More stories

  • in

    Root biomass and cumulative yield increase with mowing height in Festuca pratensis irrespective of Epichloë symbiosis

    Jackson, R. B. et al. The Ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234 (2017).Article 

    Google Scholar 
    Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. PNAS 114, 9575–9580 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Amelung, W. et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11, 5427. https://doi.org/10.1038/s41467-020-18887-7 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hopkins, A. & Holz, B. Grassland for agriculture and nature conservation: Production, quality and multi-functionality. Agron 4, 3–20 (2006).
    Google Scholar 
    van Veen, J. A., Liljeroth, E., Lekkerkerk, L. J. A. & van de Geijn, S. C. Carbon fluxes in plant-soil systems at elevated atmospheric CO2 levels. Ecol. Appl. 1, 175–181. https://doi.org/10.2307/1941810 (1991).Article 

    Google Scholar 
    Jones, M. B. & Donnelly, A. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol. 164, 423–439. https://doi.org/10.1111/j.1469-8137.2004.01201.x (2004).Article 

    Google Scholar 
    Ward, S. E. et al. Legacy effects of grassland management on soil carbon to depth. Glob. Change Biol. 22, 2929–2938. https://doi.org/10.1111/gcb.13246 (2016).Article 
    ADS 

    Google Scholar 
    Hungate, B. A. et al. The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388, 576–579. https://doi.org/10.1038/41550 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241, 155–176. https://doi.org/10.1023/A:1016125726789 (2002).Article 
    CAS 

    Google Scholar 
    Chang, J. et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat. Commun. 12, 118. https://doi.org/10.1038/s41467-020-20406-7 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    IPCC. 2001. Climate change 2001: The scientific basis contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change In (eds Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Van Der Linden, P. J., Dai, X., Maskell, K. & Johnson, C. A.) (Cambridge University Press).Gwin, L. Scaling-up sustainable livestock production: Innovation and challenges for grass-fed beef in the U.S. J. Sustain. Agric. 33, 189–209. https://doi.org/10.1080/10440040802660095 (2009).Article 

    Google Scholar 
    Iqbal, J., Siegrist, J. A., Nelson, J. A. & McCulley, R. L. Fungal endophyte infection increases carbon sequestration potential of southeastern USA tall fescue stands. Soil Biol. Biochem. 44, 81–92. https://doi.org/10.1016/j.soilbio.2011.09.010 (2012).Article 
    CAS 

    Google Scholar 
    Robinson, R. A. & Sutherland, W. J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 39, 157–176. https://doi.org/10.1046/j.1365-2664.2002.00695.x (2002).Article 

    Google Scholar 
    Law, Q. D., Bigelow, C. A. & Patton, A. J. Selecting turfgrasses and mowing practices that reduce mowing requirements. Crop Sci. 56, 3318–3327. https://doi.org/10.2135/cropsci2015.09.0595 (2016).Article 

    Google Scholar 
    White, L. M. Carbohydrate reserves of grasses: A review. Rangel Ecol. Manag. 26(1), 13–18 (1973).Article 
    CAS 

    Google Scholar 
    Virkajarvi, P. Effects of defoliation height on regrowth of timothy and meadow fescue in the generative and vegetative phases of growth. Agric. Food Sci. 12, 177–193 (2003).Article 

    Google Scholar 
    Reicher, Z., Patton, A. J., Bigelow, C. A. & Voigt, T. Mowing, Thatching, Aerifying, and Rolling Turf (Turf Grass Sci. Purdue Univ, 2006).
    Google Scholar 
    Kaatz, P. Cutting management for cool-season forage grasses. Michigan State University Extension, https://www.canr.msu.edu/news/cutting_management_for_cool_season_forage_grasses (2011).Briske, D. D. Strategies of plant survival in grazed systems: A functional interpretation. Ecol. Manag. Graz. Syst. 37–67 (1996).Crider, F. J. Root-growth stoppage resulting from defoliation of grass (No. 156759). United States Department of Agriculture, Economic Research Service (1995).Lal, R., Negassa, W. & Lorenz, K. Carbon sequestration in soil. Curr. Opin. Environ. Sustain. 15, 79–86. https://doi.org/10.1016/j.cosust.2015.09.002 (2015).Article 

    Google Scholar 
    Coughenour, M. B., McNaughton, S. J. & Wallace, L. L. Modelling primary production of perennial graminoids – uniting physiological processes and morphometric traits. Ecol. Modell. 23, 101–134. https://doi.org/10.1016/0304-3800(84)90121-2 (1984).Article 
    CAS 

    Google Scholar 
    Whipps, J. M. & Lynch, J. M. Energy losses by the plant in rhizodeposition. Plant products and the new technology / edited by K.W. Fuller and J.R. Gallon (1985).Johansson, G. Release of organic C from growing roots of meadow fescue (Festuca pratensis L.). Soil Biol. Biochem. 24, 427–433. https://doi.org/10.1016/0038-0717(92)90205-C (1992).Article 

    Google Scholar 
    Woodburn, A. T. Glyphosate: Production, pricing and use worldwide. Pest Manag. Sci. 56, 309–312. https://doi.org/10.1002/(SICI)1526-4998(200004)56:4%3c309::AID-PS143%3e3.0.CO;2-C (2000).Article 
    CAS 

    Google Scholar 
    Duke, S. O. & Powles, S. B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 64, 319–325. https://doi.org/10.1002/ps.1518 (2008).Article 
    CAS 

    Google Scholar 
    Helander, M., Saloniemi, I. & Saikkonen, K. Glyphosate in northern ecosystems. Trends Plant Sci. 17, 569–574. https://doi.org/10.1016/j.tplants.2012.05.008 (2012).Article 
    CAS 

    Google Scholar 
    Benbrook, C. M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 28, 3. https://doi.org/10.1186/s12302-016-0070-0 (2016).Article 
    CAS 

    Google Scholar 
    Helander, M. et al. Glyphosate decreases mycorrhizal colonization and affects plant-soil feedback. Sci. Total Environ. 642, 285–291. https://doi.org/10.1016/j.scitotenv.2018.05.377 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Helander, M., Pauna, A., Saikkonen, K. & Saloniemi, I. Glyphosate residues in soil affect crop plant germination and growth. Sci. Rep. 9, 19653. https://doi.org/10.1038/s41598-019-56195-3 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Zaller, J. G. & Brühl, C. A. Editorial: Non-target effects of pesticides on organisms inhabiting agroecosystems. Front Environ. Sci. 7, 75. https://doi.org/10.3389/fenvs.2019.00075 (2019).Article 

    Google Scholar 
    Muola, A. et al. Risk in the circular food economy: Glyphosate-based herbicide residues in manure fertilizers decrease crop yield. Sci. Total Environ. 750, 141422. https://doi.org/10.1016/j.scitotenv.2020.141422 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Fuchs, B., Saikkonen, K. & Helander, M. Glyphosate-modulated biosynthesis driving plant defense and species interactions. Trends Plant Sci. 26, 312–323. https://doi.org/10.1016/j.tplants.2020.11.004 (2021).Article 
    CAS 

    Google Scholar 
    Fuchs, B. et al. A Glyphosate-based herbicide in soil differentially affects hormonal homeostasis and performance of non-target crop plants. Front Plant Sci. 12, 787958 (2022).Article 

    Google Scholar 
    Borggaard, O. K. & Gimsing, A. L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review. Pest Manag. Sci. 64, 441–456. https://doi.org/10.1002/ps.1512 (2008).Article 
    CAS 

    Google Scholar 
    Rueppel, M. L., Brightwell, B. B., Schaefer, J. & Marvel, J. T. Metabolism and degradation of glyphosate in soil and water. J. Agric. Food Chem. 25, 517–528. https://doi.org/10.1021/jf60211a018 (1977).Article 
    CAS 

    Google Scholar 
    Carlisle, S. M. & Trevors, J. T. Glyphosate in the environment. Wat Air Soil Poll 39, 409–420 (1988).Article 
    ADS 
    CAS 

    Google Scholar 
    Torstensson, N. T. L., Lundgren, L. N. & Stenström, J. Influence of climatic and edaphic factors on persistence of glyphosate and 2,4-D in forest soils. Ecotoxicol. Environ. Saf. 18, 230–239. https://doi.org/10.1016/0147-6513(89)90084-5 (1989).Article 
    CAS 

    Google Scholar 
    Stenrød, M., Eklo, O. M., Charnay, M.-P. & Benoit, P. Effect of freezing and thawing on microbial activity and glyphosate degradation in two Norwegian soils. Pest Manag. Sci. 61, 887–898. https://doi.org/10.1002/ps.1107 (2005).Article 
    CAS 

    Google Scholar 
    Antier, C. et al. Glyphosate use in the European agricultural sector and a framework for its further monitoring. Sustainability 12, 5682. https://doi.org/10.3390/su12145682 (2020).Article 
    CAS 

    Google Scholar 
    Jones, R. J. Effect of an associate grass, cutting interval, and cutting height on yield and botanical composition of Siratro pastures in a sub-tropical environment. Aust. J. Exp. Agric. 14, 334–342. https://doi.org/10.1071/ea9740334 (1974).Article 

    Google Scholar 
    Volenec, J. J. & Nelson, C. J. Responses of Tall Fescue leaf meristems to N fertilization and harvest frequency. Crop Sci. 23(4), 720–724. https://doi.org/10.2135/cropsci1983.0011183X002300040028x (1983).Article 

    Google Scholar 
    Saikkonen, K. et al. Fungal endophytes help prevent weed invasions. Agric. Ecosyst. Environ. 165, 1–5. https://doi.org/10.1016/j.agee.2012.12.002 (2013).Article 

    Google Scholar 
    Scavo, A. & Mauromicale, G. Integrated weed management in herbaceous field crops. Agronomy 10, 466. https://doi.org/10.3390/agronomy10040466 (2020).Article 

    Google Scholar 
    Clay, K. & Holah, J. Fungal endophyte symbiosis and plant diversity in successional fields. Science 285, 1742–1744. https://doi.org/10.1126/science.285.5434.1742 (1999).Article 
    CAS 

    Google Scholar 
    Gundel, P. E., Pérez, L. I., Helander, M. & Saikkonen, K. Symbiotically modified organisms: Nontoxic fungal endophytes in grasses. Trends Plant Sci. 18, 420–427. https://doi.org/10.1016/j.tplants.2013.03.003 (2013).Article 
    CAS 

    Google Scholar 
    Kauppinen, M., Saikkonen, K., Helander, M., Pirttilä, A. M. & Wäli, P. R. Epichloë grass endophytes in sustainable agriculture. Nat. Plants 2, 15224 (2016).Article 

    Google Scholar 
    Clay, K. Fungal endophytes of grasses. Annu. Rev. Ecol. Syst. 21, 275–297 (1990).Article 

    Google Scholar 
    Saikkonen, K., Young, C. A., Helander, M. & Schardl, C. L. Endophytic Epichloë species and their grass hosts: From evolution to applications. Plant Mol. Biol. 90, 665–675. https://doi.org/10.1007/s11103-015-0399-6 (2016).Article 
    CAS 

    Google Scholar 
    Ahlholm, J. U., Helander, M., Lehtimäki, S., Wäli, P. & Saikkonen, K. Vertically transmitted fungal endophytes: Different responses of host-parasite systems to environmental conditions. Oikos 99, 173–183. https://doi.org/10.1034/j.1600-0706.2002.990118.x (2002).Article 

    Google Scholar 
    Easton, H. S. & Fletcher, L. R. in Proc. 6th International Symposium Fungal Endophytes of Grasses (eds Popay, A. J. & Thom, E. R.) 11–18 (New Zealand Grassland Association, 2007).Saari, S., Lehtonen, P., Helander, M. & Saikkonen, K. High variation in frequency of infection by endophytes in cultivars of meadow fescue in Finland. Grass Forage Sci. 64, 169–176. https://doi.org/10.1111/j.1365-2494.2009.00680.x (2009).Article 

    Google Scholar 
    König, J., Fuchs, B., Krischke, M., Mueller, M. J. & Krauss, J. Hide and seek: Infection rates and alkaloid concentrations of Epichloë festucae var. lolii in Lolium perenne along a land-use gradient in Germany. Grass Forage Sci. 73, 510–516. https://doi.org/10.1111/gfs.12330 (2018).Article 
    CAS 

    Google Scholar 
    Krauss, J. et al. Epichloë endophyte infection rates and alkaloid content in commercially available grass seed mixtures in Europe. Microorganisms 8, 498. https://doi.org/10.3390/microorganisms8040498 (2020).Article 
    CAS 

    Google Scholar 
    Brink, G. E., Casler, M. D. & Martin, N. P. Meadow Fescue, Tall Fescue, and Orchardgrass response to defoliation management. Agronomy J 102, 667–674. https://doi.org/10.2134/agronj2009.0376 (2010).Article 

    Google Scholar 
    Conant, R. T., Cerri, C. E. P., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: A new synthesis. Ecol. Appl. 27, 662–668. https://doi.org/10.1002/eap.1473 (2017).Article 

    Google Scholar 
    Trlica, M. J. Distribution and utilization of carbohydrate reserves in range plants. In (ed Sosebee, R. E.) 73–96 (Rangeland Plant Physiology, 1977).Faeth, S. H. & Sullivan, T. J. Mutualistic asexual endophytes in a native grass are usually parasitic. Am. Nat. 161, 310–325. https://doi.org/10.1086/345937 (2003).Article 

    Google Scholar 
    Saikkonen, K., Saari, S. & Helander, M. Defensive mutualism between plants and endophytic fungi?. Fungal Divers. 41, 101–113. https://doi.org/10.1007/s13225-010-0023-7 (2010).Article 

    Google Scholar 
    Clay, K. & Schardl, C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat. 160, 99–127. https://doi.org/10.1086/342161 (2002).Article 

    Google Scholar 
    Rozpądek, P. et al. The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta 242, 1025–1035. https://doi.org/10.1007/s00425-015-2337-x (2015).Article 
    CAS 

    Google Scholar 
    Xia, C. et al. An Epichloë endophyte improves photosynthetic ability and dry matter production of its host Achnatherum inebrians infected by Blumeria graminis under various soil water conditions. Fungal Ecol. 22, 26–34. https://doi.org/10.1016/j.funeco.2016.04.002 (2016).Article 

    Google Scholar 
    Malinowski, D., Leuchtmann, A., Schmidt, D. & Nosberger, J. Symbiosis with Neotyphodium uncinatum endophyte may increase the competitive ability of meadow fescue. Agron. J. 89, 833–839 (1997).Article 

    Google Scholar 
    Schardl, C. L., Leuchtmann, A. & Spiering, M. J. Symbioses of grasses with seedborne fungal endophytes. Ann. Rev. Plant Biol. 55, 315–340. https://doi.org/10.1146/annurev.arplant.55.031903.141735 (2004).Article 
    CAS 

    Google Scholar 
    Chen, Z. et al. Fungal endophyte improves survival of Lolium perenne in low fertility soils by increasing root growth, metabolic activity and absorption of nutrients. Plant Soil 452, 185–206. https://doi.org/10.1007/s11104-020-04556-7 (2020).Article 
    CAS 

    Google Scholar 
    Franz, J. E., Mao, M.K. and Sikorski, J.A. (1997). Uptake, transport and metabolism of glyphosate in plants, in Glyphosate: A unique global herbicide, ed by Franz JE, ACS Monograph No 189, American Chemical Society, Washington, DC, pp 143–181.Pline, W. A., Wilcut, J. W., Edmisten, K. L. & Wells, R. Physiological and morphological response of glyphosate-resistant and non-glyphosate-resistant cotton seedlings to root-absorbed glyphosate. Pestic. Biochem. Phys. 73, 48–58. https://doi.org/10.1016/S0048-3575(02)00014-7 (2002).Article 
    CAS 

    Google Scholar 
    Johansson, G. Carbon distribution in grass (Festuca pratensis L.) during regrowth after cutting—utilization of stored and newly assimilated carbon. Plant Soil 151, 11–20. https://doi.org/10.1007/BF00010781 (1993).Article 
    ADS 
    CAS 

    Google Scholar 
    Ergon, Å. et al. How can forage production in Nordic and Mediterranean Europe adapt to the challenges and opportunities arising from climate change?. Euro J. Agron. 92, 97–106. https://doi.org/10.1016/j.eja.2017.09.016 (2018).Article 

    Google Scholar 
    Niemelainen, O. et al. Increase in perennial forage yields driven by climate change, at Apukka Research Station, Rovaniemi, 1980–2017. Agric. Food Sci. 29, 139–153 (2020).Article 

    Google Scholar 
    Anwar, M. R., Liu, D. L., Macadam, I. & Kelly, G. Adapting agriculture to climate change: A review. Theor. Appl. Climatol. 113, 225–245. https://doi.org/10.1007/s00704-012-0780-1 (2013).Article 
    ADS 

    Google Scholar 
    Farmit. Nurmea yli kymppitonni hehtaarilta. Farmit.net. (accessed 28 June 2022); https://www.farmit.net/nurmikasvit-lypsylehma/2016/05/24/nurmea-yli-kymppitonni-hehtaarilta (2016).Peltonen, S., Aalto, K., Hennola, I. & Anttila, S. (Eds.). Peltojen kunnostus. (Tieto Tuottamaan; No. 145), (ProAgria Keskusten Liiton julkaisuja; No. 1163). ProAgria maaseutukeskusten liitto (2019).Laihonen, M., Saikkonen, K., Helander, M. & Tammaru, T. Insect oviposition preference between Epichloë-symbiotic and Epichloë-free grasses does not necessarily reflect larval performance. Ecol. Evol. 10, 7242–7249. https://doi.org/10.1002/ece3.6450 (2020).Article 

    Google Scholar  More

  • in

    Adhesion of Rhodococcus bacteria to solid hydrocarbons and enhanced biodegradation of these compounds

    Semple, K. T., Morriss, A. W. J. & Paton, G. I. Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. Eur. J. Soil Sci. 54, 809–818 (2003).Article 
    CAS 

    Google Scholar 
    Ivshina, I. et al. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231. J. Hazard. Mater. 312, 8–17 (2016).Article 
    CAS 

    Google Scholar 
    Varjani, S. J. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 223, 277–286 (2017).Article 
    CAS 

    Google Scholar 
    Chen, J. et al. Long-chain n-alkane biodegradation coupling to methane production in an enriched culture from production water of a high-temperature oil reservoir. AMB Express 10, 63 (2020).Article 
    CAS 

    Google Scholar 
    Li, Y. & Xiong, Y. Identification and quantification of mixed sources of oil spills based on distributions and isotope profiles of long-chain n-alkanes. Mar. Pollut. Bull. 58, 1868–1873 (2009).Article 
    CAS 

    Google Scholar 
    Stout, S. A., Payne, J. R., Emsbo-Mattingly, S. D. & Baker, G. Weathering of field-collected floating and stranded Macondo oils during and shortly after the Deepwater Horizon oil spill. Mar. Pollut. Bull. 105, 7–22 (2016).Article 
    CAS 

    Google Scholar 
    Wang, X. et al. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls and legacy and current pesticides in indoor environment in Australia—occurrence, sources and exposure risks. Sci. Total Environ. 693, 133588 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Qiao, M., Qi, W., Liu, H. & Qu, J. Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: Occurrence, ecotoxicity, and sources. Environ. Int. 163, 107232 (2022).Article 

    Google Scholar 
    Abbasnezhad, H., Foght, J. M. & Gray, M. R. Adhesion to the hydrocarbon phase increases phenanthrene degradation by Pseudomonas fluorescens LP6a. Biodegradation 22, 485–496 (2011).Article 
    CAS 

    Google Scholar 
    Abbasnezhad, H., Gray, M. & Foght, J. M. Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl. Microbiol. Biotechnol. 92, 653–675 (2011).Article 
    CAS 

    Google Scholar 
    Dewangan, N. K. & Conrad, J. C. Bacterial motility enhances adhesion to oil droplets. Soft Matter 16, 8237–8244 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodrigues, E. M., Cesar, D. E., Santos de Oliveira, R., de Paula Siqueira, T. & Tótola, M. R. Hydrocarbonoclastic bacterial species growing on hexadecane: Implications for bioaugmentation in marine ecosystems. Environ. Pollut. 267, (2020).Wang, J. D., Qu, C. T. & Song, S. F. Temperature-induced changes in the proteome of Pseudomonas aeruginosa during petroleum hydrocarbon degradation. Arch. Microbiol. 203, 2463–2473 (2021).Article 
    CAS 

    Google Scholar 
    Bastiaens, L. et al. Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl. Environ. Microbiol. 66, 1834–1843 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Tao, K., Zhao, S., Gao, P., Wang, L. & Jia, H. Impacts of Pantoea agglomerans strain and cation-modified clay minerals on the adsorption and biodegradation of phenanthrene. Ecotoxicol. Environ. Saf. 161, 237–244 (2018).Article 
    CAS 

    Google Scholar 
    Xu, X. et al. Biodegradation potential of polycyclic aromatic hydrocarbons by immobilized Klebsiella sp. in soil washing effluent. Chemosphere 223, 140–147 (2019).Wang, H. et al. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins. Front. Environ. Sci. Eng. 14, 1–21 (2020).Article 

    Google Scholar 
    Tarasova, E. V., Grishko, V. V. & Ivshina, I. B. Cell adaptations of Rhodococcus rhodochrous IEGM 66 to betulin biotransformation. Process Biochem. 52, 1–9 (2017).Article 
    CAS 

    Google Scholar 
    Bohinc, K. et al. Available surface dictates microbial adhesion capacity. Int. J. Adhes. Adhes. 50, 265–272 (2014).Article 
    CAS 

    Google Scholar 
    Carniello, V., Peterson, B. W., van der Mei, H. C. & Busscher, H. J. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Adv. Colloid Interface Sci. 261, 1–14 (2018).Article 
    CAS 

    Google Scholar 
    Dorobantu, L. S., Bhattacharjee, S., Foght, J. M. & Gray, M. R. Analysis of force interactions between AFM tips and hydrophobic bacteria using DLVO theory. Langmuir 25, 6968–6976 (2009).Article 
    CAS 

    Google Scholar 
    Lehocký, M. et al. Adhesion of Rhodococcus sp. S3E2 and Rhodococcus sp. S3E3 to plasma prepared Teflon-like and organosilicon surfaces. J. Mater. Process. Technol. 209, 2871–2875 (2009).Hori, K. & Matsumoto, S. Bacterial adhesion: From mechanism to control. Biochem. Eng. J. 48, 424–434 (2010).Article 
    CAS 

    Google Scholar 
    Ivshina, I. B. et al. Biosurfactant-enhanced immobilization of hydrocarbon-oxidizing Rhodococcus ruber on sawdust. Appl. Microbiol. Biotechnol. 97, 5315–5327 (2013).Article 
    CAS 

    Google Scholar 
    Pen, Y. et al. Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus. Biochim. Biophys. Acta – Biomembr. 1848, 518–526 (2015).Article 
    CAS 

    Google Scholar 
    De Cesare, F., Di Mattia, E., Zussman, E. & Macagnano, A. A study on the dependence of bacteria adhesion on the polymer nanofibre diameter. Environ. Sci. Nano 6, 778–797 (2019).Article 

    Google Scholar 
    Bergeau, D. et al. Unusual extracellular appendages deployed by the model strain Pseudomonas fluorescens C7R12. PLoS ONE 14, 1–20 (2019).Article 

    Google Scholar 
    Jin, X. & Marshall, J. S. Mechanics of biofilms formed of bacteria with fimbriae appendages. PLoS ONE 15, 1–22 (2020).Article 

    Google Scholar 
    Tarafdar, A., Sarkar, T. K., Chakraborty, S., Sinha, A. & Masto, R. E. Biofilm development of Bacillus thuringiensis on MWCNT buckypaper: Adsorption-synergic biodegradation of phenanthrene. Ecotoxicol. Environ. Saf. 157, 327–334 (2018).Article 
    CAS 

    Google Scholar 
    Rodrigues, A. C., Wuertz, S., Brito, A. G. & Melo, L. F. Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: Kinetics and physiological aspects. Biotechnol. Bioeng. 90, 281–289 (2005).Article 
    CAS 

    Google Scholar 
    Yang, H. Y., Jia, R. B., Chen, B. & Li, L. Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52. Environ. Sci. Pollut. Res. 21, 11086–11093 (2014).Auffret, M. D., Yergeau, E., Labbé, D., Fayolle-Guichard, F. & Greer, C. W. Importance of Rhodococcus strains in a bacterial consortium degrading a mixture of hydrocarbons, gasoline, and diesel oil additives revealed by metatranscriptomic analysis. Appl. Microbiol. Biotechnol. 99, 2419–2430 (2015).Article 
    CAS 

    Google Scholar 
    Ahmed, R. Z. & Ahmed, N. Isolation of Rhodococcus sp. CMGCZ capable to degrade high concentration of fluoranthene. Water. Air. Soil Pollut. 227, 162 (2016).Ivshina, I. B., Kuyukina, M. S. & Krivoruchko, A. V. Hydrocarbon-oxidizing bacteria and their potential in eco-biotechnology and bioremediation. in Microbial Resources (ed. Kurtboke, I.) 121–148 (Elsevier Inc., 2017). https://doi.org/10.1016/B978-0-12-804765-1.00006-0.Pi, Y. et al. Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp. Bioresour. Technol. 232, 263–269 (2017).Article 
    CAS 

    Google Scholar 
    Cappelletti, M., Fedi, S. & Zannoni, D. Degradation of alkanes in Rhodococcus. in Biology of Rhodococcus, Microbiology Monographs 16 (ed. Alvarez, H. M.) 137–171 (Springer Nature Switzerland AG, 2019). https://doi.org/10.1007/978-3-030-11461-9_6.Kuyukina, M. S. & Ivshina, I. B. Application of Rhodococcus in bioremediation of contaminated environments. in Biology of Rhodococcus, Microbiology Monographs 16 (ed. Alvarez, H. M.) 231–262 (Springer Nature Switzerland, 2019). https://doi.org/10.1007/978-3-642-12937-7_9.Krivoruchko, A. V. et al. Adhesion of Rhodococcus ruber IEGM 342 to polystyrene studied using contact and non-contact temperature measurement techniques. Appl. Microbiol. Biotechnol. 102, 8525–8536 (2018).Article 
    CAS 

    Google Scholar 
    Rubtsova, E. V., Kuyukina, M. S. & Ivshina, I. B. Effect of cultivation conditions on the adhesive activity of Rhodococcus cells towards n-hexadecane. Appl. Biochem. Microbiol. 48, 452–459 (2012).Article 
    CAS 

    Google Scholar 
    Pearlman, R. S., Yalkowsky, S. H. & Banerjee, S. Water solubilities of polynuclear aromatic and heteroaromatic compounds. J. Phys. Chem. Ref. Data 13, 555–562 (1984).Article 
    ADS 
    CAS 

    Google Scholar 
    Wrenn, B. A. & Venosa, A. D. Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Can. J. Microbiol. 42, 252–258 (1996).Article 
    CAS 

    Google Scholar 
    Christofi, N., Ivshina, I. B., Kuyukina, M. S. & Philp, J. C. Biological treatment of crude oil contaminated soil in Russia. Geol. Soc. Eng. Geol. Spec. Publ. 14, 45–51 (1998).
    Google Scholar 
    Sorongon, M. L., Bloodgood, R. A. & Burchard, R. P. Hydrophobicity, adhesion, and surface-exposed proteins of gliding bacteria. Appl. Environ. Microbiol. 57, 3193–3199 (1991).Article 
    ADS 
    CAS 

    Google Scholar 
    Bellon-Fontaine, M.-N., Rault, J. & van Ossb, C. J. Microbial adhesion to solvents : a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells. Colloids Surf. B Biointerfaces 7, 47–53 (1996).Article 
    CAS 

    Google Scholar 
    Mattos-Guaraldi, A. L., Formiga, L. C. D. & Andrade, A. F. B. Cell surface hydrophobicity of sucrose fermenting and nonfermenting Corynebacterium diphtheriae strains evaluated by different methods. Curr. Microbiol. 38, 37–42 (1999).Article 
    CAS 

    Google Scholar 
    Nikiyan, H., Vasilchenko, A. & Deryabin, D. Humidity-dependent bacterial cells functional morphometry investigations using atomic forcemicroscope. Int. J. Microbiol. 2010, 704170 (2010).Article 

    Google Scholar 
    Xu, J. L. et al. Rhodococcus qingshengii sp. nov., a carbendazim-degrading bacterium. Int. J. Syst. Evol. Microbiol. 57, 2754–2757 (2007).Lee, S. D. & Kim, I. S. Rhodococcus spelaei sp. nov., isolated from a cave, and proposals that Rhodococcus biphenylivorans is a later synonym of Rhodococcus pyridinivorans, Rhodococcus qingshengii and Rhodococcus baikonurensis are later synonym. Int. J. Syst. Evol. Microbiol. 71, (2021).Korshunova, I. O., Pistsova, O. N., Kuyukina, M. S. & Ivshina, I. B. The effect of organic solvents on the viability and morphofunctional properties of Rhodococcus. Appl. Biochem. Microbiol. 52, 53–61 (2016).Article 

    Google Scholar 
    de Carvalho, C. C. C. R., Wick, L. Y. & Heipieper, H. J. Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl. Microbiol. Biotechnol. 82, 311–320 (2009).Article 
    CAS 

    Google Scholar 
    Kuyukina, M. S. et al. Oilfield wastewater biotreatment in a fluidized-bed bioreactor using co-immobilized Rhodococcus cultures. J. Environ. Chem. Eng. 5, 1252–1260 (2017).Article 
    CAS 

    Google Scholar 
    Abdel-Shafy, H. I. & Mansour, M. S. M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25, 107–123 (2016).Article 

    Google Scholar 
    He, J. et al. Subchronic exposure of benzo(a)pyrene interferes with the expression of Bcl-2, Ki-67, C-myc and p53, Bax, Caspase-3 in sub-regions of cerebral cortex and hippocampus. Exp. Toxicol. Pathol. 68, 149–156 (2016).Article 
    CAS 

    Google Scholar 
    Boente, C., Baragaño, D. & Gallego, J. R. Benzo[a]pyrene sourcing and abundance in a coal region in transition reveals historical pollution, rendering soil screening levels impractical. Environ. Pollut. 266, (2020).Cao, Y. et al. Interfacial interaction between benzo[a]pyrene and pulmonary surfactant: Adverse effects on lung health. Environ. Pollut. 287, 117669 (2021).Article 
    CAS 

    Google Scholar 
    Gallardo-Moreno, A. M. et al. Thermodynamic analysis of growth temperature dependence in the adhesion of Candida parapsilosis to polystyrene. Appl. Environ. Microbiol. 68, 2610–2613 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Kuyukina, M. S., Ivshina, I. B., Korshunova, I. O., Stukova, G. I. & Krivoruchko, A. V. Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene. AMB Express 6, 1–12 (2016).Article 
    CAS 

    Google Scholar 
    Letek, M. et al. The genome of a pathogenic Rhodococcus: Cooptive virulence underpinned by key gene acquisitions. PLoS Genet. 6, 1–17 (2010).Article 

    Google Scholar 
    Dayan, A. et al. The involvement of coordinative interactions in the binding of dihydrolipoamide dehydrogenase to titanium dioxide – Localization of a putative binding site. J. Mol. Recognit. 30, 1–11 (2017).Article 
    ADS 

    Google Scholar 
    Choi, E. J. & Dimitriadis, E. K. Cytochrome c adsorption to supported, anionic lipid bilayers studied via atomic force microscopy. Biophys. J. 87, 3234–3241 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Wright, C. J. & Armstrong, I. The application of atomic force microscopy force measurements to the characterisation of microbial surfaces. Surf. Interface Anal. 38, 1419–1428 (2006).Article 
    CAS 

    Google Scholar 
    Salerno, M., Dante, S., Patra, N. & Diaspro, A. AFM measurement of the stiffness of layers of agarose gel patterned with polylysine. Microsc. Res. Tech. 73, 982–990 (2010).CAS 

    Google Scholar 
    Campbell, J. E., Yang, J. & Day, G. M. Predicted energy-structure-function maps for the evaluation of small molecule organic semiconductors. J. Mater. Chem. C 5, 7574–7584 (2017).Article 
    CAS 

    Google Scholar 
    Wang, N. et al. Molecular elucidating of an unusual growth mechanism for polycyclic aromatic hydrocarbons in confined space. Nat. Commun. 11, 1079 (2020).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Different roles of concurring climate and regional land-use changes in past 40 years’ insect trends

    All statistical analyses were performed through R version 4.1.050. Besides the explicitly mentioned packages, the R packages cowplot51, data.table52, dplyr53, ggplot254, itsadug55, purrr56, raster57, sf58, sfheaders59, tibble60 and tidyr61 were key for data handling, data analysis, and plotting. Posterior distributions were summarised through means and credible intervals (CIs). CIs are the highest density intervals, calculated through the package bayestestR62. To summarise multiple posterior distributions, 5000 Monte Carlo simulations were used.Study regionThe study included data from the whole of Switzerland. As an observation unit for records, we chose 1 × 1 km squares (henceforth squares). Switzerland covers 41,285 km2, spanning a large gradient in elevation, climate and land use. It can be divided into five coarse biogeographic regions based on floristic and faunistic distributions and on institutional borders of municipalities63 (Fig. 1b). The Jura is a mountainous but agricultural landscape in the northwest (~4200 km2, 300–1600 m asl; annual mean temperature: ~9.4 °C, annual precipitation: ~1100 mm (gridded climate data here and in the following from MeteoSwiss (https://www.meteoswiss.admin.ch), average 1980–2020, at sites ~500 m asl.)). The Jura is separated from the Alps by the Plateau, which is the lowland region spanning from the southwest to the northeast (~11,300 km2, 250–1400 m asl, mostly below 1000 m asl; ~9.5 °C, ~1100 mm). It is the most densely populated region with most intensive agricultural use. For the Alps, three regions can be distinguished. The Northern Alps (~10,700 km2, 350–4000 m asl; ~9.2 °C, ~1400 mm), which entail the area from the lower Prealps, which are rather densely populated and largely used agriculturally, up to the northern alpine mountain range. The Central Alps (~11,300 km2, 450–4600 m asl; ~9.5 °C, ~800 mm) comprise of the highest mountain ranges in Switzerland and the inner alpine valleys characterised by more continental climate (i.e., lower precipitation). Intensive agricultural land use is concentrated in the lower elevations and agriculture in higher elevations is mostly restricted to grassland areas used for summer grazing. The Southern Alps (~3800 km2, 200–3800 m asl; ~10.4 °C, 1700 mm) range from the southern alpine mountain range down to the lowest elevations of Switzerland and are clearly distinguished from the other regions climatically, as they are influenced by Mediterranean climate, resulting in, e.g., milder winters. Besides differences between biogeographic regions, climate, land use and changes therein vary greatly between different elevations (Supplementary Fig. S9). To account for these differences, we split the regions in two elevation classes at the level of squares. All squares with a mean elevation of less than 1000 m asl were assigned to the low elevation, whereas squares above 1000 m asl were assigned to the high elevation (no squares in the Plateau fell in the high elevation). This resulted in nine bioclimatic zones (Fig. 1b), for which separate species trends were estimated in the subsequent analyses. The threshold of 1000 m asl enabled a meaningful distinction based on the studied drivers (climate and land-use change) and was also determined by the availability of records data (high coverage in all nine bioclimatic zones).Species detection dataWe extracted records of butterflies (refers here to Papilionoidea as well as Zygaenidae moths), grasshoppers (refers here to all Orthoptera) and dragonflies (refers here to all Odonata) from the database curated by info fauna (The Swiss Faunistic Records Centre; metadata available from the GBIF database at https://doi.org/10.15468/atyl1j, https://doi.org/10.15468/bcthst, https://doi.org/10.15468/fcxtjg). This database unites faunistic records made in Switzerland from various sources including both records by private persons and from projects such as research projects, Red-List inventories or checks of revitalisation measures. Only records with a sufficient precision, both temporally (day of recording) and spatially (place of recording known to the precision of 1 km2 or less), were used for analyses. Besides temporal and spatial information, information on the observer and the project (if any) was obtained for each record. All records made by a person/project on a day in a square were attributed to one visit, which was later used as replication unit to model the observation process (see below).We included records from the focal time range 1980–2020. Additionally, we included records from 1970–1979 for butterflies in occupancy-detection models to increase the robustness of mean occupancy estimates. We excluded the mean occupancy estimates for these additional years from further analyses to cover the same period for all groups. Prior to analyses, following the approach in ref. 26, we excluded observations of non-adult stages and observations from squares that only were visited in 1 year of the studied period, because these would not contain any information on change between years64. This resulted in 18,018 squares (15,248 for butterflies, 9870 for grasshoppers, 5188 for dragonflies) and 1,448,134 records (879,207 butterflies, 272,863 grasshoppers, 296,064 dragonflies) that we included in the analyses (Supplementary Fig. S2). The three datasets for the different groups were treated separately for occupancy-detection modelling, following the same procedures for all three groups. To determine detections and non-detections for each species and visit, which could then be used for occupancy-detection modelling, we only included visits that (a) did not originate from a project, which had a restricted taxonomic focus not including the focal species, (b) were not below the 5% quantile or above the 95% quantile of the day of the year at which the focal species has been recorded26 and (c) were from a bioclimatic zone, from which the focal species was recorded at least once.Occupancy-detection modelsWe used occupancy-detection models65,66 to estimate annual mean occupancy of squares for the whole of Switzerland and for the nine bioclimatic zones for each species (i.e., mean number of squares occupied by a species), mostly following the approach in ref. 26. We fitted a separate model for each species, based on different datasets for the three groups. We included only species that were recorded in any square in at least 25% of all analysed years. Occupancy-detection models are hierarchical models in which two interconnected processes are modelled jointly, one of which describes occurrence probability (ecological process; used to infer mean occupancy), whereas the other describes detection probability (observation process)65. The two processes are modelled through logistic regression models. The occupancy model estimates occurrence probability for all square and year combinations, whereas the observation model estimates the probability that a species has been detected by an observer during a visit. More formally, each square i in the year t has the latent occupancy status zi,t, which may be either 1 (present) or 0 (absent). zi,t depends on the occurrence probability ψi,t as follows$${z}_{i,t}sim {{{mbox{Bern}}}}left({psi }_{i,t}right)$$
    (1)
    The occupancy status is linked to the detection/non-detection data yi,t,j at square i in year t at visit j as$${y}_{i,t,, j}{{|}}{z}_{i,t}sim {mathrm {Bern}}({z}_{i,t}{p}_{i,t,j})$$
    (2)
    where pi,t,j is the detection probability.The regression model for occurrence probability (occupancy model) looked as follows$${{mbox{logit}}}({psi }_{i,t})={mu }_{o}+{beta }_{o1}{{{{{rm{elevatio}}}}}}{{{{{{rm{n}}}}}}}_{i}+{beta }_{o2}{{{{{rm{elevatio}}}}}}{{{{{{rm{n}}}}}}}_{i}^{2}+{alpha }_{o1,i}+{alpha }_{o2,i}+{gamma }_{r(i),t}$$
    (3)
    with μo being the global intercept, elevationi being the scaled elevation above sea level and αo1,i, αo2,i and γr(i),t being the random effects for fine biogeographic region (12 levels, Supplementary Fig. S10; these were again defined based on floristic and faunistic distributions and followed institutional borders63), square and year. The random effects for fine biogeographic region and square were modelled as follows:$${alpha }_{o1}sim {{{{{rm{Normal}}}}}}left(0,{sigma }_{o1}right)$$
    (4)
    and$${alpha }_{o2}sim {{{{{rm{Normal}}}}}}left(0,{sigma }_{o2}right)$$
    (5)
    The random effect of the year was implemented with separate random walks per zone following ref. 67, which allowed the effect to vary between the nine bioclimatic zones, while accounting for dependencies among consecutive years. Conceptually, in random walks, the effect of 1 year is dependent on the previous year’s effect, resulting in trajectories with less sudden changes between consecutive years. This was implemented as follows:$${gamma }_{r,t}sim left{begin{array}{c}{{{{{rm{Normal}}}}}}left(0,{1.5}^{2}right){{{{rm{for}}}}},t=1\ {{{{{rm{Normal}}}}}}left({gamma }_{r,t-1},{sigma }_{gamma r}^{2}right){{{{rm{for}}}}},t , > ,1end{array}right.$$
    (6)
    with$${sigma }_{gamma r}sim {{mbox{Cauchy}}}left(0,1right)$$
    (7)
    The regression model for detection probability (observation model) looked as follows$${{{{rm{logit}}}}}({p}_{i,t,j}) =, {mu }_{d}+{beta }_{d1}{{{{{rm{yda}}}}}}{{{{{{rm{y}}}}}}}_{j}+{beta }_{d2}{{{{{rm{yda}}}}}}{{{{{{rm{y}}}}}}}_{j}^{2}+{beta }_{d3}{{{{{rm{shortlis}}}}}}{{{{{{rm{t}}}}}}}_{j}+{beta }_{d4}{{{{{rm{longlis}}}}}}{{{{{{rm{t}}}}}}}_{j} \ quad+ {beta }_{d5}{{{{{rm{exper}}}}}}{{{{{{rm{t}}}}}}}_{j}+{beta }_{d6}{{{{{rm{projec}}}}}}{{{{{{rm{t}}}}}}}_{j}+{beta }_{d7}{{{{{rm{targeted}}}}}}_{{{{{rm{projec}}}}}}{{{{{{rm{t}}}}}}}_{j} \ quad+ {beta }_{d8}{{{{{rm{redlis}}}}}}{{{{{{rm{t}}}}}}}_{j}+{alpha }_{d1,t}$$
    (8)
    where μd is the global intercept, ydayj is the scaled day of the year of visit j, shortlistj and longlistj are dummies of a three-level factor denoting the number of species recorded during the visit (1; 2–3; >3), and expertj, projectj, targeted_projectj and redlistj are dummies of a five-level factor denoting the source of the data. The source might either be a common naturalist observation (reference level), an observation by an expert naturalist, an observation made during a not further specified project, an observation made in a project targeted at the focal species or an observation made during a Red-List inventory. An expert naturalist was defined as an observer that contributed a significant number of records, which was defined as the upper 2.5% quantile of all observers arranged by their total number of records, and that made at least one visit with an exceptionally long species list, which was defined as a visit in the upper 2.5% quantile of all visits arranged by the number of records. The proportions of records originating from these different sources changed across years, but change was not unidirectional and differed among the investigated groups (Supplementary Fig. S11), such that accounting for data source in the model should suffice to yield reliable estimates of occupancy trends. αd1,t is a random effect for year, which was modelled as$${alpha }_{d1}sim {{{{{rm{Normal}}}}}}left(0,{sigma }_{d1}right)$$
    (9)
    The occupancy and observation models were fitted jointly in Stan through the interface CmdStanR68. Four Markov chain Monte Carlo chains with 2000 iterations each, including 1000 warm-up iterations, were used. Priors of the model parameters are specified in Supplementary Table S5. For the prior distribution of global intercepts, a standard deviation of 1.5 was chosen to not overweight the extreme values on the probability scale. To ensure that chains mixed well, Rhat statistics for annual mean occupancy estimates were calculated through the package rstan69. For Switzerland-wide annual estimates (n = 18,140), 98.0% of values met the standard threshold of 1.1 (99.9% of values More

  • in

    Francisella tularensis PCR detection in Cape hares (Lepus capensis) and wild rabbits (Oryctolagus cuniculus) in Algeria

    Tularemia affects animal welfare, human health, and the environment and is thus better approached from a one-health perspective27. Several studies in the Northern hemisphere28, and more recently in Australia15,16, have provided a vital research track in the epidemiology of this disease. In contrast, studies in Africa are too limited and scarce. The aim of this study was to investigate the presence of tularemia in wild leporids collected in Northern Algeria. These animals are highly susceptible to F. tularensis infection and considered sentinel hosts for surveillance of tularemia. The strategy we used to detect F. tularensis in leporids mainly used molecular, histological and immunohistochemical analyzes of tissues taken from animals found dead or hunted. To the best of our knowledge, detection of F. tularensis by PCR or culture has not been previously reported in wild leporidae in Algeria or other African countries.Animal tissue samples were tested using three qPCR assays of variable sensitivity and specificity. The Type B-qPCR test targets a specific junction between ISFtu2 and a flanking 3′ region, which is considered specific for F. tularensis subsp. holarctica26, the only tularemia agent found in Europe and Asia. The Tul4-qPCR assay targets a simple copy gene encoding a surface protein, which can be found in the genome of all F. tularensis subspecies causing tularemia and that of the aquatic bacterium F. novicida. Because F. novicida has never been isolated from lagomorphs or other animal species, and very rarely from human29, a positive Tul4 qPCR for the studied tissue samples likely indicated the presence of F. tularensis DNA. The ISFtu2 qPCR is considered highly sensitive because multiple copies of this insertion sequence are found in the F. tularensis genome. However, it lacks specificity because ISFtu2 is also found in many other Francisella species25.Two animals were considered “probable” tularemia cases because some of their samples were positive for the three qPCR tests. Ten animals were considered “possible” tularemia cases because their samples were positive for the ISFtu2 and Tul4 qPCRs but not the Type B qPCR. Finally 19 leporids were “uncertain” cases because only samples positive for the ISFtu2 qPCR were found. For the remaining 43 animals, all the tested samples were negative for the three qPCRs. Overall, we detected F. tularensis DNA-positive samples in 12/74 (16.21%) leporids, which strongly suggest that tularemia is present in the lagomorph population of the study area. The positive Type B qPCR tests in two animals suggested that F. tularensis subsp. holarctica could be the involved subspecies. We did not confirm these data by isolating F. tularensis from the studied leporids. However, the isolation of this pathogen from human or animal samples is tedious and has a low sensitivity13. Moreover, most of our samples were not appropriate for F. tularensis culture because of their long-term preservation in ethanol 70° or 10% formalin. Further study using fresh (non-fixed) tissue samples from dead leporids collected in the same study area is needed to definitively confirm the presence of tularemia in these animals and characterize the F. tularensis subspecies and genotypes involved.Although PCR is usually more sensitive than culture for detecting F. tularensis, it also has some limitations. Firstly, the DNA extraction from organs preserved in ethanol for several months was difficult although easier for spleen than for liver samples. Some tissue samples could be lysed only after overnight incubation with proteinase K. Secondly, tissue samples contained PCR inhibitors as demonstrated by better DNA amplification from some samples after their dilution in PCR grade water. To reduce the effect of PCR inhibitors, organ samples with negative qPCR were retested using Bovine Serum Albumin (BSA) and the Real-time PCR system TaqMan (Applied Biosystems, Munich, Germany)30. Finally, DNA regions to be amplified were optimized to obtain high sensitivity and specificity of qPCR tests.IHC detection of F. tularensis in formalin-fixed tissue can be helpful for tularemia diagnosis31,32. For one possible tularemia case, F. tularensis could be detected on immunohistochemical (IHC) examination of a liver sample using a specific anti-F. tularensis antibody. The intensity and localization of positive staining were comparable to those previously recorded for other animals32,33. IHC did not provide interpretable findings for four other tested specimens. Such negative results might be explained by an inhomogeneous distribution of infectious foci in the involved organs as well as a low bacterial inoculum in infected tissues. This has been previously demonstrated in tularemia granulomatous lesions in cell types like epithelial cells of the kidney, testis, and epididymis, hepatocytes, and bronchiolar epithelial cells31. Besides, IHC is a delicate technology whose results are highly dependent on the quality and fixation time of the organ tissues34. IHC analysis of dead animal tissues remains challenging, especially in case of tissue necrosis34.In our limited case series we found a F. tularensis infection prevalence in leporids of 2.7% (2/74) for probable tularemia cases and 16.2% (12/74) when considering both probable and posible cases. We cannot make a guess about the prevalence of tularemia because our series is not representative of the general lagomorph population in the study area. In Germany, F. tularensis DNA was detected in 1.1% of European Brown hares and 2.4% of wild rabbits collected between 2009 and 201435. Higher infection rates were reported in the same country, including 11.8% (100/848 animals) in hares collcted in the North Rhine-Westphalia region36 and 30% (55/179) in brown hares collected between 2010 and 2016 in Baden-Wuerttemberg37. In Hungary, the prevalence of tularemia in hares was evaluated at 4.9–5.3%38. In Portugal, prevalences of 4.3% and 6.3% were reported in brown hares and wild rabbits, respectively39. However, the comparison of the reported tularemia prevalences in leporids is irrelevant because studies involved different animal species and geographic areas, and used different methods for F. tularensis detection.Two possibilities could explain the lack of detection of tularemia in Algeria before this study. The first hypothesis is that this disease was not searched for in previous years, while it could have been present in this country for decades. The second hypothesis is that tularemia was recently imported in Algeria. Migratory birds may have been involved in the long-distance spread of F. tularensis40. These hosts can be infested by ectoparasites such as ticks which are the primary vectors of tularemia41,42. They can also spread the bacteria in the hydro-telluric environment through their secretions and feces18,43,44. An alternative possibility is that F. tularensis-infected animals (especially game animals) have been imported in Algeria from endemic countries. Whatever the mode of introduction of tularemia in Algeria, the dissemination of this disease over time might have been facilitated by the ability of F. tularensis to infect multiple hosts and its better survival in a cool environment45, which characterizes Northern Algeria climate. The emergence or re-emergence of tularemia in other countries has been related to climate change, human-mediated movement of infected animals, and wartime resulting in a significant rise of F. tularensis infections in the rodent populations39,46.In our study, infected animals were collected throughout 4 years, although more frequently in autumn. Probable and possible tularemia cases were mainly collected during the hunting season (i.e., September, October, November, and December). Animals could not be collected in February because of heavy rains and in May and June because it corresponds to female leporids’ lactation period. In most endemic countries, tularemia cases are typically more frequent in late spring, the summer months, and early autumn37,47,48,49,50. Occasionally, fatal tularemia cases in hares have been predominantly reported during the cold season11,51. The climatic conditions can affect tularemia outbreaks in animals, depending on the reservoir involved and the predominant modes of infection52.We detected tularemia more frequently in female than in male hares, and the reverse was true for wild rabbits. The prevalence of tularemia in male or female lagomorphs varies between studies. In Sweden, Morener et al.50 reported a tularemia case series only involving male hares. In the same country, Borg et al.50 observed an overrepresentation of females in the epizootic of 1967. They suggested that, compared to males, females had a higher risk of exposure to infected mosquitoes or were more vulnerable to tularemia because they were pregnant or had just given birth to a litter50. Tularemia was found in a few juveline leporids, which might be explained by a shorter exposure time to F. tularensis, a higher death rates due to higher susceptibility to F. tularensis infection or easier predation by their natural enemies, or more frequent hunting of adults compared to the juveniles53.Tularemia is usually more frequently detected in leporids found dead than in hunted animals. As an example, a German study reported a higher prevalence of tularemia in hares found dead (2.9%) than in hunted ones (0.7%)35. In our study, most qPCR-positive animals were hunted. Our study might not be representative of the prevalence of tularemia in either population because most collected animals had been hunted.The incubation period and clinical presentation of tularemia in leporids vary according to the species considered. Tularemia is typically an acute disease in mountain hares (Lepus timidus) in Scandinavia and has a chronic pattern in European brown hares (Lepus europaeus) in Central Europe50. The incubation time and clinical presentation of tularemia can be different in Cape hares (Lepus capensis). Wild rabbits are less sensitive to F. tularensis infection than hares31,39,54. An extended incubation period and chronic evolution of tularemia would facilitate the detection of F. tularensis in infected animals. In our study, a similar tularemia prevalence was found in the Cape hares and wild rabbits, which might reflect exposure to a same biotope area and environmental reservoirs of F. tularensis.The pathological lesions of tularemiia in leporids can vary according to the F. tularensis strain involved, the mode and route of infection, and the susceptibility and immune status of the host32,50. In the European brown hares, granulomas with central necrosis have been reported in the lungs and kidneys and occasionally in the liver, spleen, bone marrow, and lymph nodes50. In contrast, only acute necrosis in the liver, spleen, bone marrow, and lymph nodes have been found in Lepus timudus hares in Sweden50. The lesions in the Japanese hare (Lepus brachyurus angustidens) are comparable to those of Lepus timidus, except for cutaneous, lung, brain, and adrenal gland lesions32. In the European rabbit, Oryctolagus cuniculus, tularemia is not associated with identifiable macroscopic tissue lesions39,55. To our knowledge, no reports describing post-mortem lesions in Cape hares with tularemia are available. In this study, similar lesions were found in hares and wild rabbits except necrotic foci only observed in some wild rabbit organs (such as liver, lungs, kidney, ovary). Most animals had pathological lesions of pneumonia, gastritis and enteritis. Kidney lesions and adrenal glands enlargment were oberved. Necrotic lesions were occasionally found in the lungs, liver, spleen and ovary and hemorrhages in the lungs, liver, and intestines.Tularemia is an arthropod-born disease in most endemic areas14,22,28. In our study, 50% of positive leporids were infested by known tularemia vectors such as ticks (Ixodes ricinus56,57, Rhipicephalus sanguineus39), fleas (Spillopsylus cuniculi58), and lice of lagomorphs (Haemodipsus lepori and Haemodipsus setoni59,60). Ticks are the most significant arthropod vectors of tularemia61. Ticks are frequently involved in the transmission of tularemia in North America, including Dermacentor andersoni, D. variabilis, and Amblyomma americanum57,62,63. In Europe, tick-borne tularemia represents 13% to 26% of human cases57,64. The involved species include D. marginatus, D. reticulatus, I. ricinus, R. sanguineus, and Haemaphysalis concinna65,66. Further research on wild leporid sucking arthropods is needed to confirm the presence and clarify the ecology of F. tularensis in Algeria.Our study reports for the first time the detection of F. tularensis DNA in leporids from Northern Algeria. The markers most in favor of tularemia in the animals studied are the positivity of qPCR tests, in particular, the “type B” qPCR test which amplifies a specific DNA sequence of F. tularensis subsp. holarctica, and a positive immunohistological examination in one animal. Further investigation is needed to confirm our results by the isolation of this pathogen from animal samples and determine the F. tularensis subspecies and genotypes involved. This would allow the characterization of the F. tularensis subspecies and genotypes present in Algeria. Furthermore, our findings push us in future studies to seek tularemia in the Algerian human population. To achieve this, interdisciplinary or trans-disciplinary collaborative efforts underpinned by the One Health concept will be necessary. More

  • in

    Bioenergetic control of soil carbon dynamics across depth

    Further details about radiocarbon and thermal analysis, isotopic partitioning procedures and quantification of their uncertainty, and statistical analyses can be found in Supplementary Methods.Study soils, experimental design and soil samplingWe selected three soil types: eutric cambisol, chromic vertisol and silandic andosol70. The three soil profiles studied were found in long-term semi-natural grasslands located relatively close to each other ( More

  • in

    Long-term enclosure at heavy grazing grassland affects soil nitrification via ammonia-oxidizing bacteria in Inner Mongolia

    Pan, H. et al. Archaea and bacteria respectively dominate nitrification in lightly and heavily grazed soil in a grassland system. Biol. Fert. Soils. 54(1), 41–54 (2018).Article 

    Google Scholar 
    Pan, H. et al. Understanding the relationships between grazing intensity and the distribution of nitrifying communities in grassland soils. Sci. Total Environ. 634, 1157–1164 (2018).Article 
    ADS 

    Google Scholar 
    Dong, L., Li, J. J., Sun, J. & Yang, C. Soil degradation influences soil bacterial and fungal community diversity in overgrazed alpine meadows of the Qinghai-Tibet plateau. Sci. Rep. 11, 11538 (2021).Article 
    ADS 

    Google Scholar 
    Oduor, C. O. et al. Enhancing soil organic carbon, particulate organic carbon and microbial biomass in semi-arid rangeland using pasture enclosures. BMC Ecol. 18, 45 (2018).Article 

    Google Scholar 
    Wang, S. Z., Fan, J. W., Li, Y. Z. & Huang, L. Effects of grazing exclusion on biomass growth and species diversity among various grassland types of the Tibetan Plateau. Sustainability 11(6), 1705 (2019).Article 

    Google Scholar 
    Simpson, A. C., Zabowski, D., Rochefort, R. M. & Edmonds, R. L. Increased microbial uptake and plant nitrogen availability in response to simulated nitrogen deposition in alpine meadows. Geoderma 336, 68–80 (2019).Article 
    ADS 

    Google Scholar 
    Qasim, S. et al. Influence of grazing enclosure on vegetation biomass and soil quality. Int. Soil Water Conserv. 5(1), 62–68 (2017).Article 

    Google Scholar 
    Hirobe, M. et al. Effects of livestock grazing on the spatial heterogeneity of net soil nitrogen mineralization in three types of Mongolian grasslands. J. Soils Sediment. 13, 1123–1132 (2013).Article 

    Google Scholar 
    Luo, Y. K., Wang, C. H., Shen, Y., Sun, W. & Dong, K. H. The interactive effects of mowing and N addition did not weaken soil net N mineralization rates in semiarid grassland of Northern China. Sci. Rep. 9, 13457 (2019).Article 
    ADS 

    Google Scholar 
    Wu, H. et al. Feedback of grazing on gross rates of N mineralization and inorganic N partitioning in steppe soils of Inner Mongolia. Plant Soil. 340(1–2), 127–139 (2011).Article 

    Google Scholar 
    Xu, Y. Q., Li, L. H., Wang, Q. B., Chen, Q. S. & Cheng, W. X. The patterns between nitrogen mineralization and grazing intensities in an Inner Mongolian typical steppe. Plant Soil. 300, 289–300 (2007).Article 

    Google Scholar 
    Wang, X. et al. Grazing improves C and N cycling in the Northern Great Plains: A meta-analysis. Sci. Rep. 6, 33190 (2016).Article 
    ADS 

    Google Scholar 
    Pang, R., Sun, Y., Xu, X. L., Song, M. H. & Ouyang, H. Effects of clipping and shading on 15NO3− and 15NH4+ recovery by plants in grazed and ungrazed temperate grasslands. Plant Soil. 433(1–2), 339–352 (2018).Article 

    Google Scholar 
    Sun, Y., Schleuss, P. M., Pausch, J., Xu, X. L. & Kuzyakov, Y. Nitrogen pools and cycles in Tibetan Kobresia pastures depending on grazing. Biol. Fert. Soils. 54(5), 569–581 (2018).Article 

    Google Scholar 
    Andrioli, R. J., Distel, R. A. & Didone, N. G. Influence of cattle grazing on nitrogen cycling in soils beneath Stipa tenuis, native to central Argentina. J. Arid. Environ. 74(3), 419–422 (2010).Article 
    ADS 

    Google Scholar 
    Norman, J. S., Lin, L. & Barrett, J. E. Paired carbon and nitrogen metabolism by ammonia-oxidizing bacteria and archaea in temperate forest soils. Ecosphere 6(10), 1–11 (2016).
    Google Scholar 
    Mukhtar, H., Lin, Y. P., Lin, C. M. & Petway, J. R. Assessing thermodynamic parameter sensitivity for simulating temperature responses of soil nitrification. Environ. Sci.-Proc. Imp. 21(9), 1596–1608 (2019).
    Google Scholar 
    Rütting, T., Schleusner, P., Hink, L. & Prosser, J. I. The contribution of ammonia-oxidizing archaea and bacteria to gross nitrification under different substrate availability. Soil Biol. Biochem 160, 108353 (2021).Article 

    Google Scholar 
    Pan, H. et al. Management practices have a major impact on nitrifier and denitrifier communities in a semiarid grassland ecosystem. J. Soils Sediment. 16, 896–908 (2016).Article 

    Google Scholar 
    Szukics, U. et al. Management versus site effects on the abundance of nitrifiers and denitrifiers in European mountain grasslands. Sci. Total Environ. 648, 745–753 (2019).Article 
    ADS 

    Google Scholar 
    Chen, Q., Hooper, D. U. & Lin, S. Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian steppe, China. PLoS ONE 6(3), e16909 (2011).Article 
    ADS 

    Google Scholar 
    Raison, R. J., Connell, M. J. & Khanna, P. K. Methodology for studying fluxes of soil mineral-N in situ. Soil Biol. Biochem. 19, 521–530 (1987).Article 

    Google Scholar 
    Kurola, J., Salkinoja-Salonen, M., Aarnio, T., Hultman, J. & Romantschuk, M. Activity, diversity and population size of ammonia-oxidizing bacteria in oil-contaminated land farming soil. FEMS Microbiol. Lett. 250, 33–38 (2005).Article 

    Google Scholar 
    Tran, H. T. et al. Bacterial community progression during food waste composting containing high dioctyl terephthalate (DOTP) concentration. Chemosphere 265, 129064 (2021).Article 
    ADS 

    Google Scholar 
    Hook, P. B. & Burke, I. C. Evaluation of a method for estimating net nitrogen mineralization in a semiarid grassland. Soil Sci. Soc. Am. J. 59, 831–837 (1995).Article 
    ADS 

    Google Scholar 
    Liu, T. Z., Nan, Z. B. & Hou, F. J. Grazing intensity effects on soil nitrogen mineralization in semi-arid grassland on the Loess Plateau of northern China. Nutr. Cyc. Agroecosyst. 91(1), 67–75 (2011).Article 

    Google Scholar 
    Li, J. P., Ma, H. B., Xie, Y. Z., Wang, K. B. & Qiu, K. Y. Deep soil C and N pools in long-term fenced and overgrazed temperate grasslands in northwest China. Sci. Rep. 9, 16088 (2019).Article 
    ADS 

    Google Scholar 
    Di, H. J. et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat. Geosci. 2(9), 621–624 (2009).Article 
    ADS 

    Google Scholar 
    Li, J. P., Zheng, Z. R., Xie, H. T., Zhao, N. X. & Gao, Y. B. Increased soil nutrition and decreased light intensity drive species loss after eight years grassland enclosures. Sci. Rep. 7, 44525 (2017).Article 
    ADS 

    Google Scholar 
    Luo, C. Y. et al. Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau. Glob. Change Biol. 16, 1606–1617 (2010).Article 
    ADS 

    Google Scholar 
    Shahzad, T. et al. Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol. Biochem. 80, 146–155 (2015).Article 

    Google Scholar 
    Xie, Z. et al. Identifying response groups of soil nitrifiers and denitrifiers to grazing and associated soil environmental drivers in Tibetan alpine meadows. Soil Biol. Biochem. 77, 89–99 (2014).Article 

    Google Scholar 
    Clark, I. M., Hughes, D. J., Fu, Q. L., Abadie, M. & Hirsch, P. R. Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils. Sci. Rep. 11, 15905 (2021).Article 
    ADS 

    Google Scholar 
    He, J. Z. et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ. Microbiol. 9, 2364–2374 (2007).Article 

    Google Scholar 
    Meyer, A. et al. Influence of land use intensity on the diversity of ammonia oxidizing bacteria and archaea in soils from grassland ecosystems. Microb. Ecol. 67(1), 161–166 (2014).Article 

    Google Scholar 
    Zhu, X. X. et al. Effects of warming, grazing/cutting and nitrogen fertilization on greenhouse gas fluxes during growing seasons in an alpine meadow on the Tibetan Plateau. J. Agric. Meteorol. 214–215, 506–514 (2015).Article 

    Google Scholar 
    Jia, Z. J. & Cornrad, R. Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil. Environ. Microbiol. 11(7), 1658–1671 (2009).Article 

    Google Scholar 
    Verhamme, D. T., Prosser, J. I. & Nicol, G. W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. 5, 1067–1071 (2011).Article 

    Google Scholar 
    Zhou, X. H. et al. Diversity, abundance and community structure of ammonia-oxidizing archaea and bacteria in riparian sediment of Zhenjiang ancient canal. Ecol. Eng. 90, 447–458 (2016).Article 

    Google Scholar 
    Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461, 976–979 (2009).Article 
    ADS 

    Google Scholar 
    Clark, D. R. et al. Mineralization and nitrification: Archaea dominate ammonia-oxidising communities in grassland soils. Soil Biol. Biochem. 143, 107725 (2020).Article 

    Google Scholar 
    Long, X. N., Chen, C. R., Xu, Z. H., Linder, S. & He, J. Z. Abundance and community structure of ammonia oxidizing bacteria and archaea in a Sweden boreal forest soil under 19-year fertilization and 12-year warming. J. Soils Sediment. 12, 1124–1133 (2012).Article 

    Google Scholar 
    Wessén, E. & Hallin, S. Abundance of archaeal and bacterial ammonia oxidizers-possible bioindicator for soil monitoring. Ecol. Indic. 11, 1696–1698 (2011).Article 

    Google Scholar 
    Yang, Y. et al. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Glob. Change Biol. 19(2), 637–648 (2013).Article 
    ADS 

    Google Scholar 
    Zhang, C. J. et al. Impacts of long-term nitrogen addition, watering and mowing on ammonia oxidizers, denitrifiers and plant communities in a temperate steppe. Appl. Soil Ecol. 130, 241–250 (2018).Article 

    Google Scholar 
    Alves, R. J. E., Minh, B. Q., Urich, T., Haeseler, A. V. & Schleper, C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat. Commun. 9, 1517 (2018).Article 
    ADS 

    Google Scholar 
    DeLong, E. F. Everything in moderation archaea as ‘non extremophiles’. Curr. Opin. Genet. Dev. 8(6), 649–654 (1998).Article 

    Google Scholar 
    Jia, Z. J. et al. Evidence for niche differentiation of nitrifying communities in grassland soils after 44 years of different field fertilization scenarios. Pedoshpere 30(1), 87–97 (2019).
    Google Scholar 
    Wang, X. L. et al. Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China. Soil Biol. Biochem. 84, 28–37 (2015).Article 

    Google Scholar 
    Li, Y. Y., Chapman, S. J., Nicol, G. W. & Yao, H. Y. Nitrification and nitrifiers in acidic soils. Soil Biol. Biochem. 116, 290–301 (2018).Article 

    Google Scholar 
    Olivera, N. L., Prieto, L., Bertiller, M. B. & Ferrero, M. A. Sheep grazing and soil bacterial diversity in shrub lands of the Patagonian Monte, Argentina. J. Arid. Environ. 125, 16–20 (2016).Article 
    ADS 

    Google Scholar  More

  • in

    Long-term maintenance of a heterologous symbiont association in Acropora palmata on natural reefs

    Hoegh-Guldberg O, Smith JG. The effect of sudden changes in temperature, light, and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata (Esper) and Seriatopora hysterix (Dana). J Exp Mar Biol Ecol. 1989;129:279–303.Article 

    Google Scholar 
    Glynn PW. Coral reef bleaching: ecological perspectives. Coral Reefs. 1993;12:1–17.Article 

    Google Scholar 
    Berkelmans R, van Oppen MJH. The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc B: Biol Sci. 2006;273:2305–12.Article 

    Google Scholar 
    Cunning R, Gillette P, Capo T, Galvez K, Baker AC. Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs. 2015;34:155–60.Article 

    Google Scholar 
    Scharfenstein HJ, Chan WY, Buerger P, Humphrey C, van Oppen MJH. Evidence for de novo acquisition of microalgal symbionts by bleached adult corals. ISME J. 2022;16:1676–9.Article 

    Google Scholar 
    Goulet TL. Most corals may not change their symbionts. Mar Ecol Prog Ser. 2006;321:1–7.Article 

    Google Scholar 
    Jones A, Berkelmans R. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS ONE. 2010;5:e10437.Article 

    Google Scholar 
    van Oppen MJH, Oliver JK, Putnam HM, Gates RD. Building coral reef resilience through assisted evolution. Proc R Soc B: Biol Sci. 2015;112:2307–13.
    Google Scholar 
    Buerger P, Alvarez C, Coppin CW, Pearce SL, Chakravarti LJ, Oakeshott JG, et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci Adv. 2020;6:eaba2498.Kuffner IB, Toth LT. A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv Biol: J Soc Conserv Biol. 2016;30:706–15.Article 

    Google Scholar 
    Young CN, Schopmeyer SA, Lirman D. A review of reef restoration and Coral propagation using the threatened genus Acropora in the Caribbean and western Atlantic. Bull Mar Sci. 2012;88:1075–98.Article 

    Google Scholar 
    Reich HG, Kitchen SA, Stankiewicz KH, Devlin-Durante M, Fogarty ND, Baums IB. Genomic variation of an endosymbiotic dinoflagellate (Symbiodinium fitti) among closely related coral hosts. Mol Ecol. 2021;30:3500–14.Article 

    Google Scholar 
    Baums IB, Devlin-Durante MK, Lajeunesse TC. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol. 2014;23:4203–15.Article 

    Google Scholar 
    Gantt SE, Keister E, Manfroy A, Merck D, Fitt W, Muller E, et al. Wild and nursery-raised corals: comparative physiology of two framework coral species. Coral Reefs. (In Press).Hume BCC, Smith EG, Ziegler M, Hugh J, Warrington M, Burt J, et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol Ecol Resour. 2019;19:1063–80.Article 

    Google Scholar 
    Randall CJ, Negri AP, Quigley KM, Foster T, Ricardo GF, Webster NS, et al. Sexual production of corals for reef restoration in the Anthropocene. Mar Ecol Prog Ser. 2020;635:203–32.Article 

    Google Scholar 
    Bay LK, Cumbo VR, Abrego D, Kool JT, Ainsworth TD, Willis BL. Infection dynamics vary between Symbiodinium types and cell surface treatments during establishment of endosymbiosis with coral larvae. Diversity. 2011;3:356–74.Article 

    Google Scholar 
    Abrego D, van Oppen MJH, Willis BL. Highly infectious symbiont dominates initial uptake in coral juveniles. Mol Ecol. 2009;18:3518–31.Article 

    Google Scholar 
    Cunning R, Silverstein RN, Baker AC. Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc R Soc B: Biol Sci. 2015;282:20141725.Chamberland VF, Petersen D, Latijnhouwers KRW, Snowden S, Mueller B, Vermeij MJA. Four-year-old Caribbean Acropora colonies reared from field-collected gametes are sexually mature. Bull Mar Sci. 2016;92:263–4.Silverstein RN, Correa AMS, Baker AC. Specificity is rarely absolute in coral–algal symbiosis: implications for coral response to climate change. Proc R Soc B: Biol Sci. 2012;279:2609–18.Article 

    Google Scholar  More

  • in

    Re-examining extreme carbon isotope fractionation in the coccolithophore Ochrosphaera neapolitana

    Laboratory cultureOchrosphaera neapolitana (RCC1357) was precultured in K/2 medium without Tris buffer8 using artificial seawater (ASW) supplemented with NaHCO3 and HCl to yield an initial DIC of 2050 µM. In triplicate, 1-L bottles were filled with 150 mL of seawater medium with air in the bottle headspace and inoculated with a mid-log phase preculture at an initial cell concentration of 104 cells mL−1. Cultures were grown at 18 °C under a warm white LED light at 100 ± 20 µE on a 16h-light/8h-dark cycle. Bottles were orbitally shaken at 60 rpm to keep cells in suspension. Cell growth was monitored with a Multisizer 4e particle counter and sizer (Beckman Coulter). At ~1.4 × 105 cells mL−1, cells were diluted up to 300 mL to 2–3 × 104 cells mL−1 and harvested after 2 days of more exponential growth up to 7.9 ± 0.6 × 104 cells mL−1. More detailed culture results are listed in the Supplementary Note 1.Immediately after harvesting, pH was measured using a pH probe calibrated with Mettler Toledo NBS standards (it should be noted here that high ionic strength calibration standards would be optimal for pH measurement of liquids like seawater). There was a carbonate system shift during the batch culture and more details are shown in Supplementary Fig. S1. Cells in 50 mL were pelleted by centrifuging at ~1650 × g for 5 min. Seawater supernatant was analyzed for DIC and δ13CDIC by injecting 3.5 mL into an Apollo analyzer and injecting 1 mL into He-flushed glass vials containing H3PO4 for the Gas Bench.For seawater DIC, an Apollo SciTech DIC-C13 Analyzer coupled to a Picarro CO2 analyzer was calibrated with in-house NaHCO3 standards dissolved in deionized water at different known concentrations and δ13C values from −4.66 to −7.94‰. δ13CDIC in media were measured with a Gas Bench II with an autosampler (CTC Analytics AG, Switzerland) coupled to ConFlow IV Interface and a Delta V Plus mass spectrometer (Thermo Fischer Scientific). Pelleted cells were snap-frozen with N2 (l) and stored at −80 °C. For PIC analysis, pellet was resuspended in 1 mL methanol and vortexed. After centrifugation, the methanol phase with extracted organics was removed and the pellet containing the coccoliths was dried at 60 °C overnight. About 300 mg of dried coccolith powder were placed in air-tight glass vials, flushed with He and reacted with five drops of phosphoric acid at 70 °C. PIC δ13C and δ18O were measured by the same Gas Bench system. The system and abovementioned in-house standards were calibrated using international standards NBS 18 (δ13C = −5.01‰, δ18O = +23.00‰) and NBS 19 (δ13C = +1.95‰, δ18O = +2.2‰). The analytical error for DIC concentration and δ13C is More