More stories

  • in

    Taxonomic response of bacterial and fungal populations to biofertilizers applied to soil or substrate in greenhouse-grown cucumber

    All the results were reported relative to the control, unless specifically stated to the contrary or for clarity.Growth of cucumber plants in response to different biofertilizersSoilThere was no significant difference in cucumber growth before microbial fertilizer was applied. However, some microbial fertilizers significantly increased cucumber height and stem diameter when they were applied within 4 weeks from when the seedlings were planted (Fig. 1a,b,e,f). In the second week, SHZ and SMF increased plant height by 11.2 and 9.5%, respectively. In the third week, S267, SBS, SBH, SM and SHZ increased plant height by 12.0, 13.8, 15.0, 20.5 and 26.9%, respectively (Fig. 1a). In the fourth and fifth weeks, some treatments significantly increased cucumber height. In the second and third weeks, S267 significantly increased stem diameter by 21.2 and 16.8% (Fig. 1b).Figure 1Effect of different biofertilizer treatments on the growth of cucumber seedlings produced in soil or substrate in a greenhouse. S267 = Trichoderma Strain 267 added to soil; SBH = Bacillus subtilis and T. harzianum biofertilizers added to soil; SBS = B. subtilis biofertilizer added to the soil; SM = Compound biofertilizer added to soil; SHZ = T. harzianum biofertilizer added to soil; SCK = Untreated soil. US267 = T.267 biofertilizer added to substrate; USBH = B. subtilis and T. harzianum biofertilizers added to substrate; USBS = B. subtilis biofertilizer added to substrate; USM = Compound biofertilizer added to substrate; USHZ = T. harzianum biofertilizer added to substrate; USCK = Untreated substrate.Full size imageOver the subsequent 5 weeks, some microbial fertilizer treatments decreased cucumber height and stem diameter (Fig. 1g,h).SubstrateThere were no significant differences in cucumber growth before microbial fertilizer microbial fertilizer was applied (Fig. 1c,d,g,h). However, within 4 weeks of applying the microbial fertilizer, each biofertilizer treatment applied significantly increased cucumber height (Fig. 1c). US267 and USHZ significantly increased cucumber height by 39.8–75.4% and 56.1–86.1%, respectively. US267, USM and USHZ significantly increased the stem diameter by 76.8–108.9%, 71.1–97.6% and 80.4–122.4%, respectively (Fig. 1d).Over the subsequent 5 weeks, US267, USM and USHZ treatments continued to significantly increase cucumber height and stem diameter (Fig. 1g,h).Changes in the taxonomic composition of soil-borne fungal pathogensSoilBiofertilizers application significantly reduced the taxonomic composition of soil-borne fungal pathogens at different times during the cucumber growth period (Tables 1 and 2). Fusarium spp. were significantly reduced (T, 63.8% reduction, P  More

  • in

    Optimization of oviposition trap settings to monitor populations of Aedes mosquitoes, vectors of arboviruses in La Reunion

    Yang, X., Quam, M. B., Zhang, T. & Sang, S. Global burden for dengue and the evolving pattern in the past 30 years. J. Travel Med. 28, taab146 (2021).Simmons, C. P., Farrar, J. J., van Vinh Chau, N. & Wills, B. Dengue. N. Engl. J. Med. 366, 1423–1432 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brady, O. J. et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morin, C. W., Comrie, A. C. & Ernst, K. Climate and dengue transmission: Evidence and implications. Environ. Health Perspect. 121, 1264–1272 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brady, O. J. et al. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites Vectors 7, 338 (2014).Betanzos-Reyes, Á. F. et al. Association of dengue fever with Aedes spp. abundance and climatological effects. Salud Pública de México 60, 12 (2017).WHO. Dengue and severe dengue. (2022).Gubler, D. J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 11, 480–496 (1998).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delatte, H. et al. Aedes albopictus, vecteur des virus du chikungunya et de la dengue à La Réunion : biologie et contrôle. Parasite 15, 3–13 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kles, V., Michault, A., Rodhain, F., Mevel, F. & Chastel, C. A serological survey regarding Flaviviridae infections on the island of Reunion (1971–1989). Bull. Soc. Pathol. Exot. 1990(87), 71–76 (1994).
    Google Scholar 
    Pierre, V. et al. Epidémie de dengue 1 à la Réunion en 2004. Journal de Veille Sanitaire (2005).Vincent, M. et al. From the threat to the large outbreak: dengue on Reunion Island, 2015 to 2018. Eurosurveillance 24, (2019).Cellule Santé Publique France en Région, ARS. Situation de la dengue à La Réunion au 15 décembre 2020. https://www.lareunion.ars.sante.fr/avec-le-retour-de-lete-agissons-des-maintenant-contre-la-dengue (2020).Agence Régionale de Santé. Communiqué de presse: dengue à La Réunion. Situation au 28 juillet 2021. https://www.lareunion.ars.sante.fr/system/files/2021-07/2021-07-28-Dengue-Situation à La Réunion_0.pdf (2021).Hafsia, S. et al. Overview of dengue outbreaks in the southwestern Indian Ocean and analysis of factors involved in the shift toward endemicity in Reunion Island: A systematic review. PLoS Negl. Trop. Dis. 16, e0010547 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reiter, P., Fontenille, D. & Paupy, C. Aedes albopictus as an epidemic vector of chikungunya virus: Another emerging problem?. Lancet. Infect. Dis 6, 463–464 (2006).Article 
    PubMed 

    Google Scholar 
    Njenga, M. K. et al. Tracking epidemic Chikungunya virus into the Indian Ocean from East Africa. J. Gen. Virol. 89, 2754–2760 (2008).Article 
    CAS 

    Google Scholar 
    Soumahoro, M.-K. et al. The Chikungunya epidemic on La Réunion Island in 2005–2006: a cost-of-illness study. PLoS Negl. Trop. Dis. 5, e1197 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Larrieu, S., Balleydier, E., Renault, P., Baville, M. & Filleul, L. [Epidemiological surveillance du chikungunya on Reunion Island from 2005 to 2011]. Médecine tropicale : Revue du Corps de Santé colonial 72 Spec No, 38–42 (2012).Soghigian, J. et al. Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Mol. Ecol. 29, 3593–3606 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kotsakiozi, P. et al. Population structure of a vector of human diseases: Aedes aegypti in its ancestral range Africa. Ecol. Evol. 8, 7835–7848 (2018).Article 
    PubMed 

    Google Scholar 
    MacGregor, M. E. Aedes (Stegomyia) mascarensis, MacGregor: A new Mosquito from Mauritius. Bull. Entomol. Res. 14, 409–412 (1924).Article 

    Google Scholar 
    Salvan, M. & Mouchet, J. Aedes albopictus et Aedes aegypti à l’Ile de La Réunion. Ann. Soc. Belg. Med. Trop. 74, 323–326 (1994).CAS 
    PubMed 

    Google Scholar 
    Bagny, L., Delatte, H., Quilici, S. & Fontenille, D. Progressive Decrease in Aedes aegypti distribution in Reunion Island since the 1900s. J. Med. Entomol. 46, 1541–1545 (2009).Article 
    PubMed 

    Google Scholar 
    Le Vassal, J. J. paludisme à l’Ile de La Réunion. Per Gli Stud Della Maria 8, 18–27 (1907).
    Google Scholar 
    Delatte, H. et al. Geographic distribution and developmental sites of Aedes albopictus (Diptera: Culicidae) during a chikungunya epidemic event. Vector-Borne Zoon. Dis. 8, 25–34 (2008).Article 
    CAS 

    Google Scholar 
    Hamon, J. Etudes biologique et systématique des Culicinae de l’Ile de La Réunion. Mem. Inst. Scient. Madagascar 4, 521–541 (1953).
    Google Scholar 
    Bouyer, J. & Lefrançois, T. Boosting the sterile insect technique to control mosquitoes. Trends Parasitol. 30, 271–273 (2014).Article 
    PubMed 

    Google Scholar 
    Haramboure, M. et al. Modelling the control of Aedes albopictus mosquitoes based on sterile males release techniques in a tropical environment. Ecol. Model. 424, 109002 (2020).Article 

    Google Scholar 
    Bouyer, J., Yamada, H., Pereira, R., Bourtzis, K. & Vreysen, M. J. B. Phased conditional approach for mosquito management using sterile insect technique. Trends Parasitol. 36, 325–336 (2020).Article 
    PubMed 

    Google Scholar 
    Bouyer, J. & Vreysen, M. J. B. Yes, irradiated sterile male mosquitoes can be sexually competitive!. Trends Parasitol. 36, 877–880 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Organization, W. H. Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13 (2005).World Health Organization and Special Programme for Research and Training in Tropical Diseases and World Health Organization. Department of Control of Neglected Tropical Diseases and World Health Organization. Epidemic and Pandemic Alert. Dengue: Guidelines for diagnosis, treatment, prevention and control. (World Health Organization, 2009).Yap, H. H. Preliminary report on the color preference for oviposition by Aedes albopictus (Skuse) in the field. Southeast Asian J. Trop. Med. Public Health 6, 1–2 (1975).
    Google Scholar 
    Yap, H. H., Lee, C. Y., Chong, N. L., Foo, A. E. S. & Lim, M. P. Oviposition site preference of Aedes albopictus in the laboratory. J. Am. Mosquito Control Assoc. Mosquito News 11, 128–132 (1995).CAS 
    PubMed 

    Google Scholar 
    Marin, G., Mahiba, B., Arivoli, S. & Tennyson, S. Does colour of ovitrap influence the ovipositional preference of Aedes aegypti Linnaeus 1762 (Diptera: Culicidae). Int. J. Mosq. Res 7, 11–15 (2020).CAS 

    Google Scholar 
    Claudel, I. et al. To bait or not to bait? Optimizing the use of adult mosquito traps for monitoring arbovirus vector populations in La Réunion Island. (2022). https://doi.org/10.21203/rs.3.rs-1798972/v1.Cleveland, W. S. Visualizing data. (Hobart press, 1993).Lamigueiro, Ó. P. Displaying time series, spatial, and space-time data with R. (Chapman; Hall/CRC, 2018).Yoshioka, M. et al. Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae). Parasites Vectors 5, (2012).Wong, J., Stoddard, S. T., Astete, H., Morrison, A. C. & Scott, T. W. Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control. PLoS Negl. Trop. Dis. 5, e1015 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hawley, W. A. The biology of aedes albopictus. J. Am. Mosquito Control Assoc. Suppl 1, 1–39 (1988).Delatte, H., Gimonneau, G., Triboire, A. & Fontenille, D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of Chikungunya and dengue in the Indian Ocean. J. Med. Entomol. 46, 33–41 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Daugherty, M. P., Alto, B. W. & Juliano, S. A. Invertebrate carcasses as a resource for competing Aedes albopictus and Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 37, 364–372 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Papaj, D. R. & Rausher, M. D. Individual variation in host location by phytophagous insects. Herbivorous Insects: Host seeking behavior and mechanisms 77–127 (1983).Valladares, G. & Lawton, J. H. Host-plant selection in the holly leaf-miner: Does mother know best?. J. Anim. Ecol. 60, 227 (1991).Article 

    Google Scholar 
    Ellis, A. M. Incorporating density dependence into the oviposition preference-offspring performance hypothesis. J. Anim. Ecol. 77, 247–256 (2008).Article 
    PubMed 

    Google Scholar 
    Juliano, S. A., OMeara, G. F., Morrill, J. R. & Cutwa, M. M. Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia 130, 458–469 (2002).Costanzo, K. S., Kesavaraju, B. & Juliano, S. A. Condition-specific competion in container mosquitoes: The role of non-competing life-history stages. Ecology 86, 3289–3295 (2005).Article 
    PubMed 

    Google Scholar 
    Sanchez, M. & Probst, J.-M. Distribution and conservation status of the Manapany day gecko, Phelsuma inexpectata MERTENS, 1966, an endemic threatened reptile from Réunion Island (Squamata: Gekkonidae). Cahiers scientifiques de l’océan Indien occidental 2, (2011).Braks, M. A. H., Honório, N. A., Lounibos, L. P., De-Oliveira, R. L. & Juliano, S. A. Interspecific competition between two invasive species of container mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazil. Ann. Entomol. Soc. Am. 97, 130–139 (2004).Article 

    Google Scholar 
    Moore, C. G. & Fisher, B. R. Competition in mosquitoes.1 Density and species ratio effects on growth, mortality, fecundity, and production of growth retardant2. Ann. Entomol. Soc. Am. 62, 1325–1331 (1969).Madeira, N. G., Macharelli, C. A. & Carvalho, L. R. Variation of the Oviposition Preferences of Aedes aegypti in Function of Substratum and Humidity. Mem. Inst. Oswaldo Cruz 97, 415–420 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bellini, R. et al. Use of the sterile insect technique against Aedes albopictus in Italy: first results of a pilot trial. in Area-wide control of insect pests 505–515 (Springer, 2007).Boussès, P., Dehecq, J. S., Brengues, C. & Fontenille, D. Inventaire actualisé des moustiques (Diptera : Culicidae) de l’île de La Réunion, océan Indien. Bulletin de la Société de pathologie exotique 106, 113–125 (2013).Article 
    PubMed 

    Google Scholar 
    Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Softw. 27, (2008).Sileshi, G. Selecting the right statistical model for analysis of insect count data by using information theoretic measures. Bull. Entomol. Res. 96, 479–488 (2006).CAS 
    PubMed 

    Google Scholar 
    Guthery, F. S., Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach. J. Wildl. Manag. 67, 655 (2003).Article 

    Google Scholar 
    Hurvich, C. M. & Tsai, C.-L. Model selection for extended quasi-likelihood models in small samples. Biometrics 51, 1077–1084 (1995).Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. 496 (Springer-Verlag, 2002).Manly, B. F. J. Randomization, bootstrap and Monte Carlo methods in biology. 399 (CRC Press / Chapman & Hall, 2006). https://doi.org/10.1201/9781315273075.Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 65–70 (1979).R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2022).Lesnoff, M. & Lancelot, R. aods3: analysis of overdispersed data using S3 methods. (2018).Barton, K. MuMIn: Multi-Model Inference. (2022).Xie, Y., Dervieux, C. & Riederer, E. R Markdown Cookbook. (Chapman; Hall/CRC, 2020). https://doi.org/10.1201/9781003097471. More

  • in

    Shedding light on declines in diversity of grassland plants

    Bobbink, R. et al. Ecol. Appl. 20, 30–59 (2010).Article 
    PubMed 

    Google Scholar 
    Olff, H. & Ritchie, M. E. Trends Ecol. Evol. 13, 261–265 (1998).Article 
    PubMed 

    Google Scholar 
    DeMalach, N., Zaady, E. & Kadmon, R. Ecol. Lett. 20, 60–69 (2017).Article 
    PubMed 

    Google Scholar 
    Borer, E. T. et al. Nature 508, 517–520 (2014).Article 
    PubMed 

    Google Scholar 
    Harpole, W. S. et al. Nature 537, 93–96 (2016).Article 
    PubMed 

    Google Scholar 
    Eskelinen, A., Harpole, W. S., Jessen, M.-T., Virtanen, R. & Hautier, Y. Nature https://doi.org/10.1038/s41586-022-05383-9 (2022).Article 

    Google Scholar 
    Koerner, S. E. et al. Nature Ecol. Evol. 2, 1925–1932 (2018).Article 
    PubMed 

    Google Scholar 
    Chesson, P. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Coley, P. D., Bryant, J. P. & Chapin, F. S. Science 230, 895–899 (1985).Article 
    PubMed 

    Google Scholar 
    Hautier, Y., Niklaus, P. A. & Hector, A. Science 324, 636–638 (2009).Article 
    PubMed 

    Google Scholar 
    Allan, E. & Crawley, M. J. Ecol. Lett. 14, 1246–1253 (2011).Article 
    PubMed 

    Google Scholar  More

  • in

    The role of neighbouring species in survival as the climate changes

    NEWS AND VIEWS
    02 November 2022

    Predicting the risk of extinction from climate change requires an understanding of the interactions between species. An analysis of how changes in rainfall affect competition between plant species offers a way of tackling this challenge. More

  • in

    Symbiont genotype influences holobiont response to increased temperature

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).Article 
    ADS 
    PubMed 

    Google Scholar 
    Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306 (2003).Article 
    ADS 
    PubMed 

    Google Scholar 
    terHorst, C. P., Miller, T. E. & Levitan, D. R. Evolution of prey in ecological time reduces the effect size of predators in experimental microcosms. Ecology 91, 629–636 (2010).Article 
    PubMed 

    Google Scholar 
    Duffy, M. A. & Sivars-Becker, L. Rapid evolution and ecological host-parasite dynamics. Ecol. Lett. 10, 44–53 (2007).Article 
    PubMed 

    Google Scholar 
    Diamond, S. E., Chick, L. D., Perez, A., Strickler, S. A. & Martin, R. A. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities. Proc. Biol. Sci. 285, 20180036 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl. Acad. Sci. USA 104, 1278–1282 (2007).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    terHorst, C. P., Lennon, J. T. & Lau, J. A. The relative importance of rapid evolution for plant-microbe interactions depends on ecological context. Proc. R. Soc. B Biol. Sci. 281, 20140028 (2014).Article 

    Google Scholar 
    Bradshaw, W. E. & Holzapfel, C. M. Evolutionary response to rapid climate change. Science https://doi.org/10.1126/science.1127000 (2006).Article 
    PubMed 

    Google Scholar 
    Gonzalez, A., Ronce, O., Ferriere, R. & Hochberg, M. E. Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120404 (2013).Article 

    Google Scholar 
    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).Article 
    PubMed 

    Google Scholar 
    Lau, J. A. & terHorst, C. P. Evolutionary responses to global change in species-rich communities. Ann. N. Y. Acad. Sci. 1476, 43–58 (2020).Article 
    ADS 
    PubMed 

    Google Scholar 
    Lau, J. A., Shaw, R. G., Reich, P. B. & Tiffin, P. Indirect effects drive evolutionary responses to global change. New Phytol. 201, 335–343 (2014).Article 
    PubMed 

    Google Scholar 
    Tseng, M. & O’Connor, M. I. Predators modify the evolutionary response of prey to temperature change. Biol. Lett. 11, 20150798 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    terHorst, C. P. et al. Evolution in a community context: Trait responses to multiple species interactions. Am. Nat. 191, 368–380 (2018).Article 

    Google Scholar 
    Hussa, E. A. & Goodrich-Blair, H. It takes a village: Ecological and fitness impacts of multipartite mutualism. Annu. Rev. Microbiol. 67, 161–178 (2013).Article 
    PubMed 

    Google Scholar 
    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
    Google Scholar 
    Death, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. PNAS 109, 17995–17999 (2012).Article 
    ADS 

    Google Scholar 
    Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, C. M. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci. Rep. 6, 38402 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci Rep 6, 39666 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, J. K., Berkelmans, R. & Eakin, C. M. Coral bleaching in space and time. In Coral Bleaching: Patterns, Processes, Causes and Consequences (eds. van Oppen, M. J. H. & Lough, J. M.) 27–49 (Springer, 2018). https://doi.org/10.1007/978-3-540-69775-6_3.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).Article 
    ADS 
    PubMed 

    Google Scholar 
    Impacts of 1.5°C global warming on natural and human systems. In Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (ed. IPCC) 175–312 (Cambridge University Press, 2022). https://doi.org/10.1017/9781009157940.005.Glynn, P. W. & D’Croz, L. Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8, 181–191 (1990).Article 
    ADS 

    Google Scholar 
    Eakin, C. M. et al. Caribbean corals in crisis: Record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5, e13969 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38, 539–545 (2019).Article 
    ADS 

    Google Scholar 
    Baker, A. C., Starger, C. J., McClanahan, T. R. & Glynn, P. W. Corals’ adaptive response to climate change. Nature 430, 741–741 (2004).Article 
    ADS 
    PubMed 

    Google Scholar 
    Mieog, J. C., Van Oppen, M. J. H., Berkelmans, R., Stam, W. T. & Olsen, J. L. Quantification of algal endosymbionts (Symbiodinium) in coral tissue using real-time PCR. Mol. Ecol. Resour. 9, 74–82 (2009).Article 
    PubMed 

    Google Scholar 
    Silverstein, R. N., Correa, A. M. S. & Baker, A. C. Specificity is rarely absolute in coral–algal symbiosis: Implications for coral response to climate change. Proc. R. Soc. B Biol. Sci. 279, 2609–2618 (2012).Article 

    Google Scholar 
    Hoadley, K. D. et al. Host–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci. Rep. 9, 9985 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parkinson, J. E. & Baums, I. B. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral-algal associations. Front. Microbiol. 5, 445 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karim, W., Nakaema, S. & Hidaka, M. Temperature effects on the growth rates and photosynthetic activities of symbiodinium cells. J. Mar. Sci. Eng. 3, 368–381 (2015).Article 

    Google Scholar 
    Grégoire, V., Schmacka, F., Coffroth, M. A. & Karsten, U. Photophysiological and thermal tolerance of various genotypes of the coral endosymbiont Symbiodinium sp. (Dinophyceae). J. Appl. Phycol. 29, 1893 (2017).Article 

    Google Scholar 
    Díaz-Almeyda, E. M. et al. Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates. Proc. R. Soc. B Biol. Sci. 284, 20171767 (2017).Article 

    Google Scholar 
    Bayliss, S. L. J., Scott, Z. R., Coffroth, M. A. & terHorst, C. P. Genetic variation in Breviolum antillogorgium, a coral reef symbiont, in response to temperature and nutrients. Ecol. Evol. 9, 2803–2813 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pelosi, J., Eaton, K. M., Mychajliw, S., terHorst, C. P. & Coffroth, M. A. Thermally tolerant symbionts may explain Caribbean octocoral resilience to heat stress. Coral Reefs 40, 1113–1125 (2021).Article 

    Google Scholar 
    Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. Fems Microbiol. Rev. 32, 723–735 (2008).Article 
    PubMed 

    Google Scholar 
    Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Chang. 2, 116–120 (2012).Article 
    ADS 

    Google Scholar 
    Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. H. Rapid thermal adaptation in photosymbionts of reef-building corals. Glob. Chang. Biol. 23, 4675–4688 (2017).Article 
    ADS 
    PubMed 

    Google Scholar 
    Chakravarti, L. J. & van Oppen, M. J. H. Experimental evolution in coral photosymbionts as a tool to increase thermal tolerance. Front. Mar. Sci. 5, 227 (2018).Article 

    Google Scholar 
    Buerger, P. et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci. Adv. https://doi.org/10.1126/sciadv.aba2498 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hofmann, D. K. & Kremer, B. P. Carbon metabolism and strobilation in Cassiopea andromedea (Cnidaria: Scyphozoa): Significance of endosymbiotic dinoflagellates. Mar. Boil. 65, 25 (1981).Article 

    Google Scholar 
    Welsh, D., Dunn, R. & Meziane, T. Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia 635, 351 (2009).Article 

    Google Scholar 
    Freeman, C. J., Stoner, E. W., Easson, C. G., Matterson, K. O. & Baker, D. M. Symbiont carbon and nitrogen assimilation in the Cassiopea-Symbiodinium mutualism. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps11605 (2016).Article 

    Google Scholar 
    Bigelow, R. P. The Anatomy and Development of Cassiopea xamachana. 1–72 (Pub. by the Boston Society of Natural History, 1900). https://doi.org/10.5962/bhl.title.31420.Colley, N. J. & Trench, R. K. Selectivity in phagocytosis and persistence of symbiotic algae in the scyphistoma stage of the jellyfish Cassiopeia xamachana. Proc. R. Soc. Lond. B Biol. Sci. 219, 61–82 (1983).Article 
    ADS 
    PubMed 

    Google Scholar 
    Hofmann, D. K., Fitt, W. K. & Fleck, J. Checkpoints in the life-cycle of Cassiopea spp.: Control of metagenesis and metamorphosis in a tropical jellyfish. Int. J. Dev. Biol. 40, 331–338 (1996).PubMed 

    Google Scholar 
    Stat, M. & Gates, R. D. Clade D symbiodinium in scleractinian corals: A “Nugget” of hope, a selfish opportunist, an ominous sign, or all of the above?. J. Mar. Biol. 2011, e730715 (2010).
    Google Scholar 
    Correa, A. M. S. & Baker, A. C. Disaster taxa in microbially mediated metazoans: how endosymbionts and environmental catastrophes influence the adaptive capacity of reef corals. Glob. Change Biol. 17, 68–75 (2011).Article 
    ADS 

    Google Scholar 
    Silverstein, R. N., Cunning, R. & Baker, A. C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Chang. Biol. 21, 236–249 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Leal, M. C. et al. Symbiont type influences trophic plasticity of a model cnidarian-dinoflagellate symbiosis. J. Exp. Biol. 218, 858–863 (2015).Article 
    PubMed 

    Google Scholar 
    Klein, S. G. et al. Symbiodinium mitigate the combined effects of hypoxia and acidification on a noncalcifying cnidarian. Glob. Chang. Biol. 23, 3690–3703 (2017).Article 
    ADS 
    PubMed 

    Google Scholar 
    Cziesielski, M. J. et al. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc. R. Soc. B. 285, 20172654 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cunning, R. & Baker, A. C. Thermotolerant coral symbionts modulate heat stress-responsive genes in their hosts. Mol. Ecol. 29, 2940–2950 (2020).Article 
    PubMed 

    Google Scholar 
    Newkirk, C. R., Frazer, T. K., Martindale, M. Q. & Schnitzler, C. E. Adaptation to bleaching: Are thermotolerant symbiodiniaceae strains more successful than other strains under elevated temperatures in a model symbiotic cnidarian?. Front. Microbiol. 11, 822 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trench, R. K. MICROALGAL-INVERTEBRATESYMBIOSES: A REVIEW. Cell Res. 41 (1993).Yellowlees, D., Rees, T. A. V. & Leggat, W. Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ. 31, 679–694 (2008).Article 
    PubMed 

    Google Scholar 
    Swain, T. D., Chandler, J., Backman, V. & Marcelino, L. Consensus thermotolerance ranking for 110 Symbiodinium phylotypes: an exemplar utilization of a novel iterative partial-rank aggregation tool with broad application potential. Funct. Ecol. 31, 172–183 (2017).Article 

    Google Scholar 
    Klueter, A., Trapani, J., Archer, F. I., McIlroy, S. E. & Coffroth, M. A. Comparative growth rates of cultured marine dinoflagellates in the genus Symbiodinium and the effects of temperature and light. PLoS ONE 12, e0187707 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, B. et al. Dispersal, genetic variation, and symbiont interaction network of heat-tolerant endosymbiont Durusdinium trenchii: Insights into the adaptive potential of coral to climate change. Sci. Total Environ. 723, 138026 (2020).Article 
    ADS 
    PubMed 

    Google Scholar 
    van Oppen, M. J. H., Souter, P., Howells, E. J., Heyward, A. & Berkelmans, R. Novel genetic diversity through somatic mutations: Fuel for adaptation of reef corals?. Diversity 3, 405–423 (2011).Article 

    Google Scholar 
    van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl. Acad. Sci. USA 112, 2307–2313 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ohdera, A. H. et al. Upside-down but headed in the right direction: Review of the highly versatile Cassiopea xamachana system. Front. Ecol. Evol. 6, 35 (2018).Article 

    Google Scholar 
    Fitt, W. K. & Costley, K. The role of temperature in survival of the polyp stage of the tropical rhizostome jellyfish Cassiopea xamachana. J. Exp. Mar. Biol. Ecol. 222, 79–91 (1998).Article 

    Google Scholar 
    Aljbour, S. M., Zimmer, M. & Kunzmann, A. Cellular respiration, oxygen consumption, and trade-offs of the jellyfish Cassiopea sp. in response to temperature change. Journal of Sea Research 128, 92–97 (2017).Rahat, M. & Adar, O. Effect of symbiotic zooxanthellae and temperature on budding and strobiliation in Cassiopeia andromeda (Eschscholz). Biol. Bull. 159, 394–401 (1980).Article 

    Google Scholar 
    Cole, L. C. The population consequences of life history phenomena. Q. Rev. Biol. 29, 103–137 (1954).Article 
    PubMed 

    Google Scholar 
    Brommer, J. E., Merilä, J. & Kokko, H. Reproductive timing and individual fitness. Ecol. Lett. 5, 802–810 (2002).Article 

    Google Scholar 
    Hofmann, D. K., Neumann, R. & Henne, K. Strobilation, budding and initiation of scyphistoma morphogenesis in the rhizostome Cassiopea andromeda (Cnidaria: Scyphozoa). Mar. Biol. 47, 161–176 (1978).Article 

    Google Scholar 
    Thornhill, D. J., LaJeunesse, T. C., Kemp, D. W., Fitt, W. K. & Schmidt, G. W. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar. Biol. 148, 711–722 (2006).Article 

    Google Scholar 
    Mellas, R. E., McIlroy, S. E., Fitt, W. K. & Coffroth, M. A. Variation in symbiont uptake in the early ontogeny of the upside-down jellyfish, Cassiopea spp.. J. Exp. Mar. Biol. Ecol. 459, 38–44 (2014).Article 

    Google Scholar 
    Fransolet, D., Roberty, S. & Plumier, J.-C. Establishment of endosymbiosis: The case of cnidarians and Symbiodinium. J. Exp. Mar. Biol. Ecol. 420–421, 1–7 (2012).Article 

    Google Scholar 
    Jones, A. M., Berkelmans, R., van Oppen, M. J. H., Mieog, J. C. & Sinclair, W. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc. R. Soc. B Biol. Sci. 275, 1359–1365 (2008).Article 

    Google Scholar 
    Baskett, M. L., Gaines, S. D. & Nisbet, R. M. Symbiont diversity may help coral reefs survive moderate climate change. Ecol. Appl. 19, 3–17 (2009).Article 
    PubMed 

    Google Scholar 
    Baker, A. C. Reef corals bleach to survive change. Nature 411, 765–766 (2001).Article 
    ADS 
    PubMed 

    Google Scholar 
    Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc. R. Soc. B Biol. Sci. 273, 2305–2312 (2006).Article 

    Google Scholar 
    Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wolfowicz, I. et al. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci. Rep. 6, 32366 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Little, A. F., van Oppen, M. J. H. & Willis, B. L. Flexibility in algal endosymbioses shapes growth in reef corals. Science https://doi.org/10.1126/science.1095733 (2004).Article 
    PubMed 

    Google Scholar 
    Jones, A. & Berkelmans, R. Potential costs of acclimatization to a warmer climate: Growth of a reef coral with heat tolerant vs sensitive symbiont types. PLOS ONE 5, e10437 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ortiz, J. C., González-Rivero, M. & Mumby, P. J. Can a thermally tolerant symbiont improve the future of Caribbean coral reefs?. Glob. Change Biol. 19, 273–281 (2013).Article 
    ADS 

    Google Scholar 
    Sprouffske, K. & Wagner, A. Growthcurver: An R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 17, 172 (2016).Article 

    Google Scholar  More

  • in

    Genomic insights into phage-host interaction in the deep-sea chemolithoautotrophic Campylobacterota, Nitratiruptor

    Jeanthon C. Molecular ecology of hydrothermal vent microbial communities. Antonie Van Leeuwenhoek. 2000;77:117–33.Article 
    CAS 
    PubMed 

    Google Scholar 
    Nercessian O, Reysenbach A-L, Prieur D, Jeanthon C. Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13oN). Environ Microbiol. 2003;5:492–502.Article 
    PubMed 

    Google Scholar 
    Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, et al. Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol. 2005;7:1619–32.Article 
    CAS 
    PubMed 

    Google Scholar 
    Brazelton WJ, Schrenk MO, Kelley DS, Baross JA. Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl Environ Microbiol. 2006;72:6257–70.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takai K, Nakagawa S, Reysenbach A-L, Hoek J. Microbial ecology of mid-ocean ridges and back-arc basins. In: Christie DM, Fisher CR, Lee S-M, Givens S, editors. Geophysical Monograph Series. 2006. Washington, D. C.: American Geophysical Union; 2006. pp. 185–213.Nakagawa S, Takai K. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol. 2008;65:1–14.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jørgensen BB, Boetius A. Feast and famine—microbial life in the deep-sea bed. Nat Rev Microbiol. 2007;5:770–81.Article 
    PubMed 

    Google Scholar 
    Campbell BJ, Engel AS, Porter ML, Takai K. The versatile ε-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol. 2006;4:458–68.Article 
    CAS 
    PubMed 

    Google Scholar 
    Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol. 2021;71:005056.Article 

    Google Scholar 
    Nakagawa S, Takaki Y. Nonpathogenic Epsilonproteobacteria. Encyclopedia of Life Sciences (eLS). Chichester, UK: John Wiley & Sons, Ltd; 2009.Nakagawa S, Takaki Y, Shimamura S, Reysenbach A-L, Takai K, Horikoshi K. Deep-sea vent ε-proteobacterial genomes provide insights into emergence of pathogens. Proc Natl Acad Sci USA. 2007;104:12146–50.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Porcelli I, Reuter M, Pearson BM, Wilhelm T, van Vliet AH. Parallel evolution of genome structure and transcriptional landscape in the Epsilonproteobacteria. BMC Genom. 2013;14:616.Article 
    CAS 

    Google Scholar 
    Zhang Y, Sievert SM. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Front Microbiol. 2014;5:110.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vorwerk H, Huber C, Mohr J, Bunk B, Bhuju S, Wensel O, et al. A transferable plasticity region in Campylobacter coli allows isolates of an otherwise non-glycolytic food-borne pathogen to catabolize glucose. Mol Microbiol. 2015;98:809–30.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jiang SC, Kellogg CA, Paul JH. Characterization of marine temperate phage-host systems isolated from Mamala Bay, Oahu, Hawaii. Appl Environ Microbiol. 1998;64:535–42.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paul JH. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2008;2:579–89.Article 
    CAS 
    PubMed 

    Google Scholar 
    Harrison E, Brockhurst MA. Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. BioEssays. 2017;39:1700112.Article 

    Google Scholar 
    Fouts DE, Mongodin EF, Mandrell RE, Miller WG, Rasko DA, Ravel J, et al. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol. 2005;3:e15.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang M, He L, Li Q, Sun H, Gu Y, You Y, et al. Genomic characterization of the Guillain-Barre syndrome-associated Campylobacter jejuni ICDCCJ07001 isolate. PLoS ONE. 2010;5:e15060.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller WG, Yee E, Chapman MH, Smith TPL, Bono JL, Huynh S, et al. Comparative genomics of the Campylobacter lari group. Genome Biol Evol. 2014;6:3252–66.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parker CT, Quiñones B, Miller WG, Horn ST, Mandrell RE. Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221. J Clin Microbiol. 2006;44:4125–35.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CG, Ng L-K. Sequence variability of Campylobacter temperate bacteriophages. BMC Microbiol. 2008;8:49.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quiñones B, Guilhabert MR, Miller WG, Mandrell RE, Lastovica AJ, Parker CT. Comparative genomic analysis of clinical strains of Campylobacter jejuni from South Africa. PLoS ONE. 2008;3:e2015.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CG, Chen C, Berry C, Walker M, McCorrister SJ, Chong PM, et al. Comparison of genomes and proteomes of four whole genome-sequenced Campylobacter jejuni from different phylogenetic backgrounds. PLoS ONE. 2018;13:e0190836.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CG, Grant CC, Pollari F, Marshall B, Moses J, Tracz DM, et al. Effects of the Campylobacter jejuni CJIE1 prophage homologs on adherence and invasion in culture, patient symptoms, and source of infection. BMC Microbiol. 2012;12:269.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaasbeek EJ, Wagenaar JA, Guilhabert MR, Wösten MMSM, van Putten JPM, van der Graaf-van Bloois L, et al. A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni. J Bacteriol. 2009;191:2296–306.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaasbeek EJ, Wagenaar JA, Guilhabert MR, van Putten JPM, Parker CT, van der Wal FJ. Nucleases encoded by the integrated elements CJIE2 and CJIE4 inhibit natural transformation of Campylobacter jejuni. J Bacteriol. 2010;192:936–41.Article 
    CAS 
    PubMed 

    Google Scholar 
    Yoshida-Takashima Y, Takaki Y, Shimamura S, Nunoura T, Takai K. Genome sequence of a novel deep-sea vent epsilonproteobacterial phage provides new insight into the co-evolution of Epsilonproteobacteria and their phages. Extremophiles. 2013;17:405–19.Article 
    PubMed 

    Google Scholar 
    Glasby GP, Notsu K. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview. Ore Geol Rev. 2003;23:299–339.Article 

    Google Scholar 
    Yoshida-Takashima Y, Nunoura T, Kazama H, Noguchi T, Inoue K, Akashi H, et al. Spatial distribution of viruses associated with planktonic and attached microbial communities in hydrothermal environments. Appl Environ Microbiol. 2012;78:1311–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T, Sako Y, et al. Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett. 2003;217:167–74.
    Google Scholar 
    Sako Y, Takai K, Ishida Y, Uchida A, Katayama Y. Rhodothemus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol. 1996;46:1099–104.Article 
    CAS 
    PubMed 

    Google Scholar 
    Yoshida M, Yoshida-Takashima Y, Nunoura T, Takai K. Genomic characterization of a temperate phage of the psychrotolerant deep-sea bacterium Aurantimonas sp. Extremophiles. 2015;19:49–58.Article 
    CAS 
    PubMed 

    Google Scholar 
    Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, et al. Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol. 2006;72:1239–47.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leggett RM, Clavijo BJ, Clissold L, Clark MD, Caccamo M. NextClip: an analysis and read preparation tool for Nextera long mate pair libraries. Bioinformatics. 2014;30:566–8.Article 
    CAS 
    PubMed 

    Google Scholar 
    Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27:578–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Corkill JE, Graham R, Hart CA, Stubbs S. Pulsed-field gel electrophoresis of degradation-sensitive DNAs from Clostridium difficile PCR ribotype 1 strains. J Clin Microbiol. 2000;38:2791–2.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Besemer J. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–18.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delcher A. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999;27:4636–41.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40:D290–301.Article 
    CAS 
    PubMed 

    Google Scholar 
    Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33:W116–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 2011;39:D225–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.Article 
    CAS 
    PubMed 

    Google Scholar 
    Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3.Article 
    CAS 
    PubMed 

    Google Scholar 
    Huang S, Wang K, Jiao N, Chen F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol. 2012;14:540–58.Article 
    CAS 
    PubMed 

    Google Scholar 
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics. 2008;9:75.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929–31.Article 
    CAS 
    PubMed 

    Google Scholar 
    Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 2015;43:D298–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46:W246–51.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–7.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meier-Kolthoff JP, Göker M. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics. 2017;33:3396–404.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakagawa S, Takai K, Inagaki F, Horikoshi K, Sako Y. Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the ε-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. Int J Syst Evol Microbiol. 2005;55:925–33.Article 
    CAS 
    PubMed 

    Google Scholar 
    Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA. 2009;106:19126–31.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, et al. Origins of highly mosaic mycobacteriophage genomes. Cell. 2003;113:171–82.Article 
    CAS 
    PubMed 

    Google Scholar 
    Mercier C, Lossouarn J, Nesbø CL, Haverkamp THA, Baudoux AC, Jebbar M, et al. Two viruses, MCV1 and MCV2, which infect Marinitoga bacteria isolated from deep-sea hydrothermal vents: functional and genomic analysis. Environ Microbiol. 2018;20:577–87.Article 
    CAS 
    PubMed 

    Google Scholar 
    Samson JE, Magadán AH, Sabri M, Moineau S. Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol. 2013;11:675–87.Article 
    CAS 
    PubMed 

    Google Scholar 
    Meyer JL, Huber JA. Strain-level genomic variation in natural populations of Lebetimonas from an erupting deep-sea volcano. ISME J. 2014;8:867–80.Article 
    CAS 
    PubMed 

    Google Scholar 
    Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol. 2005;3:722–32.Article 
    CAS 
    PubMed 

    Google Scholar 
    Ramisetty BCM, Sudhakari PA. Bacterial ‘grounded’ prophages: hotspots for genetic renovation and innovation. Front Genet. 2019;10:65.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8:317–27.Article 
    CAS 
    PubMed 

    Google Scholar 
    Piel D, Bruto M, Labreuche Y, Blanquart F, Goudenège D, Barcia-Cruz R, et al. Phage–host coevolution in natural populations. Nat Microbiol. 2022;7:1075–86.Article 
    CAS 
    PubMed 

    Google Scholar 
    Lynch KH, Stothard P, Dennis JJ. Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex. BMC Genomics. 2010;11:599.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Godde JS, Bickerton A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J Mol Evol. 2006;62:718–29.Article 
    CAS 
    PubMed 

    Google Scholar 
    Nobrega FL, Walinga H, Dutilh BE, Brouns SJJ. Prophages are associated with extensive CRISPR–Cas auto-immunity. Nucleic Acids Res. 2020;48:12074–84.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yi H, Huang L, Yang B, Gomez J, Zhang H, Yin Y. AcrFinder: genome mining anti-CRISPR operons in prokaryotes and their viruses. Nucleic Acids Res. 2020;48:W358–65.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maier L-K, Lange SJ, Stoll B, Haas KA, Fischer SM, Fischer E, et al. Essential requirements for the detection and degradation of invaders by the Haloferax volcanii CRISPR/Cas system I-B. RNA Biol. 2013;10:865–74.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boudry P, Semenova E, Monot M, Datsenko KA, Lopatina A, Sekulovic O, et al. Function of the CRISPR-Cas system of the human pathogen Clostridium difficile. mBio. 2015;6:e01112–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12.Article 
    CAS 
    PubMed 

    Google Scholar 
    Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2008;190:1390–400.Article 
    CAS 
    PubMed 

    Google Scholar 
    Nozawa T, Furukawa N, Aikawa C, Watanabe T, Haobam B, Kurokawa K, et al. CRISPR inhibition of prophage acquisition in Streptococcus pyogenes. PLoS ONE. 2011;6:e19543.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18:67–83.Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia

    Plant materials and genome sequencingFresh leaves of a wild P. koreana plant in the Changbai Mountains of Jilin province in China were collected, and the total genomic DNA was extracted using the CTAB method. For the Illumina short-read sequencing, paired-end libraries with insert sizes of 350 bp were constructed and sequenced using an Illumina HiSeq X Ten platform. For the long-read sequencing, the genomic libraries with 20-kbp insertions were constructed and sequenced using the PromethION platform of Oxford Nanopore Technologies (ONT). For the Hi-C experiment, approximately 3 g of fresh young leaves of the same P. koreana accession was ground to powder in liquid nitrogen. A sequencing library was then constructed by chromatin extraction and digestion, DNA ligation, purification, and fragmentation53 and was subsequently sequenced on an Illumina HiSeq X Ten platform.Genome assembly and scaffoldingThe quality-controlled reads were first corrected via a self-align method using the NextCorrect module in the software NextDenovo v2.0-beta.1 (https://github.com/Nextomics/NextDenovo) with parameters “reads_cutoff=1k (filter reads with length 20, percent of unqualified bases More

  • in

    Field measurements reveal exposure risk to microplastic ingestion by filter-feeding megafauna

    Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hylland, K. & Vethaak, A. D. Ecological Impacts of Toxic Chemicals (Bentham Science Publishers, 2012).Bossart, G. D. Marine mammals as sentinel species for oceans and human health. Vet. Pathol. 48, 676–690 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C. & Jambeck, J. Plastic as a persistent marine pollutant. Annu. Rev. Environ. Resour. 42, 1–26 (2017).Article 

    Google Scholar 
    Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carpenter, E. J., Anderson, S. J., Harvey, G. R., Miklas, H. P. & Peck, B. B. Polystyrene spherules in coastal waters. Science 178, 749–750 (1972).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kenyon, K. W. & Kridler, E. Laysan albatrosses swallow indigestible matter. Auk 86, 339–343 (1969).Article 

    Google Scholar 
    Santos, R. G., Machovsky-Capuska, G. E. & Andrades, R. Plastic ingestion as an evolutionary trap: toward a holistic understanding. Science 373, 56–60 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Suaria, G. et al. Microfibers in oceanic surface waters: a global characterization. Sci. Adv. 6, 1–9 (2020).Article 

    Google Scholar 
    Nelms, S. E., Galloway, T. S., Godley, B. J., Jarvis, D. S. & Lindeque, P. K. Investigating microplastic trophic transfer in marine top predators. Environ. Pollut. 238, 999–1007 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: a meta-analysis and systematic review. Ecol. Appl. 30, e02044 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Savoca, M. S., McInturf, A. G. & Hazen, E. L. Plastic ingestion by marine fish is widespread and increasing. Glob. Change Biol. 27, 2188–2199 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Lynch, J. M. Quantities of marine debris ingested by sea turtles: Global meta-analysis highlights need for standardized data reporting methods and reveals relative risk. Environ. Sci. Technol. 52, 12026–12038 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wilcox, C., Van Sebille, E. & Hardesty, B. D. Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc. Natl Acad. Sci. USA 112, 11899–11904 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fossi, M. C. et al. Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Mar. Pollut. Bull. 64, 2374–2379 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Germanov, E. S., Marshall, A. D., Bejder, L., Fossi, M. C. & Loneragan, N. R. Microplastics: no small problem for filter-feeding megafauna. Trends Ecol. Evol. 33, 227–232 (2018).Article 
    PubMed 

    Google Scholar 
    Alava, J. J. Modeling the bioaccumulation and biomagnification potential of microplastics in a Cetacean foodweb of the Northeastern pacific: a prospective tool to assess the risk exposure to plastic particles. Front. Mar. Sci. 7, 566101 (2020).Article 

    Google Scholar 
    Zantis, L. J. et al. Assessing microplastic exposure of large marine filter-feeders. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.151815. (2021).Garcia-Garin, O. et al. Ingestion of synthetic particles by fin whales feeding off Western Iceland in summer. Chemosphere 279, 130564 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sims, D. W. & Quayle, V. A. Selective foraging behaviour of basking sharks on zooplankton in a small-scale front. Nature 393, 460–465 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Goldbogen, J. A. et al. Prey density and distribution drive the three-dimensional foraging strategies of the largest filter feeder. Funct. Ecol. 29, 951–961 (2015).Article 

    Google Scholar 
    Frias, J. P. G. L., Otero, V. & Sobral, P. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar. Environ. Res. 95, 89–95 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sun, X., Liang, J., Zhu, M., Zhao, Y. & Zhang, B. Microplastics in seawater and zooplankton from the Yellow Sea*. Environ. Pollut. 242, 585–595 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tanaka, K. & Takada, H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci. Rep. 6, 34351 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cole, M. et al. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47, 6646–6655 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mahara, N. et al. Assessing size-based exposure to microplastic particles and ingestion pathways in zooplankton and herring in a coastal pelagic ecosystem of British Columbia, Canada. Mar. Ecol. Prog. Ser. 683, 139–155 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Besseling, E. et al. Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae. Mar. Pollut. Bull. 95, 248–252 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Baini, M. et al. First detection of seven phthalate esters (PAEs) as plastic tracers in superficial neustonic/planktonic samples and cetacean blubber. Anal. Methods 9, 1512–1520 (2017).Article 
    CAS 

    Google Scholar 
    Goldbogen, J. A. et al. How Baleen whales feed: the biomechanics of engulfment and filtration. Annu. Rev. Mar. Sci. 9, 367–386 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Kawamura, A. A Review of Food of Balaenopterid Whales (AGRIS, 1980).Fleming, A. H., Clark, C. T., Calambokidis, J. & Barlow, J. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. Glob. Change Biol. 22, 1214–1224 (2015).Article 
    ADS 

    Google Scholar 
    Clapham, P. J., Leatherwood, S., Szczepaniak, I. & Brownell, R. L. Catches of humpback and other whales from shore stations at Moss Landing and Trinidad, California, 1919–1926. Mar. Mammal. Sci. 13, 368–394 (1997).Article 

    Google Scholar 
    Savoca, M. S. et al. Baleen whale prey consumption based on high-resolution foraging measurements. Nature 599, 85–90 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kahane-Rapport, S. R. & Goldbogen, J. A. Allometric scaling of morphology and engulfment capacity in rorqual whales. J. Morphol. 279, 1256–1268 (2018).Article 
    PubMed 

    Google Scholar 
    Kahane-Rapport, S. R. et al. Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale. J. Exp. Biol. 223, jeb224196 (2020).Goldbogen, J. A., Potvin, J. & Shadwick, R. E. Skull and buccal cavity allometry increase mass-specific engulfment capacity in fin whales. Proc. R. Soc. B: Biol. Sci. 277, 861–868 (2010).Article 

    Google Scholar 
    Cade, D. E., Carey, N., Domenici, P., Potvin, J. & Goldbogen, J. A. Predator-informed looming stimulus experiments reveal how large filter feeding whales capture highly maneuverable forage fish. Proc. Natl Acad. Sci. USA 117, 472–478 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Domenici, P. The scaling of locomotor performance in predator-prey encounters: from fish to killer whales. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 131, 169–182 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lindstedt, S. & Caldor, W. Body size, physiological time, and longevity of homeothermic animals. Q. Rev. Biol. 56, 1–16 (1981).Article 

    Google Scholar 
    Banavar, J. R. et al. A general basis for quarter-power scaling in animals. Proc. Natl Acad. Sci. USA 107, 15816–15820 (2010).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fossi, M. C. et al. Fin whales and microplastics: the Mediterranean Sea and the Sea of Cortez scenarios. Environ. Pollut. 209, 68–78 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Croll et al. Encyclopedia of Marine Mammals 2nd edn (Elsevier, 2018).De Vos, A., Pattiaratchi, C. B. & Harcourt, R. G. Inter-annual variability in blue whale distribution off Southern Sri Lanka between 2011 and 2012. J. Mar. Sci. Eng. 2, 534–550 (2014).Article 

    Google Scholar 
    Torres, L. G., Barlow, D. R., Chandler, T. E. & Burnett, J. D. Insight into the kinematics of blue whale surface foraging through drone observations and prey data. PeerJ 8, e8906 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Friedlaender, A. S. et al. The advantages of diving deep: fin whales quadruple their energy intake when targeting deep krill patches. Funct. Ecol. https://doi.org/10.1111/1365-2435.13471 (2019).Kashiwabara, L. et al. Microplastics and microfibers in surface waters of Monterey Bay National Marine Sanctuary, California. Mar. Pollut. Bull. 165, 112148 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lattin, G. L., Moore, C. J., Zellers, A. F., Moore, S. L. & Weisberg, S. B. A comparison of neustonic plastic and zooplankton at different depths near the southern California shore. Mar. Pollut. Bull. 49, 291–294 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sutton, R. et al. Understanding Microplastic Levels, Pathways, and Transport in the San Francisco Bay Region. (2019).Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Desforges, J. P. W., Galbraith, M. & Ross, P. S. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contamination Toxicol. 69, 320–330 (2015).Article 
    CAS 

    Google Scholar 
    Rochman, C. M. et al. Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 5, 14340 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fossi, M. C., Baini, M. & Simmonds, M. P. Cetaceans as ocean health indicators of marine litter impact at global scale. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2020.586627 (2020).Pabortsava, K. & Lampitt, R. S. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat. Commun. 11, 4073 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cong, Y. et al. Ingestion, egestion and post-exposure effects of polystyrene microspheres on marine medaka (Oryzias melastigma). Chemosphere 228, 93–100 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ory, N. C., Gallardo, C., Lenz, M. & Thiel, M. Capture, swallowing, and egestion of microplastics by a planktivorous juvenile fish. Environ. Pollut. 240, 566–573 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grigorakis, S., Mason, S. A. & Drouillard, K. G. Determination of the gut retention of plastic microbeads and microfibers in goldfish (Carassius auratus). Chemosphere 169, 233–238 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gigault, J. et al. Current opinion: What is a nanoplastic? Environ. Pollut. 235, 1030–1034 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lu, Y. et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ. Sci. Technol. 50, 4054–4060 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barboza, L. G. A. et al. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total Environ. 717, 134625 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ramsperger, A. F. R. M. et al. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 6, 1–10 (2020).Article 

    Google Scholar 
    Collard, F. et al. Microplastics in livers of European anchovies (Engraulis encrasicolus, L.). Environ. Pollut. 229, 1000–1005 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dawson, A. L. et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wieczorek, A. M. et al. Frequency of microplastics in mesopelagic fishes from the Northwest Atlantic. Front. Mar. Sci. 5, 1–9 (2018).
    Google Scholar 
    Boerger, C. M., Lattin, G. L., Moore, S. L. & Moore, C. J. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull. 60, 2275–2278 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Davison, P. & Asch, R. Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre. Mar. Ecol. Prog. Ser. 432, 173–180 (2011).Article 
    ADS 

    Google Scholar 
    Lusher, A. L., Donnell, C. O., Officer, R. & Connor, I. O. Microplastic interactions with North Atlantic mesopelagic fish. ICES J. Mar. Sci. 73, 1214–1225 (2016).Article 

    Google Scholar 
    Hamilton, B. M. et al. Prevalence of microplastics and anthropogenic debris within a deep-sea food web. Mar. Ecol. Prog. Ser. 675, 23–33 (2021).Article 
    ADS 

    Google Scholar 
    Sun, X. et al. Ingestion of microplastics by natural zooplankton groups in the northern. Mar. Pollut. Bull. 115, 217–224 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mayo, C. A. & Marx, M. K. Surface foraging behaviour of the North Atlantic right whale, Eubalaena glacialis, and associated zooplankton characteristics. Can. J. Zool. 68, 2214–2220 (1990).Article 

    Google Scholar 
    Friedlaender, A. S. et al. Diel changes in humpback whale Megaptera novaeangliae feeding behavior in response to sand lance Ammodytes spp. behavior and distribution. Mar. Ecol. Prog. Ser. 395, 91–100 (2009).Article 
    ADS 

    Google Scholar 
    Tekman, M. B. et al. Tying up loose ends of microplastic pollution in the arctic: distribution from the sea surface through the water column to deep-sea sediments at the HAUSGARTEN observatory. Environ. Sci. Technol. 54, 4079–4090 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1, 140317 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iwata, T. et al. Tread-water feeding of Bryde’s whales. Curr. Biol. 27, R1154–R1155 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gregorietti, M. et al. Cetacean presence and distribution in the central Mediterranean Sea and potential risks deriving from plastic pollution. Mar. Pollut. Bull. 173, 112943 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rosel, P. E., Wilcox, L. A., Yamada, T. K. & Mullin, K. D. A new species of baleen whale (Balaenoptera) from the Gulf of Mexico, with a review of its geographic distribution. Marine Mammal Sci. https://doi.org/10.1111/mms.12776 (2021).Yong, M. M. H. et al. Microplastics in fecal samples of whale sharks (Rhincodon typus) and from surface water in the Philippines. Microplastics Nanoplastics 1, 17 (2021).Article 
    PubMed 

    Google Scholar 
    Fossi, M. C. et al. Are whale sharks exposed to persistent organic pollutants and plastic pollution in the Gulf of California (Mexico)? First ecotoxicological investigation using skin biopsies. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 199, 48–58 (2017).CAS 

    Google Scholar 
    Cade, D. E. et al. Predator‐scale spatial analysis of intra‐patch prey distribution reveals the energetic drivers of rorqual whale super‐group formation. Funct. Ecol. 35, 894–908 (2021).Article 
    CAS 

    Google Scholar 
    Goldbogen, J. A. et al. Why whales are big but not bigger: Physiological drivers and ecological limits in the age of ocean giants. Science 366, 1367–1372 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Southall, B. L. et al. Behavioral responses of individual blue whales (Balaenoptera musculus) to mid-frequency military sonar. J. Exp. Biol. 222, jeb190637 (2019).Article 
    PubMed 

    Google Scholar 
    Calambokidis, J. et al. Differential vulnerability to ship strikes between day and night for blue, fin, and humpback whales based on dive and movement data from Medium duration archival tags. Front. Mar. Sci. 6, 543 (2019).Article 

    Google Scholar 
    Cade, D. E. et al. Tools for integrating inertial sensor data with video bio-loggers, including estimation of animal orientation, motion, and position. Anim. Biotelem. 9, 34 (2021).Article 

    Google Scholar 
    Cade, D. E., Friedlaender, A. S., Calambokidis, J. & Goldbogen, J. A. Kinematic diversity in rorqual whale feeding mechanisms. Curr. Biol. 26, 2617–2624 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnson, M. P. & Tyack, P. L. A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE J. Ocean. Eng. 28, 3–12 (2003).Article 
    ADS 

    Google Scholar 
    Cade, D. E., Barr, K. R., Calambokidis, J., Friedlaender, A. S. & Goldbogen, J. A. Determining forward speed from accelerometer jiggle in aquatic environments. J. Exp. Biol. 221, jeb170449 (2018).PubMed 

    Google Scholar 
    Hadfield, J. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Hipfner, J. M. et al. Two forage fishes as potential conduits for the vertical transfer of microfibres in Northeastern Pacific Ocean food webs. Environ. Pollut. 239, 215–222 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Doyle, M. J., Watson, W., Bowlin, N. M. & Sheavly, S. B. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Mar. Environ. Res. 71, 41–52 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Witteveen, B. H., Worthy, G. A. J., Foy, R. J. & Wynne, K. M. Modeling the diet of humpback whales: An approach using stable carbon and nitrogen isotopes in a Bayesian mixing model. Mar. Mammal. Sci. 28, E233–E250 (2012).Article 

    Google Scholar  More