Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).Article
CAS
PubMed
Google Scholar
Hylland, K. & Vethaak, A. D. Ecological Impacts of Toxic Chemicals (Bentham Science Publishers, 2012).Bossart, G. D. Marine mammals as sentinel species for oceans and human health. Vet. Pathol. 48, 676–690 (2011).Article
CAS
PubMed
Google Scholar
Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C. & Jambeck, J. Plastic as a persistent marine pollutant. Annu. Rev. Environ. Resour. 42, 1–26 (2017).Article
Google Scholar
Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).Article
ADS
CAS
PubMed
Google Scholar
Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).Article
ADS
PubMed
PubMed Central
Google Scholar
Carpenter, E. J., Anderson, S. J., Harvey, G. R., Miklas, H. P. & Peck, B. B. Polystyrene spherules in coastal waters. Science 178, 749–750 (1972).Article
ADS
CAS
PubMed
Google Scholar
Kenyon, K. W. & Kridler, E. Laysan albatrosses swallow indigestible matter. Auk 86, 339–343 (1969).Article
Google Scholar
Santos, R. G., Machovsky-Capuska, G. E. & Andrades, R. Plastic ingestion as an evolutionary trap: toward a holistic understanding. Science 373, 56–60 (2021).Article
ADS
CAS
PubMed
Google Scholar
Suaria, G. et al. Microfibers in oceanic surface waters: a global characterization. Sci. Adv. 6, 1–9 (2020).Article
Google Scholar
Nelms, S. E., Galloway, T. S., Godley, B. J., Jarvis, D. S. & Lindeque, P. K. Investigating microplastic trophic transfer in marine top predators. Environ. Pollut. 238, 999–1007 (2018).Article
CAS
PubMed
Google Scholar
Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: a meta-analysis and systematic review. Ecol. Appl. 30, e02044 (2020).Article
CAS
PubMed
Google Scholar
Savoca, M. S., McInturf, A. G. & Hazen, E. L. Plastic ingestion by marine fish is widespread and increasing. Glob. Change Biol. 27, 2188–2199 (2021).Article
ADS
CAS
Google Scholar
Lynch, J. M. Quantities of marine debris ingested by sea turtles: Global meta-analysis highlights need for standardized data reporting methods and reveals relative risk. Environ. Sci. Technol. 52, 12026–12038 (2018).Article
ADS
CAS
PubMed
Google Scholar
Wilcox, C., Van Sebille, E. & Hardesty, B. D. Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc. Natl Acad. Sci. USA 112, 11899–11904 (2015).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Fossi, M. C. et al. Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Mar. Pollut. Bull. 64, 2374–2379 (2012).Article
CAS
PubMed
Google Scholar
Germanov, E. S., Marshall, A. D., Bejder, L., Fossi, M. C. & Loneragan, N. R. Microplastics: no small problem for filter-feeding megafauna. Trends Ecol. Evol. 33, 227–232 (2018).Article
PubMed
Google Scholar
Alava, J. J. Modeling the bioaccumulation and biomagnification potential of microplastics in a Cetacean foodweb of the Northeastern pacific: a prospective tool to assess the risk exposure to plastic particles. Front. Mar. Sci. 7, 566101 (2020).Article
Google Scholar
Zantis, L. J. et al. Assessing microplastic exposure of large marine filter-feeders. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.151815. (2021).Garcia-Garin, O. et al. Ingestion of synthetic particles by fin whales feeding off Western Iceland in summer. Chemosphere 279, 130564 (2021).Article
ADS
CAS
PubMed
Google Scholar
Sims, D. W. & Quayle, V. A. Selective foraging behaviour of basking sharks on zooplankton in a small-scale front. Nature 393, 460–465 (1998).Article
ADS
CAS
Google Scholar
Goldbogen, J. A. et al. Prey density and distribution drive the three-dimensional foraging strategies of the largest filter feeder. Funct. Ecol. 29, 951–961 (2015).Article
Google Scholar
Frias, J. P. G. L., Otero, V. & Sobral, P. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar. Environ. Res. 95, 89–95 (2014).Article
CAS
PubMed
Google Scholar
Sun, X., Liang, J., Zhu, M., Zhao, Y. & Zhang, B. Microplastics in seawater and zooplankton from the Yellow Sea*. Environ. Pollut. 242, 585–595 (2018).Article
CAS
PubMed
Google Scholar
Tanaka, K. & Takada, H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci. Rep. 6, 34351 (2016).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Cole, M. et al. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47, 6646–6655 (2013).Article
ADS
CAS
PubMed
Google Scholar
Mahara, N. et al. Assessing size-based exposure to microplastic particles and ingestion pathways in zooplankton and herring in a coastal pelagic ecosystem of British Columbia, Canada. Mar. Ecol. Prog. Ser. 683, 139–155 (2022).Article
ADS
CAS
Google Scholar
Besseling, E. et al. Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae. Mar. Pollut. Bull. 95, 248–252 (2015).Article
CAS
PubMed
Google Scholar
Baini, M. et al. First detection of seven phthalate esters (PAEs) as plastic tracers in superficial neustonic/planktonic samples and cetacean blubber. Anal. Methods 9, 1512–1520 (2017).Article
CAS
Google Scholar
Goldbogen, J. A. et al. How Baleen whales feed: the biomechanics of engulfment and filtration. Annu. Rev. Mar. Sci. 9, 367–386 (2017).Article
ADS
CAS
Google Scholar
Kawamura, A. A Review of Food of Balaenopterid Whales (AGRIS, 1980).Fleming, A. H., Clark, C. T., Calambokidis, J. & Barlow, J. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. Glob. Change Biol. 22, 1214–1224 (2015).Article
ADS
Google Scholar
Clapham, P. J., Leatherwood, S., Szczepaniak, I. & Brownell, R. L. Catches of humpback and other whales from shore stations at Moss Landing and Trinidad, California, 1919–1926. Mar. Mammal. Sci. 13, 368–394 (1997).Article
Google Scholar
Savoca, M. S. et al. Baleen whale prey consumption based on high-resolution foraging measurements. Nature 599, 85–90 (2021).Article
ADS
CAS
PubMed
Google Scholar
Kahane-Rapport, S. R. & Goldbogen, J. A. Allometric scaling of morphology and engulfment capacity in rorqual whales. J. Morphol. 279, 1256–1268 (2018).Article
PubMed
Google Scholar
Kahane-Rapport, S. R. et al. Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale. J. Exp. Biol. 223, jeb224196 (2020).Goldbogen, J. A., Potvin, J. & Shadwick, R. E. Skull and buccal cavity allometry increase mass-specific engulfment capacity in fin whales. Proc. R. Soc. B: Biol. Sci. 277, 861–868 (2010).Article
Google Scholar
Cade, D. E., Carey, N., Domenici, P., Potvin, J. & Goldbogen, J. A. Predator-informed looming stimulus experiments reveal how large filter feeding whales capture highly maneuverable forage fish. Proc. Natl Acad. Sci. USA 117, 472–478 (2020).Article
ADS
CAS
PubMed
Google Scholar
Domenici, P. The scaling of locomotor performance in predator-prey encounters: from fish to killer whales. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 131, 169–182 (2001).Article
CAS
PubMed
Google Scholar
Lindstedt, S. & Caldor, W. Body size, physiological time, and longevity of homeothermic animals. Q. Rev. Biol. 56, 1–16 (1981).Article
Google Scholar
Banavar, J. R. et al. A general basis for quarter-power scaling in animals. Proc. Natl Acad. Sci. USA 107, 15816–15820 (2010).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Fossi, M. C. et al. Fin whales and microplastics: the Mediterranean Sea and the Sea of Cortez scenarios. Environ. Pollut. 209, 68–78 (2016).Article
CAS
PubMed
Google Scholar
Croll et al. Encyclopedia of Marine Mammals 2nd edn (Elsevier, 2018).De Vos, A., Pattiaratchi, C. B. & Harcourt, R. G. Inter-annual variability in blue whale distribution off Southern Sri Lanka between 2011 and 2012. J. Mar. Sci. Eng. 2, 534–550 (2014).Article
Google Scholar
Torres, L. G., Barlow, D. R., Chandler, T. E. & Burnett, J. D. Insight into the kinematics of blue whale surface foraging through drone observations and prey data. PeerJ 8, e8906 (2020).Article
PubMed
PubMed Central
Google Scholar
Friedlaender, A. S. et al. The advantages of diving deep: fin whales quadruple their energy intake when targeting deep krill patches. Funct. Ecol. https://doi.org/10.1111/1365-2435.13471 (2019).Kashiwabara, L. et al. Microplastics and microfibers in surface waters of Monterey Bay National Marine Sanctuary, California. Mar. Pollut. Bull. 165, 112148 (2021).Article
CAS
PubMed
Google Scholar
Lattin, G. L., Moore, C. J., Zellers, A. F., Moore, S. L. & Weisberg, S. B. A comparison of neustonic plastic and zooplankton at different depths near the southern California shore. Mar. Pollut. Bull. 49, 291–294 (2004).Article
CAS
PubMed
Google Scholar
Sutton, R. et al. Understanding Microplastic Levels, Pathways, and Transport in the San Francisco Bay Region. (2019).Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843 (2019).Article
ADS
PubMed
PubMed Central
Google Scholar
Desforges, J. P. W., Galbraith, M. & Ross, P. S. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contamination Toxicol. 69, 320–330 (2015).Article
CAS
Google Scholar
Rochman, C. M. et al. Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 5, 14340 (2015).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Fossi, M. C., Baini, M. & Simmonds, M. P. Cetaceans as ocean health indicators of marine litter impact at global scale. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2020.586627 (2020).Pabortsava, K. & Lampitt, R. S. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat. Commun. 11, 4073 (2020).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Cong, Y. et al. Ingestion, egestion and post-exposure effects of polystyrene microspheres on marine medaka (Oryzias melastigma). Chemosphere 228, 93–100 (2019).Article
ADS
CAS
PubMed
Google Scholar
Ory, N. C., Gallardo, C., Lenz, M. & Thiel, M. Capture, swallowing, and egestion of microplastics by a planktivorous juvenile fish. Environ. Pollut. 240, 566–573 (2018).Article
CAS
PubMed
Google Scholar
Grigorakis, S., Mason, S. A. & Drouillard, K. G. Determination of the gut retention of plastic microbeads and microfibers in goldfish (Carassius auratus). Chemosphere 169, 233–238 (2017).Article
ADS
CAS
PubMed
Google Scholar
Gigault, J. et al. Current opinion: What is a nanoplastic? Environ. Pollut. 235, 1030–1034 (2018).Article
CAS
PubMed
Google Scholar
Lu, Y. et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ. Sci. Technol. 50, 4054–4060 (2016).Article
ADS
CAS
PubMed
Google Scholar
Barboza, L. G. A. et al. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total Environ. 717, 134625 (2020).Article
ADS
CAS
PubMed
Google Scholar
Ramsperger, A. F. R. M. et al. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 6, 1–10 (2020).Article
Google Scholar
Collard, F. et al. Microplastics in livers of European anchovies (Engraulis encrasicolus, L.). Environ. Pollut. 229, 1000–1005 (2017).Article
CAS
PubMed
Google Scholar
Dawson, A. L. et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).Article
ADS
PubMed
PubMed Central
Google Scholar
Wieczorek, A. M. et al. Frequency of microplastics in mesopelagic fishes from the Northwest Atlantic. Front. Mar. Sci. 5, 1–9 (2018).
Google Scholar
Boerger, C. M., Lattin, G. L., Moore, S. L. & Moore, C. J. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull. 60, 2275–2278 (2010).Article
CAS
PubMed
Google Scholar
Davison, P. & Asch, R. Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre. Mar. Ecol. Prog. Ser. 432, 173–180 (2011).Article
ADS
Google Scholar
Lusher, A. L., Donnell, C. O., Officer, R. & Connor, I. O. Microplastic interactions with North Atlantic mesopelagic fish. ICES J. Mar. Sci. 73, 1214–1225 (2016).Article
Google Scholar
Hamilton, B. M. et al. Prevalence of microplastics and anthropogenic debris within a deep-sea food web. Mar. Ecol. Prog. Ser. 675, 23–33 (2021).Article
ADS
Google Scholar
Sun, X. et al. Ingestion of microplastics by natural zooplankton groups in the northern. Mar. Pollut. Bull. 115, 217–224 (2017).Article
CAS
PubMed
Google Scholar
Mayo, C. A. & Marx, M. K. Surface foraging behaviour of the North Atlantic right whale, Eubalaena glacialis, and associated zooplankton characteristics. Can. J. Zool. 68, 2214–2220 (1990).Article
Google Scholar
Friedlaender, A. S. et al. Diel changes in humpback whale Megaptera novaeangliae feeding behavior in response to sand lance Ammodytes spp. behavior and distribution. Mar. Ecol. Prog. Ser. 395, 91–100 (2009).Article
ADS
Google Scholar
Tekman, M. B. et al. Tying up loose ends of microplastic pollution in the arctic: distribution from the sea surface through the water column to deep-sea sediments at the HAUSGARTEN observatory. Environ. Sci. Technol. 54, 4079–4090 (2020).Article
ADS
CAS
PubMed
Google Scholar
Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1, 140317 (2014).Article
ADS
PubMed
PubMed Central
Google Scholar
Iwata, T. et al. Tread-water feeding of Bryde’s whales. Curr. Biol. 27, R1154–R1155 (2017).Article
CAS
PubMed
Google Scholar
Gregorietti, M. et al. Cetacean presence and distribution in the central Mediterranean Sea and potential risks deriving from plastic pollution. Mar. Pollut. Bull. 173, 112943 (2021).Article
CAS
PubMed
Google Scholar
Rosel, P. E., Wilcox, L. A., Yamada, T. K. & Mullin, K. D. A new species of baleen whale (Balaenoptera) from the Gulf of Mexico, with a review of its geographic distribution. Marine Mammal Sci. https://doi.org/10.1111/mms.12776 (2021).Yong, M. M. H. et al. Microplastics in fecal samples of whale sharks (Rhincodon typus) and from surface water in the Philippines. Microplastics Nanoplastics 1, 17 (2021).Article
PubMed
Google Scholar
Fossi, M. C. et al. Are whale sharks exposed to persistent organic pollutants and plastic pollution in the Gulf of California (Mexico)? First ecotoxicological investigation using skin biopsies. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 199, 48–58 (2017).CAS
Google Scholar
Cade, D. E. et al. Predator‐scale spatial analysis of intra‐patch prey distribution reveals the energetic drivers of rorqual whale super‐group formation. Funct. Ecol. 35, 894–908 (2021).Article
CAS
Google Scholar
Goldbogen, J. A. et al. Why whales are big but not bigger: Physiological drivers and ecological limits in the age of ocean giants. Science 366, 1367–1372 (2019).Article
ADS
CAS
PubMed
Google Scholar
Southall, B. L. et al. Behavioral responses of individual blue whales (Balaenoptera musculus) to mid-frequency military sonar. J. Exp. Biol. 222, jeb190637 (2019).Article
PubMed
Google Scholar
Calambokidis, J. et al. Differential vulnerability to ship strikes between day and night for blue, fin, and humpback whales based on dive and movement data from Medium duration archival tags. Front. Mar. Sci. 6, 543 (2019).Article
Google Scholar
Cade, D. E. et al. Tools for integrating inertial sensor data with video bio-loggers, including estimation of animal orientation, motion, and position. Anim. Biotelem. 9, 34 (2021).Article
Google Scholar
Cade, D. E., Friedlaender, A. S., Calambokidis, J. & Goldbogen, J. A. Kinematic diversity in rorqual whale feeding mechanisms. Curr. Biol. 26, 2617–2624 (2016).Article
CAS
PubMed
Google Scholar
Johnson, M. P. & Tyack, P. L. A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE J. Ocean. Eng. 28, 3–12 (2003).Article
ADS
Google Scholar
Cade, D. E., Barr, K. R., Calambokidis, J., Friedlaender, A. S. & Goldbogen, J. A. Determining forward speed from accelerometer jiggle in aquatic environments. J. Exp. Biol. 221, jeb170449 (2018).PubMed
Google Scholar
Hadfield, J. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article
Google Scholar
Hipfner, J. M. et al. Two forage fishes as potential conduits for the vertical transfer of microfibres in Northeastern Pacific Ocean food webs. Environ. Pollut. 239, 215–222 (2018).Article
CAS
PubMed
Google Scholar
Doyle, M. J., Watson, W., Bowlin, N. M. & Sheavly, S. B. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Mar. Environ. Res. 71, 41–52 (2011).Article
CAS
PubMed
Google Scholar
Witteveen, B. H., Worthy, G. A. J., Foy, R. J. & Wynne, K. M. Modeling the diet of humpback whales: An approach using stable carbon and nitrogen isotopes in a Bayesian mixing model. Mar. Mammal. Sci. 28, E233–E250 (2012).Article
Google Scholar More