More stories

  • in

    Optimal settings and advantages of drones as a tool for canopy arthropod collection

    UAVs indeed proved to be a practical, efficient, and accurate tool in sampling insects within four different habitats in Quebec. Furthermore, different drone settings of speed, height, and net diameter may yield different insect orders, which can be useful in studies that aim to target specific insects. Nonetheless, only height, and not speed, net diameter or drone type influenced insect abundance. Compared with Lindgren funnels, drones were not only able to catch more insects in less time, but also a wider array of the insect community diversity.Our study successfully shows the promise of using drones to collect forest and wetland canopy arthropods. More arthropods were collected flying at zero meters (grazing the canopy) than flying at one meter, while different speed, net size and drone type had less of an effect on insect yield (Fig. 2). The one-meter setting was expected to yield different arthropod diversity, such as fewer terrestrial families (ex. Araneae) and more aerial families (ex. Diptera) compared to the grazing zero-meter setting. However, the proportions of the top three orders (Diptera, Hemiptera, and Araneae) were similar among settings (Fig. 3). The capture of arachnids at one meter above the canopy can be explained by webs that are attached to taller foliage in proximity to the area, or spiders ‘ballooning’ in the airspace on silk threads25. Because canopy height was not always uniform, flying while grazing the canopy underneath the drone was at times lower than other parts of the canopy. Another explanation could be jumping spiders (ex. family Salticidae) which have been found to react to a disturbance or threat by leaping, possibly into the drone net26. Though the main three orders were in similar proportion, the one-meter setting caught five fewer orders in total than the zero-meter setting did. Flying at one meter was the only setting that captured no insects of order Coleoptera, Hymenoptera, or Orthoptera, suggesting that these orders spend time in and among the wetland canopy, and are seldom above the grassy canopy (Fig. 3). Most importantly, this setting only caught nine insects total over all flights, revealing itself to be an inefficient method of insect collection. This can be due to the number of insects available to be collected at each height. When flying at one meter, the net has access to only aerial insects in flight above the canopy (ex. flies). Flying while grazing the canopy, however, gives the researcher access to the same aerial insects in flight above the canopy, but also aerial insects in flight within the canopy (ex. bees), aerial insects at rest on the canopy (ex. leafhoppers), and terrestrial insects on the canopy (ex. ants). Thus, flying the drone while grazing the canopy opens the possibility of capturing three more insect groups compared to flying above the canopy. It is also possible that there are indeed many insects to be caught solely in the airspace, but that the ideal height for collecting insects strictly above the canopy is either less than or greater than one meter—which is the only height above the canopy that we tested.This sampling period caught three total insects from order Odonata, with two of the three being caught with the 18-inch diameter net setting (Fig. 3). As these dragonflies are typically fast flyers and of large body size, perhaps the extra diameter of the larger net was helpful in increasing the chances of catching Odonates, though we do not have enough data to make solid conclusions. This would be a valuable line of future research for studies focused on dragonflies, or other large and fast-flying insects.Flying the drone and hanging sweep net at 20 km/hr yielded the highest number and proportion of insects in the order Hemiptera, which are often found at rest within the canopy27. We speculate that the faster speed of the drone striking the grassy canopy more swiftly, thus giving the insects resting on the grasses less of an opportunity to evade the threat of the approaching net. Future studies targeting the collection of true bugs should utilize a faster drone speed in flight to optimize yield.With 84% of insects found within the second layer of our net, we conclude that our novel net design with two layers of tulle is satisfactory in retaining insects and preventing most from escaping when landing the drone. In addition to the insects counted, we never witnessed any insects flying out during landing stages. We believe that our methodology of flying the drone in quickly and covering the opening of the net with cardboard before landing the drone, in addition to the extra layer of netting, was successful at retaining the insects caught. Determining how to fly the drone and net over the two forest canopy habitats was a challenge. When flying, it was impossible for the drone camera to look both forward—to see obstacles coming up, and downwards—to see how close the net was hanging regarding the top of the canopy. For this reason, we used a second drone as a spotter for the first, the pilot of which could give instructions on moving up or down. Forest canopies were particularly difficult, as the height from one tree to the next was always different, the drone had to be constantly adjusted. We experienced many snags on branches, although they were not damaging to the net or drone. Once we became comfortable flying the drone low enough to graze the canopy, snagging became a common occurrence that was easily remedied. In fact, snagging the net probably helped in the collection of insects on those branches—a technique that could be honed and used in future studies using nets and drones over forest canopies.Over our 12 days of sampling habitat canopies with drones, we were able to determine that wetlands had the highest diversity and abundance of the four habitats examined, with lake habitats showing the lowest Shannon-Weiner Diversity index (H’), and the highest Pielou’s evenness index (J). It is unsurprising that lakes showed the most even distribution of families, as is often the case with habitats having low species richness, as there are less competitors that could dominate the habitat28. Habitat, humidity, and temperature were the most important variables affecting drone insect yield, with habitat being the common variable in all high scoring models. Wetlands had by the far the most insects collected, in addition to the highest diversity and species richness. This can be explained simply by the plant composition in wetlands compared to the other habitats. While coniferous and deciduous forests are dominated by a few species (and lakes have little to no vegetation over the water) wetlands can host a wide variety of plant species. Because insect diversity correlates with plant richness and abundance, wetlands can provide shelter and sustenance for many more groups of insects that the other habitats we studied29.Lindgren funnels disproportionately collected insects from order Coleoptera (Fig. 7). Although Lindgren funnels have been used in papers reporting results focused on insects of orders Hemiptera30,31,32,33 and Diptera34,35,36, it is unclear whether some were targeted studies or all simply bycatch of the funnel from other experiments. Instead, Lindgren funnels are overwhelmingly used in Coleoptera studies as the funnels resemble a tree and attracts various wood-boring beetles37,38,39,40,41. This attraction explains the large number and proportion of beetles caught in funnels in this study. However, diversity indices show that in three of four habitats, drones collect a higher diversity sample than the Lindgren funnels (Tables 1 and 2). Thus, though Lindgren funnels are undoubtedly effective at collecting beetles from the environment, our results indicate that the drone collection method is preferable when seeking an accurate representation of the insect diversity of the habitat. Studies focused on Coleoptera could also employ this method, which would be helpful in determining the status and proportion of beetles within the population and compared to other insect orders.In addition to the larger diversity collected by drones, the temporal advantage of this technique over the funnels can not be understated. During our study, it took three Lindgren funnel traps established for seven days to collect a total of 36 insects at the wetland sites (0.001 insect collected per minute). Comparatively, at the same height and placement, drones were able to collect 391 insects in only a combined 36 min (10.9 insects collected per minute) (Fig. 7). This large difference in both yield and time scale demonstrates that the drone collection method is vastly more efficient at arthropod sampling compared to the Lindgren funnels.While this study was successful at validating the usefulness of drones in canopy entomology studies and insect collection in general, it does have its limitations. Optimal drone settings were only examined at wetland grassy canopy sites, and it is possible that the drone might perform differently within different habitats. For example, grazing the canopy at 20 km/hr might result in high insect yield at wetlands, where the lack of obstacles made it relatively easy to fly quickly. But the same settings may be unrealistic and prone to net snagging when sampling over other habitats, such as the coniferous forest canopy. Furthermore, Lindgren funnels were an acceptable comparison to drone collection for yield and diversity at some habitats, however it was impossible to get the funnels up into the canopy where sampling took place at coniferous and deciduous sites. There is no doubt that the advantage of this method lies in its accessibility, speed, and safety—studies that need more precise and fine sampling might not benefit from drones.Overall, our research demonstrates that drones are an efficient and accurate tool in collecting a wide diversity of insects above the canopies of different habitats. Benefits included rapidly and safely sampling the airspace while drawbacks included battery life limiting the duration of sampling. If this new technique is integrated into the field of entomology, canopy studies can be done much more often, for less money, and more safely than they have been done using other techniques. In 2019, a review of the potential causes of decline of aerial insectivores concluded that insect declines and changes in high quality prey availability could be a large driver of insectivore declines9. However, there is a lack of research detailing insect trends over time. The drone collection method used in this study could provide the missing link between the need for more research of aerial canopy insects and the limitations of the current methodology in entomology. This technique can be used in conjunction with aerial insectivore surveys and diet studies to begin to determine the relationship between declining predators and prey. Future research may also use and add to our guidelines to customize drone and net settings for studies targeting specific insect orders or families. More

  • in

    Predation impact on threatened spur-thighed tortoises by golden eagles when main prey is scarce

    Roff, D. A. The Evolution of Life Histories: Theory and Analysis (Chapman and Hall, 1992).
    Google Scholar 
    Sæther, B. E. & Bakke, O. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).
    Google Scholar 
    Koons, D. N., Pavard, S., Baudisch, A. & Metcalf, J. E. C. Is life-history buffering or lability adaptive in stochastic environments?. Oikos 118, 972–980 (2009).
    Google Scholar 
    Boyce, M. S., Haridas, C. V. & Lee, C. T. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).PubMed 

    Google Scholar 
    Morris, W. F. & Doak, D. F. Buffering of life histories against environmental stochasticity: Accounting for a spurious correlation between the variabilities of vital rates and their contributions to fitness. Am. Nat. 163, 579–590 (2004).PubMed 

    Google Scholar 
    Ripple, W. J. et al. Saving the world’s terrestrial megafauna. Bioscience 66(10), 807–812 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    He, F. et al. Disappearing giants: A review of threats to freshwater megafauna. WIREs Water 4, e1208 (2017).
    Google Scholar 
    Blackburn, T. M., Cassey, P., Duncan, R. P., Evans, K. L. & Gaston, K. J. Avian extinction and mammalian introductions on oceanic islands. Science 305(5692), 1955–1958 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Courchamp, F., Langlais, M. & Sugihara, G. Rabbits killing birds: Modelling the hyperpredation process. J. Anim. Ecol. 69, 154–164 (2000).
    Google Scholar 
    Roemer, G. W., Coonan, T. J., Garcelon, D. K., Bascompte, J. & Laughrin, L. Feral pigs facilitate hyperpredation by golden eagles and indirectly cause the decline of the island fox. Anim. Conserv. 4, 307–318 (2001).
    Google Scholar 
    Kristan, W. B. & Boarman, W. I. Spatial patterns of risk of common raven predation on desert tortoises. Ecology 84, 2432–2443 (2003).
    Google Scholar 
    Whelan, C. J., Brown, J. S. & Maina, G. Search biases, frequency-dependent predation and species co-existence. Evol. Ecol. Res. 5, 329–343 (2003).
    Google Scholar 
    Moleón, M., Almaraz, P. & Sánchez-Zapata, J. A. An emerging infectious disease triggering large-scale hyperpredation. PLoS ONE 3, e2307 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moleón, M., Almaraz, P. & Sánchez-Zapata, J. A. Inferring ecological mechanisms from hunting bag data in wildlife management: A reply to blanco-aguiar et al. 2012. Eur. J. Wildl. Res. 59, 599–608 (2013).
    Google Scholar 
    Bate, A. M. & Hilker, F. M. Rabbits protecting birds: Hypopredation and limitations of hyperpredation. J. Theor. Biol. 297, 103–115 (2012).ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Turner, F. B., Medica, P. A. & Lyons, C. L. Reproduction and survival of the desert tortoise (Scaptochelys agassizii) in Ivanpah Valley California. Copeia 1984(4), 811–820 (1984).
    Google Scholar 
    Graciá, E. et al. Assessment of the key evolutionary traits that prevent extinctions in human altered habitats using a spatially explicit individual-based model. Ecol. Model. 415, 108823 (2020).
    Google Scholar 
    Segura, A., Jiménez, J. & Acevedo, P. Predation of young tortoises by rabbits: The effect of habitat structure on tortoise detectability and abundance. Sci. Rep. 10, 1–9 (2020).
    Google Scholar 
    Watson, J. The golden eagle (Bloomsbury Publishing, 2010).
    Google Scholar 
    Fischer, W., Zenker, D. & Baumgart, W. Ein beitrag zum bestand und zur ernährung des steinadlers Aquila chrysaetos af der balkanhalbinsel. Beiträge zur Vogelskunde 21, 275–287 (1975).
    Google Scholar 
    Delibes, M., Calderón, J. & Hiraldo, F. Selección de presa y alimentación en españa del águila real (Aquila chrysaetos). Ardeola 21, 285–303 (1975).
    Google Scholar 
    Handrinos, G. The Golden Eagle in Greece. Actes 1er Coll. Intern. Aigle Royal en Europe, Arvieux, 1986: 18–22 (1987).Bautista, J., Gil-Sánchez, J. M. & Moleón, M. Dieta del águila real en el sur de españa. Quercus 364, 17–23 (2016).
    Google Scholar 
    Bautista, J., Castillo, S., Paz, J. L., Llamas, J. & Ellis, D. H. Golden eagles (Aquila chrysaetos) as potential predators of barbary macaques (Macaca sylvanus) in northern Morocco: Evidences of predation. Go-South Bull. 15, 172–179 (2018).
    Google Scholar 
    Kouzmanov, G., Stoyanov, R. & Todorov, V. Sur la biologie et la Protection de l`Aigle royal Aquila chrysaetos en Bulgarie. In Eagle studies (eds Meyburg, B. & Chancellor, R.) 505–516 (World Working Group on Birds of Prey, 1996).
    Google Scholar 
    Capper, S. The predation of Testudo spp. By Golden Eagles Aquila chrysaetos in Dadia Forest Reserve, NE Greece. University of Reading (1998).Karyakin, I. V., Kovalenko, A. V., Levin, A. S. & Pazhenkov, A. S. Eagles of the Aral-Caspian region Kazakhstan. Raptors Conserv. 22, 92–152 (2011).
    Google Scholar 
    Papageorgiou, N., Vlachos, C., Bakaloudis, D. E., Kazaklis, A., Birtsas, P. Study on the biology and management of raptors in Dadia forest–Evros. Thessaloniki, GR (1995).Sidiropoulos, L. et al. Pronounced seasonal diet diversity expansion of golden eagles (Aquila chrysaetos) in Northern Greece during the non-breeding season: The role of tortoises. Diversity 14(2), 135 (2022).
    Google Scholar 
    IUCN. The IUCN red list of threatened species. Version 2020–3 (2020).Graciá, E. et al. Expansion after expansion: dissecting the phylogeography of the widely distributed spur-thighed tortoise, Testudo graeca (Testudines: Testudinidae). Biol. J. Linn. Soc. 121, 641–654 (2017).
    Google Scholar 
    Graciá, E. et al. Genetic patterns of a range expansion: The spur-thighed tortoise Testudo graeca graeca in southeastern Spain. Amphib. Reptil. 32, 49–61 (2011).
    Google Scholar 
    Graciá, E. et al. The uncertainty of late pleistocene range expansions in the western Mediterranean: A case study of the colonization of south-eastern Spain by the spur-thighed tortoise, Testudo graeca.. J. Biogeogr 40, 323–334 (2013).
    Google Scholar 
    Anadón, J. D., Giménez, A., Perez, I., Martinez, M. & Esteve-Selma, M. A. Habitat selection by the spur-thighed tortoise Testudo graeca in a multisuccessional landscape: implications for habitat management. Biodivers. Conserv. 15, 2287–2299 (2006).
    Google Scholar 
    Rodríguez-Caro, R. C. et al. Low tortoise abundances in pine forest plantations in forest-shrubland transition areas. PLoS ONE 12, e0173485 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Caro, R. C. et al. The limits of demographic buffering in coping with environmental variation. Oikos 130(8), 1346–1358 (2021).
    Google Scholar 
    Rodríguez-Caro, R. C., Lima, M., Anadón, J. D., Graciá, E. & Giménez, A. Density dependence, climate and fires determine population fluctuations of the spur-thighed tortoise, Testudo graeca. J. Zool. 300, 265–273 (2016).
    Google Scholar 
    Rodríguez-Caro, R. C. et al. A low cost approach to estimate demographic rates using inverse modeling. Biol. Conserv. 237, 358–365 (2019).
    Google Scholar 
    Jiménez-Franco, M. V. et al. Sperm storage reduces the strength of the mate-finding allee effect. Ecol. Evol. 10(4), 1938–1948 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Graciá, E. et al. From troubles to solutions: Conservation of mediterranean tortoises under global change. Basic Appl. Herpetol. 34, 5–16 (2020).
    Google Scholar 
    Pérez, I. et al. Exurban sprawl increases the extinction probability of a threatened tortoise due to pet collections. Ecol. Model. 245, 19–30 (2012).
    Google Scholar 
    Del Moral, J. C. El águila real en España. Población reproductora en 2008 y método de censo. SEO/BirdLife. Madrid. pp. 30–50 (2009).Virgós, E., Cabezas-Díaz, S. & Lozano, J. Is the wild rabbit (Oryctolagus cuniculus) a threatened species in Spain? Sociological constraints in the conservation of species. Biodivers. Conserv. 16, 3489–3504 (2007).
    Google Scholar 
    Fernández, C. Effect of the viral haemorrhagic pneumonia of the wild rabbit on the diet and breeding success of the golden eagle Aquila chrysaetos (L.). Rev. Ecol. Terre et Vie 48, 323–329 (1993).
    Google Scholar 
    Villafuerte, R., Luco, D. F., Gortázar, C. & Blanco, J. C. Effect on red fox litter size and diet after rabbit haemorrhagic disease in northeastern Spain. J. Zool. 240, 764–767 (1996).
    Google Scholar 
    Martínez, J. A. & Zuberogoitia, I. The response of eagle owl (Bubo bubo) to an outbreak of the rabbit haemorrhagic disease. J. Ornithol. 142, 204–211 (2001).
    Google Scholar 
    Moleón, M. et al. Large-scale spatiotemporal shifts in the diet of a predator mediated by an emerging infectious disease of its main prey. J. Biogeogr. 36, 1502–1515 (2009).
    Google Scholar 
    Adamakopoulos, T., Gatzoyannis, S., Poirazidis, K. Study on the assessment, the enhancement of the legal infrastructure and the management of the protected area in the forest of Dadia. Specific Environmental Study, WWF-Greece, Athens (1995).Delibes, M., Hiraldo, F. The rabbit as prey in the Iberian Mediterranean ecosystem. In Proceedings of the World Lagomorph Conference. Guelph: University of Guelph. 1979: 614–622 (1979).Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).
    Google Scholar 
    Moleón, M. et al. Predator–prey relationships in a mediterranean vertebrate system: Bonelli’s eagles, rabbits and partridges. Oecologia 168, 679–689 (2012).ADS 
    PubMed 

    Google Scholar 
    Fedriani, J. M., Ferreras, P. & Delibes, M. Dietary response of the Eurasian badger, Meles meles, to a decline of its main prey in the Doñana national park. J. Zool. 245, 214–218 (1998).
    Google Scholar 
    Ferrer, M. & Negro, J. J. The near extinction of two large European predators: Super specialists pay a price. Conserv. Biol. 18, 344–349 (2004).
    Google Scholar 
    Lozano, J., Moleón, M. & Virgós, E. Biogeographical patterns in the diet of the wildcat, Felis silvestris Schreber, in Eurasia: Factors affecting the trophic diversity. J. Biogeogr. 33, 1076–1085 (2006).
    Google Scholar 
    Burgos, T. et al. Prey density determines the faecal-marking behaviour of a solitary predator, the Iberian lynx (Lynx pardinus). Ethol. Ecol. Evol. 31, 219–230 (2019).
    Google Scholar 
    Ontiveros, D. & Pleguezuelos, J. M. Influence of prey densities in the distribution and breeding success of Bonelli’s eagle (Hieraaetus fasciatus): Management implications. Biol. Conserv. 93, 19–25 (2000).
    Google Scholar 
    Araújo, M. S. & Gonzaga, M. O. Individual specialization in the hunting wasp Trypoxylon (Trypargilum) albonigrum (Hymenoptera, Crabronidae). Behav. Ecol. Sociobiol. 61, 1855–1863 (2007).
    Google Scholar 
    Stephens, D. W. & Krebs, J. R. Foraging Theory 1st edn. (Monographs in Behavior and Ecology. Princeton University Press, 1986).
    Google Scholar 
    Heath, J. A. et al. Golden Eagle dietary shifts following wildfire and shrub loss have negative consequences for nestling survivorship. Ornithol. Appl. 123(4), duabo34 (2021).
    Google Scholar 
    Anadón, J. D., Wiegand, T. & Giménez, A. Individual-based movement models reveal sex-biased effects of landscape fragmentation on animal movement. Ecosphere 3, 1–32 (2012).
    Google Scholar 
    Sanz-Aguilar, A., Anadón, J. D., Giménez, A., Ballestar, R. & Oro, D. Coexisting with fire: The case of the terrestrial tortoise Testudo graeca in mediterranean shrublands. Biol. Conserv. 144, 1040–1049 (2011).
    Google Scholar 
    Arroyo, B. Águila real – Aquila chrysaetos. In: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Morales, M. B. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/ (2017).Arroyo, B., Ferreiro, E., Garza, V. El águila real (Aquila chrysaetos) en España. Censo, distribución, reproducción y conservación. Serie Técnica, ICONA. Madrid (1990).Bautista, J., Gil-Sánchez, J. M., González Miras, E., Gómez, G. J. & Sánchez Balsera, J. L. Increase in the population of golden eagle in andalusian baetic system mountain ranges (southern of Spain): evidences of competition with the Bonelli’s eagle. Quercus 332, 16–22 (2013).
    Google Scholar 
    Rodríguez-Caro, R. C., Graciá, E., Anadón, J. D. & Giménez, A. Maintained effects of fire on individual growth and survival rates in a spur-thighed tortoise population. Eur. J. Wildl. Res. 59, 911–913 (2013).
    Google Scholar 
    Beissinger, S. R. & McCullough, D. R. Population viability analysis (University of Chicago Press, 2002).
    Google Scholar 
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed 

    Google Scholar 
    Real, J. Biases in diet study methods in the Bonelli’s eagle. J. Wildl. Manag. 60(3), 632–638 (1996).
    Google Scholar 
    Moleón, M. et al. Laying the foundations for a human-predator conflict solution: Assessing the impact of Bonelli’s eagle on rabbits and partridges. PLoS ONE 6, e22851 (2011).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Esteve-Selma, M. A., et al. Effects of climate change on the potential distribution of Testudo graeca in southeastern Iberian Peninsula. In Graciá E, Rodríguez-Caro RC and Giménez A. Conservation of Mediterranean tortoises under global change. Madrid. Asociación Herpetológica Española. ISBN: 978-84-921999-6-9.Anadón, J. D., Giménez, A., Ballestar, R. & Pérez, I. Evaluation of local ecological knowledge as a method for collecting extensive data on animal abundance. Conserv. Biol. 23, 617–625 (2009).PubMed 

    Google Scholar 
    Abad, V. Variaciones del Índice corporal en una población de tortuga mora (Testudo graeca) del Sureste Ibérico. MSc thesis, Universidad Miguel Hernández de Elche, Spain (2007).Linden, H., Wikman, M. Goshawk predation on tetraonids: Availability of prey and diet of the predator in the breeding season. J. Anim. Ecol., 953–968 (1983).Fevold, H. R. & Craighead, J. J. Food requirements of the golden eagle. Auk 75, 312–317 (1958).
    Google Scholar 
    Collopy, M. W. Food consumption and growth energetics of nestling golden eagles. Wilson Bull. 445–458 (1986).Blanco, J. C., Villafuerte, R. Factores ecológicos que influyen sobre las poblaciones de conejos. Efectos de la enfermedad hemorrágico vírica. TRAGSA, Madrid Spain (1993). More

  • in

    From the archive: a plague in frogs, and oxygen consumption after running

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Weather impacts on interactions between nesting birds, nest-dwelling ectoparasites and ants

    Study areaWe conducted the study in the best-preserved stands of the Białowieża Forest, strictly protected within the Białowieża National Park (hereafter BNP; coordinates of Białowieża village: 52°42′N, 23°52′E). The extensive Białowieża Forest (c. 1500 km2) straddles the Polish-Belarusian border, where the climate is subcontinental with annual mean temperatures during May–July of 13–18 °C, and mean annual precipitation of 426–940 mm66,67.The forest provides a unique opportunity to observe animals under conditions that likely prevailed across European lowlands before widespread deforestation and forest exploitation by humans66,68,69. The stands have retained a primeval character distinguished by a multi-layered structure, frequent fallen and standing dead trees, and a high species richness66,70. The stands are composed of about a dozen tree species of various ages, up to several hundred years old. The interspecific interactions and natural processes have been little affected by direct human activity.We conducted observations mostly within the three permanent study plots (MS, N, W), totalling c. 130 ha, and in other nearby fragments of primeval oak-lime-hornbeam Tilio-Carpinetum or mixed deciduous-coniferous Pino-Quercetum stands. However, a small number of observations from adjacent managed deciduous forest stands were also included. For details of the study area see71,72,73.Study speciesOur study system focused on ground-nesting Wood Warblers Phylloscopus sibilatrix, blowflies Protocalliphora azurea, and Myrmica or Lasius ants, which occurred in the birds’ nests.The Wood Warbler is a small (c. 10 g) insectivorous songbird that winters in equatorial Africa and breeds in temperate European forests, typically rearing one or two broods each year74. Wood Warblers build dome-shaped nests for each breeding attempt, composed of woven grass, leaves and moss, and lined with animal hair73. The nests are situated on the ground among moderately sparse vegetation, often under a tussock of vegetation or near a fallen tree-branch or log (see examples in Supplementary Fig. S2)53,75. The breeding season of Wood Warblers begins in late April–early May and ends in July–August, when nestlings from replacement clutches (after initial loss) or second broods leave the nest. The typical clutch size in BNP is 5–7 eggs, and the nestling stage lasts 12–13 days74,76.Wood Warbler nests are inhabited by various arthropods, including Myrmica ruginodis or M. rubra ants, and less often Lasius platythorax, L. niger or L. brunneus. The ants foraged and/or raised their own broods within the Wood Warbler nests52. The Myrmica and Lasius ant species are common in Europe77,78. Their colonies contain from tens to thousands of workers, and can be found on the forest floor, e.g. in soil, within or under fallen dead wood, in patches of moss, or among fallen tree-leaves53,77,78. All of the ant species found in the Wood Warbler nests are predators of other arthropods77,79,80.Blowflies, Protocalliphora spp., are obligatory blood-sucking (hematophagous) ectoparasites that reproduce within bird nests. The occurrence, abundance, and impact of blowflies on Wood Warbler offspring is largely unknown, similar to many other European songbirds that build dome-shaped nests. Adult blowflies emerge in late spring and summer to lay eggs on the birds’ nesting material or directly onto the skin of typically newly hatched nestlings14,26. The blowfly larvae hatch within two–three days, and develop in the structure of warm bird nests for another 6–15 days, during which they emerge intermittently to feed on host blood, before finally pupating within the nests14,25,26,27.Data collectionNest monitoring and measurements of nestlingsWe searched for Wood Warbler nests daily from late April until mid-July in 2018–2020, by following birds mainly during nest-building. Nests were assigned to a deciduous or mixed deciduous-coniferous habitat type, depending on the tree stand where they were found. We inspected nests systematically, according to the protocol described in Wesołowski and Maziarz76. The number of observer visits was kept to a minimum to reduce disruptions for birds or potential risks of nest predation.We aimed to establish the dates of hatching (day 0 ± 1 day), nestlings vacating the nest (fledging; ± 1 day) or nest failure (± 1–2 days). When nestlings hatched asynchronously, the hatching date corresponded to the earliest record of nestling hatching. The dates of fledging or nest failure were the mid-dates between the last visit when the nestlings were present in the nest, and the following visit, when the nest was found empty. Nest failure was primarily due to predation, which is the main cause of the Wood Warbler nest losses in BNP76,81 and elsewhere in Europe82,83.To assess fitness consequences for birds of variable weather conditions, blowfly abundance and/or ant presence, we measured nestling growth and determined brood reduction (i.e. the mortality of chicks in the nest) from hatching until fledging. To define brood reduction, we assessed the number of hatchlings (nestlings up to 4 days old) and the number of fledglings leaving the nests. To ensure accurate counting and avoid premature fledging of nestlings, we established the number of fledglings on the day of measurement, when all nestlings were temporarily extracted from the nest.We measured nestling growth on a single occasion when they were 6–9 days old (median 8 days), almost fully developed but too young to leave the nest. The measurements lasted for less than 10–15 min at each nest to minimise any potential risk of attracting predators. For each nestling we measured (using a ruler) the emerged length of the longest (3rd) primary feather vane (± 0.5 mm) on the left wing84,85, and body mass to the nearest 0.1 g using an electronic balance. The length of the feather vane is closely linked to feather growth86 and is one of the characteristics of nestling growth85,87. We treated the length of the primary feather vane and body mass as indices of nestling growth rate under varying conditions of weather, blood-sucking ectoparasites, or ant presence.Extraction of arthropods from bird nestsTo assess the number of blowflies and to establish the presence of ants, we checked the contents of 129 nests (including 11 nests from the managed forest stands) at which Wood Warbler nestlings had been measured. The sample included 86 successful breeding attempts (where a minimum of one nestling successfully left the nest), 27 failed (predated) nests (remnants of nestlings were found, but the nest structure remained intact), and 16 nests with an unknown fate (nestlings were large, so were capable of leaving the nest, but no family were located or other signs indicating fledging).Due to ethical reasons, we were unable to collect the Wood Warbler nests and extract the ectoparasites and ants from them while they were in use by the birds. Removing the nests and replacing them with dummy nests would cause unacceptable nest desertion by adults. Therefore, we assessed the occurrence and number of blowflies or ant presence after Wood Warbler nestlings fledged or the breeding attempts failed naturally. We retrospectively explored the changes in blowfly infestation14, including the effect of ant presence53 in the same nests.We collected nests from the field as soon as a breeding attempt ended, within approximately five days (median 1 day) following fledging or nest failure (nest structure remained intact). The delay of nest collection would not bias the ectoparasite infestation, as blowfly larvae pupate within bird nests and stay there after the hosts abandon their nests; puparia can be still found in nests collected in autumn or winter14. As the likelihood of finding ant broods (larvae or pupae associated with workers) was rather stable with the delay of nest collection53, the method seemed reliable also for assessing the presence of ant broods (35 of all 71 Wood Warbler nests containing ants). Only the number of nests with lone foraging ant workers could be underestimated, potentially inflating the uncertainty of tested relationships. However, as ants usually re-use rich food resources88, foraging Myrmica or Lasius ant workers might regularly exploit warbler nests, increasing the chances of finding the insects in the collected nests.Wood Warbler nests were collected in one piece, with each placed into a separate sealed and labelled plastic bag. We carefully inspected the leaf litter around the nests, and the soil surface under them, to make sure that all blowfly larvae or pupae were collected. We transported the collected nests to a laboratory, where we stored them in a fridge for up to 5–6 days before the arthropod extraction.To establish the number of blowflies and the presence of ants, in 2018, we carefully pulled apart the nesting material and searched for the arthropods amongst it 52. We gathered all blowfly pupae or larvae and a sample of ant specimens into separate tubes, labelled and filled with 70–80% alcohol, for later species identification. For nests collected in 2019–2020, we extracted the arthropods with a Berlese-Tullgren funnel. During the extraction, which usually lasted for 72 h, each nest was covered with fine metal mesh and placed c. 15 cm under the heat of a 40 W electric lamp. The arthropods were caught in 100 ml plastic bottles containing 30 ml of 70–80% ethanol, installed under each funnel. After the arthropod extraction, we carefully inspected the nesting material in the same way as in 2018, to collect any blowflies that remained within the nests. The quality of information collected on the number of ectoparasites and ant presence should be comparable each year.Weather dataWe obtained the mean daily temperatures and rainfall sums from a meteorological station, operated by the Meteorology and Water Management National Research Institute in the Białowieża village, 1–7 km from the study areas.Data analysesWeather conditions affecting blowfly ectoparasitesTo explore the impact of weather on blowfly ectoparasites, for each Wood Warbler nest we calculated average temperatures from daily means, and total sums of rainfall from daily sums, for the two time-windows in which we assumed the impact of weather would be of greatest importance:

    i.

    the early nestling stage, when Wood Warbler nestlings were 1–4 days old. During this stage, female blowflies require a minimum temperature of c. 16 °C to become active and oviposit in bird nests27. Thus, cool and wet weather in the early nestling stage should reduce the activity of ovipositing blowflies, leading to less frequent ectoparasite infestation of Wood Warbler nests.

    ii.

    The late nestling stage, when the warbler nestlings were aged between over four days old and until fledging or nest failure. During this stage, blowfly larvae grow and develop in bird nests after hatching a few days after oviposition14,25,26,27. As the temperature of bird nests strongly depends on ambient temperatures21, mortality of blowfly larvae should increase in cool weather, resulting in fewer ectoparasites in nests collected shortly after the fledging of birds29.

    Weather conditions affecting Wood Warbler nestling growthTo explore the impact of weather on nestling growth, for each nest we calculated the average temperatures and total sums of rainfall for the period when nestlings were over four days old and until their measurement, usually on day 8 from hatching (see above). During this stage, nestlings are no longer brooded by a parent74, so must balance their energetic expenditure between growth (feather length and body mass) or thermoregulation89. Thus, we expected that the gain in body mass and the growth of flight feathers would be reduced in nestlings during cool and wet weather, when maintaining a stable body temperature would be costly90.Statistical analysesAll statistical tests were two-tailed and performed in R version 4.1.091.The changes in blowfly infestation of the Wood Warbler nestsTo test the changes in blowfly infestation of warbler nests, we used zero-augmented negative binomial models (package pscl in R;92,93), which deal with the problem of overdispersion and excess of zeros92. In this study, hurdle and zero-inflated models fitted with the same covariates had an almost identical Akaike Information Criterion (AIC). Therefore, we presented only the results of hurdle models, which are easier to interpret than zero-inflated models. Hurdle models consisted of two parts: a left-truncated count with a negative binomial distribution representing the number of blowflies in infested nests, and a zero hurdle binomial estimating the probability of blowfly presence. We used models with a negative binomial distribution, which had a much lower AIC than with a Poisson distribution on a count part.We designed the most complex (global) model that contained a response variable of the number of blowflies in each of the 129 Wood Warbler nests. The covariates were: mean ambient temperature, total sum of rainfall, presence (or absence) of ants in the same nests, habitat type (deciduous vs mixed deciduous-coniferous forest), study year (2018–2020), the number of nestlings hatched (brood size), and nest phenology (the relative hatching date of Wood Warbler nestlings, as days from the median hatching date in a season: 23 May in 2018, 25 May in 2019 and 29 May in 2020). The initial global model also contained the two-way interaction terms that we suspected to be important: between temperature and rainfall, temperature and presence of ants, and rainfall and presence of ants.To explore all potentially meaningful subsets of models, we used the same covariates on both parts (count and binomial) of the global model. We performed automated model selection with the MuMIn package94, starting from the most complex (global) model and using all possible simpler models (i.e. all subsets)95. To attain the minimum sample size of c. 20 data points for each parameter96, we limited the maximum number of parameters to six in each part (count or binomial) of the candidate models.As some of the interaction terms appeared insignificant in the initial model selection, to minimise the risk of over-parametrisation, we included only the significant interaction term on a count part of the final global model. As described above, we performed model selection again. We tested linear relationships, as the quadratic effects of weather variables (presuming temperature or rainfall optima) appeared insignificant.To test whether blowfly infestation changed with weather in the early or late nestling stages, we twice repeated the procedure described above. The first global model included the mean ambient temperature and the total sum of rainfall for the early nestling stage, and the second global model contained weather variables for the late nestling stage. The remaining covariates were the same.A practice of including the same sets of covariates on count and binomial parts has been previously questioned97. However, our approach allowed us to comply with these objections97, as we presented only the most parsimonious models (with ΔAICc  More

  • in

    Subalpine woody vegetation in the Eastern Carpathians after release from agropastoral pressure

    Bolliger, J., Kienast, F. & Zimmermann, N. E. Risk of global warming on montane and subalpine forests in Switzerland—A modeling study. Reg. Environ. Change 1, 99–111 (2000).
    Google Scholar 
    Bugmann, H. & Pfister, Ch. Impacts of interannual climate variability on past and future forest composition. Reg. Environ. Change 1, 112–125 (2000).
    Google Scholar 
    Becker, A. & Bugmann, H. (eds.) Global change and mountain regions: The Mountain Research Initiative. IHDP Report 13, GTOS Report 28 and IGBP Report 49, Stockholm (2001).Kullman, L. 20th Century climate warming and tree-limit rise in the southern Scandes of Sweden. Ambio 30, 72–80. https://doi.org/10.1579/0044-7447-30.2.72 (2001).CAS 
    PubMed 

    Google Scholar 
    Körner, Ch. & Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31, 713–732. https://doi.org/10.1111/j.1365-2699.2003.01043.x (2004).
    Google Scholar 
    Harsch, M. A. & Bader, M. Y. Treeline form—A potential key to understanding treeline dynamics. Global Ecol. Biogeogr. 20, 582–596. https://doi.org/10.1111/j.1466-8238.2010.00622.x (2011).
    Google Scholar 
    Tokarczyk, N. Forest encroachment on temperate mountain meadows: scale, drivers, and current research directions. Geogr. Pol. 90, 463–480 (2017).
    Google Scholar 
    Vitali, A. et al. Pine recolonization dynamics in Mediterranean human-disturbed treeline ecotones. For. Ecol. Manag. 435, 28–37. https://doi.org/10.1016/j.foreco.2018.12.039 (2019).
    Google Scholar 
    Heikkinen, O., Obrębska-Starkel, B. & Tuhkanen, S. Introduction: the timberline—A changing battlefront. Prace Geograficzne UJ 98, 7–16 (1995).
    Google Scholar 
    Mattson, J. Human impact on the timberline in the far North of Europe. Zeszyty Naukowe UJ, Prace Geogr. 98, 41–56 (1995).
    Google Scholar 
    Stanisci, A., Lavieri, D., Acosta, A. & Blasi, C. Structure and diversity trends at Fagus timberline in central Italy. Community Ecol. 1, 133–138 (2000).
    Google Scholar 
    Gehrig-Fasel, J., Guisan, A. & Zimmermann, N. E. Tree line shifts in the Swiss Alps: Climate change or land abandonment?. J. Veg. Sci. 18, 571–582 (2007).
    Google Scholar 
    Feurdean, A. et al. Long-term land-cover/use change in a traditional farming landscape in Romania inferred from pollen data, historical maps and satellite images. Reg. Environ. Change 17, 2193–2207. https://doi.org/10.1007/s10113-016-1063-7 (2017).
    Google Scholar 
    Burga, C. A., Bührer, S. & Klötzli, F. Mountain ash (Sorbus aucuparia) forests of the Central and Southern Alps (Grisons and Ticino, Switzerland-Prov. Verbano-Cusio-Ossola, N-Italy): Plant ecological and phytosociological aspects. Tuexenia 39, 121–138 (2019).
    Google Scholar 
    Slayter, R. O. & Noble, I. R. Dynamics of Montane Treelines. In Landscape Boundaries, Consequences for Biotic Diversity and Ecological Flows. Ecological Studies Vol. 92 (eds Hansen, A. J. & di Castri, F.) 346–359 (Springer-Verlag, 1992).
    Google Scholar 
    Bryn, A. Recent forest limit changes in south-east Norway: Effects of climate change or regrowth after abandoned utilisation?. Nor. Geogr. Tidsskr. 62(4), 251–270. https://doi.org/10.1080/00291950802517551 (2008).
    Google Scholar 
    Lu, X., Liang, E., Wang, Y., Babst, F. & Camarero, J. J. Mountain treelines climb slowly despite rapid climate warming. Glob. Ecol. Biogeogr. 30(1), 305–315. https://doi.org/10.1111/geb.13214 (2021).
    Google Scholar 
    Armand, A. D. Sharp and Gradual Mountain Timberlines as Result of species Interaction. Landscape Boundaries, Consequences for Biotic Diversity and Ecological Flows. In Ecological Studies Vol. 92 (eds Hansen, A. J. & di Castri, F.) 360–377 (Springer-Verlag, 1992).
    Google Scholar 
    Kucharzyk, S. Ekologiczne znaczenie drzewostanów w strefie górnej granicy lasu w Karpatach Wschodnich i ich wrażliwość na zmiany antropogeniczne [Ecological importance of stands at the upper forest limit in the Eastern Carpathians and their sensibility to anthropogenic changes]. Roczn. Bieszcz. 14, 15–43 (2006) (in Polish with English summary).
    Google Scholar 
    Surina, B. & Rakaj, M. Subalpine beech forest with Hairy alpenrose (Polysticho lonchitis-Fagetum Rhododendretosum hirsuti subass. nova) on Mt. Snežnik (Liburnian Karst, Dinaric Mts). Hacquetia 6, 195–208 (2007).
    Google Scholar 
    Kucharzyk, S. Zmiany przebiegu górnej granicy lasu w pasmie Szerokiego Wierchu w Bieszczadzkim Parku Narodowym [Changes of upper forest limit in the Szeroki Wierch range (Bieszczady National Park)]. Roczn. Bieszcz. 12, 81–102 (2004) (in Polish with English summary).
    Google Scholar 
    Kucharzyk, S. & Augustyn, M. Dynamika górnej granicy lasu w Bieszczadach Zachodnich – zmiany w ciągu półtora wieku [The upper forest limit dynamics in the Western Bieszczady Mts.—Changes over a century and a half]. Stud. Nat. 54, 133–156 (2008) (in Polish with English summary).
    Google Scholar 
    Kubijowicz, W. Życie pasterskie w Beskidach Wschodnich [La Vie Pastorale dans les Beskides Orientales]. Prace Instytutu Geograficznego UJ 5, 3–30 (1926) (in Polish).
    Google Scholar 
    Zarzycki, K. Lasy Bieszczadów Zachodnich [The forests of the Western Bieszczady Mts (Polish Eastern Carpathians)]. Acta Agr. et Silv. Ser. Leśna 3, 1–131 (1963) (in Polish with English summary).
    Google Scholar 
    Augustyn, M. Połoniny w Bieszczadach Zachodnich [Almen im westlichen Bieszczady-Gebirge]. Materiały Muzeum Budownictwa Ludowego w Sanoku 31, 88–98 (1993) (in Polish with German summary).
    Google Scholar 
    Winnicki, T. Zbiorowiska roślinne połonin Bieszczadzkiego Parku Narodowego (Bieszczady Zachodnie, Karpaty Wschodnie) [Plant communities of subalpine poloninas in the Bieszczady National Park (Western Bieszczady Mts, Eastern Carpathians)]. Monogr. Bieszczadzkie 4, 1–215 (1999) (in Polish with English summary).
    Google Scholar 
    Mróz, W. Zróżnicowanie szaty roślinnej przy górnej granicy lasu w Bieszczadach Wschodnich i Zachodnich [The diversity of vegetation near the upper timberline in the Eastern and the Western Bieszczady Mts]. Roczn. Bieszcz. 14, 45–62 (2006) (in Polish with English summary).
    Google Scholar 
    Augustyn, M. & Kucharzyk, S. Górna granica lasu na terenie wsi Ustrzyki Górne i Wołosate w końcu XVIII wieku [Timberline in the Western Bieszczady Mts.]. Roczn. Bieszcz. 20, 15–27 (2012) (in Polish with English summary).
    Google Scholar 
    Jeník, J. Succession on the Połonina Balds in the Western Bieszczady, the Eastern Carpathians. Tuexenia 3, 207–216 (1983).
    Google Scholar 
    Michalik, S. & Szary, A. Zbiorowiska leśne Bieszczadzkiego Parku Narodowego [The forest communities of the Bieszczady National Park]. Monogr. Bieszcz. 1, 1–175 (1997).
    Google Scholar 
    Zemanek, B. & Winnicki, T. Rośliny naczyniowe Bieszczadzkiego Parku Narodowego [Vascular plants of the Bieszczady National Park]. Monogr. Bieszcz. 3, 1–249 (1999) (in Polish with English summary).
    Google Scholar 
    Kucharzyk, S. & Augustyn, M. Trwałość polan reglowych w Bieszczadzkim Parku Narodowym [Stability of mountain glades in the Bieszczady National Park]. Roczn. Bieszcz. 18, 45–58 (2010) (in Polish with English summary).
    Google Scholar 
    Durak, T., Żywiec, M. & Ortyl, B. Rozprzestrzenianie się zarośli drzewiastych w piętrze połonin Bieszczad Zachodnich [Expansion of brushwood in the subalpine zone of the Western Bieszczady Mts]. Sylwan 157, 130–138 (2013) (in Polish with English summary).
    Google Scholar 
    Durak, T., Żywiec, M., Kapusta, P. & Holeksa, J. Impact of land use and climate changes on expansion of woody species on subalpine meadows in the Eastern Carpathians. For. Ecol. Manag. 339, 127–135. https://doi.org/10.1016/j.foreco.2014.12.014 (2015).
    Google Scholar 
    Durak, T., Żywiec, M., Kapusta, P. & Holeksa, J. Rapid spread of a fleshy-fruited species in abandoned subalpine meadows—Formation of an unusual forest belt in the eastern Carpathians. iForest – Biogeosci. For. 9, 337–343. https://doi.org/10.3832/ifor1470-008 (2015).
    Google Scholar 
    Wężyk, P. & Hawryło, P. Analiza struktury 3D drzewostanów Bieszczadzkiego PN na podstawie danych lotniczego skanowania laserowego oraz ortofotomap lotniczych CIR [3D structure analysis of stands of the Bieszczady National Park on the basis of airborne laser scanning data and CIR aerial ortho-photomaps] (ProGea Consulting, 2015) (in Polish).Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 27, 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x (1995).
    Google Scholar 
    Scott, L. M. & Janikas, M. V. Spatial Statistics in ArcGIS. In Handbook of Applied Spatial Analysis (eds Fischer, M. M. & Getis, A.) 27–41 (Springer, 2010).
    Google Scholar 
    Cui, H., Wu, L., Hu, S., Lu, R. & Wang, S. Research on the driving forces of urban hot spots based on exploratory analysis and binary logistic regression model. Trans. GIS 25(3), 1522–1541. https://doi.org/10.1111/tgis.12739 (2021).
    Google Scholar 
    Pierce, K. B., Lookingbill, T. & Urban, D. A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landsc. Ecol. 20, 137–147 (2005).
    Google Scholar 
    Riley, S. J., DeGloria, S. D. & Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Int. J. Sc. 5, 23–27 (1999).
    Google Scholar 
    Böhner, J. & Antonić, O. Land-surface parameters specific to topo-climatology. Geomorphometry – Concepts, Softw. Appl. Dev. Soil Sci. 33, 195–226. https://doi.org/10.1016/S0166-2481(08)00008-1 (2009).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2021).
    Google Scholar 
    Agresti, A. An Introduction to Categorical Data Analysis 2nd edn. (Wiley & Sons Inc., 2007).MATH 

    Google Scholar 
    Cottrell, A. Gnu Regression, Econometrics and Time-series Library gretl. http://gretl.sourceforge.net/(2020).Hellevik, O. Linear versus logistic regression when the dependent variable is a dichotomy. Qual. Quant. 43, 59–74 (2009).
    Google Scholar 
    Azen, R. & Traxel, N. Using dominance analysis to determine predictor importance in logistic regression. J. Educ. Behav. Stat. 34, 319–347. https://doi.org/10.3102/1076998609332754 (2009).
    Google Scholar 
    Borcard, P., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).
    Google Scholar 
    Przybylska, K. & Kucharzyk, S. Skład gatunkowy i struktura lasów Bieszczadzkiego Parku Narodowego [Species composition and structure of forest of the Bieszczady National Park. Monogr. Bieszcz. 6, 1–159 (1999) (in Polish with English summary).
    Google Scholar 
    Bader, M. Y. et al. A global framework for linking alpine-treeline ecotone patterns to underlying processes. Ecography 44(2), 265–292. https://doi.org/10.1111/ecog.05285 (2021).
    Google Scholar 
    Nowosad, M. Zarys klimatu Bieszczadzkiego Parku Narodowego i jego otuliny w świetle dotychczasowych badań [Outlines of climate of the Bieszczady National Park and its bufferzone in the light of previous studies]. Roczn. Bieszcz. 4, 163–183 (1995) (in Polish with English summary).
    Google Scholar 
    Nowosad, M. & Wereski, S. Warunki klimatyczne. Bieszczadzki Park Narodowy–40 lat ochrony [Climatic conditions. Bieszczady National Park–40 years of protection]. In Bieszczadzki Park Narodowy [The Bieszczady National Park] (eds Górecki, A. & Zemanek, B.) 31–38 (Wyd. Bieszczadzki Park Narodowy, 2016) (in Polish with English summary).
    Google Scholar 
    Kukulak, J. Neotectonics and planation surfaces in the High Bieszczady Mountains (Outer Carpathians, Poland). Ann. Soc. Geol. Pol. 74, 339–350 (2004).
    Google Scholar 
    Haczewski, G., Kukulak, J. & Bąk, K. Budowa geologiczna i rzeźba Bieszczadzkiego Parku Narodowego [Geology and relief of the Bieszczady National Park]. Prace monograficzne (Akademia Pedagogiczna im. Komisji Edukacji Narodowej w Krakowie) 468, 1–156 (2007) (in Polish with English summary).
    Google Scholar 
    Skiba, S., Drewnik, M., Kacprzak, A. & Kołodziejczyk, M. Gleby litogeniczne Bieszczadów i Beskidu Niskiego [Lithogenous soils of the Bieszczady and Beskid Niski Mts (Polish Carpathians)]. Roczn. Bieszcz. 7, 387–396 (1998) (in Polish with English summary).
    Google Scholar 
    Skiba, S. & Winnicki, T. Gleby zbiorowisk roślinnych bieszczadzkich połonin [Soils of the subalpine meadows plant communities in the Bieszczady Mts]. Roczn. Bieszcz. 4, 97–109 (1995) (in Polish with English summary).
    Google Scholar 
    Musielok, Ł, Drewnik, M., Szymański, W. & Stolarczyk, M. Classification of mountain soils in a subalpine zone—A case study from the Bieszczady Mountains (SE Poland). Soil Sci. Annu. 70, 170–177. https://doi.org/10.2478/ssa-2019-0015 (2019).CAS 

    Google Scholar 
    Spatz, G. Succession patterns on mountain pastures. Vegetatio 43, 39–41 (1980).
    Google Scholar 
    Kozak, J. Zmiany powierzchni lasów w Karpatach Polskich na tle innych gór świata [Changes in the Land Cover in the Polish Carpathians at the Turn of the 20th and 21st Century in Relation to Local Development Level]. Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków (2005) (in Polish with English summary).Vitali, A., Urbinati, C., Weisberg, P. J., Urza, A. K. & Garbarino, M. Effects of natural and anthropogenic drivers on land-cover change and treeline dynamics in the Apennines (Italy). J. Veg. Sci. 29(2), 189–199. https://doi.org/10.1111/jvs.12598 (2018).
    Google Scholar 
    Micu, D. M., Dumitrescu, A., Cheval, S., Nita, I.-A. & Birsan, M.-V. Temperature changes and elevation-warming relationships in the Carpathian Mountains. Int. J. Climatol. 41, 2154–2172. https://doi.org/10.1002/joc.6952 (2020).
    Google Scholar 
    Rehman, A. Ziemie dawnej Polski. Cz. I. Karpaty [The lands of ancient Poland. Part I. The Carpathians]. (Gubrynowicz i Schmidt, Lwów) (1895) (in Polish).Frey, W. The influence of snow on growth and survival of planted trees. Arct. Alp. Res. 15, 241–251 (1983).
    Google Scholar 
    Malanson, G. P. et al. Alpine treeline of Western North America: Linking organism-to-landscape dynamics. Phys. Geogr. 28, 378–396. https://doi.org/10.2747/0272-3646.28.5.378 (2007).
    Google Scholar 
    Holtmeier, F. K. & Broll, G. Wind as an ecological agent at treelines in North America, the Alps, and the European Subarctic. Phys. Geogr. 31, 203–233. https://doi.org/10.2747/0272-3646.31.3.203 (2010).
    Google Scholar 
    Barclay, A. M. & Crawford, R. M. M. Winter desiccation stress and resting bud viability in relation to high altitude survival in Sorbus aucuparia L. Flora 172, 21–34 (1982).
    Google Scholar 
    Raspé, O., Findlay, C. & Jacquemart, A. L. Sorbus aucuparia L. J. Ecol. 88, 910–930 (2000).
    Google Scholar 
    Zerbe, S. On the ecology of Sorbus aucuparia (Rosaceae) with special regard to germination, establishment and growth. Pol. Bot. J. 46, 229–239 (2001).
    Google Scholar 
    Smith, W. K., Germino, M. J., Hancock, T. E. & Johnson, D. M. Another perspective on altitudinal limits of alpine timberlines. Tree Physiol. 23, 1101–1112 (2003).PubMed 

    Google Scholar 
    Trant, A., Higgs, E. & Starzomski, B. M. A century of high elevation ecosystem change in the Canadian Rocky Mountains. Sci. Rep. 10, 9698. https://doi.org/10.1038/s41598-020-66277-2 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbeito, I., Dawes, M. A., Rixen, C., Senn, J. & Bebi, P. Factors driving mortality and growth at treeline: A 30-year experiment of 92 000 conifers. Ecology 93(2), 389–401 (2012).PubMed 

    Google Scholar 
    Kullman, L. A 25-year survey of geoecological change in the scandes mountains of Sweden. Geogr. Ann. Ser. B 79, 139–165 (1997).
    Google Scholar 
    Pękala, K. Rzeźba Bieszczadzkiego Parku Narodowego [Relief of the Bieszczady National Park]. Roczn. Bieszcz. 6, 19–38 (1997) (in Polish with English summary).
    Google Scholar 
    Kullman, L. Temporal and spatial aspects of subalpine populations of Sorbus aucuparia in Sweden. Ann. Bot. Fenn. 23, 267–275 (1986).
    Google Scholar 
    Hoersch, B. Modelling the spatial distribution of montane and subalpine forests in the Central Alps using digital elevation models. Ecol. Model. 168, 267–282 (2003).
    Google Scholar 
    Resler, L. M., Butler, D. R. & Malanson, G. P. Topographic shelter and conifer establishment and mortality in an alpine environment, Glacier National Park, Montana. Phys. Geogr. 26, 112–125 (2005).
    Google Scholar 
    Kollmann, J. Regeneration window for fleshy-fruited plants during scrub development on abandoned grassland. Ecoscience 2, 213–222 (1995).
    Google Scholar 
    Lediuk, K. D., Damascos, M. A., Puntieri, J. G. & de Torres Curth, M. I. Population dynamics of an invasive tree, Sorbus aucuparia, in the understory of a Patagonian forest. Plant Ecol. 217, 899–911 (2016).
    Google Scholar 
    McCutchan, M. H. & Fox, D. G. Effect of elevation and aspect on wind, temperature and humidity. J. Appl. Meteorol. Climatol. 25(12), 1996–2013 (1986).ADS 

    Google Scholar 
    Stage, A. R. & Salas, C. Interactions of elevation, aspect, and slope in models of forest species composition and productivity. For. Sci. 53, 486–492 (2007).
    Google Scholar 
    Pocewicz, A. L., Gessler, P. & Robinson, A. P. The relationship between effective plant area index and Landsat spectral response across elevation, solar insolation, and spatial scales in a northern Idaho forest. Can. J. For. Res. 34, 465–480 (2004).
    Google Scholar 
    Kucharzyk, S. & Sugiero, D. Zróżnicowanie dynamiki procesów lasotwórczych w buczynach bieszczadzkich w zależności od wystawy i wzniesienia [Variability of the dynamics of forest development processes in the Bieszczady beech forests in relation to exposition and altitude]. Sylwan 7, 29–38 (2007) (in Polish with English summary).
    Google Scholar 
    Drewnik, M., Musielok, Ł, Stolarczyk, M., Mitka, J. & Gus, M. Effects of exposure and vegetation type on organic matter stock in the soils of subalpine meadows in the Eastern Carpathians. CATENA 147, 167–176. https://doi.org/10.1016/j.catena.2016.07.014 (2016).CAS 

    Google Scholar 
    Zheng, L. et al. Tree regeneration patterns on contrasting slopes at treeline ecotones in Eastern Tibet. Forests 12, 1605. https://doi.org/10.3390/f12111605 (2021).
    Google Scholar  More

  • in

    Flexible embryonic shell allies large offspring size and anti-predatory protection in viviparous snails

    The studied viviparous clausiliids developed four types of morphological adaptations that facilitate the delivery of embryos through the shell aperture: (1) reduction of the clausiliar apparatus, (2) decrease of embryonic shell width, (3) widening of the shell canal, and (4) development of a flexible embryonic shell.Reduction of the clausiliar apparatusMembers of the Reinia genus, arboreal species from Japan (Fig. 1), show the most advanced adaptations to live-bearing compared to hypothetical ancestral Phaedusinae. The shell shape in these species is more conical than fusiform, the number of whorls decreases, and the aperture widens. One of the species, R. variegata, features almost full reduction of the clausiliar apparatus that consists of only vestigial folds (Fig. 1F). This species also lacks the clausilium, so the entrance through the aperture is unprotected.Figure 1Different stages of reduction of apertural barriers in members of genus Reinia: R. ashizuriensis (A–C; upper row) and R. variegata (D–F; lower row). (A,D) Adult shells; (B,C,E,F) adult shells with body whorl cut open dorsally in microCT visualisation. cp clausilium plate, il inferior lamella, pr principal plica, sc subcolumellar lamella, sl superior lamella, sp spiral lamella, upp upper palatal plica.Full size imageDecrease of embryonic shell widthAnother adaptation concerns the shape of the embryonic shell (“protoconch”), which becomes very narrow in some viviparous species. This feature is conspicuous because embryonic whorls remain in the adult shell as apical whorls. For instance in S. addisoni (Fig. 2A–D), the apical part being much narrower than the first whorls of the teleoconch is a clear evidence that the growth trajectory has changed abruptly after birth. Other examples include E. cylindrella and E. steetzneri, in which both the protoconch and the teleoconch are very narrow, yet at the borderline between these parts, the shell axis is slightly bent (Fig. 2E–L). We suppose that this feature develops as a result of obstruction during birth.Figure 2Width difference between protoconch and teleoconch in Stereophaedusa addisoni (A–D, upper row), Euphaedusa cylindrella (E–H, middle row), Euphaedusa steetzneri (I–L, lower row). (A,C,E,G,I,K) Adult shells with very narrow apical whorls; (B,F,J) X-rayed adults; (F,J) with retained embryos inside; (D,H,L) X-rays of apical part of adult shell with schematic drawings of a neonate.Full size imageWidening of the shell canalThe third type of adaptation is the widening of the shell canal in the body whorl, allowing for easier passage of the embryo between the lamellae and plicae of the apertural barriers. In this case, the outline of the shell changes only slightly giving the body whorl a more convex appearance. A substantial difference to egg-laying species concerns the apertural barriers: the clausiliar includes a broad clausilium plate and a spirally ascending inferior lamella (Fig. 3A–D). These modifications result in a spacious shell canal in the body whorl, for example in S. addisoni and E. sheridani, that can accommodate the transfer of a large embryo. Table 1 presents neonatal size in these species (shell width ca. 1.2 mm), which is very similar to their clausilium width (ca. 1.1–1.2 mm).Figure 3Two types of clausiliar apparatus occurring in Phaedusinae in microCT visualisation: with spirally ascending inferior lamella and wide clausilium plate (upper row), and with straight ascending inferior lamella and narrow clausilium plate (lower row). (A) T. sheridani adult shell with the body whorl cut open dorsally; (B) clausilium of T. sheridani; (C) clausilium of S. addisoni; (D) clausilium of R. ashizuriensis; (E) Zaptyx ventriosa adult shell with body whorl cut open dorsally; (F) clausilium of Z. ventriosa; (G,H) clausilia of O. miranda. Note, that all depicted species are viviparous.Full size imageTable 1 Shell size of studied Phaedusinae species.Full size tableMost viviparid clausiliids develop one of these three types of modification; some adaptations co-occur within a single species, for example a wide clausilium accompanies a narrow apex. Interestingly, the Reinia genus includes taxa with a gradual escalation of viviparity-related adaptations: R. ashizurensis, with a stout shell shape and a low number of whorls, has fully developed apertural barriers with a broad clausilium plate (Fig. 1A–C), while its congener, R. variegata, has reduced apertural barriers (Fig. 1D–F).Development of a flexible embryonic shellThe fourth type of adaptation found in Phaedusinae concerns the structure of the embryonic shells. We report this adaptation in O. miranda and Z. ventriosa.Oospira miranda is a dextral, often decollated, ground-dwelling species from Vietnam (Fig. 4A). The species is viviparous: during microCT scanning of museum specimens, we found embryos within a parental shell (Fig. 4B); in laboratory culture, we observed neonates immediately after live birth (Fig. 4C,D). Morphological characters recognized in the adult shell, i.e., a wide apex (= wide embryonic shell), straightly ascending inferior lamella, and a narrow clausilium plate (Fig. 3G,H), seemed to exclude the possibility of live-bearing reproduction, as embryos are too large to pass through the shell canal at the narrowest point. The height and width of the neonatal shell (mean values: 5.19 mm, 3.59 mm) evidently exceeds the width of the clausilium plate in this species (1.97 mm) (Table 1). However, under closer examination, we found the shell to be thin and delicate, which we refer to as a ‘soft shell’. In direct examination, the neonatal shell of O. miranda resembles cellophane, which may keep a given shape for a long time but becomes distorted already under slight pressure.Figure 4Viviparous clausiliids and their ‘soft-shelled’ neonates born in laboratory culture. (A–D) O. miranda: adult shell, X-rayed shell with embryo visible inside, neonates; (E–H) Z. ventriosa: adult shell, X-rayed shell with eggs visible inside, neonates.Full size imageA similar adaptation exists in Z. ventriosa, a Taiwanese species with a very wide apex, never decollated, a straight ascending inferior lamella, and a narrow clausilium plate (Figs. 3E,F, 4E,F). This species produces neonates in laboratory culture (Fig. 4G–H). The dimensions of the neonates (mean values: height 3.37 mm, width 2.51 mm) exceed at last twofold the width of the clausilium plate (1.08 mm). The shells of such freshly delivered juveniles, when gently touched with laboratory tweezers, became dented, but not fractured. More intense and stronger pressing can break this dentation.These initial observations, that we made during the maintenance of the laboratory culture, suggested that the neonatal shells of O. miranda and Z. ventriosa have flexible walls. These ‘soft-shells’ seem to be highly malleable during the entire embryonic development period and delivery through apertural barriers, hardening shortly after birth. We further investigated the physical properties of the embryonic shell by means of microcomputed tomography and scanning electron microscopy.Microcomputed tomographyWe scanned ‘soft-shelled’ neonates of O. miranda and Z. ventriosa, together with ‘hard-shelled’ embryos and neonates of S. addisoni and T. sheridani, in order to compare the density and thickness of the shells (Fig. 5).Figure 5Comparison of embryonic shell thickness in clausiliids: ‘soft-shelled’ neonates of Z. ventriosa (A,B,G,H) and O. miranda (C,D,I,J); “hard-shelled” neonate of S. addisoni (E,K) and embryo of T. sheridani (F,L) scanned inside a parental shell. Upper row—microCT visualisation of shell surface; middle row—microCT sections of those specimens; (M–O) X-ray photographs of S. addisoni (embryo from dissected adult) and Z. ventriosa (neonate) enlarged in (N,O), respectively, showing the difference in shell density and thickness; (P) microCT based volume rendering of O. miranda (left) and S. addisoni (right) neonates, showing difference between relative density of their shells.Full size imagePreliminary observations using the two-dimensional X-ray photographs showed a difference in thickness and density between S. addisoni and Z. ventriosa (Fig. 5M, enlarged in N and O, respectively). The 3D visualization of O. miranda and S. addisoni (the same microCT scanning and reconstruction parameters) confirmed the difference between density and shell thickness of these two species (Fig. 5P).Due to variations in wall thickness within the neonatal shell (e.g., between the first and the second whorls), it is not possible to precisely determine the thickness of the shell wall. The accuracy of the measurement is also limited by the resolution of the microCT scans, especially in the case of the relatively large neonates of O. miranda and Z. ventriosa. When scanning the whole embryonic shell of Z. ventriosa (approximately 3.5 mm in height), the size of the voxel was approximately 1 µm. Thus, we cannot determine the shell thickness down to the nearest micron, but we can estimate it from a few to a dozen microns. A direct comparison between virtual microCT sections of specimens scanned under the same conditions shows a clear difference between the ‘soft-shelled’ and ‘hard-shelled’ taxa (Fig. 5G–L). The ’hard-shelled’ neonates have a shell wall of 30–40 µm thick. We examined the sequence of three ’soft-shelled’ O. miranda specimens that differed in size (the exact time of birth of each of the cultured neonates is unknown, ca. 1–2 days). The larger (older) the neonate was, the thicker the shell. The shell of the largest of the studied O. miranda was up to 20 µm thick. However, the shell wall of this relatively large juvenile (several millimeters in height) still did not reach the thickness of the small ’hard-shelled’ T. sheridani embryo, which was already about 30–40 µm thick, stiff and rigid during the retention in the genital tract. The neonates of O. miranda and Z. ventriosa were much larger than the embryos and neonates of S. addisoni and R. variegata (Table 1), however, the former taxa has much thinner shells.Scanning electron microscopyAfter the non-invasive microCT scan, we scanned embryos and neonates using SEM (Fig. 6). The different properties of the shells of Z. ventriosa and O. miranda vs. S. addisoni and R. variegata were already visible during the preparation of the analysis. Under vacuum conditions, the soft shells of Z. ventriosa and O. miranda shrank and crumpled, creating a cellophane-like surface (Fig. 6A). Embryos and neonates of S. addisoni and R. variegata did not require any special preparation and their shell shape remained unchanged under the vacuum conditions applied during the SEM examination (Fig. 6D,E). To reduce the shell deformations, we freeze-dried the next group of thin-shelled neonates prior to SEM analyses (Fig. 6B,C).Figure 6Neonates of O. miranda (A,B,F,I,L,M,O) and Z. ventriosa (C,G,J,P) in direct comparison with hard-shelled embryos and neonates of R. variegata (D,N,Q) and S. addisoni (E,H,K); SEM microphotographs. The vacuum conditions in SEM led to the shrinkage of the thin O. miranda shell (A); freeze-drying of ‘soft-shelled’ neonates prior to SEM imaging reduced the level of deformity (B,C). Contrastingly, R. variegata and S. addisoni shells do not require special preparation and retain their shape (D,E). (F) The dented surface of O. miranda neonate and SEM-close-up (I) on a cross-section of the shell just a few micrometers thick (arrow in F indicates the region enlarged in I). (G,J) Shell of Z. ventriosa in comparison with similarly ornamented fragment of S. addisoni (H,K); note several times thicker shell in the latter (arrows in G,H indicate the regions enlarged in J,K, respectively). (L,M) Inner surface of intact periostracum which still connects two fragments of broken aragonite shell of O. miranda (the arrow in M indicates the region enlarged in L); note the difference between shell thickness in O. miranda (L,M) and R. variegata (N). All observed specimens have similar crossed-lamellar microstructure (L–Q). However, just as shell thickness, also the number of lamellar layers of alternate orientation within the shell differs (L,M,O,P vs N,Q).Full size imageThe SEM studies allowed for complementary measurements of the shells. In the broken fragments of Z. ventriosa and O. miranda, the thickness of the shell wall ranged from 2–3 µm (Fig. 6F,G,I,J,L,M) to 18 µm in the largest neonate of O. miranda (Fig. 6O). The shells of S. addisoni (Fig. 6H,K) and R. variegata (Fig. 6N) are several times thicker.All analyzed samples have a thin ( More

  • in

    Contrasting response of fungal versus bacterial residue accumulation within soil aggregates to long-term fertilization

    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).ADS 
    PubMed 

    Google Scholar 
    Torn, M. S., Vitousek, P. M. & Trumbore, S. E. The influence of nutrient availability on soil organic matter turnover estimated by incubations and radiocarbon modeling. Ecosystems 8, 352–372 (2005).
    Google Scholar 
    Schimel, J. P. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Ding, X., Liang, C., Zhang, B., Yuan, Y. & Han, X. Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil. Soil Biol. Biochem. 84, 137–146 (2015).
    Google Scholar 
    Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).PubMed 

    Google Scholar 
    Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol. Biochem. 105, A3–A8 (2017).
    Google Scholar 
    Miltner, A., Bombach, P., Schmidt-Brücken, B. & Kästner, M. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111, 41–55 (2012).
    Google Scholar 
    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?. Global Change Biol. 19, 988–995 (2013).ADS 

    Google Scholar 
    Sokol, N. W. & Bradford, M. A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 12, 46–53 (2019).ADS 

    Google Scholar 
    Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569 (2006).ADS 

    Google Scholar 
    Simpson, A. J., Simpson, M. J., Smith, E. & Kelleher, B. P. Microbially derived inputs to soil organic matter: Are current estimates too low?. Environ. Sci. Technol. 41, 8070–8076 (2007).ADS 
    PubMed 

    Google Scholar 
    Liang, C., Fujinuma, R. & Balser, T. C. Comparing PLFA and amino sugars for microbial analysis in an Upper Michigan old growth forest. Soil Biol. Biochem. 40, 2063–2065 (2008).
    Google Scholar 
    Shao, P., Liang, C., Lynch, L., Xie, H. & Bao, X. Reforestation accelerates soil organic carbon accumulation: Evidence from microbial biomarkers. Soil Biol. Biochem. 131, 182–190 (2019).
    Google Scholar 
    Ma, S. et al. Effects of seven-year nitrogen and phosphorus additions on soil microbial community structures and residues in a tropical forest in Hainan Island, China. Geoderma 361, 114034 (2020).ADS 

    Google Scholar 
    Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol. Fertil. Soils 29, 111–129 (1999).
    Google Scholar 
    Kong, A. Y. Y. et al. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biol. Biochem. 43, 20–30 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Müller, K., Marhan, S., Kandeler, E. & Poll, C. Carbon flow from litter through soil microorganisms: From incorporation rates to mean residence times in bacteria and fungi. Soil Biol. Biochem. 115, 187–196 (2017).
    Google Scholar 
    Amelung, W. Syntax of Referencing in Assessment Methods for Soil Carbon (Lewis Publishers, 2001).
    Google Scholar 
    Joergensen, R. & Wichern, F. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol. Biochem. 40, 2977–2991 (2008).
    Google Scholar 
    Joergensen, R. G. Amino sugars as specific indices for fungal and bacterial residues in soil. Biol. Fert. Soils 54, 559–568 (2018).
    Google Scholar 
    Wang, X. et al. Distinct regulation of microbial processes in the immobilization of labile carbon in different soils. Soil Biol. Biochem. 142, 107723 (2020).
    Google Scholar 
    Wang, J., Chapman, S. J. & Yao, H. Incorporation of 13C-labelled rice rhizodeposition into soil microbial communities under different fertilizer applications. Appl. Soil Ecol. 101, 11–19 (2016).ADS 

    Google Scholar 
    Cui, S. et al. Long-term fertilization management affects the C utilization from crop residues by the soil micro-food web. Plant Soil 429, 335–348 (2018).
    Google Scholar 
    Liu, X., Zhang, X. & Herbert, S. Feeding China’s growing needs for grain. Nature 465, 420 (2010).ADS 
    PubMed 

    Google Scholar 
    Edmeades, D. C. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutr. Cycl. Agroecosys. 66, 165–180 (2003).
    Google Scholar 
    Chaparro, J., Sheflin, A., Manter, D. & Vivanco, J. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48, 489–499 (2012).
    Google Scholar 
    Jin, X. et al. Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management. Geoderma 313, 154–162 (2018).ADS 

    Google Scholar 
    Chen, X., Li, Z., Liu, M., Jiang, C. & Che, Y. Microbial community and functional diversity associated with different aggregate fractions of a paddy soil fertilized with organic manure and/or NPK fertilizer for 20 years. J. Soil Sediment. 15, 292–301 (2014).
    Google Scholar 
    Wang, Y. et al. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment. Appl. Soil Ecol. 111, 65–72 (2017).
    Google Scholar 
    Joergensen, R. G., Mäder, P. & Fließbach, A. Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biol. Fert. Soils 46, 303–307 (2010).
    Google Scholar 
    Sun, H. et al. Soil microbial community and microbial residues respond positively to minimum tillage under organic farming in Southern Germany. Appl. Soil Ecol. 108, 16–24 (2016).
    Google Scholar 
    Heijboer, A. et al. Plant biomass, soil microbial community structure and nitrogen cycling under different organic amendment regimes; A 15N tracer-based approach. Appl. Soil Ecol. 107, 251–260 (2016).
    Google Scholar 
    Six, J., Elliott, E. T. & Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103 (2000).
    Google Scholar 
    Wall, D. et al. Soil Ecology and Ecosystem Services (Oxford University Press, 2012).
    Google Scholar 
    Helgason, B. L., Walley, F. L. & Germida, J. J. No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl. Soil Ecol. 46, 390–397 (2010).
    Google Scholar 
    Blaud, A. et al. Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw. Appl. Soil Ecol. 53, 1–9 (2012).
    Google Scholar 
    Tisdall, J. M. & Oades, J. M. Organic matter and water stable aggregates in soils. Eur. J. Soil Sci. 33, 141–163 (1982).
    Google Scholar 
    Bronick, C. J. & Lal, R. Soil structure and management: A review. Geoderma 124, 3–22 (2005).ADS 

    Google Scholar 
    Li, N. et al. Separation of soil microbial community structure by aggregate size to a large extent under agricultural practices during early pedogenesis of a Mollisol. Appl. Soil Ecol. 88, 9–20 (2015).
    Google Scholar 
    Bidisha, M., Joerg, R. & Yakov, K. Effects of aggregation processes on distribution of aggregate size fractions and organic C content of a long-term fertilized soil. Eur. J. Soil Biol. 46, 365–370 (2010).
    Google Scholar 
    Xiang, X. et al. Divergence in fungal abundance and community structure between soils under long-term mineral and organic fertilization. Soil Till. Res. 196, 104491 (2020).
    Google Scholar 
    Jin, X. et al. Long-term plastic film mulching and fertilization treatments changed the annual distribution of residual maize straw C in soil aggregates under field conditions: Characterization by 13C tracing. J. Soils Sediment. 18, 169–178 (2018).
    Google Scholar 
    Kemper, W. & Rosenau, R. Syntax of referencing. In Methods of Soil Analysis (ed. Klute, A.) (ASA and SSSA, 1986).
    Google Scholar 
    Bossio, D. A. & Scow, K. M. Impact of carbon and flooding on the metabolic diversity of microbial communities in soils. Appl. Environ. Microbiol. 61, 4043–4050 (1995).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Denef, K. et al. Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4, 769–779 (2007).ADS 

    Google Scholar 
    Tavi, N. M. et al. Linking microbial community structure and allocation of plant-derived carbon in an organic agricultural soil using 13CO2 pulse-chase labelling combined with 13C-PLFA profiling. Soil Biol. Biochem. 58, 207–215 (2013).
    Google Scholar 
    Bach, E. M., Baer, S. G., Meyer, C. K. & Six, J. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol. Biochem. 42, 2182–2191 (2010).
    Google Scholar 
    Pan, F., Li, Y., Chapman, S. J., Khan, S. & Yao, H. Microbial utilization of rice straw and its derived biochar in a paddy soil. Sci. Total Environ. 559, 15–23 (2016).ADS 
    PubMed 

    Google Scholar 
    Olsson, P. A. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbial Ecol. 29, 303–310 (1999).
    Google Scholar 
    Zhang, X. & Amelung, W. Gas Chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol. Biochem. 28, 1201–1206 (1996).
    Google Scholar 
    Zhang, X. et al. Land-use effects on amino sugars in particle size fractions of an Argiudoll. Appl. Soil Ecol. 11, 271–275 (1999).
    Google Scholar 
    van Groenigen, K.-J. et al. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biol. Biochem. 42, 48–55 (2010).
    Google Scholar 
    Liang, C., Amelung, W., Lehmann, J. & Kastner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biol. 25, 3578–3590 (2019).ADS 

    Google Scholar 
    Engelking, B., Flessa, H. & Joergensen, R. G. Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biol. Biochem. 39, 2111–2118 (2007).
    Google Scholar 
    Chander, K. & Joergensen, R. G. Decomposition of 14C glucose in two soils with different amounts of heavy metal contamination. Soil Biol. Biochem. 33, 1811–1816 (2001).
    Google Scholar 
    Zhu, Z. et al. Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil – part 2: turnover and microbial utilization. Plant Soil. 416, 243–257 (2017).
    Google Scholar 
    Appuhn, A. & Joergensen, R. Microbial colonisation of roots as a function of plant species. Soil Biol. Biochem. 38, 1040–1051 (2006).
    Google Scholar 
    Huang, Y., Liang, C., Duan, X., Chen, H. & Li, D. Variation of microbial residue contribution to soil organic carbon sequestration following land use change in a subtropical karst region. Geoderma 353, 340–346 (2019).ADS 

    Google Scholar 
    Liang, C. et al. Microorganisms and their residues under restored perennial grassland communities of varying diversity. Soil Biol. Biochem. 103, 192–200 (2016).
    Google Scholar 
    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Veresoglou, S. D., Chen, B. & Rillig, M. C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol. Biochem. 46, 53–62 (2012).
    Google Scholar 
    Treseder, K. K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164, 347–355 (2004).PubMed 

    Google Scholar 
    Xu, Y. et al. Microbial assimilation dynamics differs but total mineralization from added root and shoot residues is similar in agricultural Alfsols. Soil Biol. Biochem. 148, 107901 (2020).
    Google Scholar 
    Chenu, C. & Stotzky, G. Syntax of referencing in Interactions between soil particles and microorganisms (eds. Huang, P., Bollag, J. & Senesi, N.) 3–39 (Wiley-VCH, 2002).Chantigny, M., Angers, D., Prévost, D., Vézina, L.-P. & Chalifour, F. Soil aggregation and fungal and bacterial biomass under annual and perennial cropping systems. Soil Sci. Soc. Am. J. 61, 262–267 (1997).ADS 

    Google Scholar 
    Liang, C., Duncan, D., Balser, T., Tiedje, J. & Jackson, R. Soil microbial residue storage linked to soil legacy under biofuel cropping systems in southern Wisconsin, USA. Soil Biol. Biochem. 57, 939–942 (2013).
    Google Scholar 
    Feng, Y. et al. Temperature thresholds drive the global distribution of soil fungal decomposers. Glaobal Change Biol. 28, 2779–2789 (2022).
    Google Scholar 
    An, T. et al. Carbon fluxes from plants to soil and dynamics of microbial immobilization under plastic film mulching and fertilizer application using 13C pulse-labeling. Soil Biol. Biochem. 80, 53–61 (2015).
    Google Scholar 
    Lauer, F., Kösters, R., du Preez, C. C. & Amelung, W. Microbial residues as indicators of soil restoration in South African secondary pastures. Soil Biol. Biochem. 43, 787–794 (2011).
    Google Scholar  More

  • in

    Ancient DNA reveals how Viking-era fishers helped to make herring scarce

    .readcube-buybox { display: none !important;}
    A roaring trans-European herring trade that began in the Viking Age might have depleted stocks1.

    Access options

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to Nature and 55 other Nature journal$29.99monthlySubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueAll prices are NET prices.VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00All prices are NET prices.

    Additional access options:

    doi: https://doi.org/10.1038/d41586-022-03431-y

    References

    Subjects

    Latest on: More