More stories

  • in

    Bridging landscape ecology and urban science to respond to the rising threat of mosquito-borne diseases

    World Urbanization Prospects: The 2018 Revision (UN Department of Economic and Social Affairs, 2018).Global Vector Control Response 2017–2030 (World Health Organization & UNICEF, 2017).Gubler, D. J. Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop. Med. Health 39, S3–S11 (2011).Article 

    Google Scholar 
    Brady, O. J. et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kraemer, M. U. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, J. E. et al. Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases. Proc. R. Soc. B Biol. Sci. 278, 2446–2454 (2011).Article 

    Google Scholar 
    Padmanabha, H., Durham, D., Correa, F., Diuk-Wasser, M. & Galvani, A. The interactive roles of Aedes aegypti super-production and human density in dengue transmission. PLoS Negl. Trop. Dis. 6, e1799 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart-Ibarra, A. M. et al. Spatiotemporal clustering, climate periodicity, and social-ecological risk factors for dengue during an outbreak in Machala, Ecuador, in 2010. BMC Infect. Dis. 14, 610 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cavany, S. M. et al. Optimizing the deployment of ultra-low volume and targeted indoor residual spraying for dengue outbreak response. PLoS Comput. Biol. 16, e1007743 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stefopoulou, Α et al. Reducing Aedes albopictus breeding sites through education: a study in urban area. PLoS ONE 13, e0202451 (2018).Article 

    Google Scholar 
    Lindsay, S. W., Wilson, A., Golding, N., Scott, T. W. & Takken, W.Improving the built environment in urban areas to control Aedes aegypti-borne diseases. Bull. World Health Organ. 95, 607–608 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Echaubard, P. et al. Fostering social innovation and building adaptive capacity for dengue control in Cambodia: a case study. Infect. Dis. Poverty 9, 126 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vazquez-Prokopec, G. M., Lenhart, A. & Manrique-Saide, P. Housing improvement: a novel paradigm for urban vector-borne disease control? Trans. R. Soc. Trop. Med. Hyg. 110, 567–569 (2016).Article 
    PubMed 

    Google Scholar 
    Malone, R. W. et al. Zika virus: medical countermeasure development challenges. PLoS Negl. Trop. Dis. 10, e0004530 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Murdock, C. C., Evans, M. V., McClanahan, T. D., Miazgowicz, K. L. & Tesla, B. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLoS Negl. Trop. Dis. 11, e0005640 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).Article 
    PubMed 

    Google Scholar 
    McDonald, R. I., Kareiva, P. & Forman, R. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).Article 

    Google Scholar 
    Ferraguti, M. et al. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep. 6, 29002 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Juliano, S. A., Westby, K. M. & Ower, G. D. Know your enemy: effects of a predator on native and invasive container mosquitoes. J. Med. Entomol. 56, 320–328 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mahendra, A. & Seto, K. C. Upward and Outward Growth: Managing Urban Expansion for More Equitable Cities in the Global South (World Resources Institute, 2019).Moretto, L. et al. Challenges of water and sanitation service co-production in the global South. Environ. Urban. 30, 425–443 (2018).Article 

    Google Scholar 
    Seto, K. C., Sánchez-Rodríguez, R. & Fragkias, M. The new geography of contemporary urbanization and the environment. Annu. Rev. Environ. Resour. 35, 167–194 (2010).Article 

    Google Scholar 
    Estallo, E. L. et al. A decade of arbovirus emergence in the temperate southern cone of South America: dengue, Aedes aegypti and climate dynamics in Córdoba, Argentina. Heliyon 6, e04858 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaufman, M. G. & Fonseca, D. M.Invasion biology of Aedes japonicus japonicus (Diptera: Culicidae). Annu. Rev. Entomol. 59, 31–49 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kache, P. A. et al. Environmental determinants of Aedes albopictus abundance at a northern limit of its range in the United States. Am. J. Trop. Med. Hyg. 102, 436–447 (2020).Article 
    PubMed 

    Google Scholar 
    Eskew, E. A. & Olival, K. J. De-urbanization and zoonotic disease risk. EcoHealth 15, 707–712 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Biehler, D. et al. in The Palgrave Handbook of Critical Physical Geography 295–318 (Springer, 2018).Stoddard, S. T. et al. The role of human movement in the transmission of vector-borne pathogens. PLoS Negl. Trop. Dis. 3, e481 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and Chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wong, P. P.-Y., Lai, P.-C., Low, C.-T., Chen, S. & Hart, M. The impact of environmental and human factors on urban heat and microclimate variability. Build. Environ. 95, 199–208 (2016).Article 

    Google Scholar 
    Rey, J. R. & O’Connell, S. M. Oviposition by Aedes aegypti and Aedes albopictus: influence of congeners and of oviposition site characteristics. J. Vector Ecol. 39, 190–196 (2014).Article 
    PubMed 

    Google Scholar 
    Leisnham, P. T. & Juliano, S. Spatial and temporal patterns of coexistence between competing Aedes mosquitoes in urban Florida. Oecologia 160, 343–352 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paploski, I. A. D. et al. Storm drains as larval development and adult resting sites for Aedes aegypti and Aedes albopictus in Salvador, Brazil. Parasit. Vectors 9, 419 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zainon, N., Rahim, F. A. M., Roslan, D. & Abd Samat, A. H. Prevention of Aedes breeding habitats for urban high-rise building in Malaysia. Plan. Malay. 14, 115–128 (2016).
    Google Scholar 
    Kenneson, A. et al. Social-ecological factors and preventive actions decrease the risk of dengue infection at the household-level: results from a prospective dengue surveillance study in Machala, Ecuador. PLoS Negl. Trop. Dis. 11, e0006150 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harrington, L. C. et al. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am. J. Trop. Med. Hyg. 72, 209–220 (2005).Article 
    PubMed 

    Google Scholar 
    Vavassori, L., Saddler, A. & Müller, P. Active dispersal of Aedes albopictus: a mark–release–recapture study using self-marking units. Parasit. Vectors 12, 583 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ren, H., Wu, W., Li, T. & Yang, Z. Urban villages as transfer stations for dengue fever epidemic: a case study in the Guangzhou, China. PLoS Negl. Trop. Dis. 13, e0007350 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Charron, D. F. in Ecohealth Research in Practice 255–271 (Springer, 2012).Lippi, C. A. et al. Exploring the utility of social–ecological and entomological risk factors for dengue infection as surveillance indicators in the dengue hyper-endemic city of Machala, Ecuador. PLoS Negl. Trop. Dis. 15, e0009257 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wijayanti, S. P. et al. The importance of socio-economic versus environmental risk factors for reported dengue cases in Java, Indonesia. PLoS Negl. Trop. Dis. 10, e0004964 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zellweger, R. M. et al. Socioeconomic and environmental determinants of dengue transmission in an urban setting: an ecological study in Nouméa, New Caledonia. PLoS Negl. Trop. Dis. 11, e0005471 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryan, S. J. et al. Socio-ecological factors associated with dengue risk and Aedes aegypti presence in the Galápagos Islands, Ecuador. Int. J. Environ. Res. Public Health 16, 682 (2019).Article 
    PubMed Central 

    Google Scholar 
    Roiz, D. et al. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl. Trop. Dis. 12, e0006845 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanchez, L. et al. Aedes aegypti larval indices and risk for dengue epidemics. Emerg. Infect. Dis. 12, 800–806 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cromwell, E. A. et al. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection. PLoS Negl. Trop. Dis. 11, e0005429 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Honório, N. A. et al. Spatial evaluation and modeling of dengue seroprevalence and vector density in Rio de Janeiro, Brazil. PLoS Negl. Trop. Dis. 3, e545 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chadee, D. Dengue cases and Aedes aegypti indices in Trinidad, West Indies. Acta Trop. 112, 174–180 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fustec, B. et al. Complex relationships between Aedes vectors, socio-economics and dengue transmission—lessons learned from a case-control study in northeastern Thailand. PLoS Negl. Trop. Dis. 14, e0008703 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scarpino, S. V. & Petri, G. On the predictability of infectious disease outbreaks. Nat. Commun. 10, 898 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Batty, M. in Encyclopedia of Complexity and Systems Science (ed. Meyers, R.) 1041–1071 (Springer, 2009).McPhearson, T., Haase, D., Kabisch, N. & Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 70, 566–573 (2016).Rus, K., Kilar, V. & Koren, D. Resilience assessment of complex urban systems to natural disasters: a new literature review. Int. J. Disaster Risk Reduct. 31, 311–330 (2018).Article 

    Google Scholar 
    Bettencourt, L. M. Introduction to Urban Science: Evidence and Theory of Cities as Complex Systems (MIT Press, 2021).Handbook for Integrated Vector Management (World Health Organization, 2012).Kolimenakis, A. et al. The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit—a systematic review. PLoS Negl. Trop. Dis. 15, e0009631 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, M. V., Bhatnagar, S., Drake, J. M., Murdock, C. C. & Mukherjee, S.Socio‐ecological dynamics in urban systems: an integrative approach to mosquito‐borne disease in Bengaluru, India. People Nat. 4, 730–743 (2022).Article 

    Google Scholar 
    Cook, E. M., Hall, S. J. & Larson, K. L. Residential landscapes as social–ecological systems: a synthesis of multi-scalar interactions between people and their home environment. Urban Ecosyst. 15, 19–52 (2012).Article 

    Google Scholar 
    Bai, X., McAllister, R. R., Beaty, R. M. & Taylor, B. Urban policy and governance in a global environment: complex systems, scale mismatches and public participation. Curr. Opin. Environ. Sustain. 2, 129–135 (2010).Article 

    Google Scholar 
    Batty, M. Inventing Future Cities (MIT Press, 2018).McPhearson, T. et al. Advancing urban ecology toward a science of cities. BioScience 66, 198–212 (2016).Article 

    Google Scholar 
    Grimm, N. B., Cook, E. M., Hale, R. L. & Iwaniec, D. M. in The Routledge Handbook of Urbanization and Global Environmental Change 227–236 (Routledge, 2015).Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio 43, 413–433 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Filatova, T., Parker, D. & Van der Veen, A. Agent-based urban land markets: agent’s pricing behavior, land prices and urban land use change. J. Artif. Soc. Soc. Simul. 12, 3 (2009).
    Google Scholar 
    Acuto, M., Parnell, S. & Seto, K. C. Building a global urban science. Nat. Sustain. 1, 2–4 (2018).Article 

    Google Scholar 
    Collins, M. & Kapucu, N. Early warning systems and disaster preparedness and response in local government. Disaster Prev. Manag. 17, 587–600 (2008).Article 

    Google Scholar 
    Ahern, J. From fail-safe to safe-to-fail: sustainability and resilience in the new urban world. Landsc. Urban Plan. 100, 341–343 (2011).Article 

    Google Scholar 
    Gordon-Larsen, P., Nelson, M. C., Page, P. & Popkin, B. M. Inequality in the built environment underlies key health disparities in physical activity and obesity. Pediatrics 117, 417–424 (2006).Article 
    PubMed 

    Google Scholar 
    Zhou, S. & Lin, R. Spatial–temporal heterogeneity of air pollution: the relationship between built environment and on-road PM2.5 at micro scale. Transp. Res. D Transp. Environ. 76, 305–322 (2019).Article 

    Google Scholar 
    Frank, L. D. & Engelke, P. Multiple impacts of the built environment on public health: walkable places and the exposure to air pollution. Int. Reg. Sci. Rev. 28, 193–216 (2005).Article 

    Google Scholar 
    Diuk-Wasser, M. A., VanAcker, M. C. & Fernandez, M. P. Impact of land use changes and habitat fragmentation on the eco-epidemiology of tick-borne diseases. J. Med. Entomol. 58, 1546–1564 (2021).Article 
    PubMed 

    Google Scholar 
    Sengupta, U., Rauws, W. S. & De Roo, G.Planning and complexity: engaging with temporal dynamics, uncertainty and complex adaptive systems. Environ. Plann. B Plann. Des. 43, 970–974 (2016).Article 

    Google Scholar 
    Shi, Y. et al. Assessment methods of urban system resilience: from the perspective of complex adaptive system theory. Cities 112, 103141 (2021).Article 

    Google Scholar 
    Holland, J. H. Signals and Boundaries: Building Blocks for Complex Adaptive Systems (MIT Press, 2012).Preiser, R., Biggs, R., De Vos, A. & Folke, C. Social-ecological systems as complex adaptive systems. Ecol. Soc. 23, 46–61 (2018).Article 

    Google Scholar 
    Levin, S. et al. Social–ecological systems as complex adaptive systems: modeling and policy implications. Environ. Dev. Econ. 18, 111–132 (2013).Article 

    Google Scholar 
    Waldrop, M. M. Complexity: The Emerging Science at the Edge of Order and Chaos (Simon and Schuster, 1993).Nel, D., du Plessis, C. & Landman, K. Planning for dynamic cities: introducing a framework to understand urban change from a complex adaptive systems approach. Int. Plan. Stud. 23, 250–263 (2018).Article 

    Google Scholar 
    Sharifi, A. Resilient urban forms: a macro-scale analysis. Cities 85, 1–14 (2019).Article 

    Google Scholar 
    Borgström, S. T., Elmqvist, T., Angelstam, P. & Alfsen-Norodom, C. Scale mismatches in management of urban landscapes. Ecol. Soc. 11, 16 (2006).Article 

    Google Scholar 
    Walker, B. H., Carpenter, S. R., Rockstrom, J., Crépin, A.-S. & Peterson, G. D. Drivers, “slow” variables, “fast” variables, shocks, and resilience. Ecol. Soc. 17, 30 (2012).Article 

    Google Scholar 
    Carpenter, S. R. & Turner, M. G. Hares and tortoises: interactions of fast and slow variables in ecosystems. Ecosystems 3, 495–497 (2000).Article 

    Google Scholar 
    Peters, D. P., Bestelmeyer, B. T. & Turner, M. G. Cross-scale interactions and changing pattern–process relationships: consequences for system dynamics. Ecosystems 10, 790–796 (2007).Article 

    Google Scholar 
    Crépin, A.-S. Using fast and slow processes to manage resources with thresholds. Environ. Resour. Econ. 36, 191–213 (2007).Article 

    Google Scholar 
    Soranno, P. A. et al. Cross‐scale interactions: quantifying multi‐scaled cause–effect relationships in macrosystems. Front. Ecol. Environ. 12, 65–73 (2014).Article 

    Google Scholar 
    Pickett, S. T. et al. Theoretical perspectives of the Baltimore Ecosystem Study: conceptual evolution in a social–ecological research project. BioScience 70, 297–314 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gunderson, L. H., Holling, C. S. & Light, S. S. Barriers and Bridges to the Renewal of Ecosystems and Institutions (Columbia Univ. Press, 1995).Turner, M. G., Dale, V. H. & Gardner, R. H. Predicting across scales: theory development and testing. Landsc. Ecol. 3, 245–252 (1989).Article 

    Google Scholar 
    Wu, J. & Loucks, O. L. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q. Rev. Biol. 70, 439–466 (1995).Article 

    Google Scholar 
    Flores, A., Pickett, S. T., Zipperer, W. C., Pouyat, R. V. & Pirani, R. Adopting a modern ecological view of the metropolitan landscape: the case of a greenspace system for the New York City region. Landsc. Urban Plan. 39, 295–308 (1998).Article 

    Google Scholar 
    Fauchald, P. & Tveraa, T. Hierarchical patch dynamics and animal movement pattern. Oecologia 149, 383–395 (2006).Article 
    PubMed 

    Google Scholar 
    Linton, J. & Budds, J. The hydrosocial cycle: defining and mobilizing a relational–dialectical approach to water. Geoforum 57, 170–180 (2014).Article 

    Google Scholar 
    Knox, P. & Pinch, S. Urban Social Geography: an Introduction (Routledge, 2014).Geels, F. W. From sectoral systems of innovation to socio-technical systems: insights about dynamics and change from sociology and institutional theory. Res. Policy 33, 897–920 (2004).Article 

    Google Scholar 
    West, S., Haider, L. J., Stålhammar, S. & Woroniecki, S. A relational turn for sustainability science? Relational thinking, leverage points and transformations. Ecosyst. People 16, 304–325 (2020).Article 

    Google Scholar 
    Jones, M. Phase space: geography, relational thinking, and beyond. Prog. Hum. Geogr. 33, 487–506 (2009).Article 

    Google Scholar 
    Wohl, S. Considering how morphological traits of urban fabric create affordances for complex adaptation and emergence. Prog. Hum. Geogr. 40, 30–47 (2016).Article 

    Google Scholar 
    Herold, M., Scepan, J. & Clarke, K. C. The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environ. Plan. A 34, 1443–1458 (2002).Article 

    Google Scholar 
    Morrison, A. C. et al. Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru. J. Med. Entomol. 41, 1123–1142 (2004).Article 
    PubMed 

    Google Scholar 
    LaCon, G. et al. Shifting patterns of Aedes aegypti fine scale spatial clustering in Iquitos, Peru. PLoS Negl. Trop. Dis. 8, e3038 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lai, S. et al. Seasonal and interannual risks of dengue introduction from South-East Asia into China, 2005–2015. PLoS Negl. Trop. Dis. 12, e0006743 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gergel, S. E. & Turner, M. G. Learning Landscape Ecology: a Practical Guide to Concepts and Techniques (Springer, 2017).Hosseini, P. R. et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Phil. Trans. R. Soc. B Biol. Sci. 372, 20160129 (2017).Article 

    Google Scholar 
    LaDeau, S. L., Allan, B. F., Leisnham, P. T. & Levy, M. Z. The ecological foundations of transmission potential and vector‐borne disease in urban landscapes. Funct. Ecol. 29, 889–901 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rowley, W. A. & Graham, C. L. The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. J. Insect Physiol. 14, 1251–1257 (1968).Article 
    CAS 
    PubMed 

    Google Scholar 
    Evans, M. V. et al. Microclimate and larval habitat density predict adult Aedes albopictus abundance in urban areas. Am. J. Trop. Med. Hyg. 101, 362–370 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alto, B. W. & Juliano, S. A. Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. J. Med. Entomol. 38, 548–556 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Streutker, D. R. A remote sensing study of the urban heat island of Houston, Texas. Int. J. Remote Sens. 23, 2595–2608 (2002).Article 

    Google Scholar 
    Fikrig, K. et al. Sugar feeding patterns of New York Aedes albopictus mosquitoes are affected by saturation deficit, flowers, and host seeking. PLoS Negl. Trop. Dis. 14, e0008244 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Samson, D. M. et al. Resting and energy reserves of Aedes albopictus collected in common landscaping vegetation in St. Augustine, Florida. J. Am. Mosq. Control Assoc. 29, 231–236 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grove, J. M., Locke, D. H. & O’Neil-Dunne, J. P. An ecology of prestige in New York City: examining the relationships among population density, socio-economic status, group identity, and residential canopy cover. Environ. Manag. 54, 402–419 (2014).Article 

    Google Scholar 
    Leong, M., Dunn, R. R. & Trautwein, M. D. Biodiversity and socioeconomics in the city: a review of the luxury effect. Biol. Lett. 14, 20180082 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aronson, M. F. et al. Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).Article 

    Google Scholar 
    Hemme, R. R., Thomas, C. L., Chadee, D. D. & Severson, D. W. Influence of urban landscapes on population dynamics in a short-distance migrant mosquito: evidence for the dengue vector Aedes aegypti. PLoS Negl. Trop. Dis. 4, e634 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Betancourt, T., Higuera-Mendieta, D. R., González-Uribe, C., Cortés, S. & Quintero, J. Understanding water storage practices of urban residents of an endemic dengue area in Colombia: perceptions, rationale and socio-demographic characteristics. PLoS ONE 10, e0129054 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Plummer, R., de Loë, R. & Armitage, D. A systematic review of water vulnerability assessment tools. Water Resour. Manag. 26, 4327–4346 (2012).Article 

    Google Scholar 
    Ledogar, R. J. et al. Mobilising communities for Aedes aegypti control: the SEPA approach. BMC Public Health 17, 103–114 (2017).Article 

    Google Scholar 
    Michalos, A. C. Encyclopedia of Quality of Life and Well-being Research (Springer Netherlands, 2014).Reiner, R. C. Jr, Stoddard, S. T. & Scott, T. W. Socially structured human movement shapes dengue transmission despite the diffusive effect of mosquito dispersal. Epidemics 6, 30–36 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whiteford, L. M. The ethnoecology of dengue fever. Med. Anthropol. Q. 11, 202–223 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ibarra, A. M. S. et al. A social–ecological analysis of community perceptions of dengue fever and Aedes aegypti in Machala, Ecuador. BMC Public Health 14, 1135 (2014).Article 

    Google Scholar 
    Mitchell-Foster, K. L. Interdisciplinary Knowledge Translation and Evaluation Strategies for Participatory Dengue Prevention in Machala, Ecuador. PhD thesis, Univ. British Columbia (2013).Kropf, K.Aspects of urban form. Urban Morphol. 13, 105–120 (2009).Article 

    Google Scholar 
    Rose, L. A. Topographical constraints and urban land supply indexes. J. Urban Econ. 26, 335–347 (1989).Article 

    Google Scholar 
    Liu, F. “Interrupted Development”: The Effects of Blighted Neighborhoods and Topographic Barriers on Cities. PhD thesis, George Washington Univ. (2006).Durand-Lasserve, A. & Selod, H. in Urban Land Markets 101–132 (Springer, 2009).Talen, E. City Rules: How Regulations Affect Urban Form (Island Press, 2012).Scheer, B. C. The Evolution of Urban Form: Typology for Planners and Architects (Routledge, 2017).Dimoudi, A., Kantzioura, A., Zoras, S., Pallas, C. & Kosmopoulos, P. Investigation of urban microclimate parameters in an urban center. Energy Build. 64, 1–9 (2013).Article 

    Google Scholar 
    Middel, A., Häb, K., Brazel, A. J., Martin, C. A. & Guhathakurta, S. Impact of urban form and design on mid-afternoon microclimate in Phoenix local climate zones. Landsc. Urban Plan. 122, 16–28 (2014).Article 

    Google Scholar 
    Honório, N. A. et al. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 98, 191–198 (2003).Article 
    PubMed 

    Google Scholar 
    Seto, K. C. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 923–1000 (Cambridge Univ. Press, 2014).Romeo-Aznar, V., Freitas, L. P., Cruz, O. G., King, A. & Pascual, M. Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics. Nat. Commun. 13, 996 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lafferty, K. D. et al. Local extinction of the Asian tiger mosquito (Aedes albopictus) following rat eradication on Palmyra Atoll. Biol. Lett. 14, 20170743 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez, M. C., Dupont-Courtade, L. & Oueslati, W. Air pollution and urban structure linkages: evidence from European cities. Renew. Sustain. Energy Rev. 53, 1–9 (2016).Article 

    Google Scholar 
    Venter, Z. S., Krog, N. H. & Barton, D. N. Linking green infrastructure to urban heat and human health risk mitigation in Oslo, Norway. Sci. Total Environ. 709, 136193 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Little, E., Barrera, R., Seto, K. C. & Diuk-Wasser, M. Co-occurrence patterns of the dengue vector Aedes aegypti and Aedes mediovitattus, a dengue competent mosquito in Puerto Rico. EcoHealth 8, 365–375 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pereira dos Santos, T. et al. Potential of Aedes albopictus as a bridge vector for enzootic pathogens at the urban–forest interface in Brazil. Emerg. Microbes Infect. 7, 191 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardoso, J. et al. Yellow fever virus in Haemagogus leucocelaenus and Aedes serratus mosquitoes, southern Brazil, 2008. Emerg. Infect. Dis. 16, 1918–1924 (2010).Article 
    PubMed Central 

    Google Scholar 
    Grobbelaar, A. A. et al. Resurgence of yellow fever in Angola, 2015–2016. Emerg. Infect. Dis. 22, 1854–1855 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tonkiss, F. Cities by Design: the Social Life of Urban Form (John Wiley & Sons, 2014).Hillier, B., Greene, M. & Desyllas, J. Self-generated neighbourhoods: the role of urban form in the consolidation of informal settlements. Urban Des. Int. 5, 61–96 (2000).Article 

    Google Scholar 
    Li, X., Mou, Y., Wang, H., Yin, C. & He, Q. How does polycentric urban form affect urban commuting? Quantitative measurement using geographical big data of 100 cities in China. Sustainability 10, 4566 (2018).Article 

    Google Scholar 
    Wen, T.-H., Lin, M.-H., Teng, H.-J. & Chang, N.-T. Incorporating the human–Aedes mosquito interactions into measuring the spatial risk of urban dengue fever. Appl. Geogr. 62, 256–266 (2015).Article 

    Google Scholar 
    Achee, N. L. et al. A critical assessment of vector control for dengue prevention. PLoS Negl. Trop. Dis. 9, e0003655 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scott, T. W. & Morrison, A. C. Vector dynamics and transmission of dengue virus: implications for dengue surveillance and prevention strategies: vector dynamics and dengue prevention. Curr. Top. Microbiol. Immunol. 338, 115–128 (2010).PubMed 

    Google Scholar 
    Delmelle, E., Kim, C., Xiao, N. & Chen, W. Methods for space–time analysis and modeling: an overview. Int. J. Appl. Geospat. Res. 4, 1–18 (2013).Article 

    Google Scholar 
    Kua, K. P. & Lee, S. W. H. Randomized trials of housing interventions to prevent malaria and Aedes-transmitted diseases: a systematic review and meta-analysis. PLoS ONE 16, e0244284 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chareonviriyaphap, T. et al. The use of an experimental hut for evaluating the entering and exiting behavior of Aedes aegypti (Diptera: Culicidae), a primary vector of dengue in Thailand. J. Vector Ecol. 30, 344–346 (2005).PubMed 

    Google Scholar 
    Maneerat, S. & Daudé, E. A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas. Ecol. Model. 333, 66–78 (2016).Article 

    Google Scholar 
    Barbu, C. M. et al. The effects of city streets on an urban disease vector. PLoS Comput. Biol. 9, e1002801 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart Ibarra, A. M. et al. Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: implications for targeted control. PLoS ONE 8, e78263 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mesch, G. S. & Manor, O. Social ties, environmental perception, and local attachment. Environ. Behav. 30, 504–519 (1998).Article 

    Google Scholar 
    Matthews, L. & Haydon, D. Introduction. Cross-scale influences on epidemiological dynamics: from genes to ecosystems. J. R. Soc. Interface 4, 763–765 (2007).Article 
    PubMed Central 

    Google Scholar 
    Strauss, A. T., Shoemaker, L. G., Seabloom, E. W. & Borer, E. T. Cross‐scale dynamics in community and disease ecology: relative timescales shape the community ecology of pathogens. Ecology 100, e02836 (2019).Article 
    PubMed 

    Google Scholar 
    Schreiber, S. J. et al. Cross-scale dynamics and the evolutionary emergence of infectious diseases. Virus Evol. 7, veaa105 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramalho, C. E. & Hobbs, R. J. Time for a change: dynamic urban ecology. Trends Ecol. Evol. 27, 179–188 (2012).Article 
    PubMed 

    Google Scholar 
    Waggoner, J. J. et al. Homotypic dengue virus reinfections in Nicaraguan children. J. Infect. Dis. 214, 986–993 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezeakacha, N. F. & Yee, D. A. The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito Aedes albopictus. Parasit. Vectors 12, 123 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, M. V. et al. Carry-over effects of urban larval environments on the transmission potential of dengue-2 virus. Parasit. Vectors 11, 426 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lowe, R. et al. Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. Lancet Planet. Health 5, e209–e219 (2021).Article 
    PubMed 

    Google Scholar 
    Chen, S.-C. et al. Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: insights from a statistical analysis. Sci. Total Environ. 408, 4069–4075 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Elsinga, J. et al. Knowledge, attitudes, and preventive practices regarding dengue in Maracay, Venezuela. Am. J. Trop. Med. Hyg. 99, 195–203 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wong, L. P., Shakir, S. M. M., Atefi, N. & AbuBakar, S. Factors affecting dengue prevention practices: nationwide survey of the Malaysian public. PLoS ONE 10, e0122890 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Des Roches, S. et al. Socio‐eco‐evolutionary dynamics in cities. Evol. Appl. 14, 248–267 (2021).Article 
    PubMed 

    Google Scholar 
    Pickett, S. T. et al. Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 32, 127–157 (2001).Article 

    Google Scholar 
    Combs, M. A. et al. Socio‐ecological drivers of multiple zoonotic hazards in highly urbanized cities. Glob. Change Biol. 28, 1705–1724 (2022).Article 
    CAS 

    Google Scholar 
    Zhou, Q.A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water 6, 976–992 (2014).Article 

    Google Scholar 
    Stewart-Ibarra, A. M. et al. Co-developing climate services for public health: stakeholder needs and perceptions for the prevention and control of Aedes-transmitted diseases in the Caribbean. PLoS Negl. Trop. Dis. 13, e0007772 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hastings, A. Timescales, dynamics, and ecological understanding. Ecology 91, 3471–3480 (2010).Article 
    PubMed 

    Google Scholar 
    Lippi, C. A. et al. A network analysis framework to improve the delivery of mosquito abatement services in Machala, Ecuador. Int. J. Health Geogr. 19, 3 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Projection of the Ecuadorian Population, per Calendar Years, by Cantons 2010–2020 (National Institute of Statistics and Census, 2012).Pertumbuhan Ekonomi Indonesia Triwulan II (Badann Pusat Statistik, 2021).Rašić, G. et al. Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia. Parasit. Vectors 8, 610 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt, T. L. et al. Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian tiger mosquito, Aedes albopictus. PLoS Negl. Trop. Dis. 11, e0006009 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt, T. L., Filipović, I., Hoffmann, A. A. & Rašić, G. Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia. Heredity 120, 386–395 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tantowijoyo, W. et al. Stable establishment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, Indonesia. PLoS Negl. Trop. Dis. 14, e0008157 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Telle, O. et al. The spread of dengue in an endemic urban milieu—the case of Delhi, India. PLoS ONE 11, e0146539 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Telle, O. et al. Social and environmental risk factors for dengue in Delhi city: a retrospective study. PLoS Negl. Trop. Dis. 15, e0009024 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stokes, E. C. & Seto, K. C. Characterizing and measuring urban landscapes for sustainability. Environ. Res. Lett. 14, 045002 (2019).Article 

    Google Scholar 
    Jackson-Smith, D. B. et al. Differentiating urban forms: a neighborhood typology for understanding urban water systems. Cities Environ. 9, 5 (2016).
    Google Scholar 
    Population Census by Age (Department of Provincial Administration, accessed March 2022); https://stat.bora.dopa.go.th/new_stat/webPage/statByAge.phpSalje, H. et al. Revealing the microscale spatial signature of dengue transmission and immunity in an urban population. Proc. Natl Acad. Sci. USA 109, 9535–9538 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salje, H. et al. Reconstructing unseen transmission events to infer dengue dynamics from viral sequences. Nat. Commun. 12, 1810 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chai, B. & Seto, K. C. Conceptualizing and characterizing micro-urbanization: a new perspective applied to Africa. Landsc. Urban Plan. 190, 103595 (2019).Article 

    Google Scholar 
    Zhu, G., Liu, J., Tan, Q. & Shi, B. Inferring the spatio-temporal patterns of dengue transmission from surveillance data in Guangzhou, China. PLoS Negl. Trop. Dis. 10, e0004633 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ab Hamid, N. et al. Vertical infestation profile of Aedes in selected urban high-rise residences in Malaysia. Trop. Med. Infect. Dis. 5, 114 (2020).Article 
    PubMed Central 

    Google Scholar 
    Sun, H. et al. Spatio-temporal analysis of the main dengue vector populations in Singapore. Parasit. Vectors 14, 41 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ho, C.-M. et al. Surveillance for dengue fever vectors using ovitraps at Kaohsiung and Tainan in Taiwan. Formos. Entomol. 25, 159–174 (2005).
    Google Scholar 
    McKenzie, D. & Ray, I. Urban water supply in India: status, reform options and possible lessons. Water Policy 11, 442–460 (2009).Article 

    Google Scholar 
    Qian, S. S., Cuffney, T. F., Alameddine, I., McMahon, G. & Reckhow, K. H. On the application of multilevel modeling in environmental and ecological studies. Ecology 91, 355–361 (2010).Article 
    PubMed 

    Google Scholar 
    Parham, P. E. et al. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Phil. Trans. R. Soc. B Biol. Sci. 370, 20130551 (2015).Article 

    Google Scholar 
    Slocum, M. G., Beckage, B., Platt, W. J., Orzell, S. L. & Taylor, W. Effect of climate on wildfire size: a cross-scale analysis. Ecosystems 13, 828–840 (2010).Article 

    Google Scholar 
    Chiu, C.-H., Wen, T.-H., Chien, L.-C. & Yu, H.-L. A probabilistic spatial dengue fever risk assessment by a threshold-based-quantile regression method. PLoS ONE 9, e106334 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Higuera-Mendieta, D. R., Cortés-Corrales, S., Quintero, J. & González-Uribe, C. KAP surveys and dengue control in Colombia: disentangling the effect of sociodemographic factors using multiple correspondence analysis. PLoS Negl. Trop. Dis. 10, e0005016 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. H., Yuan, J. & Wang, T. Direct cost of dengue hospitalization in Zhongshan, China: associations with demographics, virus types and hospital accreditation. PLoS Negl. Trop. Dis. 11, e0005784 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tam, C. C. et al. Estimates of dengue force of infection in children in Colombo, Sri Lanka. PLoS Negl. Trop. Dis. 7, e2259 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, S. & Castillo-Chavez, C. The role of residence times in two-patch dengue transmission dynamics and optimal strategies. J. Theor. Biol. 374, 152–164 (2015).Article 
    PubMed 

    Google Scholar 
    Adams, B. & Kapan, D. D. Man bites mosquito: understanding the contribution of human movement to vector-borne disease dynamics. PLoS ONE 4, e6763 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Colizza, V. & Vespignani, A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. J. Theor. Biol. 251, 450–467 (2008).Article 
    PubMed 

    Google Scholar 
    Otero, M., Schweigmann, N. & Solari, H. G. A stochastic spatial dynamical model for Aedes aegypti. Bull. Math. Biol. 70, 1297–1325 (2008).Article 
    PubMed 

    Google Scholar 
    Otero, M. & Solari, H. G. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Math. Biosci. 223, 32–46 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, X. & Liu, X. Embedding sustainable development strategies in agent‐based models for use as a planning tool. Int. J. Geogr. Inf. Sci. 22, 21–45 (2008).Article 

    Google Scholar 
    Mozaffaree Pour, N. & Oja, T. Urban expansion simulated by integrated cellular automata and agent-based models; an example of Tallinn, Estonia. Urban Sci. 5, 85 (2021).Article 

    Google Scholar 
    Gilbert, N. Agent-Based Models Vol. 153 (Sage Publications, 2019).Roster, K. & Rodrigues, F. A. Neural networks for dengue prediction: a systematic review. Preprint at https://arxiv.org/abs/2106.12905 (2021).Zhao, N. et al. Machine learning and dengue forecasting: comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia. PLoS Negl. Trop. Dis. 14, e0008056 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhai, Y. et al. Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata. Int. J. Geogr. Inf. Sci. 34, 1475–1499 (2020).Article 

    Google Scholar 
    Verma, D. & Jana, A. LULC classification methodology based on simple Convolutional Neural Network to map complex urban forms at finer scale: evidence from Mumbai. Preprint at https://arxiv.org/abs/1909.09774 (2019).Djenontin, I. N. S. & Meadow, A. M. The art of co-production of knowledge in environmental sciences and management: lessons from international practice. Environ. Manag. 61, 885–903 (2018).Article 

    Google Scholar 
    Meschede, C. & Mainka, A. Including citizen participation formats for drafting and implementing local sustainable development strategies. Urban Sci. 4, 13 (2020).Article 

    Google Scholar 
    Mansfield, R. G., Batagol, B. & Raven, R. “Critical agents of change?”: opportunities and limits to children’s participation in urban planning. J. Plan. Lit. 36, 170–186 (2021).Article 

    Google Scholar 
    Curtis, A., Quinn, M., Obenauer, J. & Renk, B. M. Supporting local health decision making with spatial video: dengue, Chikungunya and Zika risks in a data poor, informal community in Nicaragua. Appl. Geogr. 87, 197–206 (2017).Article 

    Google Scholar 
    Norström, A. V. et al. Principles for knowledge co-production in sustainability research. Nat. Sustain. 3, 182–190 (2020).Article 

    Google Scholar 
    Dickens, L. & Butcher, M. Going public? Re‐thinking visibility, ethics and recognition through participatory research praxis. Trans. Inst. Br. Geogr. 41, 528–540 (2016).Article 

    Google Scholar 
    Wallerstein, N. et al. Power dynamics in community-based participatory research: a multiple-case study analysis of partnering contexts, histories, and practices. Health Educ. Behav. 46, 19S–32S (2019).Article 
    PubMed 

    Google Scholar 
    Parra, C. et al. Synergies between technology, participation, and citizen science in a community-based dengue prevention program. Am. Behav. Sci. 64, 1850–1870 (2020).Article 

    Google Scholar 
    Lozano–Fuentes, S. et al. Cell phone-based system (Chaak) for surveillance of immatures of dengue virus mosquito vectors. J. Med. Entomol. 50, 879–889 (2013).Article 
    PubMed 

    Google Scholar 
    Kelvin, A. A. et al. ZIKATracker: a mobile app for reporting cases of ZIKV worldwide. J. Infect. Dev. Ctries. 10, 113–115 (2016).Article 
    PubMed 

    Google Scholar 
    Fernandez, M. P. et al. Usability and feasibility of a smartphone app to assess human behavioral factors associated with tick exposure (The Tick App): quantitative and qualitative study. JMIR mHealth uHealth 7, e14769 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamer, S. A., Curtis-Robles, R. & Hamer, G. L. Contributions of citizen scientists to arthropod vector data in the age of digital epidemiology. Curr. Opin. Insect Sci. 28, 98–104 (2018).Article 
    PubMed 

    Google Scholar 
    Van Leeuwen, J. P., Hermans, K., Jylhä, A., Quanjer, A. J. & Nijman, H. Effectiveness of virtual reality in participatory urban planning: a case study. In Proc. Media Architecture Biennale 128–136 (Association for Computing Machinery, 2018).Kahila-Tani, M. Reshaping the Planning Process Using Local Experiences: Utilising PPGIS in Participatory Urban Planning. PhD thesis, Aalto Univ. (2015).Iwaniec, D. M. et al. The co-production of sustainable future scenarios. Landsc. Urban Plan. 197, 103744 (2020).Article 

    Google Scholar 
    Dickin, S. K., Schuster-Wallace, C. J. & Elliott, S. J. Mosquitoes & vulnerable spaces: mapping local knowledge of sites for dengue control in Seremban and Putrajaya Malaysia. Appl. Geogr. 46, 71–79 (2014).Article 

    Google Scholar 
    Chircop, A., Bassett, R. & Taylor, E. Evidence on how to practice intersectoral collaboration for health equity: a scoping review. Crit. Public Health 25, 178–191 (2015).Article 

    Google Scholar 
    Gamache, S., Diallo, T. A., Shankardass, K. & Lebel, A. The elaboration of an intersectoral partnership to perform health impact assessment in urban planning: the experience of Quebec City (Canada). Int. J. Environ. Res. Public Health 17, 7556 (2020).Article 
    PubMed Central 

    Google Scholar 
    Herdiana, H., Sari, J. F. K. & Whittaker, M. Intersectoral collaboration for the prevention and control of vector borne diseases to support the implementation of a global strategy: a systematic review. PLoS ONE 13, e0204659 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, S. A., Economou, T., de Castro Catão, R., Barcellos, C. & Lowe, R. The impact of climate suitability, urbanisation, and connectivity on the expansion of dengue in 21st century Brazil. PLoS Negl. Trop. Dis. 15, e0009773 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johansson, M. A., Cummings, D. A. & Glass, G. E. Multiyear climate variability and dengue—El Nino southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med. 6, e1000168 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barrera, R., Amador, M. & MacKay, A. J. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Negl. Trop. Dis. 5, e1378 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hess, G. Disease in metapopulation models: implications for conservation. Ecology 77, 1617–1632 (1996).Article 

    Google Scholar 
    Hanski, I. Metapopulation dynamics: does it help to have more of the same? Trends Ecol. Evol. 4, 113–114 (1989).Article 
    CAS 
    PubMed 

    Google Scholar 
    Masui, H. et al. Assessing potential countermeasures against the dengue epidemic in non-tropical urban cities. Theor. Biol. Med. Model. 13, 12 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stone, C. M., Schwab, S. R., Fonseca, D. M. & Fefferman, N. H. Contrasting the value of targeted versus area-wide mosquito control scenarios to limit arbovirus transmission with human mobility patterns based on different tropical urban population centers. PLoS Negl. Trop. Dis. 13, e0007479 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Reilly, K. M. et al. Projecting the end of the Zika virus epidemic in Latin America: a modelling analysis. BMC Med. 16, 180 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santé, I., García, A. M., Miranda, D. & Crecente, R. Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc. Urban Plan. 96, 108–122 (2010).Article 

    Google Scholar 
    Yang, J., Gong, J., Tang, W. & Liu, C. Patch-based cellular automata model of urban growth simulation: integrating feedback between quantitative composition and spatial configuration. Comput. Environ. Urban Syst. 79, 101402 (2020).Article 

    Google Scholar 
    Rozos, E., Butler, D. & Makropoulos, C. An integrated system dynamics–cellular automata model for distributed water-infrastructure planning. Water Sci. Technol. Water Supply 16, 1519–1527 (2016).Article 

    Google Scholar 
    Enduri, M. K. & Jolad, S. Dynamics of dengue disease with human and vector mobility. Spat. Spatiotemporal Epidemiol. 25, 57–66 (2018).Article 
    PubMed 

    Google Scholar 
    Medeiros, L. C. et al. Modeling the dynamic transmission of dengue fever: investigating disease persistence. PLoS Negl. Trop. Dis. 5, e942 (2011).Article 
    PubMed Central 

    Google Scholar 
    Ali, A. M., Shafiee, M. E. & Berglund, E. Z. Agent-based modeling to simulate the dynamics of urban water supply: climate, population growth, and water shortages. Sustain. Cities Soc. 28, 420–434 (2017).Article 

    Google Scholar 
    Philippon, D. et al. in Multi-Agent Based Simulation XVII. MABS 2016. Lecture Notes in Computer Science Vol 10399 (eds Nardin, L. & Antunes, L.) 111–127 (Springer, 2016).Agyemang, F. S., Silva, E. & Fox, S.Modelling and simulating ‘informal urbanization’: an integrated agent-based and cellular automata model of urban residential growth in Ghana. Urban Anal. City Sci. 0, 1–15 (2022).
    Google Scholar 
    Chouhan, S. S., Kaul, A. & Singh, U. P. Image segmentation using computational intelligence techniques. Arch. Comput. Methods Eng. 26, 533–596 (2019).Article 

    Google Scholar 
    Andersson, V. O., Birck, M. A. F. & Araujo, R. M. Towards predicting dengue fever rates using convolutional neural networks and street-level images. Proc. 2018 Int. Jt Conf. Neural Netw. 1–8 (IEEE, 2018).Chrysler, A., Gunarso, R., Puteri, T. & Warnars, H. A Literature Review of Crowd-Counting System on Convolutional Neural Network 012029 (IOP Conference Series: Earth and Environmental Science Volume 729, IOP Publishing, 2021).Bharambe, A., Chandorkar, A. A. & Kalbande, D. A deep learning approach for dengue tweet classification. Proc. 3rd Int. Conf. Invent. Res. Comput. Appl. 1043–1047 (IEEE, 2021).Kumar, A. & Garg, G. Sentiment analysis of multimodal twitter data. Multimed. Tools Appl. 78, 24103–24119 (2019).Article 

    Google Scholar 
    Marin, A. & Wellman, B. in The SAGE Handbook of Social Network Analysis Ch. 2 (2011).Snijders, T. A. & Steglich, C. E. Representing micro–macro linkages by actor-based dynamic network models. Sociol. Methods Res. 44, 222–271 (2015).Article 
    PubMed 

    Google Scholar 
    Warren, C. R., Burton, R., Buchanan, O. & Birnie, R. V. Limited adoption of short rotation coppice: the role of farmers’ socio-cultural identity in influencing practice. J. Rural Stud. 45, 175–183 (2016).Article 

    Google Scholar 
    Beal Cohen, A. A., Muneepeerakul, R. & Kiker, G. Intra-group decision-making in agent-based models. Sci. Rep. 11, 17709 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frederiks, E. R., Stenner, K. & Hobman, E. V. Household energy use: applying behavioural economics to understand consumer decision-making and behaviour. Renew. Sustain. Energy Rev. 41, 1385–1394 (2015).Article 

    Google Scholar 
    Spiegel, J. et al. Barriers and bridges to prevention and control of dengue: the need for a social–ecological approach. EcoHealth 2, 273–290 (2005).Article 

    Google Scholar 
    Arellano, C. et al. Knowledge and beliefs about dengue transmission and their relationship with prevention practices in Hermosillo, Sonora. Front. Public Health 3, 142 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gertler, M. S. & Wolfe, D. A. Local social knowledge management: community actors, institutions and multilevel governance in regional foresight exercises. Futures 36, 45–65 (2004).Article 

    Google Scholar 
    Brown, R. R., Farrelly, M. A. & Loorbach, D. A. Actors working the institutions in sustainability transitions: the case of Melbourne’s stormwater management. Glob. Environ. Change 23, 701–718 (2013).Article 

    Google Scholar 
    Castilla-Rho, J. C., Mariethoz, G., Rojas, R., Andersen, M. S. & Kelly, B. F. An agent-based platform for simulating complex human–aquifer interactions in managed groundwater systems. Environ. Model. Softw. 73, 305–323 (2015).Article 

    Google Scholar 
    Sabatier, P. A. Toward better theories of the policy process. PS Polit. Sci. Polit. 24, 147–156 (1991).Article 

    Google Scholar 
    Abrantes, P. et al. Modelling urban form: a multidimensional typology of urban occupation for spatial analysis. Environ. Plan. B Urban Anal. City Sci. 46, 47–65 (2019).Article 

    Google Scholar 
    McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure Vol. 351 (US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1995).Vazquez-Prokopec, G. M. et al. Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment. PLoS ONE 8, e58802 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ligtenberg, A., van Lammeren, R. J., Bregt, A. K. & Beulens, A. J. Validation of an agent-based model for spatial planning: a role-playing approach. Comput. Environ. Urban Syst. 34, 424–434 (2010).Article 

    Google Scholar  More

  • in

    Evapotranspiration frequently increases during droughts

    Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).CAS 

    Google Scholar 
    Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).CAS 

    Google Scholar 
    Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).CAS 

    Google Scholar 
    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).CAS 

    Google Scholar 
    Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).CAS 

    Google Scholar 
    Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).CAS 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).CAS 

    Google Scholar 
    Short Gianotti, D. J., Rigden, A. J., Salvucci, G. D. & Entekhabi, D. Satellite and station observations demonstrate water availability’s effect on continental-scale evaporative and photosynthetic land surface dynamics. Water Resour. Res. 55, 540–554 (2019).
    Google Scholar 
    Anderegg, W. R. L., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).CAS 

    Google Scholar 
    Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).CAS 

    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).CAS 

    Google Scholar 
    Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Chang. 10, 691–695 (2020).CAS 

    Google Scholar 
    Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).CAS 

    Google Scholar 
    Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).CAS 

    Google Scholar 
    Teuling, A. J. et al. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071–2075 (2013).
    Google Scholar 
    Mastrotheodoros, T. et al. More green and less blue water in the Alps during warmer summers. Nat. Clim. Chang. 10, 155–161 (2020).
    Google Scholar 
    Peterson, T. J., Saft, M., Peel, M. C. & John, A. Watersheds may not recover from drought. Science 372, 745–749 (2021).CAS 

    Google Scholar 
    Helbig, M. et al. Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nat. Clim. Chang. 10, 555–560 (2020).CAS 

    Google Scholar 
    Massmann, A., Gentine, P. & Lin, C. When does vapor pressure deficit drive or reduce evapotranspiration? J. Adv. Model. Earth Syst. 11, 3305–3320 (2019).
    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Orth, R. & Destouni, G. Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nat. Commun. 9, 3602 (2018).
    Google Scholar 
    Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Chang. 10, 191–199 (2020).
    Google Scholar 
    Chu, H., Baldocchi, D. D., John, R., Wolf, S. & Reichstein, M. Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. J. Geophys. Res. Biogeosci. 122, 289–307 (2017).
    Google Scholar 
    Ukkola, A. M. et al. Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts. Environ. Res. Lett. 11, 104012 (2016).
    Google Scholar 
    Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett. 45, 6495–6503 (2018).
    Google Scholar 
    De Kauwe, M. G. et al. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic–xeric gradient in Europe. Biogeosciences 12, 7503–7518 (2015).
    Google Scholar 
    Dong, J., Lei, F. & Crow, W. T. Land transpiration–evaporation partitioning errors responsible for modeled summertime warm bias in the central United States. Nat. Commun. 13, 336 (2022).CAS 

    Google Scholar 
    Kennedy, D. et al. Implementing plant hydraulics in the Community Land Model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).
    Google Scholar 
    Novick, K. A. et al. Confronting the water potential information gap. Nat. Geosci. 15, 158–164 (2022).CAS 

    Google Scholar 
    Liu, Y., Holtzman, N. M. & Konings, A. G. Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion. Hydrol. Earth Syst. Sci. 25, 2399–2417 (2021).CAS 

    Google Scholar 
    Lin, Y.-S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Chang. 5, 459–464 (2015).CAS 

    Google Scholar 
    Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).CAS 

    Google Scholar 
    Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).CAS 

    Google Scholar 
    Lehmann, P., Merlin, O., Gentine, P. & Or, D. Soil texture effects on surface resistance to bare-soil evaporation. Geophys. Res. Lett. 45, 10398–10405 (2018).
    Google Scholar 
    Fatichi, S. et al. Soil structure is an important omission in Earth System Models. Nat. Commun. 11, 522 (2020).CAS 

    Google Scholar 
    McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).CAS 

    Google Scholar 
    Baldocchi, D., Ma, S. & Verfaillie, J. On the inter- and intra-annual variability of ecosystem evapotranspiration and water use efficiency of an oak savanna and annual grassland subjected to booms and busts in rainfall. Glob. Chang. Biol. 27, 359–375 (2021).CAS 

    Google Scholar 
    Condon, L. E., Atchley, A. L. & Maxwell, R. M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020).CAS 

    Google Scholar 
    Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).CAS 

    Google Scholar 
    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).CAS 

    Google Scholar 
    Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).CAS 

    Google Scholar 
    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS 

    Google Scholar 
    Zhao, M. et al. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 4, 56–62 (2021).
    Google Scholar 
    Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 6, 1019–1022 (2016).
    Google Scholar 
    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).CAS 

    Google Scholar 
    Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).CAS 

    Google Scholar 
    Zhao, M., Geruo, A., Velicogna, I. & Kimball, J. S. A global gridded dataset of GRACE drought severity index for 2002–14: comparison with PDSI and SPEI and a case study of the Australia Millennium Drought. J. Hydrometeorol. 18, 2117–2129 (2017).
    Google Scholar 
    Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).
    Google Scholar 
    Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 52, 7490–7502 (2016).
    Google Scholar 
    Adler, R. F. et al. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).
    Google Scholar 
    Sun, Q. et al. A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev. Geophys. 56, 79–107 (2018).
    Google Scholar 
    Gebremichael, M. et al. Error uncertainty analysis of GPCP monthly rainfall products: a data-based simulation study. J. Appl. Meteorol. 42, 1837–1848 (2003).
    Google Scholar 
    Rodell, M. et al. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 31, L20504 (2004).
    Google Scholar 
    Major River Basins of the World (Global Runoff Data Centre, 2020).Pascolini-Campbell, M. A., Reager, J. T. & Fisher, J. B. GRACE-based mass conservation as a validation target for basin-scale evapotranspiration in the contiguous United States. Water Resour. Res. 56, e2019WR026594 (2020).
    Google Scholar 
    Fekete, B. M., Vörösmarty, C. J. & Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles 16, 15-1–15-10 (2002).
    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    Google Scholar 
    Myneni, R., Knyazikhin, Y. & Park, T (ed. NASA EOSDIS Land Processes DAAC) (2021).Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
    Google Scholar 
    Sulla-Menashe, D. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product (US Geological Survey, 2018).Zhao, M., Aa, G., Liu, Y. & Konings, A. Evapotranspiration frequently increases during droughts. Zenodo https://doi.org/10.5281/zenodo.6842054 (2022). More

  • in

    Recovery and genome reconstruction of novel magnetotactic Elusimicrobiota from bog soil

    Steen AD, Carini ACP, Lloyd KG, Thrash JC, Deangelis KM, Fierer N. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 2019;13:3126–30.PubMed 
    PubMed Central 

    Google Scholar 
    Lloyd KG, Steen AD, Ladau J, Yin J. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems. 2018;3:e00055–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marcy Y, Ouverney C, Bik EM, Lo T, Ivanova N, Garcia H, et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci USA. 2007;104:11889–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pascoal F, Costa R, Magalhães C. The microbial rare biosphere: current concepts, methods and ecological principles. FEMS Microbiol Ecol. 2021;97:fiaa227.CAS 
    PubMed 

    Google Scholar 
    Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA. 2006;103:12115–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gareev KG, Grouzdev DS, Kharitonskii PV, Kosterov A, Koziaeva VV, Sergienko ES, et al. Magnetotactic bacteria and magnetosomes: basic properties and applications. Magnetochemistry. 2021;7:86.CAS 

    Google Scholar 
    Lefevre CT, Bazylinski DA. Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev. 2013;77:497–526.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin W, Pan Y, Bazylinsky DA. Diversity and ecology of and biomineralization by magnetotactic bacteria. Environ Microbiol Rep. 2017;9:345–56.CAS 
    PubMed 

    Google Scholar 
    Uebe R, Schüler D. Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol. 2016;14:621–37.CAS 
    PubMed 

    Google Scholar 
    Lefèvre CT, Frankel RB, Bazylinski DA. Magnetotaxis in prokaryotes. eLS. 2011. https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2F9780470015902.a0000397.pub2https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2F9780470015902.a0000397.pub2.Goswami P, He K, Li J, Pan Y, Roberts AP, Lin W. Magnetotactic bacteria and magnetofossils: ecology, evolution and environmental implications. npj Biofilms Microbiomes. 2022;8:43.PubMed 
    PubMed Central 

    Google Scholar 
    Flies CB, Jonkers HM, De Beer D, Bosselmann K, Böttcher ME, Schüler D. Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS Microbiol Ecol. 2005;52:185–95.CAS 
    PubMed 

    Google Scholar 
    Wolfe RS, Thauer RK, Pfennig N. A’capillary racetrack’ method for isolation of magnetotactic bacteria. FEMS Microbiol Ecol. 1987;45:31–5.
    Google Scholar 
    Jogler C, Lin W, Meyerdierks A, Kube M, Katzmann E, Flies C, et al. Toward cloning of the magnetotactic metagenome: identification of magnetosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic sediments. Appl Environ Microbiol. 2009;75:3972–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin W, Zhang W, Paterson GA, Zhu Q, Zhao X. Expanding magnetic organelle biogenesis in the domain Bacteria. Microbiome. 2020;8:152.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Geissinger O, Herlemann DPR, Mo E, Maier UG, Brune A. The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the Termite Group 1 phylum. Appl Environ Microbiol. 2009;75:2831–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wakako I-O, Brune A. Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and ‘Candidatus Endomicrobium trichonymphae’. Mol Ecol. 2009;18:332–42.
    Google Scholar 
    Zheng H, Dietrich C, Radek R, Brune A. Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia) – an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase. Environ Ecol Stat. 2016;18:191–204.CAS 

    Google Scholar 
    Méheust R, Castelle CJ, Carnevali PBM, Chen L, Amano Y, Hug LA, et al. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. ISME J. 2020;14:2907–22.PubMed 
    PubMed Central 

    Google Scholar 
    Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, et al. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. ISME J. 2021;15:1810–25.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 

    Google Scholar 
    Zhang L, Gong X, Wang L, Guo K, Cao S, Zhou Y. Science of the total environment metagenomic insights into the effect of thermal hydrolysis pre-treatment on microbial community of an anaerobic digestion system. Sci Total Environ. 2021;791:148096.CAS 
    PubMed 

    Google Scholar 
    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.CAS 
    PubMed 

    Google Scholar 
    Uzun M, Alekseeva L, Krutkina M, Koziaeva V, Grouzdev D. Unravelling the diversity of magnetotactic bacteria through analysis of open genomic databases. Sci Data. 2020;7:252.PubMed 
    PubMed Central 

    Google Scholar 
    Tully BJ, Wheat CG, Glazer BT, Huber JA. A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer. ISME J. 2018;12:1–16.CAS 
    PubMed 

    Google Scholar 
    Kirillova NP, Sileva TM, Ul’yanova TY, Rozov SY, Il’yashenko MA, Makarov MI. Digital soil map of Chashnikovo training and experimental soil ecological center, Moscow State University. Mosc Univ Soil Sci Bull. 2015;70:58–65.
    Google Scholar 
    Koziaeva VV, Alekseeva LM, Uzun MM, Leão P, Sukhacheva MV, Patutina EO, et al. Biodiversity of magnetotactic bacteria in the freshwater lake Beloe Bordukovskoe, Russia. Microbiology. 2020;89:348–58.CAS 

    Google Scholar 
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 

    Google Scholar 
    Edgar RC, Flyvbjerg H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics. 2015;31:3476–82.CAS 
    PubMed 

    Google Scholar 
    Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 2016. https://doi.org/10.1101/081257.Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fierer N, Jackson JA, Vilgalys R, Jackson RB. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol. 2005;71:4117–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 

    Google Scholar 
    Lin HH, Liao YC. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep. 2016;6:12–9.
    Google Scholar 
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil P, Mussig AJ, Parks DH, Hugenholtz P. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.PubMed Central 

    Google Scholar 
    Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ji R, Zhang W, Pan Y, Lin W. MagCluster: a tool for identification, annotation, and visualization of magnetosome gene clusters. Microbiol Resour Announc. 2022;11:e01031–21.CAS 
    PubMed Central 

    Google Scholar 
    Wu S, Zhu Z, Fu L, Niu B, Li W. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics. 2011;12:444.PubMed 
    PubMed Central 

    Google Scholar 
    Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35.CAS 
    PubMed 

    Google Scholar 
    Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL. 0003 3527 8101, Solden LM, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 2020;48:8883–900.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 
    PubMed 

    Google Scholar 
    Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler AVon, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22.CAS 
    PubMed 

    Google Scholar 
    Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coleman GA, Davín AA, Mahendrarajah TA, Szánthó LL, Spang A, Hugenholtz P, et al. A rooted phylogeny resolves early bacterial evolution. Science. 2021;372:eabe0511.CAS 
    PubMed 

    Google Scholar 
    Parks DH. https://github.com/dparks1134/CompareM.Dombrowski N, Lee JH, Williams TA, Offre P, Spang A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol Lett. 2019;366:fnz008.CAS 
    PubMed Central 

    Google Scholar 
    Lin W, Zhang W, Zhao X, Roberts AP, Paterson GA, Bazylinski DA, et al. Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME J. 2018;12:1508–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urakawa H, Garcia JC, Nielsen JL, Le VQ, Kozlowski JA, Stein LY, et al. Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. Int J Syst Evol Microbiol. 2015;65:242–50.CAS 
    PubMed 

    Google Scholar 
    Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC, Lidstrom ME, et al. Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol. 2006;56:2517–22.CAS 
    PubMed 

    Google Scholar 
    Bazylinski DA, Frankel RB, Konhauser KO. Modes of biomineralization of magnetite by microbes. Geomicrobiol J. 2007;24:465–75.CAS 

    Google Scholar 
    Uzun M, Koziaeva V, Dziuba M, Leão P, Krutkina M, Grouzdev D. Detection of interphylum transfers of the magnetosome gene cluster in magnetotactic bacteria. Front Microbiol. 2022;13:945734.PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996.CAS 
    PubMed 

    Google Scholar 
    Murphy CL, Biggerstaff J, Eichhorn A, Ewing E, Shahan R, Soriano D, et al. Genomic characterization of three novel Desulfobacterota classes expand the metabolic and phylogenetic diversity of the phylum. Environ Microbiol. 2021;23:4326–43.CAS 
    PubMed 

    Google Scholar 
    Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.PubMed 
    PubMed Central 

    Google Scholar 
    Denise R, Abby SS, Rocha EPC. Diversification of the type IV filament superfamily into machines for adhesion, protein secretion, DNA uptake, and motility. PLoS Biol. 2019;17:e3000390.PubMed 
    PubMed Central 

    Google Scholar 
    Hennell James R, Deme JC, Kjӕr A, Alcock F, Silale A, Lauber F, et al. Structure and mechanism of the proton-driven motor that powers type 9 secretion and gliding motility. Nat Microbiol. 2021;6:221–33.CAS 
    PubMed 

    Google Scholar 
    Nolan LM, Whitchurch CB, Barquist L, Katrib M, Boinett CJ, Mayho M, et al. A global genomic approach uncovers novel components for twitching motility-mediated biofilm expansion in Pseudomonas aeruginosa. Micro Genomics. 2018;4:e000229.
    Google Scholar 
    Uzun M, Koziaeva V, Dziuba M, Alekseeva L, Grouzdev D. Mam protein trees. 2022. https://doi.org/10.6084/m9.figshare.c.6045158.v1.Arnoux P, Siponen MI, Lefèvre CT, Ginet N, Pignol D. Structure and evolution of the magnetochrome domains: no longer alone. Front Microbiol. 2014;5:117.PubMed 
    PubMed Central 

    Google Scholar 
    Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D. Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol Microbiol. 2010;77:208–24.CAS 
    PubMed 

    Google Scholar 
    Wagner-Döbler I, Bennasar A, Vancanneyt M, Strömpl C, Brümmer I, Eichner C, et al. Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments. Appl Environ Microbiol. 1998;64:3014–22.PubMed 
    PubMed Central 

    Google Scholar 
    Ibekwe AM, Papiernik SK, Gan J, Yates SR, Crowley DE, Yang CH. Microcosm enrichment of 1,3-dichloropropene-degrading soil microbial communities in a compost-amended soil. J Appl Microbiol. 2001;91:668–76.CAS 
    PubMed 

    Google Scholar 
    Yakimov MM, Denaro R, Genovese M, Cappello S, D’Auria G, Chernikova TN, et al. Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol. 2005;7:1426–41.CAS 
    PubMed 

    Google Scholar 
    Tringe SG, Von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, et al. Comparative metagenomics of microbial communities. Science. 2005;308:554–7.CAS 
    PubMed 

    Google Scholar 
    Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, Jogler C, de Almeida LGP, et al. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ Microbiol. 2013;15:2712–35.PubMed 

    Google Scholar 
    Wadhwa N, Berg HC. Bacterial motility: machinery and mechanisms. Nat Rev Microbiol. 2022;20:161–73.CAS 
    PubMed 

    Google Scholar 
    Zhu K, Pan H, Li J, Yu-Zhang K, Zhang SD, Zhang WY, et al. Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res Microbiol. 2010;161:276–83.CAS 
    PubMed 

    Google Scholar 
    Kaimer C, Zusman DR. Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY-like domains in FrzE and FrzZ. Mol Microbiol. 2016;100:379–95.CAS 
    PubMed 

    Google Scholar 
    Kühn MJ, Talà L, Inclan YF, Patino R, Pierrat X, Vos I, et al. Mechanotaxis directs Pseudomonas aeruginosa twitching motility. Proc Natl Acad Sci USA. 2021;118:e2101759118.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Blue and green food webs respond differently to elevation and land use

    OverviewWe compiled systematically sampled empirical taxa occurrence across the landscape, and inferentially assembled respective blue and green local food webs by combining these data with a metaweb approach. We quantified key properties of the inferred food webs, then analysed with GIS-derived environmental information how focal food-web metrics change along elevation and among different land-use types in blue versus green systems. Details are given below.Assemble food webs using a metaweb approachWe applied a metaweb method to obtain the composition and structure of multiple local food webs across a landscape spatial scale10. A metaweb is an accumulation of all interactions (here, trophic relationships) among the focal taxa. In this study, we built our metaweb based on known trophic interactions derived from literature and published datasets, which themselves were all based on primary empirical natural history observations. We further complemented or refined the trophic interactions in the metaweb based on expert knowledge of primary observations that are not yet published or only accessible in grey literature. The expert knowledge covers authors and collaborators who have specific natural history knowledge on Central European plants, herbivorous insects, birds, fish, and aquatic invertebrates. Importantly, these observations were all based on empirical observations and/or unpublished data accumulated over considerable field research experience. The respective literature we referred, as well as the metaweb itself with information source of each trophic link (online repository), are provided in Supplementary Methods. By assuming that any interaction in the metaweb will realise if the interacting taxa co-occur, the metaweb approach allows an inference of local food webs if taxa occurrence is known. Such an assumption of fixed diets may lead to an over-estimation of the locally realised trophic links32, as it essentially ignores the possible intraspecific diet variation caused by resource availability61,62, predation risk63, temperature64, ontogenetic shift65, or other genetic and environmental sources66. Therefore, the food webs we inferred systematically using this method capture trophic relationships driven by community composition (species presence versus absence) but not the above-mentioned processes. Nonetheless, since the trophic interactions were based on empirical observations, the fixed diets can be seen as collapsing all intraspecific variations of diet-determining traits (or trait-matching) at species level, within which we know realisable interactions surely exist. This, together with co-occurrence as a pre-requisite, gives realistic boundaries for the potential interaction realisation, which is plausible and non-biased when applying to localised sites. With this approach, we were addressing a systematic comparison among potential local food webs between the blue and green systems and across the selected gradients. For sensitivity analyses considering the potential inaccuracy of the metaweb approach mentioned here, please see further below Food-web metrics and analyses and Supplementary Discussion.We compiled taxa occurrence of four terrestrial and two aquatic broad taxonomic groups (“focal groups”) to assemble local green and blue communities, respectively and independently, based on the well-resolved data available. Each focal group referred to a distinct taxonomic group, and the within- and among-group trophic relationships captured most of the realised interactions. These focal groups were vascular plants, butterflies, grasshoppers, and birds in the green biome, and stream invertebrates and fishes in the blue biome. Notably, with “butterflies” we refer to their larval stage and accordingly their mostly-herbivorous trophic interactions throughout this study. Larval interactions were also the predominant interaction assessed for stream invertebrates (i.e., all interactions of stream invertebrates focussed on their aquatic stage, which is predominant larval). The occurrence data of these focal groups were compiled from highly standardised multiple-year empirical surveys of various authorities, all conducted by trained biologists with fixed protocols (Supplementary Methods). The information across sites should thus be representative and can be up-scaled to the landscape. The occurrences of plants, butterflies, birds, and stream invertebrates were from the Biodiversity Monitoring Switzerland programme (BDM Coordination Office67) managed by the Swiss Federal Office for the Environment (BAFU/FOEN). The occurrences of grasshoppers and fishes were from the Swiss database on faunistic records, info fauna (CSCF), where we further complemented fish occurrence from the data of Progetto Fiumi Project (Eawag). In terms of biological resolution, taxa were resolved to species level in most cases, while the plant and butterfly groups included some multi-species complexes. Insects of the order Ephemeroptera, Plecoptera, and Trichoptera were resolved to species, while all other stream invertebrates were resolved to family level. These were each treated as a node later in our food-web assembly, and referred to as “species”, as the species within such complexes and families mostly share the same trophic role. Spatially, the occurrence datasets adopted coordinates resolved to 1 × 1 km2. The species that were recorded in the same 1 × 1 km2 grid were considered to co-occurred. We took the co-occurring four/two focal groups to form local green/blue local communities, respectively. To obtain better co-occurrence across group-specific data from different sources (e.g., BDM and info fauna), we intentionally coarsened the grasshopper and fish occurrence to 5 × 5 km2 coordinates. This is arguably a biologically acceptable approximation considering the high mobility of these two groups. Also, we only included known stream-borne fishes and dropped pure lake-borne ones to match our stream-only invertebrate occurrence data. Across all 462 green and 465 blue communities we assembled, we covered 2016 plant, 191 butterfly, 109 grasshopper, 155 bird, 248 stream invertebrate, and 78 stream fish species. Unlike the knowledge of plant occurrence in green communities, we did not have detailed occurrence information of the basal components (e.g., primary producers) in blue ones. Therefore, we assumed three mega nodes—namely plant (including all alive or dead plant materials), plankton (including zooplankton, phytoplankton, and other algae), and detritus—as the basal nodes occurring in all blue communities, without further discrimination of identities or biology within. These adding to our focal groups thus cover major taxonomic groups as well as trophic roles from producers to top consumers in both blue and green systems.Taking the above-assembled local communities then drawing trophic links among species (nodes) according to the metaweb yielded the local food webs (illustrated in Fig. 1), representatively covering the whole Swiss area. Notably, although our understanding of trophic interactions indeed encompassed some links across the blue and green taxa (e.g., between piscivorous birds and fishes), our occurrence datasets did not present sufficient spatial grids where these taxa co-occur. We, therefore, did not include such links, nor assembled blue-green interconnected food webs, but the blue and green food webs separately instead (but see Supplementary Discussion). Also, we dropped isolated nodes, i.e., basal nodes without any co-occurring consumer and consumer nodes without any co-occurring resource, from the inferred food webs. These could possibly be passing-by species that were recorded but had no trophic interaction locally, or those that interact with non-focal taxa whose occurrence information was unknown to us. We thus had to exclude them to focus on evidence-supported occurrences and trophic interactions. Nonetheless, across all cases, isolated nodes were rather rare (averaged less than 3% of species occurred in either blue or green communities).Environmental dataWe acquired environmental data across all of Switzerland (42,000 km2) on a 1 × 1 km2 grid basis (i.e., values are averaged over the grid) from GIS databases, with which we mapped environmental conditions to the grids where we assembled food webs. These included: topographical information from DHM25 (Swisstopo, FOT), land-cover information from CLC (EEA), and climate information (averaged over the decade of 2005–2015) from CHELSA. Among environmental variables, elevation and temperature are essentially highly correlated. In this study, we took elevation as the focal environmental gradient throughout, as after accounting for the main effects of elevation on temperature, the residual temperature was not a good predictor of the food-web metrics we looked at (see next section, and Supplementary Table 4). In other words, by analysing along the elevation gradient, we already captured most of the temperature influences on food webs. Based on the labels provided by the GIS databases, we categorised the originally detailed land cover into the five major land-use types that we used in this study, namely forest, scrubland, open space, farmland, and urban area. Forest includes broad-leaved, coniferous, and mixed forests. Scrub includes bushy and herbaceous vegetation, heathlands, and natural grasslands. Open space encompasses sparsely vegetated areas, such as dunes, bare rocks, glaciers and perpetual snow. Farmland include any form of arable, pastures, and agro-forestry areas. Finally, urban area is where artificial constructions and infrastructure prevail. As each grid could contain multiple land-use types, we then defined the dominant land-use type of the grid as any of the five above that occupied more than 50% of the grid’s area. Analyses separated by land-use types with subsetted food webs (land-use-specific analyses) were based on the grids’ dominant land-use type. There were a few grids where the dominant land-use type did not belong to the focal major five, e.g., wetlands or water bodies, and a few where no single land-use type covered more than 50% of the area. Food webs of these grids were still included in the overall analyses but excluded from any land-use-specific analyses (as revealed in the difference in sample sizes between all versus land-use type subsetted food webs in Fig. 2; analyses details below).Food-web metrics and analysesWe quantified five metrics as the measures of the food webs’ structural and ecological properties. For the fundamental structure of the food webs, the number of nodes (“No. Nodes”) reflects the size of the web, meanwhile represents local species richness (though the few isolated nodes were excluded as above-mentioned). Connectance is the proportion of realised links among all potential ones (thus bounded 0–1), reflecting how connected the web is. We also derived holistic topological measures, namely nestedness and modularity. Nestedness of a food web, on the one hand, describes the tendency that some nodes’ narrower diets being subsets of other’s broader diets. We adopted a recently developed UNODF index68 (bounded 0–1) that is especially suitable for quantifying such a feature in our unipartite food webs. On the other hand, modularity (bounded 0–1 with our index) reflects the tendency of a food web to form modules, where nodes are highly connected within but only loosely connected between. Nestedness and modularity are two commonly investigated structures in ecological networks and have been considered relevant to species feeding ecology24 and the stability of the system69. Finally, we measured the level of consumers’ diet niche overlap of the food webs (Horn’s index70, bounded 0–1), which essentially depends on the arrangement of trophic relationships (thus the structure of the webs), and could have strong ecological implications as niche partitioning has been recognised to be a key mechanism that drives species coexistence71,72. We selected these fundamental and holistic properties as they are potentially more relevant to the processes that may have shaped food webs across a landscape scale (e.g., community assembly), in comparison to some node- or link-centric properties. Also, addressing similar metrics as in the literature13,69 would facilitate potential cross-study comparison or validation.To first gain a glimpse of the structure of the blue and green food webs, we performed a principal component analysis (PCA; Fig. 3a) on the inferred food webs (n = 462 and 465 in green and blue, respectively) taking the four structural metrics (number of nodes, connectance, nestedness, and modularity) as the explaining variables of blue versus green system types. We then confirmed that system type, elevation, and land-use type were all important predictors of food-web metrics (whereas the residual temperature after accounting elevation effects was not) by conducting general linear model analyses, taking the former as interactive predictors while the latter response variables (Supplementary Tables 3, 4). To check how elevation influences food-web properties in blue and green systems separately, and how food-web properties depend on each other, we ran a series of piecewise structural equation modelling (SEM)73 analyses on inferred food webs (Fig. 3b, c) whose dominant land use can be defined (n = 421 and 430 in green and blue, respectively). This was also conducted on subsetted webs of each of the five major land-use types (Supplementary Figs. 1 and 2). The SEM relationships were derived from linear mixed model analyses with dominant land-use type as a random effect (assumption tests see Supplementary Figs. 12–17). The SEM structure of direct effects was set according to the literature13,69 and is illustrated in Fig. 3b. In short, this structure tests the dependencies from elevation (an environmental predictor) to food-web metrics (ecological responses). The further dependencies among food-web metrics themselves were assigned with the principle of pointing from relative lower-level properties to higher-level ones. That is, from number of nodes (purely determined by nodes) to connectance (determined by numbers of nodes and links), further to nestedness and modularity (holistic topologies, determined further by the arrangement of links), then to diet niche overlap (ecological functional outcome).Finally, to check and visualise the exact changing patterns of food webs, we applied generalised additive models (GAMs) to reveal the relationships between food-web metrics and the whole-ranged elevation (Figs. 4 and 5), as well as a particular comparison between food webs in forests and farmlands below 1500 m a.s.l. (Supplementary Fig. 5), as this elevation segment covered most of the sites belonged to these two land-use types. We also performed a series of linear models (LMs) and least-squared slope comparisons based on land-use-specific subsets of food webs (Figs. 4 and 5; Supplementary Figs. 3 and 4), to investigate whether food-web elevational patterns are different among land-use types (assumption tests see Supplementary Tables 5 and 6). In the GAMs analyses, specifically, we simulated two sets of randomised webs, i.e., “keep-group” and “fully”, as the null models to compare with the inferred ones74. Both randomisations generated ten independently simulated webs from each input inferred local food web, keeping the same number of nodes and connectance as of the latter. On the one hand, the keep-group randomisation shuffled trophic links from an input local web but only allowed them to realised fulfilling some pre-set within- and among-group relationships. That is, in green communities, birds can feed on all groups, grasshoppers on any groups but birds, while butterflies only on plants; in blue communities, fishes can feed on all groups, while invertebrates on themselves and the basal resources. These pre-set group-wide relationships captured the majority of realistic trophic interactions compiled in our metaweb. On the other hand, the fully randomised webs shuffled trophic links disregarding the biological identity of nodes. The GAMs of nestedness, modularity, and niche overlap illustrated the patterns of these randomised webs (Fig. 5). Comparing among the three types of webs, the patterns exhibited already by fully randomised webs should be those contributed by variations in web size and connectance, while the difference between keep-group and fully randomised webs by the focal-group composition of local communities, and the difference between inferred and keep-group randomised webs further by the realistic species-specific diets. In addition, we also applied the same GAMs and LMs approach to analyse node richness, as well as both realised and potential diet generality (vulnerability for plants) of each focal group (Supplementary Figs. 6–11). These analyses provided hints about the changes in community composition and species diet breadths along elevation and among land-use types, which helped explain the detected food-web responses in mechanistic ways.In addition, to check if our findings were shaped or strongly influenced by the potential inaccuracy of using the metaweb, we repeated the above PCA, SEM, and GAM analyses as a series of sensitivity analyses. We generated food webs based on our locally inferred ones (i.e., the observations) but with random 10% link removal. This procedure mimics the effect of potential intraspecific diet variation (mentioned earlier) so that some trophic interactions in the metaweb do not realise locally. Overall, these analyses with link removal showed that our conclusions are qualitatively and quantitatively highly robust, and only very minorly affected by the such potential inaccuracy of metawebs, which is also in accordance to other food-web studies (see e.g., Pearse & Altermatt 201575). All details and outcomes of these additional analyses are given in Supplementary discussion.All metric quantification and analyses were performed under R version 4.0.3 (R Core Team76). All applied packages and functions were described in Supplementary Methods, while the R scripts performing these tasks can be accessed at the online repository provided.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Climate change and species facilitation affect the recruitment of macroalgal marine forests

    Intergovernmental Panel on Climate Change (IPCC). The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2022). https://doi.org/10.1017/9781009157964.Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).ADS 

    Google Scholar 
    Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).PubMed 

    Google Scholar 
    Hall-Spencer, J. M. & Harvey, B. P. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerg. Top. Life Sci. 3, 197–206 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Straub, S. C. et al. Resistance, extinction, and everything in between—The diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).
    Google Scholar 
    Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I. & Russell, B. D. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120442 (2013).
    Google Scholar 
    Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl. Acad. Sci. 108, 14515–14520 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harvey, B. P., Kon, K., Agostini, S., Wada, S. & Hall-Spencer, J. M. Ocean acidification locks algal communities in a species-poor early successional stage. Glob. Change Biol. 27, 2174–2187 (2021).ADS 
    CAS 

    Google Scholar 
    Sunday, J. M. et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change 7, 81–85 (2017).ADS 
    CAS 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).
    Google Scholar 
    Schiel, D. R. & Foster, M. S. The population biology of large brown seaweeds: Ecological consequences of multiphase life histories in dynamic coastal environments. Annu. Rev. Ecol. Evol. Syst. 37, 343–372 (2006).
    Google Scholar 
    Wernberg, T. & Filbee-Dexter, K. Missing the marine forest for the trees. Mar. Ecol. Prog. Ser. 612, 209–215 (2019).ADS 

    Google Scholar 
    Cheminée, A. et al. Nursery value of Cystoseira forests for Mediterranean rocky reef fishes. J. Exp. Mar. Biol. Ecol. 442, 70–79 (2013).
    Google Scholar 
    Smale, D. A., Burrows, M. T., Moore, P., O’Connor, N. & Hawkins, S. J. Threats and knowledge gaps for ecosystem services provided by kelp forests: A northeast Atlantic perspective. Ecol. Evol. 3, 4016–4038 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Carbajal, P., Gamarra Salazar, A., Moore, P. J. & Pérez-Matus, A. Different kelp species support unique macroinvertebrate assemblages, suggesting the potential community-wide impacts of kelp harvesting along the Humboldt Current System. Aquat. Conserv. Mar. Freshw. Ecosyst. 32, 14–27 (2022).
    Google Scholar 
    Filbee-Dexter, K. & Wernberg, T. Rise of turfs: A new battlefront for globally declining kelp forests. Bioscience 68, 64–76 (2018).
    Google Scholar 
    Pessarrodona, A. et al. Homogenization and miniaturization of habitat structure in temperate marine forests. Glob. Change Biol. 27, 5262–5275 (2021).CAS 

    Google Scholar 
    Orfanidis, S. et al. Effects of natural and anthropogenic stressors on Fucalean brown seaweeds across different spatial scales in the Mediterranean Sea. Front. Mar. Sci. 8, 1330 (2021).
    Google Scholar 
    Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. 113, 13785–13790 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capdevila, P. et al. Warming impacts on early life stages increase the vulnerability and delay the population recovery of a long-lived habitat-forming macroalga. J. Ecol. 107, 1129–1140 (2019).
    Google Scholar 
    Irving, A. D., Balata, D., Colosio, F., Ferrando, G. A. & Airoldi, L. Light, sediment, temperature, and the early life-history of the habitat-forming alga Cystoseira barbata. Mar. Biol. 156, 1223–1231 (2009).
    Google Scholar 
    Smith, K. E., Moore, P. J., King, N. G. & Smale, D. A. Examining the influence of regional-scale variability in temperature and light availability on the depth distribution of subtidal kelp forests. Limnol. Oceanogr. 67, 314–328 (2022).ADS 

    Google Scholar 
    Smale, D. A. et al. Climate-driven substitution of foundation species causes breakdown of a facilitation cascade with potential implications for higher trophic levels. J. Ecol. 00, 1–13 (2022).
    Google Scholar 
    Hollarsmith, J. A., Buschmann, A. H., Camus, C. & Grosholz, E. D. Varying reproductive success under ocean warming and acidification across giant kelp (Macrocystis pyrifera) populations. J. Exp. Mar. Biol. Ecol. 522, 151247 (2020).
    Google Scholar 
    Verdura, J. et al. Local-scale climatic refugia offer sanctuary for a habitat-forming species during a marine heatwaves. J. Ecol. 109, 1758–1773 (2021).
    Google Scholar 
    Mariani, S. et al. Past and present of Fucales from shallow and sheltered shores in Catalonia. Reg. Stud. Mar. Sci. 32, 100824 (2019).
    Google Scholar 
    Smale, D. A. Impacts of ocean warming on kelp forest ecosystems. New Phytol. 225, 1447–1454 (2020).PubMed 

    Google Scholar 
    Coelho, S. M., Rijstenbil, J. W. & Brown, M. T. Impacts of anthropogenic stresses on the early development stages of seaweeds. J. Aquat. Ecosyst. Stress Recov. 7, 317–333 (2000).CAS 

    Google Scholar 
    de Caralt, S., Verdura, J., Vergés, A., Ballesteros, E. & Cebrian, E. Differential effects of pollution on adult and recruits of a canopy-forming alga: Implications for population viability under low pollutant levels. Sci. Rep. 10, 17825 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capdevila, P. et al. Recruitment patterns in the Mediterranean deep-water alga Cystoseira zosteroides. Mar. Biol. 162, 1165–1174 (2015).CAS 

    Google Scholar 
    Vadas, R. L., Johnson, S. & Norton, T. A. Recruitment and mortality of early post-settlement stages of benthic algae. Br. Phycol. J. 27, 331–351 (1992).
    Google Scholar 
    Koch, M., Bowes, G., Ross, C. & Zhang, X.-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19, 103–132 (2013).ADS 

    Google Scholar 
    Shih, P. M. et al. Biochemical characterization of predicted Precambrian RuBisCO. Nat. Commun. 7, 10382 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cornwall, C. E. et al. Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Sci. Rep. 7, 46297 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hepburn, C. D. et al. Diversity of carbon use strategies in a kelp forest community: Implications for a high CO2 ocean. Glob. Change Biol. 17, 2488–2497 (2011).ADS 

    Google Scholar 
    Porzio, L., Buia, M. C. & Hall-Spencer, J. M. Effects of ocean acidification on macroalgal communities. J. Exp. Mar. Biol. Ecol. 400, 278–287 (2011).CAS 

    Google Scholar 
    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 

    Google Scholar 
    Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms: Biological responses to ocean acidification. Ecol. Lett. 13, 1419–1434 (2010).PubMed 

    Google Scholar 
    Rindi, F. et al. Coralline algae in a changing Mediterranean Sea: How can we predict their future, if we do not know their present?. Front. Mar. Sci. 6, 723 (2019).
    Google Scholar 
    James, R. K., Hepburn, C. D., Cornwall, C. E., McGraw, C. M. & Hurd, C. L. Growth response of an early successional assemblage of coralline algae and benthic diatoms to ocean acidification. Mar. Biol. 161, 1687–1696 (2014).CAS 

    Google Scholar 
    Comeau, S. & Cornwall, C. E. Contrasting effects of ocean acidification on coral reef “animal forests” versus seaweed “kelp forests.” In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds Rossi, S. et al.) 1–25 (Springer International Publishing, 2016) https://doi.org/10.1007/978-3-319-17001-5_29-1.Chapter 

    Google Scholar 
    Airoldi, L. Effects of disturbance, life histories, and overgrowth on coexistence of algal crusts and turfs. Ecology 81, 798–814 (2000).
    Google Scholar 
    Asnaghi, V. et al. Colonisation processes and the role of coralline algae in rocky shore community dynamics. J. Sea Res. 95, 132–138 (2015).ADS 

    Google Scholar 
    Bulleri, F., Bertocci, I. & Micheli, F. Interplay of encrusting coralline algae and sea urchins in maintaining alternative habitats. Mar. Ecol. Prog. Ser. 243, 101–109 (2002).ADS 

    Google Scholar 
    Villas Bôas, A. B. & Figueiredo, M. A. D. O. Are anti-fouling effects in coralline algae species specific?. Braz. J. Oceanogr. 52, 11–18 (2004).
    Google Scholar 
    Bulleri, F., Benedetti-Cecchi, L., Acunto, S., Cinelli, F. & Hawkins, S. J. The influence of canopy algae on vertical patterns of distribution of low-shore assemblages on rocky coasts in the northwest Mediterranean. J. Exp. Mar. Biol. Ecol. 267, 89–106 (2002).
    Google Scholar 
    Maggi, E., Bertocci, I., Vaselli, S. & Benedetti-Cecchi, L. Connell and Slatyer’s models of succession in the biodiversity era. Ecology 92, 1399–1406 (2011).CAS 
    PubMed 

    Google Scholar 
    Irving, A. D., Connell, S. D., Johnston, E. L., Pile, A. J. & Gillanders, B. M. The response of encrusting coralline algae to canopy loss: An independent test of predictions on an Antarctic coast. Mar. Biol. 147, 1075–1083 (2005).
    Google Scholar 
    Irving, A. D., Connell, S. D. & Elsdon, T. S. Effects of kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae. J. Exp. Mar. Biol. Ecol. 310, 1–12 (2004).
    Google Scholar 
    Melville, A. J. & Connell, S. D. Experimental effects of kelp canopies on subtidal coralline algae. Austral. Ecol. 26, 102–108 (2001).
    Google Scholar 
    Breitburg, D. L. Residual effects of grazing: Inhibition of competitor recruitment by encrusting coralline algae. Ecology 65, 1136–1143 (1984).
    Google Scholar 
    Bulleri, F., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J. Facilitation and the niche: Implications for coexistence, range shifts and ecosystem functioning. Funct. Ecol. 30, 70–78 (2016).
    Google Scholar 
    van der Heide, T., Angelini, C., de Fouw, J. & Eklöf, J. S. Facultative mutualisms: A double-edged sword for foundation species in the face of anthropogenic global change. Ecol. Evol. 11, 29–44 (2021).PubMed 

    Google Scholar 
    Molinari-Novoa, E. A. & Guiry, E. Reinstatement of the genera Gongolaria Boehmer and Ericaria Stackhouse (Sargassaceae, Phaeophyceae). Notulae Algarum 1–10 (2020).Celis-Plá, P. S. M., Martinez, B., Korbee, N., Hall-Spencer, J. M. & Figueroa, F. L. Ecophysiological responses to elevated CO2 and temperature in Cystoseira tamariscifolia (Phaeophyceae). Clim. Change 142, 67–81 (2017).ADS 

    Google Scholar 
    Falace, A. et al. Is the South-Mediterranean canopy-forming Ericaria giacconei (= Cystoseira hyblaea) a loser from ocean warming?. Front. Mar. Sci. 8, 1758 (2021).
    Google Scholar 
    Hernández, C. A., Sangil, C., Fanai, A. & Hernández, J. C. Macroalgal response to a warmer ocean with higher CO2 concentration. Mar. Environ. Res. 136, 99–105 (2018).PubMed 

    Google Scholar 
    Falace, A., Kaleb, S., Fuente, G. D. L., Asnaghi, V. & Chiantore, M. Ex situ cultivation protocol for Cystoseira amentacea var. stricta (Fucales, Phaeophyceae) from a restoration perspective. PLoS ONE 13, e0193011 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bevilacqua, S. et al. Climatic anomalies may create a long-lasting ecological phase shift by altering the reproduction of a foundation species. Ecology 100, 1–4 (2019).
    Google Scholar 
    Savonitto, G. et al. Addressing reproductive stochasticity and grazing impacts in the restoration of a canopy-forming brown alga by implementing mitigation solutions. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 1611–1623 (2021).
    Google Scholar 
    Mangialajo, L. et al. Zonation patterns and interspecific relationships of fucoids in microtidal environments. J. Exp. Mar. Biol. Ecol. 412, 72–80 (2012).
    Google Scholar 
    Verlaque, M., Boudouresque, C.-F. & Perret-Boudouresque, M. Mediterranean seaweeds listed as threatened under the Barcelona Convention: A critical analysis. Sci. Rep. Port-Cros Natl. Park. 33, 179–214 (2019).
    Google Scholar 
    Benedetti-Cecchi, L. & Cinelli, F. Effects of canopy cover, herbivores and substratum type on patterns of Cystoseira spp. settlement and recruitment in littoral rockpools. Mar. Ecol. Prog. Ser. 90, 183–191 (1992).ADS 

    Google Scholar 
    Fuente, G. D. L., Chiantore, M., Asnaghi, V., Kaleb, S. & Falace, A. First ex situ outplanting of the habitat-forming seaweed Cystoseira amentacea var. stricta from a restoration perspective. PeerJ 7, e7290 (2019).
    Google Scholar 
    Orlando-Bonaca, M. et al. First restoration experiment for Gongolaria barbata in Slovenian coastal waters. What can go wrong?. Plants 10, 239 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Christie, H. et al. Shifts between sugar kelp and turf algae in Norway: Regime shifts or fluctuations between different opportunistic seaweed species?. Front. Mar. Sci. 6, 72 (2019).
    Google Scholar 
    Orlando-Bonaca, M., Pitacco, V. & Lipej, L. Loss of canopy-forming algal richness and coverage in the northern Adriatic Sea. Ecol. Indic. 125, 107501 (2021).
    Google Scholar 
    Thibaut, T., Blanfune, A., Boudouresque, C.-F. & Verlaque, M. Decline and local extinction of Fucales in French Riviera: The harbinger of future extinctions?. Mediterr. Mar. Sci. 16, 206–224 (2015).
    Google Scholar 
    Thibaut, T., Pinedo, S., Torras, X. & Ballesteros, E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Albères coast (France, North-western Mediterranean). Mar. Pollut. Bull. 50, 1472–1489 (2005).CAS 
    PubMed 

    Google Scholar 
    Leal, P. P. et al. Copper pollution exacerbates the effects of ocean acidification and warming on kelp microscopic early life stages. Sci. Rep. 8, 14763 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernández, P. A., Navarro, J. M., Camus, C., Torres, R. & Buschmann, A. H. Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: A physiological and molecular approach. Sci. Rep. 11, 2510 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Lind, A. C. & Konar, B. Effects of abiotic stressors on kelp early life-history stages. Algae 32, 223–233 (2017).CAS 

    Google Scholar 
    Fernández, P. A. et al. Nitrogen sufficiency enhances thermal tolerance in habitat-forming kelp: Implications for acclimation under thermal stress. Sci. Rep. 10, 3186 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Celis-Plá, P. S. M. et al. Macroalgal responses to ocean acidification depend on nutrient and light levels. Front. Mar. Sci. 2, 26 (2015).
    Google Scholar 
    Mancuso, F. P. et al. Influence of ambient temperature on the photosynthetic activity and phenolic content of the intertidal Cystoseira compressa along the Italian coastline. J. Appl. Phycol. 31, 3069–3076 (2019).CAS 

    Google Scholar 
    Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).
    Google Scholar 
    Vergés, A. et al. Tropical rabbitfish and the deforestation of a warming temperate sea. J. Ecol. 102, 1518–1527 (2014).
    Google Scholar 
    Gaitán-Espitia, J. D. et al. Interactive effects of elevated temperature and pCO2 on early-life-history stages of the giant kelp Macrocystis pyrifera. J. Exp. Mar. Biol. Ecol. 457, 51–58 (2014).
    Google Scholar 
    Leal, P. P., Hurd, C. L., Fernández, P. A. & Roleda, M. Y. Ocean acidification and kelp development: Reduced pH has no negative effects on meiospore germination and gametophyte development of Macrocystis pyrifera and Undaria pinnatifida. J. Phycol. 53, 557–566 (2017).CAS 
    PubMed 

    Google Scholar 
    Roleda, M. Y., Morris, J. N., McGraw, C. M. & Hurd, C. L. Ocean acidification and seaweed reproduction: Increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Glob. Change Biol. 18, 854–864 (2011).ADS 

    Google Scholar 
    Zhang, X. et al. Elevated CO2 concentrations promote growth and photosynthesis of the brown alga Saccharina japonica. J. Appl. Phycol. https://doi.org/10.1007/s10811-020-02108-1 (2020).Article 

    Google Scholar 
    Falkenberg, L. J., Russell, B. D. & Connell, S. D. Contrasting resource limitations of marine primary producers: Implications for competitive interactions under enriched CO2 and nutrient regimes. Oecologia 172, 575–583 (2013).ADS 
    PubMed 

    Google Scholar 
    Nagelkerken, I., Russell, B. D., Gillanders, B. M. & Connell, S. D. Ocean acidification alters fish populations indirectly through habitat modification. Nat. Clim. Change 6, 89–93 (2016).ADS 
    CAS 

    Google Scholar 
    Connell, S. D. & Russell, B. D. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B Biol. Sci. 277, 1409–1415 (2010).
    Google Scholar 
    Cornwall, C. E., Comeau, S. & McCulloch, M. T. Coralline algae elevate pH at the site of calcification under ocean acidification. Glob. Change Biol. 23, 4245–4256 (2017).ADS 

    Google Scholar 
    Martin, S. & Gattuso, J.-P. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob. Change Biol. 15, 2089–2100 (2009).ADS 

    Google Scholar 
    Cornwall, C. E. et al. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE 9, e97235 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gefen-Treves, S. et al. The microbiome associated with the reef builder Neogoniolithon sp. in the eastern Mediterranean. Microorganisms 9, 1374 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, C. R. & Mann, K. H. The crustose coralline alga, Phymatolithon Foslie, inhibits the overgrowth of seaweeds without relying on herbivores. J. Exp. Mar. Biol. Ecol. 96, 127–146 (1986).
    Google Scholar 
    Keats, D. W., Knight, M. A. & Pueschel, C. M. Antifouling effects of epithallial shedding in three crustose coralline algae (Rhodophyta, Coralinales) on a coral reef. J. Exp. Mar. Biol. Ecol. 213, 281–293 (1997).
    Google Scholar 
    Mancuso, F., D’Hondt, S., Willems, A., Airoldi, L. & Clerck, O. Diversity and temporal dynamics of the epiphytic bacterial communities associated with the canopy-forming seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin. Front. Microbiol. 7, 476 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The ups and downs of a canopy-forming seaweed over a span of more than one century. Sci. Rep. 9, 1–10 (2019).
    Google Scholar 
    Cebrian, E. et al. A roadmap for the restoration of Mediterranean macroalgal forests. Front. Mar. Sci. 8, 1456 (2021).
    Google Scholar 
    Gianni, F. et al. Conservation and restoration of marine forests in the Mediterranean Sea and the potential role of Marine Protected Areas. Adv. Oceanogr. Limnol. 4, 83–101 (2013).
    Google Scholar 
    Gorman, D. & Connell, S. D. Recovering subtidal forests in human-dominated landscapes. J. Appl. Ecol. 46, 1258–1265 (2009).
    Google Scholar 
    Riquet, F. et al. Highly restricted dispersal in habitat-forming seaweed may impede natural recovery of disturbed populations. Sci. Rep. 11, 16792 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Halpern, B. S., McLeod, K. L., Rosenberg, A. A. & Crowder, L. B. Managing for cumulative impacts in ecosystem-based management through ocean zoning. Ocean Coast. Manag. 51, 203–211 (2008).
    Google Scholar 
    Verdura, J., Sales, M., Ballesteros, E., Cefalì, M. E. & Cebrian, E. Restoration of a canopy-forming alga based on recruitment enhancement: Methods and long-term success assessment. Front. Plant Sci. 9, 1832 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).ADS 
    CAS 

    Google Scholar 
    Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to Best Practices for Ocean CO2 Measurements. https://repository.oceanbestpractices.org/handle/11329/249 (2007).Spencer Davies, P. Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar. Biol. 101, 389–395. https://doi.org/10.1007/BF00428135 (1989).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. ArXiv14065823 Stat (2015).R: The R Project for Statistical Computing. https://www.r-project.org/.Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, 2018).
    Google Scholar 
    Lenth, R. V. et al. emmeans: Estimated Marginal Means, aka Least-Squares Means (2022). More

  • in

    Ecological and evolutionary trends of body size in Pristimantis frogs, the world's most diverse vertebrate genus

    LaBarbera, M. The evolution and ecology of body size. In Patterns and Processes in the History of Life (eds Raup, D. M. & Jablonski, D.) 69–98 (Springer, 1986).
    Google Scholar 
    Peters, R. H. & Peters, R. H. The Ecological Implications of Body Size Vol. 2 (Cambridge University Press, 1986).
    Google Scholar 
    Klingenberg, C. P. & Spence, J. On the role of body size for life-history evolution. Ecol. Entomol. 22(1), 55–68 (1997).
    Google Scholar 
    Blanckenhorn, W. U. The evolution of body size: What keeps organisms small?. Q. Rev. Biol. 75(4), 385–407 (2000).CAS 
    PubMed 

    Google Scholar 
    Sibly, R. M. & Brown, J. H. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl. Acad. Sci. USA 104(45), 17707–17712 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt-Nielsen, K. Scaling in biology: The consequences of size. J. Exp. Zool. 194(1), 287–307 (1975).CAS 
    PubMed 

    Google Scholar 
    Calder, W. A. Size, Function, and Life History (Courier Corporation, 1996).
    Google Scholar 
    Gould, S. J. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41(4), 587–638 (1966).CAS 
    PubMed 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293(5538), 2248–2251 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gearty, W. & Payne, J. L. Physiological constraints on body size distributions in Crocodyliformes. Evolution 74(2), 245–255 (2020).PubMed 

    Google Scholar 
    Maurer, B. A., Brown, J. H. & Rusler, R. D. The micro and macro in body size evolution. Evolution 46(4), 939–953 (1992).PubMed 

    Google Scholar 
    Hone, D. W. & Benton, M. J. The evolution of large size: How does Cope’s Rule work?. Trends Ecol. Evol. 20(1), 4–6 (2005).PubMed 

    Google Scholar 
    Reeve, J. P. & Fairbairn, D. J. Predicting the evolution of sexual size dimorphism. J. Evol. Biol. 14(2), 244–254 (2001).
    Google Scholar 
    Blanckenhorn, W. U. Behavioral causes and consequences of sexual size dimorphism. Ethology 111(11), 977–1016 (2005).
    Google Scholar 
    Wu, H., Jiang, T., Huang, X. & Feng, J. Patterns of sexual size dimorphism in horseshoe bats: Testing Rensch’s rule and potential causes. Sci. Rep. 8(1), 1–13 (2018).ADS 

    Google Scholar 
    Cox, R. M., Butler, M. A. & John-Alder, H. B. The evolution of sexual size dimorphism in reptiles. In Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (eds Fairbairn, D. J. et al.) 38–49 (Oxford University Press, 2007).
    Google Scholar 
    Stillwell, R. C., Blanckenhorn, W. U., Teder, T., Davidowitz, G. & Fox, C. W. Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: From physiology to evolution. Annu. Rev. Entomol. 55, 227–245 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rensch, B. Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse. Bonn. Zool. Beitr. 1, 58–69 (1950).
    Google Scholar 
    Rensch, B. Evolution Above the Species Level (Columbia University Press, 1960).
    Google Scholar 
    Shine, R. Ecological causes for the evolution of sexual dimorphism: A review of the evidence. Q. Rev. Biol. 64(4), 419–461 (1989).CAS 
    PubMed 

    Google Scholar 
    Portik, D. M., Blackburn, D. C. & McGuire, J. A. Macroevolutionary patterns of sexual size dimorphism among African tree frogs (Family: Hyperoliidae). J. Hered. 111(4), 379–391 (2020).PubMed 

    Google Scholar 
    Ceballos, C. P., Adams, D. C., Iverson, J. B. & Valenzuela, N. Phylogenetic patterns of sexual size dimorphism in turtles and their implications for Rensch’s rule. Evol. Biol. 40(2), 194–208 (2013).
    Google Scholar 
    Amado, T. F., Martinez, P. A., Pincheira-Donoso, D. & Olalla-Tárraga, M. Á. Body size distributions of anurans are explained by diversification rates and the environment. Glob. Ecol. Biogeogr. 30(1), 154–164 (2021).
    Google Scholar 
    Starostová, Z., Kubička, L. & Kratochvíl, L. Macroevolutionary pattern of sexual size dimorphism in geckos corresponds to intraspecific temperature-induced variation. J. Evol. Biol. 23(4), 670–677 (2010).PubMed 

    Google Scholar 
    Herczeg, G., Gonda, A. & Merilä, J. Rensch’s rule inverted–female-driven gigantism in nine-spined stickleback Pungitius pungitius. J. Anim. Ecol. 79(3), 581–588 (2010).PubMed 

    Google Scholar 
    Liao, W. B. & Chen, W. Inverse Rensch’s rule in a frog with female-biased sexual size dimorphism. Naturwissenschaften 99(5), 427–431 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cooper, M. I. Sexual size dimorphism and the rejection of Rensch’s rule in Diplopoda (Arthropoda). J. Entomol. Zool. Stud. 6(1), 1582–1587 (2018).
    Google Scholar 
    Cheng, R. C. & Kuntner, M. Phylogeny suggests nondirectional and isometric evolution of sexual size dimorphism in argiopine spiders. Evolution 68(10), 2861–2872 (2014).PubMed 

    Google Scholar 
    Webb, T. J. & Freckleton, R. P. Only half right: Species with female-biased sexual size dimorphism consistently break Rensch’s rule. PLoS ONE 2(9), e897 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaston, K. J., Chown, S. L. & Evans, K. L. Ecogeographical rules: Elements of a synthesis. J. Biogeogr. 35(3), 483–500 (2008).
    Google Scholar 
    Olalla-Tárraga, M. Á. & Rodríguez, M. Á. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: Anurans follow Bergmann’s rule, urodeles its converse. Glob. Ecol. Biogeogr. 16(5), 606–617 (2007).
    Google Scholar 
    Olalla-Tárraga, M. Á., Diniz-Filho, J. A. F., Bastos, R. P. & Rodríguez, M. Á. Geographic body size gradients in tropical regions: Water deficit and anuran body size in the Brazilian Cerrado. Ecography 32(4), 581–590 (2009).
    Google Scholar 
    Gouveia, S. F. & Correia, I. Geographical clines of body size in terrestrial amphibians: Water conservation hypothesis revisited. J. Biogeogr. 43(10), 2075–2084 (2016).
    Google Scholar 
    Pincheira-Donoso, D., Meiri, S., Jara, M., Olalla-Tárraga, M. Á. & Hodgson, D. J. Global patterns of body size evolution are driven by precipitation in legless amphibians. Ecography 42(10), 1682–1690 (2019).
    Google Scholar 
    Nevo, E. Adaptive color polymorphism in cricket frogs. Evolution 27(3), 353–367 (1973).PubMed 

    Google Scholar 
    Ashton, K. G. Do amphibians follow Bergmann’s rule?. Can. J. Zool. 80(4), 708–716 (2002).MathSciNet 

    Google Scholar 
    Bergmann, C. Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien. 1, 595–708 (1847).
    Google Scholar 
    Olalla-Tárraga, M. Á., Rodríguez, M. Á. & Hawkins, B. A. Broad-scale patterns of body size in squamate reptiles of Europe and North America. J. Biogeogr. 33(5), 781–793 (2006).
    Google Scholar 
    Trullas, S. C., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32(5), 235–245 (2007).
    Google Scholar 
    Rodríguez, M. Á., López-Sañudo, I. L. & Hawkins, B. A. The geographic distribution of mammal body size in Europe. Glob. Ecol. Biogeogr. 15(2), 173–181 (2006).
    Google Scholar 
    Olalla-Tárraga, M. Á., Diniz-Filho, J. A. F., Bastos, R. P. & Rodriguez, M. A. Geographic body size gradients in tropical regions: Water deficit and anuran body size in the Brazilian Cerrado. Ecography 32(4), 581–590 (2009).
    Google Scholar 
    Womack, M. C. & Bell, R. C. Two-hundred million years of anuran body-size evolution in relation to geography, ecology and life history. J. Evol. Biol. 33(10), 1417–1432 (2020).PubMed 

    Google Scholar 
    Frost, D. R. Amphibian Species of the World: An online reference, version 6. http://research.amnh.org/herpetology/amphibia/index.php. Accessed 12 July 2021 (2021).
    Acevedo, A. A., Armesto, O. & Palma, R. E. Two new species of Pristimantis (Anura: Craugastoridae) with notes on the distribution of the genus in northeastern Colombia. Zootaxa 4750(4), 499–523 (2020).
    Google Scholar 
    Heinicke, M. P., Duellman, W. E. & Hedges, S. B. Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proc. Natl. Acad. Sci. USA 104(24), 10092–10097 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pinto-Sánchez, N. R. et al. The great American biotic interchange in frogs: Multiple and early colonization of Central America by the South American genus Pristimantis (Anura: Craugastoridae). Mol. Phylogenet. Evol. 62(3), 954–972 (2012).PubMed 

    Google Scholar 
    Zumel, D., Buckley, D. & Ron, S. R. The Pristimantis trachyblepharis species group, a clade of miniaturized frogs: Description of four new species and insights into the evolution of body size in the genus. Zool. J. Linn. Soc. zlab044 (2021).Pincheira-Donoso, D. et al. The multiple origins of sexual size dimorphism in global amphibians. Glob. Ecol. Biogeogr. 30(2), 443–458 (2021).
    Google Scholar 
    Woolbright, L. L. Sexual selection and size dimorphism in anuran amphibia. Am. Nat. 121(1), 110–119 (1983).
    Google Scholar 
    Nali, R. C., Zamudio, K. R., Haddad, C. F. & Prado, C. P. Size-dependent selective mechanisms on males and females and the evolution of sexual size dimorphism in frogs. Am. Nat. 184(6), 727–740 (2014).PubMed 

    Google Scholar 
    Hill, R. et al. Herpetological husbandry observations on the captive reproduction of gaige’s rain frog Pristimantis gaigeae (Dunn 1931). Herpetol. Rev. 41(4), 465 (2010).
    Google Scholar 
    Rojas-Rivera, A., Cortés-Bedoya, S., Gutiérrez-Cárdenas, P. D. A. & Castellanos, J. M. Pristimantis achatinus (Cachabi robber frog). Parental care and clutch size. Herpetol. Rev. 42, 588–589 (2011).
    Google Scholar 
    Granados-Pérez, Y. & Ramirez-Pinilla, M. P. Reproductive phenology of three species of Pristimantis in an Andean cloud forest. Revista Acad. Colomb. Ci. Exact. 44(173), 1083–1098 (2020).
    Google Scholar 
    Levy, D. L. & Heald, R. Biological scaling problems and solutions in amphibians. Cold Spring Harb. Perspect. Biol. 8(1), a019166 (2016).PubMed Central 

    Google Scholar 
    O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geol. Survey Data Series. 691(10), 4–9 (2012).
    Google Scholar 
    Valenzuela-Sánchez, A., Cunningham, A. A. & Soto-Azat, C. Geographic body size variation in ectotherms: Effects of seasonality on an anuran from the southern temperate forest. Front. Zool. 12(1), 1–10 (2015).
    Google Scholar 
    Parsons, J. J. The northern Andean environment. Mt. Res. Dev. 2(3), 253–264 (1982).
    Google Scholar 
    Navas, C. A., Carvajalino-Fernández, J. M., Saboyá-Acosta, L. P., Rueda-Solano, L. A. & Carvajalino-Fernández, M. A. The body temperature of active amphibians along a tropical elevation gradient: Patterns of mean and variance and inference from environmental data. Funct. Ecol. 27(5), 1145–1154 (2013).
    Google Scholar 
    Swemmer, A. M., Knapp, A. K. & Snyman, H. A. Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. J. Ecol. 95(4), 780–788 (2007).
    Google Scholar 
    Losos, J. B. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles (Univ. of California Press, 2011).
    Google Scholar 
    Pincheira-Donoso, D. & Hunt, J. Fecundity selection theory: Concepts and evidence. Biol. Rev. 92(1), 341–356 (2017).PubMed 

    Google Scholar 
    Morrison, C. & Hero, J. M. Geographic variation in life-history characteristics of amphibians: A review. J. Anim. Ecol. 72(2), 270–279 (2003).
    Google Scholar 
    Morrow, C. B., Ernest, S. M. & Kerkhoff, A. J. Macroevolution of dimensionless life-history metrics in tetrapods. Proc. Royal Soc. B. 288, 20210200 (2021).
    Google Scholar 
    Revell, L. J., Harmon, L. J. & Collar, D. C. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57(4), 591–601 (2008).PubMed 

    Google Scholar 
    Kamilar, J. M. & Cooper, N. Phylogenetic signal in primate behaviour, ecology and life history. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1618), 20120341 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, A. L. & Wiens, J. J. Estimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shifts. Evolution 72(1), 39–53 (2018).PubMed 

    Google Scholar 
    Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4(1), 1–8 (2013).
    Google Scholar 
    Mendoza, A. M., Ospina, O. E., Cárdenas-Henao, H. & García-R, J. C. A likelihood inference of historical biogeography in the world’s most diverse terrestrial vertebrate genus: Diversification of direct-developing frogs (Craugastoridae: Pristimantis) across the Neotropics. Mol. Phylogenet. Evol. 85, 50–58 (2015).PubMed 

    Google Scholar 
    Baker, J., Meade, A., Pagel, M. & Venditti, C. Adaptive evolution toward larger size in mammals. Proc. Natl. Acad. Sci. USA 112(16), 5093–5098 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hariharan, I. K., Wake, D. B. & Wake, M. H. Indeterminate growth: Could it represent the ancestral condition?. Cold Spring Harb. Perspect. Biol. 8(2), a019174 (2016).PubMed Central 

    Google Scholar 
    Amado, T. F., Bidau, C. J. & Olalla-Tárraga, M. Á. Geographic variation of body size in New World anurans: Energy and water in a balance. Ecography 42(3), 456–466 (2019).
    Google Scholar 
    Watters, J. L., Cummings, S. T., Flanagan, R. L. & Siler, C. D. Review of morphometric measurements used in anuran species descriptions and recommendations for a standardized approach. Zootaxa 4072, 477–495 (2016).PubMed 

    Google Scholar 
    Lovich, J. E. & Gibbons, J. W. A review of techniques for quantifying sexual size dimorphism. Growth Dev. Aging. 56, 269–269 (1992).CAS 
    PubMed 

    Google Scholar 
    Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29(6), 1695–1701 (2012).CAS 
    PubMed 

    Google Scholar 
    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7(1), 1–8 (2007).
    Google Scholar 
    Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4(5), e88 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A. FigTree, A Graphical Viewer of Phylogenetic Trees. (2007)Olalla-Tárraga, M. A., Bini, L. M., Diniz-Filho, J. A. & Rodríguez, M. Á. Cross-species and assemblage-based approaches to Bergmann’s rule and the biogeography of body size in Plethodon salamanders of eastern North America. Ecography 33(2), 362–368 (2010).
    Google Scholar 
    QGIS.org. QGIS Geographic Information System. QGIS Association. http://www.qgis.org. Accessed 10 July 2021 (2022).Wei, T. et al. Package ‘corrplot’. Statistician. 56(316), e24 (2017).
    Google Scholar 
    James, F. C. Geographic size variation in birds and its relationship to climate. Ecology 51(3), 365–390 (1970).
    Google Scholar 
    Hawkins, B. A. & Felizola Diniz-Filho, J. A. Beyond Rapoport’s rule: Evaluating range size patterns of New World birds in a two-dimensional framework. Glob. Ecol. Biogeogr. 15(5), 461–469 (2006).
    Google Scholar 
    Eager, C. standardize: Tools for standardizing variables for regression in R. R package version 0.21 (2017).Meireles, J. E., O’Meara, B. & Cavender-Bares, J. Linking leaf spectra to the plant tree of life. In Remote Sensing of Plant Biodiversity (eds Cavender-Bares, J. et al.) 155–172 (Springer, 2010).
    Google Scholar 
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401(6756), 877–884 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pagel, M. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48(3), 612–622 (1999).
    Google Scholar 
    Revell, L. J. Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3(2), 217–223 (2012).
    Google Scholar 
    Revell, L. J. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4(8), 754–759 (2013).
    Google Scholar 
    Rabosky, D. L. et al. BAMM tools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5(7), 701–707 (2014).
    Google Scholar 
    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9(2), e89543 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66(4), 477–498 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence diagnosis and output analysis for MCMC. R News. 6(1), 7–11 (2006).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2021). https://www.R-project.org. Accessed 1 June 2021 (2021).Fairbairn, D. J. Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Annu. Rev. Ecol. Evol. Syst. 28(1), 659–687 (1997).
    Google Scholar 
    Fairbairn, D. J. Allometry for sexual size dimorphism: Testing two hypotheses for Rensch’s rule in the water strider Aquarius remigis. Am. Nat. 166(S4), S69–S84 (2005).PubMed 

    Google Scholar 
    Visser, A. G., Beevers, L. & Patidar, S. Complexity in hydroecological modelling: A comparison of stepwise selection and information theory. River Res. Appl. 34(8), 1045–1056 (2018).
    Google Scholar 
    Calcagno, V. & de Mazancourt, C. glmulti: An R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34(12), 1–29 (2010).
    Google Scholar 
    Callaghan, S., Guilyardi, E., Steenman-Clark, L. & Morgan, M. The METAFOR project. in Earth System Modelling-Volume 1 (Springer, 2013).Garamszegi, L. Z. & Mundry, R. Multimodel-inference in comparative analyses. In Modern Phylogenetic Comparative Methods and THEIR Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 305–331 (Springer Berlin, 2014).
    Google Scholar  More

  • in

    Characterizing phenotypic diversity in marine populations of the threespine stickleback

    Bell, M. A. & Foster, S. A. The Evolutionary Biology of the Threespine Stickleback (Oxford University Press, 1994).
    Google Scholar 
    Seebacher, F., Webster, M. M., James, R. S., Tallis, J. & Ward, A. J. W. Morphological differences between habitats are associated with physiological and behavioural trade-offs in stickleback (Gasterosteus aculeatus). R. Soc. Open Sci. 3, 160316 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolnick, D. I. et al. Phenotype-dependent native habitat preference facilitates divergence between parapatric lake and stream stickleback. Evolution 63, 2004–2016 (2009).PubMed 

    Google Scholar 
    Svanbäck, R. & Schluter, D. Niche specialization influences adaptive phenotypic plasticity in the threespine stickleback. Am. Nat. 180, 50–59 (2012).PubMed 

    Google Scholar 
    Caldecutt, W. J. & Adams, D. C. Morphometrics of trophic osteology in the threespine stickleback, Gasterosteus aculeatus. Copeia 1998, 827–838 (1998).
    Google Scholar 
    Yershov, P. & Sukhotin, A. Age and growth of marine three-spined stickleback in the White Sea 50 years after a population collapse. Polar Biol. 38, 1813–1823 (2015).
    Google Scholar 
    Dorgham, A. S. et al. Morphological variation of threespine stickleback (Gasterosteus aculeatus) on different stages of spawning period. Proc. KarRC RAS 59–73 (2018). https://doi.org/10.17076/them819.DeFaveri, J. & Merilä, J. Evidence for adaptive phenotypic differentiation in Baltic Sea sticklebacks. J. Evol. Biol. 26, 1700–1715 (2013).CAS 
    PubMed 

    Google Scholar 
    Shaw, K. A., Scotti, M. L. & Foster, S. A. Ancestral plasticity and the evolutionary diversification of courtship behaviour in threespine sticklebacks. Anim. Behav. 73, 415–422 (2007).
    Google Scholar 
    McGee, M. D., Schluter, D. & Wainwright, P. C. Functional basis of ecological divergence in sympatric stickleback. BMC Evol. Biol. 13, 277 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Berner, D., Grandchamp, A.-C. & Hendry, A. P. Variable progress toward ecological speciation in parapatry: Stickleback across eight lake-stream transitions. Evolution 63, 1740–1753 (2009).PubMed 

    Google Scholar 
    Walker, J. A. Ecological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L. (Gasterosteidae) body shape. Biol. J. Linn. Soc. 61, 3–50 (1997).
    Google Scholar 
    Hagen, D. W. & Gilbertson, L. G. Geographic variation and environmental selection in Gasterosteus aculeatus L. in the Pacific Northwest America. Evolution 26, 32–51 (1972).CAS 
    PubMed 

    Google Scholar 
    Smith, C., Zięba, G., Spence, R., Klepaker, T. & Przybylski, M. Three-spined stickleback armour predicted by body size, minimum winter temperature and pH. J. Zool. 311, 13–22 (2020).
    Google Scholar 
    Aguirre, W. E. & Bell, M. A. Twenty years of body shape evolution in a threespine stickleback population adapting to a lake environment: Stickleback body shape evolution. Biol. J. Linn. Soc. 105, 817–831 (2012).
    Google Scholar 
    Lavin, P. A. & McPhail, J. D. The evolution of freshwater diversity in the threespine stickleback (Gasterosteus aculeatus): Site-specific differentiation of trophic morphology. Can. J. Zool. 63, 2632–2638 (1985).
    Google Scholar 
    Matthews, B., Marchinko, K. B., Bolnick, D. I. & Mazumder, A. Specialization of trophic position and habitat use by sticklebacks in an adaptive radiation. Ecology 91, 1025–1034 (2010).PubMed 

    Google Scholar 
    Lefébure, R., Larsson, S. & Byström, P. A temperature-dependent growth model for the three-spined stickleback Gasterosteus aculeatus. J. Fish Biol. 79, 1815–1827 (2011).PubMed 

    Google Scholar 
    Foster, S. A. Inference of evolutionary pattern: Diversionary displays of three-spined sticklebacks. Behav. Ecol. 5, 114–121 (1992).
    Google Scholar 
    Taylor, E. B. & McPhail, J. D. Evolutionary history of an adaptive radiation in species pairs of threespine sticklebacks (Gasterosteus): Insights from mitochondrial DNA. Biol. J. Linn. Soc. 66, 271–291 (1999).
    Google Scholar 
    Hohenlohe, P. A., Bassham, S., Currey, M. & Cresko, W. A. Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes. Phil. Trans. R. Soc. B 367, 395–408 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker, J. A. & Bell, M. A. Net evolutionary trajectories of body shape evolution within a microgeographic radiation of threespine sticklebacks (Gasterosteus aculeatus). J. Zool. 252, 293–302 (2000).
    Google Scholar 
    Kristjánsson, B. K., Skúlason, S. & Noakes, D. L. G. Rapid divergence in a recently isolated population of threespine stickleback (Gasterosteus aculeatus L.). Evol. Ecol. Res. 4, 659–672 (2002).
    Google Scholar 
    Wund, M. A., Baker, J. A., Clancy, B., Golub, J. L. & Foster, S. A. A test of the “flexible stem” model of evolution: Ancestral plasticity, genetic accommodation, and morphological divergence in the threespine stickleback radiation. Am. Nat. 172, 449–462 (2008).PubMed 

    Google Scholar 
    Arif, S., Aguirre, W. E. & Bell, M. A. Evolutionary diversification of opercle shape in Cook Inlet threespine stickleback. Biol. J. Linn. Soc. 97, 832–844 (2009).
    Google Scholar 
    Terekhanova, N. V. et al. Fast evolution from precast bricks: Genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus. PLoS Genet. 10, e1004696 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Miller, S. E., Roesti, M. & Schluter, D. A single interacting species leads to widespread parallel evolution of the stickleback genome. Curr. Biol. 29, 530–537 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ab Ghani, N. I., Herczeg, G. & Merilä, J. Effects of perceived predation risk and social environment on the development of three-spined stickleback (Gasterosteus aculeatus) morphology. Biol. J. Linn. Soc. 118, 520–535 (2016).
    Google Scholar 
    DeFaveri, J. & Merilä, J. Local adaptation to salinity in the three-spined stickleback?. J. Evol. Biol. 27, 290–302 (2014).CAS 
    PubMed 

    Google Scholar 
    Jakubavičiūtė, E., De Blick, Y., Dainys, J., Ložys, L. & Olsson, J. Morphological divergence of three-spined stickleback in the Baltic Sea—Implications for stock identification. Fish. Res. 204, 305–315 (2018).
    Google Scholar 
    Yanos, C. L. et al. Predator biomass and vegetation influence the coastal distribution of threespine stickleback morphotypes. Ecol. Evol. 00, 1–12 (2021).
    Google Scholar 
    Fang, B., Merilä, J., Ribeiro, F., Alexandre, C. M. & Momigliano, P. Worldwide phylogeny of three-spined sticklebacks. Mol. Phylogenet. Evol. 127, 613–625 (2018).PubMed 

    Google Scholar 
    Ortí, G., Bell, M. A., Reimchen, T. E. & Meyer, A. Global survey of mitochondrial DNA sequences in the threespine sticklebacks: Evidence for recent migrations. Evolution 48, 608–622 (1994).PubMed 

    Google Scholar 
    Mäkinen, H. S. & Merilä, J. Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe: Evidence for multiple glacial refugia. Mol. Phylogenet. Evol. 46, 167–182 (2008).PubMed 

    Google Scholar 
    Thomson, R. E. Oceanography of the British Columbia Coast (Department of Fisheries and Oceans, 1981).
    Google Scholar 
    Emmett, R. et al. Geographic signatures of North American west coast estuaries. Estuaries 23, 765 (2000).CAS 

    Google Scholar 
    Dallimore, A. & Jmieff, D. Canadian west coast fjords and inlets. Geol. Soc. Spec. Pub. 344, 143–162 (2010).
    Google Scholar 
    Schoch, G. C., Albert, D. M. & Shanley, C. S. An estuarine habitat classification for a complex fjordal island archipelago. Estuaries Coasts 37, 160–176 (2014).
    Google Scholar 
    Rudnick, D. L. & Ferrari, R. Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science 283, 526–529 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barrett, R. D. H., Rogers, S. M. & Schluter, D. Environment specific pleiotropy facilitates divergence at the Ectodysplasin locus in threespine stickleback. Evolution 63, 2831–2837 (2009).PubMed 

    Google Scholar 
    McCairns, R. J. S. & Bernatchez, L. Plasticity and heritability of morphological variation within and between parapatric stickleback demes. J. Evol. Biol. 25, 1097–1112 (2012).CAS 
    PubMed 

    Google Scholar 
    Webster, M. M., Atton, N., Hart, P. J. B. & Ward, A. J. W. Habitat-specific morphological variation among threespine sticklebacks (Gasterosteus aculeatus) within a drainage basin. PLoS ONE 6, e21060 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spoljaric, M. A. & Reimchen, T. E. 10 000 years later: evolution of body shape in Haida Gwaii three-spined stickleback. J. Fish. Biol. 70, 1484–1503 (2007).
    Google Scholar 
    Spoljaric, M. A. & Reimchen, T. E. Habitat-dependent reduction of sexual dimorphism in geometric body shape of Haida Gwaii threespine stickleback. Biol. J. Linn. Soc. 95, 505–516 (2008).
    Google Scholar 
    Spoljaric, M. A. & Reimchen, T. E. Habitat-specific trends in ontogeny of body shape in stickleback from coastal archipelago: Potential for rapid shifts in colonizing populations. J. Morphol. 272, 590–597 (2011).CAS 
    PubMed 

    Google Scholar 
    Morris, M. R. J. et al. Gene expression plasticity evolves in response to colonization of freshwater lakes in threespine stickleback. Mol. Ecol. 23, 3226–3240 (2014).PubMed 

    Google Scholar 
    Ramler, D., Mitteroecker, P., Shama, L. N. S., Wegner, K. M. & Ahnelt, H. Nonlinear effects of temperature on body form and developmental canalization in the threespine stickleback. J. Evol. Biol. 27, 497–507 (2014).CAS 
    PubMed 

    Google Scholar 
    Mazzarella, A. B., Voje, K. L., Hansson, T. H., Taugbøl, A. & Fischer, B. Strong and parallel salinity-induced phenotypic plasticity in one generation of threespine stickleback. J. Evol. Biol. 28, 667–677 (2015).CAS 
    PubMed 

    Google Scholar 
    Leinonen, T., Cano, J. M., Mäkinen, H. & Merilä, J. Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. J. Evol. Biol. 19, 1803–1812 (2006).CAS 
    PubMed 

    Google Scholar 
    Schluter, D., Marchinko, K. B., Barrett, R. D. H. & Rogers, S. M. Natural selection and the genetics of adaptation in threespine stickleback. Phil. Trans. R. Soc. B 365, 2479–2486 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Rogers, S. M. et al. Genetic signature of adaptive peak shift in threespine stickleback. Evolution 66, 2439–2450 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Jamniczky, H. A., Barry, T. N. & Rogers, S. M. Eco-evo-devo in the study of adaptive divergence: Examples from threespine stickleback (Gasterosteus aculeatus). Integr. Comp. Biol. 55, 166–178 (2015).PubMed 

    Google Scholar 
    Gow, J. L., Rogers, S. M., Jackson, M. & Schluter, D. Ecological predictions lead to the discovery of a benthic–limnetic sympatric species pair of threespine stickleback in Little Quarry Lake, British Columbia. Can. J. Zool. 86, 564–571 (2008).
    Google Scholar 
    McPhail, J. D. Genetic evidence for a species pair in Enos Lake, British Columbia. Can. J. Zool. 62, 1402–1408 (1984).
    Google Scholar 
    McPhail, J. D. Ecology and evolution of sympatric sticklebacks (Gasterosteus): Origin of the species pairs. Can. J. Zool. 71, 515–523 (1993).
    Google Scholar 
    Kimmel, C. B., Aguirre, W., Ullmann, B., Currey, M. & Cresko, W. Allometric change accompanies opercular shape evolution in Alaskan threespine sticklebacks. Behaviour 145, 669–691 (2008).
    Google Scholar 
    Wootton, R. J. A Functional Biology of Sticklebacks (Croom Helm, 1984).
    Google Scholar 
    Kitano, J., Mori, S. & Peichel, C. L. Sexual dimorphism in the external morphology of the threespine stickleback (Gasterosteus aculeatus). Copeia 2, 336–349 (2007).
    Google Scholar 
    Aguirre, W. E., Ellis, K. E., Kusenda, M. & Bell, M. A. Phenotypic variation and sexual dimorphism in anadromous threespine stickleback: Implications for postglacial adaptive radiation. Biol. J. Linn. Soc. 95, 465–478 (2008).
    Google Scholar 
    Davenne, E. & Masson, D. Water properties in the Straits of Georgia and Juan de Fuca. 41 http://www.pac.dfo-mpo.gc.ca/sci/osap/projects/straitofgeorgia/JdFG_e.pdf (2001).Irvine, J. R. & Crawford, W. R. State of the Ocean Report for the Pacific North Coast Integrated Management Area (PNCIMA). 51 (2011).DFO. Data from British Columbia (BC) Lighthouses. Department of Fisheries and Oceans https://www.dfo-mpo.gc.ca/science/data-donnees/lightstations-phares/index-eng.html (2020).Palumbi, S. R. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Evol. Syst. 25, 547–572 (1994).
    Google Scholar 
    Griffin, D. A. & LeBlond, P. H. Estuary/ocean exchange controlled by spring-neap tidal mixing. Estuar. Coast Shelf. Sci. 30, 275–297 (1990).ADS 

    Google Scholar 
    Vaz, N., Dias, J. M., Leitão, P. & Martins, I. Horizontal patterns of water temperature and salinity in an estuarine tidal channel: Ria de Aveiro. Ocean Dyn. 55, 416–429 (2005).ADS 

    Google Scholar 
    Rybkina, E. V., Ivanova, T. S., Ivanov, M. V., Kucheryavyy, A. V. & Lajus, D. L. Habitat preference of three-spined stickleback juveniles in experimental conditions and in wild eelgrass. J. Mar. Biol. Ass. UK 97, 1437–1445 (2017).
    Google Scholar 
    Flynn, S., Cadrin, C. & Filatow, D. Estuaries in British Columbia. 6 (2006).Kelly, J. R., Proctor, H. & Volpe, J. P. Intertidal community structure differs significantly between substrates dominated by native eelgrass (Zostera marina L.) and adjacent to the introduced oyster Crassostrea gigas (Thunberg) in British Columbia, Canada. Hydrobiologia 596, 57–66 (2008).
    Google Scholar 
    Fagherazzi, S. et al. Ecogeomorphology of Salt Marshes. In The Ecogeomorphology of Tidal Marshes (eds Blum, L. K. & Marani, M.) 182–200 (American Geophysical Union, 2004).
    Google Scholar 
    Campbell, A. Vegetation-environment relationships and plant community classification and ordination in British Columbia coastal salt marshes. Master’s Thesis. (University of British Columbia, 1986).Kjerfve, B. Comparative oceanography of coastal lagoons. in Estuarine Variability (ed. Wolfe, D. A.) 63–81 (Academic Press, 1986). https://doi.org/10.1016/B978-0-12-761890-6.50009-5.Barnes, R. S. K. & de Villiers, C. J. Animal abundance and food availability in coastal lagoons and intertidal marine sediments. J. Mar. Biol. Ass. UK 80, 193–202 (2000).
    Google Scholar 
    Saimoto, R. K. Life history of marine stickleback in Oyster Lagoon, British Columbia. Master’s Thesis. (University of British Columbia, 1993).King, R. W. The threespine stickleback adaptive radiation: Salinity, plasticity, and the important of ancestry. Doctoral Dissertation. (Clark University, 2016).Ahnelt, H. Imprecise naming: the anadromous and the sea spawning threespine stickleback should be discriminated by names. Biologia 73, 389–392 (2018).
    Google Scholar 
    Morris, M. R. J., Bowles, E., Allen, B. E., Jamniczky, H. A. & Rogers, S. M. Contemporary ancestor? Adaptive divergence from standing genetic variation in Pacific marine threespine stickleback. BMC Evol. Biol. 18, 113 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Kim, S.-Y., Costa, M. M., Esteve-Codina, A. & Velando, A. Transcriptional mechanisms underlying life-history responses to climate change in the three-spined stickleback. Evol. Appl. 10, 718–730 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sambrook, R. J. Interactions between threespine stickleback (Gasterosteus aculeatus linnæus) and juvenile Chinook salmon (Oncorhynchus tshawytscha Walbaum) in an estuarine marsh. Master’s Thesis. (University of British Columbia, 1990). https://doi.org/10.14288/1.0098704.Jakubavičiūtė, E., Bergström, U., Eklöf, J. S., Haenel, Q. & Bourlat, S. J. DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem. PLoS ONE 12, e0186929 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Kennedy, G. J. A. & Strange, C. D. The distribution of salmonids in upland streams in relation to depth and gradient. J. Fish Biol. 20, 579–591 (1982).
    Google Scholar 
    Macdonald, J. S., Birtwell, I. K. & Kruzynski, G. M. Food and habitat utilization by juvenile salmonids in the Campbell River estuary. Can. J. Fish. Aquat. Sci. 44, 1233–1246 (1987).
    Google Scholar 
    Everest, F. H. & Chapman, D. W. Habitat selection and spatial interaction by juvenile chinook salmon and steelhead trout in two Idaho streams. J. Fish. Res. Bd. Can. 29, 91–100 (2011).
    Google Scholar 
    McPhail, J. D. Speciation and the evolution of reproductive isolation in the sticklebacks (Gasterosteus) of south-western British Columbia. In The Evolutionary Biology of the Threespine Stickleback (eds Bell, M. A. & Foster, S. A.) 399–471 (Oxford University Press, 1994).
    Google Scholar 
    Kimmel, C. B. et al. Independent axes of genetic variation and parallel evolutionary divergence of opercle bone shape in threespine stickleback. Evolution 66, 419–434 (2012).PubMed 

    Google Scholar 
    Østbye, K. et al. The temporal window of ecological adaptation in postglacial lakes: A comparison of head morphology, trophic position and habitat use in Norwegian threespine stickleback populations. BMC Evol. Biol. 16, 102 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Aguirre, W. E. & Akinpelu, O. Sexual dimorphism of head morphology in three-spined stickleback Gasterosteus aculeatus. J. Fish Biol. 77, 802–821 (2010).CAS 
    PubMed 

    Google Scholar 
    Reimchen, T. E. & Nosil, P. Variable predation regimes predict the evolution of sexual dimorphism in a population of threespine stickleback. Evolution 58, 1274 (2004).CAS 
    PubMed 

    Google Scholar 
    Pistore, A. Ontogeny of population-specific phenotypic variation in the threespine stickleback. Master’s Thesis. (University of Calgary, 2018).Yurtseva, A. O. et al. Aging three-spined sticklebacks Gasterosteus aculeatus: Comparison of estimates from three structures. J. Fish Biol. 95, 802–811 (2019).PubMed 

    Google Scholar 
    Picard, P. Jr., Dodson, J. J. & FitzGerald, G. J. Habitat segregation among the age groups of Gasterosteus aculeatus (Pisces: Gasterosteidae) in the middle St. Lawrence estuary, Canada. Can. J. Zool. 68, 1202–1208 (1990).
    Google Scholar 
    Reimchen, T. E., Bergström, C. A. & Nosil, P. Natural selection and the adaptive radiation of Haida Gwaii stickleback. Evol. Ecol. Res. 15, 241–269 (2013).
    Google Scholar 
    Raeymaekers, J. A. M., Delaire, L. & Hendry, A. P. Genetically based differences in nest characteristics between lake, inlet, and hybrid threespine stickleback from the Misty system, British Columbia, Cananda. Evol. Ecol. Res. 11, 905–919 (2009).
    Google Scholar 
    Di Poi, C., Lacasse, J., Rogers, S. M. & Aubin-Horth, N. Evolution of stress reactivity in stickleback. Evol. Ecol. Res. 17, 395–405 (2016).
    Google Scholar 
    Weber, J. N., Bradburd, G. S., Stuart, Y. E., Stutz, W. E. & Bolnick, D. I. Partitioning the effects of isolation by distance, environment, and physical barriers on genomic divergence between parapatric threespine stickleback. Evolution 71, 342–356 (2017).PubMed 

    Google Scholar 
    Rohlf, F. J. Package: tpsUtil, tps file utility program. Version 1. 61. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, NY. (2015).Rohlf, F. J. Package: tpsDig, digitize landmarks and outlines. Version 2. 05. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, NY. (2005).Adams, D. C., Collyer, M. L. & Kaliontzopoupou, A. Geomorph: Software for geometric morphometric analysis (2020).Zelditch, M. L., Swiderski, D. L. & Sheets, H. D. Geometric Morphometrics for Biologists: A Primer (Elsevier Academic Press, 2012).MATH 

    Google Scholar 
    Galipaud, M., Gillingham, M. A. F., David, M. & Dechaume-Moncharmont, F.-X. Ecologists overestimate the importance of predictor variables in model averaging: A plea for cautious interpretations. Methods Ecol. Evol. 5, 983–991 (2014).
    Google Scholar 
    Scheipl, F., Greven, H. & Kuechenhoff, H. Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Comput. Stat. Data Anal. 52, 3283–3299 (2008).MathSciNet 
    MATH 

    Google Scholar 
    Robinson, J. James Robinson’s functions. Version 0. 0. 0. 1. Retrieved from https://rdrr.io/github/jpwrobinson/funk/. (2019).Bartoń, K. R Package: MuMIn: Multi-model inference. Version 1. 43. 17. Retrieved from https://CRAN.R-project.org/package=MuMIn. (2020).Frank, A. Diagnosing collinearity in mixed models from lme4 R package, vif.mer function [R script]. Retrieved from https://raw.githubusercontent.com/aufrank/R-hacks/master/mer-utils.R. GitHub https://raw.githubusercontent.com/aufrank/R-hacks/master/mer-utils.R. (2011).Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. https://doi.org/10.3389/fpsyg.2013.00863 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Thermal acclimation and metabolic scaling of a groundwater asellid in the climate change scenario

    Li, J. & Thompson, D. W. Widespread changes in surface temperature persistence under climate change. Nature 599(7885), 425–430. https://doi.org/10.1038/s41586-021-03943-z (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Raftery, A. E., Zimmer, A., Frierson, D. M., Startz, R. & Liu, P. Less than 2 °C warming by 2100 unlikely. Nat. Clim. Change 7, 637–641 (2017).ADS 
    CAS 

    Google Scholar 
    Olabi, A. G. et al. Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renew. Sustain. Energy Rev. 153, 111710. https://doi.org/10.1016/j.rser.2021.111710 (2022).CAS 

    Google Scholar 
    Badino, G. Cave temperatures and global climatic change. Int. J. Speleol. 33(1), 103–114 (2004).
    Google Scholar 
    Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11(12), 926–932 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Figura, S., Livingstone, D. M., Hoehn, E. & Kipfer, R. Regime shift in groundwater temperature triggered by the Arctic Oscillation. Geophys. Res. Lett. 38(23), 401–405 (2011).
    Google Scholar 
    Mueller, M. H., Huggenberger, P. & Epting, J. Combining monitoring and modelling tools as a basis for city-scale concepts for a sustainable thermal management of urban groundwater resources. Sci. Total Environ. 627, 1121–1136 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Taylor, C. A. & Stefan, H. G. Shallow groundwater temperature response to climate change and urbanization. J. Hydrol. 375, 601–612 (2009).ADS 
    CAS 

    Google Scholar 
    Dehghani, R., Poudeh, H. T. & Izadi, Z. The effect of climate change on groundwater level and its prediction using modern meta-heuristic model. Ground. Sustain. Dev. 16, 100702. https://doi.org/10.1016/j.gsd.2021.100702 (2022).
    Google Scholar 
    Lenton, T. M. et al. Climate tipping points—Too risky to bet against. Nature 57, 592–595 (2019).ADS 

    Google Scholar 
    Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50(1), 85–94 (2021).PubMed 

    Google Scholar 
    Stein, H. et al. Stygoregions—A promising approach to a bioregional classification of groundwater systems. Sci. Rep. 2, 673. https://doi.org/10.1038/srep00673 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baković, N., Matoničkin Kepčija, R. & Siemensma, F. J. Transitional and small aquatic cave habitats diversification based on protist assemblages in the Veternica cave (Medvednica Mt., Croatia). Subterr. Biol. 42, 43–60 (2022).
    Google Scholar 
    Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11(10), 707–717 (2018).ADS 
    CAS 

    Google Scholar 
    Chen, Z. et al. The World Karst Aquifer Mapping project: Concept, mapping procedure and map of Europe. Hydrogeol. J. 25, 771–785 (2017).ADS 

    Google Scholar 
    Eme, D. et al. Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 41(2), 424–436 (2018).
    Google Scholar 
    Manenti, R. et al. The stenoendemic cave-dwelling planarians (Platyhelminthes, Tricladida) of the Italian Alps and Apennines: conservation issues. J. Nat. Conserv. 45, 90–97 (2018).
    Google Scholar 
    Zagmajster, M., Malard, F., Eme, D. & Culver, D. C. Subterranean biodiversity patterns from global to regional scales. In Cave Ecology, Ecological Studies—Analysis and Synthesis (eds Moldovan, O. et al.) 19–227 (Springer, 2018).
    Google Scholar 
    Hose, G. C. et al. Invertebrate traits, diversity and the vulnerability of groundwater ecosystems. Funct. Ecol. 36, 2200. https://doi.org/10.1111/1365-2435.14125 (2022).CAS 

    Google Scholar 
    Angilletta, M. J. Jr. & Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).
    Google Scholar 
    Pallarées, S. et al. Loss of heat acclimation capacity could leave subterranean specialists highly sensitive to climate change. Anim. Conserv. 24(3), 482–490 (2020).
    Google Scholar 
    Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281, 20132612. https://doi.org/10.1098/rspb.2013.2612 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Castaño-Sánchez, A., Hose, G. C. & Reboleira, A. S. P. Ecotoxicological effects of anthropogenic stressors in subterranean organisms: A review. Chemosphere 244, 125422. https://doi.org/10.1016/j.chemosphere.2019.125422 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Castaño-Sánchez, A., Hose, G. C. & Reboleira, A. S. P. Salinity and temperature increase impact groundwater crustaceans. Sci. Rep. 10(1), 1–9 (2020).
    Google Scholar 
    Issartel, J., Hervant, F., Voituron, Y., Renault, D. & Vernon, P. Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comp. Biochem. Physiol. Mol. Amp Integr. Physiol. 141, 1–7 (2005).
    Google Scholar 
    Issartel, J., Voituron, Y. & Hervant, F. Impact of temperature on the survival, the activity and the metabolism of the cave-dwelling Niphargus virei, the ubiquitous stygobiotic N. rhenorhodanensis and the surface-dwelling Gammarus fossarum (Crustacea, Amphipoda). Subterr. Biol. 5, 9–14 (2007).
    Google Scholar 
    Mermillod-Blondin, F. et al. Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment. J. Exp. Biol. 216, 1683–1694 (2013).CAS 
    PubMed 

    Google Scholar 
    Di Lorenzo, T. et al. Metabolic rates of a hypogean and an epigean species of copepod in an alluvial aquifer. Freshw. Biol. 60, 426–435 (2015).
    Google Scholar 
    Di Lorenzo, T. & Galassi, D. M. P. Effect of temperature rising on the stygobitic crustacean species Diacyclops belgicus: Does global warming affect groundwater populations? Water 9, 951. https://doi.org/10.3390/w9120951 (2017).ADS 
    CAS 

    Google Scholar 
    Mammola, S. et al. Climate change going deep: The effects of global climatic alterations on cave ecosystems. Anthr. Rev. 6(1–2), 98–116 (2019).
    Google Scholar 
    Jones, K. et al. The critical thermal maximum of diving beetles (Coleoptera: Dytiscidae): A comparison of subterranean and surface-dwelling species. Curr. Opin. Insect. Sci. 1, 100019 (2021).
    Google Scholar 
    Pörtner, H. O. Physiological basis of temperature-dependent biogeography: Trade-offs in muscle design and performance in polar ectotherms. J. Exp. Biol. 205, 2217–2230 (2022).
    Google Scholar 
    Clarke, A. & Fraser, K. P. P. Why does metabolism scale with temperature? Funct. Ecol. 18, 243–251 (2004).
    Google Scholar 
    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. 108, 10591–10596 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Willmer, P., Stone, G. & Johnston, I. Environmental Physiology of Animals (Wiley, 2009).
    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hervant, F., Mathieu, J., Barré, H., Simon, K. & Pinon, C. Comparative study on the behavioural, ventilatory, and respiratory responses of hypogean and epigean crustaceans to long-term starvation and subsequent feeding. Comp. Biochem. Physiol. B 118A, 1277–1283 (1997).CAS 

    Google Scholar 
    Wilhelm, F. M., Taylor, S. J. & Adams, G. L. Comparison of routine metabolic rates of the stygobite, Gammarus acherondytes (Amphipoda: Gammaridae) and the stygophile, Gammarus troglophilus. Freshwat. Biol. 51, 1162–1174 (2006).
    Google Scholar 
    Reboleira, A. S. P. S., Borges, P., Gonçalves, F., Serrano, A. R. M. & Oromí, P. The subterranean fauna of a biodiversity hotspot region—Portugal: An overview and its conservation. Int. J. Speleol. 40(1), 23–37 (2011).
    Google Scholar 
    Reboleira, A. S. P. S., Abrantes, N., Oromí, P. & Gonçalves, F. J. M. Acute toxicity of copper sulfate and potassium dichromate on stygobiont Proasellus: General aspects of groundwater ecotoxicology and future perspectives. Water Air Soil Pollut. 224, 1550. https://doi.org/10.1007/s11270-013-1550-0 (2013).ADS 
    CAS 

    Google Scholar 
    Morvan, C. et al. Timetree of Aselloidea reveals species diversification dynamics in groundwater. Syst. Biol. 62(4), 512–522 (2013).CAS 
    PubMed 

    Google Scholar 
    Castaño-Sánchez, A., Malard, F., Kalčikova, G. & Reboleira, A. S. P. S. Novel protocol for acute in situ ecotoxicity test using native crustaceans applied to groundwater ecosystems. Water 13(8), 1132. https://doi.org/10.3390/w13081132 (2021).CAS 

    Google Scholar 
    Di Lorenzo, T. et al. Recommendations for ecotoxicity testing with stygobiotic species in the framework of groundwater environmental risk assessment. Sci. Total Environ. 681(1), 292–304 (2019).ADS 
    MathSciNet 
    PubMed 

    Google Scholar 
    Rezende, E. L., Tejedo, M. & Santos, M. Estimating the adaptative potential of critical thermal limits: Methodological problems and evolutionary implications. Funct. Ecol. 25, 111–121 (2011).
    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford University Press, 1991).
    Google Scholar 
    Dodds, P. S., Rothman, D. H. & Weitz, J. S. Re-examination of the “3/4” law of metabolism. J. Theor. Biol. 209, 9–27 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology (Chapman & Hall/CRC Press, 2006).MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2018).Simčič, T. & Sket, B. Comparison of some epigean and troglobiotic animals regarding their metabolism intensity. Examination of a classical assertion. Int. J. Speleol. 48, 133–144 (2019).
    Google Scholar 
    Hazell, S. P., Pedersen, B. P., Worland, M. R., Blackburn, T. M. & Bale, J. S. A method for the rapid measurement of thermal tolerance traits in studies of small insects. Physiol. Entomol. 33(4), 389–394 (2008).
    Google Scholar 
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224. https://doi.org/10.1038/s41558-018-0067-3 (2018).ADS 

    Google Scholar 
    Ficetola, G. F., Lunghi, E. & Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 43(5), 724–734 (2020).
    Google Scholar 
    Sánchez-Fernández, D., Rizzo, V. & Bourdeau, C. The deep subterranean environment as a model system in ecological, biogeographical and evolutionary research. Subterr. Biol. 25, 1–7 (2018).
    Google Scholar 
    Pallarés, S. et al. Loss of heat acclimation capacity could leave subterranean specialists highly sensitive to climate change. Anim. Conserv. 24(3), 482–490 (2021).MathSciNet 

    Google Scholar 
    Griebler, C. & Avramov, M. Groundwater ecosystem services: A review. Freshw. Sci. 34(1), 355–367 (2015).
    Google Scholar 
    Saccò, M. et al. Stygofaunal diversity and ecological sustainability of coastal groundwater ecosystems in a changing climate: The Australian paradigm. Freshw. Biol. https://doi.org/10.1111/fwb.13987 (2022).
    Google Scholar 
    Ikeda, T., Kanno, Y., Ozaki, K. & Shinada, A. Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Mar. Biol. 139, 587–596 (2001).
    Google Scholar 
    Mezek, T., Simčič, T., Arts, M. T. & Brancelj, A. Effect of fasting on hypogean (Niphargus stygius) and epigean (Gammarus fossarum) amphipods: A laboratory study. Aquat. Ecol. 44(2), 397–408 (2010).CAS 

    Google Scholar 
    Hüppop, K. The role of metabolism in the evolution of cave animals. NSS Bulletin 47, 136–146 (1985).
    Google Scholar 
    Humphreys, W. F. Hydrogeology and groundwater ecology: Does each inform the other? Hydrogeol. J. 17(1), 5–21 (2009).ADS 
    CAS 

    Google Scholar 
    Glazier, D. S. The 3/4-power law is not universal: Evolution of isometric, ontogenetic metabolic scaling in pelagic animals. Bioscience 56(4), 325–332 (2006).
    Google Scholar 
    Sánchez-Fernández, D., Galassi, D. M. P., Wynne, J. J., Cardoso, P. & Mammola, S. Don’t forget subterranean ecosystems in climate change agendas. Nat. Clim. Change 11, 458–459 (2021).ADS 

    Google Scholar 
    Reboleira, A. S. P. S. et al. Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil. Environ. Microbiome 17, 41 (2022).PubMed 
    PubMed Central 

    Google Scholar  More