More stories

  • in

    Protection status, human disturbance, snow cover and trapping drive density of a declining wolverine population in the Canadian Rocky Mountains

    Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).Article 
    ADS 
    PubMed 

    Google Scholar 
    Chape, S., Harrison, J., Spalding, M. & Lysenko, I. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philos. Trans. R. Soc. B Biol. Sci. 360, 443–455 (2005).Article 
    CAS 

    Google Scholar 
    Hansen, A. J. & DeFries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17, 974–988 (2007).Article 
    PubMed 

    Google Scholar 
    Balme, G. A., Slotow, R. & Hunter, L. T. B. Edge effects and the impact of non-protected areas in carnivore conservation: Leopards in the Phinda-Mkhuze Complex, South Africa. Anim. Conserv. 13, 315–323 (2010).Article 

    Google Scholar 
    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Balmford, A. et al. Walk on the wild side: Estimating the global magnitude of visits to protected areas. PLoS Biol. 13, 1–6 (2015).Article 

    Google Scholar 
    Larson, C. L., Reed, S. E., Merenlender, A. M. & Crooks, K. R. Effects of recreation on animals revealed as widespread through a global systematic review. PLoS ONE 11, 1–21 (2016).Article 

    Google Scholar 
    Tablado, Z. & Jenni, L. Determinants of uncertainty in wildlife responses to human disturbance. Biol. Rev. 92, 216–233 (2017).Article 
    PubMed 

    Google Scholar 
    Timko, J. A. & Innes, J. L. Evaluating ecological integrity in national parks: Case studies from Canada and South Africa. Biol. Conserv. 142, 676–688 (2009).Article 

    Google Scholar 
    Nagendra, H. et al. Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol. Indic. 33, 45–59 (2013).Article 

    Google Scholar 
    Frid, A. & Dill, L. M. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002).
    Google Scholar 
    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article 

    Google Scholar 
    Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).Article 
    PubMed 

    Google Scholar 
    Williams, B. K., Nichols, J. D. & Conroy, M. J. Analysis and Management of Animal Populations (Academic Press, 2002).
    Google Scholar 
    Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture-Recapture (Academic Press, 2014).
    Google Scholar 
    Steenweg, R., Hebblewhite, M., Whittington, J. & McKelvey, K. Species-specific differences in detection and occupancy probabilities help drive ability to detect trends in occupancy. Ecosphere 10, e02639 (2019).Article 

    Google Scholar 
    Chen, C. et al. Global camera trap synthesis highlights the importance of protected areas in maintaining mammal diversity. Conserv. Lett. 15, 1–14 (2022).Article 
    CAS 

    Google Scholar 
    Besbeas, P., Freeman, S., Morgan, B. & Catchpole, E. Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics 58, 540–547 (2002).Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Sun, C. C., Royle, J. A. & Fuller, A. K. Incorporating citizen science data in spatially explicit integrated population models. Ecology 100, 1–12 (2019).Article 

    Google Scholar 
    Doran-Myers, D. et al. Density estimates for Canada lynx vary among estimation methods. Ecosphere 12, 3774 (2021).Article 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).Article 
    PubMed 

    Google Scholar 
    Frey, S., Fisher, J. T., Burton, A. C. & Volpe, J. P. Investigating animal activity patterns and temporal niche partitioning using camera-trap data: Challenges and opportunities. Remote Sens. Ecol. Conserv. 3, 123–132 (2017).Article 

    Google Scholar 
    Weaver, J. L., Paquet, P. C. & Ruggiero, L. F. Resilience and conservation of large carnivores in the Rocky Mountains. Conserv. Biol. 10, 964–976 (1996).Article 

    Google Scholar 
    Fisher, J. T. et al. Wolverines (Gulo gulo) in a changing landscape and warming climate: A decadal synthesis of global conservation ecology research. Glob. Ecol. Conserv. 34, e02019 (2022).Article 

    Google Scholar 
    Persson, J., Ericsson, G. & Segerström, P. Human caused mortality in the endangered Scandinavian wolverine population. Biol. Conserv. 142, 325–331 (2009).Article 

    Google Scholar 
    Mowat, G. et al. The sustainability of wolverine trapping mortality in Southern Canada. J. Wildl. Manag. 84, 213–226 (2020).Article 

    Google Scholar 
    Bowman, J., Ray, J. C., Magoun, A. J., Johnson, D. S. & Dawson, F. N. Roads, logging, and the large-mammal community of an eastern Canadian boreal forest. Can. J. Zool. 88, 454–467 (2010).Article 

    Google Scholar 
    Heinemeyer, K. et al. Wolverines in winter: Indirect habitat loss and functional responses to backcountry recreation. Ecosphere 10, 2611 (2019).Article 

    Google Scholar 
    Fisher, J. T. et al. Wolverines (Gulo gulo Luscus) on the Rocky Mountain slopes: Natural heterogeneity and landscape alteration as predictors of distribution. Can. J. Zool. 91, 706–716 (2013).Article 

    Google Scholar 
    Magoun, A. J. et al. Integrating motion-detection cameras and hair snags for wolverine identification. J. Wildl. Manag. 75, 731–739 (2011).Article 

    Google Scholar 
    Bischof, R. et al. Estimating and forecasting spatial population dynamics of apex predators using transnational genetic monitoring. Proc. Natl. Acad. Sci. U.S.A. 117, 30531–30538 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aronsson, M. & Persson, J. Mismatch between goals and the scale of actions constrains adaptive carnivore management: The case of the wolverine in Sweden. Anim. Conserv. 20, 261–269 (2017).Article 

    Google Scholar 
    Newmark, W. D. Extinction of mammal populations in Western North American National Parks. Conserv. Biol. 9, 512–526 (1995).Article 

    Google Scholar 
    Barrueto, M., Sawaya, M. A. & Clevenger, A. P. Low wolverine (Gulo gulo) density in a national park complex of the Canadian Rocky Mountains. Can. J. Zool. 98, 287–298 (2020).Article 

    Google Scholar 
    Heim, N., Fisher, J. T., Clevenger, A., Paczkowski, J. & Volpe, J. Cumulative effects of climate and landscape change drive spatial distribution of Rocky Mountain wolverine (Gulo gulo L.). Ecol. Evol. 7, 8903–8914 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steenweg, R. et al. Camera-based occupancy monitoring at large scales: Power to detect trends in grizzly bears across the Canadian Rockies. Biol. Conserv. 201, 192–200 (2016).Article 

    Google Scholar 
    Tourani, M., Dupont, P., Nawaz, M. A. & Bischof, R. Multiple observation processes in spatial capture–recapture models: How much do we gain? Ecology 101, 1–8 (2020).Article 

    Google Scholar 
    Kukka, P. M., Jung, T. S. & Schmiegelow, F. K. A. Spatiotemporal patterns of wolverine (Gulo gulo) harvest: The potential role of refugia in a quota-free system. Eur. J. Wildl. Res. 68, 1566 (2022).Article 

    Google Scholar 
    Krebs, J. et al. Synthesis of survival rates and causes of mortality in North American wolverines. J. Wildl. Manag. 68, 493–502 (2004).Article 

    Google Scholar 
    Stewart, F. E. C. et al. Wolverine behavior varies spatially with anthropogenic footprint: Implications for conservation and inferences about declines. Ecol. Evol. 6, 1493–1503 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sawaya, M. A., Clevenger, A. P. & Schwartz, M. K. Demographic fragmentation of a protected wolverine population bisected by a major transportation corridor. Biol. Conserv. 236, 616–625 (2019).Article 

    Google Scholar 
    Gooliaff, T. The Sustainable Annual Take of Canada lynx in the Okanagan Region of British Columbia (2021).Clevenger, A. P. Mitigating highways for a ghost: Data collection challenges and implications for managing wolverines and transportation corridors. Northwest Sci. 87, 257–264 (2013).Article 

    Google Scholar 
    Kindsvater, H. K. et al. Overcoming the data crisis in biodiversity conservation. Trends Ecol. Evol. 33, 676–688 (2018).Article 
    PubMed 

    Google Scholar 
    Gervasi, V. et al. Compensatory immigration counteracts contrasting conservation strategies of wolverines (Gulo gulo) within Scandinavia. Biol. Conserv. 191, 632–639 (2015).Article 

    Google Scholar 
    Rich, L. N. et al. Assessing global patterns in mammalian carnivore occupancy and richness by integrating local camera trap surveys. Glob. Ecol. Biogeogr. 26, 918–929 (2017).Article 

    Google Scholar 
    Decesare, N. J. et al. The role of translocation in recovery of Woodland Caribou populations. Conserv. Biol. 25, 365–373 (2010).PubMed 

    Google Scholar 
    Morris, W. & Doak, D. Quantitative Conservation Biology (Sinauer Associates, 2002).
    Google Scholar 
    Squires, J. R. et al. Combining resource selection and movement behavior to predict corridors for Canada lynx at their southern range periphery. Biol. Conserv. 157, 187–195 (2013).Article 

    Google Scholar 
    Hebblewhite, M. & Whittington, J. Wolves without borders: Transboundary survival of wolves in Banff National Park over three decades. Glob. Ecol. Conserv. 24, e01293 (2020).Article 

    Google Scholar 
    Ministry of Forests Lands Natural Resource Operations and Rural Development. 2020–2022 Hunting and Trapping Regulations Synopsis, 96 (2020) https://www2.gov.bc.ca/assets/gov/sports-recreation-arts-and-culture/outdoor-recreation/fishing-and-hunting/hunting/regulations/2020-2022/hunting-trapping-synopsis-2020-2022.pdf (Accessed 15 Dec 2021).Persson, J., Landa, A., Andersen, R. & Segerström, P. Reproductive characteristics of female wolverines (Gulo gulo) in Scandinavia. J. Mammal. 87, 75–79 (2006).Article 

    Google Scholar 
    Persson, J. Female wolverine (Gulo gulo) reproduction: Reproductive costs and winter food availability. Can. J. Zool. 83, 1453–1459 (2005).Article 

    Google Scholar 
    Persson, J., Rauset, G. R. & Chapron, G. Paying for an endangered predator leads to population recovery. Conserv. Lett. 8, 345–350 (2015).Article 

    Google Scholar 
    Seip, D. R., Johnson, C. J. & Watts, G. S. Displacement of mountain caribou from winter habitat by snowmobiles. J. Wildl. Manag. 71, 1539–1544 (2007).Article 

    Google Scholar 
    Arlettaz, R. et al. Disturbance of wildlife by outdoor winter recreation: Allostatic stress response and altered activity-energy budgets. Ecol. Appl. 25, 1197–1212 (2015).Article 
    PubMed 

    Google Scholar 
    Olson, L. E., Squires, J. R., Roberts, E. K., Ivan, J. S. & Hebblewhite, M. Sharing the same slope: Behavioral responses of a threatened mesocarnivore to motorized and nonmotorized winter recreation. Ecol. Evol. 8, 8555–8572 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ciuti, S. et al. Effects of humans on behaviour of wildlife exceed those of natural predators in a landscape of fear. PLoS ONE 7, e50611 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, G. E. & Alldredge, A. W. Reproductive success of elk following disturbance by humans during calving season. J. Wildl. Manag. 64, 521 (2000).Article 

    Google Scholar 
    Strasser, E. H. & Heath, J. A. Reproductive failure of a human-tolerant species, the American kestrel, is associated with stress and human disturbance. J. Appl. Ecol. 50, 912–919 (2013).Article 

    Google Scholar 
    Rauset, G. R., Low, M. & Persson, J. Reproductive patterns result from age-related sensitivity to resources and reproductive costs in a mammalian carnivore. Ecology 96, 3153–3164 (2015).Article 
    PubMed 

    Google Scholar 
    Inman, R. M., Magoun, A. J., Persson, J. & Mattisson, J. The wolverine’s niche: Linking reproductive chronology, caching, competition, and climate. J. Mammal. 93, 634–644 (2012).Article 

    Google Scholar 
    Persson, J., Willebrand, T., Landa, A., Andersen, R. & Segerström, P. The role of intraspecific predation in the survival of juvenile wolverines Gulo gulo. Wildl. Biol. 9, 21–28 (2003).Article 

    Google Scholar 
    Krebs, J., Lofroth, E. C. & Parfitt, I. Multiscale habitat use by wolverines in British Columbia, Canada. J. Wildl. Manag. 71, 2180–2192 (2007).Article 

    Google Scholar 
    Corradini, A. et al. Effects of cumulated outdoor activity on wildlife habitat use. Biol. Conserv. 253, 108818 (2021).Article 

    Google Scholar 
    Goodbody, T. R. H. et al. Mapping recreation and tourism use across grizzly bear recovery areas using social network data and maximum entropy modelling. Ecol. Modell. 440, 109377 (2021).Article 

    Google Scholar 
    May, R., Landa, A., Van Dijk, J., Linnell, J. D. C. & Andersen, R. Impact of infrastructure on habitat selection of wolverines Gulo gulo. Wildl. Biol. 12, 285–295 (2006).Article 

    Google Scholar 
    Scrafford, M. A., Avgar, T., Heeres, R. & Boyce, M. S. Roads elicit negative movement and habitat-selection responses by wolverines (Gulo gulo luscus). Behav. Ecol. 29, 534–542 (2018).Article 

    Google Scholar 
    Li, X., Zhou, Y., Zhao, M. & Zhao, X. A harmonized global nighttime light dataset 1992–2018. Sci. Data 7, 1–9 (2020).Article 

    Google Scholar 
    Lofroth, E. C., Krebs, J. A., Harrower, W. L. & Lewis, D. Food habits of wolverine Gulo gulo in montane ecosystems of British Columbia, Canada. Wildl. Biol. 13, 31–37 (2007).Article 

    Google Scholar 
    Hebblewhite, M., White, C. A. & Musiani, M. Revisiting extinction in national parks: Mountain Caribou in Banff. Conserv. Biol. 24, 341–344 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Poole, K. G. Kootenay Region Mountain Goat Population Assessment 2013–2015 (2015).Wasstrom, H. E., Cottell, C., Lofroth, E. C. & Larsen, K. W. Has the porcupine population waned in British Columbia? Trends in questionnaires and road-mortality data. Northwest. Nat. 101, 168–179 (2020).Article 

    Google Scholar 
    Hunt, W. A. Banff National Park State of the Park Report—Resource Conservation Technical Summaries 2008 to 2017 (2018).Kuzyk, G. et al. Moose population dynamics during 20 years of declining harvest in British Columbia. Alces 54, 101–119 (2018).
    Google Scholar 
    Kortello, A., Hausleitner, D. & Mowat, G. Mechanisms influencing the winter distribution of wolverine Gulo gulo Luscus in the southern Columbia Mountains, Canada. Wildl. Biol. 2019, 480 (2019).Article 

    Google Scholar 
    Copeland, J. P. et al. The bioclimatic envelope of the wolverine (Gulo gulo): Do climatic constraints limit its geographic distribution? Can. J. Zool. 88, 233–246 (2010).Article 

    Google Scholar 
    Magoun, A. J., Robards, M. D., Packila, M. L. & Glass, T. W. Detecting snow at the den-site scale in wolverine denning habitat. Wildl. Soc. Bull. 41, 381–387 (2017).Article 

    Google Scholar 
    Webb, S. M. et al. Distribution of female wolverines relative to snow cover, Alberta, Canada. J. Wildl. Manag. 80, 1461–1470 (2016).Article 

    Google Scholar 
    SARA Species at Risk Act. Order amending schedule 1 to the species at risk act. SOR/2018-112. Canada Gazette 152 (12), 18 June 2018. (2018) www.canada.ca/en/environment-%0Aclimate-change/services/species-risk-public-registry/%0Aorders/amend-schedule-1-volume-152-number-12-june-2018.%0Ahtml (Accessed on 15 December 2021).Holland, W. D. & Coen, G. M. Ecological (biophysical) land classification of Banff and Jasper National Parks (1983).open.canada.ca. https://open.canada.ca (Accessed on 15 December 2021).den Hartog, J. & Reijns, R. I3S Pattern+ (2016).Greenberg, S. Timelapse: An Image Classifer for Camera Traps (2020).Tobler, M. Camera Base Version (2007).Whittington, J., Hebblewhite, M. & Chandler, R. B. Generalized spatial mark–resight models with an application to grizzly bears. J. Appl. Ecol. 55, 157–168 (2018).Article 

    Google Scholar 
    Gowan, T. A., Crum, N. J. & Roberts, J. J. An open spatial capture–recapture model for estimating density, movement, and population dynamics from line-transect surveys. Ecol. Evol. 11, 7354–7365 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Royle, J. A., Fuller, A. K. & Sutherland, C. Spatial capture–recapture models allowing Markovian transience or dispersal. Popul. Ecol. 58, 53–62 (2016).Article 

    Google Scholar 
    Milleret, C. et al. Estimating abundance with interruptions in data collection using open population spatial capture–recapture models. Ecosphere 11, 1–14 (2020).Article 

    Google Scholar 
    Royle, J. A., Magoun, A. J., Gardner, B., Valkenburg, P. & Lowell, R. E. Density estimation in a wolverine population using spatial capture-recapture models. J. Wildl. Manag. 75, 604–611 (2011).Article 

    Google Scholar 
    Royle, J. A., Chandler, R. B., Sun, C. C. & Fuller, A. K. Reply to efford on ‘Integrating resource selection information with spatial capture–recapture’. Methods Ecol. Evol. 5, 603–605 (2014).Article 

    Google Scholar 
    Kendall, K. C. et al. Using bear rub data and spatial capture-recapture models to estimate trend in a brown bear population. Sci. Rep. 9, 5 (2019).Article 

    Google Scholar 
    Royle, J. A. & Young, K. V. A hierarchical model for spatial capture-recapture data. Ecology 89, 2281–2289 (2008).Article 
    PubMed 

    Google Scholar 
    Gardner, B., Sollmann, R., Kumar, N. S., Jathanna, D. & Karanth, K. U. State space and movement specification in open population spatial capture–recapture models. Ecol. Evol. 8, 10336–10344 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).MathSciNet 
    MATH 

    Google Scholar 
    Royle, J. A. & Kéry, M. A Bayesian state-space formulation of dynamic occupancy models. Ecology 88, 1813–1823 (2007).Article 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (2022) https://www.r-project.org/ (Accessed on 20 June 2022).de Valpine, P. et al. Programming with models: Writing statistical algorithms for general model structures with NIMBLE. J. Comput. Graph. Stat. 26, 403–413 (2017).Article 
    MathSciNet 

    Google Scholar 
    Barrueto, M., Forshner, A., Whittington, J., Clevenger, A. P. & Musiani, M. Data from: Protection status, human disturbance, snow cover and trapping drive density of a declining wolverine population in the Canadian Rocky Mountains. Dryad. https://doi.org/10.5061/dryad.z34tmpghh (2022).Article 

    Google Scholar  More

  • in

    Deforestation slowed last year — but not enough to meet climate goals

    Deforested areas rim a highway running through the state of Amazonas, in Brazil.Credit: Michael Dantas/AFP/Getty

    Countries are failing to meet international targets to stop global forest loss and degradation by 2030, according to a report. It is the first to measure progress since world leaders set the targets last year at the 26th United Nations Climate Change Conference of the Parties (COP26) in Glasgow, UK. Preserving forests, which can store carbon and, in some cases, provide local cooling, is a crucial part of a larger strategy to curb global warming.
    Tropical forests have big climate benefits beyond carbon storage
    The analysis, called the Forest Declaration Assessment, shows that the rate of global deforestation slowed by 6.3% in 2021, compared with the baseline average for 2018–20. But this “modest” progress falls short of the annual 10% cut needed to end deforestation by 2030, says Erin Matson, a consultant at Climate Focus, an advisory company headquartered in Amsterdam, and author of the assessment, published on 24 October.“It’s a good start, but we are not on track,” Matson said at a press briefing, although she cautioned that the assessment looks at only one year’s worth of data. A clearer picture of deforestation trends will emerge in successive years, she added.The assessment, which was carried out by a number of civil-society and research groups, including the World Resources Institute, an environmental think tank in Washington DC, comes as nations gear up for the next big climate summit (COP27), to be held in November in Sharm El-Sheikh, Egypt. Scientists agree that in order to limit global warming to 1.5–2 °C above preindustrial levels — a threshold beyond which Earth’s climate will become profoundly disrupted — deforestation must end.Tropical forests are keyTo track deforestation over the past year, the groups analysed indicators such as changes in forest canopy, as measured by satellite data, and the forest landscape integrity index, which is a measure of the ecological health of forests. The slow progress they found is mainly attributable to a few tropical countries where deforestation is highest (see ‘Progress report’). Among them is Brazil — the world’s largest contributor to tree loss — which saw a 3% rise in the rate of deforestation in 2021, compared with the baseline years. Rates also rose in heavy deforesters Bolivia and the Democratic Republic of the Congo, by 6% and 3%, respectively, over the same period.

    Adapted from the 2022 Forest Declaration Assessment

    The loss of tropical forests, in particular, is worrisome because a growing body of research shows that besides sequestering carbon, these forests can physically cool nearby areas by creating clouds, humidifying the air and releasing certain cooling molecules. Keeping tropical forests standing provides a massive boost to global cooling that current policies ignore, says a report, “Not Just Carbon”, released alongside the Forest Declaration Assessment.A region made up of tropical countries in Asia is the only one on track to halt deforestation by 2030, according to the assessment (see ‘Movement towards goal’). The region cut the rate at which it lost humid, old-growth forests last year by 20% from the 2018–20 baseline, mostly thanks to large strides made by Indonesia — normally one of the world’s largest contributors to deforestation — where the loss of old-growth forests fell by 25% in 2021 compared with the previous year.

    Adapted from the 2022 Forest Declaration Assessment

    “The progress we see is driven by exceptional results in some countries,” Matson said.Efforts by the government and corporations in Indonesia to address the environmental harms of palm-oil production were key to progress, the assessment says. For example, as of 2020, more than 80% of palm-oil refiners had promised not to cut down or degrade any more forests. And in 2018, the Indonesian government imposed a moratorium on new palm-oil plantations. But the ban expired last year, raising concerns that progress might eventually be reversed.Finance laggingGlobal demand for commodities such as beef, fossil fuels and timber drive much of the forest loss that occurs today, as industry seeks to clear trees for new pastures and resource extraction. Matson said that many governments haven’t introduced reforms, such as protected-area regulations or fiscal incentives to encourage the private sector to safeguard forests, and that this is stalling progress.“Stronger mandatory action is needed,” she said.
    How much can forests fight climate change?
    In particular, nations are lagging behind in terms of fiscal support for forest protection and restoration. On the basis of previous assessments, the report estimates that forest conservation efforts require somewhere between US$45 billion and $460 billion per year if nations are to meet the 2030 goal. At present, commitments average less than 1% of what is needed per year, it concludes.Matson said that nations need to improve transparency on financing by setting interim milestones and publicly reporting progress. Michael Wolosin, a climate-solutions adviser at Conservation International, a non-profit environmental organization headquartered in Arlington, Virginia, would like to see donor countries recommit to their forest finance pledges at COP27 this year.However, Constance McDermott, an environmental-change researcher at the University of Oxford, UK, cautions against focusing too much on “estimates of forest cover change and dollars spent”. Social equity for Indigenous people and those in local communities should be part of discussions relating to deforestation, but is mostly missing, she says. These communities are the best forest stewards, and more effort is needed to support them by strengthening land rights and addressing land-use challenges that they identify, she says.Otherwise, McDermott warns that “global efforts to stop deforestation are more than likely to reinforce global, national and local inequalities”. More

  • in

    Induced pluripotent stem cells of endangered avian species

    Animal experimentsTeratoma formation experiments were performed at Iwate University. All surgical procedures and animal husbandry were performed in accordance with the international guidelines of the Animal Experiments of Iwate University and were approved by the university’s Animal Research Committee (approval number A201734).Chicken embryonic fibroblasts (Rhode Island Red) were obtained from a primary culture of chicken embryonic tissue provided by Prof. Atsushi Tajima, Tsukuba University. Chicken culture cells were obtained from chicken embryos, and the acquisition of these cells did not require approval. Mouse embryonic fibroblasts (CF-1 strain) were purchased from a manufacturer (CMPMEFCFL; DS Pharma Biomedical, Osaka, Japan). Approval was not required to obtain these cells.Somatic cells were obtained from wild animals (ex., Okinawa rail). The sampling details described below do not include the exact location of sampling to protect against poaching.Fibroblast cells from Okinawa rail and Japanese ptarmigan were obtained from dead animals, such as those killed by vehicles (Fig. 1A and Supplementary Fig. 1). Approval was not required to obtain these samples.Dead Okinawa rail were found on May 21, 2008, by the Okinawa Wildlife Federation, a nonprofit organization that focuses on the conservation of wild animals in the Okinawa area in the southwest region of Japan. The organization has permission from the Japanese Ministry of the Environment (MOE) to handle and perform first aid activities on endangered animals. The dead birds were transferred the following day to the National Institute for Environmental Studies (NIES). Primary cell culture was carried out from muscle tissue and skin of the dead birds (NIES ID: 715A).On July 8, 2004, tissues recovered from dead Japanese ptarmigan (e.g., skin and retina tissues) were also transferred to NIES from Gifu University Department of Veterinary Medicine. Primary cell culture from this tissue was performed (NIES ID: 22A).Somatic cells from Blakiston’s fish owl and Japanese golden eagle were obtained from emerging pinfeathers. Concerning the Blakiston’s fish owl, the MOE carries out bird banding, of wild birds with identification tags. The emerging pinfeathers we used had been accidentally release during banding. The banding had been performed by a veterinarian at the Institute for Raptor Biomedicine Japan (IRBJ) in the Hokkaido area on June 2, 2006. IRBJ is a private organization that primarily focuses on emergency medicine first aid and care for wild avians in Hokkaido region of Japan. IRBJ is contracted to MOE to handle and administer first aid for endangered animals. The MOE banding ring was 14C0242. Since banding was carried out with the permission of MOE for capturing wildlife, we did not require the approval to obtain these avian somatic cells. On July 8, 2006, Blakiston’s fish owl pinfeathers were transferred to from IRBJ to NIES, where primary cell culture was performed (NIES ID: 215A).Concerning the Japanese golden eagle, an emerging pinfeather accidentally fell off a bird during blood collection at the Yagiyama Zoo in Sendai, Japan on July 11, 2018. Dr. Yukiko Watanabe, an IRBJ veterinarian, collected the emerging pinfeather. The sample was shipped the following day to NIES where primary cell culture was performed (NIES ID: 5228).In addition to these birds, we obtained somatic cells emerging avian pinfeathers of Steller’s sea eagle, white-tail eagle, mountain hawk-eagle, northern goshawk, Taiga bean goose, and Latham’s snipe. These samples were provided by IRBJ.Concerning the Steller’s sea eagle, an injured individual was found in Hokkaido on July 11, 2006 (ID: 06-NE-SSE-1). The eagle was transferred to IRBJ. On December 4, 2006, IRBJ veterinarian Dr. Keisuke Saito collected fallen pinfeathers. Primary cell culture was performed at NIES on December 8, 2006 (NIES ID: 369A).Concerning the white-tailed eagle, an injured individual was found in Hokkaido, Japan, on July 12, 2007 (ID: 07-NE-WTE-4). The bird was transferred to IRBJ the same day for emergency treatment. On January 15, 2008, Dr. Saito collected fallen pinfeathers. Primary cell culture was performed on January 18, 2008 at NIES (NIES ID: 492A).Concerning the mountain hawk-eagle, an injured individual was found in the Hokkaido area on August 10, 2008 (ID: 08-Tokachi-HHE-2). The bird was transferred to IRBJ the same day. The bird was treated by an IRBJ veterinarian, but died on September 8, 2008. Emerging pinfeathers were collected from the dead bird by Dr. Saito. Primary cell culture was performed on September 11, 2008 at NIES (NIES ID: 847A).Concerning the Northern Goshawk, IRBJ accepted an injured bird for treatment on June 12, 2006. Following treatment and recovery, the bird was released into the wild in the Hokkaido area on August 1, 2006. During the treatment (July 4, 2006), Dr. Saito collected fallen pinfeathers. The primary cell culture was performed at NIES on July 6, 2006 (NIES ID: 222A).Concerning the Taiga bean geese, an injured individual was found in Hokkaido on September 15, 2016 (ID: 13B8005). The injured bird was transferred to IRBJ the same day for emergency treatment. On September 16, 2016, IRBJ veterinarian Dr. Yukiko Watanabe collected fallen emerging pinfeathers. Primary cell culture was performed on September 20, 2016 (NIES ID: 4420A).Finally, concerning the Latham’s snipe, fallen pinfeathers were collected during MOE approved bird banding performed on September 17, 2006, by Dr. Saito. Dr. Saito also collected fallen emerging pinfeathers (ID: 6A22598). The samples were transferred to NIES on September 20, 2006, for primary cell culture (NIES ID: 338A).All records are available at NIES.Cell culture and preservationOkinawa rail, Japanese ptarmigan, and Blakiston’s fish owl-derived fibroblasts were preserved in liquid nitrogen for 8–12 years (Fig. 1f). The preservation solution contained 90% fetal bovine serum (FBS) and 10% dimethyl sulfoxide. Cells were preserved at a cell density of 1 × 106–4 × 106 cell/mL. During the freezing period, the cells were maintained at minus The cells were frozen at a temperature of −135 °C. Japanese golden eagle fibroblasts were used without freezing.Avian-derived fibroblasts were cultured with Kuwana’s modified avian culture medium-1 (KAv-1), which is based on alpha-MEM containing 5% FBS and 5% chicken serum23. Mouse embryonic fibroblasts were cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% FBS and 1% antibiotic–antimycotic mixed stock solution (161–23181; Wako Pure Chemical Industries, Osaka, Japan). All avian and mouse cells were cultured at 37 °C under 5% CO2.Reprogramming vectorWe chemically synthesized an expression cassette that included seven reprogramming factors (MyoD-derived transactivation domain-linked Oct3/4, Sox2, Klf4, c-Myc, Klf2, Lin28, and Nanog; all genes derived from mice). The self-cleaving 2A peptide was inserted at the junction of the coding region (Fig. 1g). We transferred the complementary DNA (cDNA) insert from the shuttle vector to the PiggyBac transposon vector containing green fluorescent protein (PB-CAG-GFP). Although the original transposon vector drive the expression of cDNA with the elongation factor-1 (EF1) promoter (PJ547-17; DNA 2.0, Menlo Park, CA, USA), we replaced the EF1 promoter to CAG promoter in our previous study22,24. The reprogramming vector was designated PB-TAD-7F (Fig. 1g).In addition to the PB-TAD-7F reprogramming vector, we used the PB-DDR-8F reprogramming vector to establish Japanese golden eagle iPSCs. The complete coding sequence of DDR-8F (DDR-Oct3/4, Sox2, Klf4, c-Myc, Klf2, Nanog, Lin28, and Yap) was chemically synthesized. The expression cassettes containing the eight reprogramming factors were excised from the shuttle vector using restriction enzymes. The cDNA fragments were transferred to the PB-CAG-GFP PiggyBac transposon-based vector22,24. Detailed information regarding the PB-DDR-8F reprogramming vectors is shown in Fig. 10a.Establishment of iPSCsWe transfected PB-R6F or PB-TAD-7F reprogramming vectors into mouse, chicken, Okinawa rail, Japanese ptarmigan, and Blakiston’s fish owl-derived fibroblasts using Lipofectamine 2000 transfection reagent (Thermo Fisher Scientific, Waltham, MA, USA). After hygromycin selection (Wako Pure Chemical Industries), the cells were reseeded onto a mouse embryonic fibroblast (MEF) feeder layer. On days 14–32, we picked primary iPSC-like colonies and seeded them on new MEF feeder cell plates. The detailed protocol is shown in Fig. 1h.To establish Japanese golden eagle-derived iPSCs, we transduced PB-TAD-7F or PB-DDR-8F reprogramming vectors into Japanese golden eagle pinfeather-derived somatic cells. Transfection was performed using Lipofectamine 2000 transduction reagent (11668019; Thermo Fisher Scientific) according to the manufacturer’s instructions. After hygromycin selection (Wako Pure Chemical Industries), cells were seeded onto feeder culture plates. The golden eagle iPSCs were cultured in KAv-1-based medium5.The medium used to establish avian iPSCs was supplemented with 1000 × human Leukemia Inhibitory Factor (LIF) (125–05603; Wako Pure Chemical Industries), 4.0 ng/ml basic FGF (064–04541; Wako Pure Chemical Industries), 0.75 μM CHIR99021 glycogen synthase kinase-3 inhibitor (034–23103; Wako Pure Chemical Industries), 0.25 μM PD0325901 mitogen-activated protein kinase inhibitor (163–24001; Wako Pure Chemical Industries). In addition to those supplements, 0.25 μM thiazovivin (202–18011; Wako Pure Chemical Industries) was added in the media used to generate Okinawa rail, Japanese ptarmigan, Blakiston’s fish owl, and chicken iPSCs. In the medium used to generate mouse iPSCs, we added 1000 × LIF, 0.75 μM CHIR99021, and 0.25 μM PD0325901.iPSC culture conditionsTwo types of cell culture media were used: KAv-1 for avian iPSCs and DMEM for mouse iPSCs. The composition of KAv-1 for avian iPSCs was as follows: alpha-MEM containing 5% FBS and 5% chicken serum 1% antibiotic–antimycotic mixed solution, 1% nonessential amino acids (Wako Pure Chemical Industries), and 2 mM glutamic acid was added (Nacalai Tesque, Kyoto, Japan). The composition of DMEM for mouse was follows: DMEM supplemented with 15% SSR, 0.22 mM 2-mercaptoethanol (21438–82, Nacalai Tesque), 1% antibiotic–antimycotic mixed solution, 1% nonessential amino acids5,22. As a supplement to the iPSC medium, we used 1000 × human LIF (125–05603; Wako Pure Chemical Industries), 4.0 ng/ml basic FGF (064–04541; Wako Pure Chemical Industries), 0.75 μM CHIR99021 (034–23103; Wako Pure Chemical Industries), 0.25 μM PD0325901 (163–24001; Wako Pure Chemical Industries) for the media used to culture Okinawa rail, Japanese ptarmigan, Blakiston’s fish owl, Japanese golden eagle, and chicken-derived iPSCs. The supplements for media used to culture Okinawa rail and Japanese ptarmigan-derived iPSCs included 2.5 μM Gö6983 (074–06443, Wako Pure Chemical Industries). To analyze the cellular characteristics, we focused on the Janus kinase (JAK), FGF, ROCK, and glycolytic pathways, since the dependency of these pathways can indicate differences in cellular characteristics. We used 1–10 μM JAK inhibitor I (4200099; MERCK, Darmstadt, Germany), 0.5–4 μM of PD173074, which inhibits FGF receptor (FGFR) inhibitor (160–26831; Wako Pure Chemical Industries), 10 μM of Y27632, which inhibits ROCK (036–24023; Wako Pure Chemical Industries), and 2 or 4 mM 2-deoxyglucose (2DG, D0051; Tokyo Chemical Industry, Tokyo, Japan).AP and immunological staining of fibroblasts and iPSCsA red-color AP staining kit (AP100 R-1; System Bioscience, Palo Alto, CA, USA) was used to detect AP activity of iPSCs. iPSCs were stained for SSEA-1, SSEA-3, and SSEA-4 antibodies (Supplementary Table 2). To stain the iPSCs with the SSEA antibodies, the cells were fixed in 4% paraformaldehyde in phosphate buffered saline (PBS) for 3 min. Cells were permeabilized by 0.5% Triton X-100 (35501-15; Nacalai Tesque, Kyoto, Japan) for 60 min. After three washes with PBS, the iPSCs were blocked with 1% bovine serum albumin (BSA, 01863-06; Nacalai Tesque) for 45 min. iPSCs were incubated with a primary antibody overnight and then exposed to the corresponding fluorescent-labeled secondary antibodies for 60 min. Counterstaining was performed with a 4′,6-diamidino-2-phenylindole (DAPI) solution (Cellstain-DAPI solution, DOJINDO, Kumamoto, Japan).Japanese golden eagle and chicken-derived fibroblasts were seeded in 12-well cell culture plates for immunological staining. After 48 h of incubation, F-actin staining was performed using Alexa Fluor 568 phalloidin (A12380; Thermo Fisher Scientific) according to the manufacturer’s protocol. Double staining was performed with an anti-vimentin antibody (MA5-11883; Thermo Fisher Scientific) and Alexa Fluor 488-labeled secondary antibody (A-11001; Thermo Fisher Scientific) (Supplementary Table 2). The samples were counterstained with Cellstain-DAPI solution (DOJINDO) as described above.Detection of reprogramming vectors and internal control genes from iPSCsDNA was isolated using the EZ1 DNA Tissue Kit (953034; QIAGEN, Hilden, Germany). PCR was performed with 100 ng of template DNA. Primer sequences are listed in Supplementary Tables 3 and 4. We performed PCR assays using KOD FX Neo (KFX-201; TOYOBO, Osaka, Japan). PCR was conducted by predenaturation at 94 °C for 2 min, denaturation at 98 °C for 10 s, and extension at 68 °C for 30 s, with 40 cycles of denaturation and extension. PCR products were analyzed by electrophoresis on 2.0% agarose/Tris-acetate–ethylenediaminetetraacetic acid (EDTA) gels.Sequential passagingMouse, Okinawa rail, and Japanese ptarmigan-derived primary cells and iPSCs were seeded in six-well plates with feeder cells for analysis. When cell growth became confluent, all cells and the number of cells per dish was enumerated using a Countess cell counter (Thermo Fisher Scientific). The harvested and seeded cell numbers were used to calculate the PD time as an indicator of the speed of cell growth, using the formula PD = log2 (A/B), where A is the number of harvested cells at the end of each passage, and B is the number of seeded cells at the start25.Detection of mRNA expressionTotal RNA was isolated from iPSCs using an EZ1 RNA Tissue Mini Kit (959034; QIAGEN). cDNA was synthesized from total RNA using the PrimeScript reverse transcription (RT) reagent kit (Perfect Real Time, RR047A; TaKaRa Bio, Ohtsu, Japan). Real-time PCR was performed in a 12.5 μl volume containing 2 × KOD SYBR qPCR Mix (QKD-201; Toyobo), 10 ng of cDNA solution, and 0.3 μM of each primer. The primer sequences are listed in Supplementary Tables 5–10. The reaction was performed in duplicate. The cycling program was as follows: 98 °C for 120 s (initial denaturation), 98 °C for 10 s (denaturation), 58 °C for 10 s (annealing), and 68 °C for 32 s (extension) for 40 cycles. We normalized the expression levels of the target genes to that of glyceraldehyde-3-phosphate dehydrogenase (GAPDH).Mitochondria stainingMitochondria were stained by incubation with 50 nM MitoTracker Orange (M7510; Thermo Fisher Scientific) or 20 nM tetramethyl rhodamine ethyl ester perchlorate (TMRE, T669; Thermo Fisher Scientific) for 10 min. After staining, the solution was removed, and fresh medium was added for observation.EB formation and in vitro differentiationIn vitro differentiation of Okinawa rail, Japanese ptarmigan, Blakiston’s fish owl, and Japanese golden eagle iPSCs was performed. To generate EBs, iPSCs were seeded in low-binding dishes in KAv-1 medium. After 7–14 days, floating EBs were selected and seeded in 0.1% gelatin-coated 6-well plates with KAv-1 medium. To induce differentiation into neural cells, the floating EBs were cultured in 0.1% gelatin-coated plates containing KAv-1 supplemented with 10 μM ATRA and 4.0 ng/ml FGF for 7 days.Cells were immunochemically stained after in vitro differentiation using antibody to TUJ1, alpha-smooth muscle, or Gata4 (Supplementary Table 2). Differentiated cells were stained based on the immunological staining procedure of iPSCs described above.Teratoma formation and tissue sectioningThe Animal Committee of Iwate University approved the experimental protocol for teratoma formation (approval numbers A201734, A201737). For teratoma formation, 1 × 106 iPSCs were injected into the testes of SCID mice (C.B-17/Icr-scid/scidJcl; CLEA Japan, Tokyo, Japan). After 4–34 weeks post-injection, tumor tissues were excised from the mice. Each tumor tissue was fixed with 10% formaldehyde in PBS. Fixed tissue sections were stained with hematoxylin-eosin (HE) and observed by microscopy.Immunological staining was performed in addition to HE staining. For immunological staining, antibody to TUJ1, alpha-smooth muscle, or Gata4 was used (Supplementary Table 2). The paraffin block of each teratoma was sliced to produce a section 5 μm thick. After deparaffinization, the antigen was activated with citric acid buffer (SignalStain Citrate Unmasking Solution (10×), 14746; Cell Signaling Technology, Beverly, MA, USA) by microwaving for 10 min. To block endogenous peroxidase, tissue sections were incubated with 3% hydrogen peroxide (081–04215; Wako Pure Chemical). After washing with purified water, the tissue sections were incubated with 5% goat serum (555–76251; Wako Pure Chemical) in PBS. Next, the section were incubated in a solution containing a 1:100 dilution of primary antibody overnight at 4 °C. After washing with PBS, the tissue sections were incubated with horseradish peroxidase (HRP) conjugated secondary antibody (anti-IgG (H+L chain), mouse, pAb-HRP, code no. 330; MBL Co., Ltd., Nagoya, Japan) or anti-IgG (H+L chain, rabbit, pAb-HRP, code no. 458; MBL) for 1 h (Supplementary Table 2). After washing with PBS, the tissue sections were incubated with 3,3′-diaminobenzidine substrate solution (Histostar, code no. 8469; MBL) for 5–20 min. After washing with purified water, tissue sections were counterstained with hematoxylin for 1–2 min.DNA component analysisCultured cells fixed with 70% ethanol at least 4 h under −20 °C condition. The fixed cells stained with the Muse Cell Cycle Assay Kit (Merck Millipore Corporation, Darmstadt, Germany). The stained cells analyzed with Muse Cell Analyzer (Merck Millipore Corporation) were used for DNA content analysis.Karyotype analysisOur iPSCs were treated with 0.02 mg/ml colcemid. Those iPSCs exposed to a hypotonic solution and fixed with Carnoy’s fluid. We counted the chromosomal number in 50 cells and performed a G-banding analysis in 20 cells22.Production of interspecific chimeras and their immunological stainingTo evaluate whether iPSCs derived from Japanese ptarmigan could contribute to the generation of interspecific chimeras in chick embryos, iPSCs were stained with 10 μM CellTracker Green CMFDA (5-chloromethylfluorescein diacetate, C7025; Thermo Fisher Scientific) for 30 min. Eggs of white leghorn chicken were purchased from a local farm (Goto-furanjyo, Gifu, Japan). We injected the labeled Japanese ptarmigan iPSCs into stage X chick blastoderms and cultured the embryos26. To confirm the contribution of chimera, fluorescence was observed after 72 h. To analyze the tissue-level contribution of chimera, embryos on day 5. The embryos were embedded in optimal cutting temperature compound (Sakura Finetek Japan, Tokyo, Japan), frozen in liquid nitrogen, and stored at −80 °C until use. Cryosections 20 μm in thickness were prepared using a cryostat, air-dried for 30 min at room temperature, and fixed with 4% paraformaldehyde for 2 min at room temperature. After washing three times with PBS, sections were incubated with PBS containing 5% FBS for 1 h. After blocking with FBS, the sections were incubated with an anti-hygromicin resistance gene antibody (anti-HPT2; Supplementary Table 2) overnight. After washing three times with PBS, the sections were incubated with secondary antibody (goat anti-mouse IgG, Alexa Fluor 568; Supplementary Table 2) and Cellstain- DAPI solution (DOJINDO) for 1 h.Detection of contribution of chimera from genomeWe injected Japanese ptarmigan iPSCs (without CellTracker Green CMFDA label) into a stage X chicken blastoderms. On day 5, the entire chicken embryos were collected. The genome of each embryo was collected using NucleoSpin Tissue (U0952S; MACHEREY-NAGEL, Düren, Germany). After collecting the chimeric genome, we detected the reprogramming vector cassette using genomic PCR analysis using 50 ng of template genome. To extend the target sequence, we used the KOD FX Neo (KFX-201; TOYOBO). Primer information is provided in Supplementary Table 11. This analysis was performed according to the manufacturer’s protocol. The cycling program comprised 45 cycles of 94 °C for 120 s (initial denaturation), 98 °C for 10 s (denaturation), and 68 °C for 50 s (annealing and extension). After PCR, 2% agarose gel electrophoresis was performed. Gels were stained with GelGreen (517–53333; Biotium, Inc., Fremont, CA, USA).Real-time PCR was also performed to detect the contribution of chimera. The fluorescence probe and primers designed to detect chimeric contributions are summarized in Supplementary Table 12. The template was a 30 ng genome. The analysis was performed using 1 × THUNDERBIRD Probe qPCR Mix (QPS-101; TOYOBO), 0.3 μM of each primer, 0.2 μM of probe, and 1 × Rox. Fifty cycle of 95 °C for 60 s (initial denaturation), 95 °C for 15 s (denaturation), and 60 °C for 60 s (annealing and extension) were used. The expression levels of the target genes were normalized to that of chicken Tsc-2.RNA preparation and sequencing for RNA-seq analysisTotal RNA from iPSCs, fibroblasts, and chicken embryo stage X was collected using NucleoSpin Tissue (740952.50; MACHEREY-NAGEL). Triplicate samples of all iPSCs, fibroblasts, and chicken embryo stage X were prepared. To prepare the library, we used the TruSeq Stranded mRNA LT Sample Prep Kit (RS-122-2101; Illumina, San Diego, CA, USA). The quality of the library was evaluated using the Qubit DNA Assay (Thermo Fisher Scientific) on a TapeStation with a D1000 screen tape (Agilent Technologies, Santa Clara, CA, USA). The cDNA samples were used for the sequencing reaction on an Illumina HiSeq X sequencing machine, resulting in more than 40 M reads with 150 bp ends for each sample, except chicken fibroblast No. 3, which displayed more than 40 M reads with 75 bp ends. To analyze the RNA-seq data, we used the CLC Genomic Workbench (CLC Bio, Aarhus, Denmark). In the trim read step, low-quality sequence with the quality score of the CLC workbench, 5′ end, 3′ end, and short sequences (shorter than 15 sequences) were removed. The trimmed sequence data were mapped onto the chicken reference genome. Gene expression data were obtained in this step. PCA was performed and a heat map created with CLC Genomic Workbench using gene expression data. In this step, normalization was automatically performed using TMM methods. To compare chicken cells, RNA-seq data from SRA (SRP115012 (GEO: GSE102353) and SRP087639 (GSE86592) were used. The RNA-seq data has been submitted to the DNA DataBank of Japan under accession number DRA013522 (Submission), PRJDB13093(BioProject), SAMD00444261–SAMD00444287 (BioSample).Statistics and reproducibilityNonparametric multiple comparison analysis used the Steal–Dwass test (Figs. 2e, 3 [Okinawa rail, Japanese ptarmigan, and Blakiston’s fish owl], 4d, 4f, 5b, 5d, 5f, 5h, 10i). For nonparametric independent two-group analysis, we used the Mann–Whitney U test (Fig. 3, for mouse and chicken, and 4b). Statistically significant differences are indicated by *(p  More

  • in

    The environmental footprint of global food production

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).Article 
    CAS 

    Google Scholar 
    Godfray, H. C. J. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).Article 

    Google Scholar 
    Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).Article 
    CAS 

    Google Scholar 
    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).Article 

    Google Scholar 
    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).Article 
    CAS 

    Google Scholar 
    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).Article 
    CAS 

    Google Scholar 
    Ellis, E. C., Goldewikj, K. K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).
    Google Scholar 
    Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).Article 
    CAS 

    Google Scholar 
    Rosegrant, M. W., Ringler, C. & Zhu, T. Water for agriculture: maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 34, 205–222 (2009).Article 

    Google Scholar 
    Tubiello, F. N. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 21, 2655–2660 (2015).Article 

    Google Scholar 
    Lee, R. Y., Seitzinger, S. & Mayorga, E. Land-based nutrient loading to LMEs: a global watershed perspective on magnitudes and sources. Environ. Dev. 17, 220–229 (2016).Article 

    Google Scholar 
    Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).Article 
    CAS 

    Google Scholar 
    McIntyre, P. B., Liermann, C. A. R. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).Article 
    CAS 

    Google Scholar 
    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).Article 
    CAS 

    Google Scholar 
    Hilborn, R., Banobi, J., Hall, S. J., Pucylowski, T. & Walsworth, T. E. The environmental cost of animal source foods. Front. Ecol. Environ. 16, 329–335 (2018).Article 

    Google Scholar 
    Parker, R. W. R. et al. Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Change 8, 333–337 (2018).Article 
    CAS 

    Google Scholar 
    Davis, K. F. et al. Meeting future food demand with current agricultural resources. Glob. Environ. Change 39, 125–132 (2016).Article 

    Google Scholar 
    Gephart, J. A. et al. The environmental cost of subsistence: optimizing diets to minimize footprints. Sci. Total Environ. 553, 120–127 (2016).Article 
    CAS 

    Google Scholar 
    Gephart, J. A. et al. Environmental performance of blue foods. Nature 597, 360–365 (2021).Article 
    CAS 

    Google Scholar 
    Halpern, B. S. et al. Putting all foods on the same table: achieving sustainable food systems requires full accounting. Proc. Natl Acad. Sci. USA 116, 18152–18156 (2019).Article 
    CAS 

    Google Scholar 
    Béné, C. et al. Feeding 9 billion by 2050—putting fish back on the menu. Food Secur. 7, 261–274 (2015).Article 

    Google Scholar 
    Tacon, A. G. J. & Metian, M. Fish matters: importance of aquatic foods in human nutrition and global food supply. Rev. Fish. Sci. 21, 22–38 (2013).Article 
    CAS 

    Google Scholar 
    Verones, F., Moran, D., Stadler, K., Kanemoto, K. & Wood, R. Resource footprints and their ecosystem consequences. Sci. Rep. 7, 40743 (2017).Article 
    CAS 

    Google Scholar 
    Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).Article 

    Google Scholar 
    Mekonnen, M. M. & Hoekstra, A. Y. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products (UNESCO-IHE, 2010).Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7, 63–68 (2017).Article 
    CAS 

    Google Scholar 
    Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).Article 
    CAS 

    Google Scholar 
    Amoroso, R. O. et al. Bottom trawl fishing footprints on the world’s continental shelves. Proc. Natl Acad. Sci. USA 115, E10275–E10282 (2018).Article 
    CAS 

    Google Scholar 
    Kuempel, C. D. et al. Integrating life cycle and impact assessments to map food’s cumulative environmental footprint. One Earth 3, 65–78 (2020).Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).Article 
    CAS 

    Google Scholar 
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).Article 

    Google Scholar 
    Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).Article 

    Google Scholar 
    Judd, A. D., Backhaus, T. & Goodsir, F. An effective set of principles for practical implementation of marine cumulative effects assessment. Environ. Sci. Policy 54, 254–262 (2015).Article 

    Google Scholar 
    IPBES Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1, 298–303 (2018).Article 

    Google Scholar 
    FAO The State of World Fisheries and Aquaculture 2020 (FAO, 2020).Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).Article 
    CAS 

    Google Scholar 
    FAOSTAT Database: New Food Balances (FAO, 2020); http://www.fao.org/faostat/en/#data/FBSFAOSTAT Database: Production, Crops (FAO, 2020); http://www.fao.org/faostat/en/#data/QCDong, F. et al. Assessing sustainability and improvements in US Midwestern soybean production systems using a PCA–DEA approach. Renew. Agric. Food Syst. 31, 524–539 (2016).Article 

    Google Scholar 
    Watson, R. A. & Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Policy 93, 171–177 (2018).Article 

    Google Scholar 
    Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).Article 

    Google Scholar 
    Clark, M. & Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12, 064016 (2017).Article 

    Google Scholar 
    Balmford, B., Green, R. E., Onial, M., Phalan, B. & Balmford, A. How imperfect can land sparing be before land sharing is more favourable for wild species? J. Appl. Ecol. 56, 73–84 (2019).Article 

    Google Scholar 
    Luskin, M. S., Lee, J. S. H., Edwards, D. P., Gibson, L. & Potts, M. D. Study context shapes recommendations of land-sparing and sharing; a quantitative review. Glob. Food Secur. 16, 29–35 (2018).Article 

    Google Scholar 
    Williams, D. R., Phalan, B., Feniuk, C., Green, R. E. & Balmford, A. Carbon storage and land-use strategies in agricultural landscapes across three continents. Curr. Biol. 28, 2500–2505.e4 (2018).Article 
    CAS 

    Google Scholar 
    Paul, B. G. & Vogl, C. R. Impacts of shrimp farming in Bangladesh: challenges and alternatives. Ocean Coastal Manage. 54, 201–211 (2011).Article 

    Google Scholar 
    Ahmed, N., Cheung, W. W. L., Thompson, S. & Glaser, M. Solutions to blue carbon emissions: shrimp cultivation, mangrove deforestation and climate change in coastal Bangladesh. Mar. Policy 82, 68–75 (2017).Article 

    Google Scholar 
    FAOSTAT Database: Livestock Primary (FAO, 2020); http://www.fao.org/faostat/en/#data/QLRamankutty, N., Ricciardi, V., Mehrabi, Z. & Seufert, V. Trade-offs in the performance of alternative farming systems. Agric. Econ. 50, 97–105 (2019).Article 

    Google Scholar 
    FAOSTAT Database: Detailed Trade Matrix (FAO, 2020); http://www.fao.org/faostat/en/#data/TMFisheries & Aquaculture—Fishery Statistical Collections—Fishery Commodities and Trade (FAO, 2019); http://www.fao.org/fishery/statistics/global-commodities-production/enInternational Food Policy Research Institute. Global spatially-disaggregated crop production statistics data for 2010, version 2.0. Harvard Dataverse https://doi.org/10.7910/DVN/PRFF8V (2019).Clawson, G. et al. Mapping the spatial distribution of global mariculture production. Aquaculture 553, 738066 (2022).Article 

    Google Scholar 
    Petz, K. et al. Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models. Glob. Environ. Change 29, 223–234 (2014).Article 

    Google Scholar 
    Global Fishing Watch. Fishing effort. Fleet daily, v2 100th degree. (2021). https://globalfishingwatch.org/dataset-and-code-fishing-effort/Verdegem, M. C. J., Bosma, R. H. & Verreth, J. A. J. Reducing water use for animal production through aquaculture. Int. J. Water Resour. Dev. 22, 101–113 (2006).Article 

    Google Scholar 
    Bouwman, A. F., Beusen, A. H. W. & Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob. Biogeochem. Cycles 23, GB0A04 (2009).Article 

    Google Scholar 
    Bouwman, A. F., Van Drecht, G. & Van der Hoek, K. W. Nitrogen surface balances in intensive agricultural production systems in different world regions for the period 1970–2030. Pedosphere 15, 137–155 (2005).
    Google Scholar 
    Bouwman, A., Boumans, L. J. M. & Batjes, N. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Glob. Biogeochem. Cycles 16, 8-1–8-14 (2002).Article 

    Google Scholar 
    FAOSTAT Database: Inputs, Fertilizers by Nutrient (FAO, 2020); http://www.fao.org/faostat/en/#data/RFNHeffer, P., Gruere, A. & Roberts, T. Assessment of fertilizer use by crop at the global level 2014–2014/15, International Fertilizer Association (2017).Fertilizer Use by Crop 5th edn (FAO, IFA & IFDC, 2002).Islam, Md. S. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Mar. Pollut. Bull. 50, 48–61 (2005).Article 
    CAS 

    Google Scholar 
    Wang, J., Beusen, A. H. W., Liu, X. & Bouwman, A. F. Aquaculture production is a large, spatially concentrated source of nutrients in Chinese freshwater and coastal seas. Environ. Sci. Technol. 54, 1464–1474 (2020).Article 

    Google Scholar 
    Bouwman, A. F. et al. Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Rev. Fish. Sci. 21, 112–156 (2013).Article 
    CAS 

    Google Scholar 
    Gavrilova, O. et al. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Ch. 10, Intergovernmental Panel on Climate Change (IPCC); Review Editors on Overview: Dario Gómez (Argentina) and William Irving (USA) (2019).Seafood Carbon Emissions Tool, Lisa Max, Robert Parker, Peter Tyedmers, editors; (2020); http://seafoodco2.dal.ca/Hu, Z., Lee, J. W., Chandran, K., Kim, S. & Khanal, S. K. Nitrous oxide (N2O) emission from aquaculture: a review. Environ. Sci. Technol. 46, 6470–6480 (2012).Article 
    CAS 

    Google Scholar 
    IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).Lynch, J., Cain, M., Pierrehumbert, R. & Allen, M. Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environ. Res. Lett. 15, 044023 (2020).Article 
    CAS 

    Google Scholar 
    Global Livestock Environmental Assessment Model, GLEAM, v.2.0.121 (FAO, 2018).Aas, T. S., Ytrestøyl, T. & Åsgård, T. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: an update for 2016. Aquacult. Rep. 15, 100216 (2019).
    Google Scholar 
    Jackson, A. Fish in-fish out (FIFO) explained. Aquacult. Eur. 34, 5–10 (2009).
    Google Scholar 
    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).Article 
    CAS 

    Google Scholar 
    Frazier, M. et al. Global food system pressure data. https://knb.ecoinformatics.org/view/doi:10.5063/F1V69H1B More

  • in

    The influence of social cues on timing of animal migrations

    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).Article 

    Google Scholar 
    Bauer, S., Lisovski, S. & Hahn, S. Timing is crucial for consequences of migratory connectivity. Oikos 125, 605–612 (2016).Article 

    Google Scholar 
    Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J. C. The effects of defaunation on plants’ capacity to track climate change. Science 214, 210–214 (2022).Article 

    Google Scholar 
    Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing? PLoS Biol. 6, e188 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change. Nature 421, 37–42 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Walther, G. et al. Ecological responses to recent climate change. Nature 4126, 389–395 (2002).Article 

    Google Scholar 
    Teitelbaum, C. S. et al. Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nat. Commun. 7, 12793 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oestreich, W. K., Chapman, M. S. & Crowder, L. B. A comparative analysis of dynamic management in marine and terrestrial systems. Front. Ecol. Environ. 18, 496–504 (2020).Article 

    Google Scholar 
    Senzaki, M. et al. Sensory pollutants alter bird phenology and fitness across a continent. Nature 587, 605–609 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Guerra, A. S. Wolves of the sea: managing human–wildlife conflict in an increasingly tense ocean. Mar. Policy 99, 369–373 (2019).Article 

    Google Scholar 
    Abrahms, B. Human–wildlife conflict under climate change. Science 373, 484–485 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Post, E. & Forchhammer, M. C. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Phil. Trans. R. Soc. B Biol. Sci. 363, 2369–2375 (2008).Article 

    Google Scholar 
    Winkler, D. W. et al. Cues, strategies, and outcomes: how migrating vertebrates track environmental change. Mov. Ecol. 2, 10 (2014).Article 

    Google Scholar 
    Xu, W. et al. The plasticity of ungulate migration in a changing world. Ecology 102, e03293 (2021).Article 
    PubMed 

    Google Scholar 
    McNamara, J. M., Barta, Z., Klaassen, M. & Bauer, S. Cues and the optimal timing of activities under environmental change. Ecol. Lett. 14, 1183–1190 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bauer, S., McNamara, J. M. & Barta, Z. Environmental variability, reliability of information and the timing of migration. Proc. R. Soc. B Biol. Sci. 287, 20200622 (2020).Article 

    Google Scholar 
    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2020).Article 
    PubMed 

    Google Scholar 
    Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).Article 
    PubMed 

    Google Scholar 
    Aikens, E. O. et al. Wave-like patterns of plant phenology determine ungulate movement tactics. Curr. Biol. 30, 3444–3449 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl Acad. Sci. USA 116, 5582–5587 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lank, D. B., Butler, R. W., Ireland, J. & Ydenberg, R. C. Effects of predation danger on migration strategies of sandpipers. Oikos 103, 303–319 (2003).Article 

    Google Scholar 
    Sabal, M. C. et al. Predation landscapes influence migratory prey ecology and evolution. Trends Ecol. Evol. 36, 737–749 (2021).Article 
    PubMed 

    Google Scholar 
    Furey, N. B., Armstrong, J. B., Beauchamp, D. A. & Hinch, S. G. Migratory coupling between predators and prey. Nat. Ecol. Evol. 2, 1846–1853 (2018).Article 
    PubMed 

    Google Scholar 
    Altizer, S., Bartel, R. & Han, B. A. Animal migration and infectious disease risk. Science 331, 296–302 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gunnarsson, T., Gill, J., Sigurbjörnsson, T. & Sutherland, W. Arrival synchrony in migratory birds. Nature 431, 646 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Beltran, R. S. et al. Elephant seals time their long-distance migration using a map sense. Curr. Biol. 32, R156–R157 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yang, L. H. & Rudolf, V. H. W. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol. Lett. 13, 1–10 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Furey, N. B. et al. Predator swamping reduces predation risk during nocturnal migration of juvenile salmon in a high-mortality landscape. J. Anim. Ecol. 85, 948–959 (2016).Article 
    PubMed 

    Google Scholar 
    Rickbeil, G. J. M. et al. Plasticity in elk migration timing is a response to changing environmental conditions. Glob. Change Biol. 25, 2368–2381 (2019).Article 

    Google Scholar 
    Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).Article 

    Google Scholar 
    Gwinner, E. Circadian and circannual programmes in avian migration. J. Exp. Biol. 199, 39–48 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liedvogel, M., Åkesson, S. & Bensch, S. The genetics of migration on the move. Trends Ecol. Evol. 26, 561–569 (2011).Article 
    PubMed 

    Google Scholar 
    Hauser, D. D. W. et al. Decadal shifts in autumn migration timing by Pacific Arctic beluga whales are related to delayed annual sea ice formation. Glob. Change Biol. 23, 2206–2217 (2017).Article 

    Google Scholar 
    Palacín, C., Alonso, J. C., Alonso, J. A., Magaña, M. & Martín, C. A. Cultural transmission and flexibility of partial migration patterns in a long-lived bird, the great bustard Otis tarda. J. Avian Biol. 42, 301–308 (2011).Article 

    Google Scholar 
    Couzin, I. D. Collective animal migration. Curr. Biol. 28, R976–R980 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Guttal, V. & Couzin, I. D. Social interactions, information use, and the evolution of collective migration. Proc. Natl Acad. Sci. USA 107, 16172–16177 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berdahl, A. M. et al. Collective animal navigation and migratory culture: from theoretical models to empirical evidence. Phil. Trans. R. Soc. B Biol. Sci. 373, 20170009 (2018).Article 

    Google Scholar 
    Cohen, E. B. & Satterfield, D. A. ‘Chancing on a spectacle:’ co-occurring animal migrations and interspecific interactions. Ecography 43, 1657–1671 (2020).Article 

    Google Scholar 
    Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. Emergent sensing of complex environments by mobile animal groups. Science 339, 574–576 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Abrahms, B., Teitelbaum, C. S., Mueller, T. & Converse, S. J. Ontogenetic shifts from social to experiential learning drive avian migration timing. Nat. Commun. 12, 7326 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sasaki, T. & Biro, D. Cumulative culture can emerge from collective intelligence in animal groups. Nat. Commun. 8, 15049 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Helm, B., Piersma, T. & van der Jeugd, H. Sociable schedules: interplay between avian seasonal and social behaviour. Anim. Behav. 72, 245–262 (2006).Article 

    Google Scholar 
    Piersma, T., Zwarts, L. & Bruggemann, J. H. Behavioural aspects of the departure of waders before long-distance flights: flocking, vocalizations, flight paths and diurnal timing. Ardea 78, 157–184 (1990).
    Google Scholar 
    Dingle, H. & Drake, V. A. What is migration? BioScience 57, 113–121 (2007).Article 

    Google Scholar 
    Oestreich, W. K. & Aiu, K. M. Code and data from: The influence of social cues on timing of animal migrations. Zenodo https://zenodo.org/record/6574762 (2022).Furey, N. B., Martins, E. G. & Hinch, S. G. Migratory salmon smolts exhibit consistent interannual depensatory predator swamping: effects on telemetry-based survival estimates. Ecol. Freshw. Fish 30, 18–30 (2021).Article 

    Google Scholar 
    Berdahl, A., Westley, P. A. H. & Quinn, T. P. Social interactions shape the timing of spawning migrations in an anadromous fish. Anim. Behav. 126, 221–229 (2017).Article 

    Google Scholar 
    Louca, V., Lindsay, S. W. & Lucas, M. C. Factors triggering floodplain fish emigration: importance of fish density and food availability. Ecol. Freshw. Fish 18, 60–64 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bastille-Rousseau, G. et al. Migration triggers in a large herbivore: Galápagos giant tortoises navigating resource gradients on volcanoes. Ecology 100, e02658 (2019).Article 
    PubMed 

    Google Scholar 
    Bracis, C. & Mueller, T. Memory, not just perception, plays an important role in terrestrial mammalian migration. Proc. R. Soc. B Biol. Sci. 284, 20170449 (2017).Article 

    Google Scholar 
    Barrett, B., Zepeda, E., Pollack, L., Munson, A. & Sih, A. Counter-culture: does social learning help or hinder adaptive response to human-induced rapid environmental change? Front. Ecol. Evol. 7, 183 (2019).Article 

    Google Scholar 
    Merkle, J. A. et al. Site fidelity as a maladaptive behavior in the Anthropocene. Front. Ecol. Environ. 20, 187–194 (2022).Article 

    Google Scholar 
    Teske, P. R. et al. The sardine run in southeastern Africa is a mass migration into an ecological trap. Sci. Adv. 7, eabf4514 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corten, A. The role of ‘conservatism’ in herring migrations. Rev. Fish Biol. Fish. 11, 339–361 (2002).Article 

    Google Scholar 
    Mukhin, A., Chernetsov, N. & Kishkinev, D. Acoustic information as a distant cue for habitat recognition by nocturnally migrating passerines during landfall. Behav. Ecol. 19, 716–723 (2008).Article 

    Google Scholar 
    Barker, K. J. et al. Toward a new framework for restoring lost wildlife migrations. Conserv. Lett. 15, e12850 (2022).Article 

    Google Scholar 
    Teitelbaum, C. S., Converse, S. J. & Mueller, T. The importance of early life experience and animal cultures in reintroductions. Conserv. Lett. 12, e12599 (2019).Article 

    Google Scholar 
    Hughey, L. F., Hein, A. M., Strandburg-Peshkin, A., Jensen, F. H. & Hughey, L. F. Challenges and solutions for studying collective animal behaviour in the wild. Phil. Trans. R. Soc. B 373, 20170005 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Calabrese, J. M. et al. Disentangling social interactions and environmental drivers in multi-individual wildlife tracking data. Phil. Trans. R. Soc. B 373, 20170007 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bousquet, C. A. H., Sumpter, D. J. T. & Manser, M. B. Moving calls: a vocal mechanism underlying quorum decisions in cohesive groups. Proc. R. Soc. B Biol. Sci. 278, 1482–1488 (2011).Article 

    Google Scholar 
    Dibnah, A. J. et al. Vocally mediated consensus decisions govern mass departures from jackdaw roosts. Curr. Biol. 32, R455–R456 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Robart, A. R., Zuñiga, H. X., Navarro, G. & Watts, H. E. Social environment influences termination of nomadic migration. Biol. Lett. 18, 20220006 (2022).Article 
    PubMed 

    Google Scholar 
    Dodson, S., Abrahms, B., Bograd, S. J., Fiechter, J. & Hazen, E. L. Disentangling the biotic and abiotic drivers of emergent migratory behavior using individual-based models. Ecol. Modell. 432, 109225 (2020).Article 

    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).Article 
    PubMed 

    Google Scholar 
    Hussey, N. E. et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science 348, 1255642 (2015).Article 
    PubMed 

    Google Scholar 
    Oestreich, W. K. et al. Acoustic signature reveals blue whale tune life history transitions to oceanographic conditions. Funct. Ecol. 36, 882–895 (2022).Article 
    CAS 

    Google Scholar 
    Chapman, J. W., Reynolds, D. R. & Smith, A. D. Vertical-looking radar: a new tool for monitoring high-altitude insect migration. BioScience 53, 503–511 (2003).Article 

    Google Scholar 
    Oestreich, W. K. et al. Animal-borne metrics enable acoustic detection of blue whale migration. Curr. Biol. 30, 4773–4779 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fraser, K. C., Shave, A., de Greef, E., Siegrist, J. & Garroway, C. J. Individual variability in migration timing can explain long-term, population-level advances in a songbird. Front. Ecol. Evol. 7, 324 (2019).Article 

    Google Scholar 
    Byholm, P., Beal, M., Isaksson, N., Lötberg, U. & Åkesson, S. Paternal transmission of migration knowledge in a long-distance bird migrant. Nat. Commun. 13, 1566 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schneider, S. S. & McNally, L. C. Waggle dance behavior associated with seasonal absconding in colonies of the African honey bee, Apis mellifera scutellata. Insectes Soc. 41, 115–127 (1994).Article 

    Google Scholar 
    Raveling, D. G. Preflight and flight behavior of Canada geese. Auk 86, 671–681 (1969).Article 

    Google Scholar 
    Tennessen, J. B., Parks, S. E. & Langkilde, T. Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs. Conserv. Physiol. 2, cou032 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lagarde, A., Lagarde, F. & Piersma, T. Vocal signalling by Eurasian spoonbills Platalea leucorodia in flocks before migratory departure. Ardea 109, 243–250 (2021).Article 

    Google Scholar 
    Rees, E. C. Conflict of choice within pairs of Bewick’s swans regarding their migratory movement to and from the wintering grounds. Anim. Behav. 35, 1685–1693 (1987).Article 

    Google Scholar 
    Mazeroll, A. I. & Montgomery, W. L. Daily migrations of a coral reef fish in the Red Sea (Gulf of Aqaba, Israel). Copiea 1998, 893–905 (1998).Article 

    Google Scholar 
    Méndez, V. et al. Paternal effects in the initiation of migratory behaviour in birds. Sci. Rep. 11, 2782 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nelson, M. E. Development of migratory behavior in northern white-tailed deer. Can. J. Zool. 76, 426–432 (1998).Article 

    Google Scholar 
    Sweanor, P. Y. & Sandgren, F. Winter-range philopatry of seasonally migratory moose. J. Appl. Ecol. 26, 25–33 (1989).Article 

    Google Scholar 
    Rees, E. C. Consistency in the timing of migration for individual Bewick’s swans. Anim. Behav. 38, 384–393 (1989).Article 

    Google Scholar 
    Corten, A. A possible adaptation of herring feeding migrations to a change in timing of the Calanus finmarchicus season in the eastern North Sea. ICES J. Mar. Sci. 57, 1261–1270 (2000).Article 

    Google Scholar 
    Loonstra, A. J. et al. Individual black-tailed godwits do not stick to single routes: a hypothesis on how low population densities might decrease social conformity. Ardea 107, 251–261 (2020).Article 

    Google Scholar 
    Hake, M., Kjellén, N. & Alerstam, T. Age‐dependent migration strategy in honey buzzards Pernis apivorus tracked by satellite. Oikos 103, 385–396 (2003).Article 

    Google Scholar 
    Gupte, P. R., Koffijberg, K., Müskens, G. J. D. M., Wikelski, M. & Kölzsch, A. Family size dynamics in wintering geese. J. Ornithol. 160, 363–375 (2019).Article 

    Google Scholar 
    Gonçalves, M. I. C. et al. Movement patterns of humpback whales (Megaptera novaeangliae) reoccupying a Brazilian breeding ground. Biota Neotrop. 18, e20180567 (2018).Article 

    Google Scholar 
    Trudelle, L. et al. First insights on spatial and temporal distribution patterns of humpback whales in the breeding ground at Sainte Marie Channel, Madagascar. Afr. J. Mar. Sci. 40, 75–86 (2018).Article 

    Google Scholar 
    De La Gala-Hernández, S. R., Heckel, G. & Sumich, J. L. Comparative swimming effort of migrating gray whales (Eschrichtius robustus) and calf cost of transport along Costa Azul, Baja California, Mexico. Can. J. Zool. 86, 307–313 (2008).Article 

    Google Scholar 
    Sword, G. A. Local population density and the activation of movement in migratory band-forming Mormon crickets. Anim. Behav. 69, 437–444 (2005).Article 

    Google Scholar 
    Buhl, J. et al. From disorder to order in marching locusts. Science 312, 1402–1406 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mysterud, A., Loe, L. E., Zimmermann, B., Bischof, R. & Meisingset, E. Partial migration in expanding red deer populations at northern latitudes—a role for density dependence? Oikos 120, 1817–1825 (2011).Article 

    Google Scholar 
    Bukreeva, O. M. & Lidzhi-garyaeva, G. V. Mass migration of social voles (Microtus socialis Pallas, 1773) in the Northwestern Caspian region. Arid Ecosyst. 8, 147–151 (2018).Article 

    Google Scholar 
    Eggeman, S. L., Hebblewhite, M., Bohm, H., Whittington, J. & Merrill, E. H. Behavioural flexibility in migratory behaviour in a long-lived large herbivore. J. Anim. Ecol. 85, 785–797 (2016).Article 
    PubMed 

    Google Scholar 
    Weithman, C. et al. Senescence and carryover effects of reproductive performance influence migration, condition, and breeding propensity in a small shorebird. Ecol. Evol. 7, 11044–11056 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rappole, J. H. & Warner, D. W. Relationships between behavior, physiology and weather in avian transients at a migration stopover site. Oecologia 212, 193–212 (1976).Article 

    Google Scholar 
    Fauchald, P., Mauritzen, M. & Gjøsæter, H. Density‐dependent migratory waves in the marine pelagic ecosystem. Ecology 87, 2915–2924 (2006).Article 
    PubMed 

    Google Scholar 
    Makris, N. C. et al. Critical population density triggers rapid formation of vast oceanic fish shoals. Science 323, 1734–1737 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tøttrup, A. P. & Thorup, K. Sex-differentiated migration patterns, protandry and phenology in North European songbird populations. J. Ornithol. 149, 161–167 (2008).Article 

    Google Scholar 
    Francis, C. M. & Cooke, C. F. Differential timing of spring migration in rose-breasted grosbeaks. J. Field Ornithol. 61, 404–412 (1990).
    Google Scholar 
    Corgos, A., Verísimo, P. & Freire, J. Timing and seasonality of the terminal molt and mating migration in the spider crab, Maja brachydactyla: evidence of alternative mating strategies. J. Shellfish Res. 25, 577–587 (2006).Article 

    Google Scholar 
    Gordo, O., Sanz, J. J. & Lobo, J. M. Spatial patterns of white stork (Ciconia ciconia) migratory phenology in the Iberian Peninsula. J. Ornithol. 148, 293–308 (2007).Article 

    Google Scholar 
    Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Manica, L. T., Graves, J. A., Podos, J. & Macedo, R. H. Hidden leks in a migratory songbird: mating advantages for earlier and more attractive males. Behav. Ecol. 31, 1180–1191 (2020).Article 

    Google Scholar 
    Cade, D. E. et al. Social exploitation of extensive, ephemeral, environmentally controlled prey patches by supergroups of rorqual whales. Anim. Behav. 182, 251–266 (2021).Article 

    Google Scholar 
    Urbanek, R. P., Fondow, L. E. A., Zimorski, S. E., Wellington, M. A. & Nipper, M. A. Winter release and management of reintroduced migratory whooping cranes Grus americana. Bird Conserv. Int. 20, 43–54 (2010).Article 

    Google Scholar 
    Németh, Z. & Moore, F. R. Information acquisition during migration: a social perspective. Auk 131, 186–194 (2014).Article 

    Google Scholar  More

  • in

    Dual ancestries and ecologies of the Late Glacial Palaeolithic in Britain

    Housley, R. A., Gamble, C. S., Street, M. & Pettitt, P. Radiocarbon evidence for the lateglacial human recolonisation of Northern Europe. Proc. Prehist. Soc. 63, 25–54 (1997).
    Google Scholar 
    Blockley, S. P. E., Donahue, R. E. & Pollard, A. M. Radiocarbon calibration and Late Glacial occupation in northwest Europe. Antiquity 74, 112–119 (2000).
    Google Scholar 
    Terberger, T., Barton, N. & Street, M. in Humans, Environment and Chronology of the Late Glacial of the North European Plain (eds Street, M. et al.) 189–207 (Romisch-Germanisches Zentralmuseum, 2009).Miller, R. Mapping the expansion of the Northwest Magdalenian. Quat. Int. 272–273, 209–230 (2012).
    Google Scholar 
    Riede, F. & Pedersen, J. B. Late Glacial human dispersals in Northern Europe and disequilibrium dynamics. Hum. Ecol. 46, 621–632 (2018).
    Google Scholar 
    Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).CAS 
    PubMed 

    Google Scholar 
    Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Villalba-Mouco, V. et al. Survival of Late Pleistocene hunter-gatherer ancestry in the Iberian Peninsula. Curr. Biol. 29, 1169–1177 (2019).Willis, K. J. & Whittaker, R. J. Perspectives: paleoecology. The refugial debate. Science 287, 1406–1407 (2000).CAS 
    PubMed 

    Google Scholar 
    Sommer, R. S. & Nadachowski, A. Glacial refugia of mammals in Europe: evidence from fossil records. Mamm. Rev. 36, 251–265 (2006).
    Google Scholar 
    Bennett, K. D. & Provan, J. What do we mean by ‘refugia’? Quat. Sci. Rev. 27, 2449–2455 (2008).
    Google Scholar 
    Terberger, T. & Street, M. Hiatus or continuity? New results for the question of pleniglacial settlement in Central Europe. Antiquity 76, 691–698 (2002).
    Google Scholar 
    Maier, A. in The Central European Magdalenian. Vertebrate Paleobiology and Paleoanthropology (ed. Maier, A.) 231–241 (Springer, 2015).Reade, H. et al. Radiocarbon chronology and environmental context of Last Glacial Maximum human occupation in Switzerland. Sci. Rep. 10, 4694 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stevens, R. E., Hermoso-Buxán, X. L., Marín-Arroyo, A. B., González-Morales, M. R. & Straus, L. G. Investigation of Late Pleistocene and Early Holocene palaeoenvironmental change at El Mirón cave (Cantabria, Spain): insights from carbon and nitrogen isotope analyses of red deer. Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 46–60 (2014).
    Google Scholar 
    Clark, C. D., Hughes, A. L. C., Greenwood, S. L., Jordan, C. & Sejrup, H. P. Pattern and timing of retreat of the last British–Irish Ice Sheet. Quat. Sci. Rev. 44, 112–146 (2012).
    Google Scholar 
    Currant, A. P. & Jacobi, R. in The Ancient Human Occupation of Britain Vol. 14 (eds Ashton, N. et al.) 165–180 (Elsevier, 2011).Walker, M. J. C. et al. Devensian lateglacial environmental changes in Britain: a multi-proxy environmental record from Llanilid, South Wales, UK. Quat. Sci. Rev. 22, 475–520 (2003).
    Google Scholar 
    Hill, T. C. B. et al. Devensian late-glacial environmental change in the Gordano Valley, North Somerset, England: a rare archive for southwest Britain. J. Paleolimnol. 40, 431–444 (2008).
    Google Scholar 
    Jacobi, R. M. & Higham, T. F. G. The early Lateglacial re-colonization of Britain: new radiocarbon evidence from Gough’s Cave, southwest England. Quat. Sci. Rev. 28, 1895–1913 (2009).
    Google Scholar 
    Jacobi, R. & Higham, T. in The Ancient Human Occupation of Britain Vol. 14 (eds Ashton, N. M. et al.) 223–247 (Elsevier, 2011).Grimm, S. B. & Weber, M.-J. The chronological framework of the Hamburgian in the light of old and new 14C dates. Quartär. 55, 17–40 (2008).
    Google Scholar 
    Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brace, S. et al. Ancient genomes indicate population replacement in Early Neolithic Britain. Nat. Ecol. Evol. 3, 765–771 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Jacobi, R. M. & Higham, T. F. G. The ‘Red Lady’ ages gracefully: new ultrafiltration AMS determinations from Paviland. J. Hum. Evol. 55, 898–907 (2008).CAS 
    PubMed 

    Google Scholar 
    Schulting, R. J. et al. A mid-upper Palaeolithic human humerus from Eel Point, South Wales, UK. J. Hum. Evol. 48, 493–505 (2005).PubMed 

    Google Scholar 
    Richards, M. P., Hedges, R. E. M., Jacobi, R., Current, A. & Stringer, C. FOCUS: Gough’s Cave and Sun Hole Cave human stable isotope values indicate a high animal protein diet in the British Upper Palaeolithic. J. Archaeol. Sci. 27, 1–3 (2000).
    Google Scholar 
    Proctor, C., Douka, K., Proctor, J. W. & Higham, T. The age and context of the KC4 Maxilla, Kent’s Cavern, UK. Eur. J. Archaeol. 20, 74–97 (2017).
    Google Scholar 
    Richards, M. P., Jacobi, R., Cook, J., Pettitt, P. B. & Stringer, C. B. Isotope evidence for the intensive use of marine foods by Late Upper Palaeolithic humans. J. Hum. Evol. 49, 390–394 (2005).CAS 
    PubMed 

    Google Scholar 
    Bello, S. M., Saladié, P., Cáceres, I., Rodríguez-Hidalgo, A. & Parfitt, S. A. Upper Palaeolithic ritualistic cannibalism at Gough’s Cave (Somerset, UK): the human remains from head to toe. J. Hum. Evol. 82, 170–189 (2015).PubMed 

    Google Scholar 
    Andrews, P. & Fernández-Jalvo, Y. Cannibalism in Britain: taphonomy of the Creswellian (Pleistocene) faunal and human remains from Gough’s Cave (Somerset, England). Bull. Nat. Hist. Mus. Geol. 58, 59–81 (2003).
    Google Scholar 
    Bello, S. M., Parfitt, S. A. & Stringer, C. B. Earliest directly-dated human skull-cups. PLoS ONE 6, e17026 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Currant, A. P., Jacobi, R. M. & Stringer, C. B. Excavations at Gough’s Cave, Somerset 1986–7. Antiquity 63, 131–136 (1989).
    Google Scholar 
    Davies, M. in Limestones and Caves of Wales (ed. Ford, T. D.) 92–101 (Cambridge Univ. Press, 1989).Dawkins, W. B. Memorandum on the remains from the cave at the Great Ormes Head. Proc. Liverp. Geol. Soc. 4, 156–159 (1880).
    Google Scholar 
    Sieveking, G. & de, G. The Kendrick’s Cave mandible. Br. Mus. Q. 35, 230–250 (1971).
    Google Scholar 
    Pettitt, P. B. Discovery, nature and preliminary thoughts about Britain’s first cave art.Capra 5,1–12 (2003).
    Google Scholar 
    Bello, S. M., Wallduck, R., Parfitt, S. A. & Stringer, C. B. An Upper Palaeolithic engraved human bone associated with ritualistic cannibalism. PLoS ONE 12, e0182127 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Bocherens, H. & Drucker, D. Isotope evidence for paleodiet of late Upper Paleolithic humans in Great Britain: a response to Richards et al. 2005. J. Hum. Evol. 51, 440–442 (2006).PubMed 

    Google Scholar 
    Fernandes, R., Millard, A. R., Brabec, M., Nadeau, M.-J. & Grootes, P. Food reconstruction using isotopic transferred signals (FRUITS): a Bayesian model for diet reconstruction. PLoS ONE 9, e87436 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).
    Google Scholar 
    Kloss-Brandstätter, A. et al. HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum. Mutat. 32, 25–32 (2011).PubMed 

    Google Scholar 
    Skoglund, P., Storå, J., Götherström, A. & Jakobsson, M. Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 40, 4477–4482 (2013).CAS 

    Google Scholar 
    Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).CAS 
    PubMed 

    Google Scholar 
    Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Harney, É., Patterson, N., Reich, D. & Wakeley, J. Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics 217, iyaa045 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Currant, A. & Jacobi, R. A formal mammalian biostratigraphy for the Late Pleistocene of Britain. Quat. Sci. Rev. 20, 1707–1716 (2001).
    Google Scholar 
    Pickard, C. & Bonsall, C. Post-glacial hunter-gatherer subsistence patterns in Britain: dietary reconstruction using FRUITS. Archaeol. Anthropol. Sci. 12, 142 (2020).
    Google Scholar 
    Stevens, R. E., Jacobi, R. M. & Higham, T. F. G. Reassessing the diet of Upper Palaeolithic humans from Gough’s Cave and Sun Hole, Cheddar Gorge, Somerset, UK. J. Archaeol. Sci. 37, 52–61 (2010).
    Google Scholar 
    Sala, N. & Conard, N. Taphonomic analysis of the hominin remains from Swabian Jura and their implications for the mortuary practices during the Upper Paleolithic. Quat. Sci. Rev. 150, 278–300 (2016).
    Google Scholar 
    Saladié, P. & Rodríguez-Hidalgo, A. Archaeological evidence for cannibalism in prehistoric Western Europe: from Homo antecessor to the Bronze Age. J. Archaeol. Method Theory 24, 1034–1071 (2017).
    Google Scholar 
    Cook, J. Ice Age Art: Arrival of the Modern Mind (British Museum Press, 2013).Gupta, S., Collier, J. S., Palmer-Felgate, A. & Potter, G. Catastrophic flooding origin of shelf valley systems in the English Channel. Nature 448, 342–345 (2007).CAS 
    PubMed 

    Google Scholar 
    Mills, W. in From the Atlantic to Beyond the Bug River. Finding and Defining the Federmesser-Gruppen/Azilian (eds Grimm, S. B. et al.) 1–24 (Propylaeum, 2020).Amkreutz, L. et al. What lies beneath … Late Glacial human occupation of the submerged North Sea landscape. Antiquity 92, 22–37 (2018).
    Google Scholar 
    Ward, I., Larcombe, P. & Lillie, M. The dating of Doggerland—post-glacial geochronology of the southern North Sea. Environ. Archaeol. 11, 207–218 (2006).
    Google Scholar 
    Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. B. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52, 103–112 (2010).CAS 

    Google Scholar 
    Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B 370, 20130624 (2015).
    Google Scholar 
    Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).CAS 
    PubMed 

    Google Scholar 
    Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl Acad. Sci. USA 104, 14616–14621 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petr, M., Vernot, B. & Kelso, J. admixr—R package for reproducible analyses using ADMIXTOOLS. Bioinformatics 35, 3194–3195 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Busing, F. M., Meijer, E. & Van Der Leeden, R. Delete-m jackknife for unequal m. Stat. Comput. 9, 3–8 (1999).
    Google Scholar 
    Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014).PubMed 

    Google Scholar 
    Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gallego Llorente, M. et al. Ancient Ethiopian genome reveals extensive Eurasian admixture throughout the African continent. Science 350, 820–822 (2015).CAS 
    PubMed 

    Google Scholar 
    Villalba-Mouco, V. et al. Survival of Late Pleistocene hunter-gatherer ancestry in the Iberian Peninsula. Curr. Biol. 29, 1169–1177 (2019).CAS 
    PubMed 

    Google Scholar  More

  • in

    Relative tree cover does not indicate a lagged Holocene forest response to monsoon rainfall

    arising from J. Cheng et al. Nature Communications https://doi.org/10.1038/s41467-021-22087-2 (2021)Recently, Cheng J. et al.1 cited and simulated the relative percentage tree cover to interpret the ~3000–4000 years lag between tree cover and East Asian Summer Monsoon (EASM) rainfall. They concluded that vegetation feedback has caused a lagged ecosystem response to EASM rainfall during the Holocene (11.7–0 ka). Here, we question the feasibility of using the relative percentage tree cover to measure vegetation feedback to climate. First, the land cover in northern China includes forests, grasslands, and bare land2. Cheng J. et al.1 did not consider the role of bare land in climate feedback models. Absolute land cover, including forest, grassland, and bare land can accurately reveal feedback to climate3. Second, the biome reconstructions they cited represent changes in vegetation type only, whereas the relationship between vegetation type and vegetation cover is altered by many other factors3,4,5. Third, the paper they cited6 averaged the vegetation types on a millennium scale with an interval of 1000 years, so the view that vegetation has a ~3000–4000 years lag in EASM rainfall is not credible as the lag can be enlarged by data resolution. Therefore, absolute vegetation cover, not relative cover, is a prerequisite for studying ecosystem feedback.Our previous work3 was the first to reconstruct the absolute vegetation cover in northern China based on pollen concentrations in two well-dated sediment cores. Using a random forest method, the vegetation cover at Dali Lake in the forest-steppe transition in northern China was determined for the period from 19,000 cal. yr BP to the present with a resolution of approximately 200 years. Han et al.3 showed that tree cover peaked during the early Holocene and it has gradually declined since the middle Holocene. Pollen percentages are widely used in vegetation reconstruction, but they are challenging to analyze because they can be similar in composition, despite being produced by very different flora7,8. This means they represent the relative fractions of vegetation type and not the absolute vegetation cover (Fig. 1A, B). Han et al.3 suggested that pollen concentration data are suitable for the reconstruction of absolute vegetation cover, particularly in arid and semi-arid regions. Dali Lake represents a typical lake in the semi-arid area of northern China. The random forest model showed that the area had a high tree cover during the early Holocene, which suggests that tree cover was a timely response to Holocene monsoon rainfall and there was no time lag at this specific location. Therefore, the data at Dali Lake challenge the conclusion that tree cover has a ~3000–4000 years lag to EASM rainfall.Fig. 1: Trends in pollen percentage, absolute vegetation cover and fire history during the Holocene at Dali Lake, a typical lake in the semi-arid area of northern China.Changes in the percentages of arboreal and non-arboreal pollen (A)3. Reconstructed absolute tree and grass cover (B)3, with gray, yellow, and green shaded areas indicating the standard deviation of 1000 random forest model results for total cover, grass cover, and tree cover, respectively. Normalized fire activity index in the northern region of eastern monsoonal China (C)10. Z-score of transformed charcoal value showing fire activity trend in the temperate steppe of northern China (D)11.Full size imageMoreover, Cheng J. et al.1 used −17 °C as the threshold for tree and grass transition, but this could be an incorrect citation from Bonan et al.9. In the original text by Bonan et al.9, they showed that both temperate deciduous broadleaved trees and C3 grasses have a tolerance of −17 °C for the coldest month for their survival, but this temperature is not the favored threshold for the shift from grasses to trees. Actually, the trend in absolute vegetation cover was mainly driven by summer temperature, annual precipitation, and fire incidents, which is in line with the vegetation-climate relationships at Dali Lake3. That is, higher monsoon rainfall could increase the competitiveness of trees, while increased fire could increase the competitiveness of grasses as grasses are mostly annual and perennial, and they renew faster than trees after a fire. Between 10,000 and 8000 cal. yr BP, monsoon rainfall peaked and there were relatively few fires, which led to a significant increase in absolute tree cover. Since 6500 cal. yr BP, monsoon rainfall decreased and fire increased, resulting in stronger competition by grasses, which has led to an increased grass cover and reduced tree cover3 (Fig. 1B).The impact of secondary disturbances on vegetation dynamics requires careful consideration, particularly the impact of fires on vegetation cover in semi-arid areas of China, even though vegetation growth is strongly constrained by rainfall in this region. Both the normalized fire index in the northern region of eastern monsoonal China10 and the charcoal value in the temperate steppe of northern China11 show a clear antiphase relationship with the absolute forest cover of the Dali Lake region (Fig. 1B, C, D). However, Cheng J. et al.1 did not discuss fire incidence on vegetation evolution in northern China. Fire has occurred frequently through the Holocene10,12 and it plays an important role in vegetation dynamics based on observational evidence13,14. Particularly, fire is considered as a triggering disturbance that can reduce a forest’s resilience to drought under a drying climate during the mid to late Holocene. For Dali Lake, fire and drying climate has co-driven the evolution of vegetation cover since 6500 cal. yr BP3. Moreover, in northern China, data from Daihai Lake and Hulun Nuur Lake also suggest that fire has accelerated the decline of forest cover and the transition from forest to grass during the Holocene13,14. Unfortunately, Cheng J. et al.1 did not discuss the effect of fire when citing and interpreting the observation data, as scale-dependent fires could make the transition between forest and grassland and their interactions variable.In summary, we believe there are three flaws in the data interpretation of Cheng J. et al.1. (1) They contradict the observed evolution of absolute tree cover at Dali Lake in northern China, which is representative of the marginal area of EASM. Relative percentage tree cover cannot accurately reflect a forest’s response and feedback to past climate change. (2) Both temperate deciduous broadleaved trees and C3 grasses have a tolerance of −17 °C for the coldest month for their survival. Thus, −17 °C is not a correct threshold for the shift from grasses to trees. (3) They contradict the ecological theories of secondary disturbance on vegetation dynamics. Fire and other secondary disturbances may be crucial to the transition between forest and grassland. Interpretations of vegetation feedback might be biased if these important factors are not fully considered. Based on the evidence, their conclusion that vegetation feedback causes lagged ecosystem response to EASM rainfall during the Holocene could be problematic. More

  • in

    Lessons from COVID-19 for wildlife ranching in a changing world

    Pascual, U. et al. Biodiversity and the challenge of pluralism. Nat. Sustain. 4, 567–572 (2021).Article 

    Google Scholar 
    Cumming, G. S. The relevance and resilience of protected areas in the Anthropocene. Anthropocene 13, 46–56 (2016).Article 

    Google Scholar 
    Cumming, G. S. et al. Understanding protected area resilience: a multi-scale, social-ecological approach. Ecol. Appl. 25, 299–319 (2015).Article 

    Google Scholar 
    Ellis, E. C. & Mehrabi, Z. Half Earth: promises, pitfalls, and prospects of dedicating half of Earth’s land to conservation. Curr. Opin. Environ. Sustain. 38, 22–30 (2019).Article 

    Google Scholar 
    Golden Kroner, R. E. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019).Article 
    CAS 

    Google Scholar 
    Palfrey, R., Oldekop, J. & Holmes, G. Conservation and social outcomes of private protected areas. Conserv. Biol. 35, 1098–1110 (2021).Article 

    Google Scholar 
    Gurney, G. G. et al. Biodiversity needs every tool in the box: use OECMs. Nature 595, 646–649 (2021).Article 
    CAS 

    Google Scholar 
    Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).Article 

    Google Scholar 
    Taylor, W. A. et al. South Africa’s private wildlife ranches protect globally significant populations of wild ungulates. Biodivers. Conserv. 30, 4111–4135 (2021).Article 

    Google Scholar 
    Child, B. A., Musengezi, J., Parent, G. D. & Child, G. F. T. The economics and institutional economics of wildlife on private land in Africa. Pastoralism 2, 18 (2012).Article 

    Google Scholar 
    Kiffner, C. et al. Community-based wildlife management area supports similar mammal species richness and densities compared to a national park. Ecol. Evol. 10, 480–492 (2020).Article 

    Google Scholar 
    Naidoo, R. et al. Complementary benefits of tourism and hunting to communal conservancies in Namibia. Conserv. Biol. 30, 628–638 (2016).Article 

    Google Scholar 
    Cousins, J., Sadler, J. & Evans, J. Exploring the role of private wildlife ranching as a conservation tool in South Africa: stakeholder perspectives. Ecol. Soc. 13, 43 (2008).Article 

    Google Scholar 
    Kamal, S., Grodzińska-Jurczak, M. & Brown, G. Conservation on private land: a review of global strategies with a proposed classification system. J. Environ. Plann. Manage. 58, 576–597 (2015).Article 

    Google Scholar 
    Ogar, E., Pecl, G. & Mustonen, T. Science must embrace traditional and indigenous knowledge to solve our biodiversity crisis. One Earth 3, 162–165 (2020).Article 

    Google Scholar 
    De Vos, A. & Cumming, G. S. The contribution of land tenure diversity to the spatial resilience of protected area networks. People Nat. 1, 331–346 (2019).Article 

    Google Scholar 
    Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 37, 421–448 (2012).Article 

    Google Scholar 
    Cumming, G. & Collier, J. Change and identity in complex systems. Ecol. Soc. 10, 29 (2005).Article 

    Google Scholar 
    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).Article 

    Google Scholar 
    Leslie, P. & McCabe, J. T. Response diversity and resilience in social–ecological systems. Curr. Anthropol. 54, 114–143 (2013).Article 

    Google Scholar 
    Clements, H. S., Knight, M., Jones, P. & Balfour, D. Private rhino conservation: diverse strategies adopted in response to the poaching crisis. Conserv. Lett. 13, e12741 (2020).Article 

    Google Scholar 
    Carpenter, S., Walker, B., Anderies, J. M. & Abel, N. From metaphor to measurement: resilience of what to what? Ecosystems 4, 765–781 (2001).Article 

    Google Scholar 
    Parker, K., De Vos, A., Clements, H. S., Biggs, D. & Biggs, R. Impacts of a trophy hunting ban on private land conservation in South African biodiversity hotspots. Conserv. Sci. Pract. 2, e214 (2020).
    Google Scholar 
    World Travel & Tourism Council. The Economic Impact of Global Wildlife Tourism (WTTC, 2019).Lindsey, P. et al. Conserving Africa’s wildlife and wildlands through the COVID-19 crisis and beyond. Nat. Ecol. Evol. 4, 1300–1310 (2020).Article 

    Google Scholar 
    Hambira, W. L., Stone, L. S. & Pagiwa, V. Botswana nature-based tourism and COVID-19: transformational implications for the future. Dev. South. Afr. 39, 51–67 (2021).Article 

    Google Scholar 
    Mudzengi, B. K., Gandiwa, E., Muboko, N. & Mutanga, C. N. Innovative community ecotourism coping and recovery strategies to COVID-19 pandemic shocks: the case of Mahenye. Dev. South. Afr. 39, 68–83 (2021).Article 

    Google Scholar 
    Waithaka, J. et al. Impacts of COVID-19 on protected and conserved areas: a global overview and regional perspectives. Parks 27, 41–56 (2021).Article 

    Google Scholar 
    Smith, M. K. S. et al. Sustainability of protected areas: vulnerabilities and opportunities as revealed by COVID-19 in a national park management agency. Biol. Conserv. 255, 108985 (2021).Article 

    Google Scholar 
    Miller-Rushing, A. J. et al. COVID-19 pandemic impacts on conservation research, management, and public engagement in US national parks. Biol. Conserv. 257, 109038 (2021).Article 

    Google Scholar 
    Thurstan, R. H. et al. Envisioning a resilient future for biodiversity conservation in the wake of the COVID‐19 pandemic. People Nat. 3, 990–1013 (2021).Article 

    Google Scholar 
    Taylor, W. A., Lindsey, P. A., Nicholson, S. K., Relton, C. & Davies-Mostert, H. T. Jobs, game meat and profits: the benefits of wildlife ranching on marginal lands in South Africa. Biol. Conserv. 245, 108561 (2020).Article 

    Google Scholar 
    Chidakel, A., Eb, C. & Child, B. The comparative financial and economic performance of protected areas in the Greater Kruger National Park, South Africa: functional diversity and resilience in the socio-economics of a landscape-scale reserve network.J. Sustain. Tour. 28, 1100–1119 (2020).Article 

    Google Scholar 
    Saayman, M., van der Merwe, P. & Saayman, A. The economic impact of trophy hunting in the South African wildlife industry. Glob. Ecol. Conserv. 16, e00510 (2018).Article 

    Google Scholar 
    Hall, R. A political economy of land reform in South Africa. Rev. Afr. Polit. Econ. 31, 213–227 (2004).Article 

    Google Scholar 
    Mkhize, N. Game farm conversions and the land question: unpacking present contradictions and historical continuities in farm dwellers’ tenure insecurity in Cradock. J. Contemp. Afr. Stud. 32, 207–219 (2014).Article 

    Google Scholar 
    Thakholi, L. Conservation labour geographies: subsuming regional labour into private conservation spaces in South Africa. Geoforum 123, 1–11 (2021).Article 

    Google Scholar 
    Brandt, F. Power battles on South African trophy-hunting farms: farm workers, resistance and mobility in the Karoo. J. Contemp. Afr. Stud. 34, 165–181 (2016).Article 

    Google Scholar 
    Child, B. & Barnes, G. The conceptual evolution and practice of community-based natural resource management in southern Africa: past, present and future. Environ. Conserv. 37, 283–295 (2010).Article 

    Google Scholar 
    Clements, H. S., Baum, J. & Cumming, G. S. Money and motives: an organizational ecology perspective on private land conservation. Biol. Conserv. 197, 108–115 (2016).Article 

    Google Scholar 
    van der Merwe, P., Saayman, A. & Jacobs, C. Assessing the economic impact of COVID-19 on the private wildlife industry of South Africa. Glob. Ecol. Conserv. 28, e01633 (2021).Article 

    Google Scholar 
    Clements, H. S. & Cumming, G. S. Traps and transformations influencing the financial viability of tourism on private-land conservation areas. Conserv. Biol. 32, 424–436 (2018).Article 

    Google Scholar 
    Winterbach, C. W., Whitesell, C. & Somers, M. J. Wildlife abundance and diversity as indicators of tourism potential in northern Botswana. PLoS ONE 10, e0135595 (2015).Article 

    Google Scholar 
    Di Minin, E., Fraser, I., Slotow, R. & MacMillan, D. C. Understanding heterogeneous preference of tourists for big game species: implications for conservation and management. Anim. Conserv. 16, 249–258 (2013).Article 

    Google Scholar 
    Clements, H. S., Biggs, R. & Cumming, G. S. Cross-scale and social–ecological changes constitute main threats to private land conservation in South Africa. J. Environ. Manag. 274, 111235 (2020).Article 

    Google Scholar 
    Breen, C. et al. Integrating cultural and natural heritage approaches to marine protected areas in the MENA region. Mar. Policy 132, 104676 (2021).Article 

    Google Scholar 
    Munasinghe, H. The politics of the past: constructing a national identity through heritage conservation. Int. J. Herit. Stud. 11, 251–260 (2005).Article 

    Google Scholar 
    MacKinnon, K. et al. Strengthening the global system of protected areas post-2020: a perspective from the IUCN World Commission on Protected Areas. Parks 36, 281–296 (2020).
    Google Scholar 
    van Kerkhoff, L. et al. Towards future-oriented conservation: managing protected areas in an era of climate change. Ambio 48, 699–713 (2019).Article 

    Google Scholar 
    De Vos, A. et al. Pathogens, disease, and the social–ecological resilience of protected areas. Ecol. Soc. 21, 20 (2016).Article 

    Google Scholar 
    Bengtsson, J. et al. Reserves, resilience and dynamic landscapes. Ambio 32, 389–396 (2003).Article 

    Google Scholar 
    Broom, D. M., Galindo, F. A. & Murgueitio, E. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. R. Soc. B 280, 20132025 (2013).Article 
    CAS 

    Google Scholar 
    IPBES Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).Marnewick, D., Jonas, H. & Stevens, C. Site-level Methodology for Identifying Other Effective Area-based Conservation Measures (OECMs) Draft Version 1.0 (IUCN: Gland, Switzerland; 2020).Nalau, J., Becken, S. & Mackey, B. Ecosystem-based adaptation: a review of the constraints. Environ. Sci. Policy 89, 357–364 (2018).Article 

    Google Scholar 
    Hartung, C. et al. Open Data Kit: tools to build information services for developing regions. In Proc. 4th ACM/IEEE International Conference on Information and Communication Technologies and Development (ed Unwin, T.) pp 1–12 (Association for Computing Machinery, New York, NY, United States; 2010).Oksanen, A. J. et al. Vegan: Community Ecology Package. R version 2.6–2 (2022). https://cran.r-project.org/web/packages/vegan/vegan.pdfWard, J. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).Article 

    Google Scholar 
    Maechler, M. et al. Cluster: Finding Groups in Data. R version 2.0.3 (2015). https://cran.microsoft.com/snapshot/2015-11-17/web/packages/cluster/cluster.pdfR Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). More