More stories

  • in

    Refining the stress gradient hypothesis for mixed species groups of African mammals

    Goodale, E., Beauchamp, G. & Ruxton, G. D. Mixed-Species Groups of Animals: Behavior, Community Structure, and Conservation (Academic Press, 2017).
    Google Scholar 
    Krause, J. & Ruxton, G. D. Living in Groups (Oxford University Press, 2002).
    Google Scholar 
    Stensland, E., Angerbjorn, A. & Berggren, P. Mixed species groups in mammals. Mamm. Rev. 33, 205–223 (2003).
    Google Scholar 
    Anderson, T. M. et al. Landscape-scale analyses suggest both nutrient and antipredator advantages to Serengeti herbivore hotspots. Ecology 91, 1519–1529 (2010).PubMed 

    Google Scholar 
    Sinclair, A. R. E. Does interspecific competition or predation shape the African ungulate community? J. Anim. Ecol. 54, 899–918 (1985).
    Google Scholar 
    Kiffner, C., Kioko, J., Leweri, C. & Krause, S. Seasonal patterns of mixed species groups in large East African mammals. PLoS ONE 9, e113446 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meise, K., Franks, D. W. & Bro-Jørgensen, J. Using social network analysis of mixed species groups in African savannah herbivores to assess how community structure responds to environmental change. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190009 (2019).
    Google Scholar 
    de Boer, W. F. & Prins, H. H. T. Large herbivores that thrive mightily but eat and drink as friends. Oecologia 82, 264–274 (1990).ADS 
    PubMed 

    Google Scholar 
    Beaudrot, L., Palmer, M. S., Anderson, T. M. & Packer, C. Mixed-species groups of Serengeti grazers: A test of the stress gradient hypothesis. Ecology. https://doi.org/10.1002/ecy.3163 (2020).Article 
    PubMed 

    Google Scholar 
    He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).PubMed 

    Google Scholar 
    Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).CAS 
    PubMed 

    Google Scholar 
    Fugère, V. et al. Testing the stress-gradient hypothesis with aquatic detritivorous invertebrates: Insights for biodiversity-ecosystem functioning research. J. Anim. Ecol. 81, 1259–1267 (2012).PubMed 

    Google Scholar 
    Bakker, E. S., Dobrescu, I., Straile, D. & Holmgren, M. Testing the stress gradient hypothesis in herbivore communities: Facilitation peaks at intermediate nutrient levels. Ecology 94, 1776–1784 (2013).PubMed 

    Google Scholar 
    Hopcraft, J. G. C., Olff, H. & Sinclair, A. R. E. Herbivores, resources and risks: Alternating regulation along primary environmental gradients in savannas. Trends Ecol. Evol. 25, 119–128 (2010).PubMed 

    Google Scholar 
    Sih, A. Optimal behavior: Can foragers balance two conflicting demands? Science 210, 1041–1043 (1980).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).PubMed 

    Google Scholar 
    Zollner, P. A. & Lima, S. L. Towards a behavioral ecology of ecological landscapes. Trends Ecol. Evol. 11, 131–135 (1996).PubMed 

    Google Scholar 
    Brown, J. S., Laundré, J. W. & Gurung, M. The ecology of fear: Optimal foraging, game theory, and trophic interactions. J. Mammal. 80, 385–399 (1999).
    Google Scholar 
    Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E. & Brashares, J. S. Landscapes of fear: Spatial patterns of risk perception and response. Trends Ecol. Evol. 34, 355–368 (2019).PubMed 

    Google Scholar 
    Creel, S., Schuette, P. & Christianson, D. Effects of predation risk on group size, vigilance, and foraging behavior in an African ungulate community. Behav. Ecol. 25, 773–784 (2014).
    Google Scholar 
    Goodale, E., Beauchamp, G., Magrath, R. D., Nieh, J. C. & Ruxton, G. D. Interspecific information transfer influences animal community structure. Trends Ecol. Evol. 25, 354–361 (2010).PubMed 

    Google Scholar 
    Freeberg, T. M., Eppert, S. K., Sieving, K. E. & Lucas, J. R. Diversity in mixed species groups improves success in a novel feeder test in a wild songbird community. Sci. Rep. 7, 43014 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, T. M. et al. The spatial distribution of african savannah herbivores: Species associations and habitat occupancy in a landscape context. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150314 (2016).
    Google Scholar 
    Arsenault, R. & Owen-Smith, N. Resource partitioning by grass height among grazing ungulates does not follow body size relation. Oikos 117, 1711–1717 (2008).
    Google Scholar 
    Esmaeili, S. et al. Body size and digestive system shape resource selection by ungulates: A cross-taxa test of the forage maturation hypothesis. Ecol. Lett. 24, 2178–2191 (2021).PubMed 

    Google Scholar 
    Hopcraft, J. G. C., Anderson, T. M., Pérez-Vila, S., Mayemba, E. & Olff, H. Body size and the division of niche space: Food and predation differentially shape the distribution of Serengeti grazers. J. Anim. Ecol. 81, 201–213 (2012).PubMed 

    Google Scholar 
    McArthur, C., Banks, P. B., Boonstra, R. & Forbey, J. S. The dilemma of foraging herbivores: Dealing with food and fear. Oecologia 176, 677–689 (2014).ADS 
    PubMed 

    Google Scholar 
    Gagnon, M. & Chew, A. E. Dietary preferences in extant African Bovidae. J. Mammal. 81, 490–511 (2000).
    Google Scholar 
    Kartzinel, T. R. et al. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc. Natl. Acad. Sci. U.S.A. 112, 8019–8024 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Veldhuis, M. P. et al. Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science 363, 1424–1428 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kavwele, C. M. et al. Non-local effects of human activity on the spatial distribution of migratory wildlife in Serengeti National Park, Tanzania. Ecol. Solut. Evid. 3, e12159 (2022).
    Google Scholar 
    Bijlsma, R. & Loeschcke, V. Environmental stress, adaptation and evolution: An overview. J. Evol. Biol. 18, 744–749 (2005).CAS 
    PubMed 

    Google Scholar 
    Schmitt, M. H., Stears, K. & Shrader, A. M. Zebra reduce predation risk in mixed-species herds by eavesdropping on cues from giraffe. Behav. Ecol. 27, 1073–1077 (2016).
    Google Scholar 
    Preisser, E. L., Orrock, J. L. & Schmitz, O. J. Predator hunting mode and habitat domain alter nonconsmuptive effects in predator-prey interactions. Ecology 88, 2744–2751 (2007).PubMed 

    Google Scholar 
    Kiffner, C. et al. Long-term persistence of wildlife populations in a pastoral area. Ecol. Evol. 10, 10000–10016 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Hopcraft, J. G. C. et al. Competition, predation, and migration: Individual choice patterns of Serengeti migrants captured by hierarchical models. Ecol. Monogr. 84, 355–372 (2014).
    Google Scholar 
    Fryxell, J. M. Forage quality and aggregation by large herbivores. Am. Nat. 138, 478–498 (1991).
    Google Scholar 
    Fitzgibbon, C. D. Mixed-species grouping in Thomson’s and Grant’s gazelles: The antipredator benefits. Anim. Behav. 39, 1116–1126 (1990).
    Google Scholar 
    Brown, J. S. & Kotler, B. P. Hazardous duty pay and the foraging cost of predation. Ecol. Lett. 7, 999–1014 (2004).
    Google Scholar 
    Stears, K. & Shrader, A. M. Increases in food availability can tempt oribi antelope into taking greater risks at both large and small spatial scales. Anim. Behav. 108, 155–164 (2015).
    Google Scholar 
    Creel, S. Toward a predictive theory of risk effects: Hypotheses for prey attributes and compensatory mortality. Ecology 92, 2190–2195 (2011).PubMed 

    Google Scholar 
    Périquet, S. et al. Effects of lions on behaviour and endocrine stress in plains zebras. Ethology 123, 667 (2017).
    Google Scholar 
    Stears, K., Schmitt, M. H., Wilmers, C. C. & Shrader, A. M. Mixed-species herding levels the landscape of fear. Proc. R. Soc. B Biol. Sci. 287, 20192555 (2020).
    Google Scholar 
    Schmitt, M. H., Stears, K., Wilmers, C. C. & Shrader, A. M. Determining the relative importance of dilution and detection for zebra foraging in mixed-species herds. Anim. Behav. 96, 151–158 (2014).
    Google Scholar 
    Meise, K., Franks, D. W. & Bro-Jørgensen, J. Alarm communication networks as a driver of community structure in African savannah herbivores. Ecol. Lett. 23, 293–304 (2020).PubMed 

    Google Scholar 
    Codron, D., Hofmann, R. R. & Clauss, M. Morphological and physiological adaptations for browsing and grazing. In The Ecology of Browsing and Grazing II (eds Gordon, I. J. & Prins, H. H. T.) 81–125 (Springer, 2019).
    Google Scholar 
    Odadi, W. O., Karachi, M. K., Abdulrazak, S. A. & Young, T. P. African wild ungulates compete with or facilitate cattle depending on season. Science 333, 1753–1755 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).
    Google Scholar 
    de Jonge, M. M. J. et al. Conditional love? Co-occurrence patterns of drought-sensitive species in European grasslands are consistent with the stress-gradient hypothesis. Glob. Ecol. Biogeogr. 30, 1609–1620 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Franks, D. W., Weiss, M. N., Silk, M. J., Perryman, R. J. Y. & Croft, D. P. Calculating effect sizes in animal social network analysis. Methods Ecol. Evol. 12, 33–41 (2021).
    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Meise, K., Franks, D. W. & Bro-Jørgensen, J. Multiple adaptive and non-adaptive processes determine responsiveness to heterospecific alarm calls in African savannah herbivores. Proc. R. Soc. B Biol. Sci. 285, 20172676 (2018).
    Google Scholar 
    Blumstein, D. T., Bitton, A. & DaVeiga, J. How does the presence of predators influence the persistence of antipredator behavior? J. Theor. Biol. 239, 460–468 (2006).ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Riggio, J. et al. Lion populations may be declining in Africa but not as Bauer et al. suggest. Proc. Natl. Acad. Sci. 113, 201521506 (2015).
    Google Scholar 
    Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl. Acad. Sci. 112, 14894–14899 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pettorelli, N., Bro-Jørgensen, J., Durant, S. M., Blackburn, T. & Carbone, C. Energy availability and density estimates in African ungulates. Am. Nat. 173, 698–704 (2009).PubMed 

    Google Scholar 
    Haile, G. G. et al. Projected impacts of climate change on drought patterns over East Africa. Earth’s Future 8, 1–23 (2020).
    Google Scholar 
    Devine, A. P., McDonald, R. A., Quaife, T. & Maclean, I. M. D. Determinants of woody encroachment and cover in African savannas. Oecologia 183, 939–951 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiffner, C. et al. Long-term population dynamics in a multi-species assemblage of large herbivores in East Africa. Ecosphere 8, e02027 (2017).
    Google Scholar 
    Prins, H. H. T. & Loth, P. E. Rainfall patterns as background to plant phenology in northern Tanzania. J. Biogeogr. 15, 451–463 (1988).
    Google Scholar 
    Beattie, K., Olson, E. R., Kissui, B., Kirschbaum, A. & Kiffner, C. Predicting livestock depredation risk by African lions (Panthera leo) in a multi-use area of northern Tanzania. Eur. J. Wildl. Res. 66, 11 (2020).
    Google Scholar 
    Kasozi, H. & Montgomery, R. A. Variability in the estimation of ungulate group sizes complicates ecological inference. Ecol. Evol. 10, 6881–6889 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    USGS. MOD13Q1 v006 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid. 10.5067/MODIS/MOD13Q1.006 (2020).R Core Team. R: A Language and Environment for Statistical Computing. http://www.r-project.org/. Accessed January 02, 2022 (2021).Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945).
    Google Scholar 
    Croft, D. P., James, R. & Krause, J. Exploring Animal Social Networks (Princeton University Press, 2008).
    Google Scholar 
    Besag, J. & Clifford, P. Generalized Monte Carlo significance tests. Biometrika 76, 633–642 (1989).MathSciNet 
    MATH 

    Google Scholar 
    Hayward, M. W. & Kerley, G. I. H. Prey preferences of the lion (Panthera leo). J. Zool. 267, 309–322 (2005).
    Google Scholar 
    Codron, D. et al. Diets of savanna ungulates from stable carbon isotope composition of faeces. J. Zool. 273, 21–29 (2007).
    Google Scholar 
    Kartzinel, T. R. & Pringle, R. M. Multiple dimensions of dietary diversity in large mammalian herbivores. J. Anim. Ecol. 89, 1482–1496 (2020).PubMed 

    Google Scholar 
    Prins, H. H. T. & Douglas-Hamilton, I. Stability in a multi-species assemblage of large herbivores in East Africa. Oecologia 83, 392–400 (1990).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tournier, E. et al. Differences in diet between six neighbouring groups of vervet monkeys. Ethology 120, 471–482 (2014).
    Google Scholar 
    Humphries, B. D., Ramesh, T. & Downs, C. T. Diet of black-backed jackals (Canis mesomelas) on farmlands in the KwaZulu-Natal Midlands, South Africa. Mammalia 80, 405–412 (2016).
    Google Scholar  More

  • in

    Characterization of Pseudoterranova ceticola (Nematoda: Anisakidae) larvae from meso/bathypelagic fishes off Macaronesia (NW Africa waters)

    Buchmann, K. & Mehrdana, F. Effects of anisakid nematodes Anisakis simplex (s.l.), Pseudoterranova decipiens (s.l.) and Contracaecum osculatum (s.l.) on fish and consumer health. Food Waterborne Parasitol. 4, 13–22. https://doi.org/10.1016/j.fawpar.2016.07.003 (2016).Article 

    Google Scholar 
    Mattiucci, S., Cipriani, P., Levsen, A., Paoletti, M. & Nascetti, G. Molecular epidemiology of Anisakis and anisakiasis: An ecological and evolutionary road map. Adv. Parasitol. https://doi.org/10.1016/bs.apar.2017.12.001 (2018).Article 
    PubMed 

    Google Scholar 
    Mattiucci, S., Cipriani, P., Paoletti, M., Levsen, A. & Nascetti, G. Reviewing biodiversity and epidemiological aspects of anisakid nematodes from the North-east Atlantic Ocean. J. Helminthol. https://doi.org/10.1017/S0022149X1700027X (2017).Article 
    PubMed 

    Google Scholar 
    Moravec, F. & Justine, J.-L. Erection of Euterranova n. gen. and Neoterranova n. gen. (Nematoda, Anisakidae), with the description of E. dentiduplicata n. sp. and new records of two other anisakid nematodes from sharks off New Caledonia. Parasite 27, 58. https://doi.org/10.1051/parasite/2020053 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shamsi, S. & Suthar, J. Occurrence of Terranova larval types (nematoda: Anisakidae) in Australian marine fish with comments on their specific identities. Peer J. 4, e1722. https://doi.org/10.7717/peerj.1722 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Timi, J. T. et al. Molecular identification, morphological characterization and new insights into the ecology of larval Pseudoterranova cattani in fishes from the Argentine coast with its differentiation from the Antarctic species, P. decipiens sp. E (Nematoda: Anisakidae). Vet. Parasitol. 199, 59–72 (2014).CAS 
    PubMed 

    Google Scholar 
    Deardorff, T. L. Redescription of Pulchrascaris chiloscyllii (Johnston and Mawson, 1951) (Nematoda: Anisakidae), with comments on species in Pulchrascaris and Terranova. Proc. Helminthol. Soc. Wash. 54, 28–39 (1987).
    Google Scholar 
    Cannon, L. R. G. Some larval ascaridoids from south-eastern queensland marine fishes. Int. J. Parasitol. 7, 233–243 (1977).CAS 
    PubMed 

    Google Scholar 
    Levsen, A. & Lunestad, B. T. Anisakis simplex third stage larvae in Norwegian spring spawning herring (Clupea harengus L.), with emphasis on larval distribution in the flesh. Vet. Parasitol. 171, 247–253 (2010).PubMed 

    Google Scholar 
    Berland, B., (1989) Identification of fish larval nematodes from fish. In: Möller H, editor. Nematode problems in North Atlantic fish. Report from a workshop in Kiel, 3 4 16–22.Zhu, X., D’Amelio, S., Paggi, L. & Gasser, R. B. Assessing sequence variation in the internal transcribed spacers of ribosomal DNA within and among members of the Contracaecum osculatum complex (nematoda: Ascaridoidea: Anisakidae). Parasitol. Res. 86, 677–683 (2000).CAS 
    PubMed 

    Google Scholar 
    Nadler, S. A. & Hudspeth, D. S. S. Phylogeny of the ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology hypotheses of structural and sequence evolution. J. Parasitol. 86, 380–393. https://doi.org/10.1645/0022-3395(2000)086[0380:POTANA]2.0.CO;2 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mattiucci, S. et al. Genetic and morphological approaches distinguish the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandi n. sp. for A simplex sp. C (Nematoda: Anisakidae). J. Parasitol. 100, 199–214. https://doi.org/10.1645/12-120.1 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nagy, L. G. et al. Re-mind the gap! Insertion – deletion data reveal neglected phylogenetic potential of the nuclear ribosomal internal transcribed spacer (ITS) of fungi. PLoS ONE 7, 1–9 (2012).
    Google Scholar 
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 1–5 (2018).
    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cipriani, P. et al. Anisakid nematodes in Trichiurus lepturus and Saurida undosquamis (Teleostea) from the South-West Indian Ocean : Genetic evidence for the existence of sister species within Anisakis typica (s.l.), and food-safety considerations. Food Waterborne Parasitol. 28, e00177. https://doi.org/10.1016/j.fawpar.2022.e00177 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Safonova, A. E. First report on molecular identification of Anisakis simplex in Oncorhynchus nerka from the fish market, with taxonomical issues within Anisakidae. J. Nematol. 53(1), 10. https://doi.org/10.21307/jofnem-2021-023 (2021).Article 
    CAS 

    Google Scholar 
    Takano, T. & Sata, N. Multigene phylogenetic analysis reveals non-monophyly of Anisakis s.l. and Pseudoterranova (Nematoda: Anisakidae). Parasitol. Int. 91, 102631. https://doi.org/10.1016/j.parint.2022.102631 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Leiper, R. T. & Atkinson, E. L. Parasitic worms, with a note on a free-living nematode. British Museum (Natural History). Bristish Antarctic (“Terra Nova”) expedition, 1910. Natural History Report. Zool 2(3), 19–60 (1915).
    Google Scholar 
    Leiper, R. T. & Atkinson, E. L. Helminthes of the British Antarctic expedition 1910–1913. Proc. Zool. Soc. London, 222–226 (1914).Myers, B. J. Phocanema, a new genus for the anisakid nematode of seals. Can. J. Zool. 37, 459–465 (1959).
    Google Scholar 
    Mattiucci, S., Paoletti, M., Webb, S. C. & Nascetti, G. Pseudoterranova and Contracaecum. In Molecular detection of human parasitic pathogens (ed. Liu, D.) 645–656 (CRC Press, 2012).
    Google Scholar 
    Mozgovoĭ, A.A., (1953) Ascaridata of animals and man, and the diseases caused by them. In: Osnovy nematodologii. Vol. II. Izd. AN SSSR, Moskva (In Russian)Johnston, T.H., Mawson, P.M., (1939) Internal parasites of the pigmy sperm whale. Rec. South Aust Museum.6. http://www.biodiversitylibrary.org/item/126147.Gibson, D. I. The systematics of ascaridoid nematodes-a current assessment. In Stone A (eds Platt, H. & Khalil, L.) 321–338 (Academic Press, 1983).
    Google Scholar 
    Shamsi, S., Barton, D. P. & Zhu, X. Description and characterisation of Terranova pectinolabiata n. sp. (Nematoda: Anisakidae) in great hammerhead shark, Sphyrna mokarran (Rüppell, 1837), in Australia. Parasitol. Res. 118, 2159–2168. https://doi.org/10.1007/s00436-019-06360-4 (2019).Article 
    PubMed 

    Google Scholar 
    Shamsi, S., Barton, D. P. & Zhu, X. Description and genetic characterisation of Pulchrascaris australis n. sp. in the scalloped hammerhead shark, Sphyrna lewini (Griffin & Smith) in Australian waters. Parasitol. Res. https://doi.org/10.1007/s00436-020-06672-w (2020).Article 
    PubMed 

    Google Scholar 
    González-Solís, D. et al. Parasitic nematodes of marine fishes from Palmyra Atoll, East Indo-Pacific, including a new species of Spinitectus (Nematoda, Cystidicolidae). Zookeys. 2019, 1–26 (2019).
    Google Scholar 
    Jabbar, A. et al. Larval anisakid nematodes in teleost fishes from Lizard Island, northern great barrier reef Australia. Mar. Freshw. Res. 63, 1283. https://doi.org/10.1071/MF12211 (2012).Article 

    Google Scholar 
    ICES. (2012) Pseudoterranova larvae (“codworm”; Nematoda) in fish. Revised and updated by Matt Longshaw. ICES Identification Leaflets for diseases and parasites of fish and shellfish. Leaflet No. 7. 4 pp.Arai, H. P. & Smith, J. W. Guide to the parasites of fishes of Canada part V: Nematoda. Zootaxa 4185, 1. https://doi.org/10.11646/zootaxa.4185.1.1 (2016).Article 

    Google Scholar 
    Hurst, H. J. Identification and description of larval Anisakis simplex and Pseudoterranova decipiens (anisakidae: Nematoda) from New Zealand waters. New Zeal J. Mar. Freshw. Res. 18, 177–186 (1984).
    Google Scholar 
    Hernández-Orts, J. S. et al. Description, microhabitat selection and infection patterns of sealworm larvae (Pseudoterranova decipiens species complex, Nematoda: Ascaridoidea) in fishes from Patagonia Argentina. Parasite Vector. 6, 1–15 (2013).
    Google Scholar 
    Shiraki, T. Larval nematodes of family anisakidae (Nematoda) in the northern sea of Japan as a causative agent of eosinophilic phlegmone of granuloma in the human gastro-intestinal tract. Acta Med. Biol. 22, 57–98 (1974).
    Google Scholar 
    Berland, B. Nematodes from some Norwegian marine fishes. Sarsia 2, 1–50. https://doi.org/10.1080/00364827.1961.10410245 (1961).Article 

    Google Scholar 
    George-Nascimento, M. & Llanos, A. Micro-evolutionary implications of allozymic and morphometric variations in sealworms Pseudoterranova sp. (Ascaridoidea: Anisakidae) among sympatric hosts from the Southeastern Pacific Ocean. Int. J. Parasitol. 25, 1163–1171 (1995).CAS 
    PubMed 

    Google Scholar 
    Deardorff, T. L., Kliks, M. M., Rosenfeld, M. E., Rychlinski, R. A. & Desowitz, R. S. Larval, ascaridoid nematodes from fishes near the Hawaiian Islands, with commonents on pathogenicity experiments. Pacific Sci. 36, 187–201 (1982).
    Google Scholar 
    Deardorff, T. L., Kliks, M. M. & Desowitz, R. S. Histopathology induced by larval Terranova (Type HA) (nematoda: Anisakinae) in experimentally infected rats. J. Parasitol. 69, 191–195 (1983).CAS 
    PubMed 

    Google Scholar 
    Kuramochi, T. et al. Stomach nematodes of the family anisakidae collected from the cetaceans stranded on or incidentally caught off the coasts of the Kanto districts and adjoining areas. Mem. Nat. Museum. Nat. Sci. 37, 177–192 (2001).
    Google Scholar 
    Deardorff, T. L., Raybourne, R. B. & Desowitz, R. S. Description of a third-stage larva, Terranova type Hawaii A (nematoda: Anisakinae), from Hawaiian fishes. J. Parasitol. 70, 829–831 (1984).CAS 
    PubMed 

    Google Scholar 
    González-Solís, D., Vidal-Martínez, V. M., Antochiw-Alonso, D. M. & Ortega-Argueta, A. Anisakid nematodes from stranded pygmy sperm whales, Kogia breviceps (Kogiidae), in three localities of the Yucatan peninsula. Mexico. J. Parasitol. 92, 1120–1122 (2006).
    Google Scholar 
    Santos, C. P. & Lodi, L. Occurrence of Anisakis physeteris Baylis, 1923 and Pseudoterranova sp. (Nematoda) in pygmy sperm whale Kogia breviceps (De Blainvillei, 1838) (Physeteridae) in northeastern coast of Brazil. Mem. Inst. Oswaldo Cruz. 93, 187–188. https://doi.org/10.1590/s0074-02761998000200009 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bloodworth, B. E. & Odell, D. K. Kogia breviceps (cetacea: Kogiidae). Mam. Species. 819, 1–12. https://doi.org/10.1644/819.1 (2008).Article 

    Google Scholar 
    Deardorff, T. L. & Overstreet, R. M. Terranova ceticola n. sp. (Nematoda: Anisakidae) from the dwarf sperm whale; Kogia simus (Owen), in the Gulf of Mexico. Syst. Parasitol. 3, 25–28 (1981).
    Google Scholar 
    Abollo, E., Santiago, P., (2002) SEM study of Anisakis brevispiculata Dollfus, 1966 and Pseudoterranova ceticola (Deardoff and Overstreet, 1981) (Nematoda: Anisakidae), parasites of the pygmy sperm whale Kogia breviceps. Sci. Mar. 66 3 49 255Di Deco, M. A., Orecchia, P., Paggi, L. & Petrarca, V. Morphometric stepwise discriminant analysis of three genetically identified species within Pseudoterranova decipiens (Krabbe, 1878) (Nematoda: Ascaridida). Syst. Parasitol. 29, 81–88 (1994).
    Google Scholar 
    George-Nascimento, M. & Urrutia, X. Pseudoterranova cattani sp. nov. (Ascaridoidea: Anisakidae), a parasite of the South American sea lion Otaria byronia De Blainville from Chile. Rev. Chil. Hist. Nat. 73, 93–98. https://doi.org/10.4067/s0716-078×2000000100010 (2000).Article 

    Google Scholar 
    Mattiucci, S. et al. Allozyme and morphological identification of Anisakis, Contracaecum and Pseudoterranova from Japanese waters (Nematoda, Ascaridoidea). Syst Parasitol. 40, 81–92 (1998).
    Google Scholar 
    Paggi, L. et al. Pseudoterranova decipiens species A and B (Nematoda, Ascaridoidea): Nomenclatural designation, morphological diagnostic characters and genetic markers. Syst. Parasitol. 45, 185–197. https://doi.org/10.1023/A:1006296316222 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valentini, A. et al. Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox2 sequences, and comparison with allozyme data. J. Parasitol. 92, 156–166 (2006).CAS 
    PubMed 

    Google Scholar 
    Colón-Llavina, M. M. et al. Additional records of metazoan parasites from Caribbean marine mammals, including genetically identified anisakid nematodes. Parasitol Res. 105, 1239–1252 (2009).PubMed 

    Google Scholar 
    Cavallero, S., Nadler, S. A., Paggi, L., Barros, N. B. & D’Amelio, S. Molecular characterization and phylogeny of anisakid nematodes from cetaceans from southeastern Atlantic coasts of USA, Gulf of Mexico, and Caribbean Sea. Parasitol. Res. 108, 781–792 (2011).PubMed 

    Google Scholar 
    Kijewska, A., Dzido, J., Shukhgalter, O. & Rokicki, J. Anisakid parasites of fishes caught on the African shelf. J. Parasitol. 95, 639–645 (2009).PubMed 

    Google Scholar 
    Quiazon, K. M. A., Santos, M. D. & Yoshinaga, T. Anisakis species (nematoda: Anisakidae) of dwarf sperm whale kogia sima (Owen, 1866) stranded off the pacific coast of southern Philippine archipelago. Vet. Parasitol. https://doi.org/10.1016/J.VETPAR.2013.05.019 (2013).Article 
    PubMed 

    Google Scholar 
    Zhang, L., Du, X., An, R., Li, L. & Gasser, R. B. Identification and genetic characterization of Anisakis larvae from marine fishes in the South China Sea using an electrophoretic-guided approach. Electrophoresis 34, 888–894 (2013).CAS 
    PubMed 

    Google Scholar 
    Luo, H.-Y., Chen, H.-Y., Chen, H.-G. & Shih, H.-H. Scavenging hagfish as a transport host of anisakid nematodes. Vet. Parasitol. 218, 15–21. https://doi.org/10.1016/j.vetpar.2016.01.005 (2016).Article 
    PubMed 

    Google Scholar 
    Kuhn, T., Hailer, F., Palm, H. W. & Klimpel, S. Global assessment of molecularly identified Anisakis dujardin, 1845 (nematoda: Anisakidae) in their teleost intermediate hosts. Folia Parasitol. (Praha). 60, 123–134. https://doi.org/10.14411/fp.2013.013 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grainger, J. N. R. The Identity of the larval nematodes found in the body muscles of the cod (Gadus callarias L.). Parasitology 49, 121–131 (1959).CAS 
    PubMed 

    Google Scholar 
    Costa, G., Chada, T., Melo-Moreira, E., Cavallero, S. & D’Amelio, S. Endohelminth parasites of the leafscale gulper shark, Centrophorus squamosus (Bonnaterre, 1788) (Squaliformes: Centrophoridae) off Madeira archipelago. Acta Parasitol. 59, 316–322. https://doi.org/10.2478/s11686-014-0247-x (2014).Article 
    PubMed 

    Google Scholar 
    Hermida, M. et al. Infection levels and diversity of anisakid nematodes in blackspot seabream, Pagellus bogaraveo, from Portuguese waters. Parasitol. Res. 110, 1919–1928 (2012).PubMed 

    Google Scholar 
    Sequeira, V. et al. Macroparasites as biological tags for stock identification of the bluemouth, Helicolenus dactylopterus (Delaroche, 1809) in Portuguese waters. Fish Res. 106, 321–328. https://doi.org/10.1016/j.fishres.2010.08.014 (2010).Article 

    Google Scholar 
    Shamsi, S., Spröhnle-Barrera, C. & Shafaet, H. M. Occurrence of Anisakis spp. (Nematoda: Anisakidae) in a pygmy sperm whale Kogia breviceps (Cetacea: Kogiidae) in Australian waters. Dis. Aquat. Organ. 134, 65–74. https://doi.org/10.3354/dao03360 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mcalpine, D. F., Murison, L. D. & Hoberg, E. P. New records for the pygmy sperm whale, Kogia breviceps (physeteridae) from Atlantic Canada with notes on diet and parasites. Mar. Mammal. Sci. 13, 701–704. https://doi.org/10.1111/j.1748-7692.1997.tb00093.x (1997).Article 

    Google Scholar 
    Gunter, G. & Overstreet, R. Cetacean notes. I. Sei and rorqual whales on the Mississippi coast, a correction. II. A dwarf sperm whale in Mississippi sound and its helminth parasites. Gulf Res. Rep. 4, 479–481 (1974).
    Google Scholar 
    Mignucci-Giannoni, A. A., Hoberg, E. P., Siegel-Causey, D. & Williams, E. H. Metazoan parasites and other symbionts of cetaceans in the Caribbean. J. Parasitol. 84, 939–946 (1998).CAS 
    PubMed 

    Google Scholar 
    Vidal, O., Findley, L. T., Turk, P. J. & Boyer, R. E. Recent records of pygmy sperm whales in the Gulf of California. Mexico. Mar. Mammal. Sci. 3, 354–356. https://doi.org/10.1111/J.1748-7692.1987.TB00323.X (1987).Article 

    Google Scholar 
    Dollfus, R. P. Helminthofaune de Kogia breviceps (Blainxille, 1938) cetace odontocete. Recoltes du Dr R. Duguy. Ann. Sci. Natl. Charente-Maritime 4, 3–6 (1966).
    Google Scholar 
    MCAlpine, D.F., (2018) Pygmy and dwarf sperm whales. In: Encyclopedia of Marine Mammals. Elsevier p. 786–8.Fernández, R., Santos, M. B., Carrillo, M., Tejedor, M. & Pierce, G. J. Stomach contents of cetaceans stranded in the canary Islands 1996–2006. J. Mar. Biol. Assoc. United Kingdom. 89, 873–883 (2009).

    Google Scholar 
    Berrow, S., López Suárez, P., Jann, B., Ryan, C., Varela, J., Hazevoet, C.J., (2015) Recent and noteworthy records of Cetacea from the Cape Verde Islands. www.scvz.org. Accessed 1 Mar 2021.Mattiucci, S., Nascetti, G., (2008) Chapter 2 advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Adv. Parasitol. 66 47 148Measures, L.N., (2014) Anisakiosis and pseudoterranovosis. Reston, Virginia; https://doi.org/10.3133/cir1393McClelland, G. The trouble with sealworms (Pseudoterranova decipiens species complex, nematoda): A review. Parasitology 2002(124 Suppl), S183-203 (2009).
    Google Scholar 
    Alt, K. G., Cunze, S., Kochmann, J. & Klimpel, S. Parasites of three closely related Antarctic fish species (teleostei: Nototheniinae) from Elephant Island. Acta Parasitol. https://doi.org/10.1007/s11686-021-00455-8 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McClelland, G. Phocanema decipiens (Nematoda: Anisakinae): Experimental infections in marine copepods. Can. J. Zool. 60, 502–509. https://doi.org/10.1139/z82-075 (1982).Article 

    Google Scholar 
    Marcogliese, D. J. Review of experimental and natural invertebrate hosts of sealworm (Pseudoterranova decipiens) and its distribution and abundance in macroinvertebrates in eastern Canada. NAMMCO Sci. Publ. 3, 27–37 (2001).
    Google Scholar 
    West, K. L. et al. Diet of pygmy sperm whales (Kogia breviceps) in the Hawaiian Archipelago. Mar. Mammal. Sci. 25, 931–943. https://doi.org/10.1111/j.1748-7692.2009.00295.x (2009).Article 

    Google Scholar 
    Kleinertz, S., Damriyasa, I. M., Hagen, W., Theisen, S. & Palm, H. W. An environmental assessment of the parasite fauna of the reef-associated grouper Epinephelus areolatus from Indonesian waters. J. Helminthol. 88, 50–63 (2014).CAS 
    PubMed 

    Google Scholar 
    Nadler, S. A. et al. Molecular phylogenetics and diagnosis of Anisakis, Pseudoterranova, and Contracaecum from northern pacific marine mammals. J. Parasitol. 91, 1413–1429 (2005).CAS 
    PubMed 

    Google Scholar 
    Weitzel, T. et al. Human infections with Pseudoterranova cattani nematodes. Chile. Emerg. Infect. Dis. 21, 1874–1875 (2015).CAS 
    PubMed 

    Google Scholar 
    Arizono, N., Miura, T., Yamada, M., Tegoshi, T. & Onishi, K. Human infection with Pseudoterranova azarasi roundworm. Emerg. Infect. Dis. 17, 555–556. https://doi.org/10.3201/eid1703.101350 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kleinertz, S. et al. Gastrointestinal parasites of free-living Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the Northern Red Sea. Egypt. Parasitol Res. 113, 1405–1415. https://doi.org/10.1007/s00436-014-3781-4 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Aco Alburqueque, R., Palomba, M., Santoro, M. & Mattiucci, S. Molecular identification of zoonotic parasites of the genus Anisakis (Nematoda: Anisakidae) from fish of the southeastern Pacific Ocean (off Peru coast). Pathogens. 9, 910. https://doi.org/10.3390/pathogens9110910 (2020).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Di Azevedo, M. I. N., Carvalho, V. L. & Iñiguez, A. M. Integrative taxonomy of anisakid nematodes in stranded cetaceans from Brazilian waters: An update on parasite’s hosts and geographical records. Parasitol. Res. 116, 3105–3116. https://doi.org/10.1007/s00436-017-5622-8 (2017).Article 
    PubMed 

    Google Scholar 
    Quiazon, K. M. A., Santos, M. D., Blatchley, D. D., Aguila, R. D. & Yoshinaga, T. Molecular and morphological identifications of Anisakis dujardin, 1845 (Nematoda: Anisakidae) from a rare deraniyagala’s beaked whale (Mesoplodon hotaula deraniyagala, 1963) and blainville’s beaked whale (Mesoplodon densirostris blainville, 1817) stranded. Philipp. J. Sci. 150, 823–835 (2021).
    Google Scholar 
    Bao, M. et al. Air-dried stockfish of Northeast Arctic cod do not carry viable anisakid nematodes. Food Cont. 116, 107322. https://doi.org/10.1016/j.foodcont.2020.107322 (2020).Article 
    CAS 

    Google Scholar 
    Liu, G. H. et al. Mitochondrial phylogenomics yields strongly supported hypotheses for ascaridomorph nematodes. Sci. Rep. https://doi.org/10.1038/srep39248 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hrabar, J. et al. Phylogeny and pathology of anisakids parasitizing stranded California sea lions (Zalophus californianus) in Southern California. Front Mar. Sci. https://doi.org/10.3389/fmars.2021.636626 (2021).Article 

    Google Scholar  More

  • in

    Chemical forms of cadmium in soil and its distribution in French marigold sub-cells in response to chelator GLDA

    Sarwar, N. et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 171, 710–721 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lin, H. M. et al. Cadmium-stress mitigation through gene expression of rice and silicon addition. Plant Growth Regul.: Int. J. Nat. Synthetic Regul. 81(1), 91–101 (2017).Article 
    CAS 

    Google Scholar 
    Pan, F. S. et al. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. Int. J. Phytorem. 19(1/6), 281–289 (2017).Article 
    CAS 

    Google Scholar 
    Puangprasert, S. & Prueksasit, T. Health risk assessment of airborne Cd, Cu, Ni and Pb for electronic waste dismantling workers in Buriram Province, Thailand. J. Environ. Manag. 252, 109601 (2019).Article 
    CAS 

    Google Scholar 
    Tipu, M. I. et al. Growth and physiology of maize (Zea mays L.) in a nickel-contaminated soil and phytoremediation efficiency using EDTA. J. Plant Growth Regul. 40(2), 774–786 (2021).Article 
    CAS 

    Google Scholar 
    Chaturvedi, N., Dhal, N. K. & Patra, H. K. EDTA and citric acid-mediated phytoextraction of heavy metals from iron ore tailings using Andrographis paniculata: A comparative study. Int. J. Min. Reclam. Environ. 29(1), 33–46 (2015).Article 
    CAS 

    Google Scholar 
    Wang, G. Y. et al. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility. Sci. Total Environ. 569–570, 557–568 (2016).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kołodyńska, D. Cu(II), Zn(II), Co(II) and Pb(II) removal in the presence of the complexing agent of a new generation. Desalination 267(2–3), 175–183 (2011).Article 

    Google Scholar 
    Guo, X. F. et al. Mixed chelators of EDTA, GLDA, and citric acid as washing agent effectively remove Cd, Zn, Pb, and Cu from soils. J. Soils Sediments 18(2), 835–844 (2017).
    Google Scholar 
    Wang, X. et al. Subcellular distribution and chemical forms of cadmiun in Bechmeria nivea L. Gaud. Environ. Exp. Bot. 62(3), 389–395 (2008).Article 
    CAS 

    Google Scholar 
    Gallego, S. M. et al. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot. 83, 33–46 (2012).Article 
    CAS 

    Google Scholar 
    Clemens, S., Aarts, M. G. M., Thomine, S. & Verbruggen, N. Plant science: The key to preventing slow cadmium poisoning. Trends Plant Sci. 18(2), 92–99 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhou, J. T. et al. Integration of cadmium accumulation, subcellular distribution, and physiological responses to understand cadmium tolerance in apple rootstocks. Front. Plant Sci. 8, 966 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, L. P., Zhu, J., Wang, P., Lyu, D. G. & Li, H. F. Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata. Ecotoxicol. Environ. Saf. 160, 10–18 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wang, W. J., Zhang, M. Z. & Liu, J. N. Subcellular distribution and chemical forms of Cd in Bougainvillea spectabilis Willd. as an ornamental phytostabilizer: An integrated consideration. Int. J. Phytorem. 20(11), 1087–1095 (2017).Article 

    Google Scholar 
    Weigel, H. J. & Jäger, H. J. Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol. 65(3), 480–482 (1980).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khanna, K., Kohli, S. K., Ohri, P., Bhardwaj, R. & Ahmad, P. Agroecotoxicological aspect of Cd in soil–plant system: Uptake, translocation and amelioration strategies. Environ. Sci. Pollut. Res. 29, 30908–30934 (2022).Article 
    CAS 

    Google Scholar 
    Wei, Z. B., Chen, X. H., Wu, Q. T. & Tan, M. Biodegradable chelator GLDA induced remediation of heavy metal contaminated soil in Southeast Jingtian. Environ. Sci. 36(5), 1864–1869 (2015).CAS 

    Google Scholar 
    Wang, K., Liu, Y. H., Song, Z. G., Wang, D. & Qiu, W. W. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Chemosphere 237, 124480 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Meng, N., Wang, M., Chen, L., Zheng, H. & Chen, S. B. Remediation effects of different herbaceous plants intercropping on Cd-contaminated soil. China Environ. Sci. 38(7), 2618–2624 (2018).CAS 

    Google Scholar 
    Jones, D. & Willett, V. Experimental evaluation of methods to quantify dissolved organic nitrogen (don) and dissolved organic carbon (doc) in soil. Soil Biol. Biochem. 38(5), 991–999 (2006).Article 
    CAS 

    Google Scholar 
    Su, F. L. et al. The distribution and enrichment characteristics of copper in soil and Phragmites australis of Liao River estuary wetland. Environ. Monit. Assess.: Int. J. 190(6), 1–9 (2018).Article 
    CAS 

    Google Scholar 
    Shahid, M., Dumat, C. & Khalid, S. Reviews of Environmental Contamination and Toxicology Vol. 241, 3–137 (Springer, 2016).
    Google Scholar 
    Yuliya, V. et al. Comparison of soil-to-root transfer and translocation coefficients of trace elements in vines of Chardonnay and Muscat white grown in the same vineyard. Sci. Hortic. 192, 89–96 (2015).Article 

    Google Scholar 
    Liu, Q. Q., Chen, Y. H., Shen, Z. G. & Zheng, L. Q. Roles of cell wall in plant heavy metal tolerance. Plant Physiol. J. 50(5), 605–611 (2014).
    Google Scholar 
    Zhen, S. et al. Foliar application of Zn reduces Cd accumulation in grains of late rice by regulating the antioxidant system, enhancing Cd chelation onto cell wall of leaves, and inhibiting Cd translocation in rice. Sci. Total Environ. 770, 145302 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Shi, Y. X. et al. Simulation of the absorption, migration and accumulation process of heavy metal elements in soil-crop system. Environ. Sci. 37(10), 3996–4003 (2016).
    Google Scholar 
    Yan, X. X. et al. Effect of foliar application of different manganese fertilizers on cadmium accumulation and subcellular distribution in pak choi. J. Agro Environ. Sci. 38(8), 1872–1881 (2019).
    Google Scholar 
    He, S., Wu, Q. & He, Z. Effect of DA-6 and EDTA alone or in combination on uptake, subcellular distribution and chemical form of Pb in Lolium perenne. Chemosphere 93(11), 2782–2788 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, C. C. et al. Integration of metal chemical forms and subcellular partitioning to understand metal toxicity in two lettuce (Lactuca sativa L.) cultivars. Plant Soil 384(1/2), 201–212 (2014).Article 
    CAS 

    Google Scholar 
    Li, D., He, T., Saleem, M. & He, G. Metalloprotein-specific or critical amino acid residues: Perspectives on plant-precise detoxification and recognition mechanisms under cadmium stress. Int. J. Mol. Sci. 23(3), 1734 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perriguey, J., Sterckeman, T. & Morel, J. L. Effect of rhizosphere and plantrelated factors on the cadmium uptake by maize(Zea mays L.). Environ. Exp. Bot. 63(1/3), 333–341 (2008).Article 
    CAS 

    Google Scholar 
    Dai, S. et al. Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil. Hum. Ecol. Risk Assess. Int. J. 24(7), 1887–1900 (2018).Article 
    CAS 

    Google Scholar 
    Hou, S., Zheng, N., Tang, L., Ji, X. F. & Li, Y. Y. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environ. Monit. Assess. 191(10), 634 (2019).Article 
    PubMed 

    Google Scholar 
    Wu, H. J. et al. Effects of Astragalus smicuson cadmium effectiveness in paddy soil and cadmium accumulation in rice plant. Chin. Agric. Sci. Bull. 33(16), 105–111 (2017).ADS 

    Google Scholar 
    Jin, P. K., Liu, K. J. & Wang, X. B. Conversion and utilization of slowly biodegradable organic matter. Chin. J. Environ. Eng. 10(5), 2168–2174 (2016).CAS 

    Google Scholar 
    Kopáček, J. et al. Factors affecting the leaching of dissolved organic carbon after tree dieback in an unmanaged European mountain forest. Environ. Sci. Technol. 52(11), 6291–6299 (2018).Article 
    ADS 
    PubMed 

    Google Scholar 
    Anwar, S. et al. Impact of chelator-induced phytoextraction of cadmium on yield and ionic uptake of maize. Int. J. Phytorem. 19(6), 505–513 (2017).Article 
    CAS 

    Google Scholar 
    Wu, J. M., Xi, M. & Kong, F. L. Review of researches on the factors influencing the dynamics of dissolved organic carbon in soils. Geol. Rev. 59(5), 953–961 (2013).CAS 

    Google Scholar 
    AkzoNobel. Dissolvine GL® Technichal Brochure 1–5 (AkzoNobel Amsterdam, 2010).
    Google Scholar 
    Beygi, M. & Jalali, M. Assessment of trace elements (Cd, Cu, Ni, Zn) fractionation and bioavailability in vineyard soils from the Hamedan, Iran. Geoderma 337, 1009–1020 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Gul, I. et al. Comparative effectiveness of organic and inorganic amendments on cadmium bioavailability and uptake by Pelargonium hortorum. J. Soils Sediments 19(5), 2346–2356 (2019).Article 
    CAS 

    Google Scholar 
    Wang, H., Sun, L. N., Li, H. B. & Sun, T. Y. Effect of different chelators application on Cd accumulation in metal polluted soils by Beta vulgaris var. cicla L. Ecol. Environ. 17(6), 2249–2252 (2008).
    Google Scholar 
    Zhang, G. X. et al. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environ. Pollut. 218, 513–522 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gu, M. H. et al. Effects of manganese application on the formation of manganese oxides and cadmium fixation in soil. Ecol. Environ. Sci. 229(2), 360–368 (2020).
    Google Scholar 
    Bradl, H. B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 277(1), 1–18 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Tree species matter for forest microclimate regulation during the drought year 2018: disentangling environmental drivers and biotic drivers

    Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Frey, S. J. K. et al. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392. https://doi.org/10.1126/sciadv.1501392 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, K. T., Dobrowski, S. Z., Holden, Z. A., Higuera, P. E. & Abatzoglou, J. T. Microclimatic buffering in forests of the future: The role of local water balance. Ecography 42, 1–11 (2019).Article 

    Google Scholar 
    de Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).Article 
    PubMed 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rahman, M. A., Moser, A., Rötzer, T. & Pauleit, S. Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agric. For. Meteorol. 232, 443–456 (2017).Article 
    ADS 

    Google Scholar 
    Rahman, M. A., Moser, A., Rötzer, T. & Pauleit, S. Within canopy temperature differences and cooling ability of Tilia cordata trees grown in urban conditions. Build. Environ. 114, 118–128 (2017).Article 

    Google Scholar 
    Ehbrecht, M., Schall, P., Ammer, C., Fischer, M. & Seidel, D. Effects of structural heterogeneity on the diurnal temperature range in temperate forest ecosystems. For. Ecol. Manag. 432, 860–867 (2019).Article 

    Google Scholar 
    Richter, R., Hutengs, C., Wirth, C., Bannehr, L. & Vohland, M. Detecting tree species effects on forest canopy temperatures with thermal remote sensing: The role of spatial resolution. Remote Sens. 13, 135. https://doi.org/10.3390/rs13010135 (2021).Article 
    ADS 

    Google Scholar 
    IPCC. Climate change 2021: The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In Press, 2021).Rahman, M. A. et al. Traits of trees for cooling urban heat islands: A meta-analysis. Build. Environ. 170, 106606. https://doi.org/10.1016/j.buildenv.2019.106606 (2020).Article 

    Google Scholar 
    Rahman, M. A., Moser, A., Rötzer, T. & Pauleit, S. Comparing the transpirational and shading effects of two contrasting urban tree species. Urban Ecosyst. 22, 683–697 (2019).Article 

    Google Scholar 
    Joly, F.-X. et al. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytol. 214, 1281–1293 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lindo, Z. & Winchester, N. Out on a limb: microarthropod and microclimate variation in coastal temperate rainforest canopies. Insect Conserv. Divers. 6, 513–521 (2013).Article 

    Google Scholar 
    Pincebourde, S., Murdock, C. C., Vickers, M. & Sears, M. W. Fine-scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments. Integr. Comp. Biol. 56, 45–61 (2016).Article 
    PubMed 

    Google Scholar 
    Janssen, P., Fuhr, M. & Bouget, C. Beyond forest habitat qualities: Climate and tree characteristics as the major drivers of epiphytic macrolichen assemblages in temperate mountains. J. Veg. Sci. 30, 42–54 (2019).Article 

    Google Scholar 
    Welti, E. A. R. et al. Temperature drives variation in flying insect biomass across a German malaise trap network. Insect Conserv. Divers. https://doi.org/10.1111/icad.12555 (2021).Article 

    Google Scholar 
    Lin, Y.-S., Medlyn, B. E. & Ellsworth, D. S. Temperature responses of leaf net photosynthesis: The role of component processes. Tree Physiol. 32, 219–231 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Simon, H. et al. Modeling transpiration and leaf temperature of urban trees: A case study evaluating the microclimate model ENVI-met against measurement data. Landsc. Urban Plan. 174, 33–40 (2018).Article 

    Google Scholar 
    Eamus, D., Boulain, N., Cleverly, J. & Breshears, D. D. Global change-type drought-induced tree mortality: Vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecol. Evol. 3, 2711–2729 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eichenberg, D. et al. The effect of microclimate on wood decay is indirectly altered by tree species diversity in a litterbag study. J. Plant Ecol. 10, 170–178 (2017).Article 

    Google Scholar 
    Brockerhoff, E. G. et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 26, 3005–3035 (2017).Article 

    Google Scholar 
    Martínez Pastur, G., Perera, A. H., Peterson, U. & Iverson, L. R. In Ecosystem Services from Forest Landscapes (eds Perera, A. H. et al.) 1–10 (Springer International Publishing, 2018).
    Google Scholar 
    Smithers, R. J. et al. Comparing the relative abilities of tree species to cool the urban environment. Urban Ecosyst. 21, 851–862 (2018).Article 

    Google Scholar 
    Shashua-Bar, L., Tsiros, I. X. & Hoffman, M. Passive cooling design options to ameliorate thermal comfort in urban streets of a Mediterranean climate (Athens) under hot summer conditions. Build. Environ. 57, 110–119 (2012).Article 

    Google Scholar 
    Song, J. & Wang, Z.-H. Impacts of mesic and xeric urban vegetation on outdoor thermal comfort and microclimate in Phoenix, AZ. Build. Environ. 94, 558–568 (2015).Article 

    Google Scholar 
    Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Christidis, N., Jones, G. S. & Stott, P. A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change 5, 46–50 (2015).Article 
    ADS 

    Google Scholar 
    Pfleiderer, P., Schleussner, C.-F., Kornhuber, K. & Coumou, D. Summer weather becomes more persistent in a 2 °C world. Nat. Clim. Change 9, 666–671 (2019).Article 
    ADS 

    Google Scholar 
    Selten, F. M., Bintanja, R., Vautard, R. & van den Hurk, B. J. J. M. Future continental summer warming constrained by the present-day seasonal cycle of surface hydrology. Sci. Rep. 10, 4721. https://doi.org/10.1038/s41598-020-61721-9 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gartner, K., Nadezhdina, N., Englisch, M., Čermak, J. & Leitgeb, E. Sap flow of birch and Norway spruce during the European heat and drought in summer 2003. For. Ecol. Manag. 258, 590–599 (2009).Article 

    Google Scholar 
    Speak, A., Montagnani, L., Wellstein, C. & Zerbe, S. The influence of tree traits on urban ground surface shade cooling. Landsc. Urban Plan. 197, 103748. https://doi.org/10.1016/j.landurbplan.2020.103748 (2020).Article 

    Google Scholar 
    Rahman, M. A., Armson, D. & Ennos, A. R. A comparison of the growth and cooling effectiveness of five commonly planted urban tree species. Urban Ecosyst. 18, 371–389 (2015).Article 

    Google Scholar 
    Bowden, J. D. & Bauerle, W. L. Measuring and modeling the variation in species-specific transpiration in temperate deciduous hardwoods. Tree Physiol. 28, 1675–1683 (2008).Article 
    PubMed 

    Google Scholar 
    Panferov, O. et al. The role of canopy structure in the spectral variation of transmission and absorption of solar radiation in vegetation canopies. IEEE Trans. Geosci. Remote Sens. 39, 241–253 (2001).Article 
    ADS 

    Google Scholar 
    Lin, H., Chen, Y., Zhang, H., Fu, P. & Fan, Z. Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Funct. Ecol. 31, 2202–2211 (2017).Article 

    Google Scholar 
    Fauset, S. et al. Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant Cell Environ. 41, 1618–1631 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, L., Zhang, Z. & Ewers, B. E. Urban tree species show the same hydraulic response to vapor pressure deficit across varying tree size and environmental conditions. PloS ONE 7, e47882. https://doi.org/10.1371/journal.pone.0047882 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gallego, H. A., Rico, M., Moreno, G. & Santa Regina, I. Leaf water potential and stomatal conductance in Quercus pyrenaica Willd. forests: Vertical gradients and response to environmental factors. Tree Physiol. 14, 1039–1047 (1994).Article 
    PubMed 

    Google Scholar 
    Hölscher, D., Koch, O., Korn, S. & Leuschner, C. Sap flux of five co-occurring tree species in a temperate broad-leaved forest during seasonal soil drought. Trees 19, 628–637 (2005).Article 

    Google Scholar 
    Li, S. et al. Leaf gas exchange performance and the lethal water potential of five European species during drought. Tree Physiol. 36, 179–192 (2016).CAS 
    PubMed 

    Google Scholar 
    Schnabel, F. et al. Cumulative growth and stress responses to the 2018–2019 drought in a European floodplain forest. Glob. Change Biol. 28, 1870–1883 (2022).Article 
    CAS 

    Google Scholar 
    Sastry, A., Guha, A. & Barua, D. Leaf thermotolerance in dry tropical forest tree species: Relationships with leaf traits and effects of drought. AoB Plants 10, plx070. https://doi.org/10.1093/aobpla/plx070 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Banerjee, T. & Linn, R. Effect of vertical canopy architecture on transpiration, thermoregulation and carbon assimilation. Forests 9, 198. https://doi.org/10.3390/f9040198 (2018).Article 

    Google Scholar 
    Leuzinger, S. & Körner, C. Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agric. For. Meteorol. 146, 29–37 (2007).Article 
    ADS 

    Google Scholar 
    Yi, K. et al. High heterogeneity in canopy temperature among co-occurring tree species in a temperate forest. J. Geophys. Res. Biogeosci. 125, e05892. https://doi.org/10.1029/2020JG005892 (2020).Article 

    Google Scholar 
    Hagemeier, M. & Leuschner, C. Functional crown architecture of five temperate broadleaf tree species: Vertical gradients in leaf morphology, leaf angle, and leaf area density. Forests 10, 265. https://doi.org/10.3390/f10030265 (2019).Article 

    Google Scholar 
    Raabe, K., Pisek, J., Sonnentag, O. & Annuk, K. Variations of leaf inclination angle distribution with height over the growing season and light exposure for eight broadleaf tree species. Agric. For. Meteor. 214–215, 2–11 (2015).Article 

    Google Scholar 
    Kafuti, C. et al. Foliar and wood traits covary along a vertical gradient within the crown of long-lived light-demanding species of the Congo Basin semi-deciduous forest. Forests 11, 35. https://doi.org/10.3390/f11010035 (2020).Article 

    Google Scholar 
    Peiffer, M., Bréda, N., Badeau, V. & Granier, A. Disturbances in European beech water relation during an extreme drought. Ann. For. Sci. 71, 821–829 (2014).Article 

    Google Scholar 
    Stratópoulos, L. M. F. et al. Tree species from two contrasting habitats for use in harsh urban environments respond differently to extreme drought. Int. J. Biometeorol. 63, 197–208 (2019).Article 
    ADS 
    PubMed 

    Google Scholar 
    McGloin, R. et al. Available energy partitioning during drought at two Norway spruce forests and a European beech forest in Central Europe. J. Geophys. Res. Atmos. 124, 3726–3742 (2019).Article 
    ADS 

    Google Scholar 
    Schwaab, J. et al. Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes. Sci. Rep. 10, 14153. https://doi.org/10.1038/s41598-020-71055-1 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hari, V., Rakovec, O., Markonis, Y., Hanel, M. & Kumar, R. Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Sci. Rep. 10, 12207. https://doi.org/10.1038/s41598-020-68872-9 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lyon, T. L., Weil, R. R. & Brady, N. C. The Nature and Properties of Soils 15th edn. (Pearson, 2017).
    Google Scholar 
    Zweifel, R., Böhm, J. P. & Häsler, R. Midday stomatal closure in Norway spruce—reactions in the upper and lower crown. Tree Physiol. 22, 1125–1136 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rahman, M. A., Moser, A., Gold, A., Rötzer, T. & Pauleit, S. Vertical air temperature gradients under the shade of two contrasting urban tree species during different types of summer days. Sci. Total Environ. 633, 100–111 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103 (2020).Article 

    Google Scholar 
    Hochberg, U., Rockwell, F. E., Holbrook, N. M. & Cochard, H. Iso/anisohydry: A plant-environment interaction rather than a simple hydraulic trait. Trends Plant Sci. 23, 112–120 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Leuschner, C., Wedde, P. & Lübbe, T. The relation between pressure–volume curve traits and stomatal regulation of water potential in five temperate broadleaf tree species. Ann. For. Sci. 76, 60. https://doi.org/10.1007/s13595-019-0838-7 (2019).Article 

    Google Scholar 
    Bartlett, M. K., Scoffoni, C. & Sack, L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. Ecol. Lett. 15, 393–405 (2012).Article 
    PubMed 

    Google Scholar 
    Hartmann, H., Link, R. M. & Schuldt, B. A whole-plant perspective of isohydry: Stem-level support for leaf-level plant water regulation. Tree Physiol. 41, 901–905 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alonso-Forn, D. et al. Revisiting the functional basis of sclerophylly within the leaf economics spectrum of oaks: Different roads to Rome. Curr. For. Rep. 6, 260–281 (2020).
    Google Scholar 
    Hirons, A. D. & Thomas, P. A. Applied Tree Biology (John Wiley & Sons Ltd, 2017).Book 

    Google Scholar 
    Richter, R., Reu, B., Wirth, C., Doktor, D. & Vohland, M. The use of airborne hyperspectral data for tree species classification in a species-rich Central European forest area. Int. J. Appl. Earth Obs. Geoinf. 52, 464–474 (2016).ADS 

    Google Scholar 
    Qiu, G. et al. Effects of evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture. J. Integr. Agric. 12, 1307–1315 (2013).Article 

    Google Scholar 
    Meier, F. & Scherer, D. Spatial and temporal variability of urban tree canopy temperature during summer 2010 in Berlin, Germany. Theor. Appl. Climatol. 110, 373–384 (2012).Article 
    ADS 

    Google Scholar 
    Landsberg, J. J. & James, G. B. Wind profiles in plant canopies: Studies on an analytical model. J. Appl. Ecol. 8, 729–741 (1971).Article 

    Google Scholar 
    Gromke, C. & Ruck, B. Aerodynamic modelling of trees for small-scale wind tunnel studies. Forestry 81, 243–258 (2008).Article 

    Google Scholar 
    Baldocchi, D. D. Turbulent transfer in a deciduous forest. Tree Physiol. 5, 357–377 (1989).Article 
    CAS 
    PubMed 

    Google Scholar 
    Derby, R. W. & Gates, D. M. The temperature of tree trunks—Calculated and observed. Am. J. Bot. 53, 580–587 (1966).
    Google Scholar 
    Jayalakshmy, M. S. & Philip, J. Thermophysical properties of plant leaves and their influence on the environment temperature. Int. J. Thermophys. 31, 2295–2304 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Pieruschka, R., Huber, G. & Berry, J. A. Control of transpiration by radiation. Proc. Natl. Acad. Sci. U.S.A. 107, 13372–13377 (2010).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meili, N. et al. Tree effects on urban microclimate: Diurnal, seasonal, and climatic temperature differences explained by separating radiation, evapotranspiration, and roughness effects. Urban For. Urban Green. 58, 126970. https://doi.org/10.1016/j.ufug.2020.126970 (2021).Article 

    Google Scholar 
    Oogathoo, S., Houle, D., Duchesne, L. & Kneeshaw, D. Vapour pressure deficit and solar radiation are the major drivers of transpiration of balsam fir and black spruce tree species in humid boreal regions, even during a short-term drought. Agric. For. Meteorol. 291, 108063. https://doi.org/10.1016/j.agrformet.2020.108063 (2020).Article 
    ADS 

    Google Scholar 
    Betts, M. G., Phalan, B., Frey, S. J. K., Rousseau, J. S. & Yang, Z. Old-growth forests buffer climate-sensitive bird populations from warming. Divers. Distrib. 24, 439–447 (2018).Article 

    Google Scholar 
    Pureswaran, D. S., Roques, A. & Battisti, A. Forest insects and climate change. Curr. For. Rep. 4, 35–50 (2018).
    Google Scholar 
    de Frenne, P. et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021).Article 
    ADS 

    Google Scholar 
    Woods, C. L., Cardelús, C. L. & DeWalt, S. J. Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. J. Ecol. 103, 421–430 (2015).Article 

    Google Scholar 
    Nakamura, A. et al. Forests and their canopies: Achievements and horizons in canopy science. Trends Ecol. Evol. 32, 438–451 (2017).Article 
    PubMed 

    Google Scholar 
    European State of the Climate 2020, Copernicus Climate Change Service, Full report: climate.copernicus.eu/ESOTC/2020Munzi, S. et al. Lichens as ecological indicators in urban areas: beyond the effects of pollutants. J. Appl. Ecol. 51, 1750–1757 (2014).Article 

    Google Scholar 
    Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P. & Kay, A. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob. Change Biol. 21, 1092–1102 (2015).Article 
    ADS 

    Google Scholar 
    Baudier, K. M., Mudd, A. E., Erickson, S. C. & O’Donnell, S. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). J. Anim. Ecol. 84, 1322–1330 (2015).Article 
    PubMed 

    Google Scholar 
    Merinero, S., Dahlberg, C. J., Ehrlén, J. & Hylander, K. Intraspecific variation influences performance of moss transplants along microclimate gradients. Ecology 101, e02999. https://doi.org/10.1002/ecy.2999 (2020).Article 
    PubMed 

    Google Scholar 
    Ben-Yakir, D. & Fereres, A. The effects of UV radiation on arthropods: A review of recent publications (2010–2015). Acta Hortic. 1134, 335–342 (2016).Vanhaelewyn, L., van der Straeten, D., de Coninck, B. & Vandenbussche, F. Ultraviolet radiation from a plant perspective: The plant-microorganism context. Front. Plant Sci. 11, 597642. https://doi.org/10.3389/fpls.2020.597642 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jansen, E. Das Naturschutzgebiet Burgaue; Staatliches Umweltfachamt: Leipzig, Germany (1999).Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LFULG) & DWD Deutscher Wetterdienst (2019) [ed.]: 2018 Wetter trifft auf Klima. Dresden, Leipzig. https://www.klima.sachsen.de/download/Jahresrueckblick2018_A5_OeA.pdf.Haase, D. & Gläser, J. Determinants of floodplain forest development illustrated by the example of the floodplain forest in the District of Leipzig. For. Ecol. Manag. 258, 887–894 (2009).Article 

    Google Scholar 
    Patzak, R., Richter, R., Engelmann, R. A. & Wirth, C. Tree crowns as meeting points of diversity generating mechanisms: A test with epiphytic lichens in a temperate forest. Preprint at: https://www.biorxiv.org/content/https://doi.org/10.1101/2020.01.03.894303v1.full (2020).Meinen, C., Leuschner, C., Ryan, N. T. & Hertel, D. No evidence of spatial root system segregation and elevated fine root biomass in multi-species temperate broad-leaved forests. Trees 23, 941–950 (2009).Article 

    Google Scholar 
    van der Zande, D., Stuckens, J., Verstraeten, W. W., Muys, B. & Coppin, P. Assessment of light environment variability in broadleaved forest canopies using terrestrial laser scanning. Remote Sens. 2, 1564–1574. https://doi.org/10.3390/rs2061564 (2010).Article 
    ADS 

    Google Scholar 
    Köstner, B., Granier, A. & Cermák, J. Sapflow measurements in forest stands: Methods and uncertainties. Ann. For. Sci. 55, 13–27 (1998).Article 

    Google Scholar 
    Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987).Article 
    CAS 
    PubMed 

    Google Scholar 
    Metzger, J. M. & Oren, R. The effect of crown dimension on transparency and the assessment of tree health. Ecol. Appl. 11, 1634–1640 (2001).Article 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team (2020). nlme: Linear and nonlinear mixed effects models. R package version 3.1-151, https://CRAN.R-project.org/package=nlme.Dornelas, M. et al. Quantifying temporal change in biodiversity: Challenges and opportunities. Proc. Biol. Sci. 280, 20121931. https://doi.org/10.1098/rspb.2012.1931 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).Article 
    PubMed 

    Google Scholar 
    R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. More

  • in

    Assessing Müllerian mimicry in North American bumble bees using human perception

    Bates, H. W. XXXII. Contributions to an insect fauna of the Amazon Valley. Lepidoptera: Heliconidæ. Trans. Linn. Soc. Lond 23, 495–566 (1862).Article 

    Google Scholar 
    Müller, F. Ituna and thyridia: A remarkable case of mimicry in butterflies. Trans. Entomol. Soc. Lond. 1879, 20–29 (1879).
    Google Scholar 
    Baxter, S. W. et al. Convergent evolution in the genetic basis of Müllerian mimicry in Heliconius butterflies. Genetics 180, 1567–1577 (2008).Article 
    CAS 

    Google Scholar 
    Sheppard, P. M., Turner, J. R. G., Brown, K., Benson, W. & Singer, M. Genetics and the evolution of Muellerian mimicry in Heliconius butterflies. Philos. Trans R. Soc. Lond. B, Biol. Sci. 308, 433–610 (1985).Article 
    ADS 

    Google Scholar 
    Mallet, J. & Gilbert, L. E. Jr. Why are there so many mimicry rings? Correlations between habitat, behaviour and mimicry in Heliconius butterflies. Biol. J. Lin. Soc. 55, 159–180 (1995).
    Google Scholar 
    Brower, A. V. Parallel race formation and the evolution of mimicry in Heliconius butterflies: A phylogenetic hypothesis from mitochondrial DNA sequences. Evolution 50, 195–221 (1996).Article 
    CAS 

    Google Scholar 
    Wilson, J. S. et al. North American velvet ants form one of the world’s largest known Müllerian mimicry complexes. Curr. Biol. 25, R704–R706. https://doi.org/10.1016/j.cub.2015.06.053 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wilson, J. S., Williams, K. A., Forister, M. L., Von Dohlen, C. D. & Pitts, J. P. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 3, 1272 (2012).Article 
    ADS 

    Google Scholar 
    Wilson, J. S., Pan, A. D., Limb, E. S. & Williams, K. A. Comparison of African and North American velvet ant mimicry complexes: Another example of Africa as the ‘odd man out’. PLoS ONE 13, e0189482. https://doi.org/10.1371/journal.pone.0189482 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Plowright, R. & Owen, R. E. The evolutionary significance of bumble bee color patterns: A mimetic interpretation. Evolution 34, 622–637 (1980).Article 
    CAS 

    Google Scholar 
    Williams, P. The distribution of bumblebee colour patterns worldwide: Possible significance for thermoregulation, crypsis, and warning mimicry. Biol. J. Lin. Soc. 92, 97–118 (2007).Article 

    Google Scholar 
    Hines, H. M. & Williams, P. H. Mimetic colour pattern evolution in the highly polymorphic Bombus trifasciatus (Hymenoptera: Apidae) species complex and its comimics. Zool. J. Linn. Soc. 166, 805–826 (2012).Article 

    Google Scholar 
    Koch, J. B., Rodriguez, J., Pitts, J. P. & Strange, J. P. Phylogeny and population genetic analyses reveals cryptic speciation in the Bombus fervidus species complex (Hymenoptera: Apidae). PLoS ONE 13, e0207080 (2018).Article 

    Google Scholar 
    Ezray, B. D., Wham, D. C., Hill, C. E. & Hines, H. M. Unsupervised machine learning reveals mimicry complexes in bumblebees occur along a perceptual continuum. Proc. R. Soc. B 286, 20191501 (2019).Article 

    Google Scholar 
    Bateson, W. The alleged “Aggressive Mimicry” of volucellæ. Nature 46, 585 (1892).Article 
    ADS 

    Google Scholar 
    Poulton, E. B. The volucellœ as alleged examples of variation “almost unique among animals”. Nature 47, 126 (1892).Article 
    ADS 

    Google Scholar 
    Cockerell, T. D. New social bees. Psyche A J. Entomol. 24, 120–128 (1917).Article 

    Google Scholar 
    Koch, J., Strange, J. & Williams, P. In: Bumble bees of the western United States (US Forest Service, San Francisco California, 2012).
    Google Scholar 
    Williams, P. H., Thorp, R. W., Richardson, L. L. & Colla, S. R. In: Bumble bees of North America: An identification guide Vol. 87 (Princeton University Press, Princeton, 2014).
    Google Scholar 
    Ruxton, G. D., Franks, D. W., Balogh, A. C. & Leimar, O. Evolutionary implications of the form of predator generalization for aposematic signals and mimicry in prey. Evol Int. J. Org. Evol. 62, 2913–2921 (2008).Article 

    Google Scholar 
    Rowe, C., Lindström, L. & Lyytinen, A. The importance of pattern similarity between Müllerian mimics in predator avoidance learning. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 407–413 (2004).Article 

    Google Scholar 
    Beatty, C. D., Beirinckx, K. & Sherratt, T. N. The evolution of Müllerian mimicry in multispecies communities. Nature 431, 63 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Chittka, L. & Osorio, D. Cognitive dimensions of predator responses to imperfect mimicry. PLoS Biol. 5, e339 (2007).Article 

    Google Scholar 
    Dittrigh, W., Gilbert, F., Green, P., McGregor, P. & Grewcock, D. Imperfect mimicry: A pigeon’s perspective. Proc. R. Soc. Lond. Ser. B Biol. Sci. 251, 195–200 (1993).Article 
    ADS 

    Google Scholar 
    Sherratt, T. N., Whissell, E., Webster, R. & Kikuchi, D. W. Hierarchical overshadowing of stimuli and its role in mimicry evolution. Anim. Behav. 108, 73–79 (2015).Article 

    Google Scholar 
    Beatty, C. D., Bain, R. S. & Sherratt, T. N. The evolution of aggregation in profitable and unprofitable prey. Anim. Behav. 70, 199–208 (2005).Article 

    Google Scholar 
    Kazemi, B., Gamberale-Stille, G., Tullberg, B. S. & Leimar, O. Stimulus salience as an explanation for imperfect mimicry. Curr. Biol. 24, 965–969 (2014).Article 
    CAS 

    Google Scholar 
    Kikuchi, D. W., Dornhaus, A., Gopeechund, V. & Sherratt, T. N. Signal categorization by foraging animals depends on ecological diversity. Elife. 8, e43965 (2019).Article 

    Google Scholar 
    Rapti, Z., Duennes, M. A. & Cameron, S. A. Defining the colour pattern phenotype in bumble bees (Bombus): A new model for evo devo. Biol. J. Lin. Soc. 113, 384–404 (2014).Article 

    Google Scholar 
    Wilson, J. S., Sidwell, J. S., Forister, M. L., Williams, K. A. & Pitts, J. P. Thistledown velvet ants in the desert mimicry ring and the evolution of white coloration: Müllerian mimicry, camouflage and thermal ecology. Biol. Lett. 16, 20200242 (2020).Article 

    Google Scholar 
    Ascher, J. & Pickering, J. Discover Life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila) (2019).iNaturalist. Available from https://www.inaturalist.org. Accessed [2022].Bombus Latreille, 1802 in GBIF Secretariat (2021). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2021-12-03. More

  • in

    Continuous exchange of nectar nutrients in an Oriental hornet colony

    Anderson, M. The evolution of eusociality. Annu. Rev. Ecol. Syst. 15, 165–189 (1984).Article 

    Google Scholar 
    Wilkinson, G. S. Reciprocal food sharing in the vampire bat. Nature 308, 181–184 (1984).Article 

    Google Scholar 
    Feistner, A. & Mcgrew, W. Food-sharing in primates: a critical review. Perspect. Primate Biol 3, (1989).Hoelzel, A. R. Killer whale predation on marine mammals at Punta Norte, Argentina; food sharing, provisioning and foraging strategy. Behav. Ecol. Sociobiol. 29, 197–204 (1991).Article 

    Google Scholar 
    Behmer, S. T. Animal behaviour: feeding the superorganism. Curr. Biol. 19, R366–R368 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. Information flow during social feeding in ant societies. in Information Processing in Social Insects (eds. Detrain, C., Deneubourg, J. L. & Pasteels, J. M.) 69–81 (Birkhäuser, 1999). https://doi.org/10.1007/978-3-0348-8739-7_4.Hunt, J. H. Trophallaxis and the evolution of eusocial Hymenoptera. in The Biology of Social Insects (CRC Press, 1982).Sorensen, A. A., Busch, T. M. & Vinson, S. B. Trophallaxis by temporal subcastes in the fire ant, Solenopsis invicta, in response to honey. Physiol. Entomol. 10, 105–111 (1985).Article 

    Google Scholar 
    Meurville, M.-P. & LeBoeuf, A. C. Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecol. News 31, 1–30 (2021).Bodner, L. et al. Nutrient utilization during male maturation and protein digestion in the Oriental hornet. Biology 11, 241 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sorensen, A. A., Kamas, R. S. & Vinson, S. B. The influence of oral secretions from larvae on levels of proteinases in colony members of Solenopsis invicta Buren (Hymenoptera: Formicidae). J. Insect Physiol. 29, 163–168 (1983).Article 
    CAS 

    Google Scholar 
    Erthal, M., Peres Silva, C. & Ian Samuels, R. Digestive enzymes in larvae of the leaf cutting ant, Acromyrmex subterraneus (Hymenoptera: Formicidae: Attini). J. Insect Physiol. 53, 1101–1111 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Went, F. W., Wheeler, J. & Wheeler, G. C. Feeding and digestion in some ants (Veromessor and Manica). BioScience 22, 82–88 (1972).Article 

    Google Scholar 
    Ishay, J. & Ikan, R. Food exchange between adults and larvae in Vespa orientalis F. Anim. Behav. 16, 298–303 (1968).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, J. H. The evolution of social wasps. (Oxford University Press, USA, 2007).Abe, T., Yoshiya, T., Hiromitsu, M. & Kawasaki, Y. Y. Comparative study of the composition of hornet larval saliva, its effect on behaviour and role of trophallaxis. Comp. Biochem. Physiol. Part C: Comp. Pharmacol. 99, 79–84 (1991).Article 

    Google Scholar 
    Ishay, J. & Ikan, R. Gluconeogenesis in the Oriental hornet Vespa orientalis F. Ecology 49, 169–171 (1968).Article 

    Google Scholar 
    Brock, R. E., Cini, A. & Sumner, S. Ecosystem services provided by aculeate wasps. Biol. Rev. 96, 1645–1675 (2021).Article 
    PubMed 

    Google Scholar 
    Ueno, T. Flower-visiting by the invasive hornet Vespa velutina nigrithorax (Hymenoptera: Vespidae). Int. J. Chem., Environ. Biol. Sci. 3, 444–448 (2015).
    Google Scholar 
    Käfer, H., Kovac, H. & Stabentheiner, A. Respiration patterns of resting wasps (Vespula sp.). J. Insect Physiol. 59, 475–486 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bodner, L., Bouchebti, S. & Levin, E. Allocation and metabolism of naturally occurring dietary amino acids in the Oriental hornet. Insect Biochem. Mol. Biol. 139, 103675 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Levin, E., Lopez-Martinez, G., Fane, B. & Davidowitz, G. Hawkmoths use nectar sugar to reduce oxidative damage from flight. Science 355, 733–735 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, J. H., Baker, I. & Baker, H. G. Similarity of amino acids in nectar and larval saliva: the nutritional basis for trophallaxis in social wasps. Evolution 36, 1318–1322 (1982).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, J. H., Jeanne, R. L., Baker, I. & Grogan, D. E. Nutrient dynamics of a swarm-founding social wasp species, Polybia occidentalis (Hymenoptera: Vespidae). Ethology 75, 291–305 (1987).Article 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. Allocation of liquid food to larvae via trophallaxis in colonies of the fire ant, Solenopsis invicta. Anim. Behav. 50, 801–813 (1995).Article 

    Google Scholar 
    Buffin, A., Denis, D., Simaeys, G. V., Goldman, S. & Deneubourg, J.-L. Feeding and stocking up: radio-labelled food reveals exchange patterns in ants. PLOS ONE 4, e5919 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quque, M. et al. Hierarchical networks of food exchange in the black garden ant Lasius niger. Insect Sci. 28, 825–838 (2021).Article 
    PubMed 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. A duration constant for worker-to-larva trophallaxis in fire ants. Ins. Soc. 43, 149–166 (1996).Article 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. Regulation of diet in the fire ant, Solenopsis invicta. J. Insect Behav. 12, 307–328 (1999).Article 

    Google Scholar 
    Wilson, E. O. & Eisner, T. Quantitative studies of liquid food transmission in ants. Ins. Soc. 4, 157–166 (1957).Article 

    Google Scholar 
    Markin, G. P. Food distribution within laboratory colonies of the argentine ant, Tridomyrmex humilis (Mayr). Ins. Soc. 17, 127–157 (1970).Article 

    Google Scholar 
    Howard, D. F. & Tschinkel, W. R. The flow of food in colonies of the fire ant, Solenopsis invicta: a multifactorial study. Physiol. Entomol. 6, 297–306 (1981).Article 

    Google Scholar 
    Suryanarayanan, S. & Jeanne, R. L. Antennal drumming, trophallaxis, and colony development in the social wasp Polistes fuscatus (Hymenoptera: Vespidae). Ethology 114, 1201–1209 (2008).Article 

    Google Scholar 
    Greenwald, E., Segre, E. & Feinerman, O. Ant trophallactic networks: simultaneous measurement of interaction patterns and food dissemination. Sci. Rep. 5, 12496 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baltiansky, L., Sarafian-Tamam, E., Greenwald, E. & Feinerman, O. Dual-fluorescence imaging and automated trophallaxis detection for studying multi-nutrient regulation in superorganisms. Methods Ecol. Evol. 12, 1441–1457 (2021).Article 

    Google Scholar 
    Feldhaar, H. et al. Stable isotopes: past and future in exposing secrets of ant nutrition (Hymenoptera: Formicidae). Myrmecol. N. 13, 3–13 (2010).
    Google Scholar 
    Bouchebti, S., Bodner, L., Bergman, M., Magory Cohen, T. & Levin, E. The effects of dietary proline, β-alanine, and γ-aminobutyric acid (GABA) on the nest construction behavior in the Oriental hornet (Vespa orientalis). Sci. Rep. 12, 7449 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Motro, M., Motro, U., Ishay, J. S. & Kugler, J. Some social and dietary prerequisites of oocyte development in Vespa orientalis L. workers. Ins. Soc. 26, 155–164 (1979).Article 

    Google Scholar 
    Levin, E., McCue, M. D. & Davidowitz, G. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. Proc. R. Soc. B: Biol. Sci. 284, 20162126 (2017).Article 

    Google Scholar 
    Wright, G. A., Nicolson, S. W. & Shafir, S. Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol. 63, 327–344 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Helm, B. R. et al. The geometric framework for nutrition reveals interactions between protein and carbohydrate during larval growth in honey bees. Biol. Open 6, 872–880 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paoli, P. P. et al. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids 46, 1449–1458 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stabler, D., Paoli, P. P., Nicolson, S. W. & Wright, G. A. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. 218, 793–802 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arganda, S. et al. Parsing the life-shortening effects of dietary protein: effects of individual amino acids. Proc. R. Soc. B 284, 20162052 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Csata, E. & Dussutour, A. Nutrient regulation in ants (Hymenoptera: Formicidae): a review. Myrmecol. N. 29, 111–124 (2019).
    Google Scholar 
    Gottsberger, G., Schrauwen, J. & Linskens, H. F. Amino acids and sugars in nectar, and their putative evolutionary significance. Pl. Syst. Evol. 145, 55–77 (1984).Article 
    CAS 

    Google Scholar 
    Ozimek, L. et al. Nutritive value of protein extracted from honey bees. J. Food Sci. 50, 1327–1329 (1985).Article 
    CAS 

    Google Scholar 
    Nicolson, S. W. & Thornburg, R. W. Nectar chemistry. in Nectaries and Nectar (eds. Nicolson, S. W., Nepi, M. & Pacini, E.) 215–264 (Springer Netherlands, 2007). https://doi.org/10.1007/978-1-4020-5937-7_5.Contrera, F. A. L., Imperatriz-Fonseca, V. L. & Koedam, D. Trophallaxis and reproductive conflicts in social bees. Insect Soc. 57, 125–132 (2010).Article 

    Google Scholar 
    Carter, G. G. & Wilkinson, G. S. Food sharing in vampire bats: reciprocal help predicts donations more than relatedness or harassment. Proc. R. Soc. B: Biol. Sci. 280, 20122573 (2013).Article 

    Google Scholar 
    Nalepa, C. A. Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40, 323–335 (2015).Article 

    Google Scholar 
    Werenkraut, V., Arbetman, M. P. & Fergnani, P. N. The Oriental hornet (Vespa orientalis L.): a threat to the Americas? Neotrop. Entomol. 51, 330–338 (2022).Article 
    PubMed 

    Google Scholar 
    Darchen, R. Biologie de Vespa orientalis. Les premiers stades de développement. Ins. Soc. 11, 141–157 (1964).Article 

    Google Scholar 
    Van Itterbeeck, J. et al. Rearing techniques for hornets with emphasis on Vespa velutina (Hymenoptera: Vespidae): A review. J. Asia-Pac. Entomol. 24, 103–117 (2021).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2020).Bouchebti, S., Bodner,L. & Levin, E. Continuous exchange of nectar nutrients in an Oriental hornet colony- Dataset [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7135100 (2022). More

  • in

    Chill coma recovery of Ceratitis capitata adults across the Northern Hemisphere

    De Meyer, M., Robertson, M., Peterson, A. & Mansell, M. Ecological niches and potential geographical distributions of Mediterranean fruit fly (Ceratitis capitata) and Natal fruit fly (Ceratitis rosa). J. Biogeogr. 35, 270–281 (2008).
    Google Scholar 
    Nguyen, A. D. et al. Trade-offs in cold resistance at the northern range edge of the common woodland ant Aphaenogaster picea (Formicidae). Am. Nat. 194, E151–E163 (2019).Article 
    PubMed 

    Google Scholar 
    Gilioli, G. et al. Non-linear physiological responses to climate change: the case of Ceratitis capitata distribution and abundance in Europe. Biol. Invasions 24, 261–279 (2022).Article 

    Google Scholar 
    Lancaster, L. T., Dudaniec, R. Y., Hansson, B. & Svensson, E. I. Latitudinal shift in thermal niche breadth results from thermal release during a climate-mediated range expansion. J. Biogeogr. 42, 1953–1963 (2015).Article 

    Google Scholar 
    Hallas, R., Schiffer, M. & Hoffmann, A. A. Clinal variation in Drosophila serrata for stress resistance and body size. Genet. Res. 79, 141–148 (2002).Article 
    PubMed 

    Google Scholar 
    Hoffmann, A. A., Anderson, A. & Hallas, R. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol. Lett. 5, 614–618 (2002).Article 

    Google Scholar 
    Ragland, G. & Kingsolver, J. Influence of seasonal timing on thermal ecology and thermal reaction norm evolution in Wyeomyia smithii. J. Evol. Biol. 20, 2144–2153 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    MacMillan, H. A. & Sinclair, B. J. Mechanisms underlying insect chill-coma. J. Insect Physiol. 57, 12–20 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Neilson, E. W. et al. There’sa storm a-coming: Ecological resilience and resistance to extreme weather events. Ecol. Evol. 10, 12147–12156 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Overgaard, J., Hoffmann, A. A. & Kristensen, T. N. Assessing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. J. Therm. Biol. 36, 409–416 (2011).Article 

    Google Scholar 
    Maysov, A. Chill coma temperatures appear similar along a latitudinal gradient, in contrast to divergent chill coma recovery times, in two widespread ant species. J. Exp. Biol. 217, 2650–2658 (2014).Article 
    PubMed 

    Google Scholar 
    David, R. J. et al. Cold stress tolerance in Drosophila: analysis of chill coma recovery in D. melanogaster. J. therm. biol. 23, 291–299 (1998).Article 

    Google Scholar 
    Overgaard, J. & MacMillan, H. A. The integrative physiology of insect chill tolerance. Annu. Rev. Physiol. 79, 187–208 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Andersen, M. K. & Overgaard, J. The central nervous system and muscular system play different roles for chill coma onset and recovery in insects. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 233, 10–16 (2019).Article 
    CAS 

    Google Scholar 
    Macdonald, S., Rako, L., Batterham, P. & Hoffmann, A. Dissecting chill coma recovery as a measure of cold resistance: evidence for a biphasic response in Drosophila melanogaster. J. Insect Physiol. 50, 695–700 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gibert, P., Moreteau, B., Pétavy, G., Karan, D. & David, J. R. Chill-coma tolerance, a major climatic adaptation among Drosophila species. Evolution 55, 1063–1068 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ayrinhac, A. et al. Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability. Funct. Ecol. 18, 700–706 (2004).Article 

    Google Scholar 
    Castañeda, L. E., Lardies, M. A. & Bozinovic, F. Interpopulational variation in recovery time from chill coma along a geographic gradient: a study in the common woodlouse, Porcellio laevis. J. Insect Physiol. 51, 1346–1351 (2005).Article 
    PubMed 

    Google Scholar 
    Tonione, M. A., Cho, S. M., Richmond, G., Irian, C. & Tsutsui, N. D. Intraspecific variation in thermal acclimation and tolerance between populations of the winter ant Prenolepis imparis. Ecol. Evol. 10, 4749–4761 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karl, I., Janowitz, S. A. & Fischer, K. Altitudinal life-history variation and thermal adaptation in the copper butterfly Lycaena tityrus. Oikos 117, 778–788 (2008).Article 

    Google Scholar 
    Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).Article 
    PubMed 

    Google Scholar 
    Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. In Proceedings of the Royal Society of London. Series B: Biological Sciences 267, 739–745 (2000).Poikela, N., Tyukmaeva, V., Hoikkala, A. & Kankare, M. Multiple paths to cold tolerance: the role of environmental cues, morphological traits and the circadian clock gene vrille. BMC ecol. Evol. 21, 1–20 (2021).
    Google Scholar 
    Andersen, J. L. et al. How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct. Ecol. 29, 55–65 (2015).Article 

    Google Scholar 
    Papadopoulos, N., Katsoyannos, B., Carey, J. & Kouloussis, N. Seasonal and annual occurrence of the Mediterranean fruit fly (Diptera: Tephritidae) in northern Greece. Ann. Entomol. Soc. Am. 94, 41–50 (2001).Article 

    Google Scholar 
    Malacrida, A. et al. Globalization and fruitfly invasion and expansion: the medfly paradigm. Genetica 131, 1–9 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Egartner, A., Lethmayer, C., Gottsberger, R. A. & Blümel, S. In Joint Meeting of the IOBC-WPRS Working Groups “Pheromones and other semiochemicals in integrated production” & “Integrated Protection of Fruit Crops” at. 143–152.Nyamukondiwa, C., Kleynhans, E. & Terblanche, J. S. Phenotypic plasticity of thermal tolerance contributes to the invasion potential of mediterranean fruit flies (Ceratitis capitata). Ecol. Entomol. 35, 565–575 (2010).Article 

    Google Scholar 
    Weldon, C. W., Terblanche, J. S. & Chown, S. L. Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J. Therm. Biol. 36, 479–485 (2011).Article 

    Google Scholar 
    Pujol-Lereis, L. M., Rabossi, A. & Quesada-Allué, L. A. Analysis of survival, gene expression and behavior following chill-coma in the medfly Ceratitis capitata: effects of population heterogeneity and age. J. Insect Physiol. 71, 156–163 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pujol-Lereis, L. M., Fagali, N. S., Rabossi, A., Catalá, Á. & Quesada-Allué, L. A. Chill-coma recovery time, age and sex determine lipid profiles in Ceratitis capitata tissues. J. Insect Physiol. 87, 53–62 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Weldon, C. W., Nyamukondiwa, C., Karsten, M., Chown, S. L. & Terblanche, J. S. Geographic variation and plasticity in climate stress resistance among southern African populations of Ceratitis capitata (Wiedemann)(Diptera: Tephritidae). Sci. Rep. 8, 1–13 (2018).Article 
    CAS 

    Google Scholar 
    Nyamukondiwa, C., Weldon, C. W., Chown, S. L., le Roux, P. C. & Terblanche, J. S. Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests. J. Insect Physiol. 59, 1199–1211 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mitchell, K. A., Boardman, L., Clusella-Trullas, S. & Terblanche, J. S. Effects of nutrient and water restriction on thermal tolerance: A test of mechanisms and hypotheses. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 212, 15–23 (2017).Article 
    CAS 

    Google Scholar 
    Hoffmann, A. A. & Ross, P. A. Rates and patterns of laboratory adaptation in (mostly) insects. J. Econ. Entomol. 111, 501–509 (2018).Article 
    PubMed 

    Google Scholar 
    Popa-Báez, Á. -D. et al. Climate stress resistance in male Queensland fruit fly varies among populations of diverse geographic origins and changes during domestication. BMC Genet. 21, 1–19 (2020).Article 

    Google Scholar 
    Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 1–12 (2018).Article 

    Google Scholar 
    Kozak, K. H., Graham, C. H. & Wiens, J. J. Integrating GIS-based environmental data into evolutionary biology. Trends Ecol. Evol. 23, 141–148 (2008).Article 
    PubMed 

    Google Scholar 
    Oyen, K. J. et al. Body mass and sex, not local climate, drive differences in chill coma recovery times in common garden reared bumble bees. J. Comp. Physiol. B. 191, 843–854 (2021).Article 
    PubMed 

    Google Scholar 
    Angert, A. L., Bontrager, M. G. & Ågren, J. What do we really know about adaptation at range edges?. Annu. Rev. Ecol. Evol. Syst. 51, 341–361 (2020).Article 

    Google Scholar 
    Terblanche, J. S. & Hoffmann, A. A. Validating measurements of acclimation for climate change adaptation. Curr. Opin. insect sci. 41, 7–16 (2020).Article 
    PubMed 

    Google Scholar 
    Kourti, A. Patterns of variation within and between Greek populations of Ceratitis capitata suggest extensive gene flow and latitudinal clines. J. Econ. Entomol. 97, 1186–1190 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hangartner, S., Lasne, C., Sgrò, C. M., Connallon, T. & Monro, K. Genetic covariances promote climatic adaptation in Australian Drosophila. Evolution 74, 326–337 (2020).Article 
    PubMed 

    Google Scholar 
    Bontrager, M. & Angert, A. L. Gene flow improves fitness at a range edge under climate change. Evol. Let. 3, 55–68 (2019).Article 

    Google Scholar 
    Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 1–8 (2018).
    Google Scholar 
    Schwartz, M. D., Ahas, R. & Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 12, 343–351 (2006).Article 

    Google Scholar 
    Ma, Q., Huang, J. G., Hänninen, H. & Berninger, F. Divergent trends in the risk of spring frost damage to trees in Europe with recent warming. Glob. Change Biol. 25, 351–360 (2019).Article 

    Google Scholar 
    Unterberger, C. et al. Spring frost risk for regional apple production under a warmer climate. PLoS ONE 13, e0200201 (2018).Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 
    Manrakhan, A., Daneel, J.-H., Stephen, P. R. & Hattingh, V. Cold Tolerance of Immature Stages of Ceratitis capitata and Bactrocera dorsalis (Diptera: Tephritidae). J. Econ. Entomol. 115(2), 482–492 (2022).Article 
    PubMed 

    Google Scholar 
    Papadopoulos, N. T., Carey, J. R., Katsoyannos, B. I. & Kouloussis, N. A. Overwintering of the mediterranean fruit fly (Diptera: Tephritidae) in Northern Greece. Ann. Entomol. Soc. Am. 89, 526–534 (1996).Article 

    Google Scholar 
    Papadopoulos, N. T., Katsoyannos, B. I. & Carey, J. R. Temporal changes in the composition of the overwintering larval population of the Mediterranean fruit fly (Diptera: Tephritidae) in Northern Greece. Ann. Entomol. Soc. Am. 91, 430–434 (1998).Article 

    Google Scholar 
    Katsoyannos, B. I., Kouloussis, N. A. & Carey, J. R. Seasonal and annual occurrence of Mediterranean fruit flies (Diptera: Tephritidae) on Chios Island, Greece: Differences between two neighboring citrus orchards. Ann. Entomol. Soc. Am. 91, 43–51 (1998).Article 

    Google Scholar 
    Mavrikakis, P. G., Economopoulos, A. P. & Carey, J. R. Continuous winter reproduction and growth of the mediterranean fruit fly (Diptera: Tephritidae) in Heraklion, crete Southern Greece. Environ. Entomol. 29, 1180–1187 (2000).Article 

    Google Scholar 
    Israely, N., Ziv, Y. & Oman, S. D. Spatiotemporal distribution patterns of Mediterranean fruit fly (Diptera: Tephritidae) in the central region of Israel. Ann. Entomol. Soc. Am. 98, 77–84 (2005).Article 

    Google Scholar 
    Bahrndorff, S., Lauritzen, J. M., Sørensen, M. H., Noer, N. K. & Kristensen, T. N. Responses of terrestrial polar arthropods to high and increasing temperatures. J. Exp. Biol. 224, jeb230797 (2021).Article 
    PubMed 

    Google Scholar 
    Sinclair, B. J. & Roberts, S. P. Acclimation, shock and hardening in the cold. J. Therm. Biol. 30, 557–562 (2005).Article 

    Google Scholar 
    Bahrndorff, S., Gertsen, S., Pertoldi, C. & Kristensen, T. N. Investigating thermal acclimation effects before and after a cold shock in Drosophila melanogaster using behavioural assays. Biol. J. Lin. Soc. 117, 241–251 (2016).Article 

    Google Scholar 
    Sarmad, M., Ishfaq, A., Arif, H. & Zaka, S. M. Effect of short-term cold temperature stress on development, survival and reproduction of Dysdercus koenigii (Hemiptera: Pyrrhocoridae). Cryobiology 92, 47–52 (2020).Article 
    PubMed 

    Google Scholar 
    Steyn, V. M., Mitchell, K. A., Nyamukondiwa, C. & Terblanche, J. S. Understanding costs and benefits of thermal plasticity for pest management: Insights from the integration of laboratory, semi-field and field assessments of Ceratitis capitata (Diptera: Tephritidae). Bull. Entomol. Res., 1–11 (2022).Davis, H. E., Cheslock, A. & MacMillan, H. A. Chill coma onset and recovery fail to reveal true variation in thermal performance among populations of Drosophila melanogaster. Sci. Rep. 11, 1–10 (2021).Article 

    Google Scholar 
    Noh, S., Everman, E. R., Berger, C. M. & Morgan, T. J. Seasonal variation in basal and plastic cold tolerance: Adaptation is influenced by both long-and short-term phenotypic plasticity. Ecol. Evol. 7, 5248–5257 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bruins, H. J. Ancient desert agriculture in the Negev and climate-zone boundary changes during average, wet and drought years. J. Arid Environ. 86, 28–42 (2012).Article 

    Google Scholar 
    Hoffmann, A. A., Sørensen, J. G. & Loeschcke, V. Adaptation of Drosophila to temperature extremes: Bringing together quantitative and molecular approaches. J. Therm. Biol. 28, 175–216 (2003).Article 

    Google Scholar 
    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).Article 

    Google Scholar 
    Nyamukondiwa, C. & Terblanche, J. S. Thermal tolerance in adult mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): Effects of age, gender and feeding status. J. Therm. Biol. 34, 406–414 (2009).Article 

    Google Scholar 
    Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Mazerolle, M. J. Model selection and multimodel inference using the AICcmodavg package (2020).Therneau, T. A Package for Survival Analysis in R. R Package Version 3.2-13.(2021. (2021).Kassambara, A., Kosinski, M., Biecek, P. & Fabian, S. Survminer: Drawing Survival Curves using’ggplot2′. R package version 0.4. 9. 2021. (2021).Lenth, R. V. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.2. (2022). More

  • in

    Mapping tropical forest functional variation at satellite remote sensing resolutions depends on key traits

    We hypothesized that functionally distinct forest types can be mapped at moderate spatial resolutions, using a combination of canopy foliar traits and canopy structure information. Our analysis of LiDAR and imaging spectroscopy data at spatial resolutions ranging from 4 to 200 m (16 m2–40,000 m2), with an emphasis on the 30 m (900 m2) spaceborne hyperspectral spatial resolution, reveals that few remotely sensed canopy properties are needed to successfully identify ecologically distinct forest types at two diverse tropical forest sites in Malaysian Borneo. In testing our second hypothesis that mapped forest types exhibit distinct ecosystem function, we found that forest types identified using remotely sensed leaf P, LMA, Max H, and canopy cover at 20 m height (Cover20) closely align with forest types defined from field-based floristic surveys29,30,31,32,33 and inventory plot-based measurements of growth and mortality rates (Fig. 4b). Our approach, however, enables mapping of their entire spatial extent (Fig. 1) and reveals important structural and functional variation within areas characterized as a single forest type in previous studies (Fig. 3). Current and forthcoming satellite hyperspectral platforms, including PRISMA (30 m), CHIME (20–30 m), and SBG (30 m), have or will have comparable spectral resolution, higher temporal revisits, and much greater geographic coverage. The ability to conduct this type of analysis using remote sensing measurements at 30 m resolution suggests that our method can be applied to these emerging spaceborne imaging spectroscopy data to reveal important differences in structure and function across the world’s tropical forests.Nested functional forest types revealedTo test our first hypothesis, rather than making an a priori decision about the number of k-means clusters (k), we explored the capacity of remotely sensed data to reveal ecologically relevant variation in forest types. Baldeck and Asner took a similar unsupervised approach to estimating beta diversity in South Africa34. Because the choice of k directly influences analysis outcomes, careful selection of k is required. Different approaches for identifying the number of clusters, using the Gapk and Wk elbow metrics35, yielded varying optimal numbers of clusters for the Sepilok and Danum landscapes (Fig. 1, Supplementary Figs. 4 and 5). However, at both sites, a comparison of results based on different values of k revealed ecologically meaningful structural and functional differences and graduated transitions between forest types (Fig. 2, Supplementary Figs. 7 and 8), indicating that the exploration of traits that aggregate or separate forest types as k changes is a valuable exercise. Overlap between the remotely sensed forest type boundaries and inventory plots within distinct forest types indicate that the series of clustered forests align closely with forest types defined based on in situ data on species composition and ecosystem structure. In part, this type of analysis requires careful selection of the number of clusters. Additionally, however, we gained valuable insights via the exploration of varying numbers of clusters as it relates to biologically meaningful categorization of forest types. Extending this method to other parts of the tropics will require similar decision-making, which will either require user input, or the development of robust automated algorithms for selecting k.Forest types capture differences in ecosystem dynamicsWe further evaluated the canopy traits and structural attributes that were most critical for mapping distinct forest types, hypothesizing that mapped forest types exhibit distinct ecosystem function. Forest types revealed by the cluster analyses were distributed along the leaf economic spectrum, where the leaf economic spectrum characterizes a tradeoff in plant growth strategies36. LMA, which can covary strongly with leaf N and P, is a key indicator of plant growth strategies along the spectrum37. At the slow-return end of the leaf economics spectrum, plants in nutrient-poor conditions with low leaf nutrient concentrations invest in leaf structure and defense, expressed as high LMA, strategizing longer-lived, tougher leaves with slower decomposition rates. This strategy comes at the cost of slower growth. At the quick-return end of the spectrum, plants in nutrient-rich environments with higher leaf nutrient concentrations invest less in structure and defense, enabling faster growth and more rapid leaf turnover, i.e., shorter leaf lifespans. This quick-return growth strategy supports higher photosynthetic rates and more rapid carbon gain36.In this study, the principal components and clustering results yielded forest types that are indicative of community level differences associated with leaf economic spectrum differences. The nutrient rich sites (Danum1 and Danum2, Supplementary Fig. 8) show high canopy N and P and low LMA compared to the nutrient poor and acidic sites (Sandstone and Kerangas), which contributes to lower leaf photosynthetic capacity (Vcmax) and growth (Fig. 4b). Foliar N:P also increased with site fertility, confirming that tropical forests are primarily limited by phosphorus, and not nitrogen38,39, with large implications for carbon sequestration in these forests. Orthogonal differences in canopy structure and architecture between Danum forest types and Sepilok Sandstone and Alluvial forests could be indicative of ecosystem scale differences in the sensitivity of these forests to endogenous disturbance processes40.The significant differences in aboveground carbon stocks and growth and mortality rates between forest types further suggests strong differences in ecosystem dynamics. In general, growth rates varied inversely to aboveground carbon, and higher aboveground carbon corresponded to lower mortality rates. As an example, the Sepilok sandstone forests, which are largely comprised of slow-growing dipterocarp species29,33, had the highest median aboveground carbon (236 Mg C ha−1), with higher canopy P and N, and lower LMA. The taller canopy and low canopy leaf nutrient concentrations are consistent with the low growth and mortality rates found in the sandstone forest, indicating a slow-growth strategy yielding larger trees and higher aboveground carbon stocks. In contrast, alluvial forests exhibit high turnover with mortality and growth rates higher relative to Sandstone forests corresponding to lower aboveground carbon on average. Kerangas forests exhibited low aboveground carbon despite an intermediate plot-level growth rate, and mortality rates that were significantly lower than the Danum or alluvial forest types. Kerangas forests, which were characterized by the highest LMA, lowest foliar P and N (Fig. 2a), and the lowest plot-level aboveground carbon density (186 Mg C ha−1; Fig. 4a), are known to have higher stem densities, lower canopy heights, and long-lived leaves5,32,41, suggesting well-developed strategies for nutrient retention42. Interestingly, despite significantly different aboveground carbon and demography, the kerangas and sandstone forests did not differ in LAI or canopy architecture (P:H); although maximum height, Cover20, and Hpeak LAI were significantly higher in the sandstone forest, highlighting the need to account for differences beyond LAI when scaling processes from leaves to ecosystems.In addition, when three forest types were distinguished at Sepilok, the alluvial inventory plot had significantly higher aboveground carbon than the remote sensing-derived alluvial forest extent (Fig. 4a, p  More