Citizen science plant observations encode global trait patterns
Sakschewski, B. et al. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob. Change Biol. 21, 2711–2725 (2015).Article
Google Scholar
Berzaghi, F. et al. Towards a new generation of trait-flexible vegetation models. Trends Ecol. Evol. 35, 191–205 (2020).Article
PubMed
Google Scholar
Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).Article
PubMed
Google Scholar
Joswig, J. S. et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 6, 36–50 (2021).Article
PubMed
PubMed Central
Google Scholar
van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).PubMed Central
Google Scholar
Moreno Martínez, A. et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens. Environ. 218, 69–88 (2018).Article
Google Scholar
Pérez-Harguindeguy, N. et al. New handbook for standardized measurment of plant functional traits worldwide. Aust. J. Bot. 23, 167–234 (2013).Article
Google Scholar
Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).Article
Google Scholar
Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).Article
Google Scholar
Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).Article
PubMed
Google Scholar
Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).Article
PubMed
PubMed Central
Google Scholar
Boonman, C. C. et al. Assessing the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. Biogeogr. 29, 1034–1051 (2020).Article
PubMed
PubMed Central
Google Scholar
Madani, N. et al. Future global productivity will be affected by plant trait response to climate. Sci. Rep. 8, 2870 (2018).Vallicrosa, H. et al. Global distribution and drivers of forest biome foliar nitrogen to phosphorus ratios (N:P). Glob. Ecol. Biogeogr. 31, 861–871 (2022).Article
Google Scholar
Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633 (2021).Article
Google Scholar
Schiller, C. et al. Deep learning and citizen science enable automated plant trait predictions from photographs. Sci. Rep. 11, 16395 (2021).Aguirre-Gutiérrez, J. et al. Pantropical modelling of canopy functional traits using sentinel-2 remote sensing data. Remote Sens. Environ. 252, 112–122 (2021).Article
Google Scholar
Homolova, L. et al. Review of optical-based remote sensing for plant trait mapping. Ecol. Complex. 15, 1–16 (2013).Article
Google Scholar
Van Cleemput, E. et al. The functional characterization of grass-and-shrubland ecosystems using hyperspectral remote sensing: trends, accuracy and moderating variables. Remote Sens. Environ. 209, 747–763 (2018).Article
Google Scholar
Kattenborn, T., Fassnacht, F. E. & Schmidtlein, S. Differentiating plant functional types using reflectance: which traits make the difference? Remote Sens. Ecol. Conserv. 5, 5–19 (2019).Article
Google Scholar
Hauser, L. T. et al. Explaining discrepancies between spectral and in-situ plant diversity in multispectral satellite earth observation. Remote Sens. Environ. 265, 112684 (2021).Article
Google Scholar
Wäldchen, J. & Mäder, P. Plant species identification using computer vision techniques: a systematic literature review. Arch. Comput. Methods Eng. 25, 507–543 (2018).Article
PubMed
Google Scholar
Jones, H. G. What plant is that? Tests of automated image recognition apps for plant identification on plants from the British flora. AoB Plants 12, plaa052 (2020).Article
PubMed
PubMed Central
Google Scholar
Hampton, S. E. et al. Big data and the future of ecology. Front. Ecol. Environ. 11, 156–162 (2013).Article
Google Scholar
WÜest, R. O. et al. Macroecology in the age of big data—where to go from here? J. Biogeogr. 47, 1–12 (2020).Article
Google Scholar
Mäder, P. et al. The Flora Incognita app—interactive plant species identification. Methods Ecol. Evol. 12, 1335–1342 (2021).Article
Google Scholar
Di Cecco, G. J. et al. Observing the observers: how participants contribute data to iNaturalist and implications for biodiversity science. BioScience 71, 1179–1188 (2021).Article
Google Scholar
Mahecha, M. D. et al. Crowd-sourced plant occurrence data provide a reliable description of macroecological gradients. Ecography 44, 1131–1142 (2021).Article
Google Scholar
Botella, C. et al. Jointly estimating spatial sampling effort and habitat suitability for multiple species from opportunistic presence-only data. Methods Ecol. Evol. 12, 933–945 (2021).Article
Google Scholar
iNaturalist Research-Grade Observations (GBIF, accessed 5 January 2022); https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7Callaghan, C. T. et al. Three frontiers for the future of biodiversity research using citizen science data. BioScience 71, 55–63 (2020).
Google Scholar
Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: challenges and benefits. Ann. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).Article
Google Scholar
Kosmala, M. et al. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560 (2016).Article
Google Scholar
Boakes, E. H. et al. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour. Sci. Rep. 6, 33051 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Bowler, D.E. et al. Temporal trends in the spatial bias of species occurrence records. Ecography 2022, e06219 (2022). https://doi.org/10.1111/ecog.06219GBIF Occurrence Download (GBIF, 4 January 2022); https://doi.org/10.15468/dl.34tjreBruelheide, H. et al. sPlot—a new tool for global vegetation analyses. journal of vegetation science. J. Veg. Sci. 30, 161–186 (2019).Article
Google Scholar
Sabatini, F. et al. sPlotOpen—an environmentally balanced, open access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).Article
Google Scholar
Whittaker, R.H. et al. Communities and Ecosystems (Macmillan/Collier Macmillan, 1970).Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article
Google Scholar
Joswig, J., Wirth, C. & Schuman, M. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 6, 36–50 (2022).Article
PubMed
Google Scholar
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).Article
PubMed
Google Scholar
Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Meyer, H. & Pebesma, E. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Methods Ecol. Evol. 12, 1620–1633 (2021).Article
Google Scholar
Schrodt, F. et al. Bhpmf—a hierarchical Bayesian approach to gap filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).Article
Google Scholar
Kuppler, J. et al. Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness. Glob. Ecol. Biogeogr. 29, 992–1007 (2020).Article
Google Scholar
Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).Article
PubMed
Google Scholar
Taubert, F. et al. Confronting an individual-based simulation model with empirical community patterns of grasslands. PLoS ONE 15, e0236546 (2020).Roger, E. & Klistorner, S. (2016) Bioblitzes help science communicators engage local communities in environmental research. J. Sci. Commun. https://doi.org/10.22323/2.15030206 (2016).Legendre, P. & Legendre, L. Numerical Ecology 3rd edn (Elsevier, 2012).Warton, D. I. et al. Smatr 3—an R package for estimation and inference about allometric lines. Methods Ecol Evol 3, 257–259 (2012).Article
Google Scholar
Wolf, S. et al. iNaturalist_traits: iNaturalist trait maps version 1 (January 5, 2022) Zenodo https://doi.org/10.5281/zenodo.6671891 (2022). More