More stories

  • in

    Morphological diversity and molecular phylogeny of five Paramecium bursaria (Alveolata, Ciliophora, Oligohymenophorea) syngens and the identification of their green algal endosymbionts

    Molecular Phylogeny of Paramecium bursaria and Identification of its EndosymbiontsThe SSU and ITS rDNA of the nuclear ribosomal operon were sequenced to infer the genetic variability of the investigated strains. The SSU and ITS rDNA sequences were aligned according to their secondary structure (examples are presented for the strain SAG 27.96; Fig. 1 and Supplementary Fig. 1). Additional sequences acquired from GenBank were incorporated into a dataset, which included all syngens also from references known for P. bursaria. The phylogenetic analyses revealed five highly supported lineages among the P. bursaria strains, which corresponded to their syngen assignment. As demonstrated in Fig. 2, all investigated strains belonging to the syngens R1, R2 and R5 originated from Europe, whereas the others of the syngens R3-R4 showed a worldwide distribution. The three known green algal endosymbionts, i.e., Chlorella variabilis (Cvar), Chlorella vulgaris (Cvul) and Micractinium conductrix (Mcon) showed no or only little affiliation to specific syngens.Figure 1ITS‐1 (A) and ITS-2 (B) secondary structures of Paramecium protobursaria, SAG 27.96 (syngen R1).Full size imageFigure 2Molecular phylogeny of the Paramecium bursaria species complex based on SSU and ITS rDNA sequence comparisons. The phylogenetic tree shown was inferred using the maximum likelihood method based on the datasets (2197 aligned positions of 19 taxa) using the computer program PAUP 4.0a169. For the analyses, the best model was calculated by PAUP 4.0a169. The setting of the best model was given as follows: TVM + I (base frequencies: A 0.2983, C 0.1840, G 0.2271, T 0.2906; rate matrix A–C 2.6501, A–G 8.6851, A–U 5.3270, C–G 0.91732, C–U 8.6851, G–U 1.0000) with the proportion of invariable sites (I = 0.9544). The branches in bold are highly supported in all bootstrap analyses (bootstrap values  > 50% calculated with PAUP using the maximum likelihood, neighbour—joining, and maximum parsimony). The clades are named after the syngens (color‐coded) proposed by Greczek‐Stachura et al.10 and Bomford9 in brackets. The accession numbers are given after the strain numbers. The endosymbiotic green algae identified are highlighted (Mcon—Micractinium conductrix, Cvar—Chlorella variabilis and Cvul—Chlorella vulgaris) after the origin of the P. bursaria strains. The reference strain of each syngen is marked with an asterisk. The strains used for morphological comparisons are marked with a green dot next to the strain number.Full size imageSynapomorphies of the Paramecium bursaria SyngensAs demonstrated in Fig. 2, the subdivision of the P. bursaria strains into syngens is supported by the phylogenetic analyses of the SSU and ITS rDNA sequences. To figure out if these splits were also supported by characteristic molecular signatures, we studied the secondary structures of both SSU and ITS of all available sequences. We discovered 30, respectively 23 variable positions among the SSU and ITS sequences (numbers of these positions in the respective alignments are given in Fig. 3). All syngens showed characteristic patterns among the SSU and ITS. Only the syngens R1 and R2 could not be distinguished using the SSU only, however, in combination with the ITS, each syngen is characterized by unique synapomorphies as highlighted in yellow (Fig. 3). In addition, few variable base positions within syngens (marked in blue in Fig. 3) have been recognized in the ITS regions. For comparison with literature data, we also analyzed all available sequences of the mitochondrial COI gene to find synapomorphies for the five syngens. Within this gene, only 18 variable positions at the amino acid level could be discovered of which 13 are diagnostic for the five syngens (Fig. 3).Figure 3Variable base positions among the SSU, ITS rRNA, and COI sequences of the five syngens among the Paramecium bursaria species complex. The unique synapomorphies are highlighted in yellow, variable positions marked in blue.Full size imageThe synapomorphies discovered above were used to get insights into the geographical distribution of each P. bursaria syngen. Despite the complete SSU and ITS rDNA sequences included in the phylogeny presented in Fig. 2, records of the partial SSU or ITS rDNA sequences are available in GenBank (BLASTn search; 100% identity;13). Considering the metadata of our investigated strains and of the entries in GenBank (Supplementary Table 1), we constructed three haplotype networks using the Templeton-Crandall-Sing (TCS) approach. The SSU haplotype network (Fig. 4) containing 84 records showed that the syngens R1, R2 and R5 were only found in Europe, whereas the other three syngens have been discovered around the world. A similar distribution pattern occurred when using the ITS (101 entries in GenBank). Records of syngens R1 and R5 have only been found in Europe, whereas all other syngens were distributed around the world. The 132 COI records found in GenBank by the BLASTn search were used for the haplotype network, which also showed the similar pattern (Fig. 4).Figure 4TCS haplotype networks of the five syngens inferred from SSU, ITS rRNA, and COI sequences of the Paramecium bursaria species complex. This network was inferred using the algorithm described by Clement et al.40,41. Sequence nodes corresponding to samples collected from different geographical regions.Full size imageCiliate TaxonomyConsidering all our findings, P. bursaria is morphologically highly variable, and obviously represents a cryptic species complex (Figs. 5, 6; Supplementary Table 2). The known five syngens most likely represent biological species according to Mayr14 and can be attributed to the cryptic species described by Greczek-Stachura et al.11. As mentioned above, the assignments of these cryptic species by Greczek-Stachura et al.11 have not been validly described according to the ICZN. In addition, the naming using a mixture of Latin prefix and Greek suffix is also not appropriate (the epithet bursa derived from the Greek word byrsa). Therefore, we describe the five syngens as new species as follows. The general morphological features of these species are summarized in Table 1.Figure 5Ventral views of Paramecium bursaria morphotypes in vivo: P. protobursaria (syngen R1), i.e., strains SAG 2645 (A) and PB-25 (B); P. deuterobursaria (syngen R2), i.e., strains CCAP 1660/36 (C) and CCAP 1660/34 (D); P. tritobursaria (syngen R3), i.e., strains CCAP 1660/28 (E), CCAP 1660/26 (F) and CCAP 1660/31 (G); P. tetratobursaria (syngen R4), i.e., strains CCAP 1660/25 (H) and CCAP 1660/33 (I); P. pentobursaria (syngen R5), i.e., strain CCAP 1660/30 (J). Scale bar 20 µm.Full size imageFigure 6Morphological details of the Paramecium bursaria species complex from specimens of strains PB-25 (A), CCAP 1660/30 (B), SAG 2645 (C, F, G, I, L–N), CCAP 1660/36 (D), CCAP 1660/26 (E, H), CCAP 1660/30 (J, O), CCAP 1660/16 (K) in vivo (A–F, H–O) and after silver nitrate staining (G). Adoral membranelles (A, B), endosymbiotic algae Micractinium conductrix (C), caudal and somatic cilia (D), arrows denote excretory pores of the contractile vacuoles: extruded extrusomes are shown and caudal cilia (E), ventral views showing the preoral suture and the oral opening (F), the ciliary pattern (G), arrows denote excretory pores of the contractile vacuoles (H), trichocysts and symbiotic algae underneath the pellicula (I, J), cell size variations (K), radial collecting channels (white arrows) and excretory pores (black arrows) of contractile vacuoles (L), macro- and micronucleus (M), cytopyge and characteristic rectangular pellicular pattern (N), pattern of the pellicula (O). AS anterior suture, CC caudal cilia, CP cytopyge (cell after), CV contractile vacuole, EP excretory pore of a contractile vacuole, EX extrusomes, M1–M3 membranelles 1–3, MA macronucleus, MI micronucleus, OO oral opening, S symbiotic algae, SC somatic cilia, SK somatic kineties, UM undulating membrane. Scale bars 10 µm (A, I), 20 µm (B, D–H, J, L–O), 50 µm (K).Full size imageTable 1 Main morphometric and morphological characteristics of the Paramecium bursaria syngens (min and max values).Full size table
    Paramecium protobursaria sp. nov.Synonym: Paramecium primabursaria nom. inval.Description: The strains SAG 27.96 and PB-25 belong to syngen R1 according to Greczek-Stachura et al.10,11 and differ from other syngens by their SSU and ITS rDNA sequences (MT231333). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 70–164 × 44–65 µm; the single macronucleus is located around mid-cell and measures 25–38 × 11–22 µm; the adjacent single compact micronucleus measures 11–20 × 5–8 µm; the usually two (rarely one) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–3 excretory pores each; the number of ciliary rows/20 µm is 14–22; the length of the caudal cilia is 9–19 µm; the numerous trichocysts located in the cell cortex are 4–6 µm in length. The symbiotic algae belong to M. conductrix; the larger algae measure 4–7 × 4–7 µm; the smaller algal cells measure 2–5 × 2–5 µm.Geographic distribution: The investigated strains of syngen R1 were found in Europe: Göttingen, Germany; Lake Mondsee, Austria. In addition, this species has been reported from different places in Europe, Asia and North America (see details in Supplementary Table 1).Reference material: Strain SAG 27.96 and the clonal strain SAG 2645 derived from SAG 27.96 are available at the Culture Collection of Algae (SAG), University of Göttingen, Germany.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the clonal culture SAG 2645, which derived from the reference material SAG 27.96, isolated from the pond of the Old Botanical Garden of the University of Göttingen (Germany), have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: AFD967ED-BC2A-43FD-847E-5DF588BB025C.
    Paramecium deuterobursaria sp. nov.Synonym: Paramecium bibursaria nom. inval.Description: The strains CCAP 1660/34 and CCAP 1660/36 belong to syngen R2 according to Greczek-Stachura et al.10,11 and differ from other syngens by their SSU and ITS rDNA sequences (OK318487). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 81–167 × 35–83 µm; the single macronucleus is located around mid-cell and measures 24–46 × 10–32 µm; the adjacent single compact micronucleus measures 10–18 × 5–9 µm, no micronucleus seen in live cells of strain CCAP 1660/34; the usually two (rarely one or three) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–3 excretory pores each; the number of ciliary rows/20 µm is 13–22; the length of the caudal cilia is 11–20 µm; the numerous trichocysts located in the cell cortex are 4–6 µm in length. The symbiotic algae belong to M. conductrix; the larger algae measure 5–7 × 4–7 µm; the smaller algal cells measure 3–5 × 2–5 µm.Geographic distribution: The investigated strains of syngen R2 were found in Europe: Zurich, Switzerland; Lake Piburg, Austria. In addition, this species has been reported from different places in Europe, Asia and Australia (see details in Supplementary Table 1).Reference material: Strain CCAP 1660/36 is available at the Culture Collection of Algae and Protozoa (CCAP) at the Scottish Association for Marine Science, Oban, Scotland.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the reference material CCAP 1660/36, isolated from Lake Piburg (Tyrol, Austria), have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: D1C20BE6-9A15-4A3D-A7E5-DFC31FF04679.
    Paramecium tritobursaria sp. nov.Synonym: Paramecium tribursaria nom. inval.Description: The strains CCAP 1660/26, CCAP 1660/28 and CCAP 1660/31 belong to syngen R3 according to Greczek-Stachura et al.10,11 and differ from other syngens by their SSU and ITS rDNA sequences (MT231339). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 80–153 × 49–73 µm; the single macronucleus is located around mid-cell and measures 21–53 × 12–31 µm; the adjacent single compact micronucleus measures 9–17 × 3–6 µm; no micronucleus seen in live cells of strain CCAP 1660/28; the usually two (rarely one or three) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–3 excretory pores each; the number of ciliary rows/20 µm is 12–20; the length of the caudal cilia is 8–19 µm; the numerous trichocysts located in the cell cortex are 4–6 µm in length. The symbiotic algae belong to C. variabilis; the larger algae measure 4–7 × 3–6 µm; the smaller algal cells measure 3–5 × 2–4 µm.Geographic distribution: The investigated strains of syngen R3 were found in Europe and Asia: Lake Piburg, Austria; Tokyo, Japan; Khabarovsk region, Amur River, Russia. In addition, this species has been reported from different places in Europe, Asia, North and South America as well as in Australia (see details in Supplementary Table 1).Reference material: Strain CCAP 1660/26 is available at the Culture Collection of Algae and Protozoa (CCAP) at the Scottish Association for Marine Science, Oban, Scotland.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the reference material CCAP 1660/26, isolated from Japan, have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: CC0FBA7E-9E3A-4C37-B424-C9BFF2018EC0.
    Paramecium tetratobursaria sp. nov.Synonym: Paramecium tetrabursaria nom. inval.Description: The strains CCAP 1660/25 and CCAP 1660/33 belong to syngen R4 according to Greczek-Stachura et al.10,11 and differ from other syngens by their SSU and ITS rDNA sequences (MT231347). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 65–179 × 37–79 µm; the single macronucleus is located around mid-cell and measures 18–53 × 10–29 µm; the adjacent single compact micronucleus measures 8–18 × 4–10 µm; the usually two (rarely one or three) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–3 excretory pores each; the number of ciliary rows/20 µm is 14–19; the length of the caudal cilia is 12–20 µm; the numerous trichocysts located in the cell cortex are 4–7 µm in length. The symbiotic algae belong to C. variabilis (CCAP 1660/25) and M. conductrix (CCAP 1660/33); the larger algae measure 3–6 × 3–6 µm; the smaller algal cells measure 2–5 × 1–4 µm.Geographic distribution: The investigated strains of syngen R4 are found in North- and South America: Burlington, North Carolina, USA; San Pedro de la Paz, Laguna Grande, Chile. In addition, this species has been reported from Europe (see details in Supplementary Table 1).Reference material: Strain CCAP 1660/25 is available at the Culture Collection of Algae and Protozoa (CCAP) at the Scottish Association for Marine Science, Oban, Scotland.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the reference material CCAP 1660/25, isolated from a pond in Burlington (North Carolina, USA), have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: 78BA9923-07A9-4918-AD7C-9E5E15CC9CDB.
    Paramecium pentobursaria sp. nov.Synonym: Paramecium pentabursaria nom. inval.Description: The strain CCAP 1660/30 belongs to syngen R5 according to Greczek-Stachura et al.10,11 and differs from other syngens by their SSU and ITS rDNA sequences (MT231348). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 161–194 × 76–99 µm; the single macronucleus is located around mid-cell and measures 24–47 × 19–31 µm; the adjacent single compact micronucleus measures 13–20 × 4–9 µm; the usually two (rarely one or three) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–4 excretory pores each; the number of ciliary rows/20 µm is 13–19; the length of the caudal cilia is 14–25 µm; the numerous trichocysts located in the cell cortex are 5–7 µm in length. The symbiotic algae belong to C. variabilis; the larger algae measure 5–6 × 5–6 µm; the smaller algal cells measure 4–5 × 3–4 µm.Geographic distribution: The investigated strain of Syngen R5 was found in Europe: Astrakhan Nature Reserve, Russia.Reference material: Strain CCAP 1660/30 is available at the Culture Collection of Algae and Protozoa (CCAP) at the Scottish Association for Marine Science, Oban, Scotland.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the reference material CCAP 1660/30, isolated from Astrakhan Nature Reserve (Russia), have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: 6629FA71-E00F-48C6-83AB-61C0CA4823B6.Syngen Affiliation related to Ciliate Morphology, Endosymbionts and Geographic DistributionPearson-correlations of morphometric, syngen-specific and endosymbiont datasets of the P. bursaria strains revealed four significant positive correlations (p  r  > 0.75) between ciliate cell length (BLEN) and width (BWID), BWID and macronucleus width (MACWID), as well as length and width of large symbiotic algae (LSALEN and LSAWID; Fig. 7).Figure 7Pearson-correlations of morphometric, symbiont and syngen data of Paramecium strains under study. Colored dots indicate the strength of correlation, and the size of dots represent p-values. Bold squares highlight significant correlations, with − 0.75  > r  > 0.75 and p  1, accounting for 73.1% variation in total (Supplementary Table 3). Principal component axis 1 (PC1) appears to be most negatively weighted by syngen (SYN) and width of the macronucleus (MACWID), separating CCAP 1660/30 and CCAP 1660/33 from the other strains. Principal component axis 2 (PC2) is primarily positively influenced by symbiotic algae characteristics (LSALEN, LSAWID, small symbiotic algal length (SSALEN) and width (SSAWID)) and, ciliate cell length (BLEN) and width (BWID; Supplementary Table 4), partitioning strain PB-25, CCAP 1660/26 and CCAP 1660/36 from CCAP 1660/31 and SAG 27.96 (Fig. 8).Figure 8PCA of morphometric data of Paramecium bursaria strains. Only the top eight contributing variables are shown.Full size imageThe redundancy analysis (RDA; Fig. 9) revealed a large difference between morphometric features and the tested set of explanatory variables (i.e., algal species (ALSPEC), LSAWID, SSALEN, SYN and GEO) as only 26.9% of the total variation could be explained.Figure 9Ordination diagram for redundancy analysis (RDA) of morphometric data and shown syngen (SYN), geographic region (GEO), and algal features (ALSPEC, LSAWID and SSALEN) as explanatory features.Full size image More

  • in

    Temporal change in plant communities and its relationship to soil salinity and microtopography on the Caspian Sea coast

    Shomurodov, K. F. & Adilov, B. A. Current state of the flora of Vozrozhdeniya Island (Uzbekistan). Arid Ecosyst. 9, 97–103 (2019).
    Google Scholar 
    Adilov, B. et al. Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage. J. Arid Land 13, 71–87 (2020).
    Google Scholar 
    Kuz’mina, Z. V. & Treshkin, S. E. Soil salinization and dynamics of Tugai vegetation in the southeastern Caspian Sea region and in the Aral Sea coastal region. Eurasian Soil Sci. 30, 642–649 (1997).
    Google Scholar 
    Kuz’mina, Z. V., Shinkarenko, S. S. & Solodovnikov, D. A. Main tendencies in the dynamics of floodplain ecosystems and landscapes of the lower reaches of the Syr Darya river under modern changing conditions. Arid Ecosyst. 9, 226–236 (2019).
    Google Scholar 
    Dimeyeva, L. A. Phytogeography of the northeastern coast of the Caspian Sea: Native flora and recent colonizations. J. Arid Land 5, 439–451 (2013).
    Google Scholar 
    Goryaev, I. A. & Korablev, A. P. Halophytic vegetation in the west caspian lowland. Contemp. Probl. Ecol. 13, 514–521 (2020).
    Google Scholar 
    Novikova, N. M., Volkova, N. A., Ulanova, S. S. & Chemidov, M. M. Change in vegetation on meliorated solonetcic soils of the Peri-Yergenian plain over 10 years (Republic of Kalmykia). Arid Ecosyst. 10, 194–202 (2020).
    Google Scholar 
    Ravanbakhsh, M., Amini, T. & Hosseini, S. M. N. Plant species diversity among ecological species groups in the Caspian Sea coastal sand dune; Case study: Guilan Province, North of Iran. Biodiversitas 16, 16–21 (2015).
    Google Scholar 
    Yan, S., Mu, G., Xu, Y. & Zhao, Z. Quarternary environmental evolution of the Lop Nur region, China. Dili Xuebao/Acta Geogr. Sin. 53, 332–340 (1998).
    Google Scholar 
    Hao, H., Ferguson, D. K., Chang, H. & Li, C. S. Vegetation and climate of the Lop Nur area, China, during the past 7 million years. Clim. Change 113, 323–338 (2012).ADS 

    Google Scholar 
    Li, C. et al. Growth and sustainability of Suaeda salsa in the Lop Nur, China. J. Arid Land 10, 429–440 (2018).
    Google Scholar 
    Barrett, G. Vegetation communities on the shores of a salt lake in semi-arid Western Australia. J. Arid Environ. 67, 77–89 (2006).ADS 

    Google Scholar 
    Neffar, S., Chenchouni, H. & Si Bachir, A. Floristic composition and analysis of spontaneous vegetation of Sabkha Djendli in north-east Algeria. Plant Biosyst. 150, 396–403 (2016).
    Google Scholar 
    Yanina, T. A. The Ponto-Caspian region: Environmental consequences of climate change during the Late Pleistocene. Quat. Int. 345, 88–99 (2014).
    Google Scholar 
    Rychagov, G. I. Pleistocene History of the Caspian Sea (Moscow State University, 1977).
    Google Scholar 
    Rychagov, G. I. The level mode of the Caspian Sea during the last 10000. Vestn. Mosk. Univ. Seriya 5 Geogr. 2, 38–49 (1993).
    Google Scholar 
    Kroonenberg, S. B. et al. Solar-forced 2600 BP and Little Ice Age highstands of the Caspian Sea. Quat. Int. 173–174, 137–143 (2007).
    Google Scholar 
    Kasimov, N. S., Lychagin, M. Y. & Kroonenberg, S. B. Geochemical indication of cyclic fluctuations of the caspian sea level. Vestn. Mosk. Univ. Seriya Geogr. 2, 72–77 (2011).
    Google Scholar 
    Kroonenberg, S. B., Badyukova, E. N., Storms, J. E. A., Ignatov, E. I. & Kasimov, N. S. A full sea-level cycle in 65 years: Barrier dynamics along Caspian shores. Sediment. Geol. 134, 257–274 (2000).ADS 

    Google Scholar 
    Bolikhovskaya, N. & Kasimov, N. The evolution of climate and landscapes of the Lower Volga region during the Holocene. Geogr. Environ. Sustain. 3, 78–97 (2010).
    Google Scholar 
    Magomedov, M.M.-R. & Gasanov, S. M. Features of soil changes under crowns of the shrubberies tamarisk (Tamarix meyeri boiss, T. ramosissima zedeb). South Russ. Ecol. Dev. 6, 12–21 (2014).
    Google Scholar 
    Du, N. et al. Facilitation or competition? The effects of the shrub species tamarix chinensis on herbaceous communities are dependent on the successional stage in an impacted coastal wetland of North China. Wetlands 37, 899–911 (2017).
    Google Scholar 
    Jiang, L., Jiapaer, G., Bao, A., Guo, H. & Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 599–600, 967–980 (2017).ADS 
    PubMed 

    Google Scholar 
    Burke, I. C. et al. Plant–soil interactions in temperate grasslands. In Plant-Induced Soil Changes: Processes and Feedbacks (ed. van Breemen, N.) 121–143 (Springer, 1998). https://doi.org/10.1007/978-94-017-2691-7_7.Chapter 

    Google Scholar 
    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
    Google Scholar 
    Abaturov, B. D. Microdepression microrelief of Caspian Lowland and mechanisms of its formation. Arid. Ecosistemy 16, 31–45 (2010).
    Google Scholar 
    Sapanov, M. K. The results of soil water investigations in Djanybek stationary. Dokuchaev Soil Bull. 83, 22–40 (2016).
    Google Scholar 
    Bolshakov, A. F. & Bazykina, G. S. Natural biogeocenoses and the conditions of their existence. In Biogeocenotic Basis of the Reclamation of Semidesert in the Northern Caspain Lowland (ed. Rode, A. A.) 6–34 (Nauka, 1974).
    Google Scholar 
    Konyushkova, M. V., Nukhimovskaya, Y. D., Gasanova, Z. U. & Stepanova, N. Y. The temporal change in variability of soil salinity and phytodiversity at the coastal plain of the Caspian Sea. Arid Ecosyst. 10, 312–321 (2020).
    Google Scholar 
    Semenkov, I., Konyushkova, M., Heidari, A., Nukhimovskaya, Y. & Klink, G. Data on the soilscape and vegetation properties at the key site in the NW Caspian Sea coast, Russia. Data Br. 31, 105972 (2020).
    Google Scholar 
    Konyushkova, M. V. et al. Spatial and seasonal salt translocation in the young soils at the coastal plains of the Caspian Sea. Quat. Int. 590, 15–25 (2021).
    Google Scholar 
    Semenkov, I., Konyushkova, M., Heidari, A. & Nikolaev, E. Chemical differentiation of recent fine-textured soils on the Caspian Sea coast: A case study in Golestan (Iran) and Dagestan (Russia). Quat. Int. 590, 48–55 (2021).
    Google Scholar 
    Haghani, S. et al. An early ‘Little Ice Age’ brackish water invasion along the south coast of the Caspian Sea (sediment of Langarud wetland) and its wider impacts on environment and people. Holocene 26, 3–16 (2016).ADS 

    Google Scholar 
    Panin, G. N., Mamedov, R. M. & Mitrofanov, I. V. Present State of the Caspian Sea (Nauka, 2005).
    Google Scholar 
    Konyushkova, M. V. et al. The spatial differentiation of soil salinity at the young saline coastal plain of the Caspian region. Dokuchaev Soil Bull. 95, 41–57 (2018).
    Google Scholar 
    Cherepanov, S. K. Vascular Plants of Russia and Adjacent States (Within the Former USSR) (Cambridge University Press, 1995).
    Google Scholar 
    Takhtajan, A. Flowering Plants (Springer Science+Business Media B.V, 2009). https://doi.org/10.1007/978-1-4020-9609-9.Book 

    Google Scholar 
    Govaerts, R., Nic Lughadha, E., Black, N., Turner, R. & Paton, A. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew (Board of Trustees of the Royal Botanic Gardens, 2022).Chase, M. W. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).
    Google Scholar 
    Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).
    Google Scholar 
    Clarke, K. R. & Warwick, R. M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35, 523–531 (1998).
    Google Scholar 
    Semenkov, I. N. et al. The variability of soils and vegetation of hydrothermal fields in the Valley of Geysers at Kamchatka Peninsula. Sci. Rep. 11, 11077 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R Packag. version 1.0.0 (2019).Goryaev, I. A. Regularities of distribution of halophytic vegetation on the Caspian Lowland. Bot. Zhurnal 104, 1072–1089 (2019).
    Google Scholar 
    Soltanmuradova, Z. I. & Teimurov, A. A. Taxonomic structure of the flora of the Primorskaya Lowland of the Republic of Dagestan. South Russ. Ecol. Dev. 3, 38 (2010).
    Google Scholar 
    Zörb, C., Sümer, A., Sungur, A., Flowers, T. J. & Özcan, H. Ranking of 11 coastal halophytes from salt marshes in northwest Turkey according their salt tolerance. Turk. J. Botany 37, 1125–1133 (2013).
    Google Scholar 
    Zhao, Y., Yu, H., Zhang, T. & Guo, J. Mycorrhizal colonization of chenopods and its influencing factors in different saline habitats, China. J. Arid Land 9, 143–152 (2017).
    Google Scholar 
    Podar, D. et al. Morphological, physiological and biochemical aspects of salt tolerance of halophyte Petrosimonia triandra grown in natural habitat. Physiol. Mol. Biol. Plants 25, 1335–1347 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nayyar, H. & Gupta, D. Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environ. Exp. Bot. 58, 106–113 (2006).CAS 

    Google Scholar 
    Way, D. A., Katul, G. G., Manzoni, S. & Vico, G. Increasing water use efficiency along the C3 to C4 evolutionary pathway: A stomatal optimization perspective. J. Exp. Bot. 65, 3683–3693 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Atia, A. et al. Ecophysiological aspects in 105 plants species of saline and arid environments in Tunisia. J. Arid Land 6, 762–770 (2014).
    Google Scholar 
    Pickett, S. T. A. Space-for-time substitution as an alternative to long-term studies. In Long-Term Studies in Ecology 110–135 (1989) https://doi.org/10.1007/978-1-4615-7358-6_5.Walker, L. R., Wardle, D. A., Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98, 725–736 (2010).
    Google Scholar 
    Dimeeva, L. A. Dynamics of vegetation in deserts of Aral and Caspian regions. (2011).Yu, K. et al. Late quaternary environments in the Gobi Desert of Mongolia: Vegetation, hydrological, and palaeoclimate evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 77–91 (2019).
    Google Scholar 
    Cao, X., Tian, F., Dallmeyer, A. & Herzschuh, U. Northern Hemisphere biome changes ( >30°N) since 40 cal ka BP and their driving factors inferred from model-data comparisons. Quat. Sci. Rev. 220, 291–309 (2019).ADS 

    Google Scholar 
    Zhang, D. et al. Response of vegetation to Holocene evolution of westerlies in the Asian Central Arid Zone. Quat. Sci. Rev. 229, 106138 (2020).
    Google Scholar 
    Lu, K. Q. et al. A new approach to interpret vegetation and ecosystem changes through time by establishing a correlation between surface pollen and vegetation types in the eastern central Asian desert. Palaeogeogr. Palaeoclimatol. Palaeoecol. 551, 109762 (2020).
    Google Scholar 
    He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).PubMed 

    Google Scholar 
    Ziffer-Berger, J., Weisberg, P. J., Cablk, M. E. & Osem, Y. Spatial patterns provide support for the stress-gradient hypothesis over a range-wide aridity gradient. J. Arid Environ. 102, 27–33 (2014).ADS 

    Google Scholar 
    Vinogradov, B. V. Plant Indicators and Their Use in the Study of Natural Resources (Visshaya shkola, 1964).
    Google Scholar 
    Luo, C. et al. Characteristics of the modern pollen distribution and their relationship to vegetation in the Xinjiang region, northwestern China. Rev. Palaeobot. Palynol. 153, 282–295 (2009).
    Google Scholar 
    Zhao, Y. & Herzschuh, U. Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau. Veg. Hist. Archaeobot. 18, 245–260 (2009).
    Google Scholar  More

  • in

    Smaller birds with warmer temperatures

    Gill, J. A. et al. Proc. R. Soc. B 281, 20132161 (2014).Article 

    Google Scholar 
    Tomotani, B. M. et al. Glob. Chang. Biol. 24, 823–835 (2018).Article 

    Google Scholar 
    Teplitsky, C., Mills, J. A., Alho, J. S., Yarrall, J. W. & Merilä, J. Proc. Natl Acad. Sci. USA 105, 13492–13496 (2008).Article 
    CAS 

    Google Scholar 
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    Youngflesh, C., Saracco, J. F., Siegel, R. B. & Tingley, M. W. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01893-x (2022).Article 

    Google Scholar 
    Hughes, E. C. et al. Ecol. Lett. 25, 598–610 (2022).Article 

    Google Scholar 
    Tobias, J. A. et al. Ecol. Lett. 25, 581–597 (2022).Article 

    Google Scholar 
    Shine, R. Q. Rev. Biol. 64, 419–461 (1989).Article 
    CAS 

    Google Scholar 
    Dubiner, S. & Meiri, S. Glob. Ecol. Biogeogr. 31, 791–801 (2022).Article 

    Google Scholar 
    Jirinec, V. et al. Sci. Adv. 7, eabk1743 (2021).Article 

    Google Scholar 
    Weeks, B. C. et al. Ecol. Lett. 23, 316–325 (2020).Article 

    Google Scholar 
    Parmesan, C. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Bonamour, S., Chevin, L. M., Charmantier, A. & Teplitsky, C. Phil. Trans. R. Soc. Lond. B 374, 20180178 (2019).Article 

    Google Scholar 
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Ecol. Lett. 15, 365–377 (2012).Article 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. Glob. Change Biol. 12, 450–455 (2006).Article 

    Google Scholar 
    Forero-Medina, G., Joppa, L. & Pimm, S. L. Conserv. Biol. 25, 163–171 (2011).Article 

    Google Scholar 
    Peters, R. H. The Ecological Implications of Body Size (Cambridge Univ. Press, 1983).Berg, M. P. & Ellers, J. Evol. Ecol. 24, 617–629 (2010).Article 

    Google Scholar  More

  • in

    Ecological and evolutionary trends of body size in Pristimantis frogs, the world's most diverse vertebrate genus

    LaBarbera, M. The evolution and ecology of body size. In Patterns and Processes in the History of Life (eds Raup, D. M. & Jablonski, D.) 69–98 (Springer, 1986).
    Google Scholar 
    Peters, R. H. & Peters, R. H. The Ecological Implications of Body Size Vol. 2 (Cambridge University Press, 1986).
    Google Scholar 
    Klingenberg, C. P. & Spence, J. On the role of body size for life-history evolution. Ecol. Entomol. 22(1), 55–68 (1997).
    Google Scholar 
    Blanckenhorn, W. U. The evolution of body size: What keeps organisms small?. Q. Rev. Biol. 75(4), 385–407 (2000).CAS 
    PubMed 

    Google Scholar 
    Sibly, R. M. & Brown, J. H. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl. Acad. Sci. USA 104(45), 17707–17712 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt-Nielsen, K. Scaling in biology: The consequences of size. J. Exp. Zool. 194(1), 287–307 (1975).CAS 
    PubMed 

    Google Scholar 
    Calder, W. A. Size, Function, and Life History (Courier Corporation, 1996).
    Google Scholar 
    Gould, S. J. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41(4), 587–638 (1966).CAS 
    PubMed 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293(5538), 2248–2251 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gearty, W. & Payne, J. L. Physiological constraints on body size distributions in Crocodyliformes. Evolution 74(2), 245–255 (2020).PubMed 

    Google Scholar 
    Maurer, B. A., Brown, J. H. & Rusler, R. D. The micro and macro in body size evolution. Evolution 46(4), 939–953 (1992).PubMed 

    Google Scholar 
    Hone, D. W. & Benton, M. J. The evolution of large size: How does Cope’s Rule work?. Trends Ecol. Evol. 20(1), 4–6 (2005).PubMed 

    Google Scholar 
    Reeve, J. P. & Fairbairn, D. J. Predicting the evolution of sexual size dimorphism. J. Evol. Biol. 14(2), 244–254 (2001).
    Google Scholar 
    Blanckenhorn, W. U. Behavioral causes and consequences of sexual size dimorphism. Ethology 111(11), 977–1016 (2005).
    Google Scholar 
    Wu, H., Jiang, T., Huang, X. & Feng, J. Patterns of sexual size dimorphism in horseshoe bats: Testing Rensch’s rule and potential causes. Sci. Rep. 8(1), 1–13 (2018).ADS 

    Google Scholar 
    Cox, R. M., Butler, M. A. & John-Alder, H. B. The evolution of sexual size dimorphism in reptiles. In Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (eds Fairbairn, D. J. et al.) 38–49 (Oxford University Press, 2007).
    Google Scholar 
    Stillwell, R. C., Blanckenhorn, W. U., Teder, T., Davidowitz, G. & Fox, C. W. Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: From physiology to evolution. Annu. Rev. Entomol. 55, 227–245 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rensch, B. Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse. Bonn. Zool. Beitr. 1, 58–69 (1950).
    Google Scholar 
    Rensch, B. Evolution Above the Species Level (Columbia University Press, 1960).
    Google Scholar 
    Shine, R. Ecological causes for the evolution of sexual dimorphism: A review of the evidence. Q. Rev. Biol. 64(4), 419–461 (1989).CAS 
    PubMed 

    Google Scholar 
    Portik, D. M., Blackburn, D. C. & McGuire, J. A. Macroevolutionary patterns of sexual size dimorphism among African tree frogs (Family: Hyperoliidae). J. Hered. 111(4), 379–391 (2020).PubMed 

    Google Scholar 
    Ceballos, C. P., Adams, D. C., Iverson, J. B. & Valenzuela, N. Phylogenetic patterns of sexual size dimorphism in turtles and their implications for Rensch’s rule. Evol. Biol. 40(2), 194–208 (2013).
    Google Scholar 
    Amado, T. F., Martinez, P. A., Pincheira-Donoso, D. & Olalla-Tárraga, M. Á. Body size distributions of anurans are explained by diversification rates and the environment. Glob. Ecol. Biogeogr. 30(1), 154–164 (2021).
    Google Scholar 
    Starostová, Z., Kubička, L. & Kratochvíl, L. Macroevolutionary pattern of sexual size dimorphism in geckos corresponds to intraspecific temperature-induced variation. J. Evol. Biol. 23(4), 670–677 (2010).PubMed 

    Google Scholar 
    Herczeg, G., Gonda, A. & Merilä, J. Rensch’s rule inverted–female-driven gigantism in nine-spined stickleback Pungitius pungitius. J. Anim. Ecol. 79(3), 581–588 (2010).PubMed 

    Google Scholar 
    Liao, W. B. & Chen, W. Inverse Rensch’s rule in a frog with female-biased sexual size dimorphism. Naturwissenschaften 99(5), 427–431 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cooper, M. I. Sexual size dimorphism and the rejection of Rensch’s rule in Diplopoda (Arthropoda). J. Entomol. Zool. Stud. 6(1), 1582–1587 (2018).
    Google Scholar 
    Cheng, R. C. & Kuntner, M. Phylogeny suggests nondirectional and isometric evolution of sexual size dimorphism in argiopine spiders. Evolution 68(10), 2861–2872 (2014).PubMed 

    Google Scholar 
    Webb, T. J. & Freckleton, R. P. Only half right: Species with female-biased sexual size dimorphism consistently break Rensch’s rule. PLoS ONE 2(9), e897 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaston, K. J., Chown, S. L. & Evans, K. L. Ecogeographical rules: Elements of a synthesis. J. Biogeogr. 35(3), 483–500 (2008).
    Google Scholar 
    Olalla-Tárraga, M. Á. & Rodríguez, M. Á. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: Anurans follow Bergmann’s rule, urodeles its converse. Glob. Ecol. Biogeogr. 16(5), 606–617 (2007).
    Google Scholar 
    Olalla-Tárraga, M. Á., Diniz-Filho, J. A. F., Bastos, R. P. & Rodríguez, M. Á. Geographic body size gradients in tropical regions: Water deficit and anuran body size in the Brazilian Cerrado. Ecography 32(4), 581–590 (2009).
    Google Scholar 
    Gouveia, S. F. & Correia, I. Geographical clines of body size in terrestrial amphibians: Water conservation hypothesis revisited. J. Biogeogr. 43(10), 2075–2084 (2016).
    Google Scholar 
    Pincheira-Donoso, D., Meiri, S., Jara, M., Olalla-Tárraga, M. Á. & Hodgson, D. J. Global patterns of body size evolution are driven by precipitation in legless amphibians. Ecography 42(10), 1682–1690 (2019).
    Google Scholar 
    Nevo, E. Adaptive color polymorphism in cricket frogs. Evolution 27(3), 353–367 (1973).PubMed 

    Google Scholar 
    Ashton, K. G. Do amphibians follow Bergmann’s rule?. Can. J. Zool. 80(4), 708–716 (2002).MathSciNet 

    Google Scholar 
    Bergmann, C. Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien. 1, 595–708 (1847).
    Google Scholar 
    Olalla-Tárraga, M. Á., Rodríguez, M. Á. & Hawkins, B. A. Broad-scale patterns of body size in squamate reptiles of Europe and North America. J. Biogeogr. 33(5), 781–793 (2006).
    Google Scholar 
    Trullas, S. C., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32(5), 235–245 (2007).
    Google Scholar 
    Rodríguez, M. Á., López-Sañudo, I. L. & Hawkins, B. A. The geographic distribution of mammal body size in Europe. Glob. Ecol. Biogeogr. 15(2), 173–181 (2006).
    Google Scholar 
    Olalla-Tárraga, M. Á., Diniz-Filho, J. A. F., Bastos, R. P. & Rodriguez, M. A. Geographic body size gradients in tropical regions: Water deficit and anuran body size in the Brazilian Cerrado. Ecography 32(4), 581–590 (2009).
    Google Scholar 
    Womack, M. C. & Bell, R. C. Two-hundred million years of anuran body-size evolution in relation to geography, ecology and life history. J. Evol. Biol. 33(10), 1417–1432 (2020).PubMed 

    Google Scholar 
    Frost, D. R. Amphibian Species of the World: An online reference, version 6. http://research.amnh.org/herpetology/amphibia/index.php. Accessed 12 July 2021 (2021).
    Acevedo, A. A., Armesto, O. & Palma, R. E. Two new species of Pristimantis (Anura: Craugastoridae) with notes on the distribution of the genus in northeastern Colombia. Zootaxa 4750(4), 499–523 (2020).
    Google Scholar 
    Heinicke, M. P., Duellman, W. E. & Hedges, S. B. Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proc. Natl. Acad. Sci. USA 104(24), 10092–10097 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pinto-Sánchez, N. R. et al. The great American biotic interchange in frogs: Multiple and early colonization of Central America by the South American genus Pristimantis (Anura: Craugastoridae). Mol. Phylogenet. Evol. 62(3), 954–972 (2012).PubMed 

    Google Scholar 
    Zumel, D., Buckley, D. & Ron, S. R. The Pristimantis trachyblepharis species group, a clade of miniaturized frogs: Description of four new species and insights into the evolution of body size in the genus. Zool. J. Linn. Soc. zlab044 (2021).Pincheira-Donoso, D. et al. The multiple origins of sexual size dimorphism in global amphibians. Glob. Ecol. Biogeogr. 30(2), 443–458 (2021).
    Google Scholar 
    Woolbright, L. L. Sexual selection and size dimorphism in anuran amphibia. Am. Nat. 121(1), 110–119 (1983).
    Google Scholar 
    Nali, R. C., Zamudio, K. R., Haddad, C. F. & Prado, C. P. Size-dependent selective mechanisms on males and females and the evolution of sexual size dimorphism in frogs. Am. Nat. 184(6), 727–740 (2014).PubMed 

    Google Scholar 
    Hill, R. et al. Herpetological husbandry observations on the captive reproduction of gaige’s rain frog Pristimantis gaigeae (Dunn 1931). Herpetol. Rev. 41(4), 465 (2010).
    Google Scholar 
    Rojas-Rivera, A., Cortés-Bedoya, S., Gutiérrez-Cárdenas, P. D. A. & Castellanos, J. M. Pristimantis achatinus (Cachabi robber frog). Parental care and clutch size. Herpetol. Rev. 42, 588–589 (2011).
    Google Scholar 
    Granados-Pérez, Y. & Ramirez-Pinilla, M. P. Reproductive phenology of three species of Pristimantis in an Andean cloud forest. Revista Acad. Colomb. Ci. Exact. 44(173), 1083–1098 (2020).
    Google Scholar 
    Levy, D. L. & Heald, R. Biological scaling problems and solutions in amphibians. Cold Spring Harb. Perspect. Biol. 8(1), a019166 (2016).PubMed Central 

    Google Scholar 
    O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geol. Survey Data Series. 691(10), 4–9 (2012).
    Google Scholar 
    Valenzuela-Sánchez, A., Cunningham, A. A. & Soto-Azat, C. Geographic body size variation in ectotherms: Effects of seasonality on an anuran from the southern temperate forest. Front. Zool. 12(1), 1–10 (2015).
    Google Scholar 
    Parsons, J. J. The northern Andean environment. Mt. Res. Dev. 2(3), 253–264 (1982).
    Google Scholar 
    Navas, C. A., Carvajalino-Fernández, J. M., Saboyá-Acosta, L. P., Rueda-Solano, L. A. & Carvajalino-Fernández, M. A. The body temperature of active amphibians along a tropical elevation gradient: Patterns of mean and variance and inference from environmental data. Funct. Ecol. 27(5), 1145–1154 (2013).
    Google Scholar 
    Swemmer, A. M., Knapp, A. K. & Snyman, H. A. Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. J. Ecol. 95(4), 780–788 (2007).
    Google Scholar 
    Losos, J. B. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles (Univ. of California Press, 2011).
    Google Scholar 
    Pincheira-Donoso, D. & Hunt, J. Fecundity selection theory: Concepts and evidence. Biol. Rev. 92(1), 341–356 (2017).PubMed 

    Google Scholar 
    Morrison, C. & Hero, J. M. Geographic variation in life-history characteristics of amphibians: A review. J. Anim. Ecol. 72(2), 270–279 (2003).
    Google Scholar 
    Morrow, C. B., Ernest, S. M. & Kerkhoff, A. J. Macroevolution of dimensionless life-history metrics in tetrapods. Proc. Royal Soc. B. 288, 20210200 (2021).
    Google Scholar 
    Revell, L. J., Harmon, L. J. & Collar, D. C. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57(4), 591–601 (2008).PubMed 

    Google Scholar 
    Kamilar, J. M. & Cooper, N. Phylogenetic signal in primate behaviour, ecology and life history. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1618), 20120341 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, A. L. & Wiens, J. J. Estimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shifts. Evolution 72(1), 39–53 (2018).PubMed 

    Google Scholar 
    Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4(1), 1–8 (2013).
    Google Scholar 
    Mendoza, A. M., Ospina, O. E., Cárdenas-Henao, H. & García-R, J. C. A likelihood inference of historical biogeography in the world’s most diverse terrestrial vertebrate genus: Diversification of direct-developing frogs (Craugastoridae: Pristimantis) across the Neotropics. Mol. Phylogenet. Evol. 85, 50–58 (2015).PubMed 

    Google Scholar 
    Baker, J., Meade, A., Pagel, M. & Venditti, C. Adaptive evolution toward larger size in mammals. Proc. Natl. Acad. Sci. USA 112(16), 5093–5098 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hariharan, I. K., Wake, D. B. & Wake, M. H. Indeterminate growth: Could it represent the ancestral condition?. Cold Spring Harb. Perspect. Biol. 8(2), a019174 (2016).PubMed Central 

    Google Scholar 
    Amado, T. F., Bidau, C. J. & Olalla-Tárraga, M. Á. Geographic variation of body size in New World anurans: Energy and water in a balance. Ecography 42(3), 456–466 (2019).
    Google Scholar 
    Watters, J. L., Cummings, S. T., Flanagan, R. L. & Siler, C. D. Review of morphometric measurements used in anuran species descriptions and recommendations for a standardized approach. Zootaxa 4072, 477–495 (2016).PubMed 

    Google Scholar 
    Lovich, J. E. & Gibbons, J. W. A review of techniques for quantifying sexual size dimorphism. Growth Dev. Aging. 56, 269–269 (1992).CAS 
    PubMed 

    Google Scholar 
    Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29(6), 1695–1701 (2012).CAS 
    PubMed 

    Google Scholar 
    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7(1), 1–8 (2007).
    Google Scholar 
    Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4(5), e88 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A. FigTree, A Graphical Viewer of Phylogenetic Trees. (2007)Olalla-Tárraga, M. A., Bini, L. M., Diniz-Filho, J. A. & Rodríguez, M. Á. Cross-species and assemblage-based approaches to Bergmann’s rule and the biogeography of body size in Plethodon salamanders of eastern North America. Ecography 33(2), 362–368 (2010).
    Google Scholar 
    QGIS.org. QGIS Geographic Information System. QGIS Association. http://www.qgis.org. Accessed 10 July 2021 (2022).Wei, T. et al. Package ‘corrplot’. Statistician. 56(316), e24 (2017).
    Google Scholar 
    James, F. C. Geographic size variation in birds and its relationship to climate. Ecology 51(3), 365–390 (1970).
    Google Scholar 
    Hawkins, B. A. & Felizola Diniz-Filho, J. A. Beyond Rapoport’s rule: Evaluating range size patterns of New World birds in a two-dimensional framework. Glob. Ecol. Biogeogr. 15(5), 461–469 (2006).
    Google Scholar 
    Eager, C. standardize: Tools for standardizing variables for regression in R. R package version 0.21 (2017).Meireles, J. E., O’Meara, B. & Cavender-Bares, J. Linking leaf spectra to the plant tree of life. In Remote Sensing of Plant Biodiversity (eds Cavender-Bares, J. et al.) 155–172 (Springer, 2010).
    Google Scholar 
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401(6756), 877–884 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pagel, M. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48(3), 612–622 (1999).
    Google Scholar 
    Revell, L. J. Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3(2), 217–223 (2012).
    Google Scholar 
    Revell, L. J. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4(8), 754–759 (2013).
    Google Scholar 
    Rabosky, D. L. et al. BAMM tools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5(7), 701–707 (2014).
    Google Scholar 
    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9(2), e89543 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66(4), 477–498 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence diagnosis and output analysis for MCMC. R News. 6(1), 7–11 (2006).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2021). https://www.R-project.org. Accessed 1 June 2021 (2021).Fairbairn, D. J. Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Annu. Rev. Ecol. Evol. Syst. 28(1), 659–687 (1997).
    Google Scholar 
    Fairbairn, D. J. Allometry for sexual size dimorphism: Testing two hypotheses for Rensch’s rule in the water strider Aquarius remigis. Am. Nat. 166(S4), S69–S84 (2005).PubMed 

    Google Scholar 
    Visser, A. G., Beevers, L. & Patidar, S. Complexity in hydroecological modelling: A comparison of stepwise selection and information theory. River Res. Appl. 34(8), 1045–1056 (2018).
    Google Scholar 
    Calcagno, V. & de Mazancourt, C. glmulti: An R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34(12), 1–29 (2010).
    Google Scholar 
    Callaghan, S., Guilyardi, E., Steenman-Clark, L. & Morgan, M. The METAFOR project. in Earth System Modelling-Volume 1 (Springer, 2013).Garamszegi, L. Z. & Mundry, R. Multimodel-inference in comparative analyses. In Modern Phylogenetic Comparative Methods and THEIR Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 305–331 (Springer Berlin, 2014).
    Google Scholar  More

  • in

    Recovery and genome reconstruction of novel magnetotactic Elusimicrobiota from bog soil

    Steen AD, Carini ACP, Lloyd KG, Thrash JC, Deangelis KM, Fierer N. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 2019;13:3126–30.PubMed 
    PubMed Central 

    Google Scholar 
    Lloyd KG, Steen AD, Ladau J, Yin J. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems. 2018;3:e00055–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marcy Y, Ouverney C, Bik EM, Lo T, Ivanova N, Garcia H, et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci USA. 2007;104:11889–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pascoal F, Costa R, Magalhães C. The microbial rare biosphere: current concepts, methods and ecological principles. FEMS Microbiol Ecol. 2021;97:fiaa227.CAS 
    PubMed 

    Google Scholar 
    Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA. 2006;103:12115–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gareev KG, Grouzdev DS, Kharitonskii PV, Kosterov A, Koziaeva VV, Sergienko ES, et al. Magnetotactic bacteria and magnetosomes: basic properties and applications. Magnetochemistry. 2021;7:86.CAS 

    Google Scholar 
    Lefevre CT, Bazylinski DA. Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev. 2013;77:497–526.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin W, Pan Y, Bazylinsky DA. Diversity and ecology of and biomineralization by magnetotactic bacteria. Environ Microbiol Rep. 2017;9:345–56.CAS 
    PubMed 

    Google Scholar 
    Uebe R, Schüler D. Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol. 2016;14:621–37.CAS 
    PubMed 

    Google Scholar 
    Lefèvre CT, Frankel RB, Bazylinski DA. Magnetotaxis in prokaryotes. eLS. 2011. https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2F9780470015902.a0000397.pub2https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2F9780470015902.a0000397.pub2.Goswami P, He K, Li J, Pan Y, Roberts AP, Lin W. Magnetotactic bacteria and magnetofossils: ecology, evolution and environmental implications. npj Biofilms Microbiomes. 2022;8:43.PubMed 
    PubMed Central 

    Google Scholar 
    Flies CB, Jonkers HM, De Beer D, Bosselmann K, Böttcher ME, Schüler D. Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS Microbiol Ecol. 2005;52:185–95.CAS 
    PubMed 

    Google Scholar 
    Wolfe RS, Thauer RK, Pfennig N. A’capillary racetrack’ method for isolation of magnetotactic bacteria. FEMS Microbiol Ecol. 1987;45:31–5.
    Google Scholar 
    Jogler C, Lin W, Meyerdierks A, Kube M, Katzmann E, Flies C, et al. Toward cloning of the magnetotactic metagenome: identification of magnetosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic sediments. Appl Environ Microbiol. 2009;75:3972–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin W, Zhang W, Paterson GA, Zhu Q, Zhao X. Expanding magnetic organelle biogenesis in the domain Bacteria. Microbiome. 2020;8:152.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Geissinger O, Herlemann DPR, Mo E, Maier UG, Brune A. The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the Termite Group 1 phylum. Appl Environ Microbiol. 2009;75:2831–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wakako I-O, Brune A. Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and ‘Candidatus Endomicrobium trichonymphae’. Mol Ecol. 2009;18:332–42.
    Google Scholar 
    Zheng H, Dietrich C, Radek R, Brune A. Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia) – an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase. Environ Ecol Stat. 2016;18:191–204.CAS 

    Google Scholar 
    Méheust R, Castelle CJ, Carnevali PBM, Chen L, Amano Y, Hug LA, et al. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. ISME J. 2020;14:2907–22.PubMed 
    PubMed Central 

    Google Scholar 
    Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, et al. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. ISME J. 2021;15:1810–25.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 

    Google Scholar 
    Zhang L, Gong X, Wang L, Guo K, Cao S, Zhou Y. Science of the total environment metagenomic insights into the effect of thermal hydrolysis pre-treatment on microbial community of an anaerobic digestion system. Sci Total Environ. 2021;791:148096.CAS 
    PubMed 

    Google Scholar 
    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.CAS 
    PubMed 

    Google Scholar 
    Uzun M, Alekseeva L, Krutkina M, Koziaeva V, Grouzdev D. Unravelling the diversity of magnetotactic bacteria through analysis of open genomic databases. Sci Data. 2020;7:252.PubMed 
    PubMed Central 

    Google Scholar 
    Tully BJ, Wheat CG, Glazer BT, Huber JA. A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer. ISME J. 2018;12:1–16.CAS 
    PubMed 

    Google Scholar 
    Kirillova NP, Sileva TM, Ul’yanova TY, Rozov SY, Il’yashenko MA, Makarov MI. Digital soil map of Chashnikovo training and experimental soil ecological center, Moscow State University. Mosc Univ Soil Sci Bull. 2015;70:58–65.
    Google Scholar 
    Koziaeva VV, Alekseeva LM, Uzun MM, Leão P, Sukhacheva MV, Patutina EO, et al. Biodiversity of magnetotactic bacteria in the freshwater lake Beloe Bordukovskoe, Russia. Microbiology. 2020;89:348–58.CAS 

    Google Scholar 
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 

    Google Scholar 
    Edgar RC, Flyvbjerg H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics. 2015;31:3476–82.CAS 
    PubMed 

    Google Scholar 
    Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 2016. https://doi.org/10.1101/081257.Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fierer N, Jackson JA, Vilgalys R, Jackson RB. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol. 2005;71:4117–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 

    Google Scholar 
    Lin HH, Liao YC. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep. 2016;6:12–9.
    Google Scholar 
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil P, Mussig AJ, Parks DH, Hugenholtz P. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.PubMed Central 

    Google Scholar 
    Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ji R, Zhang W, Pan Y, Lin W. MagCluster: a tool for identification, annotation, and visualization of magnetosome gene clusters. Microbiol Resour Announc. 2022;11:e01031–21.CAS 
    PubMed Central 

    Google Scholar 
    Wu S, Zhu Z, Fu L, Niu B, Li W. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics. 2011;12:444.PubMed 
    PubMed Central 

    Google Scholar 
    Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35.CAS 
    PubMed 

    Google Scholar 
    Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL. 0003 3527 8101, Solden LM, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 2020;48:8883–900.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 
    PubMed 

    Google Scholar 
    Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler AVon, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22.CAS 
    PubMed 

    Google Scholar 
    Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coleman GA, Davín AA, Mahendrarajah TA, Szánthó LL, Spang A, Hugenholtz P, et al. A rooted phylogeny resolves early bacterial evolution. Science. 2021;372:eabe0511.CAS 
    PubMed 

    Google Scholar 
    Parks DH. https://github.com/dparks1134/CompareM.Dombrowski N, Lee JH, Williams TA, Offre P, Spang A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol Lett. 2019;366:fnz008.CAS 
    PubMed Central 

    Google Scholar 
    Lin W, Zhang W, Zhao X, Roberts AP, Paterson GA, Bazylinski DA, et al. Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME J. 2018;12:1508–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urakawa H, Garcia JC, Nielsen JL, Le VQ, Kozlowski JA, Stein LY, et al. Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. Int J Syst Evol Microbiol. 2015;65:242–50.CAS 
    PubMed 

    Google Scholar 
    Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC, Lidstrom ME, et al. Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol. 2006;56:2517–22.CAS 
    PubMed 

    Google Scholar 
    Bazylinski DA, Frankel RB, Konhauser KO. Modes of biomineralization of magnetite by microbes. Geomicrobiol J. 2007;24:465–75.CAS 

    Google Scholar 
    Uzun M, Koziaeva V, Dziuba M, Leão P, Krutkina M, Grouzdev D. Detection of interphylum transfers of the magnetosome gene cluster in magnetotactic bacteria. Front Microbiol. 2022;13:945734.PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996.CAS 
    PubMed 

    Google Scholar 
    Murphy CL, Biggerstaff J, Eichhorn A, Ewing E, Shahan R, Soriano D, et al. Genomic characterization of three novel Desulfobacterota classes expand the metabolic and phylogenetic diversity of the phylum. Environ Microbiol. 2021;23:4326–43.CAS 
    PubMed 

    Google Scholar 
    Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.PubMed 
    PubMed Central 

    Google Scholar 
    Denise R, Abby SS, Rocha EPC. Diversification of the type IV filament superfamily into machines for adhesion, protein secretion, DNA uptake, and motility. PLoS Biol. 2019;17:e3000390.PubMed 
    PubMed Central 

    Google Scholar 
    Hennell James R, Deme JC, Kjӕr A, Alcock F, Silale A, Lauber F, et al. Structure and mechanism of the proton-driven motor that powers type 9 secretion and gliding motility. Nat Microbiol. 2021;6:221–33.CAS 
    PubMed 

    Google Scholar 
    Nolan LM, Whitchurch CB, Barquist L, Katrib M, Boinett CJ, Mayho M, et al. A global genomic approach uncovers novel components for twitching motility-mediated biofilm expansion in Pseudomonas aeruginosa. Micro Genomics. 2018;4:e000229.
    Google Scholar 
    Uzun M, Koziaeva V, Dziuba M, Alekseeva L, Grouzdev D. Mam protein trees. 2022. https://doi.org/10.6084/m9.figshare.c.6045158.v1.Arnoux P, Siponen MI, Lefèvre CT, Ginet N, Pignol D. Structure and evolution of the magnetochrome domains: no longer alone. Front Microbiol. 2014;5:117.PubMed 
    PubMed Central 

    Google Scholar 
    Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D. Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol Microbiol. 2010;77:208–24.CAS 
    PubMed 

    Google Scholar 
    Wagner-Döbler I, Bennasar A, Vancanneyt M, Strömpl C, Brümmer I, Eichner C, et al. Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments. Appl Environ Microbiol. 1998;64:3014–22.PubMed 
    PubMed Central 

    Google Scholar 
    Ibekwe AM, Papiernik SK, Gan J, Yates SR, Crowley DE, Yang CH. Microcosm enrichment of 1,3-dichloropropene-degrading soil microbial communities in a compost-amended soil. J Appl Microbiol. 2001;91:668–76.CAS 
    PubMed 

    Google Scholar 
    Yakimov MM, Denaro R, Genovese M, Cappello S, D’Auria G, Chernikova TN, et al. Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol. 2005;7:1426–41.CAS 
    PubMed 

    Google Scholar 
    Tringe SG, Von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, et al. Comparative metagenomics of microbial communities. Science. 2005;308:554–7.CAS 
    PubMed 

    Google Scholar 
    Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, Jogler C, de Almeida LGP, et al. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ Microbiol. 2013;15:2712–35.PubMed 

    Google Scholar 
    Wadhwa N, Berg HC. Bacterial motility: machinery and mechanisms. Nat Rev Microbiol. 2022;20:161–73.CAS 
    PubMed 

    Google Scholar 
    Zhu K, Pan H, Li J, Yu-Zhang K, Zhang SD, Zhang WY, et al. Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res Microbiol. 2010;161:276–83.CAS 
    PubMed 

    Google Scholar 
    Kaimer C, Zusman DR. Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY-like domains in FrzE and FrzZ. Mol Microbiol. 2016;100:379–95.CAS 
    PubMed 

    Google Scholar 
    Kühn MJ, Talà L, Inclan YF, Patino R, Pierrat X, Vos I, et al. Mechanotaxis directs Pseudomonas aeruginosa twitching motility. Proc Natl Acad Sci USA. 2021;118:e2101759118.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Climate change and species facilitation affect the recruitment of macroalgal marine forests

    Intergovernmental Panel on Climate Change (IPCC). The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2022). https://doi.org/10.1017/9781009157964.Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).ADS 

    Google Scholar 
    Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).PubMed 

    Google Scholar 
    Hall-Spencer, J. M. & Harvey, B. P. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerg. Top. Life Sci. 3, 197–206 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Straub, S. C. et al. Resistance, extinction, and everything in between—The diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).
    Google Scholar 
    Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I. & Russell, B. D. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120442 (2013).
    Google Scholar 
    Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl. Acad. Sci. 108, 14515–14520 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harvey, B. P., Kon, K., Agostini, S., Wada, S. & Hall-Spencer, J. M. Ocean acidification locks algal communities in a species-poor early successional stage. Glob. Change Biol. 27, 2174–2187 (2021).ADS 
    CAS 

    Google Scholar 
    Sunday, J. M. et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change 7, 81–85 (2017).ADS 
    CAS 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).
    Google Scholar 
    Schiel, D. R. & Foster, M. S. The population biology of large brown seaweeds: Ecological consequences of multiphase life histories in dynamic coastal environments. Annu. Rev. Ecol. Evol. Syst. 37, 343–372 (2006).
    Google Scholar 
    Wernberg, T. & Filbee-Dexter, K. Missing the marine forest for the trees. Mar. Ecol. Prog. Ser. 612, 209–215 (2019).ADS 

    Google Scholar 
    Cheminée, A. et al. Nursery value of Cystoseira forests for Mediterranean rocky reef fishes. J. Exp. Mar. Biol. Ecol. 442, 70–79 (2013).
    Google Scholar 
    Smale, D. A., Burrows, M. T., Moore, P., O’Connor, N. & Hawkins, S. J. Threats and knowledge gaps for ecosystem services provided by kelp forests: A northeast Atlantic perspective. Ecol. Evol. 3, 4016–4038 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Carbajal, P., Gamarra Salazar, A., Moore, P. J. & Pérez-Matus, A. Different kelp species support unique macroinvertebrate assemblages, suggesting the potential community-wide impacts of kelp harvesting along the Humboldt Current System. Aquat. Conserv. Mar. Freshw. Ecosyst. 32, 14–27 (2022).
    Google Scholar 
    Filbee-Dexter, K. & Wernberg, T. Rise of turfs: A new battlefront for globally declining kelp forests. Bioscience 68, 64–76 (2018).
    Google Scholar 
    Pessarrodona, A. et al. Homogenization and miniaturization of habitat structure in temperate marine forests. Glob. Change Biol. 27, 5262–5275 (2021).CAS 

    Google Scholar 
    Orfanidis, S. et al. Effects of natural and anthropogenic stressors on Fucalean brown seaweeds across different spatial scales in the Mediterranean Sea. Front. Mar. Sci. 8, 1330 (2021).
    Google Scholar 
    Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. 113, 13785–13790 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capdevila, P. et al. Warming impacts on early life stages increase the vulnerability and delay the population recovery of a long-lived habitat-forming macroalga. J. Ecol. 107, 1129–1140 (2019).
    Google Scholar 
    Irving, A. D., Balata, D., Colosio, F., Ferrando, G. A. & Airoldi, L. Light, sediment, temperature, and the early life-history of the habitat-forming alga Cystoseira barbata. Mar. Biol. 156, 1223–1231 (2009).
    Google Scholar 
    Smith, K. E., Moore, P. J., King, N. G. & Smale, D. A. Examining the influence of regional-scale variability in temperature and light availability on the depth distribution of subtidal kelp forests. Limnol. Oceanogr. 67, 314–328 (2022).ADS 

    Google Scholar 
    Smale, D. A. et al. Climate-driven substitution of foundation species causes breakdown of a facilitation cascade with potential implications for higher trophic levels. J. Ecol. 00, 1–13 (2022).
    Google Scholar 
    Hollarsmith, J. A., Buschmann, A. H., Camus, C. & Grosholz, E. D. Varying reproductive success under ocean warming and acidification across giant kelp (Macrocystis pyrifera) populations. J. Exp. Mar. Biol. Ecol. 522, 151247 (2020).
    Google Scholar 
    Verdura, J. et al. Local-scale climatic refugia offer sanctuary for a habitat-forming species during a marine heatwaves. J. Ecol. 109, 1758–1773 (2021).
    Google Scholar 
    Mariani, S. et al. Past and present of Fucales from shallow and sheltered shores in Catalonia. Reg. Stud. Mar. Sci. 32, 100824 (2019).
    Google Scholar 
    Smale, D. A. Impacts of ocean warming on kelp forest ecosystems. New Phytol. 225, 1447–1454 (2020).PubMed 

    Google Scholar 
    Coelho, S. M., Rijstenbil, J. W. & Brown, M. T. Impacts of anthropogenic stresses on the early development stages of seaweeds. J. Aquat. Ecosyst. Stress Recov. 7, 317–333 (2000).CAS 

    Google Scholar 
    de Caralt, S., Verdura, J., Vergés, A., Ballesteros, E. & Cebrian, E. Differential effects of pollution on adult and recruits of a canopy-forming alga: Implications for population viability under low pollutant levels. Sci. Rep. 10, 17825 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capdevila, P. et al. Recruitment patterns in the Mediterranean deep-water alga Cystoseira zosteroides. Mar. Biol. 162, 1165–1174 (2015).CAS 

    Google Scholar 
    Vadas, R. L., Johnson, S. & Norton, T. A. Recruitment and mortality of early post-settlement stages of benthic algae. Br. Phycol. J. 27, 331–351 (1992).
    Google Scholar 
    Koch, M., Bowes, G., Ross, C. & Zhang, X.-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19, 103–132 (2013).ADS 

    Google Scholar 
    Shih, P. M. et al. Biochemical characterization of predicted Precambrian RuBisCO. Nat. Commun. 7, 10382 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cornwall, C. E. et al. Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Sci. Rep. 7, 46297 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hepburn, C. D. et al. Diversity of carbon use strategies in a kelp forest community: Implications for a high CO2 ocean. Glob. Change Biol. 17, 2488–2497 (2011).ADS 

    Google Scholar 
    Porzio, L., Buia, M. C. & Hall-Spencer, J. M. Effects of ocean acidification on macroalgal communities. J. Exp. Mar. Biol. Ecol. 400, 278–287 (2011).CAS 

    Google Scholar 
    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 

    Google Scholar 
    Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms: Biological responses to ocean acidification. Ecol. Lett. 13, 1419–1434 (2010).PubMed 

    Google Scholar 
    Rindi, F. et al. Coralline algae in a changing Mediterranean Sea: How can we predict their future, if we do not know their present?. Front. Mar. Sci. 6, 723 (2019).
    Google Scholar 
    James, R. K., Hepburn, C. D., Cornwall, C. E., McGraw, C. M. & Hurd, C. L. Growth response of an early successional assemblage of coralline algae and benthic diatoms to ocean acidification. Mar. Biol. 161, 1687–1696 (2014).CAS 

    Google Scholar 
    Comeau, S. & Cornwall, C. E. Contrasting effects of ocean acidification on coral reef “animal forests” versus seaweed “kelp forests.” In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds Rossi, S. et al.) 1–25 (Springer International Publishing, 2016) https://doi.org/10.1007/978-3-319-17001-5_29-1.Chapter 

    Google Scholar 
    Airoldi, L. Effects of disturbance, life histories, and overgrowth on coexistence of algal crusts and turfs. Ecology 81, 798–814 (2000).
    Google Scholar 
    Asnaghi, V. et al. Colonisation processes and the role of coralline algae in rocky shore community dynamics. J. Sea Res. 95, 132–138 (2015).ADS 

    Google Scholar 
    Bulleri, F., Bertocci, I. & Micheli, F. Interplay of encrusting coralline algae and sea urchins in maintaining alternative habitats. Mar. Ecol. Prog. Ser. 243, 101–109 (2002).ADS 

    Google Scholar 
    Villas Bôas, A. B. & Figueiredo, M. A. D. O. Are anti-fouling effects in coralline algae species specific?. Braz. J. Oceanogr. 52, 11–18 (2004).
    Google Scholar 
    Bulleri, F., Benedetti-Cecchi, L., Acunto, S., Cinelli, F. & Hawkins, S. J. The influence of canopy algae on vertical patterns of distribution of low-shore assemblages on rocky coasts in the northwest Mediterranean. J. Exp. Mar. Biol. Ecol. 267, 89–106 (2002).
    Google Scholar 
    Maggi, E., Bertocci, I., Vaselli, S. & Benedetti-Cecchi, L. Connell and Slatyer’s models of succession in the biodiversity era. Ecology 92, 1399–1406 (2011).CAS 
    PubMed 

    Google Scholar 
    Irving, A. D., Connell, S. D., Johnston, E. L., Pile, A. J. & Gillanders, B. M. The response of encrusting coralline algae to canopy loss: An independent test of predictions on an Antarctic coast. Mar. Biol. 147, 1075–1083 (2005).
    Google Scholar 
    Irving, A. D., Connell, S. D. & Elsdon, T. S. Effects of kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae. J. Exp. Mar. Biol. Ecol. 310, 1–12 (2004).
    Google Scholar 
    Melville, A. J. & Connell, S. D. Experimental effects of kelp canopies on subtidal coralline algae. Austral. Ecol. 26, 102–108 (2001).
    Google Scholar 
    Breitburg, D. L. Residual effects of grazing: Inhibition of competitor recruitment by encrusting coralline algae. Ecology 65, 1136–1143 (1984).
    Google Scholar 
    Bulleri, F., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J. Facilitation and the niche: Implications for coexistence, range shifts and ecosystem functioning. Funct. Ecol. 30, 70–78 (2016).
    Google Scholar 
    van der Heide, T., Angelini, C., de Fouw, J. & Eklöf, J. S. Facultative mutualisms: A double-edged sword for foundation species in the face of anthropogenic global change. Ecol. Evol. 11, 29–44 (2021).PubMed 

    Google Scholar 
    Molinari-Novoa, E. A. & Guiry, E. Reinstatement of the genera Gongolaria Boehmer and Ericaria Stackhouse (Sargassaceae, Phaeophyceae). Notulae Algarum 1–10 (2020).Celis-Plá, P. S. M., Martinez, B., Korbee, N., Hall-Spencer, J. M. & Figueroa, F. L. Ecophysiological responses to elevated CO2 and temperature in Cystoseira tamariscifolia (Phaeophyceae). Clim. Change 142, 67–81 (2017).ADS 

    Google Scholar 
    Falace, A. et al. Is the South-Mediterranean canopy-forming Ericaria giacconei (= Cystoseira hyblaea) a loser from ocean warming?. Front. Mar. Sci. 8, 1758 (2021).
    Google Scholar 
    Hernández, C. A., Sangil, C., Fanai, A. & Hernández, J. C. Macroalgal response to a warmer ocean with higher CO2 concentration. Mar. Environ. Res. 136, 99–105 (2018).PubMed 

    Google Scholar 
    Falace, A., Kaleb, S., Fuente, G. D. L., Asnaghi, V. & Chiantore, M. Ex situ cultivation protocol for Cystoseira amentacea var. stricta (Fucales, Phaeophyceae) from a restoration perspective. PLoS ONE 13, e0193011 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bevilacqua, S. et al. Climatic anomalies may create a long-lasting ecological phase shift by altering the reproduction of a foundation species. Ecology 100, 1–4 (2019).
    Google Scholar 
    Savonitto, G. et al. Addressing reproductive stochasticity and grazing impacts in the restoration of a canopy-forming brown alga by implementing mitigation solutions. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 1611–1623 (2021).
    Google Scholar 
    Mangialajo, L. et al. Zonation patterns and interspecific relationships of fucoids in microtidal environments. J. Exp. Mar. Biol. Ecol. 412, 72–80 (2012).
    Google Scholar 
    Verlaque, M., Boudouresque, C.-F. & Perret-Boudouresque, M. Mediterranean seaweeds listed as threatened under the Barcelona Convention: A critical analysis. Sci. Rep. Port-Cros Natl. Park. 33, 179–214 (2019).
    Google Scholar 
    Benedetti-Cecchi, L. & Cinelli, F. Effects of canopy cover, herbivores and substratum type on patterns of Cystoseira spp. settlement and recruitment in littoral rockpools. Mar. Ecol. Prog. Ser. 90, 183–191 (1992).ADS 

    Google Scholar 
    Fuente, G. D. L., Chiantore, M., Asnaghi, V., Kaleb, S. & Falace, A. First ex situ outplanting of the habitat-forming seaweed Cystoseira amentacea var. stricta from a restoration perspective. PeerJ 7, e7290 (2019).
    Google Scholar 
    Orlando-Bonaca, M. et al. First restoration experiment for Gongolaria barbata in Slovenian coastal waters. What can go wrong?. Plants 10, 239 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Christie, H. et al. Shifts between sugar kelp and turf algae in Norway: Regime shifts or fluctuations between different opportunistic seaweed species?. Front. Mar. Sci. 6, 72 (2019).
    Google Scholar 
    Orlando-Bonaca, M., Pitacco, V. & Lipej, L. Loss of canopy-forming algal richness and coverage in the northern Adriatic Sea. Ecol. Indic. 125, 107501 (2021).
    Google Scholar 
    Thibaut, T., Blanfune, A., Boudouresque, C.-F. & Verlaque, M. Decline and local extinction of Fucales in French Riviera: The harbinger of future extinctions?. Mediterr. Mar. Sci. 16, 206–224 (2015).
    Google Scholar 
    Thibaut, T., Pinedo, S., Torras, X. & Ballesteros, E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Albères coast (France, North-western Mediterranean). Mar. Pollut. Bull. 50, 1472–1489 (2005).CAS 
    PubMed 

    Google Scholar 
    Leal, P. P. et al. Copper pollution exacerbates the effects of ocean acidification and warming on kelp microscopic early life stages. Sci. Rep. 8, 14763 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernández, P. A., Navarro, J. M., Camus, C., Torres, R. & Buschmann, A. H. Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: A physiological and molecular approach. Sci. Rep. 11, 2510 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Lind, A. C. & Konar, B. Effects of abiotic stressors on kelp early life-history stages. Algae 32, 223–233 (2017).CAS 

    Google Scholar 
    Fernández, P. A. et al. Nitrogen sufficiency enhances thermal tolerance in habitat-forming kelp: Implications for acclimation under thermal stress. Sci. Rep. 10, 3186 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Celis-Plá, P. S. M. et al. Macroalgal responses to ocean acidification depend on nutrient and light levels. Front. Mar. Sci. 2, 26 (2015).
    Google Scholar 
    Mancuso, F. P. et al. Influence of ambient temperature on the photosynthetic activity and phenolic content of the intertidal Cystoseira compressa along the Italian coastline. J. Appl. Phycol. 31, 3069–3076 (2019).CAS 

    Google Scholar 
    Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).
    Google Scholar 
    Vergés, A. et al. Tropical rabbitfish and the deforestation of a warming temperate sea. J. Ecol. 102, 1518–1527 (2014).
    Google Scholar 
    Gaitán-Espitia, J. D. et al. Interactive effects of elevated temperature and pCO2 on early-life-history stages of the giant kelp Macrocystis pyrifera. J. Exp. Mar. Biol. Ecol. 457, 51–58 (2014).
    Google Scholar 
    Leal, P. P., Hurd, C. L., Fernández, P. A. & Roleda, M. Y. Ocean acidification and kelp development: Reduced pH has no negative effects on meiospore germination and gametophyte development of Macrocystis pyrifera and Undaria pinnatifida. J. Phycol. 53, 557–566 (2017).CAS 
    PubMed 

    Google Scholar 
    Roleda, M. Y., Morris, J. N., McGraw, C. M. & Hurd, C. L. Ocean acidification and seaweed reproduction: Increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Glob. Change Biol. 18, 854–864 (2011).ADS 

    Google Scholar 
    Zhang, X. et al. Elevated CO2 concentrations promote growth and photosynthesis of the brown alga Saccharina japonica. J. Appl. Phycol. https://doi.org/10.1007/s10811-020-02108-1 (2020).Article 

    Google Scholar 
    Falkenberg, L. J., Russell, B. D. & Connell, S. D. Contrasting resource limitations of marine primary producers: Implications for competitive interactions under enriched CO2 and nutrient regimes. Oecologia 172, 575–583 (2013).ADS 
    PubMed 

    Google Scholar 
    Nagelkerken, I., Russell, B. D., Gillanders, B. M. & Connell, S. D. Ocean acidification alters fish populations indirectly through habitat modification. Nat. Clim. Change 6, 89–93 (2016).ADS 
    CAS 

    Google Scholar 
    Connell, S. D. & Russell, B. D. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B Biol. Sci. 277, 1409–1415 (2010).
    Google Scholar 
    Cornwall, C. E., Comeau, S. & McCulloch, M. T. Coralline algae elevate pH at the site of calcification under ocean acidification. Glob. Change Biol. 23, 4245–4256 (2017).ADS 

    Google Scholar 
    Martin, S. & Gattuso, J.-P. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob. Change Biol. 15, 2089–2100 (2009).ADS 

    Google Scholar 
    Cornwall, C. E. et al. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE 9, e97235 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gefen-Treves, S. et al. The microbiome associated with the reef builder Neogoniolithon sp. in the eastern Mediterranean. Microorganisms 9, 1374 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, C. R. & Mann, K. H. The crustose coralline alga, Phymatolithon Foslie, inhibits the overgrowth of seaweeds without relying on herbivores. J. Exp. Mar. Biol. Ecol. 96, 127–146 (1986).
    Google Scholar 
    Keats, D. W., Knight, M. A. & Pueschel, C. M. Antifouling effects of epithallial shedding in three crustose coralline algae (Rhodophyta, Coralinales) on a coral reef. J. Exp. Mar. Biol. Ecol. 213, 281–293 (1997).
    Google Scholar 
    Mancuso, F., D’Hondt, S., Willems, A., Airoldi, L. & Clerck, O. Diversity and temporal dynamics of the epiphytic bacterial communities associated with the canopy-forming seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin. Front. Microbiol. 7, 476 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The ups and downs of a canopy-forming seaweed over a span of more than one century. Sci. Rep. 9, 1–10 (2019).
    Google Scholar 
    Cebrian, E. et al. A roadmap for the restoration of Mediterranean macroalgal forests. Front. Mar. Sci. 8, 1456 (2021).
    Google Scholar 
    Gianni, F. et al. Conservation and restoration of marine forests in the Mediterranean Sea and the potential role of Marine Protected Areas. Adv. Oceanogr. Limnol. 4, 83–101 (2013).
    Google Scholar 
    Gorman, D. & Connell, S. D. Recovering subtidal forests in human-dominated landscapes. J. Appl. Ecol. 46, 1258–1265 (2009).
    Google Scholar 
    Riquet, F. et al. Highly restricted dispersal in habitat-forming seaweed may impede natural recovery of disturbed populations. Sci. Rep. 11, 16792 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Halpern, B. S., McLeod, K. L., Rosenberg, A. A. & Crowder, L. B. Managing for cumulative impacts in ecosystem-based management through ocean zoning. Ocean Coast. Manag. 51, 203–211 (2008).
    Google Scholar 
    Verdura, J., Sales, M., Ballesteros, E., Cefalì, M. E. & Cebrian, E. Restoration of a canopy-forming alga based on recruitment enhancement: Methods and long-term success assessment. Front. Plant Sci. 9, 1832 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).ADS 
    CAS 

    Google Scholar 
    Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to Best Practices for Ocean CO2 Measurements. https://repository.oceanbestpractices.org/handle/11329/249 (2007).Spencer Davies, P. Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar. Biol. 101, 389–395. https://doi.org/10.1007/BF00428135 (1989).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. ArXiv14065823 Stat (2015).R: The R Project for Statistical Computing. https://www.r-project.org/.Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, 2018).
    Google Scholar 
    Lenth, R. V. et al. emmeans: Estimated Marginal Means, aka Least-Squares Means (2022). More

  • in

    Exceptional preservation of internal organs in a new fossil species of freshwater shrimp (Caridea: Palaemonoidea) from the Eocene of Messel (Germany)

    De Grave, S., & Fransen, C. H. J. M. Carideorum Catalogus: The Recent Species of the Dendrobranchiate, Stenopodidean, Procarididean and Caridean Shrimps (Crustacea: Decapoda). Zool. Meded. 85, (2011).Garassino, A. The macruran decapod crustaceans of the Lower Cretaceous (Lower Barremian) of Las Hoyas (Cuenca, Spain). Atti Soc. it. Sci. nat. Museo civ. Stor. nat. Milano 137, 101–126 (1997).Bravi, S., Coppa, M. G., Garassino, A., & Patricelli, R. Palaemon vesolensis n. sp. (Crustacea, Decapoda) from the Plattenkalk of Vesole Mount (Salerno, Southern Italy). Atti Soc. it. Sci. nat. Museo civ. Stor. nat. Milano 140, 141–169 (1999).Colleary, C. et al. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils. Proc. Natl. Acad. Sci. U.S.A. 11241, 12592–12597 (2015).Article 
    ADS 

    Google Scholar 
    Vinther, J., Briggs, D. E., Clarke, J., Mayr, G. & Prum, R. O. Structural coloration in a fossil feather. Biol. Lett. 6, 128–131 (2010).Article 
    PubMed 

    Google Scholar 
    McNamara, M. E. et al. Fossilised biophotonic nanostructures reveal the original colors of 47 million-year-old moths. PLoS Biol. 9, e1001200 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rietschel, S. Taphonomic biasing in the Messel Fauna and Flora. Cour. Forsch. Inst. Senckenberg 107, 169–182 (1988).
    Google Scholar 
    Wolf, H. W. Schätze im Schiefer (Westermann, 1991).Rabenstein, R. Messel 2000 – Das Weltnaturerbe Deutschlands (eds Forschungsinstitut Senckenberg) (2000).Gruber, G., & Micklich, N. Messel – Treasures of the Eocene (Hessisches Landesmuseum Darmstadt, 2007).Wedmann, S. Annotated taxon-list of the invertebrate animals from the Eocene fossil site Grube Messel near Darmstadt Germany. Cour. Forsch. Inst. Senckenberg 255, 103–110 (2005).
    Google Scholar 
    Schaal, S. F. K. & Rabenstein, R. D. Tagebau Messel in Linien und Zahlen. Senckenberg Nat. Forsch. Mus. 142, 376–377 (2012).
    Google Scholar 
    Moshayedi, M., Lenz, O. K., Wilde, V. & Hinderer, M. The recolonisation of volcanically disturbed Eocene habitats of Central Europe: the maar lakes of Messel and Offenthal (SW Germany) compared. Paleobiodivers. Paleoenviron. 100, 951–973 (2020).Article 

    Google Scholar 
    Schulz, R., Harms, F.-J. & Felder, M. Die Forschungsbohrung Messel 2001: Ein Beitrag zur Entschlüsselung der Genese einer Ölschieferlagerstätte. Z. angew. Geol. 2002, 9–17 (2002).
    Google Scholar 
    Felder, M. & Harms, F. J. Lithologie und genetische Interpretation der vulkano-sedimentären Ablagerungen aus der Grube Messel anhand der Forschungsbohrung Messel 2001 und weiterer Bohrungen (Eozän, Messel-Formation, Sprendlinger Horst, Südhessen). Cour. Forsch. Inst. Senckenberg 252, 151–203 (2004).
    Google Scholar 
    Büchel, G. N., & Schaal, S. F. K. The formation of the Messel maar in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 62–103 (Schweizerbart, 2018).Der, G. K. Messeler Ölschiefer – ein Algenlaminit. Cour. Forsch. Inst. Senckenberg 131, 1–143 (1990).
    Google Scholar 
    Lenz, O. K., Wilde, V. & Riegel, W. Recolonization of a Middle Eocene volcanic site: quantitative palynology of the initial phase of the maar lake of Messel (Germany). Rev. Palaeobot. Palynol. 145, 217–242 (2007).Article 

    Google Scholar 
    Bauersachs, T., Schouten, S. & Schwark, L. Characterization of the sedimentary organic matter preserved in Messel oil shale by bulk geochemistry and stable isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 410, 390–400 (2014).Article 

    Google Scholar 
    Mertz, D. F. & Renne, P. R. A numerical age for the Messel fossil deposit (UNESCO world natural heritage site) from 40Ar/39Ar dating. Cour. Forsch. Inst. Senckenberg 255, 67–75 (2005).
    Google Scholar 
    Lenz, O. K., Wilde, V., Mertz, D. F. & Riegel, W. New palynology-based astronomical and revised 40Ar/39Ar ages for the Eocene maar lake of Messel (Germany). Int. J. Earth Sci. 104, 873–889 (2015).Article 
    CAS 

    Google Scholar 
    Lenz, O. K. & Wilde, V. Changes in Eocene plant diversity and composition of vegetation: The lacustrine archive of Messel (Germany). Paleobiology 44, 709–735 (2018).Article 

    Google Scholar 
    Lenz, O. K., Wilde, V, Riegel, W., & Harms, F-J. A 600 k.y. record of El Niño–Southern Oscillation (ENSO): evidence for persisting teleconnections during the Middle Eocene greenhouse climate of Central Europe. Geology 38, 627–630 (2010).Lenz, O. K., Wilde, V, & Riegel, W. Paleoclimate – Learning from the past for the future in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 16–23 (Schweizerbart, 2018).Grein, M., Utescher, T., Wilde, V. & Roth-Nebelsick, A. Reconstruction of the middle Eocene climate of Messel using palaeobotanical data. Neues Jb. Geol. Paläontol. Abh. 260, 305–318 (2011).Article 

    Google Scholar 
    Tütken, T. Isotope compositions (C, O, Sr, Nd) of vertebrate fossils from the Middle Eocene oil shale of Messel, Germany: Implications for their taphonomy and palaeoenvironment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 92–109 (2014).Article 

    Google Scholar 
    Wilde, V. The fossil flora of Messel in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 42–61 (Schweizerbart, 2018).Smith, K. T., Schaal, S. F. K. & Habersetzer, J. (eds.) Messel: An Ancient Greenhouse Ecosystem. (Schweizerbart, 2018).Wedmann, S., Hörnschemeyer, T., Engel, M. S., Zetter, R. & Grímsson, F. The last meal of an Eocene pollen-feeding fly. Curr. Biol. 31, 2020–2026 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wedmann, S. Jewels in the oil shale – insects and other invertebrates in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 62–103 (Schweizerbart, 2018).Franzen J. L. Odd-toed ungulates – Early horses and tapiromorphs in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 292–301 (Schweizerbart, 2018).Franzen, J. L., Aurich, C. & Habersetzer, J. Description of a well preserved fetus of the European Eocene Equoid Eurohippus messelensis. PLoS ONE 10, e0137985 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Franzen J. L., & Gingerich, P. D. Primates – Rareties in Messel in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 240–247 (Schweizerbart, 2018).Franzen, J. L. et al. Complete primate skeleton from the middle Eocene of Messel in Germany: Morphology and paleobiology. PLoS ONE 4(5), e5723 (2009).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Houša, V. Bechleja inopinata n. g., n. sp., nový ráček z českých třetihor (Decapoda, Palaemonidae). Ústřed. Ústavu Geol. Sborník 23, 365–377 (1957).Glaessner, M. F. Decapoda. In Part R Arthropoda 4(2) Treatise on Invertebrate Paleontology (ed Moore, R. C.) (The University of Kansas Press and The Geological Society of America, 1969).De Grave, S., Cai, Y. & Anker, A. Global diversity of shrimps (Crustacea: Decapoda: Caridea) in freshwater. Hydrobiologia 595, 287–293 (2008).Article 

    Google Scholar 
    Garassino, A. & Bravi, S. Palaemon antonellae new species (Crustacea, Decapoda, Caridea) from the Lower Cretaceous “Platydolomite” of profeti (Caserta, Italy). J. Paleontol. 77, 589–592 (2003).Article 

    Google Scholar 
    Schweitzer, C., Karasawa, H., Schweigert, G., Feldmann, R. & Garassino, A. Systematic list of fossil decapod crustacean species. Crustac. Monogr. 10, 1–222 (2010).
    Google Scholar 
    Plotnick, R. E. Taphonomy of a modern shrimp: implications for the arthropod fossil record. Palaios 1, 286–293 (1986).Article 
    ADS 

    Google Scholar 
    Klompmaker, A. A., Portell, R. W. & Frick, M. G. Comparative experimental taphonomy of eight marine arthropods indicates distinct differences in preservation potential. Palaeontology 60, 773–794 (2017).Article 

    Google Scholar 
    Vannier, J., Schoenemann, B., Gillot, T., Charbonnier, S. & Clarkson, E. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic. Nat. Commun. 7, 1–9 (2016).Article 

    Google Scholar 
    Jauvion, C., Audo, D., Charbonnier, S. & Vannier, J. Virtual dissection and lifestyle of a 165-million-year-old female polychelidan lobster. Arthropod Struct. Dev. 45, 122–132 (2016).Article 
    PubMed 

    Google Scholar 
    Pazinato, P. G., Jauvion, C., Schweigert, G., Haug, J. T. & Haug, C. After 100 years: a detailed view of an eumalacostracan crustacean from the Upper Jurassic Solnhofen Lagerstätte with raptorial appendages unique to Euarthropoda. Lethaia 54, 55–72 (2021).Article 

    Google Scholar 
    Briggs, D. E. G. & Kear, A. J. Decay and mineralization of shrimps. Palaios 9, 431–456 (1994).Article 
    ADS 

    Google Scholar 
    Wuttke, M. Conservation-dissolution-transformation. On the behaviour of biogenic materials during fossilization In Messel: an insight into the history of life and of the earth (eds. Schaal, S. & Ziegler, W.) 263–275 (Claredon, 1992).Thompson, J. R. Comments on phylogeny of section Caridea (Decapoda Natantia) and the phylogenetic importance of the Oplophoridea. Proc. Symp. Crustacea Part 1, 314–326 (1967).
    Google Scholar 
    Ashelby, C. W., De Grave, S. & Johnson, M. L. Preliminary observations on the mandibles of palaemonoid shrimp (Crustacea: Decapoda: Caridea: Palaemonoidea). PeerJ 3, e846 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Felgenhauer, B. E., & Abele, L. G. Phylogenetic relationships among shrimp-like decapods. In Crustacean Phylogeny (ed Schram, F. R.) 291–311 (A. A. Balkema, 1983).Wowor, D., Cai, Y., & Ng, P. K. L. Crustacea: Decapoda, Caridea. In Freshwater Invertebrates of the Malaysian Region (eds Yule, C. M. & Y. H. Sen, Y. H.) 337–357 (Academy of Sciences Malaysia, 2004).Rodd, F. H., & Reznick, D. N. Life History Evolution in Guppies: III. The Impact of Prawn Predation on Guppy Life Histories. Oikos 62, 13–19 (1991).Felgenhauer, B. E. & Abele, L. G. Feeding structures of two atyid shrimps, with comments on Caridean phylogeny. J. Crustac. Biol. 5, 397–419 (1985).Article 

    Google Scholar 
    de Mazancourt, V., Marquet, G., & Keith, P. The “Pinocchio-shrimp effect”: First evidence of variation in rostrum length with the environment in Caridina H. Milne-Edwards, 1837 (Decapoda: Caridea: Atyidae). J. Crustac. Biol. 37, 249–257 (2017).Zimmermann, G. et al. Geometric morphometrics of carapace of Macrobrachium australe (Crustacea: Palaemonidae) from Reunion Island. Acta Zool. 93, 492–500 (2012).Article 

    Google Scholar 
    Bauer, R. T. Amphidromy in shrimps: a life cycle between rivers and the sea. Lat. Am. J. Aquat. Res. 41, 633–650 (2013).Article 

    Google Scholar 
    Jalihal, D. R., Sankolli, K. N. & Shenoy, S. Evolution of larval developmental patterns and the process of freshwaterization in the prawn genus Macrobrachium Bate, 1868 (Decapoda, Palaemonidae). Crustaceana 65, 365–376 (1993).Article 

    Google Scholar 
    Grande, L. Paleontology of the Green River Formation, with a review of the fish fauna. Bull. Geol. Surv. Wyoming 63, 1–333 (1984).
    Google Scholar 
    Grande, L. The Lost World of Fossil Lake: snapshots from deep time (University of Chicago Press, 2013).Micklich, N. Peculiarities of the Messel fish fauna and their palaeoecological implications: A case study. Palaeobiodivers. Palaeoenviron. 92, 585–629 (2012).Article 

    Google Scholar 
    Micklich, N. Actinopterygians—the fishes of the Messel lake. in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 104–111 (Schweizerbart, 2018).Christodoulou, M., Anastasiadou, C., Jugovic, J., & Tzomos, T. Freshwater Shrimps (Atyidae, Palaemonidae, Typhlocarididae) in the Broader Mediterranean Region: Distribution, Life Strategies, Threats, Conservation Challenges and Taxonomic Issues. In A Global Overview of the Conservation of Freshwater Decapod Crustaceans (eds Kawai, T. & Cumberlidge, N.) 199–236 (Springer, 2016).Anger, K. Neotropical Macrobrachium (Caridea: Palaemonidae): On the biology, origin, and radiation of freshwater-invading shrimp. J. Crustac. Biol. 33, 151–183 (2013).Article 

    Google Scholar  More

  • in

    Experimentally increased snow depth affects high Arctic microarthropods inconsistently over two consecutive winters

    Callaghan, T. V. et al. Multiple effects of changes in arctic snow cover. Ambio 40, 32–45 (2011).
    Google Scholar 
    Cooper, E. J. Warmer shorter winters disrupt arctic terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 271 (2014).
    Google Scholar 
    IPCC. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. https://doi.org/10.1017/CBO9781107415324. (Cambridge University Press, 2013).Seastedt, T. R. The role of microarthropods in decomposition and mineralization processes. Annu. Rev. Entomol. 29, 25–46 (1984).
    Google Scholar 
    Osler, G. H. & Sommerkorn, M. Toward a complete soil C and N cycle: Incorporating the soil fauna. Ecology 88, 1611–1621 (2007).PubMed 

    Google Scholar 
    Coulson, S. J. et al. The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea, Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biol. Biochem. 68, 440–470 (2014).CAS 

    Google Scholar 
    Hodkinson, I. D. Terrestrial and freshwater invertebrates. In Arctic Biodiversity Assessment (ed. Barry, T.) 246–274 (Arctic Council, 2013).
    Google Scholar 
    Strathdee, A. T. & Bale, J. S. Life on the edge: Insect ecology in arctic environments. Annu. Rev. Entomol. 43, 85–106 (1998).CAS 
    PubMed 

    Google Scholar 
    Templer, P. H. et al. Impact of a reduced winter snowpack on litter arthropod abundance and diversity in a northern hardwood forest ecosystem. Biol. Fertil. Soils 48, 413–424 (2012).
    Google Scholar 
    Bokhorst, S., Metcalfe, D. B. & Wardle, D. A. Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biol. Biochem. 62, 157–164 (2013).CAS 

    Google Scholar 
    Slatyer, R. A., Nash, M. A. & Hoffmann, A. A. Measuring the effects of reduced snow cover on Australia’s alpine arthropods. Austral Ecol. 42, 844–857 (2017).
    Google Scholar 
    Bokhorst, S. et al. Extreme winter warming events more negatively impact small rather than large soil fauna: Shift in community composition explained by traits not taxa. Glob. Change Biol. 18, 1152–1162 (2012).ADS 

    Google Scholar 
    Sulkava, P. & Huhta, V. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil. Appl. Soil Ecol. 22, 225–239 (2003).
    Google Scholar 
    Konestabo, H. S., Michelsen, A. & Holmstrup, M. Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem. Appl. Soil Ecol. 36, 136–146 (2007).
    Google Scholar 
    Coulson, S. J., Leinaas, H. P., Ims, R. A. & Søvik, G. Experimental manipulation of the winter surface ice layer: The effects on a high arctic soil microarthropod community. Ecography 23, 299–306 (2000).
    Google Scholar 
    Dollery, R., Hodkinson, I. D. & Jonsdottir, I. S. Impact of warming and timing of snow melt on soil microarthropod assemblages associated with Dryas-dominated plant communities on Svalbard. Ecography 29, 111–119 (2006).
    Google Scholar 
    Ávila-Jimenez, M. L., Coulson, S. J., Solhoy, T. & Sjoblom, A. Overwintering of terrestrial Arctic arthropods: The fauna of Svalbard now and in the future. Polar Res. 29, 127–137 (2010).
    Google Scholar 
    Makkonen, M. et al. Traits explain the responses of a sub-arctic Collembola community to climate manipulation. Soil Biol. Biochem. 43, 377–384 (2011).CAS 

    Google Scholar 
    Lindo, Z. Warming favours small-bodied organisms through enhanced reproduction and compositional shifts in belowground systems. Soil Biol. Biochem. 91, 271–278 (2015).CAS 

    Google Scholar 
    Hågvar, S. A review of Fennoscandian arthropods living on and in snow. Eur. J. Entomol. 107, 281–298 (2010).
    Google Scholar 
    Hao, C., Chen, T.-W., Wu, Y., Chang, L. & Wu, D. Snow microhabitats provide food resources for winter-active Collembola. Soil Biol. Biochem. 143, 107731 (2020).CAS 

    Google Scholar 
    Christenson, L. et al. Winter climate change influences on soil faunal distribution and abundance: Implications for decomposition in the Northern Forest. Northeast. Nat. 24, B209–B234 (2017).
    Google Scholar 
    Convey, P. et al. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates. J. Therm. Biol. 54, 111–117 (2015).PubMed 

    Google Scholar 
    Krab, E. J., Monteux, S., Weedon, J. T. & Dorrepaal, E. Plant expansion drives bacteria and collembola communities under winter climate change in frost-affected tundra. Soil Biol. Biochem. 138, 107569 (2019).CAS 

    Google Scholar 
    Sörensen, J. G. & Holmstrup, M. Cryoprotective dehydration is widespread in Arctic springtails. J. Insect Physiol. 57, 1147–1153 (2011).PubMed 

    Google Scholar 
    Convey, P., Coulson, S. J., Worland, M. R. & Sjöblom, A. The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biol. 41, 1587–1605 (2018).
    Google Scholar 
    Birkemoe, T. & Leinaas, H. P. Reproductive biology of the arctic collembolan Hypogastrura tullbergi. Ecography 22, 31–39 (1999).
    Google Scholar 
    Birkemoe, T. & Leinaas, H. P. Effects of temperature on the development of an arctic Collembola (Hypogastrura tullbergi). Funct. Ecol. 14, 693–700 (2001).
    Google Scholar 
    Kankaanpää, T. et al. Spatiotemporal snowmelt patterns within a high Arctic landscape, with implications for flora and fauna. Arct. Antarct. Alp. Res. 50, e1415624 (2018).
    Google Scholar 
    Cooper, E. J., Dullinger, S. & Semenchuk, P. Late snowmelt delays plant development and results in lower reproductive success in the high arctic. Plant Sci. 180, 157–167 (2011).CAS 
    PubMed 

    Google Scholar 
    Krab, E. J. et al. Winter warming effects on tundra shrub performance are species-specific and dependent on spring conditions. J. Ecol. 106, 599–612 (2018).CAS 

    Google Scholar 
    Wheeler, H. C., Hoye, T. T., Schmidt, N. M., Svenning, J.-C. & Forchhammer, M. C. Phenological mismatch with abiotic conditions-implications for flowering in Arctic plants. Ecology 96, 775–787 (2015).PubMed 

    Google Scholar 
    Wheeler, J. A. et al. The snow and the willows: Earlier spring snowmelt reduces performance in the low-lying alpine shrub Salix herbacea. J. Ecol. 104, 1041–1050 (2016).CAS 

    Google Scholar 
    Pollierer, M. M., Langel, R., Körner, C., Maraun, M. & Scheu, S. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol. Lett. 10, 729–736 (2007).PubMed 

    Google Scholar 
    Coulson, S. J., Hodkinson, I. D. & Webb, N. R. Microscale distribution patterns in high Arctic soil microarthropod communities: The influence of plant species within the vegetation mosaic. Ecography 26, 801–809 (2003).
    Google Scholar 
    Hodkinson, I. D. et al. Global change and Arctic ecosystems: Conclusions and predictions from experiments with terrestrial invertebrates on Spitsbergen. Arct. Alp. Res. 30, 306–313 (1998).
    Google Scholar 
    Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E. & Skaugen, T. E. Temperature and precipitation development at Svalbard 1900–2100. Adv. Meteorol. 2011, 893790 (2011).
    Google Scholar 
    Alatalo, J. M., Jagerbrand, A. K. & Cuchta, P. Collembola at three alpine subarctic sites resistant to twenty years of experimental warming. Sci. Rep. 5, 18161 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coulson, S. J. et al. Effects of experimental temperature elevation on high-arctic soil microarthropod populations. Polar Biol. 16, 147–153 (1996).
    Google Scholar 
    Decker, K. L. M., Wang, D., Waite, C. & Scherbatskoy, T. Snow removal and ambient air temperature effects on forest soil temperatures in Northern Vermont. Soil Sci. Soc. Am. J. 67, 1234–1242 (2003).ADS 
    CAS 

    Google Scholar 
    van Pelt, W. J. J. et al. Multidecadal climate and seasonal snow conditions in Svalbard. J. Geophys. Res. Earth Surf. 121, 2100–2117 (2016).ADS 

    Google Scholar 
    Semenchuk, P. R. et al. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra. Biogeochemistry 124, 81–94 (2015).
    Google Scholar 
    Sjursen, H., Michelsen, A. & Jonasson, S. Effects of long-term soil warming and fertilisation on microarthropod abundances in three sub-arctic ecosystems. Appl. Soil Ecol. 30, 148–161 (2005).
    Google Scholar 
    Meehan, M. L. et al. Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia 83, 150672 (2020).
    Google Scholar 
    Harte, J., Rawa, A. & Price, V. Effects of manipulated soil microclimate on mesofaunal biomass and diversity. Soil Biol. Biochem. 28, 313–322 (1996).CAS 

    Google Scholar 
    Siepel, H. Life history tactics of soil microarthropods. Biol. Fertil. Soils 18, 263–278 (1994).
    Google Scholar 
    Chernova, N. M., Potapov, M. B., Savenkova, Y. Y. & Bokova, A. I. Ecological significance of parthenogenesis in Collembola. Zool. Zhurnal 88, 1455–1470 (2009).
    Google Scholar 
    Birkemoe, T. & Somme, L. Population dynamics of two collembolan species in an Arctic tundra. Pedobiologia 42, 131–145 (1998).
    Google Scholar 
    Bokhorst, S. et al. Contrasting responses of springtails and mites to elevation and vegetation type in the sub-Arctic. Pedobiologia 67, 57–64 (2018).
    Google Scholar 
    Widenfalk, L. A., Malmstrom, A., Berg, M. P. & Bengtsson, J. Small-scale Collembola community composition in a pine forest soil—Overdispersion in functional traits indicates the importance of species interactions. Soil Biol. Biochem. 103, 52–62 (2016).CAS 

    Google Scholar 
    Morgner, E. The importance of winter in annual ecosystem respiration in the High Arctic: Effects of snow depth in two vegetation types. Polar Res. 29, 474–474 (2010).
    Google Scholar 
    Green, K. & Slatyer, R. Arthropod community composition along snowmelt gradients in snowbeds in the Snowy Mountains of south-eastern Australia. Austral Ecol. 45, 144–157 (2020).
    Google Scholar 
    Ayres, E. et al. Experimentally increased snow accumulation alters soil moisture and animal community structure in a polar desert. Polar Biol. 33, 897–907 (2010).
    Google Scholar 
    Semenchuk, P. R., Elberling, B. & Cooper, E. J. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard. Ecol. Evol. 3, 2586–2599 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Morsdorf, M. A. et al. Deepened winter snow significantly influences the availability and forms of nitrogen taken up by plants in High Arctic tundra. Soil Biol. Biochem. 135, 222–234 (2019).CAS 

    Google Scholar 
    Cooper, E. J., Little, C. J., Pilsbacher, A. K. & Morsdorf, M. A. Disappearing green: Shrubs decline and bryophytes increase with nine years of increased snow accumulation in the High Arctic. J. Veg. Sci. 30, 857–867 (2019).
    Google Scholar 
    Mundra, S. et al. Ectomycorrhizal and saprotrophic fungi respond differently to long-term experimentally increased snow depth in the High Arctic. Microbiologyopen 5, 856–869 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schneider, K. & Maraun, M. Feeding preferences among dark pigmented fungal taxa (“Dematiacea”) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari). Pedobiologia 49, 61–67 (2005).
    Google Scholar 
    Krab, E. J., Berg, M. P., Aerts, R., van Logtestijn, R. S. P. & Cornelissen, J. H. C. Vascular plant litter input in subarctic peat bogs changes Collembola diets and decomposition patterns. Soil Biol. Biochem. 63, 106–115 (2013).CAS 

    Google Scholar 
    Jucevica, E. & Melecis, V. Global warming affect Collembola community: A long-term study. Pedobiologia 50, 177–184 (2006).
    Google Scholar 
    Krab, E. J., Oorsprong, H., Berg, M. P. & Cornelissen, J. H. C. Turning northern peatlands upside down: Disentangling microclimate and substrate quality effects on vertical distribution of Collembola. Funct. Ecol. 24, 1362–1369 (2010).
    Google Scholar 
    Zettel, J. Alpine Collembola—Adaptations and strategies for survival in harsh environments. Zool. Anal. Complex Syst. 102, 73–89 (2000).
    Google Scholar 
    Block, W. Terrestrial arthropods and low-temperature. Cryobiology 18, 436–444 (1981).CAS 
    PubMed 

    Google Scholar 
    Semenchuk, P. R., Christiansen, C. T., Grogan, P., Elberling, B. & Cooper, E. J. Long-term experimentally deepened snow decreases growing-season respiration in a low- and high-arctic tundra ecosystem. J. Geophys. Res. Biogeosci. 121, 1236–1248 (2016).
    Google Scholar 
    Semenchuk, P. R. et al. Soil organic carbon depletion and degradation in surface soil after long-term non-growing season warming in High Arctic Svalbard. Sci. Total Environ. 646, 158–167 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gillespie, M. A. K. et al. Status and trends of terrestrial arthropod abundance and diversity in the North Atlantic region of the Arctic. Ambio 49, 718–731 (2020).PubMed 

    Google Scholar 
    Andriuzzi, W. S., Adams, B. J., Barrett, J. E., Virginia, R. A. & Wall, D. H. Observed trends of soil fauna in the Antarctic Dry Valleys: Early signs of shifts predicted under climate change. Ecology 99, 312–321 (2018).CAS 
    PubMed 

    Google Scholar 
    Staub, B. & Delaloye, R. Using near-surface ground temperature data to derive snow insulation and melt indices for mountain permafrost applications. Permafr. Periglac. Process. 28, 237–248 (2017).
    Google Scholar 
    Rendos, M. et al. Organic carbon content and temperature as substantial factors affecting diversity and vertical distribution of Collembola on forested scree slopes. Eur. J. Soil Biol. 75, 180–187 (2016).
    Google Scholar 
    Fjellberg, A. The Collembola of the Norwegian Arctic Islands (Norsk Polarinstitutt, 1994).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (R Foundation for Statistical Computing, 2020). Accessed 06 June 2020. More