More stories

  • in

    Assessing Müllerian mimicry in North American bumble bees using human perception

    Bates, H. W. XXXII. Contributions to an insect fauna of the Amazon Valley. Lepidoptera: Heliconidæ. Trans. Linn. Soc. Lond 23, 495–566 (1862).Article 

    Google Scholar 
    Müller, F. Ituna and thyridia: A remarkable case of mimicry in butterflies. Trans. Entomol. Soc. Lond. 1879, 20–29 (1879).
    Google Scholar 
    Baxter, S. W. et al. Convergent evolution in the genetic basis of Müllerian mimicry in Heliconius butterflies. Genetics 180, 1567–1577 (2008).Article 
    CAS 

    Google Scholar 
    Sheppard, P. M., Turner, J. R. G., Brown, K., Benson, W. & Singer, M. Genetics and the evolution of Muellerian mimicry in Heliconius butterflies. Philos. Trans R. Soc. Lond. B, Biol. Sci. 308, 433–610 (1985).Article 
    ADS 

    Google Scholar 
    Mallet, J. & Gilbert, L. E. Jr. Why are there so many mimicry rings? Correlations between habitat, behaviour and mimicry in Heliconius butterflies. Biol. J. Lin. Soc. 55, 159–180 (1995).
    Google Scholar 
    Brower, A. V. Parallel race formation and the evolution of mimicry in Heliconius butterflies: A phylogenetic hypothesis from mitochondrial DNA sequences. Evolution 50, 195–221 (1996).Article 
    CAS 

    Google Scholar 
    Wilson, J. S. et al. North American velvet ants form one of the world’s largest known Müllerian mimicry complexes. Curr. Biol. 25, R704–R706. https://doi.org/10.1016/j.cub.2015.06.053 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wilson, J. S., Williams, K. A., Forister, M. L., Von Dohlen, C. D. & Pitts, J. P. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 3, 1272 (2012).Article 
    ADS 

    Google Scholar 
    Wilson, J. S., Pan, A. D., Limb, E. S. & Williams, K. A. Comparison of African and North American velvet ant mimicry complexes: Another example of Africa as the ‘odd man out’. PLoS ONE 13, e0189482. https://doi.org/10.1371/journal.pone.0189482 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Plowright, R. & Owen, R. E. The evolutionary significance of bumble bee color patterns: A mimetic interpretation. Evolution 34, 622–637 (1980).Article 
    CAS 

    Google Scholar 
    Williams, P. The distribution of bumblebee colour patterns worldwide: Possible significance for thermoregulation, crypsis, and warning mimicry. Biol. J. Lin. Soc. 92, 97–118 (2007).Article 

    Google Scholar 
    Hines, H. M. & Williams, P. H. Mimetic colour pattern evolution in the highly polymorphic Bombus trifasciatus (Hymenoptera: Apidae) species complex and its comimics. Zool. J. Linn. Soc. 166, 805–826 (2012).Article 

    Google Scholar 
    Koch, J. B., Rodriguez, J., Pitts, J. P. & Strange, J. P. Phylogeny and population genetic analyses reveals cryptic speciation in the Bombus fervidus species complex (Hymenoptera: Apidae). PLoS ONE 13, e0207080 (2018).Article 

    Google Scholar 
    Ezray, B. D., Wham, D. C., Hill, C. E. & Hines, H. M. Unsupervised machine learning reveals mimicry complexes in bumblebees occur along a perceptual continuum. Proc. R. Soc. B 286, 20191501 (2019).Article 

    Google Scholar 
    Bateson, W. The alleged “Aggressive Mimicry” of volucellæ. Nature 46, 585 (1892).Article 
    ADS 

    Google Scholar 
    Poulton, E. B. The volucellœ as alleged examples of variation “almost unique among animals”. Nature 47, 126 (1892).Article 
    ADS 

    Google Scholar 
    Cockerell, T. D. New social bees. Psyche A J. Entomol. 24, 120–128 (1917).Article 

    Google Scholar 
    Koch, J., Strange, J. & Williams, P. In: Bumble bees of the western United States (US Forest Service, San Francisco California, 2012).
    Google Scholar 
    Williams, P. H., Thorp, R. W., Richardson, L. L. & Colla, S. R. In: Bumble bees of North America: An identification guide Vol. 87 (Princeton University Press, Princeton, 2014).
    Google Scholar 
    Ruxton, G. D., Franks, D. W., Balogh, A. C. & Leimar, O. Evolutionary implications of the form of predator generalization for aposematic signals and mimicry in prey. Evol Int. J. Org. Evol. 62, 2913–2921 (2008).Article 

    Google Scholar 
    Rowe, C., Lindström, L. & Lyytinen, A. The importance of pattern similarity between Müllerian mimics in predator avoidance learning. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 407–413 (2004).Article 

    Google Scholar 
    Beatty, C. D., Beirinckx, K. & Sherratt, T. N. The evolution of Müllerian mimicry in multispecies communities. Nature 431, 63 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Chittka, L. & Osorio, D. Cognitive dimensions of predator responses to imperfect mimicry. PLoS Biol. 5, e339 (2007).Article 

    Google Scholar 
    Dittrigh, W., Gilbert, F., Green, P., McGregor, P. & Grewcock, D. Imperfect mimicry: A pigeon’s perspective. Proc. R. Soc. Lond. Ser. B Biol. Sci. 251, 195–200 (1993).Article 
    ADS 

    Google Scholar 
    Sherratt, T. N., Whissell, E., Webster, R. & Kikuchi, D. W. Hierarchical overshadowing of stimuli and its role in mimicry evolution. Anim. Behav. 108, 73–79 (2015).Article 

    Google Scholar 
    Beatty, C. D., Bain, R. S. & Sherratt, T. N. The evolution of aggregation in profitable and unprofitable prey. Anim. Behav. 70, 199–208 (2005).Article 

    Google Scholar 
    Kazemi, B., Gamberale-Stille, G., Tullberg, B. S. & Leimar, O. Stimulus salience as an explanation for imperfect mimicry. Curr. Biol. 24, 965–969 (2014).Article 
    CAS 

    Google Scholar 
    Kikuchi, D. W., Dornhaus, A., Gopeechund, V. & Sherratt, T. N. Signal categorization by foraging animals depends on ecological diversity. Elife. 8, e43965 (2019).Article 

    Google Scholar 
    Rapti, Z., Duennes, M. A. & Cameron, S. A. Defining the colour pattern phenotype in bumble bees (Bombus): A new model for evo devo. Biol. J. Lin. Soc. 113, 384–404 (2014).Article 

    Google Scholar 
    Wilson, J. S., Sidwell, J. S., Forister, M. L., Williams, K. A. & Pitts, J. P. Thistledown velvet ants in the desert mimicry ring and the evolution of white coloration: Müllerian mimicry, camouflage and thermal ecology. Biol. Lett. 16, 20200242 (2020).Article 

    Google Scholar 
    Ascher, J. & Pickering, J. Discover Life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila) (2019).iNaturalist. Available from https://www.inaturalist.org. Accessed [2022].Bombus Latreille, 1802 in GBIF Secretariat (2021). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2021-12-03. More

  • in

    Citizen science plant observations encode global trait patterns

    Sakschewski, B. et al. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob. Change Biol. 21, 2711–2725 (2015).Article 

    Google Scholar 
    Berzaghi, F. et al. Towards a new generation of trait-flexible vegetation models. Trends Ecol. Evol. 35, 191–205 (2020).Article 
    PubMed 

    Google Scholar 
    Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).Article 
    PubMed 

    Google Scholar 
    Joswig, J. S. et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 6, 36–50 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).PubMed Central 

    Google Scholar 
    Moreno Martínez, A. et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens. Environ. 218, 69–88 (2018).Article 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. New handbook for standardized measurment of plant functional traits worldwide. Aust. J. Bot. 23, 167–234 (2013).Article 

    Google Scholar 
    Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).Article 

    Google Scholar 
    Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).Article 
    PubMed 

    Google Scholar 
    Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boonman, C. C. et al. Assessing the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. Biogeogr. 29, 1034–1051 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Madani, N. et al. Future global productivity will be affected by plant trait response to climate. Sci. Rep. 8, 2870 (2018).Vallicrosa, H. et al. Global distribution and drivers of forest biome foliar nitrogen to phosphorus ratios (N:P). Glob. Ecol. Biogeogr. 31, 861–871 (2022).Article 

    Google Scholar 
    Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633 (2021).Article 

    Google Scholar 
    Schiller, C. et al. Deep learning and citizen science enable automated plant trait predictions from photographs. Sci. Rep. 11, 16395 (2021).Aguirre-Gutiérrez, J. et al. Pantropical modelling of canopy functional traits using sentinel-2 remote sensing data. Remote Sens. Environ. 252, 112–122 (2021).Article 

    Google Scholar 
    Homolova, L. et al. Review of optical-based remote sensing for plant trait mapping. Ecol. Complex. 15, 1–16 (2013).Article 

    Google Scholar 
    Van Cleemput, E. et al. The functional characterization of grass-and-shrubland ecosystems using hyperspectral remote sensing: trends, accuracy and moderating variables. Remote Sens. Environ. 209, 747–763 (2018).Article 

    Google Scholar 
    Kattenborn, T., Fassnacht, F. E. & Schmidtlein, S. Differentiating plant functional types using reflectance: which traits make the difference? Remote Sens. Ecol. Conserv. 5, 5–19 (2019).Article 

    Google Scholar 
    Hauser, L. T. et al. Explaining discrepancies between spectral and in-situ plant diversity in multispectral satellite earth observation. Remote Sens. Environ. 265, 112684 (2021).Article 

    Google Scholar 
    Wäldchen, J. & Mäder, P. Plant species identification using computer vision techniques: a systematic literature review. Arch. Comput. Methods Eng. 25, 507–543 (2018).Article 
    PubMed 

    Google Scholar 
    Jones, H. G. What plant is that? Tests of automated image recognition apps for plant identification on plants from the British flora. AoB Plants 12, plaa052 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hampton, S. E. et al. Big data and the future of ecology. Front. Ecol. Environ. 11, 156–162 (2013).Article 

    Google Scholar 
    WÜest, R. O. et al. Macroecology in the age of big data—where to go from here? J. Biogeogr. 47, 1–12 (2020).Article 

    Google Scholar 
    Mäder, P. et al. The Flora Incognita app—interactive plant species identification. Methods Ecol. Evol. 12, 1335–1342 (2021).Article 

    Google Scholar 
    Di Cecco, G. J. et al. Observing the observers: how participants contribute data to iNaturalist and implications for biodiversity science. BioScience 71, 1179–1188 (2021).Article 

    Google Scholar 
    Mahecha, M. D. et al. Crowd-sourced plant occurrence data provide a reliable description of macroecological gradients. Ecography 44, 1131–1142 (2021).Article 

    Google Scholar 
    Botella, C. et al. Jointly estimating spatial sampling effort and habitat suitability for multiple species from opportunistic presence-only data. Methods Ecol. Evol. 12, 933–945 (2021).Article 

    Google Scholar 
    iNaturalist Research-Grade Observations (GBIF, accessed 5 January 2022); https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7Callaghan, C. T. et al. Three frontiers for the future of biodiversity research using citizen science data. BioScience 71, 55–63 (2020).
    Google Scholar 
    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: challenges and benefits. Ann. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).Article 

    Google Scholar 
    Kosmala, M. et al. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560 (2016).Article 

    Google Scholar 
    Boakes, E. H. et al. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour. Sci. Rep. 6, 33051 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bowler, D.E. et al. Temporal trends in the spatial bias of species occurrence records. Ecography 2022, e06219 (2022). https://doi.org/10.1111/ecog.06219GBIF Occurrence Download (GBIF, 4 January 2022); https://doi.org/10.15468/dl.34tjreBruelheide, H. et al. sPlot—a new tool for global vegetation analyses. journal of vegetation science. J. Veg. Sci. 30, 161–186 (2019).Article 

    Google Scholar 
    Sabatini, F. et al. sPlotOpen—an environmentally balanced, open access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).Article 

    Google Scholar 
    Whittaker, R.H. et al. Communities and Ecosystems (Macmillan/Collier Macmillan, 1970).Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    Joswig, J., Wirth, C. & Schuman, M. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 6, 36–50 (2022).Article 
    PubMed 

    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).Article 
    PubMed 

    Google Scholar 
    Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, H. & Pebesma, E. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Methods Ecol. Evol. 12, 1620–1633 (2021).Article 

    Google Scholar 
    Schrodt, F. et al. Bhpmf—a hierarchical Bayesian approach to gap filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).Article 

    Google Scholar 
    Kuppler, J. et al. Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness. Glob. Ecol. Biogeogr. 29, 992–1007 (2020).Article 

    Google Scholar 
    Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).Article 
    PubMed 

    Google Scholar 
    Taubert, F. et al. Confronting an individual-based simulation model with empirical community patterns of grasslands. PLoS ONE 15, e0236546 (2020).Roger, E. & Klistorner, S. (2016) Bioblitzes help science communicators engage local communities in environmental research. J. Sci. Commun. https://doi.org/10.22323/2.15030206 (2016).Legendre, P. & Legendre, L. Numerical Ecology 3rd edn (Elsevier, 2012).Warton, D. I. et al. Smatr 3—an R package for estimation and inference about allometric lines. Methods Ecol Evol 3, 257–259 (2012).Article 

    Google Scholar 
    Wolf, S. et al. iNaturalist_traits: iNaturalist trait maps version 1 (January 5, 2022) Zenodo https://doi.org/10.5281/zenodo.6671891 (2022). More

  • in

    More losses than gains during one century of plant biodiversity change in Germany

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elahi, R. et al. Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Curr. Biol. 25, 1938–1943 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Crossley, M. S. et al. No net insect abundance and diversity declines across US long term ecological research sites. Nat. Ecol. Evol. 4, 1368–1376 (2020).Article 
    PubMed 

    Google Scholar 
    Dirzo, R. & Raven, P. H. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28, 137–167 (2003).Article 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).Article 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752–1246752 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Primack, R. B. et al. Biodiversity gains? The debate on changes in local- vs global-scale species richness. Biol. Conserv. 219, A1–A3 (2018).Article 

    Google Scholar 
    Vellend, M. The biodiversity conservation paradox. Am. Sci. 105, 94 (2017).Article 

    Google Scholar 
    Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).Article 

    Google Scholar 
    Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019).Article 

    Google Scholar 
    Ellis, E. C., Antill, E. C. & Kreft, H. All is not loss: plant biodiversity in the anthropocene. PLoS ONE 7, e30535 (2012).Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Staude, I. R. et al. Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat. Ecol. Evol. 4, 802–808 (2020).Article 
    PubMed 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).Article 
    PubMed 

    Google Scholar 
    Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Glob. Change Biol. 27, 1097–1110 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Beck, J. J., Larget, B. & Waller, D. M. Phantom species: adjusting estimates of colonization and extinction for pseudo-turnover. Oikos 127, 1605–1618 (2018).Article 

    Google Scholar 
    Bruelheide, H. et al. sPlot—a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).Article 

    Google Scholar 
    Avolio, M. L. et al. A comprehensive approach to analyzing community dynamics using rank abundance curves. Ecosphere 10, e02881 (2019).Article 

    Google Scholar 
    Diekmann, M. et al. Patterns of long‐term vegetation change vary between different types of semi‐natural grasslands in Western and Central Europe. J. Veg. Sci. 30, 187–202 (2019).Article 

    Google Scholar 
    Newbold, T. et al. Widespread winners and narrow-ranged losers: land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 16, e2006841 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gini, C. Il diverso accrescimento delle classi sociali e la concentrazione della ricchezza. Giornale degli Economisti38, 27–83 (1909).Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).Article 
    PubMed 

    Google Scholar 
    Hundt, R. Ökologisch‐geobotanische Untersuchungen an den mitteldeutschen Wiesengesellschaften unter besonderer Berücksichtigung ihres Wasserhaushaltes und ihrer Veränderung durch die Intensivbewirtschaftung (Wehry-Druck OHG, 2001).Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jansen, F., Bonn, A., Bowler, D. E., Bruelheide, H. & Eichenberg, D. Moderately common plants show highest relative losses. Conserv. Lett. 13, e12674 (2020).Article 

    Google Scholar 
    Bruelheide, H. et al. Using incomplete floristic monitoring data from habitat mapping programmes to detect species trends. Divers. Distrib. 26, 782–794 (2020).Article 

    Google Scholar 
    Sperle, T. & Bruelheide, H. Climate change aggravates bog species extinctions in the Black Forest (Germany). Divers. Distrib. 27, 282–295 (2020).Article 

    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Timmermann, A., Damgaard, C., Strandberg, M. T. & Svenning, J.-C. Pervasive early 21st-century vegetation changes across Danish semi-natural ecosystems: more losers than winners and a shift towards competitive, tall-growing species. J. Appl. Ecol. 52, 21–30 (2015).Article 

    Google Scholar 
    Milligan, G., Rose, R. J. & Marrs, R. H. Winners and losers in a long-term study of vegetation change at Moor House NNR: effects of sheep-grazing and its removal on British upland vegetation. Ecol. Indic. 68, 89–101 (2016).Baskin, Y. Winners and losers in a changing world. BioScience 48, 788–792 (1998).Article 

    Google Scholar 
    Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).Article 

    Google Scholar 
    Naaf, T. & Wulf, M. Habitat specialists and generalists drive homogenization and differentiation of temperate forest plant communities at the regional scale. Biol. Conserv. 143, 848–855 (2010).Article 

    Google Scholar 
    Heinrichs, S. & Schmidt, W. Biotic homogenization of herb layer composition between two contrasting beech forest communities on limestone over 50 years. Appl. Veg. Sci. 20, 271–281 (2017).Article 

    Google Scholar 
    Reinecke, J., Klemm, G. & Heinken, T. Vegetation change and homogenization of species composition in temperate nutrient deficient Scots pine forests after 45 yr. J. Veg. Sci. 25, 113–121 (2014).Article 

    Google Scholar 
    Metzing, D. et al. Rote Liste und Gesamtartenliste der Farn- und Blütenpflanzen (Trachaeophyta) Deutschlands (Landwirtschaftsverlag, 2018).Poschlod, P. Geschichte der Kulturlandschaft (Ulmer, 2017).Sukopp, H. ‘Rote Liste’ der in der Bundesrepublik Deutschland gefährdeten Arten von Farn- und Blütenpflanzen. (1. Fassung). Nat. Landsch. 49, 315–322 (1974).
    Google Scholar 
    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).Article 
    PubMed 

    Google Scholar 
    Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jandt, U., von Wehrden, H. & Bruelheide, H. Exploring large vegetation databases to detect temporal trends in species occurrences. J. Veg. Sci. 22, 957–972 (2011).Article 

    Google Scholar 
    Jones, F. A. M. & Magurran, A. E. Dominance structure of assemblages is regulated over a period of rapid environmental change. Biol. Lett. 14, 20180187 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chytrý, M., Tichý, L., Hennekens, S. M. & Schaminée, J. H. J. Assessing vegetation change using vegetation-plot databases: a risky business. Appl. Veg. Sci. 17, 32–41 (2014).Article 

    Google Scholar 
    Jandt, U. et al. ReSurveyGermany: Vegetation-plot time-series over the past hundred years in Germany. Sci. Data, https://doi.org/10.1038/s41597-022-01688-6 (2022)Bohn, U. & Schniotalle, S. Hochmoor-, Grünland- und Waldrenaturierung im Naturschutzgebiet ‘Rotes Moor’/Hohe Rhön 1981–2001 (Landwirtschaftsverlag, 2008).Rosenthal, G. Erhaltung und Regeneration von Feuchtwiesen. Vegetationsökologische Untersuchungen auf Dauerflächen. Diss. Bot. 182, 1–283 (1992).
    Google Scholar 
    Schwabe, A. & Kratochwil, A. Pflanzensoziologische Dauerflächen-Untersuchungen im Bannwald ‘Flüh’ (Südschwarzwald) unter besonderer Berücksichtigung der Weidfeld-Sukzession. Standort Wald 49, 5–49 (2015).
    Google Scholar 
    Poschlod, P., Schreiber, K.-F., Mitlacher, K., Römermann, C. & Bernhardt-Römermann, M. in Landschaftspflege und Naturschutz im Extensivgrünland. 30 Jahre Offenhaltungsversuche Baden-Württemberg Vol. 97 (eds. Schreiber, K.-F. et al.) 243–288 (2009).Hennekens, S. M. & Schaminée, J. H. J. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12, 589–591 (2001).Article 

    Google Scholar 
    Chytrý, M. et al. EUNIS Habitat Classification: expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 23, 648–675 (2020).Article 

    Google Scholar 
    Bruelheide, H., Tichý, L., Chytrý, M. & Jansen, F. Implementing the formal language of the vegetation classification expert systems (ESy) in the statistical computing environment R. Appl. Veg. Sci. 12, e12562 (2021).Jansen, F. & Dengler, J. GermanSL—eine universelle taxonomische Referenzliste für Vegetationsdatenbanken. Tuexenia 28, 239–253 (2008).
    Google Scholar 
    Wisskirchen, R. & Haeupler, H. Standardliste der Farn-und Blütenpflanzen Deutschlands (Ulmer, 1998).Jansen, F. & Dengler, J. Plant names in vegetation databases–a neglected source of bias. J. Veg. Sci. 21, 1179–1186 (2010).Article 

    Google Scholar 
    Wegener, U. Vegetationswandel des Berggrünlands nach Untersuchungen von 1954 bis 2016—Wege zur Erhaltung der Bergwiesen (Mountain grasslands vegetation change after research from 1954 to 2016—ways to preserve mountain meadows). Abh. Berichte Aus Dem Mus. Heine. 11, 35–101 (2018).
    Google Scholar 
    Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).Article 
    ADS 

    Google Scholar 
    Weiner, J. & Solbrig, O. T. The meaning and measurement of size hierarchies in plant populations. Oecologia 61, 334–336 (1984).Article 
    ADS 
    PubMed 

    Google Scholar 
    Signorell, A. et al. DescTools: tools for descriptive statistics. R version 0.99.32 https://CRAN.R-project.org/package=DescTools (2020).BiolFlor—a new plant-trait database as a tool for plant invasion ecology. Divers. Distrib. 10, 363–365 (2004).INSPIRE. D2.8.III.18 Data Specification on Habitats and Biotopes—Technical Guidelines https://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_HB_v3.0rc2.pdf (2013).Jandt, U. & Bruelheide, H. German Vegetation Reference Database (GVRD). Biodivers. Ecol. 4, 355–355 (2012).Article 

    Google Scholar 
    Sokal, R. R. & Rohlf, F. J. Biometry (Freeman, 1995).Chytrý, M., Tichý, L., Holt, J. & Botta‐Dukát, Z. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13, 79–90 (2002).Article 

    Google Scholar 
    Gotelli, N. J. Null model analysis of species co‐occurrence patterns. Ecology 81, 2606–2621 (2000).Article 

    Google Scholar 
    Pillar, V. D., Sabatini, F. M., Jandt, U., Camiz, S. & Bruelheide, H. Revealing the functional traits linked to hidden environmental factors in community assembly. J. Veg. Sci. 32, e12976 (2021).Sabatini, F. M., Jiménez‐Alfaro, B., Burrascano, S., Lora, A. & Chytrý, M. Beta‐diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography 41, 1038–1048 (2018).Article 

    Google Scholar 
    MacArthur, R. On the relative abundance of species. Am. Nat. 94, 25–36 (1960).Article 

    Google Scholar 
    Prado, P. I., Miranda, M. D. & Chalom, A. sads: maximum likelihood models for species abundance distributions. R version 0.4.2. https://CRAN.R-project.org/package=sads (2018).Kuhn, G., Heinz, S. & Mayer, F. Grünlandmonitoring Bayern. Ersterhebung der Vegetation 2002–2008. Schriftenreihe LfL Bayer. Landesanst. Für Landwirtsch. 3, 1–161 (2011).
    Google Scholar  More

  • in

    ReSurveyGermany: Vegetation-plot time-series over the past hundred years in Germany

    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019).Article 

    Google Scholar 
    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences 110, 19456–19459 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Riedel, T., Polley, H. & Klatt, S. Germany. in National Forest Inventories (eds. Vidal, C., Alberdi, I. A., Hernández Mateo, L. & Redmond, J. J.) 405–421, https://doi.org/10.1007/978-3-319-44015-6 (Springer International Publishing, 2016).Braun-Blanquet, J. Pflanzensoziologie. Grundzüge der Vegetationskunde. vol. Seite: (Julius Springer, 1928).Bernhardt-Römermann, M. et al. Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob Change Biol 21, 3726–3737 (2015).Article 
    ADS 

    Google Scholar 
    Ahrns, C. & Hofmann, G. Vegetationsdynamik und Florenwandel im ehemaligen mitteldeutschen Waldschutzgebiet ‘Hainich’ im Intervall 1963–1995. Hercynia N.F. 31, 33–64 (1998).
    Google Scholar 
    Dittmann, T., Heinken, T. & Schmidt, M. Die Wälder von Magdeburgerforth (Fläming, Sachsen-Anhalt) – eine Wiederholungsuntersuchung nach sechs Jahrzehnten, https://doi.org/10.14471/2018.38.009 (2018).Günther, K., Schmidt, M., Quitt, H. & Heinken, T. Veränderungen der Waldvegetation im Elbe-Havelwinkel von 1960 bis 2015. Tuexenia 41, 53–85 (2021).
    Google Scholar 
    Janiesch, P. Vegetationsökologische Untersuchungen in einem Erlenbruchwald im nördlichen Münsterland. 25 Jahre im Vergleich. Abhandlungen aus dem Westfälischen Museum für Naturkunde 71–80 (2003).Naaf, T. & Wulf, M. Habitat specialists and generalists drive homogenization and differentiation of temperate forest plant communities at the regional scale. Biological Conservation 143, 848–855 (2010).Article 

    Google Scholar 
    Reinecke, J., Klemm, G. & Heinken, T. Vegetation change and homogenization of species composition in temperate nutrient deficient Scots pine forests after 45 yr. J Veg Sci 25, 113–121 (2014).Article 

    Google Scholar 
    Mölder, A., Streit, M. & Schmidt, W. When beech strikes back: How strict nature conservation reduces herb-layer diversity and productivity in Central European deciduous forests. Forest Ecology and Management 319, 51–61 (2014).Article 

    Google Scholar 
    Fischer, C., Parth, A. & Schmidt, W. Vegetationsdynamik in Buchen-Naturwäldern. Ein Vergleich aus Süd-Niedersachsen. Hercynia N.F. 45–68 (2009).Schmidt, W. Die Naturschutzgebiete Hainholz und Staufenberg am Harzrand – Sukzessionsforschung in Buchenwäldern ohne Bewirtschaftung (Exkursion E). Tuexenia 22, 151–213 (2002).
    Google Scholar 
    Strubelt, I., Diekmann, M. & Zacharias, D. Changes in species composition and richness in an alluvial hardwood forest over 52 yrs. J Veg Sci 28, 401–412 (2017).Article 

    Google Scholar 
    Strubelt, I., Diekmann, M., Peppler-Lisbach, C., Gerken, A. & Zacharias, D. Vegetation changes in the Hasbruch forest nature reserve (NW Germany) depend on management and habitat type. Forest Ecology and Management 444, 78–88 (2019).Article 

    Google Scholar 
    Wilmanns, O. & Bogenrieder, A. Veränderungen der Buchenwälder des Kaiserstuhls im Laufe von vier Jahrzehnten und ihre Interpretation – pflanzensoziologische Tabellen als Dokumente. Abh. Landesmus. Naturk. Münster Westfalen 48, 55–79 (1986).
    Google Scholar 
    Huwer, A. & Wittig, R. Changes in the species composition of hedgerows in the Westphalian Basin over a thirty-five-year period. Tuexenia 32, 31–53 (2012).
    Google Scholar 
    Immoor, A., Zacharias, D., Müller, J. & Diekmann, M. A re-visitation study (1948–2015) of wet grassland vegetation in the Stedinger Land near Bremen, North-western Germany, https://doi.org/10.14471/2017.37.013 (2017).Rosenthal, G. Erhaltung und Regeneration von Feuchtwiesen. Vegetationsökologische Untersuchungen auf Dauerflächen. Diss. Bot. 182, 1–283 (1992).
    Google Scholar 
    Poptcheva, K., Schwartze, P., Vogel, A., Kleinebecker, T. & Hölzel, N. Changes in wet meadow vegetation after 20 years of different management in a field experiment (North-West Germany). Agriculture, Ecosystems & Environment 134, 108–114 (2009).Article 

    Google Scholar 
    Diekmann, M. et al. Patterns of long‐term vegetation change vary between different types of semi‐natural grasslands in Western and Central Europe. J Veg Sci 30, 187–202 (2019).Article 

    Google Scholar 
    Hundt, R. Ökologisch‐geobotanische Untersuchungen an den mitteldeutschen Wiesengesellschaften unter besonderer Berücksichtigung ihres Wasserhaushaltes und ihrer Veränderung durch die Intensivbewirtschaftung. (Wehry-Druck OHG, 2001).Kuhn, G., Heinz, S. & Mayer, F. Grünlandmonitoring Bayern. Ersterhebung der Vegetation 2002–2008. Schriftenreihe LfL Bayerische Landesanstalt für Landwirtschaft 3, 1–161 (2011).
    Google Scholar 
    Raehse, S. Veränderungen der hessischen Grünlandvegetation seit Beginn der 50er Jahre am Beispiel ausgewählter Tal- und Bergregionen Nord- und Mittelhessens. (University Press GmbH, 2001).Scheidel, U. & Bruelheide, H. Versuche zur Beweidung von Bergwiesen im Harz. Hercynia N.F 37, 87–101 (2004).
    Google Scholar 
    Sommer, S. & Hachmöller, B. Auswertung der Vegetationsaufnahmen von Dauerbeobachtungenflächen auf Bergwiesen im NSG Oelsen bei variierter Mahd im Vergleich zur Brache. Ber. Arbeitsgem. Sächs. Bot. N.F. 18, 99–135 (2001).
    Google Scholar 
    Wegener, U. Vegetationswandel des Berggrünlands nach Untersuchungen von 1954 bis 2016 – Wege zur Erhaltung der Bergwiesen. Mountain grasslands vegetation change after research from 1954 to 2016 – ways to preserve mountain meadows. Abhandlungen und Berichte aus dem Museum Heineanum 11, 35–101 (2018).
    Google Scholar 
    Wittig, B., Müller, J. & Mahnke-Ritoff, A. Talauen-Glatthaferwiesen im Verdener Wesertal (Niedersachsen). Tuexenia 39, 249–265 (2019).
    Google Scholar 
    Heinrich, W., Marstaller, R. & Voigt, W. Eine Langzeitstudie zur Sukzession in Halbtrockenrasen – Strukturwandlungen in einer Dauerbeobachtungsfläche im Naturschutzgebiet “Leutratal und Cospoth” bei Jena (Thüringen). Artenschutzreport Jena 30, 1–80 (2012).
    Google Scholar 
    Hüllbusch, E., Brand, L. M., Ende, P. & Dengler, J. Little vegetation change during two decades in a dry grassland complex in the Biosphere Reserve Schorfheide-Chorin (NE Germany). Tuexenia 36, 395–412 (2016).
    Google Scholar 
    Knapp, R. Dauerflächen-Untersuchungen über die Einwirkung von Haustieren und Wild während trockener und feuchter Zeiten in Mesobromion-Halbtrockenrasen in Hessen. Mitt. Florist.-Soziol. Arbeitsgem. N.F. 19/20, 269–274 (1977).
    Google Scholar 
    Matesanz, S., Brooker, R. W., Valladares, F. & Klotz, S. Temporal dynamics of marginal steppic vegetation over a 26-year period of substantial environmental change: Temporal dynamics of marginal steppic vegetation over a 26-year period. Journal of Vegetation Science 20, 299–310 (2009).Article 

    Google Scholar 
    Schwabe, A., Zehm, A., Nobis, M., Storm, C. & Süß, K. Auswirkungen von Schaf-Erstbeweidung auf die Vegetation primär basenreicher Sand-Ökosysteme. NNA Berichte 1/2004, 39–54 (2004).
    Google Scholar 
    Schwabe, A., Süss, K. & Storm, C. What are the long-term effects of livestock grazing in steppic sandy grassland with high conservation value? Results from a 12-year field study. Tuexenia 33, 189–212 (2013).
    Google Scholar 
    Peppler‐Lisbach, C., Stanik, N., Könitz, N. & Rosenthal, G. Long‐term vegetation changes in Nardus grasslands indicate eutrophication, recovery from acidification, and management change as the main drivers. Appl Veg Sci 23, 508–521 (2020).Article 

    Google Scholar 
    Peppler-Lisbach, C. & Könitz, N. Vegetationsveränderungen in Borstgrasrasen des Werra-Meißner-Gebietes (Hessen, Niedersachsen) nach 25 Jahren. Tuexenia 37, 201–228 (2017).
    Google Scholar 
    Wittig, B., Müller, J., Quast, R. & Miehlich, H. Arnica montana in Calluna-Heiden auf dem Schießplatz Unterlüß (Niedersachsen). Tuexenia 40, 131–146 (2020).
    Google Scholar 
    Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc Natl Acad Sci USA 115, 1848–1853 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kudernatsch, T. et al. Vegetationsveränderungen alpiner Kalk-Magerrasen im Nationalpark Berchtesgaden während der letzten drei Jahrzehnte. Tuexenia 36, 205–221 (2016).
    Google Scholar 
    Poschlod, P. et al. Long‐term monitoring in rivers of south Germany since the 1970ies. Macrophytes as indicators for the assessment of water quality. in Long‐term ecological research. Between Theory and Application (eds. Müller, F., Baessler, C., Schubert, H. & Klotz, S.) 189–199 (Springer, 2006).Dierschke, H. Dynamik und Konstanz an naturnahen Flussufern. 27 Jahre Dauerflächenuntersuchungen am Oderufer (Harzvorland). Braunschweiger Geobotanische Arbeiten 9, 119–138 (2008).
    Google Scholar 
    Kreyling, J. et al. Rewetting does not return drained fen peatlands to their old selves. Nat Commun 12, 5693 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bohn, U. & Schniotalle, S. Hochmoor-, Grünland- und Waldrenaturierung im Naturschutzgebiet ‘Rotes Moor’/Hohe Rhön 1981–2001. (Landwirtschaftsverlag, 2008).Koch, M. & Jurasinski, G. Four decades of vegetation development in a percolation mire complex following intensive drainage and abandonment. Plant Ecology & Diversity 8, 49–60 (2015).Article 

    Google Scholar 
    Walther, K. Die Vegetation des Maujahn 1984. Wiederholung der vegetationskundlichen Untersuchung eines wendländischen Moores. Tuexenia 6, 145–193 (1986).
    Google Scholar 
    Berg, C. & Mahn, E.-G. Anthropogene Vegetationsveränderungen der Straßenrandvegetation in den letzten 30 Jahren – die Glatthaferwiesen des Raumes Halle/Saale. Tuexenia 10, 185–195 (1990).
    Google Scholar 
    Meyer, S., Wesche, K., Krause, B. & Leuschner, C. Dramatic losses of specialist arable plants in Central Germany since the 1950s/60s – a cross-regional analysis. Diversity Distribution 19, 1175–1187 (2013).Article 

    Google Scholar 
    Meyer, S., Wesche, K., Krause, B. & Leuschner, C. Veränderungen in der Segetalflora in den letzten Jahrzehnten und mögliche Konsequenzen für Agrarvögel. Julius-Kühn-Archiv 442, 64–78 (2013).
    Google Scholar 
    Kutzelnigg, H. Veränderungen der Ackerwildkrautflora im Gebiet um Moers/Niederrhein seit 1950 und ihre Ursachen. Tuexenia 4, 81–102 (1984).
    Google Scholar 
    Milligan, G., Rose, R. J. & Marrs, R. H. Winners and losers in a long-term study of vegetation change at Moor House NNR: Effects of sheep-grazing and its removal on British upland vegetation. Ecological Indicators 68, 89–101 (2016).Article 

    Google Scholar 
    Wittig, B., Waldman, T. & Diekmann, M. Veränderungen der Grünlandvegetation im Holtumer Moor über vier Jahrzehnte. Hercynia N.F 40, 285–300 (2007).
    Google Scholar 
    Henning, K., Lorenz, A., von Oheimb, G., Härdtle, W. & Tischew, S. Year-round cattle and horse grazing supports the restoration of abandoned, dry sandy grassland and heathland communities by supressing Calamagrostis epigejos and enhancing species richness. Journal for Nature Conservation 40, 120–130 (2017).Article 

    Google Scholar 
    Blüml, V. Langfristige Veränderungen von Flora und Vegetation des Grünlandes in der Dümmerniederung (Niedersachsen) unter dem Einfluss von Naturschutzmaßnahmen. (Bremen, 2011).Von Oheimb, G. et al. Halboffene Weidelandschaft Höltigbaum. Perspektiven für den Erhalt und die naturverträgliche Nutzung von Offenlandlebensräumen. (Landwirschaftsverlag, 2006).Dornelas, M. et al. BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecol Biogeogr 27, 760–786 (2018).Article 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752–1246752 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Vellend, M. The Biodiversity Conservation Paradox. Am. Sci. 105, 94 (2017).Article 

    Google Scholar 
    Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biological Conservation 219, 175–183 (2018).Article 

    Google Scholar 
    Perring, M. P. et al. Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition. Environmental Pollution 242, 1787–1799 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Braun-Blanquet, J. Prinzipien einer Systematik der Pflanzengesellschaften auf floristischer Grundlage. Jahrb. St. Gallischen Naturwiss. Ges. 57, 305–351 (1921).
    Google Scholar 
    Becking, R. W. The Zürich-Montpellier school of phytosociology. Bot. Rev. 23, 411–488 (1957).Article 

    Google Scholar 
    Bruelheide, H. et al. sPlot – A new tool for global vegetation analyses. J Veg Sci 30, 161–186 (2019).Article 

    Google Scholar 
    O L Pescott, T A Humphrey & K J Walker. A short guide to using British and Irish plant occurrence data for research, https://doi.org/10.13140/RG.2.2.33746.86720 (2018).Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Global Change Biology 27, 1097–1110 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Chytrý, M. et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl Veg Sci 19, 173–180 (2016).Article 

    Google Scholar 
    Van der Maarel, E. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39, 97–114 (1979).Article 

    Google Scholar 
    Tichý, L. et al. Optimal transformation of species cover for vegetation classification. Appl Veg Sci 23, 710–717 (2020).Article 

    Google Scholar 
    Podani, J. Braun-Blanquet’s legacy and data analysis in vegetation science. Journal of Vegetation Science 17, 113–117 (2006).Article 

    Google Scholar 
    Londo, G. Dezimalskala für die vegetationskundliche Aufnahme von Dauerquadraten. in Sukzessionsforschung (ed. Schmidt, W.). Ber. Int. Symp. Int. Vereinig. Vegetationsk. Rinteln vol. 1973, 613–617 (Cramer, 1975).Bruelheide, H. & Luginbühl, U. Peeking at ecosystem stability: making use of a natural disturbance experiment to analyze resistance and resilience. Ecology 90, 1314–1325 (2009).Article 
    PubMed 

    Google Scholar 
    Hennekens, S. M. & Schaminée, J. H. J. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sc. 12, 589–591 (2001).Article 

    Google Scholar 
    Gaston, K. J. & Curnutt, J. L. The dynamics of abundance-range size relationships. Oikos 81, 38 (1998).Article 

    Google Scholar 
    Gaston, K. J. et al. Abundance-occupancy relationships. J Appl Ecology 37, 39–59 (2000).Article 

    Google Scholar 
    Sporbert, M. et al. Testing macroecological abundance patterns: The relationship between local abundance and range size, range position and climatic suitability among European vascular plants. J Biogeogr jbi.13926, https://doi.org/10.1111/jbi.13926 (2020).European Commission. Report on the Conservation Status of Habitat Types and Species as required under Article 17 of the Habitats Directive. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52009DC0358 (2009).Poschlod, P. Geschichte der Kulturlandschaft. (Ulmer, 2017).Mcgill, B., Enquist, B., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21, 178–185 (2006).Article 

    Google Scholar 
    Jandt, U. et al. More losses than gains during one century of plant biodiversity change in Germany. Nature https://doi.org/10.1038/s41586-022-05320-w (2022).Schaminée, J. H. J., Hennekens, S. M., Chytrý, M. & Rodwell, J. S. Vegetation-plot data and databases in Europe: an overview. Preslia 81, 173–185 (2009).
    Google Scholar 
    ESA. Land Cover CCI product user guide ver. 2. Tech. Rep. https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (2017).Kadmon, R., Farber, O. & Danin, A. Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecological Applications 14, 401–413 (2004).Article 

    Google Scholar 
    Davies, C. E., Moss, D. & Hill, M. O. EUNIS Habitat Classification Revised 2004. 310 https://www.eea.europa.eu/data-and-maps/data/eunis-habitat-classification/documentation/eunis-2004-report.pdf/download (2004).Chytrý, M. et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl Veg Sci 23, 648–675 (2020).Article 

    Google Scholar 
    Bruelheide, H., Tichý, L., Chytrý, M. & Jansen, F. Implementing the formal language of the vegetation classification expert systems (ESy) in the statistical computing environment R. Appl Veg Sci, https://doi.org/10.1111/avsc.12562 (2021).Jandt, U., Bruelheide, H. & ReSurveyGermany Consortium. ReSurvey Germany: vegetation-plot resurvey data from Germany. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig https://doi.org/10.25829/idiv.3514-0qsq70 (2022).Jansen, F. & Dengler, J. GermanSL – eine universelle taxonomische Referenzliste für Vegetationsdatenbanken. Tuexenia 28, 239–253 (2008).
    Google Scholar 
    Wisskirchen, R. & Haeupler, H. Standardliste der Farn-und Blütenpflanzen Deutschlands. (Ulmer, 1998).Jansen, F. & Dengler, J. Plant names in vegetation databases–a neglected source of bias. Journal of Vegetation Science 21, 1179–1186 (2010).Article 

    Google Scholar 
    Fischer, H. S. On the combination of species cover values from different vegetation layers. Applied Vegetation Science 18, 169–170 (2015).Article 

    Google Scholar 
    Schwabe, A. & Kratochwil, A. Pflanzensoziologische Dauerflächen-Untersuchungen im Bannwald ‘Flüh’ (Südschwarzwald) unter besonderer Berücksichtigung der Weidfeld-Sukzession. Standort.Wald 49, 5–49 (2015).
    Google Scholar 
    Poschlod, P., Schreiber, K.-F., Mitlacher, K., Römermann, C. & Bernhardt-Römermann, M. Entwicklung der Vegetation und ihre naturschutzfachliche Bewertung. in Landschaftspflege und Naturschutz im Extensivgrünland. 30 Jahre Offenhaltungsversuche Baden-Württemberg (eds. Schreiber, K.-F., Brauckmann, H.-J., Broll, G., Krebs, S. & Poschlod, P.) vol. 97 243–288 (2009).Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).Article 
    PubMed 

    Google Scholar  More

  • in

    Determining the potential distribution of Oryctes monoceros and Oryctes rhinoceros by combining machine-learning with high-dimensional multidisciplinary environmental variables

    Manjeri, G., Muhamad, R. & Tan, S. G. Oryctes rhinoceros beetles, an oil palm pest in Malaysia. Annu. Res. Rev. Biol. 4, 3429–3439 (2014).Article 

    Google Scholar 
    Allou, K., Morin, J. P., Kouassi, P., Nklo, F. H. & Rochat, D. Oryctes monoceros trapping with synthetic pheromone and palm material in Ivory Coast. J. Chem. Ecol. 32, 1743–1754 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Alibert, H. Study on the insect pests of oil palm in Dahomey. Rev. Botan. Appl. 18, 745–773 (1936).
    Google Scholar 
    Catley, A. The coconut rhinoceros beetle Oryctes rhinoceros (L) [Coleoptera: Scarabaeidae: Dynastinae]. PANS Pest Articles News Summar. 15, 18–30 (1969).Article 

    Google Scholar 
    Fauzana, H., Sutikno, A. & Salbiah, D. Population fluctuations Oryctes rhinoceros L. beetle in plant oil palm (Elaeis guineensis Jacq.) given mulching oil palm empty bunch. Cropsaver Int. J. Trop. Insect Sci. 1, 42–47 (2018).
    Google Scholar 
    Paudel, S., Mansfield, S., Villamizar, L. F., Jackson, T. A. & Marshall, S. D. Can biological control overcome the threat from newly invasive coconut rhinoceros beetle populations (Coleoptera: Scarabaeidae)? A review. Ann. Entomol. Soc. Am. 114, 247–256 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Molet, T. In CPHST Pest Datasheet for Oryctes rhinoceros. USDA-APHIS-PPQCPHST. Revised July 2014 (2013).Hinckley, A. D. Ecology of the coconut rhinoceros beetle, Oryctes rhinoceros (L.) (Coleoptera: Dynastidae). Biotropica 1973, 111–116 (1973).Article 

    Google Scholar 
    Sitepu, D., Kharie, S., Waroka, JS & Motulo, HFJ. Methods for the production and use of Marhizium anisopliae against Oryctes rhinoceros. In Integrated Coconut Pest Control Project—Annual report of Coconut Research Institute—Manado, North Sulawesi, Indonesia 104–111 (1988).Philippe, R. & Dery, S. K. Coconut research and development. CORD 20, 43–51 (2004).
    Google Scholar 
    Purrini, K. Baculovirus oryctes release into Oryctes monoceros population in Tanzania, with special reference to the interaction of virus isolates used in our laboratory infection experiments. J. Invertebr. Pathol. 53, 285–300 (1989).Article 

    Google Scholar 
    Ukeh, D. A., Usua, E. J. & Umoetok, S. B. A. Notes on the biology of Oryctes monoceros (OLIV.) A pest of palms in Nigeria. World J. Agric. Res. 2, 33–36 (2003).
    Google Scholar 
    Dry, F. W. Notes on the coconut beetle (Oryctes monoceros, Ol.) in Kenya Colony. Bull. Entomol. Res. 13, 103–107 (1922).Article 

    Google Scholar 
    Bedford, G. O. Biology, ecology, and control of palm rhinoceros beetles. Annu. Rev. Entomol. 25, 309–339 (1980).Article 

    Google Scholar 
    Khoo, K. C., Yusoff, M. N. M. & Lee, T. W. Pulp and paper of oil palm trunk. In Research Pamphlet No.107: Oil Palm Stem Utilisation, Kuala Lumpur, Malaysia, FRIM 51–65 (1991).Giblin-Davis, R. M. Borers of palms. In Insects on Palms (eds Moore, D. et al.) (CABI Publishing, Wallingford, 2001).
    Google Scholar 
    Drumoni, A. & Ponchel, Y. Première capture au Yémen d’ Oryctes (Rykanoryctes) monoceros (Olivier, 1789) et confirmation de la présence de cette espèce africaine dans la Péninsule Arabique (Coleoptera, Dynastidae). Entomol. Afr. 15, 25–29 (2010).
    Google Scholar 
    Lever, R. J. A. W. Pests of the Coconut Palm (Food and Agriculture Organization of the United Nations, Rome, 1969).Moore, A. Rhinoceros beetle pest found in Guam and Saipan. In Pest Alert, Suva, Fiji: Plant Protection Service, Secretariat of the Pacific Community (2007).Zhang, K., Yao, L., Meng, J. & Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. Sci. 634, 1326–1334 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Ding, F., Fu, J., Jiang, D., Hao, M. & Lin, G. Mapping the spatial distribution of Aedes aegypti and Aedes albopictus. Acta Trop. 178, 155–162 (2018).Article 
    PubMed 

    Google Scholar 
    Valencia-Rodríguez, D., Jiménez-Segura, L., Rogéliz, C. A. & Parra, J. L. Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms: The case of the Sabaleta Brycon henni (Eigenmann, 1913). PLoS ONE 16, e0247876 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Escobar, L. E., Qiao, H., Cabello, J. & Peterson, A. T. Ecological niche modeling re-examined: A case study with the Darwin’s fox. Ecol. Evol. 8, 4757–4770 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).Article 
    PubMed 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Phillips, S. J. Transferability, sample selection bias and background data in presence-only modelling: A response to Peterson et al. (2007). Ecography 31, 272–278 (2008).Article 

    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).Article 

    Google Scholar 
    Arnold, J. D., Brewer, S. C. & Dennison, P. E. Modeling climate-fire connections within the Great basin and Upper Colorado River Basin. Fire Ecol. 10, 64–75 (2014).Article 

    Google Scholar 
    Phillips, J. S. & Elith, J. On estimating probability of presence from use-availability or presence-background data. Ecology 94, 1409–1419 (2013).Article 
    PubMed 

    Google Scholar 
    Santana, P. A. Jr., Kumar, L., Da Silva, R. S., Pereira, J. L. & Picanço, M. C. Assessing the impact of climate change on the worldwide distribution of Dalbulus maidis (DeLong) using MaxEnt. Pest. Manag. Sci. 75, 2706–2715 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, et al. Predicting the current and future distributions of Brontispa longissima (Coleoptera: Chrysomelidae) under climate change in China. Glob. Ecol. Conserv. 25, e01444 (2021).Article 

    Google Scholar 
    Li, T. et al. Direct and indirect effects of environmental factors, spatial constraints, and functional traits on shaping the plant diversity of montane forests. Ecol. Evol. 10, 557–568 (2020).Article 
    PubMed 

    Google Scholar 
    Namgung, H., Kim, M. J., Baek, S., Lee, J. H. & Kim, H. Predicting potential current distribution of Lycorma delicatula (Hemiptera: Fulgoridae) using MaxEnt model in South Korea. J. Asia Pac. Entomol. 23, 291–297 (2020).Article 

    Google Scholar 
    Ji, W., Gao, G. & Wei, J. Potential global distribution of Daktulosphaira vitifoliae under climate change based on MaxEnt. Insects. 12, 347 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ji, W., Han, K., Lu, Y. & Wei, J. Predicting the potential distribution of the vine mealybug, Planococcus ficus under climate change by MaxEnt. J. Crop. Prot. 137, 105268 (2020).Article 

    Google Scholar 
    Sharma, HC & Prabhakar, CS. Impact of climate change on pest management and food security. In Integrated Pest Management 23–36 (Academic Press, Cambridge, 2014).Skendžić, S., Zovko, M., Živković, I. P., Lešic, V. & Lemić, D. The impact of climate change on agricultural insect pests. Insects. 12, 440 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, N. L. & Masters, G. J. Linking climate change and species invasion: An illustration using insect herbivores. Glob. Change Biol. 13, 1605–1615 (2007).Article 
    ADS 

    Google Scholar 
    De Queiroz, D. L., Burckhardt, D. & Majer, J. Integrated pest management of eucalypt psyllids (Insecta, Hemiptera, Psylloidea). In Integrated pest management and pest control-current and future tactics. INTECH 2012, 385–412 (2012).
    Google Scholar 
    Hochberg, M. E. & Waage, J. K. A model for the biological control of Oryctes rhinoceros (Coleoptera: Scarabaeidae) by means of pathogens. J. Appl. Ecol. 28, 514–531 (1991).Article 

    Google Scholar 
    Liu, Y. et al. MaxEnt modelling for predicting the potential distribution of a near threatened rosewood species (Dalbergia cultrata Graham ex Benth). Ecol. Eng. 141, 105612 (2019).Article 

    Google Scholar 
    Wang, R. et al. Predictions of potential geographical distribution of Diaphorina citri (Kuwayama) in China under climate change scenarios. Sci. Rep. 10, 1–9 (2020).CAS 

    Google Scholar 
    Wood, B. J. Studies on the effect of ground vegetation on infestations of Oryctes rhinoceros (L.) (Col., Dynastidae) in young oil palm replantings in Malaysia. Bull Entomol. Res. 59, 85–96 (1969).Article 

    Google Scholar 
    Mittal, I. C. Survey of scarabaeid (Coleoptera) fauna of Himachal Pradesh (India). J. Entomol. Res. 24, 259–269 (2000).
    Google Scholar 
    Zheng, C., Jiang, D., Ding, F., Fu, J. & Hao, M. Spatiotemporal patterns and risk factors for scrub typhus from 2007 to 2017 in southern China. Clin. Infect. Dis. 69, 1205–1211 (2019).Article 
    PubMed 

    Google Scholar 
    Chen, S., Ding, F., Hao, M. & Jiang, D. Mapping the potential global distribution of red imported fire ant (Solenopsis invicta Buren) based on a machine learning method. Sustainability. 12, 10182 (2020).Article 

    Google Scholar 
    Ding, F. et al. Infection and risk factors of human and avian influenza in pigs in south China. Prev. Vet. Med. 190, 105317 (2021).Article 
    PubMed 

    Google Scholar 
    Jiang, D. et al. Spatiotemporal patterns and spatial risk factors for Visceral leishmaniasis from 2007 to 2017 in Western and Central China: A modelling analysis. Sci. Total Environ Sci. 764, 144275 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Méndez-Rojas, D. M., Cultid-Medina, C. & Escobar, F. Influence of land use change on rove beetle diversity: A systematic review and global meta-analysis of a mega-diverse insect group. Ecol. Indic. 122, 107239 (2021).Article 

    Google Scholar 
    Oke, T. R. City size and the urban heat island. Atmos. Environ. 7, 769–779 (1973).Article 
    ADS 

    Google Scholar 
    Briere, J. F., Pracros, P., Le Roux, A. Y. & Pierre, J. S. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22–29 (1999).Article 

    Google Scholar 
    Zeng, Y., Low, B. W. & Yeo, D. C. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Eco. Model. 341, 5–13 (2016).Article 

    Google Scholar 
    Fand, B. B. et al. Invasion risk of the South American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in India: Predictions based on MaxEnt ecological niche modelling. Int. J. Trop. Insect Sci. 40, 1–11 (2020).Article 

    Google Scholar 
    Li, W. J. et al. Potential distribution prediction of natural Pseudotsuga sinensis forest in Guizhou based on Maxent model. J. For. Res. 48, 47–52 (2019).
    Google Scholar 
    McIntyre, S., Rangel, E. F., Ready, P. D. & Carvalho, B. M. Species-specific ecological niche modelling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America. Parasit. Vectors 10, 1–15 (2017).Article 

    Google Scholar 
    Hao, M. et al. Global potential distribution of Oryctes rhinoceros, as predicted by boosted regression tree model. Glob. Ecol. Conserv. 37, e02175 (2022).Article 

    Google Scholar 
    Aidoo, O. F. et al. The impact of climate change on potential invasion risk of Oryctes monoceros worldwide. Front. Ecol. Evol. 10, 633 (2022).Article 

    Google Scholar 
    Aidoo, O. F. et al. Lethal yellowing disease: Insights from predicting potential distribution under different climate change scenarios. J. Plant Dis. Prot. 2021, 1–13 (2021).
    Google Scholar 
    Ruheili, A. M. A., Boluwade, A. & Subhi, A. M. A. Assessing the Impact of Climate Change on the Distribution of Lime (16srii-B) and Alfalfa (16srii-D) Phytoplasma Disease Using MaxEnt. Plants. 10, 460 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, R. et al. Predicting the potential distribution of the Asian citrus psyllid, Diaphorina citri (Kuwayama), in China using the MaxEnt model. PeerJ 7, e7323 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    He, S. T. & Jing, P. F. Prediction of potential distribution areas of Salvia bowleyana Dunn. in China based on MaxEnt and suitability analysis. J Anhui Agri. Sci. 8, 2311–2314 (2014).
    Google Scholar 
    Chahouki, M. A. Z. & Sahragard, H. P. Maxent modelling for distribution of plant species habitats of rangelands (Iran). Pol. J. Ecol. 64, 453–467 (2016).
    Google Scholar 
    Shabani, F., Kumar, L. & Ahmadi, M. Assessing accuracy methods of species distribution models: AUC, specificity, sensitivity and the true skill statistic. Glob. Int. J. Hum. Soc. Sci. 18, 6–18 (2018).
    Google Scholar 
    Baloch, M. N., Fan, J., Haseeb, M. & Zhang, R. Mapping potential distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in central Asia. Insects. 11, 172 (2020).Article 
    PubMed Central 

    Google Scholar 
    Wang, N., Li, Z., Wu, J., Rajotte, E. G., Wan, F & Wang, Z. The potential geographical distribution of Bactrocera dorsalis (Diptera: Tephrididae) in China based on emergence rate model and ArcGIS. In International Conference on Computer and Computing Technologies in Agriculture 399–411. (Springer, Boston, 2008).Manrique, V., Cuda, J. P., Overholt, W. A. & Diaz, R. Temperature-dependent development and potential distribution of Episimus utilis (Lepidoptera: Tortricidae), a candidate biological control agent of Brazilian peppertree (Sapindales: Anacardiaceae) in Florida. Environ. Entomol. 37, 862–870 (2008).Article 
    PubMed 

    Google Scholar 
    Das, D. K., Singh, J. & Vennila, S. Emerging crop pest scenario under the impact of climate change–a brief review. AgroPhysics. 11, 13–20 (2011).CAS 

    Google Scholar 
    Porter, J. H., Parry, M. L. & Carter, T. R. The potential effects of climatic change on agricultural insect pests. Agric. For. Meteorol. 57, 221–240 (1991).Article 
    ADS 

    Google Scholar 
    Trenberth, K. E. Climate change caused by human activities is happening and it already has major consequences. J. Energy Nat. Resour. Law. 36, 463–481 (2018).Article 

    Google Scholar 
    Xu, D., Zhuo, Z., Li, X. & Wang, R. Distribution and invasion risk assessment of Oryctes rhinoceros (L.) in China under changing climate. J. Appl. Entomol. 146, 385–395 (2022).Article 

    Google Scholar 
    Sushil, K. & Mukhtar, A. Effect of temperature and humidity on biology of rhinoceros beetle, Oryctes rhinoceros Linn. on oil palm. J. Appl. Anim. Res. 18, 108–112 (2007).
    Google Scholar 
    Sabidin, N. N. E. The effect of climate change to the population of rhinoceros beetle (Oryctes rhinoceros) at selected oil palm plantation. In Bachelor of Science Thesis Dissertation. Universiti Teknologi MARA. https://ir.uitm.edu.my/id/eprint/22754. (2018).Yadav, R. & Chang, N. T. Effects of temperature on the development and population growth of the melon thrips, Thrips palmi, on eggplant, Solanum melongena. J. Insect Sci. 14, 78 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ju, R. T., Wang, F. & Li, B. Effects of temperature on the development and population growth of the sycamore lace bug, Corythucha ciliata. J. Insect Sci. 11, 1–12 (2011).Article 

    Google Scholar 
    Zheng, F. S., Du, Y. Z., Wang, Z. J. & Xu, J. J. Effect of temperature on the demography of Galerucella birmanica (Coleoptera: Chrysomelidae). Insect Sci. 15, 375–380 (2008).Article 

    Google Scholar 
    Azrag, A. G. et al. Modelling the effect of temperature on the biology and demographic parameters of the African coffee white stem borer, Monochamus leuconotus (Pascoe) (Coleoptera: Cerambycidae). J. Therm. Biol. 89, 102534 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Aidoo, O. F. et al. The African citrus triozid Trioza erytreae Del Guercio (Hemiptera: Triozidae): Temporal dynamics and susceptibility to entomopathogenic fungi in East Africa. Int. J. Trop. Insect Sci. 41, 563–573 (2021).Article 

    Google Scholar 
    Leonard, A. et al. Predicting the current and future distribution of the edible long-horned grasshopper Ruspolia differens (Serville) using temperature-dependent phenology models. J. Therm. Biol. 95, 102786 (2021).Article 
    PubMed 

    Google Scholar 
    Roy, B. A. et al. Increasing forest loss worldwide from invasive pests requires new trade regulations. Front. Ecol. Environ. 12, 457–465 (2014).Article 

    Google Scholar 
    Shabani, F., Kumar, L. & Ahmadi, M. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol. Evol. 6, 5973–5986 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cianci, D., Hartemink, N. & Ibáñez-Justicia, A. Modelling the potential spatial distribution of mosquito species using three different techniques. Int. J. Health Geogr. 14, 10 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zelazny, B. & Alfiler, A. Oryctes rhinoceros (Coleoptera: Scarabaeidae) larva abundance and mortality factors in the Philippines. Environ. Entomol. 15, 84–87 (1986).Article 

    Google Scholar 
    Wood, B.J. Studies on the effect of ground vegetation on infestations of Oryctes rhinoceros (L.)(Col., Dynastidae) in young oil palm replantings in Malaysia. Bull. Entomol. Res. 59, 85–96 (1969). More

  • in

    Autotoxicity of Ambrosia artemisiifolia and Ambrosia trifida and its significance for the regulation of intraspecific populations density

    Dorning, M. & Cipollini, D. Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects. Plant Ecol. 184, 287–296 (2006).Article 

    Google Scholar 
    Greer, M. J., Wilson, G. W., Hickman, K. R. & Wilson, S. M. Experimental evidence that invasive grasses use allelopathic biochemicals as a potential mechanism for invasion: Chemical warfare in nature. Plant Soil 385, 165–179 (2014).Article 
    CAS 

    Google Scholar 
    Möhler, H., Diekötter, T., Herrmann, J. D. & Donath, T. W. Allelopathic vs. autotoxic potential of a grassland weed-evidence from a seed germination experiment. Plant Ecol. Divers. 11, 539–549 (2018).Article 

    Google Scholar 
    Callaway, R. M. & Aschehoug, E. T. Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science 290, 521–523 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Niu, H. B., Liu, W. X., Wan, F. H. & Liu, B. An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: Altered soil microbial communities facilitate the invader and inhibit natives. Plant Soil 294, 73–85 (2007).Article 
    CAS 

    Google Scholar 
    Wardle, D. A., Karban, R. & Callaway, R. M. The ecosystem and evolutionary contexts of allelopathy. Trends Ecol. Evol. 26, 655–662 (2011).Article 
    PubMed 

    Google Scholar 
    Meiners, S. J., Kong, C. H., Ladwig, L. M., Pisula, N. L. & Lang, K. A. Developing an ecological context for allelopathy. Plant Ecol. 213, 1221–1227 (2012).Article 

    Google Scholar 
    Liebhold, A. M., Brockerhoff, E. G., Kalisz, S., Nunez, M. A. & Wardle, D. A. Biological invasions in forest ecosystems. Biol. Invasions 19, 3437–3458 (2017).Article 

    Google Scholar 
    Liao, H. X. et al. Soil microbes regulate forest succession in a subtropical ecosystem in China: Evidence from a mesocosm experiment. Plant Soil 430, 277–289 (2018).Article 
    CAS 

    Google Scholar 
    Wardle, D. A., Nilsson, M. C., Gallet, C. & Zackrisson, O. An ecosystem-level perspective of allelopathy. Biol. Rev. 73, 305–319 (2010).Article 

    Google Scholar 
    Hierro, J. L. & Callaway, R. M. Allelopathy and exotic plant invasion. Plant Soil 256, 29–39 (2003).Article 
    CAS 

    Google Scholar 
    Uddin, M. N., Robinson, R. W., Buultjens, A., Harun, M. A. & Shampa, S. H. Role of allelopathy of Phragmites australis in its invasion processes. J. Exp. Mar. Biol. Ecol. 486, 237–244 (2017).Article 

    Google Scholar 
    Thiébaut, G., Tarayre, M. & Rodríguez-Pérez, H. Allelopathic effects of native versus invasive plants on one major invader. Front. Plant Sci. 2, 854 (2019).Article 

    Google Scholar 
    Smith, M., Cecchi, L., Skjøth, C. A., Karrer, G. & Šikoparijae, B. Common ragweed: A threat to environmental health in Europe. Environ. Int. 61, 115–126 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Montagnani, C., Gentili, R., Smith, M., Guarino, M. F. & Citterio, S. The worldwide spread, success, and impact of ragweed (Ambrosia spp.). Crit. Rev. Plant Sci. 36, 1–40 (2017).Article 

    Google Scholar 
    Zeng, K., Zhu, Y. Q. & Liu, J. X. Research progress on ragweed (Ambrosia). Acta Prataculturae Sin. 19, 212–219 (2010).
    Google Scholar 
    Jacobs, R. L. et al. Responses to ragweed pollen in a pollen challenge chamber versus seasonal exposure identify allergic rhinoconjunctivitis endotypes. J. Allergy Clin. Immun. 130, 122-127.e8 (2012).Article 
    PubMed 

    Google Scholar 
    Lake, R. I. et al. Climate change and future pollen allergy in Europe. Environ. Health Perspect. 125, 385–391 (2017).Article 
    PubMed 

    Google Scholar 
    Wang, J. J., Zhao, B. Y., Li, M. T. & Li, R. Ecological invasion plant-bitter weed (Ambrosia artemisiifolia) and integrated control strategy. Pratacultural Sci. 023, 71–75 (2006).CAS 

    Google Scholar 
    Deng, Z. Z., Bai, J. D., Zhao, C. Y. & Li, J. S. Advance in invasion mechanisms of Ambrosia artemisiifolia. Pratacultural Sci. 32, 54–63 (2015).
    Google Scholar 
    Dong, H. G. et al. Diffusion and intrusion features of Ambrosia artemisiifolia and Ambrosia trifida in Yili River Valley. J. Arid Land Resour. Environ. 31, 175–180 (2017).
    Google Scholar 
    Vink, J. P. et al. Glyphosate-resistant giant ragweed (Ambrosia trifida) control in dicamba-tolerant soybean. Weed Technol. 26, 422–428 (2012).Article 
    CAS 

    Google Scholar 
    Simard, M. J. & Benoit, D. L. Effect of repetitive mowing on common ragweed (Ambrosia artemisiifolia L.) pollen and seed production. Ann. Agric. Environ. Med. 18, 55–62 (2011).PubMed 

    Google Scholar 
    Goplen, J. J. et al. Seedbank depletion and emergence patterns of giant ragweed (Ambrosia trifida) in Minnesota cropping systems. Weed Sci. 65, 52–60 (2017).Article 

    Google Scholar 
    Jurik, T. W. Population distributions of plant size and light environment of giant ragweed (Ambrosia trifida L.) at three densities. Oecologia 87, 539–550 (1991).Article 
    ADS 
    PubMed 

    Google Scholar 
    Patracchini, C., Vidotto, F. & Ferrero, A. Common ragweed (Ambrosia artemisiifolia) growth as affected by plant density and clipping. Weed Technol. 25, 268–276 (2011).Article 

    Google Scholar 
    Kazinczi, G. Ragweed seed bank in the soils of arable fields of Transdanubia, Hungary. Hung. Weed Res. Technol. 19(1), 21–36 (2018).
    Google Scholar 
    Essl, F. et al. Biological flora of the British Isles: Ambrosia artemisiifolia. J. Ecol. 103, 1069–1098 (2015).Article 

    Google Scholar 
    Goplen, J. J. Giant Ragweed (Ambrosia trifida) Seed Bank Dynamics and Management. (Master’s dissertation, University of Minnesota.) Retrieved from https://hdl.handle.net11299174767 (2015).Yoda, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. 14, 107–129 (1963).
    Google Scholar 
    Friedman, J. & Waller, G. R. Allelopathy and autotoxicity. Trends Biochem. Sci. 10, 47–50 (1985).Article 
    CAS 

    Google Scholar 
    Weller, D. E. The interspecific size-density relationship among crowded plant stands and its implications for the −3/2 power rule of self-thinning. Am. Nat. 133, 20–41 (1989).Article 

    Google Scholar 
    Deng, J. et al. Autotoxicity of phthalate esters in tobacco root exudates: Effects on seed germination and seedling growth. Pedosphere 27, 1073–1082 (2017).Article 
    CAS 

    Google Scholar 
    Sudatti, D. B., Duarte, H. M., Soares, A. R., Salgado, L. T. & Pereira, R. C. New ecological role of seaweed secondary metabolites as autotoxic and allelopathic. Front. Plant Sci. 11, 347 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singh, H. P., Batish, D. & Kohil, R. Autotoxicity: Concepts, organisms, and ecological significance. Plant Sci. 18, 757–772 (1999).CAS 

    Google Scholar 
    Chon, S. U. et al. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Prot. 21, 1077–1082 (2002).Article 
    CAS 

    Google Scholar 
    Chen, B. M., D’Antonio, C. M., Molinari, N. & Peng, S. L. Mechanisms of influence of invasive grass litter on germination and growth of coexisting species in California. Biol. Invasions 20, 1881–1897 (2018).Article 

    Google Scholar 
    Chen, L. C., Wang, S. L., Wang, P. & Kong, C. H. Autoinhibition and soil allelochemical (cyclic dipeptide) levels in replanted Chinese fir (Cunninghamia lanceolata) plantations. Plant Soil 374, 793–801 (2014).Article 
    CAS 

    Google Scholar 
    Perry, L. G. et al. Retracted: Dual role for an allelochemical: catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment. J. Ecol. 93, 1126–1135 (2005).Article 
    CAS 

    Google Scholar 
    Yu, J. Q., Ye, S. F., Zhang, M. F. & Hu, W. H. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 31, 129–139 (2003).Article 
    CAS 

    Google Scholar 
    Kong, C. H., Wang, P. & Xu, X. H. Allelopathic interference of Ambrosia trifida with wheat (Triticum aestivum). Agric. Ecosyst. Environ. 119, 416–420 (2007).Article 
    CAS 

    Google Scholar 
    Béres, I., Kazinczi, G. & Narwal, S. S. Allellopathic plants. 4. Common ragweed (Ambrosia elatior L. syn. A. artemisiifolia). Allelopathy J. 9, 27–34 (2002).
    Google Scholar 
    Bauer, J. T., Shannon, S. M., Stoops, R. E. & Reynolds, H. L. Context dependency of the allelopathic effects of Lonicera maackii on seed germination. Plant Ecol. 213, 1907–1916 (2012).Article 

    Google Scholar 
    Renne, I. J., Sinn, B. T., Shook, G. W., Sedlacko, D. M. & Hierro, J. L. Eavesdropping in plants: Delayed germination via biochemical recognition. J. Ecol. 102, 86–94 (2014).Article 

    Google Scholar 
    Loydi, A., Donath, T. W., Eckstein, R. L. & Otte, A. Non-native species litter reduces germination and growth of resident forbs and grasses: Allelopathic, osmotic or mechanical effects?. Biol. Invasions 17, 581–595 (2014).Article 

    Google Scholar 
    Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–266 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bonea, D., Bonciu, E., Niculescu, M. & Olaru, A. L. The allelopathic, cytotoxic and genotoxic effect of Ambrosia artemisiifolia on the germination and root meristems of Zea mays. Caryologia 71, 24–28 (2017).Article 

    Google Scholar 
    Dadkhah, A. Allelopathic effect of sugar beet (Beta vulgaris) and eucalyptus (Eucalyptus camaldulensis) on seed germination and growth of Portulaca oleracea. Russ. Agric. Sci. 39, 117–123 (2013).Article 

    Google Scholar 
    Zheng, L. & Feng, Y. L. Allelopathic effects of Eupatorium adenophorum Spreng on. seed germination and seedling growth in ten herbaceous species. Acta Ecol. Sin. 25, 2782–2787 (2005).CAS 

    Google Scholar 
    Brückner, D. J. The allelopathic effect of ragweed (Ambrosia artemisiifolia L.) on the germination of cultivated plants. Novenytermeles 47, 635–644 (1998).
    Google Scholar 
    Qin, R. M. et al. The evolution of increased competitive ability, innate competitive advantages, and novel biochemical weapons act in concert for a tropical invader. New Phytol. 197, 979–988 (2012).Article 
    PubMed 

    Google Scholar 
    Zheng, Y. L. et al. Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. New Phytol. 205, 1350–1359 (2015).Article 
    PubMed 

    Google Scholar 
    Kaushal, R., Verma, K. S. & Singh, K. N. Effect of Grewia optiva and Populus deltoides leachatesv on field crops. Allelopathy J. 11, 229–234 (2003).
    Google Scholar 
    Kumari, A. & Kohli, R. Autotoxicity of ragweed parthenium (Parthenium hysterophorus). Weed Sci. 35, 629–632 (1987).Article 

    Google Scholar 
    Einhellig, F. A. Allelopathy: Current status and future goals. In Allelopathy: Organisms, processes and applications (ed. Inderjit Dakshini, K. M. M.) 1–24 (Am Chem. Soc, Washington, 1995).
    Google Scholar 
    Hadack, F. Secondary metabolites as plant traits: Current assessment and future perspectives. Crit. Rev. Plant Sci. 21, 273–322 (2002).Article 

    Google Scholar 
    Rice, E. L. Biological Control of Weeds and Plant Diseases (Oklahomka Press, 1995).
    Google Scholar 
    Choi, B. et al. Common ragweed-derived phenolic compounds and their effects on germination and seedling growth of weed species. Weed Turfgrass Sci. 30, 396–404 (2010).
    Google Scholar 
    Friedman, J. & Waller, G. R. Seeds as allelopathic agents. Chem. Ecol. 9, 1107–1117 (1983).Article 
    CAS 

    Google Scholar 
    Canals, R. M., Emeterio, L. S. & Peralta, J. Autotoxicity in Lolium rigidum: Analyzing the role of chemically mediated interactions in annual plant populations. J. Theor. Biol. 235, 402–407 (2005).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    San Emeterio, L., Damgaard, C. & Canals, R. M. Modelling the combined effect of chemical interference and resource competition on the individual growth of two herbaceous populations. Plant Soil 292, 95–103 (2007).Article 
    CAS 

    Google Scholar 
    Dickerson, C. T. Studies on the germination, growth, development and control of Common Ragweed (Ambrosia artemisiifolia L.). PhD thesis, Cornell University, Ann Arbor (1968).Nuutinen, V. & Butt, K. R. Homing ability widens the sphere of influence of the earthworm Lumbricus terrestris L. Soil Biol. Biochem. 37, 805–807 (2005).Article 
    CAS 

    Google Scholar 
    Favaretto, A., Scheffer-basso, S. M. & Perez, N. B. Autotoxicity in tough lovegrass (Eragrostis plana). Planta Daninha 35(35), e017164046 (2017).
    Google Scholar 
    Sinkkonen, A. Modelling the effect of autotoxicity on density-dependent phytotoxicity. J. Theor. Biol. 244, 218–227 (2007).Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Zhang, S. S., Shi, F. Q., Yang, W. Z., Xiang, Z. Y. & Duan, Z. L. Autotoxicity as a cause for natural regeneration failure in Nyssa yunnanensis and its implications for conservation. Isr. J. Plant Sci. 62, 187–197 (2015).Article 

    Google Scholar 
    Liu, Y. et al. Relationship between seed germination and invasion of Ambrosia artemisiifolia and A. trifida at different positions. Acta Ecol. Sin. 39, 9079–9088 (2019).

    Google Scholar  More

  • in

    Orangutan genome mix-up muddies conservation efforts

    Mistakes in a landmark paper that reported the first orangutan genomes might have implications for breeding programmes.Credit: Fiona Rogers/Nature Picture Library

    Susie the Sumatran orangutan was a genetic pioneer — the first of her species to have her genome fully sequenced. Her genetic library, and that of ten other orangutans, appeared in a landmark paper in Nature in 20111 that has underpinned hundreds of subsequent studies.But in August, researchers revealed that eight of the sequences in this paper had mistakenly been assigned to the wrong orangutans2. Nature issued a correction from the authors of the original paper3.The scale of the errors sparked ire on social media, and some scientists have warned that the mistakes could have repercussions for orangutan breeding programmes. “Well that’s a bit of a f&£k up orang-utan genome researchers — only mildly embarrassing guys and girls”, tweeted Michael Sweet, a molecular ecologist at the University of Derby, UK.
    Africa: sequence 100,000 species to safeguard biodiversity
    It’s not clear how these swapped identities have affected orangutan research. But researchers involved in the new analysis believe the discovery might highlight how issues in the scientific community — including the pressure to publish and a reliance on peer review to catch mistakes — could allow such errors to slip into the scientific record.“I think there are errors like this in many, many published papers,” says Graham Banes, an evolutionary biologist formerly at the University of Wisconsin–Madison who led the reanalysis of the 2011 paper. “In some ways, we’re lucky that this was just orangutans. What if this was a biomedical paper and people were developing therapies based on published data?”“It’s fairly easy for these things to occur,” adds Robert Fulton, a genomic scientist at Washington University School of Medicine in St Louis, Missouri, who was part of the team behind the original paper and is a co-author on the reanalysis. “What’s important is that that the data are now correct.” Devin Locke, who led the preparation of the 2011 paper and was formerly a colleague of Fulton’s at Washington University, did not respond to questions about the work.Hybrid headacheDetailed ‘reference’ genomes, such as those published in the 2011 Nature paper, are a key tool for biologists. In 2017, Banes and his team were using the genomes to study what happens when different species of orangutan interbreed, a process called hybridization.They noticed that the names given to some of the samples didn’t match the animals’ reported sex. For example, the 2011 paper reported that an orangutan named Dolly was male. But according to the orangutan studbook — a record of orangutans living in zoos — Dolly was female. Even stranger, Banes found that some of the genomes marked as male lacked a Y chromosome. “There was just this series of things that didn’t make sense,” he recalls.
    Major wildlife report struggles to tally humanity’s exploitation of species
    Banes and his colleagues eventually found that the 2011 paper had misidentified all but two of the orangutan genomes. Some mistakes seem to be the result of typos. In one case, a sample from a male orangutan was given an ID number that actually corresponded to a sample from an African pig in a tissue repository. Other samples seem to have had their identities swapped during laboratory work. The 2011 study helped to pin down when Bornean and Sumatran orangutans split into separate species, and compared their genomes with those of other primates. These conclusions are largely uncompromised by the mix-up. But Banes says that the errors could have implications for other research, including his own.Banes uses genetic data to provide zoos with recommendations about their captive breeding programmes. Zoos try to avoid crossbreeding orangutan species, partly to mimic wild populations and also because hybrids can suffer high rates of miscarriage and birth defects, says Banes. While re-examining the samples from the 2011 paper, the team realized that one of the sequences thought to be Sumatran (Pongo abelii) was actually Tapanuli (Pongo tapanuliensis), a third species of orangutan that was only described in 20174.Unfortunately, the 2011 paper had wrongly assigned the Tapanuli genome to Baldy, a male orangutan, rather than its actual owner, a female orangutan named Bubbles (both are now dead). Banes says that his team came “perilously close” to announcing in a paper that Baldy was Tapanuli.Although Baldy has no living descendants, Bubbles has several offspring at zoos around the world, all of which are Sumatran–Tapanuli hybrids. Zookeepers will now have to decide whether to stop breeding Bubbles’ descendants to avoid further hybridization, says Vincent Nijman, an anthropologist at Oxford Brookes University, UK.‘Bigger concerns’However, Nijman also argues that the errors will have little effect on orangutan conservation as a whole. Zoos often bill their animals as a back-up for endangered species, but conservationists are much more focused on the thousands of orangutans in the wild that are threatened by deforestation. “I think we have bigger concerns than some mixed-up samples,” says Erik Meijaard, a conservation scientist at Borneo Futures, a conservation consultancy company based in Bandar Seri Begawan, Brunei.
    Scientists warn deal to save biodiversity is in jeopardy
    Michael Krützen, an evolutionary geneticist at the University of Zurich in Switzerland, agrees that although the errors are “annoying”, their impact on downstream research is probably minimal. However, he says that the problems might be an example of how academia’s publish-or-perish environment could lead to “sloppy” work, as researchers race to publish their work in high-tier journals.Banes agrees that this kind of pressure — along with an over-reliance on a peer-review system that does not offer its volunteer reviewers tangible financial or professional benefits — could lead to errors slipping into published manuscripts.A spokesperson for Nature declined to comment on why the errors in the 2011 paper were not caught by peer review, citing concerns about confidentiality. (Nature’s news team is editorially independent of its academic publishing operation). “However, we would like to stress that we take our responsibility to maintain the accuracy of the scientific record very seriously,” they wrote in an e-mail. “If issues are raised about any paper we have published, we will look into them carefully and update the literature where appropriate.”Banes says that it’s important not to blame individual scientists for such errors, not least because it could discourage efforts to correct mistakes in future. “I think any scientist could have made these mistakes,” he says. “But if we all jump out and say, ‘oh my god, how could they have been so stupid?’, no one is ever going to correct anything. That shame is detrimental to science.” More

  • in

    The genome and lifestage-specific transcriptomes of a plant-parasitic nematode and its host reveal susceptibility genes involved in trans-kingdom synthesis of vitamin B5

    Sequencing and assembly of the H. schachtii genomeWe measured (Supplemental Fig. 1), sequenced (BioProject PRJNA722882), and assembled the genome of H. schachtii (population Bonn) using a combination of flow cytometry, Pacific Biosciences sequencing, and Illumina sequencing. H. schachtii has the largest genome (160–170 Mb) of any cyst nematode measured/sequenced to date (Supplementary Table 1). It was sequenced to 192-fold coverage using Pacific Biosciences sequencing (fragment n50 of 16 kb), and 144-fold coverage using Illumina sequencing (150 bp Paired-end reads). The final, polished, contamination-free (Supplemental Fig. 2), assembly (v1.2) included ~179 Mbp contained within 395 scaffolds: 90% of the sequence is contained on scaffolds longer than 281,463 bp (n = 154). The assembly is a largely complete haploid representation of the diploid genome, as evidenced by core eukaryotic genes being largely present, complete and single copy (CEGMA 93.15% complete with an average of 1.12 copies each, and BUSCO (Eukaryota odb9) 79% complete with 8.2% duplicated—Supplementary Table 2). Over three million variants were phased into haplotypes (2029 blocks, N50 239.5 kb, covering 94.7% of the reference) which can be used to predict true protein variants (Supplementary data 1), and 601 larger structural variants were identified (Supplementary data 2).The trans-kingdom, lifestage-specific, transcriptomes of H. schachtii and A. thaliana provide a holistic view of parasitismWe devised a sampling procedure to cover all major life stages/transitions of the parasitic life cycle to generate a simultaneous, chronological, and comprehensive picture of nematode gene expression, and infection-site-specific plant gene expression patterns. We sampled cysts and pre-infective second-stage juveniles (J2s), as well as infected segments of A. thaliana root and uninfected adjacent control segments of root at 10 hours post infection (hpi – migratory J2s, pre-establishment of the feeding site), 48 hpi (post establishment of the feeding site), 12 days post infection females (dpi – virgin), 12 dpi males (differentiated, pre-emergence, most if not all stopped feeding), and 24 dpi females (post mating), each in biological triplicate (Fig. 1A). We generated approximately nine billion pairs of 150 bp strand-specific RNAseq reads (Supplementary data 3) covering each stage in biological triplicate (for the parasite and the host): in the early stages of infection we generated over 400 million reads per replicate, to provide sufficient coverage of each kingdom.Fig. 1: Trans-kingdom, lifestage-specific, transcriptome of H. schachtii and A. thaliana.A Schematic representation of the life cycle of H. schachtii infecting A. thaliana, highlighting the 7 stages sampled in this study. For each stage, the average number of trimmed RNAseq read pairs per replicate is shown, with the proportion of reads mapping to either parasite or host in parentheses. B Principle components 1 and 2 for H. schachtii and A. thaliana expression data are plotted. Arrows indicate progression through the life cycle/real-time. Hours post infection (hpi), days post infection (dpi).Full size imageStrand-specific RNAseq reads originating from host and parasite were deconvoluted by mapping to their respective genome assemblies (H. schachtii v.1.2 and TAIR10). For the parasite, ~500 million Illumina RNAseq read pairs uniquely mapping to the H. schachtii genome were used to generate a set of 26,739 gene annotations (32,624 transcripts – detailed further in the next section), ~77% of which have good evidence of transcription in at least one lifestage (≥10 reads in at least one rep). Similarly for the host, ~2.8 billion Illumina RNAseq read pairs uniquely mapping to the A. thaliana genome show that ~77% of the 32,548 gene models have good evidence of transcription in at least one stage (≥10 reads in at least one rep, even though we only sampled roots). A principal component analysis of the host and parasite gene expression data offers several insights into the parasitic process. Principle component 1 (60% of the variance) and 2 (19% of the variance) of the parasite recapitulate the life cycle in PCA space (Fig. 1B). The 12 dpi female transcriptome is more similar to the 24 dpi female transcriptome than to the 12 dpi male transcriptome. Principle components 1 (75% of the variance) and 2 (10% of the variance) of the host show that the greatest difference between infected and uninfected plant tissue is at the early time points (10 hpi), and that the transcriptomes of infected and uninfected plant material converge over time, possibly due to systemic effects of infection. A 12 dpi male syncytium transcriptome is roughly intermediate between a control root transcriptome and a 12 dpi female syncytium transcriptome. Given that at this stage most if not all of the males will have ceased feeding, this could be due to inadequate formation of the feeding site, or regression of the tissue. In any case, by comparing both principal component analyses, we can see that what is a relatively small difference in the transcriptomes of the feeding sites of males and females is amplified to a relatively large difference in the transcriptomes of the males and females themselves (Fig. 1B).The consequences, and possible causes, of large-scale segmental duplication in the Heterodera lineageTo understand the evolutionary origin(s) of the relatively large number of genes in H. schachtii in particular, and Heterodera spp. in general, we analysed the abundance and categories of gene duplication in the predicted exome. Compared to a related cyst nematode, Globodera pallida (derived using comparable methodology and of comparable contiguity) the exomes of H. schachtii and H. glycines are characterised by a relatively smaller proportion of single-copy genes (as classified by MCSanX toolkit17, and a relatively greater proportion of segmental duplications (at least five co-linear genes with no >25 genes between them), with relatively similar proportions of dispersed duplications (two similar genes with >20 other genes between them), proximal duplications (two similar genes with  +0.5 or  More