More stories

  • in

    Iran and India: work together to save cheetahs

    The Asiatic cheetah (Acinonyx jubatus venaticus) once roamed throughout the Middle East and central India. Today there remain only an estimated 20 free-ranging individuals in central Iran and 5 in captivity. International economic sanctions against Iran have had devastating effects on its cheetah conservation and management (see go.nature.com/3suohzb; in Farsi). To help overcome these effects, we suggest that Iran work with the Indian government, which is conducting a rewilding programme for cheetahs.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Contrafreeloading in kea (Nestor notabilis) in comparison to Grey parrots (Psittacus erithacus)

    This study aimed to compare the extent of contrafreeloading in kea to that in Grey parrots, given that the two species exhibit very different levels of play: specifically, kea exhibit complex and frequent play29,30,35,36, whereas Greys exhibit considerably less play than several parrot species29. We found that, at the group level, although the overall amounts of kea classic contrafreeloading were nonsignificant, as a percentage of behaviour, kea generally contrafreeloaded more than Grey parrots in Experiment 1, whereas the opposite was true for Experiment 2. We compare the various behaviour patterns in detail, and propose explanations for our results below.The most interesting comparisons for Smith et al.’s hypothesis are the results from classic contrafreeloading. In Experiment 1, kea performed this behaviour at non-negligible levels, given the supposed rarity of the behaviour5 (two birds at 50%; the others varying between 39 and 47%). In contrast, although one Grey did classically contrafreeload at a statistically significant level, the other three were at ≤ 36%. These data suggest that the kea may have found the task more engaging than did the Greys. However, given that only two kea chose to pop the lid of an empty cup in control trials significantly above chance, whereas three of the four Greys did so significantly above chance and one at chance, we doubt that the kea found the task inherently rewarding. We note that this comparison between both species must be interpreted cautiously due to differences in methodology: For the Greys, the control trials were performed at the end of the study, by which point they may have learnt to associate lid-popping with reward. However, the data from experimental trials in Smith et al.13 are such that their birds would have been primed in the opposite direction: For example, three of those four birds rarely chose the empty lidded cup when free food was available, nor did they classically or super contrafreeload to any significant extent13; an association-driven explanation is therefore unlikely. In contrast, the kea experienced this control condition at the start of the experiment, allowing them 20 trials to become acquainted with the affordances of both options that would be available throughout the study (lid-popping versus not lid-popping). This opportunity was important for kea, as this species has been previously shown to learn about object properties through extensive object manipulation37. That kea popped lids at or above chance in these first 20 control trials suggested two possibilities: (1) After these 20 trials, the task may have been familiar enough to no longer be of much interest (i.e., no longer novel and worthy of consideration) by the time rewarded trials began (recall nonsignificant downward trends for Harley Quinn and Blofeld). (2) They acquired some interest in popping the lids. This latter case seems more likely, as the lid-popping task still likely provided some added value. Kea engaged in non-negligible levels of classic contrafreeloading, such that the chance to pop a lid and eat could be considered more interesting than simply eating an identical but freely available reward. Furthermore, three kea chose a lidded, empty cup over a free, least-preferred reward at least half the time, again suggesting that the activity held some appeal of its own.In Experiment 2 (which corresponds to classic contrafreeloading), all kea preferred freeloading for the walnut without a shell; two Greys, in contrast, nut contrafreeloaded at a statistically significant extent. This variability in behaviour at both the individual and species levels reveals the significance of a task’s proximate and potentially ultimate values in parrots’ choice to contrafreeload. Interestingly, although species like kea are hypothesized to prefer food items requiring high manipulation38,39, nut-cracking—chosen as an activity to provide direct comparison with the Greys13—is not prevalent in kea diet40, and that activity thus may not have been appropriate as an ethologically relevant one for kea. Greys, in contrast, are known to crack nuts in nature41. Future research could use a more ecologically relevant task for the kea, such as working to access food via digging or scraping32.As with Smith et al.’s Greys13, kea in Experiment 1 performed calculated contrafreeloading to a statistically significant extent. All kea did so on over 83% of trials; for the Greys, three birds were close to 90% but one was at only 67%. Kea consistently selected their preferred food out of the two options provided, suggesting that the lid-popping action did not deter kea from selecting their preferred reward. In related trials, where the lid-status of food paired with an empty cup varied, kea, like some Greys13, preferred lidded food over an empty lidless cup, again showing that lid-popping for food was an acceptable task.When examining situations in which food was discarded after contrafreeloading, we found that this choice in Experiment 1 was most common for Bruce. Notably, Bruce lacks a top mandible, making many of the manipulative behaviours more difficult to execute42. Bruce demonstrated consistent food preferences throughout the experiment, however, indicating that the reason some foods were discarded was, indeed, because they were too difficult for him to manipulate. In Experiment 2, Harley Quinn was the most likely to discard the nut, and did so exclusively in trials in which she chose the walnut without the shell (freeloaded). In these occasions, Harley Quinn was observed choosing the nut by tapping on it or the cup.Like the Greys, the kea failed to super contrafreeload to a statistically significant extent. Furthermore, contrafreeloading trials in which a lid was popped but the food underneath was not consumed occurred most often with the least-preferred food. Given kea’s performance on control trials, the super contrafreeloading results are not surprising. Interestingly, when lid-status of food paired with an empty cup varied, some Greys very rarely—and depending on food desirability—preferred to pop the empty cup’s lid rather than consume the free food; as noted earlier, three of eight kea did so on at least half the trials when the food in the lidless cup was their least preferred option (sultanas). Both kea and Greys thus likely placed the appeal of the task along some “value scale” along with that of the available food rewards, the combination influencing their behaviour when the two variables were presented in various permutations. Notably, even in control trials, where no food was involved, no bird of either species found the task aversive, engaging in the behaviour at least 50% of the time. Future research could investigate how a different, more rewarding task would influence this balance and thus contrafreeloading for both species.One possible alternative explanation for kea’s higher rates of contrafreeloading relative to those of Greys could be their natural tendency to probe and manipulate objects, thus causing them to pry off cup lids rather than manipulate lidless (open) cups. Were this action exploratory in nature, we would have observed significant decreases in behaviour as the experiment progressed, but note that we found no significant changes in any bird. Were they consistently drawn to lids and this behaviour were hard-wired, then we should have observed lid-popping appear significantly above chance across all three types of contrafreeloading. However, as discussed previously, kea did not significantly contrafreeload in the classic condition and actively freeloaded in super contrafreeloading conditions, suggesting that they were not simply interacting with lidded cups preferentially, but rather attending to the contents in the two cups and avoiding the additional manipulation of the lid when it led to a less (or, more often than not, equally) preferred food reward.Another potential explanation for the differences observed between kea and Greys might be found in the theoretical overlap between contrafreeloading and play, and how individuals might view the contrafreeloading action as a type of play. As a seemingly nonfunctional, intrinsically motivating behaviour occurring in low-stress environments, incurring a positive mood, varying between conspecifics, and often incomplete and/or repeated14,15, play shares many proximate-level attributes with contrafreeloading13. Our results demonstrate that kea subjects inhabiting a low-stress, captive environment repeatedly chose to engage in classic contrafreeloading to a non-negligible extent and calculated contrafreeloading to a significant extent, varied in their behaviour between individuals, and at times, left the task incomplete (e.g., left food uneaten). Furthermore, evidence for intrinsic motivation to perform a given task is suggested by the kea’s overall differential behaviour between the two experiments, as well as inter-individual differences.Importantly, this study serves only as a first step into determining whether play manifests as a form of contrafreeloading, but cannot ascertain that this is the only possible explanation for the presence or degree of contrafreeloading in the two species. Several alternative explanatory theories regarding the occurrence of contrafreeloading are enumerated in the discussion of Smith et al. (e.g., work ethic; information gathering; relief from boredom)13, and various other potential explanations (beyond playfulness) may reside at the species-level. Grey parrots (Psittacidae) and kea (Strigopidae) are separated by 50–80 million years of evolution43 and differ in their neurobiology (i.e., the size of the shell region related to vocal and possible cognitive abilities44). Differing ecological evolutionary pressures are also likely relevant: an island-based habitat39, a lack of natural predators30,45, and generalist diets40,46,47 are thought to have shaped the playfulness and cognitive abilities of kea30,40,46,47. Greys, in contrast, evolved predominantly on a continent (i.e., although they can be found on islands such as Principe, the Congo Grey is endemic to central Africa48,49), are subject to considerable predation48,50,51,52, and have a relatively less generalist diet (diverse but almost exclusively vegetarian and in which nuts play a significant role; see review in50). Such disparate evolutionary trajectories may offer other potential explanations for the differences in contrafreeloading observed between the two species, and future research could examine differences at genetic and/or neurological levels.The varying rates of contrafreeloading observed between the species could have also been influenced by other factors. For example, although both parrot groups studied here inhabit enriched environments, are habituated to participating in experimental trials, and have access to food ad libitum, their habitats are markedly different. Notably, the Grey subjects live in “man-made” settings (i.e., Griffin and Athena in a lab; Pepper, Franco, and Lucci in private homes), whereas the kea inhabit a naturalistic zoo enclosure. Physical enrichment, although somewhat different in kind, is unlikely to have differed in quantity, as all birds are provided routine naturalistic foraging, and Lucci lives in a free-flight aviary. More likely is the difference in sociality: Relatively more subjects reside together in the kea group (15) compared to the Greys (two groups of two Greys and one Grey living with two birds of differing species), and thus variables such as social stimulation and flock-based foraging techniques could have contributed to the expression of contrafreeloading (note that subadult male kea are known to obtain food through kleptoparasitism32). In order to elucidate the role of habitat on contrafreeloading, future studies could examine the behaviour of species residing in more comparable captive conditions.Future work should aim not only to apply these same methodologies to a broader range of parrot species, but also objectively quantify frequency and complexity of play across a wide range of parrots to allow a direct correlation between play and contrafreeloading over phylogeny in the parrot order. The apparent link between play behaviour and encephalisation in parrots53 offers another possible avenue for cross-species comparisons on contrafreeloading. Future research could also employ cognitive bias tests to quantify the mood of birds before and following contrafreeloading54, directly manipulate subjects’ participation in play behaviours or other control behaviours and observe whether engaging in play can increase contrafreeloading rates at the individual level, or perform behavioural coding of playfulness and/or arousal before and after contrafreeloading. Future research could incorporate more ecologically relevant contrafreeloading tasks to examine this behaviour at both the individual and species level, and approach the phenomenon by using both genetic and neuroscience techniques.In sum, contrafreeloading is, by its very nature, an enigma whose study presents many difficulties. It varies across the diverse contexts within which it is studied, and given that it is rarely exhibited to a statistically significant extent, analyses that require comparing nonsignificant behaviour patterns across individuals and/or species is a challenging undertaking. Many explanations have been proposed, but contrafreeloading is still poorly understood, and its correlation with play is likely only one of several logical rationales. Nevertheless, our findings suggest that interest in play should not be discounted as a contributing factor. More

  • in

    Invasive plant species carry legacy of colonialism

    Similar non-native and invasive flora, such as the fever tree (pictured) are found in regions previously occupied by the same European empire.Credit: Alamy

    In 1860, a British expedition raided the highland forests of South America, looking for a hot commodity: Cinchona seeds. The bark of these ‘fever’ trees produces the anti-malarial compound quinine, and the British Empire sought a stable source of the drug for its soldiers and civil service in India. After cultivation in the United Kingdom, young Cinchona trees were planted across southern India and what is now Sri Lanka.The British quinine scheme failed — instead, a species introduced to Java, now part of Indonesia, by the Dutch Empire later dominated the global market — but Cinchona trees are still common in parts of India.Such botanical legacies of imperial rule are common, finds a study published on 17 October in Nature Ecology & Evolution1. Regions that were once occupied by the same European colonial power — such as India and Sri Lanka — tend to have similar species of non-native and invasive plants. The longer the regions were occupied, the more their populations of invasive species resemble each other, the research found.Alien floraThe link between European colonialism and invasive species is intuitive, and has been noted by other researchers, says Bernd Lenzner, a macro-ecologist at the University of Vienna who led the study. To test the association, his team turned to the Global Naturalized Alien Flora database, which maps the distribution of nearly 14,000 invasive plant species.
    The imperial roots of climate science
    Across more than 1,100 regions, including 404 islands, the researchers found that regions once occupied by the British Empire had more similarities in their invasive flora than did ‘artificial’ empires that the team assembled from random regions. This was also the case for regions once part of the Dutch Empire (former Spanish and Portuguese colonies had alien-plant compositions similar to those of the artificial empires).Climate and geography play an important part in explaining the overlap in the diversity of invasive species, modelling by Lenzner’s team found, but so does the length of time regions were occupied by an imperial power. Regions that were central to trade, such as southern India for the British Empire and Indonesia for the Dutch Empire, formed clusters with considerable overlap in invasive-plant composition.The analysis did not look at when individual plant species were introduced or why. But anecdotally, many of the plants that were commonly taken to former empires were once of economic value and their populations were probably established on purpose, says Lenzner.Global trade impactsThe study’s conclusions might be “super obvious”, but they have important implications for conservation, says Nussaïbah Raja, a palaeontologist at Friedrich-Alexander University of Erlangen–Nürnberg in Erlangen, Germany. “We should be taking this history into consideration when we think about management of species.” Appreciating the history of introduced plants — as well as their place in today’s ecosystems — could help conservationists to handle future changes in biodiversity, such as those driven by climate change, Raja adds.Global trade is beginning to overwrite the colonial legacy of introduced plants. For example, the analysis showed similarities between invasive plant populations in Fujian, China, and some parts of Australia. Although both places were once connected by the British Empire, more recent global trade might also be partly responsible for the overlap.“We are still seeing these imprints of the colonial-empire legacies from centuries ago,” Lenzner says. “So what we’re doing and the species we’re redistributing today will be visible far into the future.” More

  • in

    Interconnected marine habitats form a single continental-scale reef system in South America

    Roelfsema, C., Phinn, S., Jupiter, S., Comley, J. & Albert, S. Mapping coral reefs at reef to reef-system scales, 10s–1000s km2, using object-based image analysis. Int. J. Remote Sens. 34, 6367–6388 (2013).Article 

    Google Scholar 
    Soares, M. O., Tavares, T. C. L. & Carneiro, P. Mesophotic ecosystems: Distribution, impacts and conservation in the South Atlantic. Divers. Distrib. 25(2), 255–268 (2019).
    Google Scholar 
    Leão, Z. M. A. N. et al. Brazilian coral reefs in a period of global change: A synthesis. Braz. J. Oceanogr. 64, 97–116 (2016).Article 

    Google Scholar 
    Leão, Z. M. A. N., Kikuchi, R. K. P. & Oliveira, M. D. M. The coral reef province of Brazil. World Seas: An Environmental Evaluation Volume I: Europe, the Americas and West Africa vol. 1 (Elsevier Ltd., 2018).Collette, B. B. & Rützler, K. Reef fishes over sponge bottoms off the mouth of the Amazon River. in Proceedings of Third International Coral Reef Symposium (ed. Taylor, D. L.) vol. 1 305–310 (Rosenstiel School of Marine and Atmospheric Science, 1977).Cordeiro, R. T. S., Neves, B. M., Rosa-Filho, J. S. & Pérez, C. D. Mesophotic coral ecosystems occur offshore and north of the Amazon River. Bull. Mar. Sci. 91, 491–510 (2015).Article 

    Google Scholar 
    Moura, R. L. et al. An extensive reef system at the Amazon River mouth. Sci. Adv. 2, e1501252 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Francini-Filho, R. B. et al. Perspectives on the Great Amazon Reef: Extension, biodiversity, and threats. Front Mar Sci 5, 1–5 (2018).ADS 
    Article 

    Google Scholar 
    de Mahiques, M. M. et al. Insights on the evolution of the living Great Amazon Reef System, equatorial West Atlantic. Sci. Rep. 9, 1–8 (2019).Article 

    Google Scholar 
    Vale, N. F. et al. Distribution, morphology and composition of mesophotic ‘reefs’ on the Amazon Continental Margin. Mar. Geol. 447, 106779 (2022).ADS 
    Article 

    Google Scholar 
    Moura, R. L. et al. Tropical rhodolith beds are a major and belittled reef fish habitat. Sci. Rep. 11, 1–10 (2021).Article 

    Google Scholar 
    Rocha, L. A. Patterns of distribution and processes of speciation in Brazilian reef fishes. J. Biogeogr. 30, 1161–1171 (2003).Article 

    Google Scholar 
    Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 31, 22–47 (2008).
    Google Scholar 
    Vale, N. F. et al. Structure and composition of rhodoliths from the Amazon River mouth, Brazil. J. S. Am. Earth Sci. 84, 149–159 (2018).Article 

    Google Scholar 
    IMaRS/USF, IRD, UNEP/WCMC, The WorldFish Center & WRI. Global Coral Reefs composite dataset compiled from multiple sources for use in the Reefs at Risk Revisited project incorporating products from the Millennium Coral Reef Mapping Project. Preprint at (2011).Soares, M. O. et al. Challenges and perspectives for the Brazilian semi-arid coast under global environmental changes. Perspect. Ecol. Conserv. 19, 267–278 (2021).
    Google Scholar 
    Castro, C. B. & Pires, D. O. Brazilian coral reefs: What we already know and what is still missing. Bull. Mar. Sci. 69, 357–371 (2001).
    Google Scholar 
    Leão, Z., Kikuchi, R. & Testa, V. Corals and coral reefs of Brazil. in Latin American Coral Reefs (ed. Cortés, J.) 9–52 (Elsevier Science Inc., 2003). https://doi.org/10.1016/B978-044451388-5/50003-5.Laborel-Deguen, F., Castro, C. B., Nunes, F. D. & Pires, D. O. Recifes brasileiros: o legado de Laborel. (Museu Nacional, 2019).Carneiro, P. et al. Marine hardbottom environments in the beaches of Ceará state, equatorial coast of Brazil. Arquivos de Ciências do Mar 54, 120–153 (2021).Carneiro, P. B. M. et al. Structure, growth and CaCO3 production in a shallow rhodolith bed from a highly energetic siliciclastic-carbonate coast in the equatorial SW Atlantic Ocean. Mar. Environ. Res. 166, 105280 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Testa, V., Bosence, D. W. J. & Universita, C. Physical and biological controls on the formation of carbonate and siliciclastic bedforms on the north-east Brazilian shelf. Sedimentology 46, 279–301 (1999).ADS 
    Article 

    Google Scholar 
    Carneiro, P. & Morais, J. O. de. Carbonate sediment production in the equatorial continental shelf of South America: Quantifying Halimeda incrassata (Chlorophyta) contributions. J. S. Am. Earth Sci. 72, 1–6 (2016).Milliman, J. D. Role of Calcareous Algae in Atlantic Continental Margin Sedimentation. in Fossil algae: recent results and developments (ed. Flügel, E.) 232–247 (Springer, 1977). https://doi.org/10.1007/978-3-642-66516-5_26.Knoppers, B., Ekau, W. & Figueiredo, A. G. The coast and shelf of east and northeast Brazil and material transport. Geo-Mar. Lett. 19, 171–178 (1999).ADS 
    Article 

    Google Scholar 
    Vital, H. The north and northeast Brazilian tropical shelves. in Continental shelves of the world: their evolution during the lasta glacio-eustatic cycle (eds. Chiocci, F. L. & Chivas, A. R.) 35–46 (Geological Society, 2014).Soares, M. de O. et al. Brazilian marine animal forests: A new world to discover in the southwestern Atlantic. Mar. Anim. For. 1–38. https://doi.org/10.1007/978-3-319-17001-5_51-1 (2016).Soares, M. O. et al. Impacts of a changing environment on marginal coral reefs in the Tropical Southwestern Atlantic Ocean. Coast. Manag. 210, 105692 (2021).
    Google Scholar 
    Santos, C. L. A., Vital, H., Amaro, V. E. & de Kikuchi, R. K. P. Mapping of the submerged reefs in the coast of the Rio Grande do Norte, near Brazil: Macau to Maracajau. Revista Brasileira de Geofisica 25, 27–36 (2007).Article 

    Google Scholar 
    Neto, I. C., Córdoba, V. C. & Vital, H. Morfologia, microfaciologia e diagênese de beachrocks costa-afora adjacentes à costa norte do Rio Grande do Norte, brasil. Geociências 32, 471–490 (2013).
    Google Scholar 
    Gomes, M. P. et al. The investigation of a mixed carbonate-siliciclastic shelf, NE Brazil: Side-scan sonar imagery, underwater photography, and surface-sediment data. Ital. J. Geosci. 134, 9–22 (2015).Article 

    Google Scholar 
    Soares, M. O., Rossi, S., Martins, F. A. S. & Carneiro, P. The forgotten reefs: Benthic assemblage coverage on a sandstone reef (Tropical South-western Atlantic). J. Mar. Biol. Assoc. U.K. 97(8), 1585–1592. https://doi.org/10.1017/S0025315416000965 (2017).Article 

    Google Scholar 
    Morais, J. O., Ximenes Neto, A. R., Pessoa, P. R. S. & Souza, L. P. Morphological and sedimentary patterns of a semi-arid shelf, Northeast Brazil. Geo-Ma. Lett. 40, 835–842. https://doi.org/10.1007/s00367-019-00587-x (2019).Cordeiro, R. T., Neves, B. M., Kitahara, M. v., Arantes, R. C. & Perez, C. D. First assessment on Southwestern Atlantic equatorial deep-sea coral communities. Deep-Sea Res. Part I Oceanogr. Res. Papers 163, 103344 (2020).Freitas, J. E. P. & Lotufo, T. M. C. Reef fish assemblage and zoogeographic affinities of a scarcely known region of the western equatorial Atlantic. J. Mar. Biol. Assoc. U.K. 95, 623–633 (2015).Article 

    Google Scholar 
    Soares, M. O., Davis, M., Paiva, C. C. de & Carneiro, P. Mesophotic ecosystems: Coral and fish assemblages in a tropical marginal reef (northeastern Brazil). Mar. Biodivers. 1–6 (2016). https://doi.org/10.1007/s12526-016-0615-x.Carneiro, P. B. M., Sátiro, I., COE, C. M. & Mendonça, K. V. Valoração ambiental do Parque Estadual Marinho da Pedra da Risca do Meio, Ceará, Brasil. Arquivo de Ciências do Mar 50, 25–41 (2017).Gomes, M. P., Vital, H. & Droxler, A. W. Terraces, reefs, and valleys along the Brazil northeast outer shelf: Deglacial sea-level archives?. Geo-Mar. Lett. 40, 699–711. https://doi.org/10.1007/s00367-020-00666-4 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).PubMed 
    Article 

    Google Scholar 
    Raitsos, D. E. et al. Sensing coral reef connectivity pathways from space. Sci. Rep. 7, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    Silveira, I. C. A., Miranda, L. B. & Brown, W. S. On the origins of the North Brazil Current. J. Geophys. Res. 99, 22501–22512 (1994).ADS 
    Article 

    Google Scholar 
    Dias, F. J. da S., Castro, B. M. & Lacerda, L. D. Tidal and low-frequency currents off the Jaguaribe River estuary (4° S, 37° 4′ W), northeastern Brazil. Ocean Dynamics 68, 967–985 (2018).Wellington, G. M. & Victor, B. C. Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Mar. Biol. 101, 557–567 (1989).Article 

    Google Scholar 
    Victor, B. C. Duration of the planktonic larval stage of one hundred species of Pacific and Atlantic wrasses (family Labridae). Mar. Biol. 90, 317–326 (1986).Article 

    Google Scholar 
    Endo, C. A. K., Gherardi, D. F. M., Pezzi, L. P. & Lima, L. N. Low connectivity compromises the conservation of reef fishes by marine protected areas in the tropical South Atlantic. Sci. Rep. 9, 1–11 (2019).Article 

    Google Scholar 
    Gomes, M. P. et al. Nature and condition of outer shelf habitats on the drowned Açu Reef, Northeast Brazil. in Seafloor Geomorphology as Benthic Habitat 571–585 (Elsevier, 2020). https://doi.org/10.1016/b978-0-12-814960-7.00034-8.Neto, I. C., Córdoba, V. C. & Vital, H. Petrografia de beachrock em zona costa afora adjacente ao litoral norte do Rio Grande do Norte Brasil. Quat. Environ. Geosci. 2, 12–18 (2010).
    Google Scholar 
    Gomes, M. P., Vital, H., Bezerra, F. H. R., de Castro, D. L. & Macedo, J. W. de P. The interplay between structural inheritance and morphology in the Equatorial Continental Shelf of Brazil. Mar. Geol. 355, 150–161 (2014).Rovira, D. P. T., Gomes, M. P. & Longo, G. O. Underwater valley at the continental shelf structures benthic and fish assemblages of biogenic reefs. Estuar. Coast. Shelf Sci. 224, 245–252 (2019).ADS 
    Article 

    Google Scholar 
    Tosetto, E. G., Bertrand, A., Neumann-Leitão, S. & Nogueira Júnior, M. The Amazon River plume, a barrier to animal dispersal in the Western Tropical Atlantic. Sci. Rep. 12, 537 (2022).ADS 
    Article 

    Google Scholar 
    Cord, I. et al. Brazilian marine biogeography: A multi-taxa approach for outlining sectorization. Mar. Biol. 169, 61 (2022).Article 

    Google Scholar 
    Moalic, Y. et al. Biogeography revisited with network theory: Retracing the history of hydrothermal vent communities. Syst. Biol. 61, 127 (2012).PubMed 
    Article 

    Google Scholar 
    López-Pérez, A. et al. The coral communities of the Islas Marias archipelago, Mexico: Structure and biogeographic relevance to the Eastern Pacific. Mar. Ecol. 37, 679–690 (2016).ADS 
    Article 

    Google Scholar 
    Cordeiro, C. A. M. M. et al. Conservation status of the southernmost reef of the Amazon Reef System: The Parcel de Manuel Luís. Coral Reefs 40, 165–185 (2021).Article 

    Google Scholar 
    Segal, B. & Castro, C. B. Coral community structure and sedimentation at different distances from the coast of the Abrolhos Bank Brazil. Braz. J. Oceanogr. 59, 119–129 (2011).Article 

    Google Scholar 
    Aued, A. W. et al. Large-scale patterns of benthic marine communities in the Brazilian Province. PLoS ONE 13, e0198452 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soares, M. O. et al. Marginal Reefs in the Anthropocene: They Are Not Noah’s Ark. in Perspectives on the Marine Animal Forests of the World (eds. Rossi, S. & Bramanti, L.) 87–128 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-57054-5_4.Perry, C. T. & Larcombe, P. Marginal and non-reef-building coral environments. Coral Reefs 22, 427–432 (2003).Article 

    Google Scholar 
    Riegl, B. & Piller, W. E. Coral frameworks revisited – reefs and coral carpets in the northern Red Sea. Coral Reefs 18, 241–253 (1999).Article 

    Google Scholar 
    Rodríguez-Martínez, R. E., Jordán-Garza, A. G., Maldonado, M. A. & Blanchon, P. Controls on coral-ground development along the Northern Mesoamerican Reef Tract. PLoS ONE 6, e28461 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lotufo, T. M. et al. Sessile epifauna of Ceará´s shelf – high dominance of sponges. in 7th International Sponge Symposium – Biodiversity, Innovation, Sustainability 123–123 (Museu Nacional – UFRJ, 2006).Fonseca, V. P., Pennino, M. G., de Nóbrega, M. F., Oliveira, J. E. L. & de Figueiredo Mendes, L. Identifying fish diversity hot-spots in data-poor situations. Mar. Environ. Res. 129, 365–373 (2017).Olavo, G., Costa, P. A. S., Martins, A. S. & Ferreira, B. P. Shelf-edge reefs as priority areas for conservation of reef fish diversity in the tropical Atlantic. Aquat. Conserv. Mar. Freshwat. Ecosyst. 21, 199–209 (2011).Article 

    Google Scholar 
    Eduardo, L. N. et al. Identifying key habitat and spatial patterns of fish biodiversity in the tropical Brazilian continental shelf. Cont. Shelf Res. 166, 108–118 (2018).ADS 
    Article 

    Google Scholar 
    Carneiro, P. B. de M. et al. Structure, growth and CaCO3 production in a shallow rhodolith bed from a highly energetic siliciclastic-carbonate coast in the equatorial SW Atlantic Ocean. Mar. Environ. Res. 166, 105280 (2021).Costa, A. C. P., Garcia, T. M., Paiva, B. P., Ximenes Neto, A. R. & Soares, M. de O. Seagrass and rhodolith beds are important seascapes for the development of fish eggs and larvae in tropical coastal areas. Mar. Environ. Res. 161, 105064 (2020).Testa, V. & Bosence, D. W. J. Carbonate-siliciclastic sedimentation on a high-energy, ocean-facing, tropical ramp, NE Brazil. in Carbonate Ramps (eds. Wright, V. P. & Burchette, T. P.) 55–71 (The Geological Society, 1998).Ximenes Neto, A. R., de Morais, J. O. & Ciarlini, C. Modern and relict sedimentary systems of the semi-arid continental shelf in NE Brazil. J. S. Am. Earth Sci. 84, 56–68 (2018).CAS 
    Article 

    Google Scholar 
    Ximenes Neto, A. R., Morais, J. O. de, Paula, L. F. S. de & Pinheiro, L. de S. Transgressive deposits and morphological patterns in the equatorial Atlantic shallow shelf (Northeast Brazil). Region. Stud. Mar. Sci. 24, 212–224 (2018).Sponaugle, S., Lee, T., Kourafalou, V. & Pinkard, D. Florida Current frontal eddies and the settlement of coral reef fishes. Limnol. Oceanogr. 50, 1033–1048 (2005).ADS 
    Article 

    Google Scholar 
    Cruz, R. et al. Large-scale oceanic circulation and larval recruitment of the spiny lobster Panulirus argus (Latreille, 1804). Crustaceana 88, 298–323 (2015).Article 

    Google Scholar 
    Luiz, O. J. et al. Ecological traits influencing range expansion across large oceanic dispersal barriers: Insights from tropical Atlantic reef fishes. Proc. R. Soc. B Biol. Sci. 279, 1033–1040 (2012).Article 

    Google Scholar 
    Romero-Torres, M., Treml, E. A., Blanchon, P., Acosta, A. & Paz-García, D. A. The Eastern Tropical Pacific coral population connectivity and the role of the Eastern Pacific Barrier. Sci. Rep. 8, 1–13 (2018).CAS 
    Article 

    Google Scholar 
    Leal, C. v. et al. Integrative taxonomy of Amazon Reefs’ Arenosclera spp.: A new clade in the Haplosclerida (Demospongiae). Front. Mar. Sci. 4, 291 (2017).Peluso, L. et al. Contemporary and historical oceanographic processes explain genetic connectivity in a Southwestern Atlantic coral. Sci. Rep. 8, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    Targino, A. K. G. & Gomes, P. B. Distribution of sea anemones in the Southwest Atlantic: Biogeographical patterns and environmental drivers. Mar. Biodivers. 50, 1–17 (2020).Article 

    Google Scholar 
    Barroso, C. X., Lotufo, T. M. da C. & Matthews-Cascon, H. Biogeography of Brazilian prosobranch gastropods and their Atlantic relationships. J. Biogeogr. 43, 2477–2488 (2016).Pinheiro, H. T. et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers. Distrib. 24, 951–965 (2018).Article 

    Google Scholar 
    Medeiros, A. P. M. et al. Deep reefs are not refugium for shallow-water fish communities in the southwestern Atlantic. Ecol. Evol. 11, 4413–4427 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sammon, J. W. A nonlinear mapping for data structure analysis. IEEE Trans. Comput. C–18, 401–409 (1969).Prim, R. C. Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389–1401 (1957).ADS 
    Article 

    Google Scholar  More

  • in

    Ecological sensitivity and vulnerability of fishing fleet landings to climate change across regions

    Sumaila, U. R. & Tai, T. C. End overfishing and increase the resilience of the ocean to climate change. Front. Mar. Sci. 7, 1–8 (2020).Article 

    Google Scholar 
    Sumaila, U. R. et al. Benefits of the paris agreement to ocean life, economies, and people. Sci. Adv. 5, 1–10 (2019).Article 

    Google Scholar 
    Beaudreau, A. H. et al. Thirty years of change and the future of Alaskan fisheries: Shifts in fishing participation and diversification in response to environmental, regulatory and economic pressures. Fish Fish. 20, 601–619 (2019).
    Google Scholar 
    Finkbeiner, E. M. The role of diversification in dynamic small-scale fisheries: Lessons from Baja California Sur. Mexico. Glob. Environ. Chang. 32, 139–152 (2015).Article 

    Google Scholar 
    Johnson, J. E. et al. Assessing and reducing vulnerability to climate change: Moving from theory to practical decision-support. Mar. Policy 74, 220–229 (2016).Article 

    Google Scholar 
    IPCC. Climate Change 2007: Synthesis Report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. (2007).Johnson, J. E. & Welch, D. J. Climate change implications for Torres Strait fisheries: Assessing vulnerability to inform adaptation. Clim. Change 135, 611–624 (2016).ADS 
    Article 

    Google Scholar 
    IPCC. Annex I: Glossary. in IPCC special report on the ocean and cryosphere in a changing climate e [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)] 677–702 (Cambridge University Press, 2019). https://doi.org/10.1017/9781009157964.010Cheung, W. W. L., Watson, R., Morato, T., Pitcher, T. J. & Pauly, D. Intrinsic vulnerability in the global fish catch. Mar. Ecol. Prog. Ser. 333, 1–12 (2007).ADS 
    Article 

    Google Scholar 
    Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 80(279), 860 (1998).ADS 
    Article 

    Google Scholar 
    Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Rashid Sumaila, U. Projected change in global fisheries revenues under climate change. Sci. Rep. 6(6), 13 (2016).
    Google Scholar 
    Heck, N. et al. Fisheries at risk: Vulnerability of fisheries to climate change (Nat. Conserv. Tech. Rep, 2020).
    Google Scholar 
    Allison, E. H. et al. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 10, 173–196 (2009).Article 

    Google Scholar 
    DuFour, M. R. et al. Portfolio theory as a management tool to guide conservation and restoration of multi-stock fish populations. Ecosphere 6(12), 1 (2015).Article 

    Google Scholar 
    Kasperski, S. & Holland, D. S. Income diversification and risk for fishermen. Proc. Natl. Acad. Sci. U. S. A. 110, 2076–2081 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bahri, T. et al. Adaptive management of fisheries in response to climate change. FAO Fisheries and Aquaculture Technical Paper 667, (FAO, 2021).Barker, M. J. & Schluessel, V. Managing global shark fisheries: Suggestions for prioritizing management strategies. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 325–347 (2005).Article 

    Google Scholar 
    Fletcher, W. J. F. & Fletcher, W. J. The application of qualitative risk assessment methodology to prioritize issues for fisheries management. ICES J. Mar. Sci. 62, 1576–1587 (2005).Article 

    Google Scholar 
    Cheung, W. W. L. The future of fishes and fisheries in the changing oceans. J. Fish Biol. 92, 790–803 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cinner, J. E. et al. Evaluating social and ecological vulnerability of coral reef fisheries to climate change. PLoS ONE 8(9), e74321 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colburn, L. L. et al. Indicators of climate change and social vulnerability in fishing dependent communities along the Eastern and Gulf Coasts of the United States. Mar. Policy 74, 323–333 (2016).Article 

    Google Scholar 
    Pinnegar, J. K. et al. Assessing vulnerability and adaptive capacity of the fisheries sector in Dominica: Long-term climate change and catastrophic hurricanes. ICES J. Mar. Sci. 76, 1353–1367 (2019).
    Google Scholar 
    Aragão, G. M. et al. The importance of regional differences in vulnerability to climate change for demersal fisheries. ICES J. Mar. Sci. 1, 1–13 (2021).
    Google Scholar 
    Payne, M. R., Kudahl, M., Engelhard, G. H., Peck, M. A. & Pinnegar, J. K. Climate risk to European fisheries and coastal communities. Proc. Natl. Acad. Sci. U. S. A. 118, e2018086118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baptista, V., Silva, P. L., Relvas, P., Teodósio, M. A. & Leitão, F. Sea surface temperature variability along the Portuguese coast since 1950. Int. J. Climatol. 38, 1145–1160 (2018).Article 

    Google Scholar 
    Leitão, F. et al. (2019) A 60-year time series analyses of the upwelling along the Portuguese coast. Water 11(11), 1285 (2019).Article 

    Google Scholar 
    Leitão, F., Relvas, P., Cánovas, F., Baptista, V. & Teodósio, A. Northerly wind trends along the Portuguese marine coast since 1950. Theor. Appl. Climatol. 137(1), 19 (2018).
    Google Scholar 
    Bueno-Pardo, J. et al. Trends and drivers of marine fish landings in Portugal since its entrance in the European Union. ICES J. Mar. Sci. 77, 988–1001 (2020).Article 

    Google Scholar 
    Leitão, F., Maharaj, R. R., Vieira, V. M. N. C. S., Teodósio, A. & Cheung, W. W. L. The effect of regional sea surface temperature rise on fisheries along the Portuguese Iberian Atlantic coast. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1351–1359 (2018).Article 

    Google Scholar 
    Leitão, F., Alms, V. & Erzini, K. A multi-model approach to evaluate the role of environmental variability and fishing pressure in sardine fisheries. J. Mar. Syst. 139, 128–138 (2014).Article 

    Google Scholar 
    Ullah, H., Leitão, F., Baptista, V. & Chícharo, L. An analysis of the impacts of climatic variability and hydrology on the coastal fisheries, Engraulis encrasicolus and Sepia officinalis, of Portugal. Ecohydrol. Hydrobiol. 12, 337–352 (2012).Article 

    Google Scholar 
    EUMOFA. The EU Fish Market – Highlights the EU in the world market supply consumption import-export landings in the EU aquaculture (2021) https://doi.org/10.2771/563899DGPM. Relatório de Monitorização da Estratégia Nacional para o Mar 2013–2020, Documento de Suporte às Políticas do Mar. (2020).Almeida, C., Karadzic, V. & Vaz, S. The seafood market in Portugal: Driving forces and consequences. Mar. Policy 61, 87–94 (2015).Article 

    Google Scholar 
    Pita, C. & Gaspar, M. (2020) Small-Scale Fisheries in Portugal: Current Situation, Challenges and Opportunities for the Future. In Small-Scale Fisheries in Europe: Status, Resilience and Governance. Springer, Cham 283–305https://doi.org/10.1007/978-3-030-37371-9_14Baeta, F., José Costa, M. & Cabral, H. Changes in the trophic level of Portuguese landings and fish market price variation in the last decades. Fish. Res. 97, 216–222 (2009).Article 

    Google Scholar 
    Leitão, F. Landing profiles of Portuguese fisheries: Assessing the state of stocks. Fish. Manag. Ecol. 22, 152–163 (2015).Article 

    Google Scholar 
    Quentin Grafton, R. Adaptation to climate change in marine capture fisheries. Mar. Policy 34, 606–615 (2010).Article 

    Google Scholar 
    Bueno-Pardo, J. et al. Climate change vulnerability assessment of the main marine commercial fish and invertebrates of Portugal. Sci. Rep. 11, 2958 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Szynaka, M. J., Erzini, K., Gonçalves, J. M. S. & Campos, A. Identifying métiers using landings profiles: An octopus-driven multi-gear coastal fleet. J. Mar. Sci. Eng. 9, 1022 (2021).Article 

    Google Scholar 
    Gamito, R., Teixeira, C. M., Costa, M. J. & Cabral, H. N. Climate-induced changes in fish landings of different fleet components of Portuguese fisheries. Reg. Environ. Chang. 13, 413–421 (2013).Article 

    Google Scholar 
    Leitão, F., Baptista, V., Zeller, D. & Erzini, K. Reconstructed catches and trends for mainland Portugal fisheries between 1938 and 2009: Implications for sustainability, domestic fish supply and imports. Fish. Res. 155, 33–50 (2014).Article 

    Google Scholar 
    Teixeira, C. M. et al. Trends in landings of fish species potentially affected by climate change in Portuguese fisheries. Reg. Environ. Chang. 14, 657–669 (2014).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant graphics for data analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 3–900051–07–0 (2020).Zuur, A. F., Fryer, R. J., Jolliffe, I. T., Dekker, R. & Beukema, J. J. Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 14, 665–685 (2003).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Smith, G. M. (2007) Analysing Ecological Data. https://doi.org/10.1007/978-0-387-45972-1Anderson, M., Gorley, R. & Clarke, K. PERMANOVA for PRIMER: Guide to software and statistical methods. (PRIMER-E Ltd., 2008).Heppell, S. S., Heppell, S. a, Read, A. J. & Crowder, L. B. Effects of fishing on long-lived marine organisms. In Marine conservation biology: The science of maintaining the sea’s biodiversity (eds. Norse, E. & Crowder, L.) 211–231 (Island Press, 2005).Maynou, F. et al. Estimating trends of population decline in long-lived marine species in the Mediterranean sea based on fishers’ perceptions. PLoS ONE 6, e21818 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rolland, V., Barbraud, C. & Weimerskirch, H. Combined effects of fisheries and climate on a migratory long-lived marine predator. J. Appl. Ecol. 45, 4–13 (2008).Article 

    Google Scholar 
    Alves, L. M. F., Correia, J. P. S., Lemos, M. F. L., Novais, S. C. & Cabral, H. Assessment of trends in the Portuguese elasmobranch commercial landings over three decades (1986–2017). Fish. Res. 230, 105648 (2020).Article 

    Google Scholar 
    Correia, J. P., Morgado, F., Erzini, K. & Soares, A. M. V. M. Elasmobranch landings for the Portuguese commercial fishery from 1986 to 2009. Arquipel. Life Mar. Sci. 33, 81–109 (2016).
    Google Scholar 
    Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinnegar, J. K. & Engelhard, G. H. The ‘shifting baseline’ phenomenon: A global perspective. Rev. Fish Biol. Fish. 18, 1–16 (2008).Article 

    Google Scholar 
    Moura, T. et al. Assessing spatio-temporal changes in marine communities along the Portuguese continental shelf and upper slope based on 25 years of bottom trawl surveys. Mar. Environ. Res. 160, 105044 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Martins, M. M., Skagen, D., Marques, V., Zwolinski, J. & Silva, A. Changes in the abundance and spatial distribution of the Atlantic chub mackerel (Scomber colias) in the pelagic ecosystem and fisheries off Portugal. Sci. Mar. 77, 551–563 (2013).Article 

    Google Scholar 
    Bordalo-Machado, P. & Figueiredo, I. The fishery for black scabbardfish (Aphanopus carbo Lowe, 1839) in the Portuguese continental slope. Rev. Fish Biol. Fish. 19, 49–67 (2009).Article 

    Google Scholar 
    Gordo, L. S. Black scabbardfish (Aphanopus carbo Lowe, 1839) in the southern Northeast Atlantic: Considerations on its fishery. Sci. Mar. 73, 11–16 (2009).Article 

    Google Scholar 
    Campos, A., Fonseca, P., Fonseca, T. & Parente, J. Definition of fleet components in the Portuguese bottom trawl fishery. Fish. Res. 83, 185–191 (2007).Article 

    Google Scholar 
    Bueno-Pardo, J. et al. Deep-sea crustacean trawling fisheries in Portugal: Quantification of effort and assessment of landings per unit effort using a Vessel Monitoring System (VMS). Sci. Rep. 7, 1–10 (2017).ADS 
    Article 

    Google Scholar 
    Gamito, R., Pita, C., Teixeira, C., Costa, M. J. & Cabral, H. N. Trends in landings and vulnerability to climate change in different fleet components in the Portuguese coast. Fish. Res. 181, 93–101 (2016).Article 

    Google Scholar 
    García-Seoane, E., Marques, V., Silva, A. & Angélico, M. M. Spatial and temporal variation in pelagic community of the western and southern Iberian Atlantic waters. Estuar. Coast. Shelf Sci. 221, 147–155 (2019).ADS 
    Article 

    Google Scholar 
    Vinagre, C., Duarte, F., Cabral, H. & Jose, M. Impact of climate warming upon the fish assemblages of the Portuguese coast under different scenarios. Reg. Environ. Change 11(4), 779. https://doi.org/10.1007/s10113-011-0215-z (2011).Article 

    Google Scholar 
    Goulart, P., Veiga, F. J. & Grilo, C. The evolution of fisheries in Portugal: A methodological reappraisal with insights from economics. Fish. Res. 199, 76–80 (2018).Article 

    Google Scholar 
    Pita, C., Pereira, J., Lourenço, S., Sonderblohm, C. & Pierce, G. J. (2015) The Traditional Small-Scale Octopus Fishery in Portugal: Framing Its Governability. 117–132. https://doi.org/10.1007/978-3-319-17034-3_7Pita, C. et al. Fisheries for common octopus in Europe: Socioeconomic importance and management. Fish. Res. 235, 105820 (2021).Article 

    Google Scholar 
    Moreno, A. et al. Essential habitats for pre-recruit Octopus vulgaris along the Portuguese coast. Fish. Res. 152, 74–85 (2014).ADS 
    Article 

    Google Scholar 
    Sbrana, M. et al. Spatiotemporal abundance pattern of deep-water rose shrimp, parapenaeus longirostris, and Norway lobster, nephrops norvegicus, in european mediterranean waters. Sci. Mar. 83, 71–80 (2019).Article 

    Google Scholar 
    Quattrocchi, F., Fiorentino, F., Lauria, V. & Garofalo, G. The increasing temperature as driving force for spatial distribution patterns of Parapenaeus longirostris (Lucas 1846) in the Strait of Sicily (Central Mediterranean Sea). J. Sea Res. 158, 101871 (2020).Article 

    Google Scholar 
    Colloca, F., Mastrantonio, G., Lasinio, G. J., Ligas, A. & Sartor, P. Parapenaeus longirostris (Lucas, 1846) an early warning indicator species of global warming in the central Mediterranean Sea. J. Mar. Syst. 138, 29–39 (2014).Article 

    Google Scholar 
    Woods, P. J. et al. (2021) A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change. ICES J. Mar. Sci. fsab146Gonzalez-Mon, B. et al. Spatial diversification as a mechanism to adapt to environmental changes in small-scale fisheries. Environ. Sci. Policy 116, 246–257 (2021).Article 

    Google Scholar 
    Garza-Gil, M. D., Torralba-Cano, J. & Varela-Lafuente, M. M. Evaluating the economic effects of climate change on the European sardine fishery. Reg. Environ. Chang. 11, 87–95 (2011).Article 

    Google Scholar 
    Borges, M. F., Santos, A. M. P., Crato, N., Mendes, H. & Mota, B. Sardine regime shifts off Portugal: A time series analysis of catches and wind conditions. Sci. Mar. 67, 235–244 (2003).Article 

    Google Scholar 
    Garrido, S. et al. Temperature and food-mediated variability of European Atlantic sardine recruitment. Prog. Oceanogr. 159, 267–275 (2017).ADS 
    Article 

    Google Scholar 
    ICES. Report of the working group on southern horse mackerel, anchovy and sardine (WGHANSA). (2018).Szalaj, D. et al. Food-web dynamics in the Portuguese continental shelf ecosystem between 1986 and 2017: Unravelling drivers of sardine decline. Estuar. Coast. Shelf Sci. 251, 107259 (2021).Article 

    Google Scholar 
    Feijó, D. et al. Catch and yield trends of the Portuguese purse seine fishery (2006–2018). Front. Mar. Sci. https://doi.org/10.3389/conf.fmars.2019.08.00013 (2019).Article 

    Google Scholar 
    Schickele, A., Francour, P. & Raybaud, V. European cephalopods distribution under climate-change scenarios. Sci. Rep. 11, 3930 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Purcell, S. W., Crona, B. I., Lalavanua, W. & Eriksson, H. Distribution of economic returns in small-scale fisheries for international markets: A value-chain analysis. Mar. Policy 86, 9–16 (2017).Article 

    Google Scholar 
    Thiao, D., Leport, J., Ndiaye, B. & Mbaye, A. Need for adaptive solutions to food vulnerability induced by fish scarcity and unaffordability in Senegal. Aquat. Living Resour. 31, 25 (2018).Article 

    Google Scholar 
    Education, A. & Variability, H. Cardoso, C., Lourenço, H., Costa, S., Gonçalves, S. & Leonor Nunes, M. Survey Into the Seafood Consumption Preferences and Patterns in the Portuguese Population. J. Food Prod. Mark. 22, 421–435 (2016).Article 

    Google Scholar 
    Holsten, A. & Kropp, J. P. An integrated and transferable climate change vulnerability assessment for regional application. Nat. Hazards 64, 1977–1999 (2012).Article 

    Google Scholar 
    Umweltbundesamt guidelines for climate impact and vulnerability assessments recommendations of the interministerial working group on adaptation to climate change of the German federal government for our environment. More

  • in

    Enhanced dust emission following large wildfires due to vegetation disturbance

    Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).Article 

    Google Scholar 
    Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).Article 

    Google Scholar 
    Hamilton, D. S. et al. Earth, wind, fire, and pollution: aerosol nutrient sources and impacts on ocean biogeochemistry. Ann. Rev. Mar. Sci. 14, 303–330 (2022).Article 

    Google Scholar 
    Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 16216–16221 (2019).Article 

    Google Scholar 
    Schlosser, J. S. et al. Analysis of aerosol composition data for western United States wildfires between 2005 and 2015: dust emissions, chloride depletion, and most enhanced aerosol constituents. J. Geophys. Res. Atmos. 122, 8951–8966 (2017).Article 

    Google Scholar 
    Wagner, R., Schepanski, K. & Klose, M. The dust emission potential of agricultural-like fires—theoretical estimates from two conceptually different dust emission parameterizations. J. Geophys. Res. Atmos. 126, e2020JD034355 (2017).
    Google Scholar 
    Ichoku, C. et al. Biomass burning, land-cover change, and the hydrological cycle in northern sub-Saharan Africa. Environ. Res. Lett. 11, 095005 (2016).Article 

    Google Scholar 
    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).Article 

    Google Scholar 
    Duniway, M. C. et al. Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world. Ecosphere 10, e02650 (2019).Article 

    Google Scholar 
    Okin, G. S., Gillette, D. A. & Herrick, J. E. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J. Arid. Environ. 65, 253–275 (2006).Article 

    Google Scholar 
    Raupach, M. R. Drag and drag partition on rough surfaces. Boundary Layer Meteorol. 60, 375–395 (1992).Article 

    Google Scholar 
    Webb, N. P. et al. Vegetation canopy gap size and height: critical indicators for wind erosion monitoring and management. Rangel. Ecol. Manag. 76, 78–83 (2021).Article 

    Google Scholar 
    Ellis, T. M., Bowman, D. M. J. S., Jain, P., Flannigan, M. D. & Williamson, G. J. Global increase in wildfire risk due to climate-driven declines in fuel moisture. Glob. Change Biol. 28, 1544–1559 (2022).Article 

    Google Scholar 
    Ravi, S. et al. Aeolian processes and the biosphere. Rev. Geophys. 49, RG3001 (2011).Article 

    Google Scholar 
    Wagenbrenner, N. S., Germino, M. J., Lamb, B. K., Robichaud, P. R. & Foltz, R. B. Wind erosion from a sagebrush steppe burned by wildfire: Measurements of PM10 and total horizontal sediment flux. Aeolian Res. 10, 25–36 (2013).Article 

    Google Scholar 
    Wagenbrenner, N. S. A large source of dust missing in Particulate Matter emission inventories? Wind erosion of post-fire landscapes. Elementa 5, 2 (2017).
    Google Scholar 
    Jeanneau, A. C., Ostendorf, B. & Herrmann, T. Relative spatial differences in sediment transport in fire-affected agricultural landscapes: a field study. Aeolian Res. 39, 13–22 (2019).Article 

    Google Scholar 
    Deb, P. et al. Causes of the widespread 2019–2020 Australian bushfire season. Earths Future 8, e2020EF001671 (2020).Article 

    Google Scholar 
    Nogrady, B. & Nicky, B. The climate link to Australia’s fires. Nature 577, 610–612 (2020).Yu, Y. & Ginoux, P. Assessing the contribution of the ENSO and MJO to Australian dust activity based on satellite- and ground-based observations. Atmos. Chem. Phys. 21, 8511–8530 (2021).Article 

    Google Scholar 
    Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. & Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50, RG3005 (2012).Article 

    Google Scholar 
    Yu, Y., Kalashnikova, O. V., Garay, M. J., Lee, H. & Notaro, M. Identification and characterization of dust source regions across North Africa and the Middle East using MISR satellite observations. Geophys. Res. Lett. 45, 6690–6701 (2018).Article 

    Google Scholar 
    Brianne, P., Rebecca, H. & David, L. The fate of biological soil crusts after fire: a meta-analysis. Glob. Ecol. Conserv. 24, e01380 (2020).Article 

    Google Scholar 
    Rodriguez-Caballero, E. et al. Global cycling and climate effects of aeolian dust controlled by biological soil crusts. Nat. Geosci. 15, 458–463 (2022).Article 

    Google Scholar 
    Goudie, A. S. & Middleton, N. J. Desert Dust in the Global System (Springer, 2006).Ginoux, P. Atmospheric chemistry: warming or cooling dust? Nat. Geosci. 10, 246–247 (2017).Article 

    Google Scholar 
    DeMott, P. J. et al. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl Acad. Sci. USA 107, 11217–11222 (2010).Article 

    Google Scholar 
    Yu, H. et al. The fertilizing role of African dust in the Amazon rainforest: a first multiyear assessment based on data from cloud–aerosol lidar and infrared Pathfinder satellite observations. Geophys. Res. Lett. 42, 1984–1991 (2015).Article 

    Google Scholar 
    Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).Article 

    Google Scholar 
    Sarangi, C. et al. Dust dominates high-altitude snow darkening and melt over high-mountain Asia. Nat. Clim. Change 10, 1045–1051 (2020).Article 

    Google Scholar 
    Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).Article 

    Google Scholar 
    Zheng, B. et al. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 7, eabh2646 (2021).Article 

    Google Scholar 
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).Article 

    Google Scholar 
    Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 1–17 (2021).Article 

    Google Scholar 
    Yu, Y. et al. Machine learning–based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nat. Commun. 13, 1250 (2022).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. How reliable are CMIP5 models in simulating dust optical depth? Atmos. Chem. Phys. 18, 12491–12510 (2018).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. Climatic factors contributing to long-term variations in surface fine dust concentration in the United States. Atmos. Chem. Phys. 18, 4201–4215 (2018).Article 

    Google Scholar 
    Bodí, M. B. et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127 (2014).Article 

    Google Scholar 
    NCAR Command Language v.6.6.2 (NCAR, 2019); https://doi.org/10.5065/D6WD3XH5Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).Article 

    Google Scholar 
    Ramo, R. et al. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl Acad. Sci. USA 118, 1–7 (2021).Article 

    Google Scholar 
    Diner, D. J. et al. Multi-angle imaging spectroradiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 36, 1072–1087 (1998).Article 

    Google Scholar 
    Pu, B. et al. Retrieving the global distribution of the threshold of wind erosion from satellite data and implementing it into the Geophysical Fluid Dynamics Laboratory land–atmosphere model (GFDL AM4.0/LM4.0). Atmos. Chem. Phys. 20, 55–81 (2020).Article 

    Google Scholar 
    Sayer, A. M., Hsu, N. C., Bettenhausen, C. & Jeong, M. J. Validation and uncertainty estimates for MODIS collection 6 ‘Deep Blue’ aerosol data. J. Geophys. Res. Atmos. 118, 7864–7872 (2013).Article 

    Google Scholar 
    Hsu, N. C. et al. Enhanced Deep Blue aerosol retrieval algorithm: the second generation. J. Geophys. Res. Atmos. 118, 9296–9315 (2013).Article 

    Google Scholar 
    Ginoux, P., Garbuzov, D. & Hsu, N. C. Identification of anthropogenic and natural dust sources using moderate resolution imaging spectroradiometer (MODIS) Deep Blue level 2 data. J. Geophys. Res. 115, D05204 (2010).Article 

    Google Scholar 
    Eck, T. F. et al. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 104, 31333–31349 (1999).Article 

    Google Scholar 
    Anderson, T. L. et al. Testing the MODIS satellite retrieval of aerosol fine-mode fraction. J. Geophys. Res. 110, 1–16 (2005).Article 

    Google Scholar 
    Baddock, M. C., Bullard, J. E. & Bryant, R. G. Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sens. Environ. 113, 1511–1528 (2009).Article 

    Google Scholar 
    Baddock, M. C., Ginoux, P., Bullard, J. E. & Gill, T. E. Do MODIS-defined dust sources have a geomorphological signature? Geophys. Res. Lett. 43, 2606–2613 (2016).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. Projection of American dustiness in the late 21st century due to climate change. Sci. Rep. 7, 5553 (2017).Article 

    Google Scholar 
    Pu, B., Ginoux, P., Kapnick, S. B. & Yang, X. Seasonal prediction potential for springtime dustiness in the United States. Geophys. Res. Lett. 46, 9163–9173 (2019).Article 

    Google Scholar 
    Garay, M. J. et al. Introducing the 4.4 km spatial resolution multi-angle imaging spectroradiometer (MISR) aerosol product. Atmos. Meas. Tech. 13, 593–628 (2020).Article 

    Google Scholar 
    Kalashnikova, O. V., Kahn, R., Sokolik, I. N. & Li, W.-H. Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes. J. Geophys. Res. 110, D18S14 (2005).Article 

    Google Scholar 
    Yu, Y. et al. Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite, radiometric, and station data. J. Geophys. Res. Atmos. 118, 13253–13264 (2013).Article 

    Google Scholar 
    Yu, Y., Notaro, M., Kalashnikova, O. V. & Garay, M. J. Climatology of summer Shamal wind in the Middle East. J. Geophys. Res. Atmos. 121, 289–305 (2016).Article 

    Google Scholar 
    Yu, Y. et al. Disproving the Bodélé depression as the primary source of dust fertilizing the Amazon rainforest. Geophys. Res. Lett. 47, e2020GL088020 (2020).Article 

    Google Scholar 
    Giles, D. M. et al. Advancements in the Aerosol Robotic Network (AERONET) version 3 database—automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 12, 169–209 (2019).Article 

    Google Scholar 
    O’Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N. & Thulasiraman, S. Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res. Atmos. 108, 1–15 (2003).
    Google Scholar 
    Winker, D. M. et al. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 26, 2310–2323 (2009).Article 

    Google Scholar 
    Esselborn, M. et al. Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006. Tellus B 61, 131–143 (2009).Article 

    Google Scholar 
    Kim, M. H. et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 11, 6107–6135 (2018).Article 

    Google Scholar 
    Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS Vegetation Index User’s Guide (Collection 6) (Univ. Arizona, 2015).Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).Article 

    Google Scholar 
    Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016).Article 

    Google Scholar 
    Remer, L. A., Kaufman, Y. J., Holben, B. N., Thompson, A. M. & McNamara, D. Biomass burning aerosol size distribution and modeled optical properties. J. Geophys. Res. Atmos. 103, 31879–31891 (1998).Article 

    Google Scholar 
    Tegen, I. & Lacis, A. A. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res. Atmos. 101, 19237–19244 (1996).Article 

    Google Scholar 
    Friedl, M. A. & Sulla-Menashe, D. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product 6 (USGS, 2018).Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P. & Friedl, M. A. Hierarchical mapping of annual global land cover 2001 to present: the MODIS collection 6 land cover product. Remote Sens. Environ. 222, 183–194 (2019).Article 

    Google Scholar 
    Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: state-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).Article 

    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).Article 

    Google Scholar 
    Preimesberger, W., Scanlon, T., Su, C.-H., Gruber, A. & Dorigo, W. Homogenization of structural breaks in the global ESA CCI Soil Moisture multisatellite climate data record. IEEE Trans. Geosci. Remote Sens. 59, 2845–2862 (2021).Article 

    Google Scholar 
    Minola, L. et al. Near-surface mean and gust wind speeds in ERA5 across Sweden: towards an improved gust parametrization. Clim. Dyn. 55, 887–907 (2020).Article 

    Google Scholar 
    Molina, M. O., Gutiérrez, C. & Sánchez, E. Comparison of ERA5 surface wind speed climatologies over Europe with observations from the HadISD dataset. Int. J. Climatol. 41, 4864–4878 (2021).Article 

    Google Scholar 
    Klose, M. et al. Mineral dust cycle in the Multiscale Online Nonhydrostatic Atmosphere Chemistry model (MONARCH) version 2.0. Geosci. Model Dev. 14, 6403–6444 (2021).Article 

    Google Scholar 
    Mondal, A., Kundu, S. & Mukhopadhyay, A. Rainfall trend analysis by Mann–Kendall test: a case study of north-eastern part of Cuttack District, Orissa. Int. J. Geol. Earth Environ. Sci. 2, 2277–208170 (2012).
    Google Scholar 
    Yu, Y. & Ginoux, P. Dust emission following large wildfires. figshare. 2022. https://doi.org/10.6084/m9.figshare.20648055.v2 More

  • in

    The effect of putrescine on space use and activity in sea lamprey (Petromyzon marinus)

    Hume, J. B. et al. Managing native and non-native sea lamprey (Petromyzon marinus) through anthropogenic change: A prospective assessment of key threats and uncertainties. J. Great Lakes Res. 47, S704–S722 (2021).Article 

    Google Scholar 
    Siefkes, M. J. Use of physiological knowledge to control the invasive sea lamprey (Petromyzon marinus) in the Laurentian Great Lakes. Conserv. Physiol. 5, 1–18 (2017).Article 

    Google Scholar 
    Hunn, J. B. & Youngs, W. D. Role of physical barriers in the control of Sea Lamprey (Petrorn yzon marinus). Can. J. Fish. Aquat. Sci. 37, 2118–2122 (1980).Article 

    Google Scholar 
    Christie, M. R., Sepúlveda, M. S. & Dunlop, E. S. Rapid resistance to pesticide control is predicted to evolve in an invasive fish. Sci. Rep. 9, 18157. https://doi.org/10.1038/s41598-019-54260-5 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cline, T. J. et al. Climate impacts on landlocked sea lamprey: Implications for host-parasite interactions and invasive species management. Ecosphere 5(6), 68. https://doi.org/10.1890/ES14-00059.1 (2014).Article 

    Google Scholar 
    Lennox, R. J. et al. Potential changes to the biology and challenges to the management of invasive sea lamprey Petromyzon marinus in the Laurentian Great Lakes due to climate change. Glob. Change Biol. 26, 1118–1137. https://doi.org/10.1111/gcb.14957 (2020).ADS 
    Article 

    Google Scholar 
    Siefkes, M. J., Johnson, N. S. & Muir, A. M. A renewed philosophy about supplemental sea lamprey controls. J. Great Lakes Res. 47, S742–S752 (2021).Article 

    Google Scholar 
    Fissette, S. D. et al. Progress towards integrating an understanding of chemical ecology into sea lamprey control. J. Great Lakes Res. 47, S660–S672 (2021).CAS 
    Article 

    Google Scholar 
    Miehls, S. et al. The future of barriers and trapping methods in the sea lamprey (Petromyzon marinus) control program in the Laurentian Great Lakes. Rev. Fish Biol. Fish. 30, 1–24 (2020).Article 

    Google Scholar 
    Imre, I., Di Rocco, R. T., Belanger, C. F., Brown, G. E. & Johnson, N. S. The behavioural response of adult Petromyzon marinus to damage-released alarm and predator cues. J. Fish Biol. 84, 1490–1502 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kats, L. B. & Dill, L. M. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5, 361–394 (1998).Article 

    Google Scholar 
    Wisenden, B. D. Olfactory assessment of predation risk in the aquatic environment. Philos. Trans. R. Soc. B Biol. Sci. 355, 1205–1208 (2000).Wisenden, B. D., Chivers, D. P., Brown, G. E. & Smith, R. J. The role of experience in risk assessment: Avoidance of areas chemically labelled with fathead minnow alarm pheromone by conspecifics and heterospecifics. Ecoscience 2, 116–122 (1995).Article 

    Google Scholar 
    Bairos-Novak, K. R., Ferrari, M. C. O. & Chivers, D. P. A novel alarm signal in aquatic prey: Familiar minnows coordinate group defences against predators through chemical disturbance cues. J. Anim. Ecol. 88, 1281–1290 (2019).PubMed 
    Article 

    Google Scholar 
    Chivers, D. P. & Smith, R. J. F. Chemical alarm signalling in aquatic predator-prey systems: A review and prospectus. Ecoscience 5, 338–352 (1998).Article 

    Google Scholar 
    Ferrari, M. C. O., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: A review and prospectus. Can. J. Zool. 88, 698–724 (2010).Article 

    Google Scholar 
    Lawrence, B. J. & Smith, R. J. F. Behavioral response of solitary fathead minnows, Pimephales promelas, to alarm substance. J. Chem. Ecol. 3, 209–219 (1989).Article 

    Google Scholar 
    Bals, J. D. & Wagner, C. M. Behavioral responses of sea lamprey (Petromyzon marinus) to a putative alarm cue derived from conspecific and heterospecific sources. Behaviour 149, 901–923 (2012).Article 

    Google Scholar 
    Hume, J. B. & Wagner, C. M. A death in the family: Sea lamprey (Petromyzon marinus) avoidance of confamilial alarm cues diminishes with phylogenetic distance. Ecol. Evol. 8, 3751–3762 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wagner, C. M., Stroud, E. M. & Meckley, T. D. A deathly odor suggests a new sustainable tool for controlling a costly invasive species. Can. J. Fish. Aquat. Sci. 68, 1157–1160 (2011).Article 

    Google Scholar 
    Byford, G. J., Wagner, C. M., Hume, J. B. & Moser, M. L. Do native pacific lamprey and invasive sea lamprey share an alarm cue? Implications for use of a natural repellent to guide imperiled pacific lamprey into fishways. North Am. J. Fish. Manag. 36, 1090–1096 (2016).Article 

    Google Scholar 
    Wagner, C. M., Kierczynski, K. E., Hume, J. B. & Luhring, T. M. Exposure to a putative alarm cue reduces downstream drift in larval sea lamprey Petromyzon marinus in the laboratory. J. Fish Biol. 89, 1897–1904 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Di Rocco, R. T., Johnson, N. S., Brege, L., Imre, I. & Brown, G. E. Sea lamprey avoid areas scented with conspecific tissue extract in Michigan streams. Fish. Manag. Ecol. 23, 548–560 (2016).Article 

    Google Scholar 
    Hume, J. B., Luhring, T. M. & Wagner, C. M. Push, pull, or push–pull? An alarm cue better guides sea lamprey towards capture devices than a mating pheromone during the reproductive migration. Biol. Invasions 22, 2129–2142 (2020).Article 

    Google Scholar 
    Hume, J. B. et al. Application of a putative alarm cue hastens the arrival of invasive sea lamprey (Petromyzon marinus) at a trapping location. Can. J. Fish. Aquat. Sci. 72, 1799–1806 (2015).CAS 
    Article 

    Google Scholar 
    Blumstein, D. T. Habituation and sensitization: New thoughts about old ideas. Anim. Behav. 120, 255–262 (2016).Article 

    Google Scholar 
    Greggor, A. L., Berger-Tal, O. & Blumstein, D. T. the rules of attraction: The necessary role of animal cognition in explaining conservation failures and successes. Ann. Rev. Ecol. Evol. Syst. 51, 483–503 (2020).Article 

    Google Scholar 
    Imre, I., Di Rocco, R. T., McClure, H., Johnson, N. S. & Brown, G. E. Migratory-stage sea lamprey Petromyzon marinus stop responding to conspecific damage-released alarm cues after 4 h of continuous exposure in laboratory conditions. J. Fish Biol. 90, 1297–1304 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagner, C. M., Bals, J. D., Hanson, M. E. & Scott, A. M. Attenuation and recovery of an avoidance response to a chemical antipredator cue in an invasive fish: implications for use as a repellent in conservation. Cons. Phys. 10, 1–12 (2022).CAS 

    Google Scholar 
    Hussain, A. et al. High-affinity olfactory receptor for the death-associated odor cadaverine. Proc. Natl. Acad. Sci. U. S. A. 110, 19579–19584 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yao, M. et al. The ancient chemistry of avoiding risks of predation and disease. Evol. Biol. 36, 267–281 (2009).Article 

    Google Scholar 
    Wisman, A. & Shrira, I. The smell of death: Evidence that putrescine elicits threat management. Front. Psychol. 6, 1–11 (2015).Article 

    Google Scholar 
    Oliveira, T. A. et al. Death-associated odors induce stress in zebrafish. Horm. Behav. 65, 340–344 (2014).PubMed 
    Article 

    Google Scholar 
    Pinel, J. P. J., Gorzalka, B. B. & Ladak, F. Cadaverine and Putrescine Initiate the Burial of Dead Conspecifics by Rats. Physiol. Behav. 27, 819–824 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prounis, G. S. & Shields, W. M. Necrophobic behavior in small mammals. Behav. Processes 94, 41–44 (2013).PubMed 
    Article 

    Google Scholar 
    Sun, Q., Haynes, K. F. & Zhou, X. Dynamic changes in death cues modulate risks and rewards of corpse management in a social insect. Funct. Ecol. 31, 697–706 (2017).Article 

    Google Scholar 
    Heale, V. R., Petersen, K. & Vanderwolf, C. H. Effect of colchicine-induced cell loss in the dentate gyms and Ammon’s horn on the olfactory control of feeding in rats. Brain. Res. J. 712, 213–220 (1996).CAS 
    Article 

    Google Scholar 
    Rolen, S. H., Sorensen, P. W., Mattson, D. & Caprio, J. Polyamines as olfactory stimuli in the goldfish Carassius auratus. J. Exp. Biol. 206, 1683–1696 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dissanayake, A. A., Wagner, C. M. & Nair, M. G. Nitrogenous compounds characterized in the deterrent skin extract of migratory adult sea lamprey from the Great Lakes region. PLoS ONE 14(5), e0217417. https://doi.org/10.1371/journal.pone.0168609 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cooke, M., Leeves, N. & White, C. Time profile of putrescine, cadaverine, indole and skatole in human saliva. Arch. Oral Biol. 9969, 323–327 (2003).Article 

    Google Scholar 
    Tilden, J. An account of a singular property of lamprey eels. Mem. Amer. Acad. Sci. 46, 335–336 (1809).
    Google Scholar 
    Di Rocco, R. T., Belanger, C. F., Imre, I., Brown, G. E. & Johnson, N. S. Daytime avoidance of chemosensory alarm cues by adult sea lamprey (Petromyzon marinus). Can. J. Fish. Aquat. Sci. 830, 824–830 (2014).Article 

    Google Scholar 
    Imre, I., Di Rocco, R. T., Brown, G. E. & Johnson, N. S. Habituation of adult sea lamprey repeatedly exposed to damage-released alarm and predator cues. Environ. Biol. Fishes 99, 613–620 (2016).Article 

    Google Scholar 
    Ferrari, M. C. O., Messier, F. & Chivers, D. P. Degradation of chemical alarm cues under natural conditions: Risk assessment by larval woodfrogs. Chemoecology 17, 263–266 (2008).Article 

    Google Scholar 
    Brown, G. E., Rive, A. C., Ferrari, M. C. O. & Chivers, D. P. The dynamic nature of antipredator behavior: Prey fish integrate threat-sensitive antipredator responses within background levels of predation risk. Behav. Ecol. Sociobiol. 61, 9–16 (2006).Article 

    Google Scholar 
    McCann, E. L., Johnson, N. S., Hrodey, P. J. & Pangle, K. L. Characterization of sea lamprey stream entry using dual-frequency identification sonar. Trans. Am. Fish. Soc. 147, 514–524 (2018).Article 

    Google Scholar 
    Binder, T. R. & McDonald, D. G. Is there a role for vision in the behaviour of sea lampreys (Petromyzon marinus) during their upstream spawning migration?. Can. J. Fish. Aquat. Sci. 64, 1403–1412 (2007).Article 

    Google Scholar 
    Wagner, C. M., Jones, M. L., Twohey, M. B. & Sorensen, P. W. A field test verifies that pheromones can be useful for sea lamprey (Petromyzon marinus) control in the Great Lakes. Can. J. Fish. Aquat. Sci. 63, 475–479 (2006).CAS 
    Article 

    Google Scholar 
    Wagner, C. M., Twohey, M. B. & Fine, J. M. Conspecific cueing in the sea lamprey: Do reproductive migrations consistently follow the most intense larval odour?. Anim. Behav. 78, 593–599 (2009).Article 

    Google Scholar 
    Boulêtreau, S. et al. High predation of native sea lamprey during spawning migration. Sci. Rep. 10, 6122. https://doi.org/10.1038/s41598-020-62916-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sjöberg, K. Time-related predator/prey interactions between birds and fish in a northern Swedish river. Oecologia 80, 1–10 (1989).ADS 
    PubMed 
    Article 

    Google Scholar 
    Fanselow, M. S., Hoffman, A. N. & Zhuravka, I. Timing and the transition between modes in the defensive behavior system. Behav. Processes 166, 103890. https://doi.org/10.1016/j.beproc.2019.103890 (2019).Fanselow, M. S. & Lester, L. S. A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In Evolution and Learning (ed. Bolles, R.C. & Beecher, M.D.) 185–211 (Earlbaum, 1988).Dissanayake, A. A., Wagner, C. M. & Nair, M. G. Chemical characterization of lipophilic constituents in the skin of migratory adult sea lamprey from the Great Lakes Region. PLoS ONE 11(12), e0168609. https://doi.org/10.1371/journal.pone.0168609 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dissanayake, A. A., Wagner, C. M. & Nair, M. G. Evaluation of health benefits of sea lamprey (Petromyzon marinus) isolates using in vitro antiinflammatory and antioxidant assays. PLoS ONE 16(11), e0259587. https://doi.org/10.1371/journal.pone.0259587 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    UFR-Committee. Guidelines for the use of fishes in research. Am. Fish. Soc. Symp., Bethesday, Maryland (2013).Association, A. V. M. Guidelines for the Euthanasia of. Animals https://doi.org/10.1016/B978-012088449-0.50009-1 (2013).Article 

    Google Scholar 
    du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the arrive guidelines 2.0. PLoS Biol. 18, 1–65 (2020).Friard, O. & Gamba, M. BORIS: A free versatile open-source event-logging software for video/ audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    Domenici, P. Context-dependent variability in the components of fish escape response: Integrating locomotor performance and behavior. J. Exp. Biol. 313, 59–79 (2010).
    Google Scholar 
    Perrault, K., Imre, I. & Brown, G. E. Behavioural response of larval sea lamprey (Petromyzon marinus) in a laboratory environment to potential damage-released chemical alarm cues. Can. J. Zool. 92, 443–447 (2014).Article 

    Google Scholar 
    Curtis, V., de Barra, M. & Aunger, R. Disgust as an adaptive system for disease avoidance behaviour. Philos. Trans. R. Soc. B Biol. Sci. 366, 389–401 (2011).Fanselow, M. S. The role of learning in threat imminence and defensive behaviors. Curr. Opin. Behav. Sci. 24, 44–49 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Helfman, G. S. Threat-sensitive predator avoidance in damselfish-trumpetfish interactions. Behav. Ecol. Sociobiol. 24, 47–58 (1989).Article 

    Google Scholar 
    Stephenson, J. F., Perkins, S. E. & Cable, J. Transmission risk predicts avoidance of infected conspecifics in Trinidadian guppies. J. Anim. Ecol. 87, 1525–1533 (2018).PubMed 
    Article 

    Google Scholar 
    Sepahi, A. et al. Olfactory sensory neurons mediate ultrarapid antiviral immune responses in a TrkA-dependent manner. Proc. Natl. Acad. Sci. U.S.A. 116, 12428–12436 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Croft, D. P., Edenbrow, M., Darden, S. K. & Cable, J. Effect of gyrodactylid ectoparasites on host behaviour and social network structure in guppies Poecilia reticulata. Behav. Ecol. Sociobiol. 65, 2219–2227 (2011).Article 

    Google Scholar 
    Luhring, T. M. et al. A semelparous fi sh continues upstream migration when exposed to alarm cue, but adjusts movement speed and timing. Anim. Behav. 121, 41–51 (2016).Article 

    Google Scholar 
    Laframboise, A. J., Ren, X., Chang, S., Dubuc, R. & Zielinski, B. S. Olfactory sensory neurons in the sea lamprey display polymorphisms. Neurosci. Lett. 414, 277–281 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Buchinger, T. J., Siefkes, M. J., Zielinski, B. S., Brant, C. O. & Li, W. Chemical cues and pheromones in the sea lamprey (Petromyzon marinus). Front. Zool. 12, 1–11 (2015).Article 

    Google Scholar 
    Halgand, F. et al. Defining intact protein primary structures from saliva: A step toward the human proteome project. Anal. Chem. 84, 4383–4395 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mackay, R. N., Wood, T. C. & Moore, P. A. Running away or running to? Do prey make decisions solely based on the landscape of fear or do they also include stimuli from a landscape of safety? J. Exp. Biol. 224, jeb242687. https://doi.org/10.1242/jeb.242687 (2021).Meckley, T. D., Gurarie, E., Miller, J. R. & Michaelwagner, C. How fishes find the shore: Evidence for orientation to bathymetry from the non-homing sea lamprey. Can. J. Fish. Aquat. Sci. 74, 2045–2058 (2017).Article 

    Google Scholar 
    Hume, J. B., Lucas, M. C., Reinhardt, U., Hrodey, P. J. & Wagner, C. M. Sea lamprey (Petromyzon marinus) transit of a ramp equipped with studded substrate: Implications for fish passage and invasive species control. Ecol. Eng. 155, 1–11 (2020).Article 

    Google Scholar 
    Ioannou, C. C., Ramnarine, I. W. & Torney, C. J. High-predation habitats affect the social dynamics of collective exploration in a shoaling fish. Sci. Adv. 3, e1602682. https://doi.org/10.1126/sciadv.1602682 (2017).Schaerf, T. M., Dillingham, P. W. & Ward, A. J. W. The effects of external cues on individual and collective behavior of shoaling fish. Sci. Adv. 3, e1603201. https://doi.org/10.1126/SCIADV.ABN2232 (2017).Hoare, D. J., Couzin, I. D., Godin, J. G. J. & Krause, J. Context-dependent group size choice in fish. Anim. Behav. 67, 155–164 (2004).Article 

    Google Scholar 
    Siefkes, M. J., Winterstein, S. R. & Li, W. Evidence that 3-keto petromyzonol sulphate specifically attracts ovulating female sea lamprey Petromyzon marinus. Anim. Behav. 70, 1037–1045 (2005).Article 

    Google Scholar 
    Wisenden, B. D. Evidence for incipient alarm signalling in fish. J. Anim. Ecol. 88, 1278–1280 (2019).PubMed 
    Article 

    Google Scholar 
    Petersen, R. S. The role of traditional ecological knowledge in understanding a species and river system at risk: Pacific Lamprey in the Lower Klamath Basin (Oregon State University, 2006).
    Google Scholar 
    Barton, B. A. Stress in fishes: A diversity of responses with particular reference to changes in. Integ. Comp. Biol. 525, 517–525 (2002).Article 

    Google Scholar 
    Lawrence, M. J., Godin, J. J. & Cooke, S. J. Comparative Biochemistry and Physiology, Part A Does experimental cortisol elevation mediate risk-taking and antipredator behaviour in a wild teleost fish?. Comp. Biochem. Physiol. Part A 226, 75–82 (2018).CAS 
    Article 

    Google Scholar 
    Conrad, J. L., Weinersmith, K. L., Brodin, T. & Saltz, J. B. Behavioural syndromes in fishes: A review with implications for ecology and fisheries management. J. Fish Biol. 78, 395–435 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanches, F. H. C., Miyai, C. A., Pinho-Neto, C. F. & Barreto, R. E. Stress responses to chemical alarm cues in Nile tilapia. Physiol. Behav. 149, 8–13 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rehnberg, B. G. & Schreck, C. B. Chemosensory detection of predators by coho salmon (Oncorhynchus kisutch): Behavioral reaction and the physiological stress response1. Can. J. Zool. 65, 481–485 (1987).CAS 
    Article 

    Google Scholar 
    Rehnberg, B. G., Smith, R. J. F. & Sloley, B. D. The reaction of pearl dace (Pisces, Cyprinidae) to alarm substance: Time-course of behavior, brain amines, and stress physiology. Can. J. Zool. 65, 2916–2921 (1987).CAS 
    Article 

    Google Scholar 
    Close, D. A., Yun, S. S., McCormick, S. D., Wildbill, A. J. & Li, W. 11-Deoxycortisol is a corticosteroid hormone in the lamprey. Proc. Natl. Acad. Sci. U. S. A. 107, 13942–13947 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shaughnessy, C. A. & Mccormick, S. D. 11-Deoxycortisol is a stress responsive and gluconeogenic hormone in a jawless vertebrate, the sea lamprey (Petromyzon marinus). J. Exp. Biol. 224, jeb241943. https://doi.org/10.1242/jeb.241943 (2021).Cull, F. et al. Consequences of experimental cortisol manipulations on the thermal biology of the checkered puffer (Sphoeroides testudineus) in laboratory and field environments. J. Therm. Biol. 47, 63–74 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pleizier, N., Wilson, A. D. M., Shultz, A. D. & Cooke, S. J. Puffed and bothered: Personality, performance, and the effects of stress on checkered puffer fish. Physiol. Behav. 152, 68–78 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lawrence, M. J. et al. An experimental evaluation of the role of the stress axis in mediating predator-prey interactions in wild marine fish. Comp. Biochem. Physiol. Part A 207, 21–29 (2017).CAS 
    Article 

    Google Scholar 
    Atema, J., Kingsford, M. J. & Gerlach, G. Larval reef fish could use odour for detection, retention and orientation to reefs. Mar. Ecol. Prog. Ser. 241, 151–160 (2002).ADS 
    Article 

    Google Scholar 
    Gardiner, J. M. & Atema, J. Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. J. Exp. Biol. 210, 1925–1934 (2007).PubMed 
    Article 

    Google Scholar 
    Jutfelt, F., Sundin, J., Raby, G. D., Krång, A. S. & Clark, T. D. Two-current choice flumes for testing avoidance and preference in aquatic animals. Methods Ecol. Evol. 8, 379–390 (2017).Article 

    Google Scholar 
    Moser, M. L., Almeida, P. R., Kemp, P. S. & Sorensen, P. W. Lamprey Spawning Migration in Lampreys: Biology, Conservation and Control. (ed. Docker, M. F.) 215–263 (Springer, 2015).Imre, I., Brown, G. E., Bergstedt, R. A. & Mcdonald, R. Use of chemosensory cues as repellents for sea lamprey: Potential directions for population management. J. Great Lakes Res. 36, 790–793 (2010).CAS 
    Article 

    Google Scholar 
    Merrick, M. J. & Koprowski, J. L. Should we consider individual behavior differences in applied wildlife conservation studies?. Biol. Conserv. 209, 34–44 (2017).Article 

    Google Scholar  More

  • in

    Global distribution of soil fauna functional groups and their estimated litter consumption across biomes

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro.2017.87 (2017).Article 
    PubMed 

    Google Scholar 
    Frouz, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332, 161–172 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Hicks Pries, C. E., Castanha, C., Porras, R., Phillips, C. & Torn, M. S. Response to comment on “The whole-soil carbon flux in response to warming”. Science 359, 1420–1423 (2018).Article 

    Google Scholar 
    Lavelle, P. et al. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33, 159–193 (1997).CAS 

    Google Scholar 
    Frouz, J., Špaldoňová, A., Fričová, K. & Bartuška, M. The effect of earthworms (Lumbricus rubellus) and simulated tillage on soil organic carbon in a long-term microcosm experiment. Soil. Biol. Biochem. 78, 58–64 (2014).CAS 
    Article 

    Google Scholar 
    Lavelle, P., Blanchart, E., Martin, A., Martin, S. & Schaefer, R. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Assoc. Trop. Biol. 25, 130–150 (2016).
    Google Scholar 
    Lavelle, P. et al. Earthworms as a resource in tropical agroecosystems. Nat. Res. 34, 26–41 (1998).
    Google Scholar 
    Lavelle, P. Diversity of soil fauna and ecosystem function. Biol. Int. J. 33, 3–16 (1996).
    Google Scholar 
    Ruiz, N., Lavelle, P. & Jiménez, J. Soil macrofauna field manual. Recherche 113 (2008).Xiong, W. et al. Soil protist communities form a dynamic hub in the soil microbiome. ISME J. 12, 634–638 (2018).PubMed 
    Article 

    Google Scholar 
    Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns in belowground communities. Ecol. Lett. 12, 1238–1249 (2009).PubMed 
    Article 

    Google Scholar 
    Nielsen, U. N. et al. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Glob. Ecol. Biogeogr. 23, 968–978 (2014).Article 

    Google Scholar 
    Špaldoňová, A. & Frouz, J. The role of Armadillidium vulgare (Isopoda: Oniscidea) in litter decomposition and soil organic matter stabilization. Appl. Soil. Ecol. https://doi.org/10.1016/j.apsoil.2014.04.012 (2014).Article 

    Google Scholar 
    McCay, T. S., Cardelus, C. L. & Neatrour, M. A. Rate of litter decay and litter macroinvertebrates in limed and unlimed forests of the Adirondack Mountains, USA. For. Ecol. Manag. 304, 254–260 (2013).Article 

    Google Scholar 
    Slade, E. M. & Riutta, T. Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments. Basic Appl. Ecol. 13, 423–431 (2012).Article 

    Google Scholar 
    Joly, F.-X., Coq, S., Coulis, M., Nahmani, J. & Hättenschwiler, S. Litter conversion into detritivore faeces reshuffles the quality control over C and N dynamics during decomposition. Funct. Ecol. https://doi.org/10.1111/1365-2435.13178 (2018).Article 

    Google Scholar 
    Hättenschwiler, S. Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Glob. Change Biol. https://doi.org/10.1046/j.1365-2486.2001.00402.x (2015).Article 

    Google Scholar 
    Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008).ADS 
    Article 

    Google Scholar 
    Brussaard, L., Pulleman, M. M., Ouédraogo, É., Mando, A. & Six, J. Soil fauna and soil function in the fabric of the food web. Pedobiologia (Jena) 50, 447–462 (2007).Article 

    Google Scholar 
    Frouz, J., Elhottová, D., Kuráž, V. & Šourková, M. Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: Results of a field microcosm experiment. Appl. Soil Ecol. 33, 308–320 (2006).Article 

    Google Scholar 
    García-Palacios, P., Maestre, F. T., Kattge, J. & Wall, D. H. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 16, 1045–1053 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Melguizo-Ruiz, N. et al. Field exclusion of large soil predators impacts lower trophic levels and decreases leaf-litter decomposition in dry forests. J. Anim. Ecol. 89, 334–346 (2020).PubMed 
    Article 

    Google Scholar 
    Lavelle, P. et al. Soil macroinvertebrate communities: A world-wide assessment. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13492 (2022).Article 

    Google Scholar 
    Coq, S. et al. Faeces traits as unifying predictors of detritivore effects on organic matter turnover. Geoderma 422, 115940 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Lavelle, P. et al. Soil aggregation, ecosystem engineers and the C cycle. Act Oecol. 105, 103561 (2020).Article 

    Google Scholar 
    Filser, J. et al. Soil fauna: Key to new carbon models. Soil 2, 565–582 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Joly, F. X. et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 3, 1–9 (2020).MathSciNet 
    Article 

    Google Scholar 
    Frouz, J., Roubíčková, A., Heděnec, P. & Tajovský, K. Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. Eur. J. Soil Biol. 68, 18 (2015).CAS 
    Article 

    Google Scholar 
    Lavelle, P., Blanchart, E., Martin, A., Martin, S. & Spain, A. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Biotropica 25, 130–150 (1993).Article 

    Google Scholar 
    Crowther, T. W. & A’Bear, A. D. Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent. Fungal Ecol. 5, 277–281 (2012).Article 

    Google Scholar 
    Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).Article 

    Google Scholar 
    Tordoff, G. M., Boddy, L. & Jones, T. H. Species-specific impacts of collembola grazing on fungal foraging ecology. Soil. Biol. Biochem. 40, 434–442 (2008).CAS 
    Article 

    Google Scholar 
    Meysman, F. J. R., Middelburg, J. J. & Heip, C. H. R. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 21, 688–695 (2006).PubMed 
    Article 

    Google Scholar 
    Frouz, J. et al. Soil food web changes during spontaneous succession at post mining sites: A possible ecosystem engineering effect on food web organization? PLoS ONE 8, e79694 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frouz, J., Moradi, J., Püschel, D. & Rydlová, J. Earthworms affect growth and competition between ectomycorrhizal and arbuscular mycorrhizal plants. Ecosphere 10, e02736 (2019).Article 

    Google Scholar 
    Marichal, R. et al. Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Appl. Soil. Ecol. 83, 177–185 (2014).Article 

    Google Scholar 
    Prescott, C. E. & Vesterdal, L. Forest ecology and management decomposition and transformations along the continuum from litter to soil organic matter in forest soils. For. Ecol. Manag. 498, 119522 (2021).Article 

    Google Scholar 
    Kampichler, C. & Bruckner, A. The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biol. Rev. Camb. Philos. Soc. 84, 375–389 (2009).PubMed 
    Article 

    Google Scholar 
    Brennan, K. E. C., Christie, F. J. & York, A. Global climate change and litter decomposition: More frequent fire slows decomposition and increases the functional importance of invertebrates. Glob. Change. Biol. 15, 2958–2971 (2009).ADS 
    Article 

    Google Scholar 
    Birkhofer, K. et al. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE 7, e43292 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. Molecular study of worldwide distribution and diversity of soil animals. PNAS 108, 17720–17725 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    James, S. W. et al. Comment on Global distribution of earthworm diversity. Science 371, 4629 (2021).Article 

    Google Scholar 
    Cesarz, S. et al. Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil. Biol. Biochem. 62, 36–45 (2013).CAS 
    Article 

    Google Scholar 
    Eppinga, M. B., Kaproth, M. A., Collins, A. R. & Molofsky, J. Litter feedbacks, evolutionary change and exotic plant invasion. J. Ecol. 99, 503–514 (2011).
    Google Scholar 
    Harrison, K. A., Bol, R. & Bardgett, R. D. Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? Soil. Biol. Biochem. 40, 228–237 (2008).CAS 
    Article 

    Google Scholar 
    Wardle, D. A., Yeates, G. W., Barker, G. M. & Bonner, K. I. The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol. Biochem. 38, 1052–1062 (2006).CAS 
    Article 

    Google Scholar 
    Zhang, D., Hui, D., Luo, Y. & Zhou, G. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. J. Plant Ecol. 1, 85–93 (2008).Article 

    Google Scholar 
    Preston, C. M. & Trofymow, J. A. Variability in litter quality and its relationship to litter decay in Canadian forests. Botany 78, 1269–1287 (2000).Article 

    Google Scholar 
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. PNAS 115, 6506–6511 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersen, D. C. Below-ground herbivory in natural communities: A review emphasizing fossorial animals. Q. Rev. Biol. 62, 261–286 (1987).Article 

    Google Scholar 
    Cepáková, S. & Frouz, J. Changes in chemical composition of litter during decomposition: A review of published 13C NMR spectra. Plant Nutr. Soil Sci. 15, 805–815 (2015).
    Google Scholar 
    Pietsch, K. A. et al. Global relationship of wood and leaf litter decomposability: The role of functional traits within and across plant organs. Glob. Ecol. Biogeogr. 23, 1046–1057 (2014).Article 

    Google Scholar 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 
    Article 

    Google Scholar 
    Ponge, J.-F. Plant–soil feedbacks mediated by humus forms: A review. Soil. Biol. Biochem. 57, 1048–1060 (2013).CAS 
    Article 

    Google Scholar 
    Salmon, S., Mantel, J., Frizzera, L. & Zanella, A. Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate. For. Ecol. Manag. 237, 47–56 (2006).Article 

    Google Scholar 
    Desie, E. et al. Positive feedback loop between earthworms, humus form and soil pH reinforces earthworm abundance in European forests. Funct. Ecol. 34, 2598–2610 (2020).Article 

    Google Scholar 
    Samson, F. B. & Knopf, F. L. (eds) Organisms as Ecosystem Engineers BT—Ecosystem Management: Selected Readings 130–147 (Springer, 1996).
    Google Scholar 
    Araujo, P. I., Yahdjian, L. & Austin, A. T. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina? Oecologia 168, 221–230 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Frouz, J. et al. Soil biota in post-mining sites along a climatic gradient in the USA: Simple communities in shortgrass prairie recover faster than complex communities in tallgrass prairie and forest. Soil. Biol. Biochem. 67, 212–225 (2013).CAS 
    Article 

    Google Scholar 
    Hattenschwiler, S., Tiunov, A. V. & Scheu, S. Biodiversity and litter decomposition interrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 191–218 (2005).Article 

    Google Scholar 
    Deckmyn, G. et al. KEYLINK: Towards a more integrative soil representation for inclusion in ecosystem scale models I. Review and model concept. PeerJ 8, 1–69 (2020).Article 

    Google Scholar 
    Héry, M. et al. Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. SME J. 2, 92–104 (2008).
    Google Scholar 
    Roubickova, A., Mudrak, O. & Frouz, J. Effect of earthworm on growth of late succession plant species in postmining sites under laboratory and field conditions. Biol. Fert. Soils 45, 769–774 (2009).Article 

    Google Scholar 
    Bodine, M. C. & Ueckert, D. N. Effect litter in west of desert termites on herbage and in a shortgrass Texas. J. Range. Manag. 28, 353–358 (1975).Article 

    Google Scholar 
    Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).PubMed 
    Article 

    Google Scholar 
    Petersen, H. & Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288 (1982).Article 

    Google Scholar 
    Gongalsky, K. B., Persson, T. & Pokarzhevskii, A. D. Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test. Appl. Soil Ecol. 39, 84–90 (2008).Article 

    Google Scholar 
    Simpson, J. E., Slade, E., Riutta, T. & Taylor, M. E. Factors affecting soil fauna feeding activity in a fragmented lowland temperate deciduous woodland. PLoS ONE 7, 0029616 (2012).ADS 
    Article 

    Google Scholar 
    Clarke, A. Is there a universal temperature dependence of metabolism? Funct. Ecol. 18, 252–256 (2004).Article 

    Google Scholar 
    Coq, S. & Ibanez, S. Soil fauna contribution to winter decomposition in subalpine grasslands. Soil Org. https://doi.org/10.25674/so91iss3pp107 (2019).Article 

    Google Scholar 
    Frouz, J., Špaldoňová, A., Lhotáková, Z. & Cajthaml, T. Major mechanisms contributing to the macrofauna-mediated slow down of litter decomposition. Soil. Biol. Biochem. 91, 23–31 (2015).CAS 
    Article 

    Google Scholar 
    Frouz, J., Šustr, V. & Kalčík, J. Energetic budget of three species of bibionid larvae. In Contributions to Soil Zoology in Central Europe I. ISB AS CR, České Budějovice, 15–18 (2005).Frouz, J., Jedlička, P., Šimáčková, H. & Lhotáková, Z. The life cycle, population dynamics, and contribution to litter decomposition of Penthetria holosericea (Diptera: Bibionidae) in an alder forest. Eur. J. Soil Biol. 71, 21–27 (2015).Article 

    Google Scholar 
    Brovkin, V. et al. Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences 9, 565–576 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Buis, G. M. et al. Controls of aboveground net primary production in mesic savanna grasslands: An inter-hemispheric comparison. Ecosystems 12, 982–995 (2009).CAS 
    Article 

    Google Scholar 
    O’Neill, D. W. & Abson, D. J. To settle or protect? A global analysis of net primary production in parks and urban areas. Ecol. Econ. 69, 319–327 (2009).Article 

    Google Scholar 
    Pan, S. et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J. Geogr. Sci. 25, 1027–1044 (2015).Article 

    Google Scholar 
    Yanai, R. D. et al. Litterfall and litter chemistry change over time in an old-growth temperate forest, northeastern China. For. Ecol. Manag. 43, 279–287 (1999).
    Google Scholar 
    Shchelchkova, M., Davydov, S., Fyodorov-Davydov, D., Davydova, A. & Boeskorov, G. The characteristics of a relic steppe of Northeast Asia: Refuges of the Pleistocene Mammoth steppe (an example from the Lower Kolyma area). IOP Conf. Ser. Earth Environ. Sci. 438, 012025 (2020).Article 

    Google Scholar 
    Ayuke, F. O. et al. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Appl. Soil Ecol. 48, 53–62 (2011).Article 

    Google Scholar 
    Blanchart, E. et al. Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agric. Conspec. Sci. 72, 81–87 (2007).
    Google Scholar 
    Korboulewsky, N., Perez, G. & Chauvat, M. How tree diversity affects soil fauna diversity: A review. Soil Biol. Biochem. 94, 94–106 (2016).CAS 
    Article 

    Google Scholar 
    Frouz, J., Pizl, V., Cienciala, E. & Kalcik, J. Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry 94, 111–121 (2009).CAS 
    Article 

    Google Scholar 
    Milton, Y. & Kaspari, M. Bottom-up and top-down regulation of decomposition in a tropical forest. Oecologia 153, 163–172 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    Öpik, M., Moora, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 94, 778–790 (2006).Article 

    Google Scholar 
    Portela, M. B. et al. Do ecological corridors increase the abundance of soil fauna? Écoscience 27, 45–57 (2020).Article 

    Google Scholar 
    Prieto, I., Almagro, M., Bastida, F. & Querejeta, J. I. Altered leaf litter quality exacerbates the negative impact of climate change on decomposition. J. Ecol. 107, 2364–2382 (2019).CAS 
    Article 

    Google Scholar 
    Van der Putten, W. H. et al. Plant-soil feedbacks: The past, the present and future challenges. J. Ecol. 101, 265–276 (2013).Article 

    Google Scholar 
    Artz, R. et al. European atlas of soil. Biodiversity. https://doi.org/10.13140/RG.2.1.3178.2880 (2010).Article 

    Google Scholar 
    Orgiazzi, A. et al. Global Soil Biodiversity Atlas (European Soil Data Centre, 2016).
    Google Scholar 
    Peng, Y. et al. Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community. Geoderma 407, 115570 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Bardgett, R. D. The Biology of Soil: A Community and Ecosystem Approach 255 (Oxford University Press, 2005).Book 

    Google Scholar 
    Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jackson, R. B., Mooney, H. A. & Schulze, E.-D. A global budget for fine root biomass, surface area, and nutrient contents. PNAS 94, 7362–7366 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sanchez, G. PLS Path Modeling with R, 235 (2013).Holland, E. A. et al. A global database of litterfall mass and litter pool carbon and nutrients. 10.3334/ORNLDAAC/1244 (2014).Palpurina, S. et al. The type of nutrient limitation affects the plant species richness–productivity relationship: Evidence from dry grasslands across Eurasia. J. Ecol. 107, 1038–1050 (2019).CAS 
    Article 

    Google Scholar 
    Green, C. & Byrne, K. A. Biomass: Impact on carbon cycle and greenhouse gas emissions. In Encyclopedia of Energy (ed. Cleveland, C. J.) 223–236 (Elsevier, 2004).Chapter 

    Google Scholar 
    Liang, W. et al. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agric. For. Meteorol. 204, 22–36 (2015).ADS 
    Article 

    Google Scholar 
    Ise, T., Litton, C. M., Giardina, C. P. & Ito, A. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. J. Geo. Res. Biogeosci. 115, 1–11 (2010).
    Google Scholar 
    Ni, J. Net primary production, carbon storage and climate change in Chinese biomes. Nord. J. Bot. 20, 415–426 (2000).Article 

    Google Scholar 
    Jandl, R. et al. How strongly can forest management influence soil carbon sequestration? Geoderma 137, 253–268 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Reeves, M. C., Moreno, A. L., Bagne, K. E. & Running, S. W. Estimating climate change effects on net primary production of rangelands in the United States. Clim. Change 126, 429–442 (2014).ADS 
    Article 

    Google Scholar 
    Cappai, C. et al. Small-scale spatial variation of soil organic matter pools generated by cork oak trees in Mediterranean agro-silvo-pastoral systems. Geoderma 304, 59–67 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Clark, D. A. et al. Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecol. Appl. 11, 371–384 (2001).Article 

    Google Scholar 
    Yanai, R. D., Arthur, M. A., Acker, M., Levine, C. R. & Park, B. B. Variation in mass and nutrient concentration of leaf litter across years and sites in a northern hardwood forest. Can. J. For. Res. 42, 1597–1610 (2012).CAS 
    Article 

    Google Scholar  More