Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86â90 (2017).ArticleÂ
ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
Crezee, B. et al. Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nat. Geosci. 15, 639â644 (2022).Runge, J. in Large Rivers (ed. Gupta, A.) 293â309 (Wiley, 2008).Davenport, I. J. et al. First evidence of peat domes in the Congo Basin using LiDAR from a fixed-wing drone. Remote Sens. 12, 2196 (2020).ArticleÂ
ADSÂ
Google ScholarÂ
Dargie, G. C. et al. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Chang. 24, 669â686 (2018).Young, D. M. et al. Misinterpreting carbon accumulation rates in records from near-surface peat. Sci. Rep. 9, 17939 (2019).ArticleÂ
ADSÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Young, D. M., Baird, A. J., Gallego-Sala, A. V. & Loisel, J. A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Sci. Rep. 11, 9547 (2021).ArticleÂ
ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Sebag, D. et al. Monitoring organic matter dynamics in soil profiles by âRock-Eval pyrolysisâ: bulk characterization and quantification of degradation. Eur. J. Soil Sci. 57, 344â355 (2006).ArticleÂ
CASÂ
Google ScholarÂ
Sebag, D. et al. Dynamics of soil organic matter based on new Rock-Eval indices. Geoderma 284, 185â203 (2016).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Girkin, N. T. et al. Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland. Biogeochemistry 142, 231â245 (2019).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Dargie, G. C. Quantifying and Understanding the Tropical Peatlands of the Central Congo Basin. PhD thesis, Univ. Leeds (2015).Spiker, E. C. & Hatcher, P. G. Carbon isotope fractionation of sapropelic organic matter during early diagenesis. Org. Geochem. 5, 283â290 (1984).ArticleÂ
CASÂ
Google ScholarÂ
Chave, J. et al. Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7, 43â55 (2010).ArticleÂ
ADSÂ
Google ScholarÂ
Dommain, R. et al. Forest dynamics and tip-up pools drive pulses of high carbon accumulation rates in a tropical peat dome in Borneo (Southeast Asia). J. Geophys. Res. 120, 617â640 (2015).ArticleÂ
CASÂ
Google ScholarÂ
Wotzka, H.-P. in Grundlegungen: BeitrĂ€ge zur europĂ€ischen und afrikanischen ArchĂ€ologie fƱr Manfred K. H. Eggert (ed. Wotzka, H.-P.) 271â289 (Francke, 2006).Saulieu, G. D. et al. Archaeological evidence for population rise and collapse between ~2500 and ~500 cal. yr BP in Western Central Africa. Afr. ArchĂ©ol. Arts 17, 11â32 (2021).
Google ScholarÂ
Sachse, D. et al. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu. Rev. Earth Planet. Sci. 40, 221â249 (2012).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Collins, J. A. et al. Estimating the hydrogen isotopic composition of past precipitation using leaf-waxes from western Africa. Quat. Sci. Rev. 65, 88â101 (2013).ArticleÂ
ADSÂ
Google ScholarÂ
SchefuĂ, E., Schouten, S. & Schneider, R. R. Climatic controls on central African hydrology during the past 20,000 years. Nature 437, 1003â1006 (2005).ArticleÂ
ADSÂ
PubMedÂ
Google ScholarÂ
Kelly, T. J. et al. The vegetation history of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 129â141 (2017).ArticleÂ
Google ScholarÂ
Swindles, G. T. et al. Ecosystem state shifts during long-term development of an Amazonian peatland. Global Change Biol. 24, 738â757 (2018).ArticleÂ
ADSÂ
Google ScholarÂ
Dommain, R., Couwenberg, J. & Joosten, H. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat. Sci. Rev. 30, 999â1010 (2011).ArticleÂ
ADSÂ
Google ScholarÂ
Lottes, A. L. & Ziegler, A. M. World peat occurrence and the seasonality of climate and vegetation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 106, 23â37 (1994).ArticleÂ
Google ScholarÂ
MoutsambotĂ©, J. M. Ecological, Phytogeographic and Phytosociological Study of Northern Congo (Plateaus, Bowls, Likouala and Sangha). PhD thesis, Univ. Marien Ngouabi (2012).Dingman, S. L. Fluvial Hydrology (W. H. Freeman, 1984).Swindles, G. T., Morris, P. J., Baird, A. J., Blaauw, M. & Plunkett, G. Ecohydrological feedbacks confound peat-based climate reconstructions. Geophys. Res. Lett. 39, L11401 (2012).ArticleÂ
ADSÂ
Google ScholarÂ
Morris, P. J., Baird, A. J., Young, D. M. & Swindles, G. T. Untangling climate signals from autogenic changes in long-term peatland development. Geophys. Res. Lett. 42, 10,788â10,797 (2015).ArticleÂ
Google ScholarÂ
Young, D. M., Baird, A. J., Morris, P. J. & Holden, J. Simulating the long-term impacts of drainage and restoration on the ecohydrology of peatlands. Water Resour. Res. 53, 6510â6522 (2017).ArticleÂ
ADSÂ
Google ScholarÂ
Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. Centennial scale climate instabilities in a wet early Holocene West African monsoon. Geophys. Res. Lett. 34, L24702 (2007).ArticleÂ
ADSÂ
Google ScholarÂ
Collins, J. A. et al. Rapid termination of the African Humid Period triggered by northern high-latitude cooling. Nat. Commun. 8, 1372 (2017).ArticleÂ
ADSÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Garcin, Y. et al. Early anthropogenic impact on Western Central African rainforests 2,600 y ago. Proc. Natl. Acad. Sci. USA 115, 3261â3266 (2018).ArticleÂ
ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Vincens, A. et al. Changement majeur de la vĂ©gĂ©tation du lac Sinnda (vallĂ©e du Niari, Sud-Congo) consĂ©cutif Ă l’assĂšchement climatique holocĂšne supĂ©rieur: apport de la palynologie. C. R. Acad. Sci. Paris SĂ©r. II 318, 1521â1526 (1994).
Google ScholarÂ
Elenga, H. et al. Diagramme pollinique holocĂšne du lac Kitina (Congo): mise en Ă©vidence de changements palĂ©obotaniques et palĂ©oclimatiques dans le massif forestier du Mayombe. C. R. Acad. Sci. Paris SĂ©r. II 323, 403â410 (1996).CASÂ
Google ScholarÂ
Ngomanda, A., Neumann, K., Schweizer, A. & Maley, J. Seasonality change and the third millennium BP rainforest crisis in southern Cameroon (Central Africa). Quat. Res. 71, 307â318 (2009).ArticleÂ
Google ScholarÂ
Maley, J. et al. Late Holocene forest contraction and fragmentation in central Africa. Quat. Res. 89, 43â59 (2018).ArticleÂ
Google ScholarÂ
Bayon, G. et al. Intensifying weathering and land use in Iron Age Central Africa. Science 335, 1219â1222 (2012).ArticleÂ
ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
Giresse, P., Maley, J. & Chepstow-Lusty, A. Understanding the 2500 yr BP rainforest crisis in West and Central Africa in the framework of the Late Holocene: pluridisciplinary analysis and multi-archive reconstruction. Global Planet. Change 192, 103257 (2020).ArticleÂ
Google ScholarÂ
SchefuĂ, E. et al. Hydrologic control of carbon cycling and aged carbon discharge in the Congo River basin. Nat. Geosci. 9, 687â690 (2016).ArticleÂ
ADSÂ
Google ScholarÂ
Hoyt, A. M., Chaussard, E., Seppalainen, S. S. & Harvey, C. F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nat. Geosci. 13, 435â440 (2020).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Deshmukh, C. S. et al. Conservation slows down emission increase from a tropical peatland in Indonesia. Nat. Geosci. 14, 484â490 (2021).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth Syst. Sci. Data 9, 363â387 (2017).ArticleÂ
ADSÂ
Google ScholarÂ
Jiang, Y. et al. Widespread increase of boreal summer dry season length over the Congo rainforest. Nat. Clim. Change 9, 617â622 (2019).ArticleÂ
Google ScholarÂ
Cook, K. H., Liu, Y. & Vizy, E. K. Congo Basin drying associated with poleward shifts of the African thermal lows. Clim. Dyn. 54, 863â883 (2020).ArticleÂ
Google ScholarÂ
Bennett, A. C. et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl. Acad. Sci. USA 118, e2003169118 (2021).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earthâs tropical forests. Science 368, 869â874 (2020).ArticleÂ
ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
GarcĂa-Palacios, P. et al. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nat. Rev. Earth Environ. 2, 585â585 (2021).ArticleÂ
ADSÂ
Google ScholarÂ
Cobb, A. R. et al. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl. Acad. Sci. USA 114, E5187âE5196 (2017).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Feng, X., Porporato, A. & Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Change 3, 811â815 (2013).ArticleÂ
ADSÂ
Google ScholarÂ
Karger, D. N. et al. Climatologies at high resolution for the earthâs land surface areas. Sci. Data 4, 170122 (2017).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Xu, J. R., Morris, P. J., Liu, J. G. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134â140 (2018).ArticleÂ
Google ScholarÂ
Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos Trans. AGU 77, 379 (1996).ArticleÂ
ADSÂ
Google ScholarÂ
Blaauw, M. & Christen, J. A. Flexible paleoclimate ageâdepth models using an autoregressive gamma process. Bayesian Anal. 6, 457â474 (2011).ArticleÂ
MathSciNetÂ
MATHÂ
Google ScholarÂ
Blaauw, M. et al. rbacon: ageâdepth modelling using Bayesian statistics. R package version 2.5.7 (2021); https://cran.r-project.org/web/packages/rbacon/index.html.Hogg, A. G. et al. SHCal20 Southern Hemisphere calibration, 0â55,000 years cal BP. Radiocarbon 62, 759â778 (2020).ArticleÂ
CASÂ
Google ScholarÂ
Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0â55 kcal BP). Radiocarbon 62, 725â757 (2020).ArticleÂ
CASÂ
Google ScholarÂ
Reuter, H., Gensel, J., Elvert, M. & Zak, D. Evidence for preferential protein depolymerization in wetland soils in response to external nitrogen availability provided by a novel FTIR routine. Biogeosciences 17, 499â514 (2020).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Kuhry, P. & Vitt, D. H. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77, 271â275 (1996).ArticleÂ
Google ScholarÂ
Hornibrook, E. R. C., Longstaffe, F. J. & Fyfe, W. S. Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochim. Cosmochim. Acta 64, 1013â1027 (2000).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Broder, T., Blodau, C., Biester, H. & Knorr, K. H. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9, 1479â1491 (2012).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Biester, H., Knorr, K. H., Schellekens, J., Basler, A. & Hermanns, Y. M. Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences 11, 2691â2707 (2014).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Leifeld, J., Klein, K. & WĂŒst-Galley, C. Soil organic matter stoichiometry as indicator for peatland degradation. Sci. Rep. 10, 7634 (2020).ArticleÂ
ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Hodgkins, S. B. et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 9, 3640 (2018).ArticleÂ
ADSÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Chimner, R. A. & Ewel, K. C. A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetlands Ecol. Manage. 13, 671â684 (2005).ArticleÂ
Google ScholarÂ
Lafargue, E., Marquis, F. & Pillot, D. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Oil Gas Sci. Technol. 53, 421â437 (1998).CASÂ
Google ScholarÂ
Behar, F., Beaumont, V. & Penteado, H. L. D. Rock-Eval 6 technology: performances and developments. Oil Gas Sci. Technol. 56, 111â134 (2001).ArticleÂ
CASÂ
Google ScholarÂ
Disnar, J. R., Guillet, B., Keravis, D., Di-Giovanni, C. & Sebag, D. Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Org. Geochem. 34, 327â343 (2003).ArticleÂ
CASÂ
Google ScholarÂ
Marzi, R., Torkelson, B. E. & Olson, R. K. A revised carbon preference index. Org. Geochem. 20, 1303â1306 (1993).ArticleÂ
CASÂ
Google ScholarÂ
Eglinton, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322â1334 (1967).ArticleÂ
ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
Sauer, P. E., Eglinton, T. I., Hayes, J. M., Schimmelmann, A. & Sessions, A. L. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochim. Cosmochim. Acta 65, 213â222 (2001).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295â305 (2002).ArticleÂ
ADSÂ
Google ScholarÂ
Han, J. & Calvin, M. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc. Natl. Acad. Sci. U.S.A. 64, 436â443 (1969).ArticleÂ
ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Nakagawa, T. et al. Dense-media separation as a more efficient pollen extraction method for use with organic sediment/deposit samples: comparison with the conventional method. Boreas 27, 15â24 (1998).ArticleÂ
Google ScholarÂ
Stone, B. C. A synopsis of the African Species of Pandanus. Ann. Missouri Bot. Gard. 60, 260â272 (1973).ArticleÂ
Google ScholarÂ
African Plant Database (version 3.4.0) (Conservatoire et Jardin Botaniques de la Ville de GenĂšve and South African National Biodiversity Institute, accessed January 2022); http://africanplantdatabase.ch.Polhill, R. M., Nordal, I., Kativu, S. & Poulsen, A. D. Flora of Tropical East Africa 1st edn (CRC Press, 1997).Hawthorne, D. et al. Global Modern Charcoal Dataset (GMCD): a tool for exploring proxy-fire linkages and spatial patterns of biomass burning. Quat. Int. 488, 3â17 (2018).ArticleÂ
Google ScholarÂ
Stevenson, J. & Haberle, S. Macro Charcoal Analysis: A Modified Technique Used by the Department of Archaeology and Natural History. Palaeoworks Technical Paper No. 5 (PalaeoWorks, Department of Archaeology and Natural History, Research School of Pacific and Asian Studies, Australian National University, 2005).Tierney, J. E., Pausata, F. S. R. & deMenocal, P. B. Rainfall regimes of the Green Sahara. Sci. Adv. 3, e1601503 (2017).ArticleÂ
ADSÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Shanahan, T. M. et al. The time-transgressive termination of the African Humid Period. Nat. Geosci. 8, 140â144 (2015).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Ladd, S. N. et al. Leaf wax hydrogen isotopes as a hydroclimate proxy in the Tropical Pacific. J. Geophys. Res. 126, e2020JG005891 (2021).
Google ScholarÂ
Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436â468 (1964).ArticleÂ
ADSÂ
Google ScholarÂ
Munksgaard, N. C. et al. Data Descriptor: daily observations of stable isotope ratios of rainfall in the tropics. Sci. Rep. 9, 14419 (2019).ArticleÂ
ADSÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Aggarwal, P. K. et al. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nat. Geosci. 9, 624â629 (2016).ArticleÂ
CASÂ
Google ScholarÂ
Zwart, C. et al. The isotopic signature of monsoon conditions, cloud modes, and rainfall type. Hydrol. Processes 32, 2296â2303 (2018).ArticleÂ
ADSÂ
Google ScholarÂ
Jackson, B., Nicholson, S. E. & Klotter, D. Mesoscale convective systems over Western Equatorial Africa and their relationship to large-scale circulation. Mon. Weather Rev. 137, 1272â1294 (2009).ArticleÂ
ADSÂ
Google ScholarÂ
SorĂ, R., Nieto, R., Vicente-Serrano, S. M., Drumond, A. & Gimeno, L. A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth Syst. Dynam. 8, 653â675 (2017).ArticleÂ
ADSÂ
Google ScholarÂ
International Atomic Energy AgencyâWorld Meteorological Organization Global Network of Isotopes in Precipitation: The GNIP Database (accessed May 2020); https://nucleus.iaea.org/wiser/index.aspx.Sachse, D., Dawson, T. E. & Kahmen, A. Seasonal variation of leaf wax n-alkane production and ÎŽ2H values from the evergreen oak tree, Quercus agrifolia. Isotopes Environ. Health Stud. 51, 124â142 (2015).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Huang, X., Zhao, B., Wang, K., Hu, Y. & Meyers, P. A. Seasonal variations of leaf wax n-alkane molecular composition and ÎŽD values in two subtropical deciduous tree species: results from a three-year monitoring program in central China. Org. Geochem. 118, 15â26 (2018).ArticleÂ
CASÂ
Google ScholarÂ
Botev, Z. I., Grotowski, J. F. & Kroese, D. P. Kernel density estimation via diffusion. Ann. Stat. 38, 2916â2957 (2010).ArticleÂ
MathSciNetÂ
MATHÂ
Google ScholarÂ
Albrecht, R., Sebag, D. & Verrecchia, E. Organic matter decomposition: bridging the gap between Rock-Eval pyrolysis and chemical characterization (CPMAS 13C NMR). Biogeochemistry 122, 101â111 (2015).ArticleÂ
CASÂ
Google ScholarÂ
Matteodo, M. et al. Decoupling of topsoil and subsoil controls on organic matter dynamics in the Swiss Alps. Geoderma 330, 41â51 (2018).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Malou, O. P. et al. The Rock-EvalÂź signature of soil organic carbon in arenosols of the Senegalese groundnut basin. How do agricultural practices matter? Agr. Ecosyst. Environ. 301, 107030 (2020).ArticleÂ
CASÂ
Google ScholarÂ
Thoumazeau, A. et al. A new in-field indicator to assess the impact of land management on soil carbon dynamics. Geoderma 375, 114496 (2020).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Cranwell, P. A. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment. Org. Geochem. 3, 79â89 (1981).ArticleÂ
CASÂ
Google ScholarÂ
Ofiti, N. O. E. et al. Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter. Soil Biol. Biochem. 156, 108185 (2021).ArticleÂ
CASÂ
Google ScholarÂ
Stuiver, M. & Reimer, P. J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215â230 (1993).ArticleÂ
Google Scholar More