More stories

  • in

    Urban ecosystem drives genetic diversity in feral honey bee

    United Nations, Department of Economic and Social Affairs & Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). (United Nations, 2019).Wei, Y. D. & Ewing, R. Urban expansion, sprawl and inequality. Landsc. Urban Plan. 177, 259–265. https://doi.org/10.1016/j.landurbplan.2018.05.021 (2018).Article 

    Google Scholar 
    Ayers, A. C. & Rehan, S. M. Supporting bees in cities: How bees are influenced by local and landscape features. Insects 12 (2021).Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760. https://doi.org/10.1126/science.1150195 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 (2003).Article 

    Google Scholar 
    Shochat, E. et al. Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60, 199–208. https://doi.org/10.1525/bio.2010.60.3.6 (2010).Article 

    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Cons. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480. https://doi.org/10.1146/annurev-ento-011019-025151 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brown, M. J. & Paxton, R. J. The conservation of bees: A global perspective. Apidologie 40, 410–416 (2009).
    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).PubMed 

    Google Scholar 
    Potts, S. G. et al. Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. (2016).Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).PubMed 

    Google Scholar 
    Millard, J. et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 1–11 (2021).ADS 

    Google Scholar 
    Baldock, K. C. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evolut. 3, 363–373 (2019).
    Google Scholar 
    Banaszak-Cibicka, W., Twerd, L., Fliszkiewicz, M., Giejdasz, K. & Langowska, A. City parks vs. natural areas—Is it possible to preserve a natural level of bee richness and abundance in a city park?. Urban Ecosyst. 21, 599–613 (2018).
    Google Scholar 
    Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29 (2017).PubMed 

    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 1–13 (2020).
    Google Scholar 
    Wilson, C. J. & Jamieson, M. A. The effects of urbanization on bee communities depends on floral resource availability and bee functional traits. PLoS ONE 14, e0225852 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Samuelson, A. E., Schürch, R. & Leadbeater, E. Dancing bees evaluate central urban forage resources as superior to agricultural land. J. Appl. Ecol. 59, 79–88 (2022).
    Google Scholar 
    Fortel, L. et al. Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9, e104679 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roffet-Salque, M. et al. Widespread exploitation of the honeybee by early Neolithic farmers. Nature 527, 226–230 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Crane, E. Recent research on the world history of beekeeping. Bee World 80, 174–186 (1999).
    Google Scholar 
    Dietemann, V., Pirk, C. W. W. & Crewe, R. Is there a need for conservation of honeybees in Africa?. Apidologie 40, 285–295 (2009).
    Google Scholar 
    Jaffe, R. et al. Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conserv. Biol. 24, 583–593 (2010).PubMed 

    Google Scholar 
    Browne, K. A. et al. Investigation of free-living honey bee colonies in Ireland. J. Apic. Res. 60, 229–240. https://doi.org/10.1080/00218839.2020.1837530 (2021).Article 

    Google Scholar 
    Kohl, P. L. & Rutschmann, B. The neglected bee trees: European beech forests as a home for feral honey bee colonies. PeerJ 6, e4602 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Oleksa, A., Gawroński, R. & Tofilski, A. Rural avenues as a refuge for feral honey bee population. J. Insect Conserv. 17, 465–472 (2013).
    Google Scholar 
    Rutschmann, B., Kohl, P. L., Machado, A. & Steffan-Dewenter, I. Semi-natural habitats promote winter survival of wild-living honeybees in an agricultural landscape. Biol. Cons. 266, 109450 (2022).
    Google Scholar 
    Thompson, C. E., Biesmeijer, J. C., Allnutt, T. R., Pietravalle, S. & Budge, G. E. Parasite pressures on feral honey bees (Apis mellifera sp). PLoS ONE 9, e105164 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bila Dubaić, J. et al. Unprecedented density and persistence of feral honey bees in urban environments of a large SE-European City (Belgrade, Serbia). Insects 12, 1127 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Alaux, C., Le Conte, Y. & Decourtye, A. Pitting wild bees against managed honey bees in their native range, a losing strategy for the conservation of honey bee biodiversity. Front. Ecol. Evol. 7, 60 (2019).
    Google Scholar 
    Requier, F. et al. The conservation of native honey bees is crucial. Trends Ecol. Evol. 34, 789–798 (2019).PubMed 

    Google Scholar 
    Mladenović, S. et al. Environment in Belgrade in 2018. (in Serbian: Kvalitet životne sredine u Beogradu u 2018. godini). (The City Administration, Secretariat for Environmental Protection, 2019).Statistical Office of the Republic of Serbia. https://data.stat.gov.rs/Home/Result/130202010207?languageCode=en-US.
    (“The Official Gazette of the Republic of Serbia”, Nos. 41/2009, 93/2012 and 14/2106 [In Serbian], 2009).Johnson, M. T. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).PubMed 

    Google Scholar 
    Jara, L. et al. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies. Sci. Nat. 102, 1–8 (2015).
    Google Scholar 
    Tanasković, M. et al. MtDNA analysis indicates human-induced temporal changes of serbian honey bees diversity. Insects 12, 767 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, J. COANCESTRY: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145. https://doi.org/10.1111/j.1755-0998.2010.02885.x (2011).Article 
    PubMed 

    Google Scholar 
    Wang, J. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet. Res. 89, 135–153. https://doi.org/10.1017/s0016672307008798 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jacobson, S. Locally adapted, varroa resistant honey bees: ideas from several key studies. Am. Bee J. (2010).McNeely, J. A., Miller, K. R., Reid, W. V., Mettermeier, R. A. & Werner, T. B. Conserving the world’s biological diversity. (UICN, Morges (Suiza) WRI, Washington DC (EUA) CI, Washington DC (EUA) WWF …, 1990).Hoban, S. M. et al. Bringing genetic diversity to the forefront of conservation policy and management. Conserv. Genet. Resour. 5, 593–598 (2013).
    Google Scholar 
    Hohenlohe, P. A., Funk, W. C. & Rajora, O. P. Population genomics for wildlife conservation and management. Mol. Ecol. 30, 62–82 (2021).PubMed 

    Google Scholar 
    Shafer, A. B. et al. Genomics and the challenging translation into conservation practice. Trends Ecol. Evol. 30, 78–87 (2015).PubMed 

    Google Scholar 
    Mattila, H. R. & Seeley, T. D. Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317, 362–364 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Oddie, M. A. & Dahle, B. Insights from Norway: Using natural adaptation to breed Varroa-resistant honey bees. Bee World 98, 38–43 (2021).
    Google Scholar 
    Oddie, M. A., Dahle, B. & Neumann, P. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection. PeerJ 5, e3956 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Oldroyd, B. P. & Fewell, J. H. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 22, 408–413 (2007).PubMed 

    Google Scholar 
    Tarpy, D. R. Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc. R Soc. Lond. Series B Biol. Sci. 270, 99–103 (2003).
    Google Scholar 
    van Baalen, M. & Beekman, M. The costs and benefits of genetic heterogeneity in resistance against parasites in social insects. Am. Nat. 167, 568–577 (2006).PubMed 

    Google Scholar 
    Eckholm, B. J., Anderson, K. E., Weiss, M. & DeGrandi-Hoffman, G. Intracolonial genetic diversity in honeybee (Apis mellifera) colonies increases pollen foraging efficiency. Behav. Ecol. Sociobiol. 65, 1037–1044 (2011).
    Google Scholar 
    Graham, S., Myerscough, M., Jones, J. & Oldroyd, B. Modelling the role of intracolonial genetic diversity on regulation of brood temperature in honey bee (Apis mellifera L.) colonies. Insectes Soc. 53, 226–232 (2006).
    Google Scholar 
    Jones, J. C., Myerscough, M. R., Graham, S. & Oldroyd, B. P. Honey bee nest thermoregulation: Diversity promotes stability. Science 305, 402–404 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tanasković, M. et al. Further evidence of population admixture in the Serbian honey bee population. Insects 13, 180 (2022).PubMed 
    PubMed Central 

    Google Scholar 
    Nedić, N. et al. Detecting population admixture in honey bees of Serbia. J. Apic. Res. 53, 303–313. https://doi.org/10.3896/IBRA.1.53.2.12 (2014).Article 

    Google Scholar 
    Nedić, N., Stanisavljević, L., Mladenović, M. & Stanisavljević, J. Molecular characterization of the honeybee Apis mellifera carnica in Serbia. Arch. Biol. Sci. 61, 587–598 (2009).
    Google Scholar 
    Kükrer, M., Kence, M. & Kence, A. Honey bee diversity is swayed by migratory beekeeping and trade despite conservation practices: Genetic evidence for the impact of anthropogenic factors on population structure. Front. Ecol. Evolut. 9 (2021).Bouga, M., Harizanis, P. C., Kilias, G. & Alahiotis, S. Genetic divergence and phylogenetic relationships of honey bee Apis mellifera (Hymenoptera: Apidae) populations from Greece and Cyprus using PCR–RFLP analysis of three mtDNA segments. Apidologie 36, 335–344 (2005).CAS 

    Google Scholar 
    Dall’Olio, R., Marino, A., Lodesani, M. & Moritz, R. F. Genetic characterization of Italian honeybees, Apis mellifera ligustica, based on microsatellite DNA polymorphisms. Apidologie 38, 207–217 (2007).CAS 

    Google Scholar 
    Neumann, P. & Blacquière, T. The Darwin cure for apiculture? Natural selection and managed honeybee health. Evol. Appl. 10, 226–230 (2017).PubMed 

    Google Scholar 
    Kulinčević, J., Rinderer, T., Mladjan, V. & Buco, S. Five years of bi-directional genetic selection for honey bees resistant and susceptible to Varroa jacobsoni. Apidologie 23, 443–452 (1992).
    Google Scholar 
    2011 Census of Population, Households and Dwellings in the Republic of Serbia: Comparative Overview of the Number of Population in 1948, 1953, 1961, 1971, 1981, 1991, 2002 and 2011. (Statistical Office of the Republic of Serbia, 2014).Techer, M. A. et al. Large-scale mitochondrial DNA analysis of native honey bee Apis mellifera populations reveals a new African subgroup private to the South West Indian Ocean islands. BMC Genet. 18, 1–21 (2017).
    Google Scholar 
    Garnery, L., Cornuet, J. M. & Solignac, M. Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Mol. Ecol. 1, 145–154 (1992).CAS 
    PubMed 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resources. 10, 564–567 (2010).
    Google Scholar 
    Kalinowski, S. T. hp-rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes. 5, 187–189 (2005).CAS 

    Google Scholar 
    Stoneking, M., Hedgecock, D., Higuchi, R. G., Vigilant, L. & Erlich, H. A. Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequence-specific oligonucleotide probes. Am. J. Hum. Genet. 48, 370 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    Crozier, R. & Crozier, Y. The mitochondrial genome of the honeybee Apis mellifera: Complete sequence and genome organization. Genetics 133, 97–117 (1993).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587. https://doi.org/10.1093/genetics/164.4.1567 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 

    Google Scholar 
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94. https://doi.org/10.1186/1471-2156-11-94 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244. https://doi.org/10.1080/01621459.1963.10500845 (1963).Article 
    MathSciNet 

    Google Scholar 
    Wang, J. An estimator for pairwise relatedness using molecular markers. Genetics 160, 1203–1215. https://doi.org/10.1093/genetics/160.3.1203 (2002).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, C. C., Weeks, D. E. & Chakravarti, A. Similarity of DNA fingerprints due to chance and relatedness. Hum. Hered. 43, 45–52. https://doi.org/10.1159/000154113 (1993).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lynch, M. Estimation of relatedness by DNA fingerprinting. Mol. Biol. Evol. 5, 584–599. https://doi.org/10.1093/oxfordjournals.molbev.a040518 (1988).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lynch, M. & Ritland, K. Estimation of pairwise relatedness with molecular markers. Genetics 152, 1753–1766. https://doi.org/10.1093/genetics/152.4.1753 (1999).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ritland, K. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet. Res. 67, 175–185 (1996).
    Google Scholar 
    Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275. https://doi.org/10.1111/j.1558-5646.1989.tb04226.x (1989).Article 
    PubMed 

    Google Scholar 
    Milligan, B. G. Maximum-likelihood estimation of relatedness. Genetics 163, 1153–1167 (2003).PubMed 
    PubMed Central 

    Google Scholar 
    del Felipe, P. et al. Genetic diversity and structure of the commercially important native fish pacu (Piaractus mesopotamicus) from cultured and wild fish populations: Relevance for broodstock management. Aquacult. Int. 29, 289–305. https://doi.org/10.1007/s10499-020-00626-w (2021).Article 

    Google Scholar  More

  • in

    Refining the stress gradient hypothesis for mixed species groups of African mammals

    Goodale, E., Beauchamp, G. & Ruxton, G. D. Mixed-Species Groups of Animals: Behavior, Community Structure, and Conservation (Academic Press, 2017).
    Google Scholar 
    Krause, J. & Ruxton, G. D. Living in Groups (Oxford University Press, 2002).
    Google Scholar 
    Stensland, E., Angerbjorn, A. & Berggren, P. Mixed species groups in mammals. Mamm. Rev. 33, 205–223 (2003).
    Google Scholar 
    Anderson, T. M. et al. Landscape-scale analyses suggest both nutrient and antipredator advantages to Serengeti herbivore hotspots. Ecology 91, 1519–1529 (2010).PubMed 

    Google Scholar 
    Sinclair, A. R. E. Does interspecific competition or predation shape the African ungulate community? J. Anim. Ecol. 54, 899–918 (1985).
    Google Scholar 
    Kiffner, C., Kioko, J., Leweri, C. & Krause, S. Seasonal patterns of mixed species groups in large East African mammals. PLoS ONE 9, e113446 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meise, K., Franks, D. W. & Bro-Jørgensen, J. Using social network analysis of mixed species groups in African savannah herbivores to assess how community structure responds to environmental change. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190009 (2019).
    Google Scholar 
    de Boer, W. F. & Prins, H. H. T. Large herbivores that thrive mightily but eat and drink as friends. Oecologia 82, 264–274 (1990).ADS 
    PubMed 

    Google Scholar 
    Beaudrot, L., Palmer, M. S., Anderson, T. M. & Packer, C. Mixed-species groups of Serengeti grazers: A test of the stress gradient hypothesis. Ecology. https://doi.org/10.1002/ecy.3163 (2020).Article 
    PubMed 

    Google Scholar 
    He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).PubMed 

    Google Scholar 
    Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).CAS 
    PubMed 

    Google Scholar 
    Fugère, V. et al. Testing the stress-gradient hypothesis with aquatic detritivorous invertebrates: Insights for biodiversity-ecosystem functioning research. J. Anim. Ecol. 81, 1259–1267 (2012).PubMed 

    Google Scholar 
    Bakker, E. S., Dobrescu, I., Straile, D. & Holmgren, M. Testing the stress gradient hypothesis in herbivore communities: Facilitation peaks at intermediate nutrient levels. Ecology 94, 1776–1784 (2013).PubMed 

    Google Scholar 
    Hopcraft, J. G. C., Olff, H. & Sinclair, A. R. E. Herbivores, resources and risks: Alternating regulation along primary environmental gradients in savannas. Trends Ecol. Evol. 25, 119–128 (2010).PubMed 

    Google Scholar 
    Sih, A. Optimal behavior: Can foragers balance two conflicting demands? Science 210, 1041–1043 (1980).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).PubMed 

    Google Scholar 
    Zollner, P. A. & Lima, S. L. Towards a behavioral ecology of ecological landscapes. Trends Ecol. Evol. 11, 131–135 (1996).PubMed 

    Google Scholar 
    Brown, J. S., Laundré, J. W. & Gurung, M. The ecology of fear: Optimal foraging, game theory, and trophic interactions. J. Mammal. 80, 385–399 (1999).
    Google Scholar 
    Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E. & Brashares, J. S. Landscapes of fear: Spatial patterns of risk perception and response. Trends Ecol. Evol. 34, 355–368 (2019).PubMed 

    Google Scholar 
    Creel, S., Schuette, P. & Christianson, D. Effects of predation risk on group size, vigilance, and foraging behavior in an African ungulate community. Behav. Ecol. 25, 773–784 (2014).
    Google Scholar 
    Goodale, E., Beauchamp, G., Magrath, R. D., Nieh, J. C. & Ruxton, G. D. Interspecific information transfer influences animal community structure. Trends Ecol. Evol. 25, 354–361 (2010).PubMed 

    Google Scholar 
    Freeberg, T. M., Eppert, S. K., Sieving, K. E. & Lucas, J. R. Diversity in mixed species groups improves success in a novel feeder test in a wild songbird community. Sci. Rep. 7, 43014 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, T. M. et al. The spatial distribution of african savannah herbivores: Species associations and habitat occupancy in a landscape context. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150314 (2016).
    Google Scholar 
    Arsenault, R. & Owen-Smith, N. Resource partitioning by grass height among grazing ungulates does not follow body size relation. Oikos 117, 1711–1717 (2008).
    Google Scholar 
    Esmaeili, S. et al. Body size and digestive system shape resource selection by ungulates: A cross-taxa test of the forage maturation hypothesis. Ecol. Lett. 24, 2178–2191 (2021).PubMed 

    Google Scholar 
    Hopcraft, J. G. C., Anderson, T. M., Pérez-Vila, S., Mayemba, E. & Olff, H. Body size and the division of niche space: Food and predation differentially shape the distribution of Serengeti grazers. J. Anim. Ecol. 81, 201–213 (2012).PubMed 

    Google Scholar 
    McArthur, C., Banks, P. B., Boonstra, R. & Forbey, J. S. The dilemma of foraging herbivores: Dealing with food and fear. Oecologia 176, 677–689 (2014).ADS 
    PubMed 

    Google Scholar 
    Gagnon, M. & Chew, A. E. Dietary preferences in extant African Bovidae. J. Mammal. 81, 490–511 (2000).
    Google Scholar 
    Kartzinel, T. R. et al. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc. Natl. Acad. Sci. U.S.A. 112, 8019–8024 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Veldhuis, M. P. et al. Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science 363, 1424–1428 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kavwele, C. M. et al. Non-local effects of human activity on the spatial distribution of migratory wildlife in Serengeti National Park, Tanzania. Ecol. Solut. Evid. 3, e12159 (2022).
    Google Scholar 
    Bijlsma, R. & Loeschcke, V. Environmental stress, adaptation and evolution: An overview. J. Evol. Biol. 18, 744–749 (2005).CAS 
    PubMed 

    Google Scholar 
    Schmitt, M. H., Stears, K. & Shrader, A. M. Zebra reduce predation risk in mixed-species herds by eavesdropping on cues from giraffe. Behav. Ecol. 27, 1073–1077 (2016).
    Google Scholar 
    Preisser, E. L., Orrock, J. L. & Schmitz, O. J. Predator hunting mode and habitat domain alter nonconsmuptive effects in predator-prey interactions. Ecology 88, 2744–2751 (2007).PubMed 

    Google Scholar 
    Kiffner, C. et al. Long-term persistence of wildlife populations in a pastoral area. Ecol. Evol. 10, 10000–10016 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Hopcraft, J. G. C. et al. Competition, predation, and migration: Individual choice patterns of Serengeti migrants captured by hierarchical models. Ecol. Monogr. 84, 355–372 (2014).
    Google Scholar 
    Fryxell, J. M. Forage quality and aggregation by large herbivores. Am. Nat. 138, 478–498 (1991).
    Google Scholar 
    Fitzgibbon, C. D. Mixed-species grouping in Thomson’s and Grant’s gazelles: The antipredator benefits. Anim. Behav. 39, 1116–1126 (1990).
    Google Scholar 
    Brown, J. S. & Kotler, B. P. Hazardous duty pay and the foraging cost of predation. Ecol. Lett. 7, 999–1014 (2004).
    Google Scholar 
    Stears, K. & Shrader, A. M. Increases in food availability can tempt oribi antelope into taking greater risks at both large and small spatial scales. Anim. Behav. 108, 155–164 (2015).
    Google Scholar 
    Creel, S. Toward a predictive theory of risk effects: Hypotheses for prey attributes and compensatory mortality. Ecology 92, 2190–2195 (2011).PubMed 

    Google Scholar 
    Périquet, S. et al. Effects of lions on behaviour and endocrine stress in plains zebras. Ethology 123, 667 (2017).
    Google Scholar 
    Stears, K., Schmitt, M. H., Wilmers, C. C. & Shrader, A. M. Mixed-species herding levels the landscape of fear. Proc. R. Soc. B Biol. Sci. 287, 20192555 (2020).
    Google Scholar 
    Schmitt, M. H., Stears, K., Wilmers, C. C. & Shrader, A. M. Determining the relative importance of dilution and detection for zebra foraging in mixed-species herds. Anim. Behav. 96, 151–158 (2014).
    Google Scholar 
    Meise, K., Franks, D. W. & Bro-Jørgensen, J. Alarm communication networks as a driver of community structure in African savannah herbivores. Ecol. Lett. 23, 293–304 (2020).PubMed 

    Google Scholar 
    Codron, D., Hofmann, R. R. & Clauss, M. Morphological and physiological adaptations for browsing and grazing. In The Ecology of Browsing and Grazing II (eds Gordon, I. J. & Prins, H. H. T.) 81–125 (Springer, 2019).
    Google Scholar 
    Odadi, W. O., Karachi, M. K., Abdulrazak, S. A. & Young, T. P. African wild ungulates compete with or facilitate cattle depending on season. Science 333, 1753–1755 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).
    Google Scholar 
    de Jonge, M. M. J. et al. Conditional love? Co-occurrence patterns of drought-sensitive species in European grasslands are consistent with the stress-gradient hypothesis. Glob. Ecol. Biogeogr. 30, 1609–1620 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Franks, D. W., Weiss, M. N., Silk, M. J., Perryman, R. J. Y. & Croft, D. P. Calculating effect sizes in animal social network analysis. Methods Ecol. Evol. 12, 33–41 (2021).
    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Meise, K., Franks, D. W. & Bro-Jørgensen, J. Multiple adaptive and non-adaptive processes determine responsiveness to heterospecific alarm calls in African savannah herbivores. Proc. R. Soc. B Biol. Sci. 285, 20172676 (2018).
    Google Scholar 
    Blumstein, D. T., Bitton, A. & DaVeiga, J. How does the presence of predators influence the persistence of antipredator behavior? J. Theor. Biol. 239, 460–468 (2006).ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Riggio, J. et al. Lion populations may be declining in Africa but not as Bauer et al. suggest. Proc. Natl. Acad. Sci. 113, 201521506 (2015).
    Google Scholar 
    Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl. Acad. Sci. 112, 14894–14899 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pettorelli, N., Bro-Jørgensen, J., Durant, S. M., Blackburn, T. & Carbone, C. Energy availability and density estimates in African ungulates. Am. Nat. 173, 698–704 (2009).PubMed 

    Google Scholar 
    Haile, G. G. et al. Projected impacts of climate change on drought patterns over East Africa. Earth’s Future 8, 1–23 (2020).
    Google Scholar 
    Devine, A. P., McDonald, R. A., Quaife, T. & Maclean, I. M. D. Determinants of woody encroachment and cover in African savannas. Oecologia 183, 939–951 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiffner, C. et al. Long-term population dynamics in a multi-species assemblage of large herbivores in East Africa. Ecosphere 8, e02027 (2017).
    Google Scholar 
    Prins, H. H. T. & Loth, P. E. Rainfall patterns as background to plant phenology in northern Tanzania. J. Biogeogr. 15, 451–463 (1988).
    Google Scholar 
    Beattie, K., Olson, E. R., Kissui, B., Kirschbaum, A. & Kiffner, C. Predicting livestock depredation risk by African lions (Panthera leo) in a multi-use area of northern Tanzania. Eur. J. Wildl. Res. 66, 11 (2020).
    Google Scholar 
    Kasozi, H. & Montgomery, R. A. Variability in the estimation of ungulate group sizes complicates ecological inference. Ecol. Evol. 10, 6881–6889 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    USGS. MOD13Q1 v006 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid. 10.5067/MODIS/MOD13Q1.006 (2020).R Core Team. R: A Language and Environment for Statistical Computing. http://www.r-project.org/. Accessed January 02, 2022 (2021).Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945).
    Google Scholar 
    Croft, D. P., James, R. & Krause, J. Exploring Animal Social Networks (Princeton University Press, 2008).
    Google Scholar 
    Besag, J. & Clifford, P. Generalized Monte Carlo significance tests. Biometrika 76, 633–642 (1989).MathSciNet 
    MATH 

    Google Scholar 
    Hayward, M. W. & Kerley, G. I. H. Prey preferences of the lion (Panthera leo). J. Zool. 267, 309–322 (2005).
    Google Scholar 
    Codron, D. et al. Diets of savanna ungulates from stable carbon isotope composition of faeces. J. Zool. 273, 21–29 (2007).
    Google Scholar 
    Kartzinel, T. R. & Pringle, R. M. Multiple dimensions of dietary diversity in large mammalian herbivores. J. Anim. Ecol. 89, 1482–1496 (2020).PubMed 

    Google Scholar 
    Prins, H. H. T. & Douglas-Hamilton, I. Stability in a multi-species assemblage of large herbivores in East Africa. Oecologia 83, 392–400 (1990).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tournier, E. et al. Differences in diet between six neighbouring groups of vervet monkeys. Ethology 120, 471–482 (2014).
    Google Scholar 
    Humphries, B. D., Ramesh, T. & Downs, C. T. Diet of black-backed jackals (Canis mesomelas) on farmlands in the KwaZulu-Natal Midlands, South Africa. Mammalia 80, 405–412 (2016).
    Google Scholar  More

  • in

    Characterization of Pseudoterranova ceticola (Nematoda: Anisakidae) larvae from meso/bathypelagic fishes off Macaronesia (NW Africa waters)

    Buchmann, K. & Mehrdana, F. Effects of anisakid nematodes Anisakis simplex (s.l.), Pseudoterranova decipiens (s.l.) and Contracaecum osculatum (s.l.) on fish and consumer health. Food Waterborne Parasitol. 4, 13–22. https://doi.org/10.1016/j.fawpar.2016.07.003 (2016).Article 

    Google Scholar 
    Mattiucci, S., Cipriani, P., Levsen, A., Paoletti, M. & Nascetti, G. Molecular epidemiology of Anisakis and anisakiasis: An ecological and evolutionary road map. Adv. Parasitol. https://doi.org/10.1016/bs.apar.2017.12.001 (2018).Article 
    PubMed 

    Google Scholar 
    Mattiucci, S., Cipriani, P., Paoletti, M., Levsen, A. & Nascetti, G. Reviewing biodiversity and epidemiological aspects of anisakid nematodes from the North-east Atlantic Ocean. J. Helminthol. https://doi.org/10.1017/S0022149X1700027X (2017).Article 
    PubMed 

    Google Scholar 
    Moravec, F. & Justine, J.-L. Erection of Euterranova n. gen. and Neoterranova n. gen. (Nematoda, Anisakidae), with the description of E. dentiduplicata n. sp. and new records of two other anisakid nematodes from sharks off New Caledonia. Parasite 27, 58. https://doi.org/10.1051/parasite/2020053 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shamsi, S. & Suthar, J. Occurrence of Terranova larval types (nematoda: Anisakidae) in Australian marine fish with comments on their specific identities. Peer J. 4, e1722. https://doi.org/10.7717/peerj.1722 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Timi, J. T. et al. Molecular identification, morphological characterization and new insights into the ecology of larval Pseudoterranova cattani in fishes from the Argentine coast with its differentiation from the Antarctic species, P. decipiens sp. E (Nematoda: Anisakidae). Vet. Parasitol. 199, 59–72 (2014).CAS 
    PubMed 

    Google Scholar 
    Deardorff, T. L. Redescription of Pulchrascaris chiloscyllii (Johnston and Mawson, 1951) (Nematoda: Anisakidae), with comments on species in Pulchrascaris and Terranova. Proc. Helminthol. Soc. Wash. 54, 28–39 (1987).
    Google Scholar 
    Cannon, L. R. G. Some larval ascaridoids from south-eastern queensland marine fishes. Int. J. Parasitol. 7, 233–243 (1977).CAS 
    PubMed 

    Google Scholar 
    Levsen, A. & Lunestad, B. T. Anisakis simplex third stage larvae in Norwegian spring spawning herring (Clupea harengus L.), with emphasis on larval distribution in the flesh. Vet. Parasitol. 171, 247–253 (2010).PubMed 

    Google Scholar 
    Berland, B., (1989) Identification of fish larval nematodes from fish. In: Möller H, editor. Nematode problems in North Atlantic fish. Report from a workshop in Kiel, 3 4 16–22.Zhu, X., D’Amelio, S., Paggi, L. & Gasser, R. B. Assessing sequence variation in the internal transcribed spacers of ribosomal DNA within and among members of the Contracaecum osculatum complex (nematoda: Ascaridoidea: Anisakidae). Parasitol. Res. 86, 677–683 (2000).CAS 
    PubMed 

    Google Scholar 
    Nadler, S. A. & Hudspeth, D. S. S. Phylogeny of the ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology hypotheses of structural and sequence evolution. J. Parasitol. 86, 380–393. https://doi.org/10.1645/0022-3395(2000)086[0380:POTANA]2.0.CO;2 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mattiucci, S. et al. Genetic and morphological approaches distinguish the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandi n. sp. for A simplex sp. C (Nematoda: Anisakidae). J. Parasitol. 100, 199–214. https://doi.org/10.1645/12-120.1 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nagy, L. G. et al. Re-mind the gap! Insertion – deletion data reveal neglected phylogenetic potential of the nuclear ribosomal internal transcribed spacer (ITS) of fungi. PLoS ONE 7, 1–9 (2012).
    Google Scholar 
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 1–5 (2018).
    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cipriani, P. et al. Anisakid nematodes in Trichiurus lepturus and Saurida undosquamis (Teleostea) from the South-West Indian Ocean : Genetic evidence for the existence of sister species within Anisakis typica (s.l.), and food-safety considerations. Food Waterborne Parasitol. 28, e00177. https://doi.org/10.1016/j.fawpar.2022.e00177 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Safonova, A. E. First report on molecular identification of Anisakis simplex in Oncorhynchus nerka from the fish market, with taxonomical issues within Anisakidae. J. Nematol. 53(1), 10. https://doi.org/10.21307/jofnem-2021-023 (2021).Article 
    CAS 

    Google Scholar 
    Takano, T. & Sata, N. Multigene phylogenetic analysis reveals non-monophyly of Anisakis s.l. and Pseudoterranova (Nematoda: Anisakidae). Parasitol. Int. 91, 102631. https://doi.org/10.1016/j.parint.2022.102631 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Leiper, R. T. & Atkinson, E. L. Parasitic worms, with a note on a free-living nematode. British Museum (Natural History). Bristish Antarctic (“Terra Nova”) expedition, 1910. Natural History Report. Zool 2(3), 19–60 (1915).
    Google Scholar 
    Leiper, R. T. & Atkinson, E. L. Helminthes of the British Antarctic expedition 1910–1913. Proc. Zool. Soc. London, 222–226 (1914).Myers, B. J. Phocanema, a new genus for the anisakid nematode of seals. Can. J. Zool. 37, 459–465 (1959).
    Google Scholar 
    Mattiucci, S., Paoletti, M., Webb, S. C. & Nascetti, G. Pseudoterranova and Contracaecum. In Molecular detection of human parasitic pathogens (ed. Liu, D.) 645–656 (CRC Press, 2012).
    Google Scholar 
    Mozgovoĭ, A.A., (1953) Ascaridata of animals and man, and the diseases caused by them. In: Osnovy nematodologii. Vol. II. Izd. AN SSSR, Moskva (In Russian)Johnston, T.H., Mawson, P.M., (1939) Internal parasites of the pigmy sperm whale. Rec. South Aust Museum.6. http://www.biodiversitylibrary.org/item/126147.Gibson, D. I. The systematics of ascaridoid nematodes-a current assessment. In Stone A (eds Platt, H. & Khalil, L.) 321–338 (Academic Press, 1983).
    Google Scholar 
    Shamsi, S., Barton, D. P. & Zhu, X. Description and characterisation of Terranova pectinolabiata n. sp. (Nematoda: Anisakidae) in great hammerhead shark, Sphyrna mokarran (Rüppell, 1837), in Australia. Parasitol. Res. 118, 2159–2168. https://doi.org/10.1007/s00436-019-06360-4 (2019).Article 
    PubMed 

    Google Scholar 
    Shamsi, S., Barton, D. P. & Zhu, X. Description and genetic characterisation of Pulchrascaris australis n. sp. in the scalloped hammerhead shark, Sphyrna lewini (Griffin & Smith) in Australian waters. Parasitol. Res. https://doi.org/10.1007/s00436-020-06672-w (2020).Article 
    PubMed 

    Google Scholar 
    González-Solís, D. et al. Parasitic nematodes of marine fishes from Palmyra Atoll, East Indo-Pacific, including a new species of Spinitectus (Nematoda, Cystidicolidae). Zookeys. 2019, 1–26 (2019).
    Google Scholar 
    Jabbar, A. et al. Larval anisakid nematodes in teleost fishes from Lizard Island, northern great barrier reef Australia. Mar. Freshw. Res. 63, 1283. https://doi.org/10.1071/MF12211 (2012).Article 

    Google Scholar 
    ICES. (2012) Pseudoterranova larvae (“codworm”; Nematoda) in fish. Revised and updated by Matt Longshaw. ICES Identification Leaflets for diseases and parasites of fish and shellfish. Leaflet No. 7. 4 pp.Arai, H. P. & Smith, J. W. Guide to the parasites of fishes of Canada part V: Nematoda. Zootaxa 4185, 1. https://doi.org/10.11646/zootaxa.4185.1.1 (2016).Article 

    Google Scholar 
    Hurst, H. J. Identification and description of larval Anisakis simplex and Pseudoterranova decipiens (anisakidae: Nematoda) from New Zealand waters. New Zeal J. Mar. Freshw. Res. 18, 177–186 (1984).
    Google Scholar 
    Hernández-Orts, J. S. et al. Description, microhabitat selection and infection patterns of sealworm larvae (Pseudoterranova decipiens species complex, Nematoda: Ascaridoidea) in fishes from Patagonia Argentina. Parasite Vector. 6, 1–15 (2013).
    Google Scholar 
    Shiraki, T. Larval nematodes of family anisakidae (Nematoda) in the northern sea of Japan as a causative agent of eosinophilic phlegmone of granuloma in the human gastro-intestinal tract. Acta Med. Biol. 22, 57–98 (1974).
    Google Scholar 
    Berland, B. Nematodes from some Norwegian marine fishes. Sarsia 2, 1–50. https://doi.org/10.1080/00364827.1961.10410245 (1961).Article 

    Google Scholar 
    George-Nascimento, M. & Llanos, A. Micro-evolutionary implications of allozymic and morphometric variations in sealworms Pseudoterranova sp. (Ascaridoidea: Anisakidae) among sympatric hosts from the Southeastern Pacific Ocean. Int. J. Parasitol. 25, 1163–1171 (1995).CAS 
    PubMed 

    Google Scholar 
    Deardorff, T. L., Kliks, M. M., Rosenfeld, M. E., Rychlinski, R. A. & Desowitz, R. S. Larval, ascaridoid nematodes from fishes near the Hawaiian Islands, with commonents on pathogenicity experiments. Pacific Sci. 36, 187–201 (1982).
    Google Scholar 
    Deardorff, T. L., Kliks, M. M. & Desowitz, R. S. Histopathology induced by larval Terranova (Type HA) (nematoda: Anisakinae) in experimentally infected rats. J. Parasitol. 69, 191–195 (1983).CAS 
    PubMed 

    Google Scholar 
    Kuramochi, T. et al. Stomach nematodes of the family anisakidae collected from the cetaceans stranded on or incidentally caught off the coasts of the Kanto districts and adjoining areas. Mem. Nat. Museum. Nat. Sci. 37, 177–192 (2001).
    Google Scholar 
    Deardorff, T. L., Raybourne, R. B. & Desowitz, R. S. Description of a third-stage larva, Terranova type Hawaii A (nematoda: Anisakinae), from Hawaiian fishes. J. Parasitol. 70, 829–831 (1984).CAS 
    PubMed 

    Google Scholar 
    González-Solís, D., Vidal-Martínez, V. M., Antochiw-Alonso, D. M. & Ortega-Argueta, A. Anisakid nematodes from stranded pygmy sperm whales, Kogia breviceps (Kogiidae), in three localities of the Yucatan peninsula. Mexico. J. Parasitol. 92, 1120–1122 (2006).
    Google Scholar 
    Santos, C. P. & Lodi, L. Occurrence of Anisakis physeteris Baylis, 1923 and Pseudoterranova sp. (Nematoda) in pygmy sperm whale Kogia breviceps (De Blainvillei, 1838) (Physeteridae) in northeastern coast of Brazil. Mem. Inst. Oswaldo Cruz. 93, 187–188. https://doi.org/10.1590/s0074-02761998000200009 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bloodworth, B. E. & Odell, D. K. Kogia breviceps (cetacea: Kogiidae). Mam. Species. 819, 1–12. https://doi.org/10.1644/819.1 (2008).Article 

    Google Scholar 
    Deardorff, T. L. & Overstreet, R. M. Terranova ceticola n. sp. (Nematoda: Anisakidae) from the dwarf sperm whale; Kogia simus (Owen), in the Gulf of Mexico. Syst. Parasitol. 3, 25–28 (1981).
    Google Scholar 
    Abollo, E., Santiago, P., (2002) SEM study of Anisakis brevispiculata Dollfus, 1966 and Pseudoterranova ceticola (Deardoff and Overstreet, 1981) (Nematoda: Anisakidae), parasites of the pygmy sperm whale Kogia breviceps. Sci. Mar. 66 3 49 255Di Deco, M. A., Orecchia, P., Paggi, L. & Petrarca, V. Morphometric stepwise discriminant analysis of three genetically identified species within Pseudoterranova decipiens (Krabbe, 1878) (Nematoda: Ascaridida). Syst. Parasitol. 29, 81–88 (1994).
    Google Scholar 
    George-Nascimento, M. & Urrutia, X. Pseudoterranova cattani sp. nov. (Ascaridoidea: Anisakidae), a parasite of the South American sea lion Otaria byronia De Blainville from Chile. Rev. Chil. Hist. Nat. 73, 93–98. https://doi.org/10.4067/s0716-078×2000000100010 (2000).Article 

    Google Scholar 
    Mattiucci, S. et al. Allozyme and morphological identification of Anisakis, Contracaecum and Pseudoterranova from Japanese waters (Nematoda, Ascaridoidea). Syst Parasitol. 40, 81–92 (1998).
    Google Scholar 
    Paggi, L. et al. Pseudoterranova decipiens species A and B (Nematoda, Ascaridoidea): Nomenclatural designation, morphological diagnostic characters and genetic markers. Syst. Parasitol. 45, 185–197. https://doi.org/10.1023/A:1006296316222 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valentini, A. et al. Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox2 sequences, and comparison with allozyme data. J. Parasitol. 92, 156–166 (2006).CAS 
    PubMed 

    Google Scholar 
    Colón-Llavina, M. M. et al. Additional records of metazoan parasites from Caribbean marine mammals, including genetically identified anisakid nematodes. Parasitol Res. 105, 1239–1252 (2009).PubMed 

    Google Scholar 
    Cavallero, S., Nadler, S. A., Paggi, L., Barros, N. B. & D’Amelio, S. Molecular characterization and phylogeny of anisakid nematodes from cetaceans from southeastern Atlantic coasts of USA, Gulf of Mexico, and Caribbean Sea. Parasitol. Res. 108, 781–792 (2011).PubMed 

    Google Scholar 
    Kijewska, A., Dzido, J., Shukhgalter, O. & Rokicki, J. Anisakid parasites of fishes caught on the African shelf. J. Parasitol. 95, 639–645 (2009).PubMed 

    Google Scholar 
    Quiazon, K. M. A., Santos, M. D. & Yoshinaga, T. Anisakis species (nematoda: Anisakidae) of dwarf sperm whale kogia sima (Owen, 1866) stranded off the pacific coast of southern Philippine archipelago. Vet. Parasitol. https://doi.org/10.1016/J.VETPAR.2013.05.019 (2013).Article 
    PubMed 

    Google Scholar 
    Zhang, L., Du, X., An, R., Li, L. & Gasser, R. B. Identification and genetic characterization of Anisakis larvae from marine fishes in the South China Sea using an electrophoretic-guided approach. Electrophoresis 34, 888–894 (2013).CAS 
    PubMed 

    Google Scholar 
    Luo, H.-Y., Chen, H.-Y., Chen, H.-G. & Shih, H.-H. Scavenging hagfish as a transport host of anisakid nematodes. Vet. Parasitol. 218, 15–21. https://doi.org/10.1016/j.vetpar.2016.01.005 (2016).Article 
    PubMed 

    Google Scholar 
    Kuhn, T., Hailer, F., Palm, H. W. & Klimpel, S. Global assessment of molecularly identified Anisakis dujardin, 1845 (nematoda: Anisakidae) in their teleost intermediate hosts. Folia Parasitol. (Praha). 60, 123–134. https://doi.org/10.14411/fp.2013.013 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grainger, J. N. R. The Identity of the larval nematodes found in the body muscles of the cod (Gadus callarias L.). Parasitology 49, 121–131 (1959).CAS 
    PubMed 

    Google Scholar 
    Costa, G., Chada, T., Melo-Moreira, E., Cavallero, S. & D’Amelio, S. Endohelminth parasites of the leafscale gulper shark, Centrophorus squamosus (Bonnaterre, 1788) (Squaliformes: Centrophoridae) off Madeira archipelago. Acta Parasitol. 59, 316–322. https://doi.org/10.2478/s11686-014-0247-x (2014).Article 
    PubMed 

    Google Scholar 
    Hermida, M. et al. Infection levels and diversity of anisakid nematodes in blackspot seabream, Pagellus bogaraveo, from Portuguese waters. Parasitol. Res. 110, 1919–1928 (2012).PubMed 

    Google Scholar 
    Sequeira, V. et al. Macroparasites as biological tags for stock identification of the bluemouth, Helicolenus dactylopterus (Delaroche, 1809) in Portuguese waters. Fish Res. 106, 321–328. https://doi.org/10.1016/j.fishres.2010.08.014 (2010).Article 

    Google Scholar 
    Shamsi, S., Spröhnle-Barrera, C. & Shafaet, H. M. Occurrence of Anisakis spp. (Nematoda: Anisakidae) in a pygmy sperm whale Kogia breviceps (Cetacea: Kogiidae) in Australian waters. Dis. Aquat. Organ. 134, 65–74. https://doi.org/10.3354/dao03360 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mcalpine, D. F., Murison, L. D. & Hoberg, E. P. New records for the pygmy sperm whale, Kogia breviceps (physeteridae) from Atlantic Canada with notes on diet and parasites. Mar. Mammal. Sci. 13, 701–704. https://doi.org/10.1111/j.1748-7692.1997.tb00093.x (1997).Article 

    Google Scholar 
    Gunter, G. & Overstreet, R. Cetacean notes. I. Sei and rorqual whales on the Mississippi coast, a correction. II. A dwarf sperm whale in Mississippi sound and its helminth parasites. Gulf Res. Rep. 4, 479–481 (1974).
    Google Scholar 
    Mignucci-Giannoni, A. A., Hoberg, E. P., Siegel-Causey, D. & Williams, E. H. Metazoan parasites and other symbionts of cetaceans in the Caribbean. J. Parasitol. 84, 939–946 (1998).CAS 
    PubMed 

    Google Scholar 
    Vidal, O., Findley, L. T., Turk, P. J. & Boyer, R. E. Recent records of pygmy sperm whales in the Gulf of California. Mexico. Mar. Mammal. Sci. 3, 354–356. https://doi.org/10.1111/J.1748-7692.1987.TB00323.X (1987).Article 

    Google Scholar 
    Dollfus, R. P. Helminthofaune de Kogia breviceps (Blainxille, 1938) cetace odontocete. Recoltes du Dr R. Duguy. Ann. Sci. Natl. Charente-Maritime 4, 3–6 (1966).
    Google Scholar 
    MCAlpine, D.F., (2018) Pygmy and dwarf sperm whales. In: Encyclopedia of Marine Mammals. Elsevier p. 786–8.Fernández, R., Santos, M. B., Carrillo, M., Tejedor, M. & Pierce, G. J. Stomach contents of cetaceans stranded in the canary Islands 1996–2006. J. Mar. Biol. Assoc. United Kingdom. 89, 873–883 (2009).

    Google Scholar 
    Berrow, S., López Suárez, P., Jann, B., Ryan, C., Varela, J., Hazevoet, C.J., (2015) Recent and noteworthy records of Cetacea from the Cape Verde Islands. www.scvz.org. Accessed 1 Mar 2021.Mattiucci, S., Nascetti, G., (2008) Chapter 2 advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Adv. Parasitol. 66 47 148Measures, L.N., (2014) Anisakiosis and pseudoterranovosis. Reston, Virginia; https://doi.org/10.3133/cir1393McClelland, G. The trouble with sealworms (Pseudoterranova decipiens species complex, nematoda): A review. Parasitology 2002(124 Suppl), S183-203 (2009).
    Google Scholar 
    Alt, K. G., Cunze, S., Kochmann, J. & Klimpel, S. Parasites of three closely related Antarctic fish species (teleostei: Nototheniinae) from Elephant Island. Acta Parasitol. https://doi.org/10.1007/s11686-021-00455-8 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McClelland, G. Phocanema decipiens (Nematoda: Anisakinae): Experimental infections in marine copepods. Can. J. Zool. 60, 502–509. https://doi.org/10.1139/z82-075 (1982).Article 

    Google Scholar 
    Marcogliese, D. J. Review of experimental and natural invertebrate hosts of sealworm (Pseudoterranova decipiens) and its distribution and abundance in macroinvertebrates in eastern Canada. NAMMCO Sci. Publ. 3, 27–37 (2001).
    Google Scholar 
    West, K. L. et al. Diet of pygmy sperm whales (Kogia breviceps) in the Hawaiian Archipelago. Mar. Mammal. Sci. 25, 931–943. https://doi.org/10.1111/j.1748-7692.2009.00295.x (2009).Article 

    Google Scholar 
    Kleinertz, S., Damriyasa, I. M., Hagen, W., Theisen, S. & Palm, H. W. An environmental assessment of the parasite fauna of the reef-associated grouper Epinephelus areolatus from Indonesian waters. J. Helminthol. 88, 50–63 (2014).CAS 
    PubMed 

    Google Scholar 
    Nadler, S. A. et al. Molecular phylogenetics and diagnosis of Anisakis, Pseudoterranova, and Contracaecum from northern pacific marine mammals. J. Parasitol. 91, 1413–1429 (2005).CAS 
    PubMed 

    Google Scholar 
    Weitzel, T. et al. Human infections with Pseudoterranova cattani nematodes. Chile. Emerg. Infect. Dis. 21, 1874–1875 (2015).CAS 
    PubMed 

    Google Scholar 
    Arizono, N., Miura, T., Yamada, M., Tegoshi, T. & Onishi, K. Human infection with Pseudoterranova azarasi roundworm. Emerg. Infect. Dis. 17, 555–556. https://doi.org/10.3201/eid1703.101350 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kleinertz, S. et al. Gastrointestinal parasites of free-living Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the Northern Red Sea. Egypt. Parasitol Res. 113, 1405–1415. https://doi.org/10.1007/s00436-014-3781-4 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Aco Alburqueque, R., Palomba, M., Santoro, M. & Mattiucci, S. Molecular identification of zoonotic parasites of the genus Anisakis (Nematoda: Anisakidae) from fish of the southeastern Pacific Ocean (off Peru coast). Pathogens. 9, 910. https://doi.org/10.3390/pathogens9110910 (2020).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Di Azevedo, M. I. N., Carvalho, V. L. & Iñiguez, A. M. Integrative taxonomy of anisakid nematodes in stranded cetaceans from Brazilian waters: An update on parasite’s hosts and geographical records. Parasitol. Res. 116, 3105–3116. https://doi.org/10.1007/s00436-017-5622-8 (2017).Article 
    PubMed 

    Google Scholar 
    Quiazon, K. M. A., Santos, M. D., Blatchley, D. D., Aguila, R. D. & Yoshinaga, T. Molecular and morphological identifications of Anisakis dujardin, 1845 (Nematoda: Anisakidae) from a rare deraniyagala’s beaked whale (Mesoplodon hotaula deraniyagala, 1963) and blainville’s beaked whale (Mesoplodon densirostris blainville, 1817) stranded. Philipp. J. Sci. 150, 823–835 (2021).
    Google Scholar 
    Bao, M. et al. Air-dried stockfish of Northeast Arctic cod do not carry viable anisakid nematodes. Food Cont. 116, 107322. https://doi.org/10.1016/j.foodcont.2020.107322 (2020).Article 
    CAS 

    Google Scholar 
    Liu, G. H. et al. Mitochondrial phylogenomics yields strongly supported hypotheses for ascaridomorph nematodes. Sci. Rep. https://doi.org/10.1038/srep39248 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hrabar, J. et al. Phylogeny and pathology of anisakids parasitizing stranded California sea lions (Zalophus californianus) in Southern California. Front Mar. Sci. https://doi.org/10.3389/fmars.2021.636626 (2021).Article 

    Google Scholar  More

  • in

    High-resolution crop yield and water productivity dataset generated using random forest and remote sensing

    Blatchford, M. L., Mannaerts, C. M., Zeng, Y., Nouri, H. & Karimi, P. Status of accuracy in remotely sensed and in-situ agricultural water productivity estimates: A review. Remote Sensing of Environment 234, 111413, https://doi.org/10.1016/j.rse.2019.111413 (2019).Article 
    ADS 

    Google Scholar 
    Geerts, S. & Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management 96, 1275–1284, https://doi.org/10.1016/j.agwat.2009.04.009 (2009).Article 

    Google Scholar 
    Hellegers, P., Soppe, R., Perry, C. & Bastiaanssen, W. Combining remote sensing and economic analysis to support decisions that affect water productivity. Irrigation Science 27, 243–251, https://doi.org/10.1007/s00271-008-0139-7 (2009).Article 

    Google Scholar 
    Bastiaanssen, W. G. M. & Steduto, P. The water productivity score (WPS) at global and regional level: Methodology and first results from remote sensing measurements of wheat, rice and maize. The Science of the total environment 575, https://doi.org/10.1016/j.scitotenv.2016.09.032 (2017).Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Science Reviews 99, https://doi.org/10.1016/j.earscirev.2010.02.004 (2010).Hu, X., Shi, L., Lin, L. & Zha, Y. Nonlinear boundaries of land surface temperature–vegetation index space to estimate water deficit index and evaporation fraction. Agricultural and Forest Meteorology 279, https://doi.org/10.1016/j.agrformet.2019.107736 (2019).Bowen, I. S. The Ratio of Heat Losses by Conduction and by Evaporation from any Water Surface. Physical Review 27, 779–787, https://doi.org/10.1103/PhysRev.27.779 (1926).Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 
    Penman, H. L. Natural evaporation from open water, hare soil and grass. Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences 193, https://doi.org/10.1098/rspa.1948.0037 (1948).Monteith, J. L. Evaporation and environment. The stage and movement of water in living organisms. Symp.soc.exp.biol.the Company of Biologists (1965).Wang, K. & Dickinson, R. E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics 50, https://doi.org/10.1029/2011RG000373 (2012).Bastiaanssen, W. G. et al. A remote sensing surface energy balance algorithm for land (SEBAL) Part 1: Fomulation. Journal of hydrology 212, 213–229, https://doi.org/10.1016/S0022-1694(98)00253-4 (1998).Article 
    ADS 

    Google Scholar 
    Bastiaanssen, W. G. M. et al. A remote sensing surface energy balance algorithm for land (SEBAL) Part 2. Validation. Journal of Hydrology 212, https://doi.org/10.1016/S0022-1694(98)00254-6 (1998).Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Science 6, 85–99, https://doi.org/10.5194/hess-6-85-2002 (2002).Article 
    ADS 

    Google Scholar 
    Norman, J. M., Kustas, W. P. & Humes, K. S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology 77, https://doi.org/10.1016/0168-1923(95)02265-y (1995).Mu, Q., Heinsch, F. A., Zhao, M. & Running, S. W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment 111, https://doi.org/10.1016/j.rse.2007.04.015 (2007).Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment 115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019 (2011).Article 
    ADS 

    Google Scholar 
    Fisher, J. B., Tu, K. P. & Baldocchi, D. D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sensing of Environment 112, 901–919, https://doi.org/10.1016/j.rse.2007.06.025 (2008).Article 
    ADS 

    Google Scholar 
    Kim, H. W., Hwang, K., Mu, Q., Lee, S. O. & Choi, M. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia. KSCE Journal of Civil Engineering 16, https://doi.org/10.1007/s12205-012-0006-1 (2012).Velpuri, N. M., Senay, G. B., Singh, R. K., Bohms, S. & Verdin, J. P. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sensing of Environment 139, https://doi.org/10.1016/j.rse.2013.07.013 (2013).Jin, X. et al. Estimation of water productivity in winter wheat using the AquaCrop model with field hyperspectral data. Precision Agriculture 19, 1–17, https://doi.org/10.1007/s11119-016-9469-2 (2016).Article 

    Google Scholar 
    Felix, R., Clement, A., Igor, S. & Oscar, R. Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection. Remote Sensing 5, 1704–1733, https://doi.org/10.3390/rs5041704 (2013).Article 

    Google Scholar 
    Lu, Y. et al. Assimilation of soil moisture and canopy cover data improves maize simulation using an under-calibrated crop model. Agricultural Water Management 252, https://doi.org/10.1016/j.agwat.2021.106884 (2021).Jin, X., Kumar, L., Li, Z., Feng, H. & Wang, J. A review of data assimilation of remote sensing and crop models. European Journal of Agronomy 92, https://doi.org/10.1016/j.eja.2017.11.002 (2018).Weiss, M., Jacob, F. & Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment 236, https://doi.org/10.1016/j.rse.2019.111402 (2019).Jin, X. et al. Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the AquaCrop model using the particle swarm optimization algorithm. ISPRS Journal of Photogrammetry and Remote Sensing 126, 24–37 (2017).Article 
    ADS 

    Google Scholar 
    Tao, F., Rötter, R. P., Palosuo, T., Díaz-Ambrona, C. G. H. & Schulman, A. H. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Global Change Biology 24, https://doi.org/10.1111/gcb.14019 (2017).Jin, X. et al. A review of data assimilation of remote sensing and crop models. European Journal of Agronomy 92, 141–152, https://doi.org/10.1016/j.eja.2017.11.002 (2018).Article 

    Google Scholar 
    Anikó, K. et al. Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices. Agricultural and Forest Meteorology 260-261, 300–320, https://doi.org/10.1016/j.agrformet.2018.06.009 (2018).Article 

    Google Scholar 
    Wang, Y., Zhang, Z., Feng, L., Du, Q. & Runge, T. Combining Multi-Source Data and Machine Learning Approaches to Predict Winter Wheat Yield in the Conterminous United States. Remote Sensing 12, 1232, https://doi.org/10.3390/rs12081232 (2020).Article 
    ADS 

    Google Scholar 
    Franz, T. E. et al. The role of topography, soil, and remotely sensed vegetation condition towards predicting crop yield. Field Crops Research 252, https://doi.org/10.1016/j.fcr.2020.107788 (2020).Noland, R. L. et al. Estimating alfalfa yield and nutritive value using remote sensing and air temperature. Field Crops Research 222, 189–196, https://doi.org/10.1016/j.fcr.2018.01.017 (2018).Article 

    Google Scholar 
    Cao, J., Zhang, Z., Luo, Y., Zhang, L. & Tao, F. Wheat yield predictions at a county and field scale with deep learning, machine learning, and google earth engine. European Journal of Agronomy, 126204, https://doi.org/10.1016/j.eja.2020.126204 (2021).Jacinta, H. & Kerrie, M. Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review. Remote Sensing 10, 1365, https://doi.org/10.3390/rs10091365 (2018).Article 

    Google Scholar 
    Jin, X., Liu, S., Baret, F., Hemerlé, M. & Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sensing of Environment 198, 105–114, https://doi.org/10.1016/j.rse.2017.06.007 (2017).Article 
    ADS 

    Google Scholar 
    Maimaitijiang, M. et al. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sensing of Environment 237, 111599, https://doi.org/10.1016/j.rse.2019.111599 (2020).Article 
    ADS 

    Google Scholar 
    Hossein, A., Mohsen, A., Davoud, A., Salehi, S. H. & Soheil, R. Machine Learning Regression Techniques for the Silage Maize Yield Prediction Using Time-Series Images of Landsat 8 OLI. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing PP, 1–15, https://doi.org/10.1109/JSTARS.2018.2823361 (2018).Johansen, K. et al. Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest. Frontiers in Artificial Intelligence 3, 28, https://doi.org/10.3389/frai.2020.00028 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, L., Ding, X., Shen, Y., Wang, Z. & Wang, X. Spatial Heterogeneity and Influencing Factors of Agricultural Water Use Efficiency in China. Resources and Environment in the Yangtze Basin 28, https://doi.org/10.11870/cjlyzyyhj201904008 (2019).Cheng, M. et al. Satellite time series data reveal interannual and seasonal spatiotemporal evapotranspiration patterns in China in response to effect factors. Agric. Water Manage. 255, https://doi.org/10.1016/j.agwat.2021.107046 (2021).Zhou, L. Comprehensive agricultural regionalization in China. (Agricultural Press of China, 1985).Luo, Y., Zhang, Z., Chen, Y., Li, Z. & Tao, F. ChinaCropPhen1km: A high-resolution crop phenological dataset for three staple crops in China during 2000-2015 based on LAI products. Figshare https://doi.org/10.6084/m9.figshare.8313530.v6 (2019).Luo, Y., Zhang, Z., Chen, Y., Li, Z. & Tao, F. ChinaCropPhen1km: a high-resolution crop phenological dataset for three staple crops in China during 2000–2015 based on leaf area index (LAI) products. Earth System Science Data 12, 197–214, https://doi.org/10.5194/essd-12-197-2020 (2020).Article 
    ADS 

    Google Scholar 
    Song, D. Second China Soil Survey. (Chinese Science Press, 1979).Zhang, T., Yang, X., Wang, H., Li, Y. & Ye, Q. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis. Global Change Biology 20, 1289–1298, https://doi.org/10.1111/gcb.12428 (2014).Article 
    ADS 
    PubMed 

    Google Scholar 
    Chen, Y., Zhang, Z. & Tao, F. Improving regional winter wheat yield estimation through assimilation of phenology and leaf area index from remote sensing data. European Journal of Agronomy 101, 163–173, https://doi.org/10.1016/j.eja.2018.09.006 (2018).Article 

    Google Scholar 
    Cheng, M. et al. Combining multi-indicators with machine-learning algorithms for maize yield early prediction at the county-level in China. Agricultural and Forest Meteorology 323, https://doi.org/10.1016/j.agrformet.2022.109057 (2022).Amir, J. & Sinclair, T. A model of the temperature and solar-radiation effects on spring wheat growth and yield. Field Crops Research 28, 47–58, https://doi.org/10.1016/0378-4290(91)90073-5 (1991).Article 

    Google Scholar 
    Prince, S. D., Haskett, J., Steininger, M. & Wright, S. R. Net Primary Production of U.S. Midwest Croplands from Agricultural Harvest Yield Data. Ecological Applications 11, 1194–1205, https://doi.org/10.1890/1051-0761(2001)011[1194:NPPOUS]2.0.CO;2 (2001).Article 

    Google Scholar 
    Gilardelli, C. et al. Downscaling rice yield simulation at sub-field scale using remotely sensed LAI data. European journal of agronomy 103, 108–116, https://doi.org/10.1016/j.eja.2018.12.003 (2019).Article 

    Google Scholar 
    Shakoor, R., Hassan, M. Y., Raheem, A. & Wu, Y.-K. Wake effect modeling: A review of wind farm layout optimization using Jensen׳ s model. Renewable and Sustainable Energy Reviews 58, 1048–1059, https://doi.org/10.1016/j.rser.2015.12.229 (2016).Article 

    Google Scholar 
    Breiman, L. Random Forests. Machine Learning https://doi.org/10.1023/A:1010933404324 (2001).Article 
    MATH 

    Google Scholar 
    Li, L. et al. Crop yield forecasting and associated optimum lead time analysis based on multi-source environmental data across China. Agricultural and Forest Meteorology 308–309, https://doi.org/10.1016/j.agrformet.2021.108558 (2021).Wang, L. A., Zhou, X., Zhu, X., Dong, Z. & Guo, W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. The Crop Journal 4, 212–219, https://doi.org/10.1016/j.cj.2016.01.008 (2016).Article 

    Google Scholar 
    Feng, P. et al. Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical model and machine learning technique. Agricultural and Forest Meteorology 285-286, 107922, https://doi.org/10.1016/j.agrformet.2020.107922 (2020).Article 
    ADS 

    Google Scholar 
    Lu, F., Sun, Y. & Hou, F. Using UAV Visible Images to Estimate the Soil Moisture of Steppe. Water 12, 2334, https://doi.org/10.3390/w12092334 (2020).Article 
    CAS 

    Google Scholar 
    Wang, S. et al. High spatial resolution monitoring land surface energy, water and CO2 fluxes from an Unmanned Aerial System. Remote Sensing of Environment 229, 14–31, https://doi.org/10.1016/j.rse.2019.03.040 (2019).Article 
    ADS 

    Google Scholar 
    Chen, Y. et al. Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sensing of Environment 140, 279–293, https://doi.org/10.1016/j.rse.2013.08.045 (2014).Article 
    ADS 

    Google Scholar 
    Peralta, N., Assefa, Y., Du, J., Barden, C. & Ciampitti, I. Mid-Season High-Resolution Satellite Imagery for Forecasting Site-Specific Corn Yield. Remote Sensing 8, 848, https://doi.org/10.3390/rs8100848 (2016).Article 
    ADS 

    Google Scholar 
    Russello, H. Convolutional neural networks for crop yield prediction using satellite images. IBM Center for Advanced Studies (2018).You, J., Li, X., Low, M., Lobell, D. & Ermon, S. in Proceedings of the AAAI Conference on Artificial Intelligence.Moran, P. A. Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950).Article 
    MathSciNet 
    CAS 

    Google Scholar 
    Imran, M., Stein, A. & Zurita-Milla, R. Using geographically weighted regression kriging for crop yield mapping in West Africa. International Journal of Geographical Information Systems 29, 234–257, https://doi.org/10.1080/13658816.2014.959522 (2015).Article 

    Google Scholar 
    Harries, K. Extreme spatial variations in crime density in Baltimore County, MD. Geoforum 37, 404–416, https://doi.org/10.1016/j.geoforum.2005.09.004 (2006).Article 

    Google Scholar 
    Ghulam, A. et al. Remote Sensing Based Spatial Statistics to Document Tropical Rainforest Transition Pathways. Remote Sensing 7, 6257–6279, https://doi.org/10.3390/rs70506257 (2015).Article 
    ADS 

    Google Scholar 
    Maimaitijiang, M., Ghulam, A., Sandoval, J. S. O. & Maimaitiyiming, M. Drivers of land cover and land use changes in St. Louis metropolitan area over the past 40 years characterized by remote sensing and census population data. International Journal of Applied Earth Observation Geoinformation 35, 161–174, https://doi.org/10.1016/j.jag.2014.08.020 (2015).Article 
    ADS 

    Google Scholar 
    Cheng, M. Long time series (2001-2015) high-resolution crop yield and water productivity dataset of China, Zenodo, https://doi.org/10.5281/zenodo.5121842 (2021).Martens, B., Miralles, D. G., Lievens, H., Schalie, R. D. & Verhoest, N. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development 10, https://doi.org/10.5194/gmd-10-1903-2017 (2017).Wang, W., Cui, W., Wang, X. & Chen, X. Evaluation of GLDAS-1 and GLDAS-2 forcing data and Noah model simulations over China at the monthly scale. Journal of Hydrometeorology 17, 2815–2833, https://doi.org/10.1175/JHM-D-15-0191.1 (2016).Article 
    ADS 

    Google Scholar 
    Chen, X. et al. Development of a 10-year (2001–2010) 0.1° data set of land-surface energy balance for mainland China. Atmospheric Chemistry and Physics 14, 14471–14518, https://doi.org/10.5194/acp-14-13097-2014 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ramoelo, A. et al. Validation of Global Evapotranspiration Product (MOD16) using Flux Tower Data in the African Savanna, South Africa. Remote Sensing 6, https://doi.org/10.3390/rs6087406 (2014).Yang, X., Yong, B., Ren, L., Zhang, Y. & Long, D. Multi-scale validation of GLEAM evapotranspiration products over China via ChinaFLUX ET measurements. International Journal of Remote Sensing https://doi.org/10.1080/01431161.2017.1346400 (2017).Article 

    Google Scholar 
    Hu, G., Jia, L. & Menenti, M. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sensing of Environment 156, 510–526, https://doi.org/10.1016/j.rse.2014.10.017 (2015).Article 
    ADS 

    Google Scholar 
    Khan, M. S., Liaqat, U. W., Baik, J. & Choi, M. Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach. Agricultural and Forest Meteorology 252, 256–268, https://doi.org/10.1016/j.agrformet.2018.01.022 (2018).Article 
    ADS 

    Google Scholar 
    Glenn, E. P. et al. Scaling sap flux measurements of grazed and ungrazed shrub communities with fine and coarse-resolution remote sensing. Ecohydrology 1, 316–329, https://doi.org/10.1002/eco.19 (2008).Article 

    Google Scholar 
    Gamon, J. A. Reviews and Syntheses: optical sampling of the flux tower footprint. Biogeosciences 12, 4509–4523, https://doi.org/10.5194/bg-12-4509-2015 (2015).Article 
    ADS 

    Google Scholar 
    Cai, Y. et al. Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agricultural and Forest Meteorology 274, 144–159, https://doi.org/10.1016/j.agrformet.2019.03.010 (2019).Article 
    ADS 

    Google Scholar 
    Chen, X. et al. Prediction of Maize Yield at the City Level in China Using Multi-Source Data. Remote Sensing 13, https://doi.org/10.3390/rs13010146 (2021).Guo, Y. et al. Integrated phenology and climate in rice yields prediction using machine learning methods. Ecological Indicators 120, 106935, https://doi.org/10.1016/j.ecolind.2020.106935 (2021).Article 

    Google Scholar 
    Yuan, W. et al. Estimating crop yield using a satellite-based light use efficiency model. Ecological Indicators 60, 702–709, https://doi.org/10.1016/j.ecolind.2015.08.013 (2016).Article 

    Google Scholar 
    Anandhi, A. Growing degree days – Ecosystem indicator for changing diurnal temperatures and their impact on corn growth stages in Kansas. Ecological Indicators 61, 149–158, https://doi.org/10.1016/j.ecolind.2015.08.023 (2016).Article 

    Google Scholar 
    Wart, J. V. Estimating Crop Yield Potential At National Scales. Field Crops Research 143, 34–43, https://doi.org/10.1016/j.fcr.2012.11.018 (2013).Article 

    Google Scholar 
    Kang, Y. S. et al. Yield prediction and validation of onion (Allium cepa L.) using key variables in narrowband hyperspectral imagery and effective accumulated temperature. Computers and Electronics in Agriculture 178, https://doi.org/10.1016/j.compag.2020.105667 (2020).Long, D., Singh, V. P. & Li, Z.-L. How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? Journal of Geophysical Research: Atmospheres 116, https://doi.org/10.1029/2011jd016542 (2011).Liu, Z., Wang, L. & Wang, S. Comparison of Different GPP Models in China Using MODIS Image and ChinaFLUX Data. Remote Sensing 6, 10215–10231, https://doi.org/10.3390/rs61010215 (2014).Article 
    ADS 

    Google Scholar 
    Edreira, J., Guilpart, N., Sadras, V., Cassman, K. G. & Grassini, P. Water productivity of rainfed maize and wheat: A local to global perspective. Agricultural and Forest Meteorology 259, 364–373, https://doi.org/10.1016/j.agrformet.2018.05.019 (2018).Article 
    ADS 

    Google Scholar 
    Li, H. et al. Water Use Characteristics of Maize-Green Manure Intercropping Under Different Nitrogen Application Levels in the Oasis Irrigation Area Scientia Agricultura Sinica 54, 2608–2618 (2021).
    Google Scholar 
    Wang, S., Ibrom, A., Bauer-Gottwein, P. & Garcia, M. Incorporating diffuse radiation into a light use efficiency and evapotranspiration model: An 11-year study in a high latitude deciduous forest. Agricultural and Forest Meteorology https://doi.org/10.1016/j.agrformet.2017.10.023 (2018).Article 

    Google Scholar 
    Cheng, M. High-resolution crop yield and water productivity dataset generated using random forest and remote sensing. Zenodo https://doi.org/10.5281/zenodo.6444614 (2022). More

  • in

    A sustainable pathway to increase soybean production in Brazil

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Marin, F. R. et al. Protecting the Amazon forest and reducing global warming via agricultural intensification. Nat. Sustain. https://doi.org/10.1038/s41893-022-00968-8 (2022). More

  • in

    Multi-species occupancy modeling suggests interspecific interaction among the three ungulate species

    Study areaThe present study was conducted in Uttarkashi district, Uttarakhand, located between 38° 28′ to 31°28′ N latitude and 77°49′ to 79°25′ E longitude with an area of about 8016 km2, covering primarily hilly terrain with an altitudinal range of 715–6717 m (Fig. 3). The terrain is mountainous, consisting of undulating hill ranges and narrow valleys with temperate climatic conditions. The district lies in the upper catchment of two major rivers of India, viz., the Ganges (Bhagirathi towards upstream) and the Yamuna. The major vegetation types of the study area are Himalayan moist temperate forest, sub-alpine forest and alpine scrub59. The Uttarkashi district forests are managed under three Forest Divisions viz., (i) Uttarkashi Forest Division (ii) Upper Yamuna Badkot Forest Division and (iii) Tons Forest Division) with two Protected Areas (PAs) (i) Gangotri National Park and (ii) Govind Pashu Vihar National Park. The forested habitats of the study landscape are home to top conservation priority species, including Asiatic Black bear (Ursus thibetanus), Musk deer (Moschus spp.), Common leopard (Panthera pardus), Himalayan brown bear (Ursus arctos isabellinus) and Western Tragopan (Tragopan melanocephalus), Himalayan monal (Lophophorus impejanus). The study was conducted after a study permit issued by the Chief Wildlife Warden, Forest Department, Uttarakhand government, vide letter no. 848/5-6 dated 31/08/2019, we have not handled the species for doing research. Instead, remote camera traps have been used for collecting the data with the permission of the Chief Wildlife Warden, Government of Uttarakhand. Further, informed consent was taken before interviewing the local communities. The data was collected according to the institutional guidelines and approved by the Research Advisory and Monitoring Committee of the Zoological Survey of India.Figure 3Map of the study area Uttarkashi, Uttarakhand. ArcGIS 10.6 (ESRI, Redlands, CA) was used to create the map. (Map created using ArcGIS 10.6; http://www.esri.com).Full size imageSampling protocolThe basic sampling protocol and assumptions for multi-species occupancy modelling are identical to the single-species case7. Briefly, a set of 62 intensive sites, were randomly selected, and each site i was surveyed j times. During each survey, detection/non-detection of S focal species was recorded. Additionally, direct or indirect evidences of species presence from the different areas were also recorded.Data collectionThe complete study area was divided into 10 × 10 km grids, consisting of n = 60 grids. Based on the reconnaissance survey, out of these 60 grids, we selected 25 girds that were accessible to conduct the survey and have the species presence. Further, these grids were divided into 2 × 2 km grids to maximize our effort so that all logistically accessible grids could be covered, and we conducted intensive sampling in N = 62 grids after excluding the grids with human settlements. T The field surveys were conducted during 2018–2019, and a team of researchers systematically visited selected grids to collect data on the detection/non-detection of these ungulates. A total of 62 camera traps were deployed in selected grids, and 650 km were traversed, accounting for N = 54 trails in these sampled grids. These camera traps were visited once in every fifteen days for replacing the batteries as well as documenting the presence of the species through the sign surveys. The ultra-compact SPYPOINT FORCE-11D trail camera (SPYPOINT, GG Telecom, Canada, QC) and Browning trail camera (Defender 850, 20 MP, Prometheus Group, LLC Birmingham, Alabama, https://browningtrailcameras.com) camera traps were used to detect the presence/absence of ungulate species. The cameras were mounted 40–60 cm above ground on natural trails without lures.Data explorationWhile deploying camera traps, we also noted habitat variables through on-site observation such as distance to the village and human disturbance. We tested site covariates for collinearity and discarded one of a pair if the Pearson’s correlation was greater than 0.760. Hence, we assumed each of the site covariates could influence the occupancy and detectability of these ungulates.CovariatesWe hypothesized that habitat variables may influence these ungulates’ occupancy and detection probability. A total of 21 variables were extracted either from the field or using the ArcGIS v. 10.6 software (ESRI, Redlands, CA), and only 14 were retained after collinearity testing60 (Table 3). These covariates were classified into the following categories (Topographic variables, Habitat variables and anthropogenic variables). The topographic variables (elevation, slope and aspect) were generated using 30× resolution SRTM (Shuttle Radar Topography Mission) image downloaded from EarthExplorer (https://earthexplorer.usgs.gov/). The habitat/ land cover classification was carried out using Landsat 8 satellite imagery (Spatial resolution = 30 m) downloaded from Global Land Cover Facility by following the methodology suggested by61 using the ArcGIS v. 10.6 software (ESRI, Redlands, CA). The study area was classified into nine Land use/land cover (LULC) classes viz., West Himalayan Sub-alpine birch/fir Forest (FT 188), West Himalayan upper oak/fir forest (FT 162), West Himalayan Dry juniper forest (FT 180), Ban oak forest (FT 152), Moist Deodar Forest (FT 155), Western mixed coniferous forest (FT 156), Moist temperate Deciduous Forest (FT 157) which were used for further analysis considering their importance to species ecology and behavior60. The values for all the covariates were extracted at 30 m resolution, and a single value per site was obtained by averaging all the pixel values within each sampling site (camera trap locations).Table 3 Habitat variables used for multi species occupancy analysis of three ungulate species in Uttarkashi, Uttarakhand.Full size tableOccupancy modelling frameworkWe used multi-species occupancy modelling62 of barking deer, goral and sambar to estimate the probability of the species (s) occurred within the area (i) sampled during our survey period (j), for accounting the imperfect detection of the species8. Distinguishing the true presence/absence of a species from detection/non-detection (i.e., species present and captured or species present but not captured) requires spatially or temporally replicated data. We used camera stations to record the presence/absence of species along with sign survey in all the studied grids. The camera traps were placed along the trail/transects in the studied grids hence each grid needs to be visited once in every fifteen days to check the camera traps as well as to document the presence of the studied species. Therefore, we treated 15 trap nights as one sampling occasion at a particular camera station resulting in ~ 7 sampling occasions per camera station.Our aim was to record the presence/ absence of the species at a particular gird hence we incorporated sign survey data if the species was not detected in camera station but recorded through sign survey. We pooled the presence/absence data in a single sheet of each species following6 and fitted occupancy and detectability models using programme Mark63,64. We model the species (s) presence (ysij = 1) and absence (ysij = 0) at site i during survey j, and the sampling protocol was identical to single species case65, where the Bernoulli random variable was conditional on the presence of species s (Zs = 1) following6$${text{y}}_{sij} sim {text{ Bernoulli}}left( {{text{p}}_{sij} {text{z}}_{si} } right),$$
    where Psij represents the probability of detecting species S during replicate survey j at site i and Zsi = presence or absence of species s at site i.Furthermore, we model the latent occupancy state of species s at site i as a multivariate Bernoulli random variable:$${text{Z}}_{i} sim {text{MVB}}left( {uppsi _{i} } right)$$
    where Zi = {Z1i, Z2i….., ZSi} is an S-dimensional vector of 1’s and 0’s denoting the latent occupancy state of all S species and (ψi) is a 2S-dimensional vector denoting the probability of all possible sequences of 1’s and 0’s Zi can attain such that ∑ ψi = 1 with corresponding probability mass function (PMF) adopted from6,64.$$fleft( {{text{Z}}_{i} } right) = {text{ exp}}left( {left( {{text{Z}}_{i} {text{log}}(uppsi_{{text{i}}} {1}/uppsi_{{text{i}}} 0} right) , + {text{ log}}left( {uppsi_{{text{i}}} 0} right)} right).$$The quantity f = log (ψi1/ψi0), is the log odds species S occupies a site often referred to as a ‘natural parameter’.Since we are modeling three ungulate species (S = 3), 2S = 23 the possible encounter histories included in the dataset were eight, if neither of the two species were detected the value of ‘00’ was assigned; similarly ‘01’ indicates detection of species 1; ‘02’ indicates detection of species 2; ‘03’ indicates detection of both the species; ‘04’ indicates detection of species 3; ‘05’ indicates detection of species 1 and species 3; ‘06’ indicates detection of species 2 and species 3 and ‘07’ indicates detection of all the three species. We modelled constant occupancy and detection probability for each of the three species. Hence, we specified 6 f and p parameters, an intercept (β) for each of one-way f parameter and detection parameter p following64.$$f_{{1}}=upbeta_{{{1},}} ;;{text{p}}=upbeta_{{4}}$$$$f_{{2}} = upbeta_{{{2},}} ;{text{p }} = , upbeta 5$$$$f_{{3}} = , upbeta_{{{3},}}; {text{p }} = , upbeta_{{6}}$$We fit a set of models including the detection probability as a constant, p(.), and variable function to occupancy ψ(covariate) for site-specific covariates and models include occupancy as constant ψ(.) and variable function of the detection p(covariates) for the respective site covariates.As we have assumed the independence among all three species, the model shows marginal occupancy probabilities of species 1, species 2 and species 3 varies as a function of environmental variables. We incorporated site-level characteristics affecting species-specific occurrence (f1: occupancy of species 1, f2: occupancy of species 2, & f3: occupancy of species 3) and detection probabilities using a generalized linear modelling approach42. This requires 9 parameters: an intercept (β1, β3, β5) and slope (β2, β4, β6) coefficient for each 1-way f parameter f1, f2, f3 and an intercept parameter for each detection parameter (β7, β8, β9). Below mentioned is the model for 1-way f parameters.$$f_{{1}} = , upbeta_{{{1 } + }} upbeta_{{2}} left( {{text{Covariate}}} right),;;{text{ p }} = , upbeta_{{7}}$$$$f_{{2}} = , upbeta_{{{3 } + }} upbeta_{{4}} left( {{text{Covariate}}} right),;;{text{ p}} = , upbeta_{{8}}$$$$f_{{3}} = , upbeta_{{5}} + , upbeta_{{6}} left( {{text{Covariate}}} right),;;{text{ p }} = , upbeta_{{9}} .$$All covariates were standardized before model fitting. We fitted the most complex model to each species and considered all possible combinations of covariates using the logit link function. Our rationale for including these variables in the occupancy and detectability component of the model was that we expected these variables to influence the occupancy and detectability of the study species.Since multi-species occupancy simultaneously model environmental variables, & interspecific interactions. Further it also allows to understand the influence of environmental variables on one species occupancy, in the presence or absence of other sympatric species64. Hence, we also modeled two species occur together as a function of covariates. We examined how the variables of each camera site influenced the pair-wise interaction of the three ungulate species. This model assumes that the conditional probability of one species varies in the presence or absence of other species. We assumed f123: co-occurrence of species 1, species 2 & species 3 = 0, hence we did not include higher-order interactions in any of our models, we assumed the conditional probability of 3 species occurred together was purely a function of species-specific (f1, f2, f3) and pair-wise interaction (f12: co-occurrence of species1 & species 2, f13: co-occurrence of species 1 & species 3, f23: co-occurrence of species 2 & species 3) parameters. We modeled pair-wise interaction of species varies as a function of environmental variables keeping detection probability constant. Hence, we specified 15 f and p parameters, an intercept and slope coefficient for each of the one-way (f1, f2, f3) and the two-way f parameters (f12, f13, and f23); as well as an intercept parameter for each of the detection models. The model equation below implies for 2-way f parameters:$$f_{{{12}}} = , upbeta_{{{7 } + }} upbeta_{{8}} left( {{text{Covariate}}} right),;;{text{ p }} = , upbeta_{{{13}}}$$$$f_{{{13}}} = , upbeta_{{{9 } + }} upbeta_{{{1}0}} left( {{text{Covariate}}} right),;;{text{ p }} = , upbeta_{{{14}}}$$$$f_{{{23}}} = , upbeta_{{{11 } + }} upbeta_{{{12}}} left( {{text{Covariate}}} right),;;{text{ p }} = , upbeta_{{{15}}} .$$We also fitted models including co-occurrence and detection probability of a species varies as a function of environmental variables. Hence, we specified 18 f and p parameters, an intercept and slope coefficient for each of one-way (f1, f2, f3) and two-way f parameters (f12, f13, f23); and an intercept as well as the slope parameters for each of the detection models. The model equation below implies for 2-way f parameters:$$f_{{{12}}} = , upbeta_{{{7 } + }} upbeta_{{8}} left( {{text{Covariate}}} right),{text{ p }} = , upbeta_{{{13 } + }} upbeta_{{{14}}} left( {{text{covariate}}} right)$$$$f_{{{13}}} = , upbeta_{{{9 } + }} upbeta_{{{1}0}} left( {{text{Covariate}}} right),{text{ p }} = , upbeta_{{{15}}} + , upbeta_{{{16}}} left( {{text{covariate}}} right)$$$$f_{{{23}}} = , upbeta_{{{11 } + }} upbeta_{{{12}}} left( {{text{Covariate}}} right),{text{ p }} = , upbeta_{{{17}}} + , upbeta_{{{18}}} left( {{text{covariate}}} right)$$A total of 38 models were run to test the influence of environmental variables on occupancy and detection probability of species-specific (f1, f2, f3) and pair-wise interaction of the three ungulate species. The best-supported model was identified by selecting the model with the lowest AICc value and highest model weights66, where higher model weights indicate a better fit of the model to the data. Second-Order Information Criterion (AICc)67 values were used to rank the occupancy models, and all the models whose ΔAICc  More

  • in

    Mapping tropical forest functional variation at satellite remote sensing resolutions depends on key traits

    We hypothesized that functionally distinct forest types can be mapped at moderate spatial resolutions, using a combination of canopy foliar traits and canopy structure information. Our analysis of LiDAR and imaging spectroscopy data at spatial resolutions ranging from 4 to 200 m (16 m2–40,000 m2), with an emphasis on the 30 m (900 m2) spaceborne hyperspectral spatial resolution, reveals that few remotely sensed canopy properties are needed to successfully identify ecologically distinct forest types at two diverse tropical forest sites in Malaysian Borneo. In testing our second hypothesis that mapped forest types exhibit distinct ecosystem function, we found that forest types identified using remotely sensed leaf P, LMA, Max H, and canopy cover at 20 m height (Cover20) closely align with forest types defined from field-based floristic surveys29,30,31,32,33 and inventory plot-based measurements of growth and mortality rates (Fig. 4b). Our approach, however, enables mapping of their entire spatial extent (Fig. 1) and reveals important structural and functional variation within areas characterized as a single forest type in previous studies (Fig. 3). Current and forthcoming satellite hyperspectral platforms, including PRISMA (30 m), CHIME (20–30 m), and SBG (30 m), have or will have comparable spectral resolution, higher temporal revisits, and much greater geographic coverage. The ability to conduct this type of analysis using remote sensing measurements at 30 m resolution suggests that our method can be applied to these emerging spaceborne imaging spectroscopy data to reveal important differences in structure and function across the world’s tropical forests.Nested functional forest types revealedTo test our first hypothesis, rather than making an a priori decision about the number of k-means clusters (k), we explored the capacity of remotely sensed data to reveal ecologically relevant variation in forest types. Baldeck and Asner took a similar unsupervised approach to estimating beta diversity in South Africa34. Because the choice of k directly influences analysis outcomes, careful selection of k is required. Different approaches for identifying the number of clusters, using the Gapk and Wk elbow metrics35, yielded varying optimal numbers of clusters for the Sepilok and Danum landscapes (Fig. 1, Supplementary Figs. 4 and 5). However, at both sites, a comparison of results based on different values of k revealed ecologically meaningful structural and functional differences and graduated transitions between forest types (Fig. 2, Supplementary Figs. 7 and 8), indicating that the exploration of traits that aggregate or separate forest types as k changes is a valuable exercise. Overlap between the remotely sensed forest type boundaries and inventory plots within distinct forest types indicate that the series of clustered forests align closely with forest types defined based on in situ data on species composition and ecosystem structure. In part, this type of analysis requires careful selection of the number of clusters. Additionally, however, we gained valuable insights via the exploration of varying numbers of clusters as it relates to biologically meaningful categorization of forest types. Extending this method to other parts of the tropics will require similar decision-making, which will either require user input, or the development of robust automated algorithms for selecting k.Forest types capture differences in ecosystem dynamicsWe further evaluated the canopy traits and structural attributes that were most critical for mapping distinct forest types, hypothesizing that mapped forest types exhibit distinct ecosystem function. Forest types revealed by the cluster analyses were distributed along the leaf economic spectrum, where the leaf economic spectrum characterizes a tradeoff in plant growth strategies36. LMA, which can covary strongly with leaf N and P, is a key indicator of plant growth strategies along the spectrum37. At the slow-return end of the leaf economics spectrum, plants in nutrient-poor conditions with low leaf nutrient concentrations invest in leaf structure and defense, expressed as high LMA, strategizing longer-lived, tougher leaves with slower decomposition rates. This strategy comes at the cost of slower growth. At the quick-return end of the spectrum, plants in nutrient-rich environments with higher leaf nutrient concentrations invest less in structure and defense, enabling faster growth and more rapid leaf turnover, i.e., shorter leaf lifespans. This quick-return growth strategy supports higher photosynthetic rates and more rapid carbon gain36.In this study, the principal components and clustering results yielded forest types that are indicative of community level differences associated with leaf economic spectrum differences. The nutrient rich sites (Danum1 and Danum2, Supplementary Fig. 8) show high canopy N and P and low LMA compared to the nutrient poor and acidic sites (Sandstone and Kerangas), which contributes to lower leaf photosynthetic capacity (Vcmax) and growth (Fig. 4b). Foliar N:P also increased with site fertility, confirming that tropical forests are primarily limited by phosphorus, and not nitrogen38,39, with large implications for carbon sequestration in these forests. Orthogonal differences in canopy structure and architecture between Danum forest types and Sepilok Sandstone and Alluvial forests could be indicative of ecosystem scale differences in the sensitivity of these forests to endogenous disturbance processes40.The significant differences in aboveground carbon stocks and growth and mortality rates between forest types further suggests strong differences in ecosystem dynamics. In general, growth rates varied inversely to aboveground carbon, and higher aboveground carbon corresponded to lower mortality rates. As an example, the Sepilok sandstone forests, which are largely comprised of slow-growing dipterocarp species29,33, had the highest median aboveground carbon (236 Mg C ha−1), with higher canopy P and N, and lower LMA. The taller canopy and low canopy leaf nutrient concentrations are consistent with the low growth and mortality rates found in the sandstone forest, indicating a slow-growth strategy yielding larger trees and higher aboveground carbon stocks. In contrast, alluvial forests exhibit high turnover with mortality and growth rates higher relative to Sandstone forests corresponding to lower aboveground carbon on average. Kerangas forests exhibited low aboveground carbon despite an intermediate plot-level growth rate, and mortality rates that were significantly lower than the Danum or alluvial forest types. Kerangas forests, which were characterized by the highest LMA, lowest foliar P and N (Fig. 2a), and the lowest plot-level aboveground carbon density (186 Mg C ha−1; Fig. 4a), are known to have higher stem densities, lower canopy heights, and long-lived leaves5,32,41, suggesting well-developed strategies for nutrient retention42. Interestingly, despite significantly different aboveground carbon and demography, the kerangas and sandstone forests did not differ in LAI or canopy architecture (P:H); although maximum height, Cover20, and Hpeak LAI were significantly higher in the sandstone forest, highlighting the need to account for differences beyond LAI when scaling processes from leaves to ecosystems.In addition, when three forest types were distinguished at Sepilok, the alluvial inventory plot had significantly higher aboveground carbon than the remote sensing-derived alluvial forest extent (Fig. 4a, p  More

  • in

    Assessing Müllerian mimicry in North American bumble bees using human perception

    Bates, H. W. XXXII. Contributions to an insect fauna of the Amazon Valley. Lepidoptera: Heliconidæ. Trans. Linn. Soc. Lond 23, 495–566 (1862).Article 

    Google Scholar 
    Müller, F. Ituna and thyridia: A remarkable case of mimicry in butterflies. Trans. Entomol. Soc. Lond. 1879, 20–29 (1879).
    Google Scholar 
    Baxter, S. W. et al. Convergent evolution in the genetic basis of Müllerian mimicry in Heliconius butterflies. Genetics 180, 1567–1577 (2008).Article 
    CAS 

    Google Scholar 
    Sheppard, P. M., Turner, J. R. G., Brown, K., Benson, W. & Singer, M. Genetics and the evolution of Muellerian mimicry in Heliconius butterflies. Philos. Trans R. Soc. Lond. B, Biol. Sci. 308, 433–610 (1985).Article 
    ADS 

    Google Scholar 
    Mallet, J. & Gilbert, L. E. Jr. Why are there so many mimicry rings? Correlations between habitat, behaviour and mimicry in Heliconius butterflies. Biol. J. Lin. Soc. 55, 159–180 (1995).
    Google Scholar 
    Brower, A. V. Parallel race formation and the evolution of mimicry in Heliconius butterflies: A phylogenetic hypothesis from mitochondrial DNA sequences. Evolution 50, 195–221 (1996).Article 
    CAS 

    Google Scholar 
    Wilson, J. S. et al. North American velvet ants form one of the world’s largest known Müllerian mimicry complexes. Curr. Biol. 25, R704–R706. https://doi.org/10.1016/j.cub.2015.06.053 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wilson, J. S., Williams, K. A., Forister, M. L., Von Dohlen, C. D. & Pitts, J. P. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 3, 1272 (2012).Article 
    ADS 

    Google Scholar 
    Wilson, J. S., Pan, A. D., Limb, E. S. & Williams, K. A. Comparison of African and North American velvet ant mimicry complexes: Another example of Africa as the ‘odd man out’. PLoS ONE 13, e0189482. https://doi.org/10.1371/journal.pone.0189482 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Plowright, R. & Owen, R. E. The evolutionary significance of bumble bee color patterns: A mimetic interpretation. Evolution 34, 622–637 (1980).Article 
    CAS 

    Google Scholar 
    Williams, P. The distribution of bumblebee colour patterns worldwide: Possible significance for thermoregulation, crypsis, and warning mimicry. Biol. J. Lin. Soc. 92, 97–118 (2007).Article 

    Google Scholar 
    Hines, H. M. & Williams, P. H. Mimetic colour pattern evolution in the highly polymorphic Bombus trifasciatus (Hymenoptera: Apidae) species complex and its comimics. Zool. J. Linn. Soc. 166, 805–826 (2012).Article 

    Google Scholar 
    Koch, J. B., Rodriguez, J., Pitts, J. P. & Strange, J. P. Phylogeny and population genetic analyses reveals cryptic speciation in the Bombus fervidus species complex (Hymenoptera: Apidae). PLoS ONE 13, e0207080 (2018).Article 

    Google Scholar 
    Ezray, B. D., Wham, D. C., Hill, C. E. & Hines, H. M. Unsupervised machine learning reveals mimicry complexes in bumblebees occur along a perceptual continuum. Proc. R. Soc. B 286, 20191501 (2019).Article 

    Google Scholar 
    Bateson, W. The alleged “Aggressive Mimicry” of volucellæ. Nature 46, 585 (1892).Article 
    ADS 

    Google Scholar 
    Poulton, E. B. The volucellœ as alleged examples of variation “almost unique among animals”. Nature 47, 126 (1892).Article 
    ADS 

    Google Scholar 
    Cockerell, T. D. New social bees. Psyche A J. Entomol. 24, 120–128 (1917).Article 

    Google Scholar 
    Koch, J., Strange, J. & Williams, P. In: Bumble bees of the western United States (US Forest Service, San Francisco California, 2012).
    Google Scholar 
    Williams, P. H., Thorp, R. W., Richardson, L. L. & Colla, S. R. In: Bumble bees of North America: An identification guide Vol. 87 (Princeton University Press, Princeton, 2014).
    Google Scholar 
    Ruxton, G. D., Franks, D. W., Balogh, A. C. & Leimar, O. Evolutionary implications of the form of predator generalization for aposematic signals and mimicry in prey. Evol Int. J. Org. Evol. 62, 2913–2921 (2008).Article 

    Google Scholar 
    Rowe, C., Lindström, L. & Lyytinen, A. The importance of pattern similarity between Müllerian mimics in predator avoidance learning. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 407–413 (2004).Article 

    Google Scholar 
    Beatty, C. D., Beirinckx, K. & Sherratt, T. N. The evolution of Müllerian mimicry in multispecies communities. Nature 431, 63 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Chittka, L. & Osorio, D. Cognitive dimensions of predator responses to imperfect mimicry. PLoS Biol. 5, e339 (2007).Article 

    Google Scholar 
    Dittrigh, W., Gilbert, F., Green, P., McGregor, P. & Grewcock, D. Imperfect mimicry: A pigeon’s perspective. Proc. R. Soc. Lond. Ser. B Biol. Sci. 251, 195–200 (1993).Article 
    ADS 

    Google Scholar 
    Sherratt, T. N., Whissell, E., Webster, R. & Kikuchi, D. W. Hierarchical overshadowing of stimuli and its role in mimicry evolution. Anim. Behav. 108, 73–79 (2015).Article 

    Google Scholar 
    Beatty, C. D., Bain, R. S. & Sherratt, T. N. The evolution of aggregation in profitable and unprofitable prey. Anim. Behav. 70, 199–208 (2005).Article 

    Google Scholar 
    Kazemi, B., Gamberale-Stille, G., Tullberg, B. S. & Leimar, O. Stimulus salience as an explanation for imperfect mimicry. Curr. Biol. 24, 965–969 (2014).Article 
    CAS 

    Google Scholar 
    Kikuchi, D. W., Dornhaus, A., Gopeechund, V. & Sherratt, T. N. Signal categorization by foraging animals depends on ecological diversity. Elife. 8, e43965 (2019).Article 

    Google Scholar 
    Rapti, Z., Duennes, M. A. & Cameron, S. A. Defining the colour pattern phenotype in bumble bees (Bombus): A new model for evo devo. Biol. J. Lin. Soc. 113, 384–404 (2014).Article 

    Google Scholar 
    Wilson, J. S., Sidwell, J. S., Forister, M. L., Williams, K. A. & Pitts, J. P. Thistledown velvet ants in the desert mimicry ring and the evolution of white coloration: Müllerian mimicry, camouflage and thermal ecology. Biol. Lett. 16, 20200242 (2020).Article 

    Google Scholar 
    Ascher, J. & Pickering, J. Discover Life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila) (2019).iNaturalist. Available from https://www.inaturalist.org. Accessed [2022].Bombus Latreille, 1802 in GBIF Secretariat (2021). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2021-12-03. More