Continuous exchange of nectar nutrients in an Oriental hornet colony
Anderson, M. The evolution of eusociality. Annu. Rev. Ecol. Syst. 15, 165–189 (1984).Article
Google Scholar
Wilkinson, G. S. Reciprocal food sharing in the vampire bat. Nature 308, 181–184 (1984).Article
Google Scholar
Feistner, A. & Mcgrew, W. Food-sharing in primates: a critical review. Perspect. Primate Biol 3, (1989).Hoelzel, A. R. Killer whale predation on marine mammals at Punta Norte, Argentina; food sharing, provisioning and foraging strategy. Behav. Ecol. Sociobiol. 29, 197–204 (1991).Article
Google Scholar
Behmer, S. T. Animal behaviour: feeding the superorganism. Curr. Biol. 19, R366–R368 (2009).Article
CAS
PubMed
Google Scholar
Cassill, D. L. & Tschinkel, W. R. Information flow during social feeding in ant societies. in Information Processing in Social Insects (eds. Detrain, C., Deneubourg, J. L. & Pasteels, J. M.) 69–81 (Birkhäuser, 1999). https://doi.org/10.1007/978-3-0348-8739-7_4.Hunt, J. H. Trophallaxis and the evolution of eusocial Hymenoptera. in The Biology of Social Insects (CRC Press, 1982).Sorensen, A. A., Busch, T. M. & Vinson, S. B. Trophallaxis by temporal subcastes in the fire ant, Solenopsis invicta, in response to honey. Physiol. Entomol. 10, 105–111 (1985).Article
Google Scholar
Meurville, M.-P. & LeBoeuf, A. C. Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecol. News 31, 1–30 (2021).Bodner, L. et al. Nutrient utilization during male maturation and protein digestion in the Oriental hornet. Biology 11, 241 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
Sorensen, A. A., Kamas, R. S. & Vinson, S. B. The influence of oral secretions from larvae on levels of proteinases in colony members of Solenopsis invicta Buren (Hymenoptera: Formicidae). J. Insect Physiol. 29, 163–168 (1983).Article
CAS
Google Scholar
Erthal, M., Peres Silva, C. & Ian Samuels, R. Digestive enzymes in larvae of the leaf cutting ant, Acromyrmex subterraneus (Hymenoptera: Formicidae: Attini). J. Insect Physiol. 53, 1101–1111 (2007).Article
CAS
PubMed
Google Scholar
Went, F. W., Wheeler, J. & Wheeler, G. C. Feeding and digestion in some ants (Veromessor and Manica). BioScience 22, 82–88 (1972).Article
Google Scholar
Ishay, J. & Ikan, R. Food exchange between adults and larvae in Vespa orientalis F. Anim. Behav. 16, 298–303 (1968).Article
CAS
PubMed
Google Scholar
Hunt, J. H. The evolution of social wasps. (Oxford University Press, USA, 2007).Abe, T., Yoshiya, T., Hiromitsu, M. & Kawasaki, Y. Y. Comparative study of the composition of hornet larval saliva, its effect on behaviour and role of trophallaxis. Comp. Biochem. Physiol. Part C: Comp. Pharmacol. 99, 79–84 (1991).Article
Google Scholar
Ishay, J. & Ikan, R. Gluconeogenesis in the Oriental hornet Vespa orientalis F. Ecology 49, 169–171 (1968).Article
Google Scholar
Brock, R. E., Cini, A. & Sumner, S. Ecosystem services provided by aculeate wasps. Biol. Rev. 96, 1645–1675 (2021).Article
PubMed
Google Scholar
Ueno, T. Flower-visiting by the invasive hornet Vespa velutina nigrithorax (Hymenoptera: Vespidae). Int. J. Chem., Environ. Biol. Sci. 3, 444–448 (2015).
Google Scholar
Käfer, H., Kovac, H. & Stabentheiner, A. Respiration patterns of resting wasps (Vespula sp.). J. Insect Physiol. 59, 475–486 (2013).Article
PubMed
PubMed Central
Google Scholar
Bodner, L., Bouchebti, S. & Levin, E. Allocation and metabolism of naturally occurring dietary amino acids in the Oriental hornet. Insect Biochem. Mol. Biol. 139, 103675 (2021).Article
CAS
PubMed
Google Scholar
Levin, E., Lopez-Martinez, G., Fane, B. & Davidowitz, G. Hawkmoths use nectar sugar to reduce oxidative damage from flight. Science 355, 733–735 (2017).Article
CAS
PubMed
Google Scholar
Hunt, J. H., Baker, I. & Baker, H. G. Similarity of amino acids in nectar and larval saliva: the nutritional basis for trophallaxis in social wasps. Evolution 36, 1318–1322 (1982).Article
CAS
PubMed
Google Scholar
Hunt, J. H., Jeanne, R. L., Baker, I. & Grogan, D. E. Nutrient dynamics of a swarm-founding social wasp species, Polybia occidentalis (Hymenoptera: Vespidae). Ethology 75, 291–305 (1987).Article
Google Scholar
Cassill, D. L. & Tschinkel, W. R. Allocation of liquid food to larvae via trophallaxis in colonies of the fire ant, Solenopsis invicta. Anim. Behav. 50, 801–813 (1995).Article
Google Scholar
Buffin, A., Denis, D., Simaeys, G. V., Goldman, S. & Deneubourg, J.-L. Feeding and stocking up: radio-labelled food reveals exchange patterns in ants. PLOS ONE 4, e5919 (2009).Article
PubMed
PubMed Central
Google Scholar
Quque, M. et al. Hierarchical networks of food exchange in the black garden ant Lasius niger. Insect Sci. 28, 825–838 (2021).Article
PubMed
Google Scholar
Cassill, D. L. & Tschinkel, W. R. A duration constant for worker-to-larva trophallaxis in fire ants. Ins. Soc. 43, 149–166 (1996).Article
Google Scholar
Cassill, D. L. & Tschinkel, W. R. Regulation of diet in the fire ant, Solenopsis invicta. J. Insect Behav. 12, 307–328 (1999).Article
Google Scholar
Wilson, E. O. & Eisner, T. Quantitative studies of liquid food transmission in ants. Ins. Soc. 4, 157–166 (1957).Article
Google Scholar
Markin, G. P. Food distribution within laboratory colonies of the argentine ant, Tridomyrmex humilis (Mayr). Ins. Soc. 17, 127–157 (1970).Article
Google Scholar
Howard, D. F. & Tschinkel, W. R. The flow of food in colonies of the fire ant, Solenopsis invicta: a multifactorial study. Physiol. Entomol. 6, 297–306 (1981).Article
Google Scholar
Suryanarayanan, S. & Jeanne, R. L. Antennal drumming, trophallaxis, and colony development in the social wasp Polistes fuscatus (Hymenoptera: Vespidae). Ethology 114, 1201–1209 (2008).Article
Google Scholar
Greenwald, E., Segre, E. & Feinerman, O. Ant trophallactic networks: simultaneous measurement of interaction patterns and food dissemination. Sci. Rep. 5, 12496 (2015).Article
CAS
PubMed
PubMed Central
Google Scholar
Baltiansky, L., Sarafian-Tamam, E., Greenwald, E. & Feinerman, O. Dual-fluorescence imaging and automated trophallaxis detection for studying multi-nutrient regulation in superorganisms. Methods Ecol. Evol. 12, 1441–1457 (2021).Article
Google Scholar
Feldhaar, H. et al. Stable isotopes: past and future in exposing secrets of ant nutrition (Hymenoptera: Formicidae). Myrmecol. N. 13, 3–13 (2010).
Google Scholar
Bouchebti, S., Bodner, L., Bergman, M., Magory Cohen, T. & Levin, E. The effects of dietary proline, β-alanine, and γ-aminobutyric acid (GABA) on the nest construction behavior in the Oriental hornet (Vespa orientalis). Sci. Rep. 12, 7449 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
Motro, M., Motro, U., Ishay, J. S. & Kugler, J. Some social and dietary prerequisites of oocyte development in Vespa orientalis L. workers. Ins. Soc. 26, 155–164 (1979).Article
Google Scholar
Levin, E., McCue, M. D. & Davidowitz, G. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. Proc. R. Soc. B: Biol. Sci. 284, 20162126 (2017).Article
Google Scholar
Wright, G. A., Nicolson, S. W. & Shafir, S. Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol. 63, 327–344 (2018).Article
CAS
PubMed
Google Scholar
Helm, B. R. et al. The geometric framework for nutrition reveals interactions between protein and carbohydrate during larval growth in honey bees. Biol. Open 6, 872–880 (2017).CAS
PubMed
PubMed Central
Google Scholar
Paoli, P. P. et al. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids 46, 1449–1458 (2014).Article
CAS
PubMed
PubMed Central
Google Scholar
Stabler, D., Paoli, P. P., Nicolson, S. W. & Wright, G. A. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. 218, 793–802 (2015).Article
PubMed
PubMed Central
Google Scholar
Arganda, S. et al. Parsing the life-shortening effects of dietary protein: effects of individual amino acids. Proc. R. Soc. B 284, 20162052 (2017).Article
PubMed
PubMed Central
Google Scholar
Csata, E. & Dussutour, A. Nutrient regulation in ants (Hymenoptera: Formicidae): a review. Myrmecol. N. 29, 111–124 (2019).
Google Scholar
Gottsberger, G., Schrauwen, J. & Linskens, H. F. Amino acids and sugars in nectar, and their putative evolutionary significance. Pl. Syst. Evol. 145, 55–77 (1984).Article
CAS
Google Scholar
Ozimek, L. et al. Nutritive value of protein extracted from honey bees. J. Food Sci. 50, 1327–1329 (1985).Article
CAS
Google Scholar
Nicolson, S. W. & Thornburg, R. W. Nectar chemistry. in Nectaries and Nectar (eds. Nicolson, S. W., Nepi, M. & Pacini, E.) 215–264 (Springer Netherlands, 2007). https://doi.org/10.1007/978-1-4020-5937-7_5.Contrera, F. A. L., Imperatriz-Fonseca, V. L. & Koedam, D. Trophallaxis and reproductive conflicts in social bees. Insect Soc. 57, 125–132 (2010).Article
Google Scholar
Carter, G. G. & Wilkinson, G. S. Food sharing in vampire bats: reciprocal help predicts donations more than relatedness or harassment. Proc. R. Soc. B: Biol. Sci. 280, 20122573 (2013).Article
Google Scholar
Nalepa, C. A. Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40, 323–335 (2015).Article
Google Scholar
Werenkraut, V., Arbetman, M. P. & Fergnani, P. N. The Oriental hornet (Vespa orientalis L.): a threat to the Americas? Neotrop. Entomol. 51, 330–338 (2022).Article
PubMed
Google Scholar
Darchen, R. Biologie de Vespa orientalis. Les premiers stades de développement. Ins. Soc. 11, 141–157 (1964).Article
Google Scholar
Van Itterbeeck, J. et al. Rearing techniques for hornets with emphasis on Vespa velutina (Hymenoptera: Vespidae): A review. J. Asia-Pac. Entomol. 24, 103–117 (2021).Article
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2020).Bouchebti, S., Bodner,L. & Levin, E. Continuous exchange of nectar nutrients in an Oriental hornet colony- Dataset [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7135100 (2022). More