More stories

  • in

    Optimization of oviposition trap settings to monitor populations of Aedes mosquitoes, vectors of arboviruses in La Reunion

    Yang, X., Quam, M. B., Zhang, T. & Sang, S. Global burden for dengue and the evolving pattern in the past 30 years. J. Travel Med. 28, taab146 (2021).Simmons, C. P., Farrar, J. J., van Vinh Chau, N. & Wills, B. Dengue. N. Engl. J. Med. 366, 1423–1432 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brady, O. J. et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morin, C. W., Comrie, A. C. & Ernst, K. Climate and dengue transmission: Evidence and implications. Environ. Health Perspect. 121, 1264–1272 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brady, O. J. et al. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites Vectors 7, 338 (2014).Betanzos-Reyes, Á. F. et al. Association of dengue fever with Aedes spp. abundance and climatological effects. Salud Pública de México 60, 12 (2017).WHO. Dengue and severe dengue. (2022).Gubler, D. J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 11, 480–496 (1998).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delatte, H. et al. Aedes albopictus, vecteur des virus du chikungunya et de la dengue à La Réunion : biologie et contrôle. Parasite 15, 3–13 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kles, V., Michault, A., Rodhain, F., Mevel, F. & Chastel, C. A serological survey regarding Flaviviridae infections on the island of Reunion (1971–1989). Bull. Soc. Pathol. Exot. 1990(87), 71–76 (1994).
    Google Scholar 
    Pierre, V. et al. Epidémie de dengue 1 à la Réunion en 2004. Journal de Veille Sanitaire (2005).Vincent, M. et al. From the threat to the large outbreak: dengue on Reunion Island, 2015 to 2018. Eurosurveillance 24, (2019).Cellule Santé Publique France en Région, ARS. Situation de la dengue à La Réunion au 15 décembre 2020. https://www.lareunion.ars.sante.fr/avec-le-retour-de-lete-agissons-des-maintenant-contre-la-dengue (2020).Agence Régionale de Santé. Communiqué de presse: dengue à La Réunion. Situation au 28 juillet 2021. https://www.lareunion.ars.sante.fr/system/files/2021-07/2021-07-28-Dengue-Situation à La Réunion_0.pdf (2021).Hafsia, S. et al. Overview of dengue outbreaks in the southwestern Indian Ocean and analysis of factors involved in the shift toward endemicity in Reunion Island: A systematic review. PLoS Negl. Trop. Dis. 16, e0010547 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reiter, P., Fontenille, D. & Paupy, C. Aedes albopictus as an epidemic vector of chikungunya virus: Another emerging problem?. Lancet. Infect. Dis 6, 463–464 (2006).Article 
    PubMed 

    Google Scholar 
    Njenga, M. K. et al. Tracking epidemic Chikungunya virus into the Indian Ocean from East Africa. J. Gen. Virol. 89, 2754–2760 (2008).Article 
    CAS 

    Google Scholar 
    Soumahoro, M.-K. et al. The Chikungunya epidemic on La Réunion Island in 2005–2006: a cost-of-illness study. PLoS Negl. Trop. Dis. 5, e1197 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Larrieu, S., Balleydier, E., Renault, P., Baville, M. & Filleul, L. [Epidemiological surveillance du chikungunya on Reunion Island from 2005 to 2011]. Médecine tropicale : Revue du Corps de Santé colonial 72 Spec No, 38–42 (2012).Soghigian, J. et al. Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Mol. Ecol. 29, 3593–3606 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kotsakiozi, P. et al. Population structure of a vector of human diseases: Aedes aegypti in its ancestral range Africa. Ecol. Evol. 8, 7835–7848 (2018).Article 
    PubMed 

    Google Scholar 
    MacGregor, M. E. Aedes (Stegomyia) mascarensis, MacGregor: A new Mosquito from Mauritius. Bull. Entomol. Res. 14, 409–412 (1924).Article 

    Google Scholar 
    Salvan, M. & Mouchet, J. Aedes albopictus et Aedes aegypti à l’Ile de La Réunion. Ann. Soc. Belg. Med. Trop. 74, 323–326 (1994).CAS 
    PubMed 

    Google Scholar 
    Bagny, L., Delatte, H., Quilici, S. & Fontenille, D. Progressive Decrease in Aedes aegypti distribution in Reunion Island since the 1900s. J. Med. Entomol. 46, 1541–1545 (2009).Article 
    PubMed 

    Google Scholar 
    Le Vassal, J. J. paludisme à l’Ile de La Réunion. Per Gli Stud Della Maria 8, 18–27 (1907).
    Google Scholar 
    Delatte, H. et al. Geographic distribution and developmental sites of Aedes albopictus (Diptera: Culicidae) during a chikungunya epidemic event. Vector-Borne Zoon. Dis. 8, 25–34 (2008).Article 
    CAS 

    Google Scholar 
    Hamon, J. Etudes biologique et systématique des Culicinae de l’Ile de La Réunion. Mem. Inst. Scient. Madagascar 4, 521–541 (1953).
    Google Scholar 
    Bouyer, J. & Lefrançois, T. Boosting the sterile insect technique to control mosquitoes. Trends Parasitol. 30, 271–273 (2014).Article 
    PubMed 

    Google Scholar 
    Haramboure, M. et al. Modelling the control of Aedes albopictus mosquitoes based on sterile males release techniques in a tropical environment. Ecol. Model. 424, 109002 (2020).Article 

    Google Scholar 
    Bouyer, J., Yamada, H., Pereira, R., Bourtzis, K. & Vreysen, M. J. B. Phased conditional approach for mosquito management using sterile insect technique. Trends Parasitol. 36, 325–336 (2020).Article 
    PubMed 

    Google Scholar 
    Bouyer, J. & Vreysen, M. J. B. Yes, irradiated sterile male mosquitoes can be sexually competitive!. Trends Parasitol. 36, 877–880 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Organization, W. H. Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13 (2005).World Health Organization and Special Programme for Research and Training in Tropical Diseases and World Health Organization. Department of Control of Neglected Tropical Diseases and World Health Organization. Epidemic and Pandemic Alert. Dengue: Guidelines for diagnosis, treatment, prevention and control. (World Health Organization, 2009).Yap, H. H. Preliminary report on the color preference for oviposition by Aedes albopictus (Skuse) in the field. Southeast Asian J. Trop. Med. Public Health 6, 1–2 (1975).
    Google Scholar 
    Yap, H. H., Lee, C. Y., Chong, N. L., Foo, A. E. S. & Lim, M. P. Oviposition site preference of Aedes albopictus in the laboratory. J. Am. Mosquito Control Assoc. Mosquito News 11, 128–132 (1995).CAS 
    PubMed 

    Google Scholar 
    Marin, G., Mahiba, B., Arivoli, S. & Tennyson, S. Does colour of ovitrap influence the ovipositional preference of Aedes aegypti Linnaeus 1762 (Diptera: Culicidae). Int. J. Mosq. Res 7, 11–15 (2020).CAS 

    Google Scholar 
    Claudel, I. et al. To bait or not to bait? Optimizing the use of adult mosquito traps for monitoring arbovirus vector populations in La Réunion Island. (2022). https://doi.org/10.21203/rs.3.rs-1798972/v1.Cleveland, W. S. Visualizing data. (Hobart press, 1993).Lamigueiro, Ó. P. Displaying time series, spatial, and space-time data with R. (Chapman; Hall/CRC, 2018).Yoshioka, M. et al. Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae). Parasites Vectors 5, (2012).Wong, J., Stoddard, S. T., Astete, H., Morrison, A. C. & Scott, T. W. Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control. PLoS Negl. Trop. Dis. 5, e1015 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hawley, W. A. The biology of aedes albopictus. J. Am. Mosquito Control Assoc. Suppl 1, 1–39 (1988).Delatte, H., Gimonneau, G., Triboire, A. & Fontenille, D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of Chikungunya and dengue in the Indian Ocean. J. Med. Entomol. 46, 33–41 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Daugherty, M. P., Alto, B. W. & Juliano, S. A. Invertebrate carcasses as a resource for competing Aedes albopictus and Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 37, 364–372 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Papaj, D. R. & Rausher, M. D. Individual variation in host location by phytophagous insects. Herbivorous Insects: Host seeking behavior and mechanisms 77–127 (1983).Valladares, G. & Lawton, J. H. Host-plant selection in the holly leaf-miner: Does mother know best?. J. Anim. Ecol. 60, 227 (1991).Article 

    Google Scholar 
    Ellis, A. M. Incorporating density dependence into the oviposition preference-offspring performance hypothesis. J. Anim. Ecol. 77, 247–256 (2008).Article 
    PubMed 

    Google Scholar 
    Juliano, S. A., OMeara, G. F., Morrill, J. R. & Cutwa, M. M. Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia 130, 458–469 (2002).Costanzo, K. S., Kesavaraju, B. & Juliano, S. A. Condition-specific competion in container mosquitoes: The role of non-competing life-history stages. Ecology 86, 3289–3295 (2005).Article 
    PubMed 

    Google Scholar 
    Sanchez, M. & Probst, J.-M. Distribution and conservation status of the Manapany day gecko, Phelsuma inexpectata MERTENS, 1966, an endemic threatened reptile from Réunion Island (Squamata: Gekkonidae). Cahiers scientifiques de l’océan Indien occidental 2, (2011).Braks, M. A. H., Honório, N. A., Lounibos, L. P., De-Oliveira, R. L. & Juliano, S. A. Interspecific competition between two invasive species of container mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazil. Ann. Entomol. Soc. Am. 97, 130–139 (2004).Article 

    Google Scholar 
    Moore, C. G. & Fisher, B. R. Competition in mosquitoes.1 Density and species ratio effects on growth, mortality, fecundity, and production of growth retardant2. Ann. Entomol. Soc. Am. 62, 1325–1331 (1969).Madeira, N. G., Macharelli, C. A. & Carvalho, L. R. Variation of the Oviposition Preferences of Aedes aegypti in Function of Substratum and Humidity. Mem. Inst. Oswaldo Cruz 97, 415–420 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bellini, R. et al. Use of the sterile insect technique against Aedes albopictus in Italy: first results of a pilot trial. in Area-wide control of insect pests 505–515 (Springer, 2007).Boussès, P., Dehecq, J. S., Brengues, C. & Fontenille, D. Inventaire actualisé des moustiques (Diptera : Culicidae) de l’île de La Réunion, océan Indien. Bulletin de la Société de pathologie exotique 106, 113–125 (2013).Article 
    PubMed 

    Google Scholar 
    Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Softw. 27, (2008).Sileshi, G. Selecting the right statistical model for analysis of insect count data by using information theoretic measures. Bull. Entomol. Res. 96, 479–488 (2006).CAS 
    PubMed 

    Google Scholar 
    Guthery, F. S., Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach. J. Wildl. Manag. 67, 655 (2003).Article 

    Google Scholar 
    Hurvich, C. M. & Tsai, C.-L. Model selection for extended quasi-likelihood models in small samples. Biometrics 51, 1077–1084 (1995).Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. 496 (Springer-Verlag, 2002).Manly, B. F. J. Randomization, bootstrap and Monte Carlo methods in biology. 399 (CRC Press / Chapman & Hall, 2006). https://doi.org/10.1201/9781315273075.Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 65–70 (1979).R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2022).Lesnoff, M. & Lancelot, R. aods3: analysis of overdispersed data using S3 methods. (2018).Barton, K. MuMIn: Multi-Model Inference. (2022).Xie, Y., Dervieux, C. & Riederer, E. R Markdown Cookbook. (Chapman; Hall/CRC, 2020). https://doi.org/10.1201/9781003097471. More

  • in

    Investigation of the spermathecal morphology, reproductive strategy and fate of stored spermatozoa in three important thysanopteran species

    Cavalleri, A., Masumoto, M., Minaei, K., Mound, L. & Ulitzka, M. R. ThripsWiki – providing information on the World’s thrips. https://thrips.info/wiki/Main_Page (2022).Kirk, W. D. J., de Kogel, W. J., Koschier, E. H. & Teulon, D. A. J. Semiochemicals for thrips and their use in pest management. Annu. Rev. Entomol. 66, 101–119. https://doi.org/10.1146/annurev-ento-022020-081531 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mota-Sanchez, D. & Wise, C. J. The Arthropod Pesticide Resistance Database. Available at http://www.pesticideresistance.org (2022).von Kèler, S. Entomologisches Wörterbuch. mit besonderer Berücksichtigung der morphologischen Terminologie. 3rd edn. (Akademie, Berlin, 1963).
    Google Scholar 
    Pascini, T. V. & Martins, G. F. The insect spermatheca: an overview. Zoology Jena (Germany) 121, 56–71. https://doi.org/10.1016/j.zool.2016.12.001 (2017).Article 

    Google Scholar 
    Bode, W. Der Ovipositor und die weiblichen Geschlechtswege der Thripiden (Thysanoptera, Terebrantia). Z. Morph. Tiere (Zeitschrift für Morphologie der Tiere) 81, 1–53; https://doi.org/10.1007/BF00290072 (1975).Moritz, G. Zur Morphologie und Anatomie des Fransenflüglers Aeolothrips intermedius Bagnall, 1934 (Aeolothripidae, Thysanoptera, Insecta) III. Mitteilung: Das Abdomen. Investigation on the Morphology and Anatomy in Aeolothrips intermedius Bagnall, 1934 (Aeolothripidae, Thysanoptera, Insecta) 3. The Abdomen. Zoologische Jahrbücher/ Abteilung für Anatomie und Ontogenie der Tiere 108, 293–340 (1982).Moritz, G. Die Ontogenese der Thysanoptera (lnsecta) unter besonderer Berücksichtigung des Fransenflüglers Hercinothrips femoralis (O. M. REUTER, 1891) (Thysanoptera, Thripidae, Panchaetothripinae) VI. Imago – Abdomen. The Ontogenesis of Thysanoptera (Insecta) with Special Reference to the Panchaetothripine Hercinothrips femoralis (O. M. REUTER, 1891) (Thysanoptera, Thripidae, Panchaetothripinae) VI. Imago – Abdomen. Zoologische Jahrbücher/ Abteilung für Anatomie und Ontogenie der Tiere 119, 157–217 (1989).Heming, B. S. Postembryonic development of the female reproductive system in Frankliniella fusca (Thripidae) and Haplothrips verbasci (Phlaeothripidae) (Thysanoptera). Misc. Publ. Entomol. Soc. Am. 7, 197–234 (1970).
    Google Scholar 
    Heming, B. S. History of the germ line in male and female thrips. In Thrips Biology and Management. International conference on Thysanoptera: Towards Understanding Thrips Management, Vermont, edited by B. L. Parker, M. Skinner & T. Lewis (Springer, Berlin, 1995), pp. 505–535.Dallai, R., Del Bene, G. & Lupetti, P. Fine structure of spermatheca and accessory gland of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Int. J. Insect Morphol. Embryol. 25, 317–330; https://doi.org/10.1016/0020-7322(95)00018-6 (1996).Jordan, K. Anatomie und Biologie der Physapoda. Zeitschrift für wissenschaftliche Zoologie 47, 541–620 (1888).
    Google Scholar 
    Bournier, A. L`appareil gènital femelle de Caudothrips buffai Karny et sa pompe spermatige (Thysan.). Bulletin de la Sociètè Entomologique de France 67, 203–207 (1962).Dhileepan, K. & Ananthakrishnan, T. Impact of sex-limited and alary polymorphism on spermathecal diversity and reproductive behaviour in some mycophagous Tubulifera. Proc. Indian Natl. Acad. Sci. 4, 329–336 (1987).
    Google Scholar 
    Bhatti, J. S. The spermatheca as a useful character for species differentiation in Coleothrips Haliday (Insecta: Terebrantia: Aeolothripidae). J. Pure Appl. Zool. 1, 111–116 (1988).
    Google Scholar 
    Klocke, F. Beiträge zur Anatomie und Histologie der Thysanopteren. Zeitschrift für wissenschaftliche Zoologie 128, 1 (1926).
    Google Scholar 
    Priesner, H. Die Thysanopteren Europas (F. Wagner Verlag, Wien, 1926–1928).Bode, W. Spermienstruktur und Spermatohistogenese bei Thrips validus Uzel (Insecta, Thysanoptera). Zoologische Jahrbücher/ Abteilung für Anatomie und Ontogenie der Tiere 109, 301–318 (1983).
    Google Scholar 
    Moritz, G. Thripse. Fransenflügler, Thysanoptera. 1st ed. (Westarp Wissenschaften, Hohenwarsleben, 2006).Bournier, A. Contribution à l’étude de la parthénogénèse des thysanoptères et de sa cytologie. Archives de Zoologie expérimentale et générale 93, 219–318 (1956).
    Google Scholar 
    Heming, B. S. Postembryonic development of the male reproductive system in Frankliniella fusca (Thripidae) and Haplothrips verbasci (Phlaeothripidae) (Thysanoptera). Misc. Publ. Entomol. Soc. Am. 7, 235–272 (1970).
    Google Scholar 
    Krueger, S., Jilge, M., Mound, L. & Moritz, G. B. Reproductive behavior of Echinothrips americanus (Thysanoptera: Thripidae). J. Insect Sci. 17; https://doi.org/10.1093/jisesa/iex043 (2017).Krueger, S. & Moritz, G. Sperm ultrastructure in arrhenotokous and thelytokous Thysanoptera. Arthropod Struct. Dev. 64, 101084; https://doi.org/10.1016/j.asd.2021.101084 (2021).Lewis, T. Thrips. Their biology, ecology and economic importance (Academic Press, London, 1973).Jacobs, W. & Seidel, F. Systematische Zoologie, Insekten (Fischer, 1975).
    Google Scholar 
    Gotoh, A., Ito, F. & Billen, J. Vestigial spermatheca morphology in honeybee workers, Apis cerana and Apis mellifera, from Japan. Apidologie 44, 133–143; https://doi.org/10.1007/s13592-012-0165-6 (2013).Gotoh, A., Billen, J., Hashim, R. & Ito, F. Degeneration patterns of the worker spermatheca during morphogenesis in ants (Hymenoptera: Formicidae). Evol. Dev. 18, 96–104; https://doi.org/10.1111/ede.12182 (2016).Schoeters, E. & Billen, J. The importance of the spermathecal duct in bumblebees. J. Insect Physiol. 46, 1303–1312; https://doi.org/10.1016/S0022-1910(00)00052-4 (2000).Gobin, B., Ito, F., Peeters, C. & Billen, J. Queen-worker differences in spermatheca reservoir of phylogenetically basal ants. Z. Zellforsch (Zeitschrift für Zellforschung und Mikroskopische Anatomie) 326, 169–178; https://doi.org/10.1007/s00441-006-0232-2 (2006).Gobin, B., Ito, F., Billen, J. & Peeters, C. Degeneration of sperm reservoir and the loss of mating ability in worker ants. Die Naturwissenschaften 95, 1041–1048; https://doi.org/10.1007/s00114-008-0420-x (2008).Gotoh, A., Billen, J., Hashim, R., Ito, F. Comparison of spermatheca morphology between reproductive and non-reproductive females in social wasps. Arthropod. Struct. Dev. 37, 199–209; https://doi.org/10.1016/j.asd.2007.11.001 (2008).Gotoh, A., Billen, J., Tsuji, K., Sasaki, T. & Ito, F. Histological study of the spermatheca in three thelytokous parthenogenetic ant species, Pristomyrmex punctatus, Pyramica membranifera and Monomorium triviale (Hymenoptera: Formicidae). Acta Zool. 93, 200–207; https://doi.org/10.1111/j.1463-6395.2010.00498.x (2012).Buffa, P. Studi intorno al ciclo partenogenetico dell´ Heliothrips haemorrhoidales (Boúche). REDIA 7, 71–109 (1911).
    Google Scholar 
    Bene, G. D., Cavallo, V., Lupetti, P. & Dallai, R. Ultrastructure of the accessory gland in the parthenogenetic thrips Heliothrips haemorrhoidalis (Bouché) (Thysanoptera. Thripidae). Int. J. Insect Morphol. Embryol. 27, 255–261; https://doi.org/10.1016/S0020-7322(98)00018-X (1998).Nakao, S. & Yabu, S. Ethological and chemical discrimination between thelytokous and arrhenotokous Thrips nigropilosus Uzel, with discussion of taxonomy. Jpn. J. Appl. Entomol. Zool. 42, 77–83; https://doi.org/10.1303/jjaez.42.77 (1998).Article 
    CAS 

    Google Scholar 
    Arakaki, N., Miyoshi, T. & Noda, H. Wolbachia-mediated parthenogenesis in the predatory thrips Franklinothrips vespiformis (Thysanoptera: Insecta). Proc. R. Soc. B Biol. Sci. 268, 1011–1016; https://doi.org/10.1098/rspb.2001.1628 (2001).Kumm, S. & Moritz, G. First detection of Wolbachia in arrhenotokous populations of thrips species (Thysanoptera: Thripidae and Phlaeothripidae) and its role in reproduction. Environ. Entomol. 37, 1422–1428. https://doi.org/10.1603/0046-225X-37.6.1422 (2008).Article 
    PubMed 

    Google Scholar 
    Moritz, G. The biology of thrips is not the biology of their adults: a developmental view. In Thrips and Tospovirus: Proceedings of the 7th International Symposium on Thysanoptera, edited by L. A. Mound & R. Marullo (Australian National Insect Collection CSIRO, Canberra, 2002), pp. 259–267.Moritz, G., Schäfer, E., Kumm, S., Steller, A. & Tschuch, G. D. Alien-Thrips: Suocerathrips linguis – Biologie und Verhalten. Mitteilungen der Deutschen Gesellschaft für allgemeine und angewandte Entomologie 14, 177–181 (2004).
    Google Scholar 
    Gehlsen, U. Ernährungssystem, Verhalten und Wehrsekret des subsozialen Phlaeothripinen Suocerathrips linguis MOUND & MARULLO, 1994 (Insecta, Thysanoptera, Tubulifera). PhD-thesis (Martin-Luther University Halle-Wittenberg, Germany, 2009).Kumm, S. Reproduction, progenesis and embryogenesis of thrips (Thysanoptera, Insecta). Dissertation. Martin-Luther-Universität Halle-Wittenberg, 2002.Krueger, S., Mound, L. A. & Moritz, G. B. Offspring sex ratio and development are determined by copulation activity in Echinothrips americanus MORGAN 1913 (Thysanoptera: Thripidae). J. Appl. Entomol. 140, 462–473; https://doi.org/10.1111/jen.12280 (2016).Oetting, R. D., Beshear, R. J., Liu, T.-X., Braman S. K., & Baker, J. R. Biology and identification of thrips on greenhouse ornamentals. Univ. Ga. Res. Bull. 414, 20 (1993).Mound, L. A., Nielsen, M.-C. & Hastings, A. Thysanoptera Aotearoa. Thrips of New Zealand. Available at https://keys.lucidcentral.org/keys/v3/nz_thrips/index.html.Schindelin, J. et al. Fiji an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Uzel, H. Monographie der Ordnung Thysanoptera (Nabu Oress, Charleston SC, United States, 1895).Marzo L. De. Dettagli anatomici dei genitali interni in Melanthrips fuscus (Sulzer) e altri tisanotteri. Entomologica 36, 109–119. https://doi.org/10.15162/0425-1016/747 (2002).Melis, A. Nuove osservazioni anatomo-istologiche sui diversi stati postembrionali del Liothrips oleae Costa. REDIA 21, 263–334 (1934).
    Google Scholar 
    van der Kooi, C. J. & Schwander, T. On the fate of sexual traits under asexuality. Biol. Rev. 89, 805–819. https://doi.org/10.1111/brv.12078 (2014).Article 
    PubMed 

    Google Scholar 
    Sloan, N. S. & Simmons, L. W. The evolution of female genitalia. J. Evol. Biol. 32, 882–899. https://doi.org/10.1111/jeb.13503 (2019).Article 
    PubMed 

    Google Scholar 
    Buffa, P. Tisanotteri esotici esistenti nel Museo Civico di Storia Naturale di Genova. REDIA 5, 157–172 (1909).
    Google Scholar 
    Osborn, H. Note on a New Species of Phloeothrips, with description. Proc. Iowa Acad. Sci. 3, 228 (1895).
    Google Scholar 
    Mound, L. A. & Marullo, R. New thrips on mother-in-law`s tongue. Entomol. Mon. Mag. 130, 95–98 (1994).
    Google Scholar 
    Zur Strassen, R. Die terebranten Thysanopteren Europas und des Mittelmeer-Gebietes (Goecke und Evers, Keltern, 2003).Davies, R. G. The postembryonic development of the female reproductive system in Limothrips cerealium Haliday (Thysanoptera: Thripidae). Proc. Zool. Soc. Lond. 136, 411–437. https://doi.org/10.1111/j.1469-7998.1961.tb05883.x (1961).Article 

    Google Scholar 
    Gerber, G. H. Evolution of the methods of spermatophore formation in pterygotan insects. Can. Entomol. 102, 358–362 (1970).Article 

    Google Scholar 
    Dallai, R., Afzelius, B. A., Lanzavecchia, S. & Bellon, P. L. Bizarre flagellum of thrips spermatozoa (Thysanoptera, Insecta). J. Morphol. 209, 343–347. https://doi.org/10.1002/jmor.1052090309 (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Paccagnini, E., Mencarelli, C., Mercati, D., Afzelius, B. A. & Dallai, R. Ultrastructural analysis of the aberrant axoneme morphogenesis in thrips (Thysanoptera, Insecta). Cell Mot. Cytoskel. 64, 645–661. https://doi.org/10.1002/cm.20212 (2007).Article 

    Google Scholar 
    Paccagnini, E., Lupetti, P., Afzelius, B. A. & Dallai, R. New findings on sperm ultrastructure in thrips (Thysanoptera, Insecta). Arthropod. Struct. Dev. 38, 70–83. https://doi.org/10.1016/j.asd.2008.07.004 (2009).Article 
    PubMed 

    Google Scholar 
    Paccagnini, E., Mercati, D., Giusti, F., Conti, B. & Dallai, R. The spermatogenesis and the sperm structure of Terebrantia (Thysanoptera, Insecta). Tissue & cell 42, 247–258. https://doi.org/10.1016/j.tice.2010.04.008 (2010).Article 

    Google Scholar 
    Pitnick, S., Wolfner, M. F. & Dorus, S. Post-ejaculatory modifications to sperm (PEMS). Biol. Rev. Camb. Philos. Soc. 95, 365–392. https://doi.org/10.1111/brv.12569 (2020).Article 
    PubMed 

    Google Scholar 
    Karr, T. L., Swanson, W. J. & Snook, R. R. The evolutionary significance of variation in sperm–egg interactions. In Sperm biology. An evolutionary perspective, edited by T. R. Birkhead. 1st ed. (Academic Press/Elsevier, Amsterdam, 2009), pp. 305–365.Friedländer, M., Jeshtadi, A. & Reynolds, S. E. The structural mechanism of trypsin-induced intrinsic motility in Manduca sexta spermatozoa in vitro. J. Insect Physiol. 47, 245–255. https://doi.org/10.1016/s0022-1910(00)00109-8 (2001).Article 
    PubMed 

    Google Scholar 
    Hughes, M. & Davey, K. G. The activity of spermatozoa of Periplaneta. J. Insect Physiol. 15, 1607–1616. https://doi.org/10.1016/0022-1910(69)90181-4 (1969).Article 

    Google Scholar 
    Longo, G. et al. Ultrastructural changes in sperm of Eyprepocnemis plorans (Charpentier) (Orthoptera: Acrididae) during storage of gametes in female genital tract. Inverteb. Reprod. Dev. 24, 1–6. https://doi.org/10.1080/07924259.1993.9672325 (1993).Article 

    Google Scholar 
    Makielski, S. K. The structure and maturation of the spermatozoa of Sciara coprophila. J. Morphol. 118, 11–41. https://doi.org/10.1002/jmor.1051180103 (1966).Article 
    CAS 
    PubMed 

    Google Scholar 
    Giuffrida, A. & Rosati, F. Changes in sperm tail of Eyprepocnemis plorans (Insects, Orthoptera) as a result of in vitro incubation in spermathecal extract. Inverteb. Reprod. Dev. 24, 47–52. https://doi.org/10.1080/07924259.1993.9672330 (1993).Article 

    Google Scholar 
    Giuffrida, A., Focarelli, R., Lampariello, R., Thole, H. & Rosati, F. Purification and properties of a 35 kDa glycoprotein from spermathecal extract of Eyprepocnemis plorans (Insecta, Orthoptera) with axonemal cytoskeleton disassembly activity. Insect Biochem. Mol. Biol. 26, 347–354. https://doi.org/10.1016/0965-1748(95)00095-X (1996).Article 
    CAS 

    Google Scholar 
    Arakaki, N., Noda, H. & Yamagishi, K. Wolbachia-induced parthenogenesis in the egg parasitoid Telenomus nawai. Entomol. Exp. Appl. 96, 177–184. https://doi.org/10.1046/j.1570-7458.2000.00693.x (2000).Article 

    Google Scholar 
    Pannebakker, B. A. et al. Sexual functionality of Leptopilina clavipes (Hymenoptera: Figitidae) after reversing Wolbachia-induced parthenogenesis. J. Evol. Biol. 18, 1019–1028. https://doi.org/10.1111/j.1420-9101.2005.00898.x (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stouthamer, R., Russell, J. E., Vavre, F. & Nunney, L. Intragenomic conflict in populations infected by Parthenogenesis Inducing Wolbachia ends with irreversible loss of sexual reproduction. BMC Evol. Biol. 10, 229. https://doi.org/10.1186/1471-2148-10-229 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sänger, K. & Helfert, B. Comparative studies on number and position of the micropyles and the shape of the eggs of Saga pedo, S. natoliae and S. ephippigera (Orthoptera: Tettigoniidae). Entomologia 19, 49–56. https://doi.org/10.1127/ENTOM.GEN/19/1994/049 (1994).Article 

    Google Scholar 
    Gottlieb, Y. & Zchori-Fein, E. Irreversible thelytokous reproduction in Muscidifurax uniraptor. Entomol. Exp. Appl. 100, 271–278. https://doi.org/10.1046/j.1570-7458.2001.00874.x (2001).Article 

    Google Scholar 
    Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. WOLBACHIA PIPIENTIS. Microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53, 71–102. https://doi.org/10.1146/annurev.micro.53.1.71 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schwander, T., Crespi, B. J., Gries, R. & Gries, G. Neutral and selection-driven decay of sexual traits in asexual stick insects. Proc. Biol. Sci. 280, 20130823. https://doi.org/10.1098/rspb.2013.0823 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Micro. 6, 741–751. https://doi.org/10.1038/nrmicro1969 (2008).Article 
    CAS 

    Google Scholar  More

  • in

    Ecological transition and sustainable development: integrated statistical indicators to support public policies

    The link between SDGs and NRRPThe Italian National Recovery and Resilience Plan (NRRP) is part of the Next Generation EU (NGEU) program, the 750-billion-euro package, consisting of about half of grants, agreed by the European Union in response to the pandemic crisis. The main component of the NGEU program is the Recovery and Resilience Facility (RRF), which has a duration of six years, from 2021 to 2026, and a total size of €672.5 billion (€312.5 billion grants, the remaining €360 billion loans at subsidized rates).The Plan is developed around three strategic axes shared at European level: digitalization and innovation, ecological planning and social inclusion.The missions of the NRRP are as follows:

    Mission 1: Digitalization, innovation, competitiveness, culture and tourism

    Mission 2: Green revolution and ecological transition

    Mission 3: Infrastructure for sustainable mobility

    Mission 4: Education and research

    Mission 5: Cohesion and inclusion

    Mission 6: Health.

    With the aim of encouraging the debate on the use of sustainability indicators for monitoring the progress of the PNRR, a mapping of the correspondences between the 17 Sustainable Development Goals and the 6 Missions provided for by the NRRP is proposed (Fig. 1). In this way it is possible to identify the SDGs indicators that can be useful tools for achieving the missions of the NRRP.Figure 1Relationships between SDGs indicators and NRRP missions.Full size imageOf particular interest for the purposes of our work is Mission 2 (Green Revolution and Ecological Transition) of NRRP. It provides for investments and reforms for the circular economy and to improve waste management, strengthen separate collection infrastructure and modernize or develop new waste treatment plants. Substantial tax incentives are provided to increase the energy efficiency of buildings, to achieve progressive decarbonization, to increase the use of renewable energy sources. In addition, the Mission devotes resources to enhancing the capacity of electricity grids, their reliability, security, and flexibility (Smart Grid) and water infrastructure. The Mission also includes the issues of territorial security, with prevention and restoration interventions in the face of significant hydrogeological risks, the protection of green areas and biodiversity, and those related to the elimination of water and soil pollution, and the availability of water resources.The main components of this mission are:

    M2C1: Circular economy and sustainable agriculture

    M2C2: Renewable energy, hydrogen, grid, and sustainable mobility

    M2C3: Energy efficiency and upgrading of buildings

    M2C4: Protection of land and water resources.

    The analysis of Mission 2 (Green Revolution and Ecological Transition) finds ample space in the SDGs creating important interconnections between the different indicators present in the individual Goals and the objectives of the Mission itself.The SDGs indicators to support the NRRPThe SDGs indicators selected for the analysis of Mission 2 (Green Revolution and Ecological Transition) of the NRRP, are descripted in Table 1. We considered 13 indicators, selected from Goals 2, 6, 7, 11, 12 and 15 which may be of significant interest for the achievement of Mission 2. These indicators will then be attributed to the individual components of the mission.Table 1 Goal, indicators, measures e source of SDGs data.Full size tableThe indicators were chosen based on their relevance to the objectives of the mission and on the availability of data on a regional basis. For each main component we can use the following indicators:

    M2C1: Circular economy and sustainable agriculture:

    – Share of utilized agricultural area invested by organic crops

    – Growth rate of organic crops

    – Delivery of municipal waste to landfill.

    – Separate waste collection

    M2C2: Renewable energy, hydrogen, grid and sustainable mobility:

    M2C3: Energy efficiency and upgrading of buildings

    M2C4: Protection of land and water resources

    – Irregularities in water distribution

    – Sealing and soil consumption per capita

    – Soil sealing from artificial cover

    – Fragmentation of the natural and agricultural territory

    – Incidence of urban green areas on the urbanized surface of cities.

    The SDGs indicators at the level of territorial distribution in ItalyWe carry out a first analysis by territorial distribution for the different sets of main components of Mission 2.From a first analysis of the M2C1 indicators (Circular Economy and Sustainable Agriculture) it emerges that the share of agricultural area destined for organic crops is greater, especially in the Center and in the South of Italy. In 2019, the extent of organic farming in Italy reached 15.8% of the utilized agricultural area, almost double the EU average. However, the annual growth rate of the areas converted to organic farming or in the process of conversion (+ 1.8%) is the lowest since 2012 and is negative in the South, where for the second consecutive year there is a decrease (− 2.1% in the 2-year period 2017–2019). The dynamics of organic farming is an index of the spread of sustainable agricultural practices, which must be accompanied by measures that also consider the pressure on the environment generated by agriculture (Table 2).Table 2 M2C1 indicators—Circular economy and sustainable agriculture by territorial distribution (year 2019).Full size tableAlso, in the Central and Southern Italy area there is the greatest delivery of waste to landfills. Waste cycle management is crucial for living conditions and global health. The share of municipal waste landfilled is steadily decreasing at national level. In 2019, in fact, the part sent to landfill is equal to 20.9% of the total, down compared to the previous year (21.5%). The separate collection of municipal waste represents a further important step in view of the objective of reducing the amount of waste returned to the environment and, more specifically, of the delivery of waste to landfills. The 18.5 million tons of differentiated RU in 2019 represent 61.3% of national production, a share almost doubled compared to ten years ago and up from last year by 3.1 percentage points. Despite the evident progress, Italy is still marked by a considerable delay compared to the regulatory objectives, having not yet reached, in 2019, the target of 65% of separate collection planned for 2012. Critical issues are also observed in relation to the substantial territorial gaps, which disadvantage the Center and the South compared to the North, despite the distances have been reduced in recent years.
    Regarding the M2C2 Mission (Renewable Energy, Hydrogen, Network and Sustainable Mobility), national and international energy policies have been committed for years to the enhancement of renewable energy sources, with the aim of decarbonizing the economy and guaranteeing the commitments made in the field of climate change. In 2019, one year after the expiry of the objectives of the European Union’s Climate-Energy Package, fourteen Member States, including Italy, exceeded the target assigned at national level. In Italy, the overall share of energy from renewable sources in gross final consumption (CFL) of energy, equal to 18.2% (Table 3), a percentage slightly lower than the average of the EU27 (19.7%), is placed for the sixth consecutive year above the 17% target set for our country. However, for Italy to achieve the ambitious programs defined by the 2020 National Integrated Energy and Climate Plan, which set a 30% target for renewables by 2030, a further boost to production from renewable sources is necessary. The resources introduced by the National Recovery and Resilience Plan (NRRP) to achieve the “green revolution and ecological transaction” include significant investments in the energy field, focusing, among other components, on a further strengthening of the Sources from Renewable energy (FER).Table 3 M2C2 indicators—Renewable energy, hydrogen, network and sustainable mobility by territorial distribution (year 2019).Full size tableThe M2C3 Mission (Energy Efficiency and Upgrading of Buildings) devotes resources to enhancing the capacity of electricity grids, their reliability, safety, and flexibility (Smart Grid). Consistent with the objectives of reducing energy consumption pursued by European policies, the Italian figure for 2019 confirms the process of reducing Italian energy intensity, which marks a further contraction of 1.3%, reaching an overall negative balance compared to the last decade of 11.8%, with an average annual rate of change of − 1.2% (Table 4). The reduction in energy intensity is largely attributable to the effect of the measures in favor of energy efficiency, which, between 2011 and 2019, resulted in energy savings of 12 Mtoe/year, equal to 77% of the 2020 target set by the National Action Plan for Energy Efficiency 2017. A further acceleration of energy efficiency is expected, in the coming years, because of the investment plan envisaged by the NRRP, also linked to the redevelopment of the public and private building stock. At the sectoral level, the reduction in energy intensity is driven by improvements in industry, which, despite the slight increase in the last year, in 2019, with 92 toes per million euros, shows a decrease compared to 2009 of 17%, with an average annual rate of change of − 1.8%.Table 4 M2C3 indicators—Energy efficiency and requalification of buildings by territorial distribution (year 2019).Full size tableThe M2C4 Mission (Protection of the territory and water resources) also includes the issues of territorial safety, with prevention and recovery interventions, the protection of green areas and those related to the elimination of water and soil pollution.Italy is among the European countries of the Mediterranean area that use groundwater, springs and wells the most; these represent the most important resource of fresh water for drinking water use on the Italian territory (84.8% of the total withdrawn). The efficiency of municipal drinking water distribution networks has been steadily deteriorating since 2008 for more than half of the regions. The share of families who complain of irregularities in the water supply service in their home is stable (equal to 8.6% in 2019) with more accentuated values in the Center and South of Italy (Table 5).Table 5 M2C4 indicators—Protection of land and water resources by territorial distribution (year 2019).Full size tableLand degradation, understood as loss of ecological functionality, is monitored through the dynamics of land consumption, which Italy has committed to zero by 2030 with the National Strategy for Sustainable Development (2017). The “consumed” soil is that occupied by urbanization and made impermeable by artificial roofing (soil sealing). Excessive fragmentation of open spaces, however, is also a factor of degradation, since the barriers made up of buildings and infrastructures interrupt the continuity of ecosystems, making even unoccupied but not large enough spaces ecologically inert and unproductive. Moreover, in a fragile territory such as Italy, land consumption is also a significant factor of hydrogeological risk and deterioration of the landscape. The index of sealing and land consumption per capita in 2019 increases for the fifth consecutive year, resulting in 357 m2 per inhabitant. The soil sealed by artificial covers is equal to 7.1% of the national territory (8.5% in the North, 6.7% in the Center, 5.9% in the South).According to Ispra estimates, 44.3% of Italy’s natural and agricultural land has a high or very high degree of fragmentation. A joint representation of the variations in fragmentation and soil sealing over the last two years summarizes recent trends in land consumption and their impact on the environment and landscape.A further objective for 2030 is to provide universal access to safe, inclusive, and accessible public green spaces, for women and children, the elderly, and people with disabilities. In 2019 the incidence of urban green areas on the urbanized surface of cities is equal to 8.5% in Italy with slightly higher values in the North and less elevated in the South. More

  • in

    Strategies of protected area use by Asian elephants in relation to motivational state and social affiliations

    Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).Article 

    Google Scholar 
    McDonald-Madden, E. et al. ‘True’ conservation progress. Science 323, 43–44 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Corson, C. et al. Everyone’s Solution? Defining and redefining protected areas at the Convention on Biological Diversity. Conservation and Society 190–202. https://www.jstor.org/stable/26393154?seq=1#metadata_info_tab_contents (Accessed 1st March 2022) (2014).Caro, T. & Berger, J. Can behavioural ecologists help establish protected areas?. Philos. Trans. R. Soc. B 374, 20180062 (2019).Article 

    Google Scholar 
    Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watson, J. E. M. et al. Bolder science needed now for protected areas. Conserv. Biol. 30, 243–248 (2016).Article 
    PubMed 

    Google Scholar 
    Joppa, L. N. & Pfaff, A. High and far: Biases in the location of protected areas. PLoS One 4, e8273 (2009).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Runge, C. A., Martin, T. G., Possingham, H. P., Willis, S. G. & Fuller, R. A. Conserving mobile species. Front. Ecol. Environ. 12, 395–402 (2014).Article 

    Google Scholar 
    Thirgood, S. et al. Can parks protect migratory ungulates? The case of the Serengeti wildebeest. Anim. Conserv. 7, 113–120 (2004).Article 

    Google Scholar 
    Craigie, I. D. et al. Large mammal population declines in Africa’s protected areas. Biol. Conserv. 143, 2221–2228 (2010).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Hansen, A. J. & DeFries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17, 974–988 (2007).Article 
    PubMed 

    Google Scholar 
    Beresford, A. E. et al. Poor overlap between the distribution of Protected Areas and globally threatened birds in Africa. Anim. Conserv. 14, 99–107 (2011).Article 

    Google Scholar 
    Haynes, G. Elephants (and extinct relatives) as earth-movers and ecosystem engineers. Geomorphology 157–158, 99–107 (2012).Article 
    ADS 

    Google Scholar 
    Terborgh, J., Davenport, L. C., Ong, L. & Campos-Arceiz, A. Foraging impacts of Asian megafauna on tropical rain forest structure and biodiversity. Biotropica 50, 84–89 (2018).Article 

    Google Scholar 
    Galanti, V., Preatoni, D., Martinoli, A., Wauters, L. A. & Tosi, G. Space and habitat use of the African elephant in the Tarangire-Manyara ecosystem, Tanzania: Implications for conservation. Mamm. Biol. 71, 99–114 (2006).Article 

    Google Scholar 
    Williams, C. et al. Elephas maximus. The IUCN Red List of Threatened Species. e.T7140A45818198. https://doi.org/10.2305/IUCN.UK.2020-3.RLTS.T7140A45818198.en. Accessed on 15 February 2022. (2020)Stokke, S. & Du Toit, J. T. Sexual segregation in habitat use by elephants in Chobe National Park, Botswana. Afr. J. Ecol. 40, 360–371 (2002).Article 

    Google Scholar 
    Chowdhury, S. et al. Protected areas in South Asia: Status and prospects. Sci. Total Environ. 811, 152316 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Goswami, V. R. et al. Community-managed forests and wildlife-friendly agriculture play a subsidiary but not substitutive role to protected areas for the endangered Asian elephant. Biol. Conserv. 177, 74–81 (2014).Article 

    Google Scholar 
    Fernando, C., Weston, M. A., Corea, R., Pahirana, K. & Rendall, A. R. Asian elephant movements between natural and human-dominated landscapes mirror patterns of crop damage in Sri Lanka. Oryx https://doi.org/10.1017/S0030605321000971 (2022).Article 

    Google Scholar 
    Santini, L., Saura, S. & Rondinini, C. Connectivity of the global network of protected areas. Divers. Distrib. 22, 199–211 (2016).Article 

    Google Scholar 
    Brennan, A. et al. Functional connectivity of the world’s protected areas. Science 376, 1101–1104 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kumar, M. A. & Singh, M. Behavior of Asian elephant (Elephas maximus) in a land-use mosaic: Implications for human-elephant coexistence in the Anamalai Hills, India. Wildl. Biol. Pract. 6, 69–80 (2010).
    Google Scholar 
    Rathnayake, C. W. M., Jones, S., Soto-Berelov, M. & Wallace, L. Human–elephant conflict and land cover change in Sri Lanka. Appl. Geogr. 143, 102685 (2022).Article 

    Google Scholar 
    Chan, A. N. et al. Landscape characteristics influence ranging behavior of Asian elephants at the human-wildlands interface in Myanmar. Mov. Ecol. 10, 1–15 (2022).Article 

    Google Scholar 
    Magioli, M. et al. Land-use changes lead to functional loss of terrestrial mammals in a Neotropical rainforest. Perspect. Ecol. 19, 161–170 (2021).
    Google Scholar 
    Fernando, P. et al. The future of Asian elephant conservation: Setting sights beyond protected area boundaries. in Conservation Biology in Asia 252–260 (2006).Kumar, M. A., Vijayakrishnan, S. & Singh, M. Whose habitat is it anyway? Role of natural and anthropogenic habitats in conservation of charismatic species. Trop. Conserv. Sci. 11, 194008291878845 (2018).Article 

    Google Scholar 
    Sirua, H. Nature above people: Rolston and “fortress” conservation in the South. Ethics Environ. 11, 71–96 (2006).Article 

    Google Scholar 
    Keerthipriya, P. et al. Musth and its effects on male–male and male–female associations in Asian elephants. J. Mammal. 101, 259–270 (2020).Article 

    Google Scholar 
    Eisenberg, J. F., Mckay, G. M. & Jainudeen, M. R. Reproductive behavior of the Asiatic elephant (Elephas maximus maximus). Behaviour 38, 193–225 (1971).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fernando, P. et al. Ranging behavior of the Asian elephant in Sri Lanka. Mamm. Biol. Zeitschrift für Säugetierkd. 73, 2–13 (2008).Article 

    Google Scholar 
    Hollister-Smith, J. A., Alberts, S. C. & Rasmussen, L. E. L. Do male African elephants, Loxodonta africana, signal musth via urine dribbling?. Anim. Behav. 76, 1829–1841 (2008).Article 

    Google Scholar 
    LaDue, C. A., Vandercone, R. P. G., Kiso, W. K. & Freeman, E. W. Behavioral characterization of musth in Asian elephants (Elephas maximus): Defining progressive stages of male sexual behavior in in-situ and ex-situ populations. Appl. Anim. Behav. Sci. 251, 105639 (2022).Article 

    Google Scholar 
    LaDue, C. A., Goodwin, T. E. & Schulte, B. A. Concentration-dependent chemosensory responses towards pheromones are influenced by receiver attributes in Asian elephants. Ethology 124, 387–399 (2018).Article 

    Google Scholar 
    Goldenberg, S. Z., de Silva, S., Rasmussen, H. B., Douglas-Hamilton, I. & Wittemyer, G. Controlling for behavioural state reveals social dynamics among male African elephants, Loxodonta africana. Anim. Behav. 95, 111e119 (2014).Article 

    Google Scholar 
    Chave, E. et al. Variation in metabolic factors and gonadal, pituitary, thyroid, and adrenal hormones in association with musth in African and Asian elephant bulls. Gen. Comp. Endocrinol. 276, 1–13 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Glaeser, S. S. et al. Characterization of longitudinal testosterone, ocrtisol, and musth in male Asian Elephants (Elephas maximus), effects of aging, and adrenal responses to social changes and health events. Animals 12, 1332 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Silva, S., Ranjeewa, A. D. G. & Kryazhimskiy, S. The dynamics of social networks among female Asian elephants. BMC Ecol. 11, 17 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nandini, S., Keerthipriya, P. & Vidya, T. N. C. Group size differences may mask underlying similarities in social structure: A comparison of female elephant societies. Behav. Ecol. 29, 145–159 (2018).Article 

    Google Scholar 
    de Silva, S. & Wittemyer, G. A comparison of social organization in Asian elephants and African Savannah elephants. Int. J. Primatol. 33, 1125–1141 (2012).Article 

    Google Scholar 
    Nandini, S., Keerthipriya, P. & Vidya, T. N. C. Seasonal variation in female Asian elephant social structure in Nagarahole-Bandipur, southern India. Anim. Behav. 134, 135–145 (2017).Article 

    Google Scholar 
    de Silva, S., Schmid, V. & Wittemyer, G. Fission-fusion processes weaken dominance networks among female Asian elephants in a productive habitat. Behav. Ecol. 28, 243–252 (2017).Article 

    Google Scholar 
    de Silva, S., Ranjeewa, A. D. G. & Weerakoon, D. Demography of Asian elephants (Elephas maximus) at Uda Walawe National Park, Sri Lanka based on identified individuals. Biol. Conserv. 144, 1742–1752 (2011).Article 

    Google Scholar 
    Ginsberg, J. R. & Young, T. P. Measuring association between individuals or groups in behavioural studies. Anim. Behav. 44, 377–379 (1992).Article 

    Google Scholar 
    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Syst. 5, 1–9 (2014).
    Google Scholar 
    Liechti, J. I. & Bonhoeffer, S. A time resolved clustering method revealing longterm structures and their short-term internal dynamics. arXiv:1912.04261 (2020).Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wikramanayake, E. D. et al. An ecology-based method for defining priorities for large mammal conservation: The tiger as case study. Conserv. Biol. 12, 865–878 (2008).Article 

    Google Scholar 
    Chundawat, R. S., Sharma, K., Gogate, N., Malik, P. K. & Vanak, A. T. Size matters: Scale mismatch between space use patterns of tigers and protected area size in a tropical dry forest. Biol. Conserv. 197, 146–153 (2016).Article 

    Google Scholar 
    Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Karanth, K. K. & DeFries, R. Nature-based tourism in Indian protected areas: New challenges for park management. Conserv. Lett. 4, 137–149 (2011).Article 

    Google Scholar 
    Brown, J. L. et al. Comparative endocrinology of testicular, adrenal and thyroid function in captive Asian and African elephant bulls. Gen. Comp. Endocrinol. 151, 153–162 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Slotow, R. et al. Older bull elephants control young males. Nature 408, 425–426 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Poole, J. H., Lee, P. C., Njiraini, N. & & Moss, C. J. Longevity, competition, and musth: A long-term perspective on male reproductive strategies. in The Amboseli Elephants: A Long‐Term Perspective on a Long‐Lived Mammal 272–286 (2011).Poole, J. H. Announcing intent: The aggressive state of musth in African elephants. Anim. Behav. 37, 153–155 (1989).Article 

    Google Scholar 
    Poole, J. H. Mate guarding, reproductive success and female choice in African elephants. Anim. Behav. 37, 842–849 (1989).Article 

    Google Scholar 
    Poole, J. H. Rutting behavior in elephants: The phenomenon of musth in African elephants. Anim. Behav. 102, 283–316 (1987).
    Google Scholar 
    Foley, A. M. et al. Reproductive effort and success of males in scramble-competition polygyny: Evidence for trade-offs between foraging and mate search. J. Anim. Ecol. 87, 1600–1614 (2018).Article 
    PubMed 

    Google Scholar 
    Fernando, P., Leimgruber, P., Prasad, T. & Pastorini, J. Problem-elephant translocation: Translocating the problem and the elephant?. PLoS One 7, e50917 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Archie, E. A., Morrison, T. A., Foley, C. A. H., Moss, C. J. & Alberts, S. C. Dominance rank relationships among wild female African elephants, Loxodonta africana. Anim. Behav. 71, 117–127 (2006).Article 

    Google Scholar 
    Wittemyer, G. & Getz, W. M. Hierarchical dominance structure and social organization in African elephants, Loxodonta africana. Anim. Behav. 73, 671–681 (2007).Article 

    Google Scholar 
    Wittemyer, G., Getz, W. M., Vollrath, F. & Douglas-Hamilton, I. Social dominance, seasonal movements, and spatial segregation in African elephants: A contribution to conservation behavior. Behav. Ecol. Sociobiol. 61, 1919–1931 (2007).Article 

    Google Scholar 
    Gunaryadi, D., Sugiyo, & Hedges, S. Community-based human-elephant conflict mitigation: The value of an evidence-based approach in promoting the uptake of effective methods. PLoS One 12, e0173742 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, G. et al. Between a rock and a hard place: Rugged terrain features and human disturbance affect behaviour and habitat use of Sumatran elephants in Aceh, Sumatra, Indonesia. Biodivers. Conserv. 30, 597–618 (2021).Article 

    Google Scholar 
    de Silva, S. et al. Demographic variables for wild Asian elephants using longitudinal observations. PLoS One 8, e82788 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    LaDue, C. A., Eranda, I., Jayasinghe, C. & Vandercone, R. P. G. Mortality patterns of Asian elephants in a region of human–elephant conflict. J. Wildl. Manag. 85, 794–802 (2021).Article 

    Google Scholar 
    Ram, A. K. et al. Tracking forest loss and fragmentation between 1930 and 2020 in Asian elephant (Elephas maximus) range in Nepal. Sci. Rep. 11, 1–13 (2021).Article 
    ADS 

    Google Scholar 
    Neupane, D., Kwon, Y., Risch, T. S. & Johnson, R. L. Changes in habitat suitability over a two decade period before and after Asian elephant recolonization. Glob. Ecol. Conserv. 22, e01023 (2020).Article 

    Google Scholar 
    de Silva, S. & Leimgruber, P. Demographic tipping points as early indicators of vulnerability for slow-breeding megafaunal populations. Front. Ecol. Evol. 7, 171 (2019).Article 

    Google Scholar 
    Rodrigo, M. Farmers move to occupy a critical elephant corridor in Sri Lanka. Mongabay (2021).de la Torre, J. A. et al. There will be conflict—Agricultural landscapes are prime, rather than marginal, habitats for Asian elephants. Anim. Conserv. 24, 720–732 (2021).Article 

    Google Scholar 
    Rood, E., Ganie, A. A. & Nijman, V. Using presence-only modelling to predict Asian elephant habitat use in a tropical forest landscape: Implications for conservation. Divers. Distrib. 16, 975–984 (2010).Article 

    Google Scholar 
    Evans, L. J., Goossens, B., Davies, A. B., Reynolds, G. & Asner, G. P. Natural and anthropogenic drivers of Bornean elephant movement strategies. Glob. Ecol. Conserv. 22, e00906 (2020).Article 

    Google Scholar 
    Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. For. Ecol. Manag. 352, 68–77 (2015).Article 

    Google Scholar 
    Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl. Acad. Sci. U.S.A. 118, 1–8 (2021).Article 

    Google Scholar 
    Goswami, V. R., Vasudev, D. & Oli, M. K. The importance of conflict-induced mortality for conservation planning in areas of human–elephant co-occurrence. Biol. Conserv. 176, 191–198 (2014).Article 

    Google Scholar 
    de Silva, S. & Leimgruber, P. Demographic tipping points as early indicators of vulnerability for slow-breeding megafaunal populations. Front. Ecol. Evol. 7, 1–13 (2019).Article 
    CAS 

    Google Scholar 
    Hettiarachchi, K. ‘Gathering’ shuns ‘brimming’ Minneriya. The Sunday Times (2021).Srinivasaiah, N., Kumar, V., Vaidyanathan, S., Sukumar, R. & Sinha, A. All-male groups in Asian elephants: A novel, adaptive social strategy in increasingly anthropogenic landscapes of southern India. Sci. Rep. 9, 1–11 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    de Silva, E. M. K. et al. Feasibility of using convolutional neural networks for individual-identification of wild Asian elephants. Mamm. Biol. https://doi.org/10.1007/S42991-021-00206-2 (2022).Article 

    Google Scholar 
    de Silva, S. The Elephant Attribute Recording System (EARS): A tool for individual-based research on Asian elephants. Gajah 40, 46 (2014).
    Google Scholar 
    Jainudeen, M. R., Katongole, C. B. & Short, R. V. Plasma testosterone levels in relation to musth and sexual activity in the male Asiatic elephant, Elephas maximus. J. Reprod. Fertil. 29, 99–103 (1972).Article 
    CAS 
    PubMed 

    Google Scholar 
    Farine, D. R. Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol. Evol. 4, 1187–1194 (2013).Article 

    Google Scholar 
    Whitehead, H. Analyzing Animal Societies (University of Chicago Press, 2008).Book 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B., & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Dekker, D., Krackhardt, D. & Snijders, T. A. B. Sensitivity of MRQAP tests to collinearity and autocorrelation conditions. Psychometrika 72, 563–581 (2007).Article 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar  More

  • in

    The role of neighbouring species in survival as the climate changes

    NEWS AND VIEWS
    02 November 2022

    Predicting the risk of extinction from climate change requires an understanding of the interactions between species. An analysis of how changes in rainfall affect competition between plant species offers a way of tackling this challenge. More

  • in

    Canalised and plastic components of melanin-based colouration: a diet-manipulation experiment in house sparrows

    Birds and housing62 males and 8 females of house sparrows were caught with mist nets in September and October 2019 in several sites in Kraków, Poland. Before releasing them to the outdoor aviary located on the campus of the Jagiellonian University, Kraków, Poland, each bird was weighed and banded with a metal band. The aviary measured 3.5 m in width, 10.0 m in length, 2.5 m in height, and was outfitted with trees, bushes, perches, wooden shelters, a water source, and food dishes. Initially, birds were maintained with water and a mixture of seeds: wheat, barley, millet, and sunflower seeds, provided ad libitum. Additionally, they had access to sand with shells and sepia.Experimental designAfter a few weeks of acclimation to captivity, the aviary was divided into two separate parts (3.5 × 5 m): aviary no. 1 (A1) and aviary no. 2 (A2). At the same time male individuals were assigned to two crossed experimental treatments, ensuring that in each aviary birds originated from all sampled populations. The experiment comprised of two different treatments conducted simultaneously—one designed to simulate a deficiency in an environmental factor influencing colouration (the quality of available food), the other—to introduce physiological stress and facilitate trade-offs in the allocation of resources limited by the first treatment (an immune response induced by a bacteria-derived compound, S1).The dietary manipulation was achieved by feeding one group of birds with a low-quality protein food (diet reduced in exogenous amino acids, namely phenylalanine and tyrosine content, which are precursors essential for melanin synthesis; PT-reduced diet), and the other one with a wholesome diet (control diet). At the same time, two levels of immune challenge were achieved within each dietary group, by injecting half of the birds with either lipopolysaccharide (LPS) from the cell wall of Escherichia coli, or a 0.9% saline vehicle (as a control). Four females were placed in each group of males to alleviate interspecific conflicts occurring in all-male sparrow flocks, but they did not take part in the experiments. After three weeks of experiment, birds housed in A1 were moved to A2, whereas birds from A2 were moved to A1.Immune challengeBefore receiving injections, birds were first weighed and then transferred from the outdoor aviary to the laboratory. 31 house sparrows (from both dietary groups) were injected intraperitoneally with 0.026 mg LPS (serotype O55:B5, Sigma-Aldrich) diluted in 0.1 mL of 0.9% saline vehicle, so that each bird received a dose of ca. 1 mg/kg body mass, which had previously been shown to induce sickness behaviour in another passerine, the white-crowned sparrow, Zonotrichia leucophrys55. 31 control males were injected with the same volume (0.1 mL) of 0.9% saline vehicle. All individuals were injected twice throughout the experiment with an interval of three weeks between the injections. Birds were always injected at the same time in the morning and early afternoon (between 9:00 am and 12:30 pm).Diet manipulationDuring the six weeks of the experiment (S1), birds received synthetic diet ad libitum, which constituted of a mixture of protein (WPC80, free amino acids and whey protein isolate BiPRO GMP 9000 (Agropur Inc., Appleton, USA)), fats, carbohydrates, and fiber30. The ingredients were thoroughly mixed to produce small pellets (6 mm in diameter) that the sparrows consumed readily. The experimental diet had phenylalanine and tyrosine at 42% (N = 32) of their level in the control diet (N = 30)30. The food pellets were prepared by ZooLab (zoolab.pl/en/home, Sędziszów, Poland). Each bird was weighed before and after the experiment to monitor potential effects of diet on body mass of each animal. Following the experiment, during the next three consecutive days, the amount of food consumed by passerines within every 24 h (starting from 10 am each day to 10 am next day) was noted for both compartments of the aviary. Because of different numbers of individuals per aviary, an overall weight of food consumed in A1 and A2 was calculated per individual, respectively.Feathers samplingMoult of the black bib feathers was stimulated at the end of the moulting period occurring in natural conditions in early November. At day 1 of the dietary/immunological experiment (S1) a small area of the bib (around 25 mm2) was plucked from each male sparrow held in A1. At day 2 the same procedure was performed on individuals from A2. The time difference is orders of magnitude smaller than the timescale of feather growth and hence it would not affect the results in any way.Because the feather growth rate may differ during melanogenesis, with consequences for final colouration (if feathers grow at a faster rate, pigments may be deposited over a larger surface and therefore result in less intense colouration56, we measured the rate of feather development during the course of the experiment. After three weeks of the experiment, three feathers from the upper, central, and lower region of the previously plucked bib were plucked once again. The mass of the collected feathers was determined to the nearest 0.01 mg (XP26 Micro Balance, Mettler-Toledo, Greinfensee, Switzerland). The experiment was completed after six weeks after fully regrown and developed feathers from the bib and PC2 were sampled the second time (S1). Three feathers from the central part of previously plucked bib region were collected to perform transmission electron microscopy (TEM) imaging, whereas the feathers obtained from the rest of the regrown bib area were subjected to electron paramagnetic resonance (EPR) spectroscopy and feather microstructure analyses (greater spatial density of melanized barbs or barbules may affect colouration17.Feathers measurementsReflectance measurementsAn USB4000 spectrophotometer (range 300–700 nm) with the PX-2 Pulsed Xenon Lamp (Ocean Optics, Dunedin, FL, USA) and a bifurcated probe with 7 × 400 μm optical fibres, equipped with a permanently attached 3 mm long black collar, was used to quantify the brightness of the bib feathers collected at the end of the experiment. The measurements were taken with 90 ms integration time and the probe held at 90° to a feather’s surface. Calibration measurements of a Spectralon white standard (Ocean Optics. Largo, FL, USA) were taken every 15 min during measurements. The order in which the samples were measured was randomized in terms of belonging to the experimental group. From each sample (N = 62), seven feathers were chosen and stacked in one pile on a piece of black paper. Ten reflectance measurements were taken on each pile, avoiding distal, brighter parts of the feathers. The obtained spectra were averaged and smoothed in the package ‘pavo’57. Brightness was calculated as a sum of the reflectance values over all wavelengths of a spectrum, and its lower values were interpreted as those indicative of a more melanin-rich feathers (i.e., absorbing more light).Feather developmentEach feather (3 per individual; N = 62 individuals) was laid on a white card and covered by a microscope slide to flatten the naturally curved feathers. Digital photographs were taken using camera (Canon EOS 7D) and imported to ImageJ v1.52a Software (National Institutes of Health, USA). The lengths of fully developed and undeveloped (still in sheath) parts of each feather were measured. To estimate the degree of a feather’s development, the length of the developed part of the vane was divided by its total length (quill with rachis plus the developed vane, Fig. 4A).Figure 4House sparrow feathers sampled from bib after three weeks of the experiment. Feathers during development (A), a TEM cross-sections of feather sampled from bib after the experiment (B).Full size imageFeather densityBarb density measurements were performed on the sampled regrown black bib feathers (N = 2–3 for each individual; N = 62 individuals), but because of their sparser structure we calculated the number of non-down (i.e., rigid) barbs on both sides of the vane, and divided this number by two (to obtain an average single-sided number of barbs) and then by the length of the rachis.Melanosome density (TEM)Feathers sampled from the bib of male sparrows (N = 62) were fixed for transmission electron microscopy (TEM) analysis in a mixture of 0.25 M sodium hydroxide and 0.1% Tween for 20 to 30 min on a bench-top shaker. Next, the feathers were treated with formic acid and ethanol in the ratio of 2:3 for 2.5 h and dehydrated twice for 20 min in 100% ethanol. Samples were embedded in a mixture of the PolyBed 812 resin (20 ml), DDSA (9 ml), NMA (12 ml) and DMP-30 (0.82 ml). Resin infiltration was gradual from 15% resin content in ethanol through 50%, 70% to 100% without alcohol. Each step lasted for 24 h. Then, the feathers were placed in silicone embedding moulds (Agar Scientific) and transferred to an oven. The polymerization proceeded at the temperature of 60 °C for 16 h. The epoxy resin blocks were then trimmed to get rid of excess resin. The surface of each block was prepared by its trimming, starting from the end of the feather, to approximately 5 mm using a glass knife. Next, ultrathin sections (70 nm) were cut with a diamond knife (DIATOME A. G., Berno, Switzerland) on a microtome (UC7, Leica, Wetzlar, Germany) and collected on single slot grids coated with a formvar film. The sections were then contrasted in uranyl acetate and lead citrate for 3 min. They were viewed and photographed with a transmission electron microscope (TEM) JEOL 2100HT (Jeol Ltd, Tokyo, Japan) for the purpose of investigating the number and density of the embedded pigment granules. For each individual three photographs of the cross-sections from a similar feather region were selected. Melanosome density was measured as the number of melanin granules observed in the barb cross-section divided by its area. Images were analysed using Adobe Photoshop (cross-sections area) and ImageJ (number of melanosomes, Fig. 4B).Melanin content: electron paramagnetic resonance (EPR) spectroscopyQuality and quantity of melanin pigments58 in individual feather samples obtained from the bib of house sparrows (N = 57) were characterized using a Varian E3 spectrometer (Varian, Sunnyvale, LA, USA) equipped with a rectangular resonance (TE 102) cavity. Five milligrams of feathers per individual were placed inside the Wilmad finger quartz dewar WG-816-Q (Rototec-Spintec GmbH, Griesheim, Germany). Prior to inserting the vessel into the resonance cavity of the EPR spectrometer, feathers were pressed down the quartz finger to a height of approximately 0.5 cm to ensure comparable volumes of each sample. Measurements were performed at room temperature, at X-band (9.26–9.27 GHz frequency), using the following parameters: magnetic field range 3240–3340 Gs, microwave power 1 mW, modulation frequency 100 kHz, modulation amplitude and time constant—5 Gs and 0.3 s for quantitative analysis, 1 Gs and 0.1 s for qualitative analysis. An EPR signal was recorded as its first derivative, averaged from three consecutive scans, lasting 160 s each (giving a total of 480 s of scan time per EPR spectrum). Then, the following parameters were measured: peak-to-peak amplitude, area under the microwave absorption curve (the integral intensity of the recorded signal) and linewidth of the EPR absorption curve (ΔH;59).Statistical analysesStatistical analysis was performed in R (version 4.0.2,60) using a two-way ANOVA test, with bird’s diet (control vs. PT-reduced) and applied immune challenges (LPS vs. saline-injections) as the independent variables. The following parameters were used as the dependent variables: feathers reflectance (brightness), feather growth rate, feather density (number of barbs per mm), and melanisation level (expressed as the EPR spectrum amplitude measured in arbitrary units [a.u.]). The density of melanosomes was analysed by fitting a linear mixed-effects model. In this model, melanosome density was used as the dependent variable, with diet, immunological challenge, and slice ID as independent variables, and individual ID as a random-effect term. Additionally, to assess the reliability of measurements, the intraclass correlation coefficient (i.e., technical repeatability) was calculated. The models’ residuals were checked for normality and homoscedasticity. Mean food consumption per individual was analysed by the Friedman test. Body mass before and after the experiment was analysed by fitting a linear mixed-effect model. Body mass was used as the dependent variable, whereas diet, immunological challenge, and time as the independent variables, and individual ID as a random-effect term. The model included the following interaction terms: time × diet, time × injection, and diet × injection, and was reduced by removing the non-significant interactions. Results are reported with appropriate statistical tests and estimates (accompanied by standard errors) signifying relevant factor contrasts (relative to the reference group, which in all analyses was diet: control; injection: LPS, body mass: before experiment).
    Ethical noteAll applicable national and institutional guidelines for the care and use of animals were followed. The research was performed under permit no. 25/2019 (with a supplementary permit no. 78/2020) from the 2nd Local Institutional Animal Care and Use Committee in Kraków. More

  • in

    Genomic insights into phage-host interaction in the deep-sea chemolithoautotrophic Campylobacterota, Nitratiruptor

    Jeanthon C. Molecular ecology of hydrothermal vent microbial communities. Antonie Van Leeuwenhoek. 2000;77:117–33.Article 
    CAS 
    PubMed 

    Google Scholar 
    Nercessian O, Reysenbach A-L, Prieur D, Jeanthon C. Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13oN). Environ Microbiol. 2003;5:492–502.Article 
    PubMed 

    Google Scholar 
    Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, et al. Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol. 2005;7:1619–32.Article 
    CAS 
    PubMed 

    Google Scholar 
    Brazelton WJ, Schrenk MO, Kelley DS, Baross JA. Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl Environ Microbiol. 2006;72:6257–70.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takai K, Nakagawa S, Reysenbach A-L, Hoek J. Microbial ecology of mid-ocean ridges and back-arc basins. In: Christie DM, Fisher CR, Lee S-M, Givens S, editors. Geophysical Monograph Series. 2006. Washington, D. C.: American Geophysical Union; 2006. pp. 185–213.Nakagawa S, Takai K. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol. 2008;65:1–14.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jørgensen BB, Boetius A. Feast and famine—microbial life in the deep-sea bed. Nat Rev Microbiol. 2007;5:770–81.Article 
    PubMed 

    Google Scholar 
    Campbell BJ, Engel AS, Porter ML, Takai K. The versatile ε-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol. 2006;4:458–68.Article 
    CAS 
    PubMed 

    Google Scholar 
    Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol. 2021;71:005056.Article 

    Google Scholar 
    Nakagawa S, Takaki Y. Nonpathogenic Epsilonproteobacteria. Encyclopedia of Life Sciences (eLS). Chichester, UK: John Wiley & Sons, Ltd; 2009.Nakagawa S, Takaki Y, Shimamura S, Reysenbach A-L, Takai K, Horikoshi K. Deep-sea vent ε-proteobacterial genomes provide insights into emergence of pathogens. Proc Natl Acad Sci USA. 2007;104:12146–50.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Porcelli I, Reuter M, Pearson BM, Wilhelm T, van Vliet AH. Parallel evolution of genome structure and transcriptional landscape in the Epsilonproteobacteria. BMC Genom. 2013;14:616.Article 
    CAS 

    Google Scholar 
    Zhang Y, Sievert SM. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Front Microbiol. 2014;5:110.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vorwerk H, Huber C, Mohr J, Bunk B, Bhuju S, Wensel O, et al. A transferable plasticity region in Campylobacter coli allows isolates of an otherwise non-glycolytic food-borne pathogen to catabolize glucose. Mol Microbiol. 2015;98:809–30.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jiang SC, Kellogg CA, Paul JH. Characterization of marine temperate phage-host systems isolated from Mamala Bay, Oahu, Hawaii. Appl Environ Microbiol. 1998;64:535–42.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paul JH. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2008;2:579–89.Article 
    CAS 
    PubMed 

    Google Scholar 
    Harrison E, Brockhurst MA. Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. BioEssays. 2017;39:1700112.Article 

    Google Scholar 
    Fouts DE, Mongodin EF, Mandrell RE, Miller WG, Rasko DA, Ravel J, et al. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol. 2005;3:e15.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang M, He L, Li Q, Sun H, Gu Y, You Y, et al. Genomic characterization of the Guillain-Barre syndrome-associated Campylobacter jejuni ICDCCJ07001 isolate. PLoS ONE. 2010;5:e15060.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller WG, Yee E, Chapman MH, Smith TPL, Bono JL, Huynh S, et al. Comparative genomics of the Campylobacter lari group. Genome Biol Evol. 2014;6:3252–66.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parker CT, Quiñones B, Miller WG, Horn ST, Mandrell RE. Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221. J Clin Microbiol. 2006;44:4125–35.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CG, Ng L-K. Sequence variability of Campylobacter temperate bacteriophages. BMC Microbiol. 2008;8:49.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quiñones B, Guilhabert MR, Miller WG, Mandrell RE, Lastovica AJ, Parker CT. Comparative genomic analysis of clinical strains of Campylobacter jejuni from South Africa. PLoS ONE. 2008;3:e2015.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CG, Chen C, Berry C, Walker M, McCorrister SJ, Chong PM, et al. Comparison of genomes and proteomes of four whole genome-sequenced Campylobacter jejuni from different phylogenetic backgrounds. PLoS ONE. 2018;13:e0190836.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CG, Grant CC, Pollari F, Marshall B, Moses J, Tracz DM, et al. Effects of the Campylobacter jejuni CJIE1 prophage homologs on adherence and invasion in culture, patient symptoms, and source of infection. BMC Microbiol. 2012;12:269.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaasbeek EJ, Wagenaar JA, Guilhabert MR, Wösten MMSM, van Putten JPM, van der Graaf-van Bloois L, et al. A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni. J Bacteriol. 2009;191:2296–306.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaasbeek EJ, Wagenaar JA, Guilhabert MR, van Putten JPM, Parker CT, van der Wal FJ. Nucleases encoded by the integrated elements CJIE2 and CJIE4 inhibit natural transformation of Campylobacter jejuni. J Bacteriol. 2010;192:936–41.Article 
    CAS 
    PubMed 

    Google Scholar 
    Yoshida-Takashima Y, Takaki Y, Shimamura S, Nunoura T, Takai K. Genome sequence of a novel deep-sea vent epsilonproteobacterial phage provides new insight into the co-evolution of Epsilonproteobacteria and their phages. Extremophiles. 2013;17:405–19.Article 
    PubMed 

    Google Scholar 
    Glasby GP, Notsu K. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview. Ore Geol Rev. 2003;23:299–339.Article 

    Google Scholar 
    Yoshida-Takashima Y, Nunoura T, Kazama H, Noguchi T, Inoue K, Akashi H, et al. Spatial distribution of viruses associated with planktonic and attached microbial communities in hydrothermal environments. Appl Environ Microbiol. 2012;78:1311–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T, Sako Y, et al. Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett. 2003;217:167–74.
    Google Scholar 
    Sako Y, Takai K, Ishida Y, Uchida A, Katayama Y. Rhodothemus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol. 1996;46:1099–104.Article 
    CAS 
    PubMed 

    Google Scholar 
    Yoshida M, Yoshida-Takashima Y, Nunoura T, Takai K. Genomic characterization of a temperate phage of the psychrotolerant deep-sea bacterium Aurantimonas sp. Extremophiles. 2015;19:49–58.Article 
    CAS 
    PubMed 

    Google Scholar 
    Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, et al. Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol. 2006;72:1239–47.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leggett RM, Clavijo BJ, Clissold L, Clark MD, Caccamo M. NextClip: an analysis and read preparation tool for Nextera long mate pair libraries. Bioinformatics. 2014;30:566–8.Article 
    CAS 
    PubMed 

    Google Scholar 
    Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27:578–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Corkill JE, Graham R, Hart CA, Stubbs S. Pulsed-field gel electrophoresis of degradation-sensitive DNAs from Clostridium difficile PCR ribotype 1 strains. J Clin Microbiol. 2000;38:2791–2.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Besemer J. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–18.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delcher A. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999;27:4636–41.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40:D290–301.Article 
    CAS 
    PubMed 

    Google Scholar 
    Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33:W116–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 2011;39:D225–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.Article 
    CAS 
    PubMed 

    Google Scholar 
    Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3.Article 
    CAS 
    PubMed 

    Google Scholar 
    Huang S, Wang K, Jiao N, Chen F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol. 2012;14:540–58.Article 
    CAS 
    PubMed 

    Google Scholar 
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics. 2008;9:75.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929–31.Article 
    CAS 
    PubMed 

    Google Scholar 
    Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 2015;43:D298–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46:W246–51.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–7.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meier-Kolthoff JP, Göker M. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics. 2017;33:3396–404.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakagawa S, Takai K, Inagaki F, Horikoshi K, Sako Y. Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the ε-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. Int J Syst Evol Microbiol. 2005;55:925–33.Article 
    CAS 
    PubMed 

    Google Scholar 
    Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA. 2009;106:19126–31.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, et al. Origins of highly mosaic mycobacteriophage genomes. Cell. 2003;113:171–82.Article 
    CAS 
    PubMed 

    Google Scholar 
    Mercier C, Lossouarn J, Nesbø CL, Haverkamp THA, Baudoux AC, Jebbar M, et al. Two viruses, MCV1 and MCV2, which infect Marinitoga bacteria isolated from deep-sea hydrothermal vents: functional and genomic analysis. Environ Microbiol. 2018;20:577–87.Article 
    CAS 
    PubMed 

    Google Scholar 
    Samson JE, Magadán AH, Sabri M, Moineau S. Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol. 2013;11:675–87.Article 
    CAS 
    PubMed 

    Google Scholar 
    Meyer JL, Huber JA. Strain-level genomic variation in natural populations of Lebetimonas from an erupting deep-sea volcano. ISME J. 2014;8:867–80.Article 
    CAS 
    PubMed 

    Google Scholar 
    Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol. 2005;3:722–32.Article 
    CAS 
    PubMed 

    Google Scholar 
    Ramisetty BCM, Sudhakari PA. Bacterial ‘grounded’ prophages: hotspots for genetic renovation and innovation. Front Genet. 2019;10:65.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8:317–27.Article 
    CAS 
    PubMed 

    Google Scholar 
    Piel D, Bruto M, Labreuche Y, Blanquart F, Goudenège D, Barcia-Cruz R, et al. Phage–host coevolution in natural populations. Nat Microbiol. 2022;7:1075–86.Article 
    CAS 
    PubMed 

    Google Scholar 
    Lynch KH, Stothard P, Dennis JJ. Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex. BMC Genomics. 2010;11:599.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Godde JS, Bickerton A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J Mol Evol. 2006;62:718–29.Article 
    CAS 
    PubMed 

    Google Scholar 
    Nobrega FL, Walinga H, Dutilh BE, Brouns SJJ. Prophages are associated with extensive CRISPR–Cas auto-immunity. Nucleic Acids Res. 2020;48:12074–84.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yi H, Huang L, Yang B, Gomez J, Zhang H, Yin Y. AcrFinder: genome mining anti-CRISPR operons in prokaryotes and their viruses. Nucleic Acids Res. 2020;48:W358–65.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maier L-K, Lange SJ, Stoll B, Haas KA, Fischer SM, Fischer E, et al. Essential requirements for the detection and degradation of invaders by the Haloferax volcanii CRISPR/Cas system I-B. RNA Biol. 2013;10:865–74.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boudry P, Semenova E, Monot M, Datsenko KA, Lopatina A, Sekulovic O, et al. Function of the CRISPR-Cas system of the human pathogen Clostridium difficile. mBio. 2015;6:e01112–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12.Article 
    CAS 
    PubMed 

    Google Scholar 
    Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2008;190:1390–400.Article 
    CAS 
    PubMed 

    Google Scholar 
    Nozawa T, Furukawa N, Aikawa C, Watanabe T, Haobam B, Kurokawa K, et al. CRISPR inhibition of prophage acquisition in Streptococcus pyogenes. PLoS ONE. 2011;6:e19543.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18:67–83.Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia

    Plant materials and genome sequencingFresh leaves of a wild P. koreana plant in the Changbai Mountains of Jilin province in China were collected, and the total genomic DNA was extracted using the CTAB method. For the Illumina short-read sequencing, paired-end libraries with insert sizes of 350 bp were constructed and sequenced using an Illumina HiSeq X Ten platform. For the long-read sequencing, the genomic libraries with 20-kbp insertions were constructed and sequenced using the PromethION platform of Oxford Nanopore Technologies (ONT). For the Hi-C experiment, approximately 3 g of fresh young leaves of the same P. koreana accession was ground to powder in liquid nitrogen. A sequencing library was then constructed by chromatin extraction and digestion, DNA ligation, purification, and fragmentation53 and was subsequently sequenced on an Illumina HiSeq X Ten platform.Genome assembly and scaffoldingThe quality-controlled reads were first corrected via a self-align method using the NextCorrect module in the software NextDenovo v2.0-beta.1 (https://github.com/Nextomics/NextDenovo) with parameters “reads_cutoff=1k (filter reads with length 20, percent of unqualified bases More