03 to 67.34 °W in Patagonia; 67.44 to 67.54 °N, and 86.59 to 86.71 °E in Siberia; 63.21 to 68.63 °N, and −150.79 to −145.98 °W in Alaska (Figs. 1 and 2). The exact coordinates for each sample were included in the submitted dataset. The field campaigns were conducted in 2016, during the summer for each respective region: January-February in Chilean Patagonia, June-July in Alaska and July-August in Siberia.Fig. 1Location of the three areas included in this study (panel a). The permafrost state and the number of sites and samples per region is indicated for each area. General views of 5 sites are provided as examples (b–f). Panel B provides a large view of the ecosystem surrounding the wetland ALP2 (Alaska, exact location indicated by the white circle). Lake PCL1 (panel c) is representative of the lakes on Navarino island (Chilean Patagonia). The glacial lake SIL2 is shown in panel d. At site SIP5, the hollow at first plan is surrounded by palsa (hummock, second plan), characterized by dark organic matter and lichen vegetation (panel e). The PPP3 peatland shown in panel f is dominated by Sphagnum magellanicum, like most peatlands in the area.Full size imageFig. 2Maps of sampling sites in Patagonia, Alaska and Siberia, indicating the ecosystem type (lake, wetland, soil). The tables show the complete- (in white) and the partial- (in grey) characterization sites. The exact coordinates of each sample are provided in the data record (See data records section).Full size imageFor every site included in the present study, a set of nine qualitative environmental and/or ecological site-scale descriptors was selected and adapted from ENVO Environment Ontology40, which included for example permafrost state, biome, environmental feature and vegetation type (Table 1, Fig. 3). Permafrost state was obtained from the NSIDC permafrost map41. The biome, large-scale descriptor based on climate and vegetation criteria, was derived from Olson et al.42. Temperate forest, boreal forest, and tundra biomes were included. The environmental features that were representative for the three regions were considered: lakes, wetlands, broadleaf/coniferous/mixed forest soils, grassland, tundra, and palsa. All the metadata was included in the submitted dataset. Table 2 summarizes the main types of sampled ecosystems and their main characteristics in the three regions, while Supplementary Table S1 provides the details of each sampling site.Table 1 Overview of the dataset contained in Mimarks sheet.Full size tableFig. 3Description of the qualitative environmental/ecological descriptors used to describe every sample, derived from ENVO Environment Ontology40.Full size imageTable 2 Main types of sampled ecosystems in the three studied regions.Full size tableIn Alaska, the studied area ranged from the Alaska Range and Fairbanks area (interior, continental climate, 63–65°N, discontinuous permafrost) up to Toolik Field Station (North Slope, arctic climate, 66–69°N, continuous permafrost; Fig. 2). The physiochemistry and CH4 emissions of lakes ALL1 (Killarney lake), ALL2 (Otto lake), ALL3 (Nutella lake), and ALL4 (Goldstream lake) were previously characterized35. A number of heterogeneous soil and wetland samples were collected around the studied Alaskan lakes and/or from monitored sites, as detailed in Supplementary Table S1. In the Alaska Range and Fairbanks area, soils were mostly covered by mixed or taiga forests, alpine tundra, and bogs or fens wetlands. In the norther Brooks Ranges mountain system, the landscape was piedmont hills with a predominant soil of porous organic peat underlain by silt and glacial till, all in a permafrost state, characterized mainly by Sphagnum and Eriophorum vegetation, as well as dwarf shrubs.In Siberia, the studied area was located in the discontinuous permafrost region surrounding Igarka, on the eastern bank of the Yenisei River (Fig. 2). This region was mainly covered by forest, dominated by larch (Larix Siberica), birch (Betula Pendula), and Siberian pine (Pinus Siberica), and palsa landscapes (frozen peat mounts), the latter being dominated by moss, lichens, Labrador tea and dwarf birch. In degraded areas, thermokarst bogs were dominated by Sphagnum spp. and Eriophorum spp. Land cover was an indicator of permafrost status, since forested areas reflected a deep permafrost table ( >2 m) associated with Pleistocene permafrost, while palsa-dominated landscapes were indicative of the presence of near-surface ( More

  • in

    Some hope and many concerns on the future of the vaquita

    Davies EK, Peters AD, Keightley PD (1999) High frequency of cryptic deleterious mutations in Caenorhabditis elegans. Science 285:1748–1751Article 
    CAS 
    PubMed 

    Google Scholar 
    Eyre-Walker A, Keightley PD (2007) The distribution of fitness effects of new mutations. Nat Rev Genet 8:610–618Article 
    CAS 
    PubMed 

    Google Scholar 
    Eyre-Walker A, Keightley PD (2013) A comparison of models to infer the distribution of fitness effects of new mutations. Genetics 193:1197–1208Article 

    Google Scholar 
    Fry JD, Keightley PD, Heinsohn SL, Nuzhdi SV (1999) New estimates of the rates and effects of mildly deleterious mutation in Drosophila melanogaster. Proc Natl Acad Sci 96:574–579Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Dorado A (2007) Shortcut predictions for fitness properties at the mutation-selection-drift balance and for its buildup after size reduction under different management strategies. Genetics 176:983–997Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Dorado A (2012) Understanding and predicting the fitness decline of shrunk populations: inbreeding, purging, mutation, and standard selection. Genetics 190:1461–1476Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Dorado A (2015) On the consequences of ignoring purging on genetic recommendations for minimum viable population rules. Heredity 115:185–187Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Dorado A, Caballero A (2021) Neutral genetic diversity as a useful tool for conservation biology. Conserv Genet 22:541–545Article 

    Google Scholar 
    Garner BA, Hoban S, Luikart G (2020) IUCN Red List and the value of integrating genetics. Conserv Genet 21:795–801Article 

    Google Scholar 
    Hedrick PW, García-Dorado A (2016) Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol Evol 31:940–952Article 
    PubMed 

    Google Scholar 
    Kardos M, Armstrong EE, Fitzpatrick SW, Hauser S, Hedrick PW, Miller J et al. (2021) The crucial role of genome-wide genetic variation in conservation. Proc Natl Acad Sci USA 118:e2104642118Khan A, Patel A, Shukla H, Viswanathan A, van der Valk T, Borthakur U, … & Ramakrishnan U (2021) Genomic evidence for inbreeding depression and purging of deleterious genetic variation in Indian tigers. Proc. Natl. Acad. Sci. 118Kimura M, Maruyama T, Crow JF (1963) The mutation load in small populations. Genetics 48:1303–1312Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kimura M (1980) Average time until fixation of a mutant allele in a finite population under continued mutation pressure: Studies by analytical, numerical, and pseudo-sampling methods. Proc Natl Acad Sci 77:522–526Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morin PA, Archer FI, Avila CD, Balacco JR, Bukhman YV, Chow, W, … & Jarvis ED (2021) Reference genome and demographic history of the most endangered marine mammal, the vaquita. Mol Ecol Resour 21:1008–1020Mukai T (1964) The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50:1–19Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nietlisbach P, Muff S, Reid JM, Whitlock MC, Keller LF (2019) Nonequivalent lethal equivalents: Models and inbreeding metrics for unbiased estimation of inbreeding load. Evol Applic 12:266–279Article 

    Google Scholar 
    O’Grady JJ, Brook BW, Reed DH, Ballou JD, Tonkyn DW, Frankham R (2006) Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol Conserv 133:42–51Article 

    Google Scholar 
    Pérez-Pereira N, Caballero A, García-Dorado A (2021) Reviewing the consequences of genetic purging on the success of rescue programs. Conserv Gen 23:1–17Article 

    Google Scholar 
    Pérez-Pereira N, Wang J, Quesada H, Caballero A (2022). Prediction of the minimum effective size of a population viable in the long term. Biodivers Conserv https://doi.org/10.1007/s10531-022-02456-zRobinson JA, Kyriazis CC, Nigenda-Morales SF, Beichman AC, Rojas-Bracho L, Robertson KM et al. (2022) The critically endangered vaquita is not doomed to extinction by inbreeding depression. Science 376:635–639Article 
    CAS 
    PubMed 

    Google Scholar 
    Teixeira JC, Huber CD (2021) The inflated significance of neutral genetic diversity in conservation genetics. Proc Natl Acad Sci USA 118:e2015096118Wade EE, Kyriazis C, Cavassim MIA, Lohmueller KE (2022) Quantifying the fraction of new mutations that are recessive lethal. bioRxiv 1–24, https://www.biorxiv.org/content/10.1101/2022.04.22.489225v1 More

  • in

    A database of seed plants on taxonomy, geography and ecology in the Qinling-Daba Mountains and adjacent areas

    Each of the 23 key variables can be used for analysis. To validate the dataset, we used five plant-related variables (diversity of order, family, genus, species and species endemic to China) to demonstrate the process of using the dataset for analysis as follows:(1) For the four variables of plant taxa “order”, “family”, “genus” and “species”, the similarity and difference in spatial distribution pattern of diversity of different taxa in the Qinling-Daba Mountains climate transition zone were analyzed. The spatial distribution pattern of the diversity of the four taxa is shown in Fig. 3, which is increasingly lower from south (low latitude) to north (high latitude). This result is consistent with the classical latitudinal gradient model of plant diversity. The boundary between higher diversity in the south and lower diversity in the north is roughly located in the area of Funiu Mountains in the eastern Qinling-Daba Mountains, Taibai Mountains in the central Qinling-Daba Mountains and Baishui River in the western Qinling-Daba Mountains. However, with the reduction in taxon scale, the spatial distribution pattern of diversity tends to be complex. Orders (Fig. 3a) and families (Fig. 3b) can be divided by lines, while genera (Fig. 3c) need thicker lines, and species (Fig. 3d) can only be divided by polygons. Figure 3 shows that the taxonomic groups of families are more clearly divided, while species can only be divided by staggered bands. Therefore, when dividing the north–south boundary, the family taxon scale is appropriate, whereas the species scale is more appropriate when studying the north–south transition zone.Fig. 3Spatial distribution of diversity of orders, families, genera and species. (a) The blue dotted line is basically the dividing line of the order diversity of 50 species. The order diversity to the north of the blue dotted line is lower than 50 species, and the order diversity to the south of the blue dotted line is higher than 50 species. (b) The blue dotted line is basically the dividing line of the family diversity of 150 species. The family diversity to the north of the blue dotted line is lower than 150 species, and the family diversity to the south of the blue dotted line is higher than 150 species. (c) The thicker blue dotted line is basically the dividing line of genus diversity of 578–681 species. The genus diversity to the north of the blue dotted line is lower than 578 species, and the genus diversity to the south of the blue dotted line is higher than 681 species. (d) The blue area is basically the dividing line of species diversity of 1385–1618 species. The species diversity to the north of the blue dotted line is lower than 1385 species, and the species diversity to the south of the blue dotted line is higher than 1618 species.Full size imageThe dataset can also count the orders, families and genera that appear in 58 nature reserves, indicating that these orders, families and genera are widely distributed in this area, while the orders, families and genera that only appear in a single nature reserve indicate that these taxa are unique to this nature reserve in this area, reflecting their locality and uniqueness, which is helpful to understanding the specific distribution of plants in detail. The relevant statistics are as follows:
    There are 28 orders present in every nature reserve:
    Liliales, Dipsacales, Lamiales, Fabales, Ericales, Poales, Saxifragales, Malpighiales, Malvales, Asterales, Fagales, Gentianales, Geraniales, Ranunculales, Rosales, Solanales, Apiales, Cornales, Brassicales, Caryophyllales, Dioscoreales, Santalales, Myrtales, Asparagales, Celastrales, Sapindales, Alismatales, and Boraginales.The order that only appears in one nature reserve is Petrosaviales, which appears in the Dabashan Nature Reserve in Chongqing.
    There are 51 families present in every nature reserve:
    Liliaceae, Primulaceae, Plantaginaceae, Lamiaceae, Euphorbiaceae, Cannabaceae, Juncaceae, Fabaceae, Poaceae, Elaeagnaceae, Betulaceae, Apocynaceae, Violaceae, Malvaceae, Crassulaceae, Campanulaceae, Asteraceae, Orchidaceae, Polygonaceae, Orobanchaceae, Onagraceae, Gentianaceae, Geraniaceae, Ranunculaceae, Rubiaceae, Rosaceae, Caprifoliaceae, Thymelaeaceae, Apiaceae, Cyperaceae, Cornaceae, Paeoniaceae, Brassicaceae, Amaryllidaceae, Caryophyllaceae, Rhamnaceae, Santalaceae, Asparagaceae, Celastraceae, Sapindaceae, Adoxaceae, Araliaceae, Berberidaceae, Hydrangeaceae, Scrophulariaceae, Convolvulaceae, Urticaceae, Salicaceae, Papaveraceae, Iridaceae, and Boraginaceae.There are 15 families that only appear in one nature reserve, as shown in Table 2.Table 2 Endemic families of the nature reserves in the Qinling-Daba Mountains and surrounding areas.Full size table
    There are 54 genera present in every nature reserve:
    Patrinia, Polygonum, Sanicula, Plantago, Allium, Delphinium, Euphorbia, Juncus, Cynanchum, Trigonotis, Artemisia, Sorbus, Polygonatum, Scutellaria, Cirsium, Viburnum, Ajuga, Viola, Galium, Geranium, Salix, Epilobium, Gentiana, Ranunculus, Malus, Acer, Rubia, Rosa, Torilis, Lonicera, Adenophora, Philadelphus, Cornus, Paeonia, Rhamnus, Rumex, Carex, Thalictrum, Asparagus, Carpesium, Clematis, Potentilla, Euonymus, Eleutherococcus, Berberis, Spiraea, Rubus, Populus, Vicia, Silene, Iris, Poa, Aster, and Buddleja.There were 225 genera that only appeared in one nature reserve, as shown in Figshare file 269.(2) For the “species endemic to China” variable of plants, we can see from the diversity distribution pattern of species endemic to China in this region (Fig. 4) that the number of endemic species in the Qinling-Daba Mountains is higher than that of species outside of the region, which reflects the strong transition zone in the Qinling-Daba Mountains. The variables of species endemic to China obtained from the Qinling-Daba Mountains and their surroundings were clustered by the Bray–Curtis dissimilarity measure70 and Ward’s minimum variance (the clustering method recommended for plant cluster analysis). The clustering results are shown in Fig. 5a. At the same time, the clustering results are displayed in space. Figure 5b shows that category 3 extends from the east outside the Qinling-Daba Mountains to the Baishuijiang Nature Reserve inside the western Qinling-Daba Mountains, which is consistent with the fact that the Qinling-Daba Mountains are an important ecogeographical “corridor” connecting the east and the west.Fig. 4Spatial distribution of diversity of species endemic to China in the Qinling-Daba Mountains and adjacent areas.Full size imageFig. 5(a) Clustering results of Ward’s connection aggregation of species endemic to China in 58 nature reserves. (b) Spatial distribution of clustering results of species endemic to China; the larger the dot and the darker the color, the earlier it is merged into this category, and the smaller the dot and the lighter the color, the later it is merged into this category.Full size image More

  • in

    Longitudinal analysis of the Five Sisters hot springs in Yellowstone National Park reveals a dynamic thermoalkaline environment

    Mueller, R. C. et al. An emerging view of the diversity, ecology, and function of Archaea in alkaline hydrothermal environments. FEMS Microbiol. Ecol. 97, fiaa246 (2020).
    Google Scholar 
    López-López, O., Cerdán, M.-E. & González-Siso, M.-I. Thermus thermophilus as a source of thermostable lipolytic enzymes. Microorganisms 3, 792–808 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Sahay, H. et al. Hot springs of Indian Himalayas: Potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7, 118 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Patel, A. K., Singhania, R. R., Sim, S. J. & Pandey, A. Thermostable cellulases: Current status and perspectives. Bioresour Technol 279, 385–392 (2019).CAS 
    PubMed 

    Google Scholar 
    Decastro, M.-E., Rodríguez-Belmonte, E. & González-Siso, M.-I. Metagenomics of thermophiles with a focus on discovery of novel thermozymes. Front. Microbiol. 7, 1521–1521 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Meslé, M. M. et al. Isolation and characterization of lignocellulose-degrading geobacillus thermoleovorans from Yellowstone National Park. Appl. Environ. Microbiol. 88, e0095821 (2022).PubMed 

    Google Scholar 
    Verma, P., Yadav, A. N., Shukla, L., Saxena, A. K. & Suman, A. Hydrolytic enzymes production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 isolated from Manikaran hot springs. Int. J. Adv. Res. 3, 1241–1250 (2015).CAS 

    Google Scholar 
    Wu, B. et al. Microbial sulfur metabolism and environmental implications. Sci. Total Environ. 778, 146085 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lavrentyeva, E. V. et al. Bacterial diversity and functional activity of microbial communities in hot springs of the Baikal Rift Zone. Microbiology 87, 272–281 (2018).CAS 

    Google Scholar 
    Miller Scott, R., Strong Aaron, L., Jones Kenneth, L. & Ungerer Mark, C. Bar-Coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl. Environ. Microbiol. 75, 4565–4572 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharp, C. E. et al. Humboldt’s spa: Microbial diversity is controlled by temperature in geothermal environments. ISME J. 8, 1166–1174 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stefanova, K. et al. Archaeal and bacterial diversity in two hot springs from geothermal regions in Bulgaria as demostrated by 16S rRNA and GH-57 genes. Int. Microbiol. 18, 217–223 (2015).CAS 
    PubMed 

    Google Scholar 
    Hou, W. et al. A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PLoS ONE 8, e53350 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sahm, K. et al. High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17, 649–662 (2013).CAS 
    PubMed 

    Google Scholar 
    Purcell, D. et al. The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand. FEMS Microbiol. Ecol. 60, 456–466 (2007).CAS 
    PubMed 

    Google Scholar 
    Meyer-Dombard, D. R. & Amend, J. P. Geochemistry and microbial ecology in alkaline hot springs of Ambitle Island, Papua New Guinea. Extremophiles 18, 763–778 (2014).CAS 
    PubMed 

    Google Scholar 
    de Leon, K. B., Gerlach, R., Peyton, B. M. & Fields, M. W. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park. Front. Microbiol. 4, 10 (2013).
    Google Scholar 
    Boomer, S. M., Noll, K. L., Geesey, G. G. & Dutton, B. E. Formation of multilayered photosynthetic biofilms in an alkaline thermal spring in Yellowstone National Park, Wyoming. Appl. Environ. Microbiol. 75, 2464–2475 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, S. et al. Greater temporal changes of sediment microbial community than its waterborne counterpart in Tengchong hot springs, Yunnan Province, China. Sci. Rep. 4, 7479 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sun, Y., Liu, Y., Pan, J., Wang, F. & Li, M. Perspectives on cultivation strategies of archaea. Microb. Ecol. 79, 770–784 (2020).PubMed 

    Google Scholar 
    Brock, T. D. Life at high temperatures. Science 158, 1012 (1967).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Christiansen, R. L. The Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana. Professional Paper (2001).Rowe, J. J., Fournier, R. & Morey, G. Chemical analysis of thermal waters in Yellowstone National Park, Wyoming, 1960–65. USGS https://doi.org/10.3133/b1303 (1973).Article 

    Google Scholar 
    Fournier, R., Thompson, M. J. & Hutchinson, R. A. The geochemistry of hot spring waters at Norris Geyser Basin, Yellowstone National Park. International symposium on water-rock interactions (1992).Podar, P. T., Yang, Z., Björnsdóttir, S. H. & Podar, M. Comparative analysis of microbial diversity across temperature gradients in hot springs from Yellowstone and Iceland. Front. Microbiol. 11, 1625 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Pala, C. et al. Environmental drivers controlling bacterial and archaeal abundance in the sediments of a Mediterranean lagoon ecosystem. Curr. Microbiol. 75, 1147–1155 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foyer, C. H., Noctor, G. & Hodges, M. Respiration and nitrogen assimilation: Targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. J. Exp. Bot. 62, 1467–1482 (2011).CAS 
    PubMed 

    Google Scholar 
    Ershanovich, V. N. et al. Nitrogen assimilation enzymes in Bacillus subtilis mutants with hyperproduction of riboflavin. Mol. Gen. Mikrobiol. Virusol. 2005(3), 29–34 (2005).
    Google Scholar 
    Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu Rev Microbiol 67, 437–457 (2013).CAS 
    PubMed 

    Google Scholar 
    Cabello, P., Roldán, M. D. & Moreno-Vivián, C. Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150, 3527–3546 (2004).CAS 
    PubMed 

    Google Scholar 
    Graupner, M., Xu, H. & White, R. H. The pyrimidine nucleotide reductase step in riboflavin and F(420) biosynthesis in archaea proceeds by the eukaryotic route to riboflavin. J. Bacteriol. 184, 1952–1957 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chernyh, N. A. et al. Dissimilatory sulfate reduction in the archaeon “Candidatus Vulcanisaeta moutnovskia” sheds light on the evolution of sulfur metabolism. Nat. Microbiol. 5, 1428–1438 (2020).CAS 
    PubMed 

    Google Scholar 
    Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172, 1181–1197 (2018).CAS 
    PubMed 

    Google Scholar 
    Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl. Acad. Sci. U.S.A. 114, E4602–E4611 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guy, L. & Ettema, T. J. G. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587 (2011).CAS 
    PubMed 

    Google Scholar 
    Wang, Y., Wegener, G., Hou, J., Wang, F. & Xiao, X. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat. Microbiol. 4, 595–602 (2019).CAS 
    PubMed 

    Google Scholar 
    Hedlund, B. P. et al. Uncultivated thermophiles: Current status and spotlight on ‘Aigarchaeota’. Curr. Opin. Microbiol. 25, 136–145 (2015).CAS 
    PubMed 

    Google Scholar 
    Reichart, N. J. et al. Activity-based cell sorting reveals responses of uncultured archaea and bacteria to substrate amendment. ISME J. 14, 2851–2861 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hua, Z.-S. et al. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat. Commun. 9, 2832 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beam, J. P. et al. Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous “streamer” community. ISME J. 10, 210–224 (2016).CAS 
    PubMed 

    Google Scholar 
    Gonsior, M. et al. Yellowstone hot springs are organic chemodiversity hot spots. Sci. Rep. 8, 14155 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibson, M. L. & Hinman, N. W. Mixing of hydrothermal water and groundwater near hot springs, Yellowstone National Park (USA): Hydrology and geochemistry. Hydrogeol. J. 21, 919–933 (2013).ADS 
    CAS 

    Google Scholar 
    Campbell, K. M. et al. Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs. Environ. Microbiol. 19, 2334–2347 (2017).PubMed 

    Google Scholar 
    Thiel, V. et al. The dark side of the mushroom spring microbial mat: Life in the shadow of chlorophototrophs. I. Microbial diversity based on 16S rRNA gene amplicons and metagenomic sequencing. Front. Microbiol. 7, 919 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U.S.A. 108, 4516–4522 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 

    Google Scholar 
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 555, 457–463 (2017).ADS 

    Google Scholar 
    Eloe-Fadrosh, E. A., Ivanova, N. N., Woyke, T. & Kyrpides, N. C. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nat. Microbiol. 1, 15032 (2016).CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv https://doi.org/10.1101/081257 (2016).Article 

    Google Scholar 
    Murali, A., Bhargava, A. & Wright, E. S. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6, 140 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).CAS 
    PubMed 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: Linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).
    Google Scholar 
    Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821 (2020).CAS 
    PubMed 

    Google Scholar 
    Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 11, 395 (2010).
    Google Scholar 
    Patiny, L. & Borel, A. ChemCalc: A building block for tomorrow’s chemical infrastructure. J. Chem. Inf. Model. 53, 1223–1228 (2013).CAS 
    PubMed 

    Google Scholar 
    Chong, J., Wishart, D. S. & Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinform. 68, e86 (2019).
    Google Scholar 
    Liu, G., Lee, D. P., Schmidt, E. & Prasad, G. L. Pathway analysis of global metabolomic profiles identified enrichment of caffeine, energy, and arginine metabolism in smokers but not moist snuff consumers. Bioinform. Biol. Insights 13, 1177932219882961–1177932219882961 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Xia, J. & Wishart, D. S. MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26, 2342–2344 (2010).CAS 
    PubMed 

    Google Scholar 
    Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12, 115–121 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rohart, F., Gautier, B., Singh, A. & Lé Cao, K.-A. mixOmics: An R package for ’omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752–e1005752 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar  More