More stories

  • in

    Growth characteristics of Cunninghamia lanceolata in China

    FAO. The State of the World’s Forests 2018—Forest Pathways to Sustainable Development (FAO, 2018).
    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333(6045), 988–993. https://doi.org/10.1126/science.1201609 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Luyssaert, S. et al. Tradeoffs in using European forests to meet climate objectives. Nature 562(7726), 259–262. https://doi.org/10.1038/s41586-018-0577-1 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. https://doi.org/10.1038/s41467-019-10174-4 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, 1327. https://doi.org/10.1126/science.aaz7005 (2020).Article 
    CAS 

    Google Scholar 
    Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580(7802), 227–231. https://doi.org/10.1038/s41586-020-2128-9 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Naudts, K. et al. Europe’s forest management did not mitigate climate warming. Science 351(6273), 597–599. https://doi.org/10.1126/science.aad7270 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tong, X. et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. https://doi.org/10.1038/s41467-019-13798-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yu, K. et al. Effects of stand age on soil respiration in Pinus massoniana plantations in the hilly red soil region of Southern China. CATENA 178, 313–321. https://doi.org/10.1016/j.catena.2019.03.038 (2019).Article 
    CAS 

    Google Scholar 
    Mei, G., Sun, Y. & Sajjad, S. Models for predicting the biomass of Cunninghamia lanceolata trees and stands in southeastern China. PLoS ONE 12, e0169747. https://doi.org/10.1371/journal.pone.0169747 (2017).Article 
    CAS 

    Google Scholar 
    Wu, H. et al. Soil phosphorus bioavailability and recycling increasedwith stand age in Chinese fir plantations. Ecosystems 23, 973–988. https://doi.org/10.1007/s10021-019-00450-1 (2019).Article 

    Google Scholar 
    State Forestry Administration. General situation of forest resources in China. The 8th National Forest Inventory (State Forestry Administration, 2014).Wang, X. et al. Vegetation carbon storage and density of forest ecosystems in China. Chin. J. Appl. Ecol. 12(1), 13–16 (2001) (in Chinese with English Abstract).ADS 
    CAS 

    Google Scholar 
    Kang, H. et al. Simulating the impact of climate change on the growth of Chinese fir plantations in Fujian province, China. NZ J. For. Sci. 47(1), 20. https://doi.org/10.1186/s40490-017-0102-6 (2017).Article 

    Google Scholar 
    Lu, Y. et al. A process-based approach to estimate Chinese fir (Cunninghamia lanceolata) distribution and productivity in southern China under climate change. Forests 6, 360–379. https://doi.org/10.3390/f6020360 (2015).Article 

    Google Scholar 
    Zhang, X. et al. Relative contributions of competition, stand structure, age, and climate factors to tree mortality of Chinese fir plantations: Long-term spacing trials in southern China. For. Ecol. Manag. 465, 118103. https://doi.org/10.1016/j.foreco.2020.118103 (2020).Article 

    Google Scholar 
    You, R. et al. Variation in wood physical properties and effects of climate for different geographic sources of Chinese fir in subtropical area of China. Sci. Rep. https://doi.org/10.1038/s41598-021-83500-w (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Djomo, A. N., Ibrahima, A., Saborowski, J. & Gravenhorst, G. Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. For. Ecol. Manag. 260(10), 1873–1885. https://doi.org/10.1016/j.foreco.2010.08.034 (2010).Article 

    Google Scholar 
    Peng, D. et al. Estimating the aboveground biomass for planted forests based on stand age and environmental variables. Remote Sens. 11(19), 2270. https://doi.org/10.3390/rs11192270 (2019).Article 
    ADS 

    Google Scholar 
    Zhou, X. et al. Dynamic allometric scaling of tree biomass and size. Nat. Plants. 7(1), 42–49. https://doi.org/10.1038/s41477-020-00815-8 (2021).Article 
    PubMed 

    Google Scholar 
    Li, L. Study on the tree volume table compilation of Chinese fir in Kaihua Forest Farm (Beijing Forestry University, 2011) http://cdmd.cnki.com.cn/Article/CDMD-10022-1011134655.htm (in Chinese).Wang, J. P. et al. Study on the effect of Chinese fir volume formula on estimating the volume of fir standing trees in different sites. Guizhou For. Technol. 19(1), 26–29 (1991) (in Chinese).
    Google Scholar 
    Zeng, W. S. et al. Compatible tree volume and aboveground biomass equations for Chinese fir plantation in Guizhou. J. Beijing For. Univ. 33(4), 1–6 (2011) (in Chinese).
    Google Scholar 
    Xia, Z. S. et al. Construction of tree volume equations for Chinese fir plantation in Guizhou Province, southwestern China. J. Beijing For. Univ. 34(1), 1–5 (2012) (in Chinese).
    Google Scholar 
    Lin, H. Study on biomass and carbon storage of main coniferous forest in Jiangle state-owned forestry farm. J. Fujian For. Sci. Technol. 45(1), 30–34. https://doi.org/10.13428/j.cnki.fjlk.2018.01.007 (2018) (in Chinese with English Abstract).Article 
    ADS 

    Google Scholar 
    Cai, Z. A study on biomass models of Cunninghamia lanceolata plantation in Fujian. (Beijing Forestry University, 2014), http://cdmd.cnki.com.cn/Article/CDMD-10022-1014327550.htm (in Chinese).Chen, G. et al. Carbon storage in a chronosequence of Chinese fir plantations in southern China. For. Ecol. Manag. 300, 68–76. https://doi.org/10.1016/j.foreco.2012.07.046 (2013).Article 

    Google Scholar 
    Zhang, G. et al. Biomass Characteristics of dominant tree species (group) at Lingnan forest farm in Anhui province. Scientia Silvae Sinicae. 48(5), 136–140. https://doi.org/10.1007/s11783-011-0280-z (2012) (in Chinese with English abstract).Article 
    ADS 
    CAS 

    Google Scholar 
    Shi, W. et al. Biomass model and carbon storage of Chinese fir plantation in Dabieshan Mountains in Anhui. Resour. Environ. Yangtze Basin. 24(5), 758–764. https://doi.org/10.11870/cjlyzyyhj201505007 (2015) (in Chinese with English abstract).Article 

    Google Scholar 
    Li, H. & Zhao, P. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale. For. Ecol. Manag. 289, 153–163. https://doi.org/10.1016/j.foreco.2012.10.002 (2013).Article 

    Google Scholar 
    Zeng, W. & Tang, S. A new general allometric biomass model. Nat. Precedings. https://doi.org/10.1038/npre.2011.6704.1 (2011).Article 

    Google Scholar 
    Schumacher, F. X. & Hall, F. D. S. Logarithmic expression of timber-tree volume. J. Agric. Res. 47(9), 719–734 (1933).
    Google Scholar 
    Honer, T. G. A new total cubic foot volume function. For. Chron. 41(4), 476–493. https://doi.org/10.5558/tfc41476-4 (1965).Article 

    Google Scholar 
    Burkhart, H. E. Cubic-foot volume of loblolly pine to any merchantable top limit. South. J. Appl. For. 2, 7–9. https://doi.org/10.1093/sjaf/1.2.7 (1977).Article 

    Google Scholar 
    Lee, D., Seo, Y. & Choi, J. Estimation and validation of stem volume equations for Pinus densiflora, Pinus koraiensis, and Larix kaempferi in South Korea. For. Sci. Technol. 13(2), 77–82. https://doi.org/10.1080/21580103.2017.1315963 (2017).Article 

    Google Scholar 
    Chen, B. H. & Chen, C. Y. A preliminary study on the biomass and productivity of Picea koraiensis forests in the dunes. Scientia Silvae Sinicae 4, 269–278 (1980) (in Chinese).
    Google Scholar 
    Niklas, K. J. Plant Allometry: The Scaling of Form and Process (University of Chicago Press, 1994).
    Google Scholar 
    Ketterings, Q. M. et al. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For. Ecol. Manag. 146, 199–209. https://doi.org/10.1016/S0378-1127(00)00460-6 (2001).Article 

    Google Scholar 
    Chen, X. G. The biomass and allometric equation of a 20-years-old Cunninghamia lanceolata plantation. Prot. For. Sci. Technol. 4, 28–29, 40. https://doi.org/10.3969/j.issn.1005-5215.2007.04.010.(inChinese) (2007).Article 

    Google Scholar 
    Wang, X. P. et al. Climatic control of primary forest structure and DBH–height allometry in Northeast China. For. Ecol. Manag. 234, 264–274. https://doi.org/10.1016/j.foreco.2006.07.007 (2006).Article 

    Google Scholar 
    Peng, C. et al. Developing and evaluating tree height–diameter models at three geographic scales for black spruce in Ontario. N. J. Appl. For. 21(2), 83–92. https://doi.org/10.1093/njaf/21.2.83 (2004).Article 

    Google Scholar 
    López-Serrano, F. R. et al. Site and weather effects in allometries: A simple approach to climate change effect on pines. For. Ecol. Manag. 215(1–3), 251–270. https://doi.org/10.1016/j.foreco.2005.05.014 (2005).Article 

    Google Scholar 
    Zhang, C. et al. Developing aboveground biomass equations both compatible with tree volume equations and additive systems for single trees in Poplar plantations in Jiangsu Province, China. Forests 7, 32. https://doi.org/10.3390/f7020032 (2016).Article 

    Google Scholar 
    Liu, J. C. et al. Comparing non-destructive methods to estimate volume of three tree taxa in Beijing, China. Forests 10, 92. https://doi.org/10.3390/f10020092 (2019).Article 

    Google Scholar 
    Thangjam, U. et al. Developing tree volume equation for Parkia timoriana grown in home gardens and shifting cultivation areas of North-East India. For. Trees Livelihoods 28(12), 1–13. https://doi.org/10.1080/14728028.2019.1624200 (2019).Article 

    Google Scholar 
    Dutcă, I. et al. Does slope aspect affect the aboveground tree shape and volume allometry of European Beech (Fagus sylvatica L.) trees?. Forests 13, 1071. https://doi.org/10.3390/f13071071 (2022).Article 

    Google Scholar 
    Segura, M. & Kanninen, M. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica 37(1), 2–8. https://doi.org/10.2307/30045500 (2005).Article 

    Google Scholar 
    Wang, X. W. et al. Additive tree biomass equations for Betula platyphylla Suk. plantations in Northeast China. Ann. For. Sci. 75, 60. https://doi.org/10.1007/s13595-018-0738-2 (2018).Article 

    Google Scholar 
    Niklas, K. J. & Enquist, B. J. Canonical rules for plant organ biomass partitioning and annual allocation. Am. J. Bot. 89(5), 812–819. https://doi.org/10.3732/ajb.89.5.812 (2002).Article 
    PubMed 

    Google Scholar 
    Xiang, W. H. et al. General allometric equations and biomass allocation of Pinus massoniana trees on a regional scale in southern China. Ecol. Res. 26, 697–711. https://doi.org/10.1007/s11284-011-0829-0 (2011).Article 

    Google Scholar 
    Brown, S. Measuring carbon in forests: Current status and future challenges. Environ. Pollut. 116, 363–372. https://doi.org/10.1016/s0269-7491(01)00212-3 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brassard, B. W. et al. Influence of environmental variability on root dynamics in northern forests. Crit. Rev. Plant Sci. 28, 179–197. https://doi.org/10.1080/07352680902776572 (2009).Article 

    Google Scholar 
    Montagu, K. D. et al. Developing general allometric relationship for regional estimates of carbon sequestration—An example using Eucalyptus pilularis from seven contrasting sites. For. Ecol. Manag. 204, 113–127. https://doi.org/10.1016/j.foreco.2004.09.003 (2005).Article 

    Google Scholar 
    Williams, R. J. et al. Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands: Towards general predictive equations. Aust. J. Bot. 53, 607–619. https://doi.org/10.1071/BT04149 (2005).Article 

    Google Scholar 
    Ouimet, R. et al. Estimation of coarse root biomass and nutrient content for sugar maple, jack pine, and black spruce using stem diameter at breast height. Can. J. For. Res. 38, 92–100. https://doi.org/10.1139/x07-134 (2008).Article 

    Google Scholar 
    Peichl, M. & Arain, M. A. Allometry and partitioning of above-and belowground tree biomass in an age-sequence of white pine forests. For. Ecol. Manag. 253, 68–80. https://doi.org/10.1016/j.foreco.2007.07.003 (2007).Article 

    Google Scholar 
    Bond-Lamberty, B. et al. Aboveground and below-ground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can. J. For. Res. 32, 1441–1450. https://doi.org/10.1139/x02-063 (2002).Article 

    Google Scholar 
    King, J. S. et al. Biomass partitioning in red pine (Pinus resinosa) along a chronosequence in the Upper Peninsula of Michigan. Can. J. For. Res. 37(1), 93–102. https://doi.org/10.1139/x06-217 (2007).Article 

    Google Scholar 
    Ziania, D. & Mencuccini, M. Aboveground biomass relation-ships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, northern Greece, and generalised equations for Fagus sp. Ann. For. Sci. 60(5), 439–448. https://doi.org/10.1051/forest:2003036 (2003).Article 

    Google Scholar 
    Martin, J. G. et al. Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species. Can. J. For. Res. 28(11), 1648–1659. https://doi.org/10.1139/x98-146 (1998).Article 

    Google Scholar 
    Wang, C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag. 222, 9–16. https://doi.org/10.1016/j.foreco.2005.10.074 (2006).Article 

    Google Scholar  More

  • in

    Phylogeny explains capture mortality of sharks and rays in pelagic longline fisheries: a global meta-analytic synthesis

    Estes, J. et al. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116 (2016).
    Google Scholar 
    Ferretti, F., Worm, B., Britten, G., Heithaus, M. & Lotze, H. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13, 1055–1071 (2010).PubMed 

    Google Scholar 
    Heithaus, M. R. et al. Seagrasses in the age of sea turtle conservation and shark overfishing. Front. Mar. Sci. 1, 1–6 (2014).
    Google Scholar 
    McCauley, D. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641 (2015).PubMed 

    Google Scholar 
    Pereira, H. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Oliver, S., Braccini, M., Newman, S. & Harvey, E. S. Global patterns in the bycatch of sharks and rays. Mar. Policy 54, 86–97 (2015).
    Google Scholar 
    Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–574 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gilman, E. et al. Shark interactions in pelagic longline fisheries. Mar. Policy 32, 1–18 (2008).
    Google Scholar 
    Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).
    Google Scholar 
    Bowlby, H. & Gibson, A. Implications of life history uncertainty when evaluating status in the Northwest Atlantic population of white shark (Carcharodon carcharias). Ecol. Evol. 10, 4990–5000 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Dulvy, N. et al. Overfishing drives over one third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31, 4773-4787.e8 (2021).CAS 
    PubMed 

    Google Scholar 
    Heino, M., Pauli, B. & Dieckmann, U. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46, 461–480 (2015).
    Google Scholar 
    Mitchell, J., McLean, D., Collins, S. & Langlois, T. Shark depredation in commercial and recreational fisheries. Rev. Fish Biol. Fish 28, 715–748 (2018).
    Google Scholar 
    Jaiteh, V. F., Loneragan, N. & Warren, C. The end of shark finning? Impacts of declining catches and fin demand on coastal community livelihoods. Mar. Policy 82, 224–233 (2017).
    Google Scholar 
    Seidu, I. et al. Fishing for survival: Importance of shark fisheries for the livelihoods of coastal communities in Western Ghana. Fish. Res. 246, 106157 (2022).
    Google Scholar 
    Gilman, E., Weijerman, M. & Suuronen, P. Ecological data from observer programs underpin ecosystem-based fisheries management. ICES J. Mar. Sci. 74, 1481–1495 (2017).
    Google Scholar 
    Melnychuk, M. et al. Identifying management actions that promote sustainable fisheries. Nat. Sustain. https://doi.org/10.1038/s41893-020-00668-1 (2021).Article 

    Google Scholar 
    Musyl, M. & Gilman, E. Meta-analysis of post-release fishing mortality in apex predatory pelagic sharks and white marlin. Fish Fish. 20, 466–500 (2019).
    Google Scholar 
    Clarke, S. A status snapshot of key shark species in the western and central pacific and potential management options. in WCPFC-SC7-2011/EB-WP-04. Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia (2011).Dapp, D., Walker, T., Huveneers, C. & Reina, R. Respiratory mode and gear type are important determinants of elasmobranch immediate and post-release mortality. Fish Fish. 17, 507–524 (2016).
    Google Scholar 
    ICES. Report of the working group on elasmobranch fishes. in ICES CM 2018/ACOM:16. International Council for the Exploration of the Sea, Copenhagen (2018).Dicks, L. et al. A transparent process for “evidence-informed” policy making. Conserv. Lett. 7, 119–125 (2014).
    Google Scholar 
    Nichols, J., Kendall, W. & Boomer, G. Accumulating evidence in ecology: Once is not enough. Ecol. Evol. 9, 13991–14004 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Nakagawa, S. et al. Meta-analysis of variation: Ecological and evolutionary applications and beyond. Methods Ecol. Evol. 6, 143–152 (2015).
    Google Scholar 
    Pfaller, J., Chaloupka, M., Bolten, A. & Bjorndal, K. Phylogeny, biogeography and methodology: A meta-analytic perspective on heterogeneity in adult marine turtle survival rates. Sci. Rep. 8, 5852. https://doi.org/10.1038/s41598-018-24262-w (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Godin, A., Carlson, J. & Burgener, V. The effect of circle hooks on shark catchability and at-vessel mortality rates in longlines fisheries. Bull. Mar. Sci. 88, 469–483 (2012).
    Google Scholar 
    Reinhardt, J. et al. Catch rate and at-vessel mortality of circle hooks versus J-hooks in pelagic longline fisheries: A global meta-analysis. Fish Fish. 19, 413–430 (2018).
    Google Scholar 
    Rosa, D., Santos, C. & Coelho, R. Assessing the effects of hook, bait and leader type as potential mitigation measures to reduce bycatch and mortality rates of shortfin mako: A meta-analysis with comparisons for target, bycatch and vulnerable fauna interactions. in ICCAT Collective Volume of Scientifics Papers 76, 247–278 (2020).Santos, C., Rosa, D. & Coelho, R. Hook, bait and leader type effects on surface pelagic longline retention and mortality rates: A meta-analysis with comparisons for target, bycatch and vulnerable fauna interactions. in IOTC-2019-WPEB15-39. Indian Ocean Tuna Commission, Mahe, Seychelles (2019).Santos, C., Rosa, D. & Coelho, R. Progress on a meta-analysis for comparing hook, bait and leader effects on target, bycatch and vulnerable fauna interactions. in Collective Volume of Scientifics Papers ICCAT 77, 182–217 (2020).Condamine, F., Romieu, J. & Guinot, G. Climate cooling and clade competition likely drove the decline of lamniform sharks. PNAS 116, 20584–20590 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P. Rank-normalization, folding, and localization: An improved Rhat for assessing convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).MathSciNet 

    Google Scholar 
    Cinar, O., Nakagawa, S. & Viechtbauer, W. Phylogenetic multilevel meta-analysis: A simulation study on the importance of modelling the phylogeny. Methods Ecol. Evol. 13, 383–395 (2022).
    Google Scholar 
    Lajeunesse, M. Meta-analysis and the comparative phylogenetic method. Am. Nat. 174, 369–381 (2009).PubMed 

    Google Scholar 
    Chamberlain, S. et al. Does phylogeny matter? Assessing the impact of phylogenetic information in ecological meta-analysis. Ecol. Lett. 15, 627–636 (2012).PubMed 

    Google Scholar 
    Burns, J. & Strauss, S. More closely related species are more ecologically similar in an experimental test. Proc. Natl. Acad. Sci. USA 108, 5302–5307 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cachera, M. & Le Loc’h, F. Assessing the relationships between phylogenetic and functional singularities in sharks (Chondrichthyes). Ecol. Evol. 7, 6292–6303 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Münkemüller, T., Boucher, F. C., Thuiller, W. & Lavergne, S. Phylogenetic niche conservatism—Common pitfalls and ways forward. Funct. Ecol. 29, 627–639 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Bazzi, M., Campione, N., Kear, B., Pimiento, C. & Ahlberg, P. Feeding ecology has shaped the evolution of modern sharks. Curr. Biol. 31, 5138–5148 (2021).CAS 
    PubMed 

    Google Scholar 
    Sepulveda, C., Wegner, N., Bernal, D. & Graham, J. The red muscle morphology of the thresher sharks (family Alopiidae). J. Exp. Biol. 208, 4255–4261 (2005).CAS 
    PubMed 

    Google Scholar 
    Wosnick, N. et al. Multispecies thermal dynamics of air-exposed ectothermic sharks and its implications for fisheries conservation. J. Exp. Mar. Biol. Ecol. 513, 1–9 (2019).
    Google Scholar 
    French, R. et al. High survivorship after catch-and-release fishing suggests physiological resilience in the endothermic shortfin mako shark (Isurus oxyrinchus). Conserv. Physiol. https://doi.org/10.1093/conphys/cov044 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, M. Key principles for understanding fish bycatch discard mortality. Can. J. Fish. Aquat. Sci. 59, 1834–1843 (2002).
    Google Scholar 
    Massey, Y., Sabarros, P., Rabearisoa, N. & Bach, P. Drivers of at-haulback mortality of sharks caught during pelagic longline fishing experiments. in IOTC-2019-WPEB15-14_Rev1. Indian Ocean Tuna Commission, Mahe, Seychelles (2019).Musyl, M., Moyes, C., Brill, R. & Fragoso, N. Factors influencing mortality estimates in post-release survival studies: Comment on Campana et al. (2009). Mar. Ecol. Prog. Ser. 396, 157–159 (2009).Pimiento, C., Cantalapiedra, J., Shimada, K., Field, D. & Smaers, J. Evolutionary pathways towards gigantism in sharks and rays. Evolution 73, 588–599 (2019).PubMed 

    Google Scholar 
    Musyl, M. & Gilman, E. Post-release fishing mortality of blue (Prionace glauca) and silky shark (Carcharhinus falciformes) from a Palauan-based commercial longline fishery. Rev. Fish Biol. Fish. 28, 567–658 (2018).
    Google Scholar 
    Childs, D., Sheldon, B. & Rees, M. The evolution of labile traits in sex- and age-structured populations. J. Anim. Ecol. 85, 329–342 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Comte, L., Murienne, J. & Grenouillet, G. Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nat. Commun. 5, 5053 (2014).ADS 
    PubMed Central 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-3. www.iucnredlist.org. ISSN 2307-8235 (International Union for the Conservation of Nature, Gland, Switzerland, 2022).García, V., Lucifora, L. & Ransom, M. The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proc. R. Soc. B 275, 83–89 (2008).PubMed 

    Google Scholar 
    Cortes, E. Perspectives on the intrinsic rate of population growth. Methods Ecol. Evol. 7, 1136–1145 (2016).
    Google Scholar 
    Ellis, J. et al. A review of capture and post-release mortality of elasmobranchs. J. Fish Biol. 90, 653–722 (2017).CAS 
    PubMed 

    Google Scholar 
    Gallagher, A., Orbesen, E., Hammerschlag, N. & Serafy, J. Vulnerability of oceanic sharks as pelagic longline bycatch. Glob. Ecol. Conserv. 1, 50–59 (2014).
    Google Scholar 
    Afonso, A., Santiago, R., Hazin, H. & Hazin, F. Shark bycatch and mortality and hook bite-offs in pelagic longlines: Interactions between hook types and leader materials. Fish. Res. 131–133, 9–14 (2012).
    Google Scholar 
    Gilman, E., Chaloupka, M. & Musyl, M. Effects of pelagic longline hook size on species- and size-selectivity and survival. Rev. Fish Biol. Fish. 28, 417–433 (2018).
    Google Scholar 
    Epperly, S., Watson, J., Foster, D. & Shah, A. Anatomical hooking location and condition of animals captured with pelagic longlines: The grand banks experiments 2002–2003. Bull. Mar. Sci. 88, 513–527 (2012).
    Google Scholar 
    Amorim, S., Santos, M., Coelho, R. & Fernandez-Carvalho, J. Effects of 17/0 circle hooks and bait on fish catches in a southern Atlantic swordfish longline fishery. Aquat. Conserv. 25, 518–533 (2014).
    Google Scholar 
    Coelho, R., Fernandez-Carvalho, J., Lino, P. & Santos, M. An overview of the hooking mortality of elasmobranchs caught in a swordfish pelagic longline fishery in the Atlantic Ocean. Aquat. Living Resour. 25, 311–319 (2012).
    Google Scholar 
    Gilman, E. et al. A decision support tool for integrated fisheries bycatch management. Rev. Fish Biol. Fish. https://doi.org/10.1007/s11160-021-09693-5 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pascoe, S. et al. Use of incentive-based management systems to limit bycatch and discarding. Int. Rev. Environ. Resour. Econ. 4, 123–161 (2010).
    Google Scholar 
    Somers, K., Pfeiffer, L., Miller, S. & Morrison, W. Using incentives to reduce bycatch and discarding: Results under the west coast catch share program. Coast. Manag. 46, 1–17 (2019).
    Google Scholar 
    Abbott, J. & Wilen, J. Regulation of fisheries bycatch with common-pool output quotas. J. Environ. Econ. Manag. 57, 195–204 (2009).MATH 

    Google Scholar 
    Gilman, E. et al. Increasing the functionalities and accuracy of fisheries electronic monitoring systems. Aquat. Conserv. 29, 901–926 (2019).
    Google Scholar 
    Watling, J. Fishing observers ‘intimidated and bribed by EU crews’. Quota checks allegedly being compromised aboard Northwest Atlantic fishery boats, as observers report surveillance and theft. The Guardian (2012, accessed 21 July 2022). https://www.theguardian.com/environment/2012/may/18/fishing-inspectors-intimidated-bribed-crews.Clarke, S., Harley, S., Hoyle, S. & Rice, J. Population trends in Pacific oceanic sharks and the utility of regulations on shark finning. Conserv. Biol. 27, 197–209 (2013).PubMed 

    Google Scholar 
    Tolotti, M. T. et al. Banning is not enough: The complexities of oceanic shark management by tuna regional fisheries management organizations. Glob. Ecol. Conserv. 4, 1–7 (2015).
    Google Scholar 
    Gilman, E., Chaloupka, M., Merrifield, M., Malsol, N. & Cook, C. Standardized catch and survival rates, and effect of a ban on shark retention, Palau pelagic longline fishery. Aquat. Conserv. 26, 1031–1062 (2016).
    Google Scholar 
    CITES. Appendices I, II and III. Valid from 22 June 2021. Convention on International Trade in Endangered Species of Wild Fauna and Flora, United Nations Environment Program, Geneva (2021).Ward-Paige, C. A global overview of shark sanctuary regulations and their impact on shark fisheries. Mar. Policy 82, 87–97 (2017).
    Google Scholar 
    E.U. Regulation (E.U.) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC. Official Journal of the European Union L354, 22–61 (2013).FAO. International Guidelines on Bycatch Management and Reduction of Discards (Food and Agriculture Organization of the United Nations, Rome, 2011).CCSBT. Resolution to Align CCSBT’s Ecologically Related Species Measures with those of other Tuna RFMOs (Commission for the Conservation of Southern Bluefin Tuna, Deakin West, Australia, 2021).IATTC. Active Resolutions and Recommendations (Inter-American Tropical Tuna Commission, La Jolla, 2022).ICCAT. Compendium. Management Recommendations and Resolutions Adopted by ICCAT for the Conservation of Atlantic Tunas and Tuna-like Species (International Commission for the Conservation of Atlantic Tunas, Madrid, 2021).IOTC. Compendium of Active Conservation and Management Measures for the Indian Ocean Tuna Commission (Indian Ocean Tuna Commission, Mahe, 2021).WCPFC. Conservation and Management Measures and Resolutions of the Western and Central Pacific Fisheries Commission. Compiled 31 August 2021 (Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia, 2021).Faith, D. Threatened species and the potential loss of phylogenetic diversity: Conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conserv. Biol. 22, 1461–1470 (2008).PubMed 

    Google Scholar 
    Dolce, J. & Wilga, C. Evolutionary and ecological relationships of gill slit morphology in extant sharks. Bull. Mus. Comp. 161, 79–109 (2013).
    Google Scholar 
    MacLeod, N. & Forey, P. Morphology, Shape and Phylogeny (CRC Press, 2002).
    Google Scholar 
    Haddaway, N., Macura, B., Whaley, P. & Pullin, A. ROSES RepOrting standards for Systematic Evidence Syntheses: pro forma, flow-diagram and descriptive summary of the plan and conduct of environmental systematic reviews and systematic maps. Environ. Evid. https://doi.org/10.1186/s13750-018-0121-7 (2018).Article 

    Google Scholar 
    Pullin, A., Frampton, G., Livoreil, B. & Petrokofsky, G., Eds. Section 5. Conducting a Search. Key CEE Standards for Conduct and Reporting. In Pullin, A., Frampton, G., Livoreil, B., Petrokofsky, G., Eds. Guidelines and Standards for Evidence Synthesis in Environmental Management. Version 5.0. Collaboration for Environmental Evidence (2020).Pullin, A., Frampton, G., Livoreil, B. & Petrokofsky, G. (eds) Section 3. Planning a CEE Evidence Synthesis. In Pullin, A., Frampton, G., Livoreil, B., Petrokofsky, G. (eds) Guidelines and Standards for Evidence Synthesis in Environmental Management. Version 5.0. Collaboration for Environmental Evidence (2021).Page, M. et al. The PRISMA statement: An updated guideline for reporting systematic reviews. BMJ https://doi.org/10.1136/bmj.n.71 (2020).Article 
    PubMed 

    Google Scholar 
    Tuyl, F., Gerlach, R. & Mengersen, K. Comparison of Bayes-Laplace, Jeffreys, and other priors: The case of zero events. Am. Stat. 62, 40–44 (2008).MathSciNet 

    Google Scholar 
    Dorai-Raj, S. binom: Binomial confidence intervals for several parameterizations. R package version 1.1-1. https://CRAN.R-project.org/package=binom (2014).van Lissa, C. Small sample meta-analyses: Exploring heterogeneity using MetaForest. Chapter 13. In Small Sample Size Solutions: A Guide for Applied Researchers and Practitioners (eds Van De Schoot, R. & Miočević, M.) 186–202 (Routledge, Oxford, 2020).
    Google Scholar 
    Wright, M. & Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).
    Google Scholar 
    Janitza, S., Celik, E. & Boulesteix, A. A computationally fast variable importance test for random forests for high-dimensional data. Adv. Data Anal. Classif. 12, 885–915 (2018).MathSciNet 
    MATH 

    Google Scholar 
    Mayer, M. missRanger: Fast imputation of missing values. R package version 2.1.3. https://CRAN.R-project.org/package=missRanger (2021).Konstantopoulos, S. Fixed effects and variance components estimation in three-level meta-analysis. Research Synthesis. Methods 2, 61–76 (2011).
    Google Scholar 
    Amaral, C., Pereira, F., Silva, D., Amorim, A. & de Carvalho, E. The mitogenomic phylogeny of the Elasmobranchii (Chondrichthyes). Mitochondrial DNA A 29, 867–878 (2017).
    Google Scholar 
    Hara, Y. et al. Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat. Ecol. Evol. 2, 1761–1771 (2018).PubMed 

    Google Scholar 
    Naylor, G. et al. A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bull. Am. Mus. Nat. 367, 1–262 (2012).
    Google Scholar 
    Stein, R. et al. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nat. Ecol. Evol. 2, 288–298 (2018).PubMed 

    Google Scholar 
    Maddison, D., Swofford, D., Maddison, W. & Cannatella, D. Nexus: An extensible file format for systematic information. Syst. Biol. 46, 590–621 (1997).CAS 
    PubMed 

    Google Scholar 
    Upham, N., Esselstyn, J. & Jetz, W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 

    Google Scholar 
    Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 69, e96. https://doi.org/10.1002/cpbi.96 (2020).Article 

    Google Scholar 
    Hadfield, J. & Nakagawa, S. General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol 23, 494–508 (2010).CAS 
    PubMed 

    Google Scholar 
    Lin, L. & Chu, H. Meta-analysis of proportions using generalized linear mixed models. Epidemiology 31, 713–717 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).
    Google Scholar 
    Bürkner, P. brms: An R Package for Bayesian multilevel models using Stan. J. Stat. Softw. 81, 1–28 (2017).
    Google Scholar 
    Günhan, B., Röver, C. & Friede, T. Random-effects meta-analysis of few studies involving rare events. Res. Synth. Methods 11, 74–90 (2020).PubMed 

    Google Scholar 
    Pappalardo, P. et al. Comparing traditional and Bayesian approaches to ecological meta-analysis. Methods Ecol. Evol. 11, 1286–1295 (2020).
    Google Scholar 
    Ott, M., Plummer, M. & Roos, M. How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. Stat. Med. 40, 4505–4521 (2021).MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, S. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall, 2017).MATH 

    Google Scholar 
    Kruschke, J. & Liddell, T. The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon. Bull. Rev. 25, 178–206 (2018).PubMed 

    Google Scholar 
    Kay, M. tidybayes: Tidy data and geoms for Bayesian models. R package version 2.1.1. https://doi.org/10.5281/zenodo.1308151 (2020).Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).ADS 

    Google Scholar 
    Searle, S., Speed, F. & Milliken, G. Population marginal means in the linear model: An alternative to least squares means. Am. Stat. 34, 216–221 (1980).MathSciNet 
    MATH 

    Google Scholar 
    Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.2-1. https://CRAN.R-project.org/package=emmeans (2020).Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).
    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).MathSciNet 
    MATH 

    Google Scholar 
    Yao, Y., Vehtari, A., Simpson, D. & Gelman, A. Using stacking to average Bayesian predictive distributions (with Discussion). Bayesian Anal. 13, 917–1003 (2018).MathSciNet 
    MATH 

    Google Scholar 
    Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Soc. Ser. A 182, 1–14 (2019).MathSciNet 

    Google Scholar 
    Lazic, S., Mellor, J., Ashby, M. & Munafo, M. A Bayesian predictive approach for dealing with pseudoreplication. Sci. Rep. 10, 2020. https://doi.org/10.1038/s41598-020-59384-7 (2020).Article 
    CAS 

    Google Scholar 
    Page, M., Sterne, J., Higgins, J. & Egger, M. Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Res. Synth. Methods 12, 248–259 (2021).PubMed 

    Google Scholar 
    Peters, J., Sutton, A., Jones, D., Abrams, K. & Rushton, L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J. Clin. Epidemiol. 61, 991–996 (2008).PubMed 

    Google Scholar 
    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
    Google Scholar 
    Gasparrini, A., Armstrong, B. & Kenward, M. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat. Med. 31, 3821–3839 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Abiotic conditions shape spatial and temporal morphological variation in North American birds

    Dehling, D. M., Jordano, P., Schaefer, H. M., Böhning-Gaese, K. & Schleuning, M. Morphology predicts species’ functional roles and their degree of specialization in plant–frugivore interactions. Proc. R. Soc. B 283, 20152444 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Grant, P. R. Inheritance of size and shape in a population of Darwin’s finches, Geospiza conirostris. Proc. R. Soc. Lond. B 220, 219–236 (1983).
    Google Scholar 
    Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).PubMed 

    Google Scholar 
    Bergmann, C. Über die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Gött. Stud. 3, 595–708 (1847).
    Google Scholar 
    Allen, J. A. The influence of physical conditions in the genesis of species. Radic. Rev. 1, 108–140 (1877).
    Google Scholar 
    Altshuler, D. L. & Dudley, R. The physiology and biomechanics of avian flight at high altitude. Integr. Comp. Biol. 46, 62–71 (2006).PubMed 

    Google Scholar 
    Teplitsky, C. & Millien, V. Climate warming and Bergmann’s rule through time: is there any evidence? Evol. Appl. 7, 156–168 (2014).PubMed 

    Google Scholar 
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).PubMed 

    Google Scholar 
    Yom-Tov, Y., Yom-Tov, S., Wright, J., Thorne, C. J. R. & Du Feu, R. Recent changes in body weight and wing length among some British passerine birds. Oikos 112, 91–101 (2006).
    Google Scholar 
    Van Buskirk, J., Mulvihill, R. S. & Leberman, R. C. Declining body sizes in North American birds associated with climate change. Oikos 119, 1047–1055 (2010).
    Google Scholar 
    Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).PubMed 

    Google Scholar 
    Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).CAS 
    PubMed 

    Google Scholar 
    DeSante, D. F., Saracco, J. F., O’Grady, D. R., Burton, K. M. & Walker, B. L. Methodological considerations of the Monitoring Avian Productivity and Survivorship (MAPS) program. Stud. Avian Biol. 29, 28–45 (2004).West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).CAS 
    PubMed 

    Google Scholar 
    Jirinec, V. et al. Morphological consequences of climate change for resident birds in intact Amazonian rainforest. Sci. Adv. 7, eabk1743 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Dubiner, S. & Meiri, S. Widespread recent changes in morphology of Old World birds, global warming the immediate suspect. Glob. Ecol. Biogeogr. 31, 791–801 (2022).
    Google Scholar 
    Ballinger, M. A. & Nachman, M. W. The contribution of genetic and environmental effects to Bergmann’s rule and Allen’s rule in house mice. Am. Nat. https://doi.org/10.1086/719028 (2022).Andrew, S. C., Hurley, L. L., Mariette, M. M. & Griffith, S. C. Higher temperatures during development reduce body size in the zebra finch in the laboratory and in the wild. J. Evol. Biol. 30, 2156–2164 (2017).CAS 
    PubMed 

    Google Scholar 
    Siepielski, A. M. et al. No evidence that warmer temperatures are associated with selection for smaller body sizes. Proc. R. Soc. B 286, 20191332 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Salewski, V., Siebenrock, K.-H., Hochachka, W. M., Woog, F. & Fiedler, W. Morphological change to birds over 120 years is not explained by thermal adaptation to climate change. PLoS ONE 9, e101927 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl Acad. Sci. USA 116, 21609–21615 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).PubMed 

    Google Scholar 
    Futuyma, D. J. Evolutionary constraint and ecological consequences. Evolution 64, 1865–1884 (2010).PubMed 

    Google Scholar 
    Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rollinson, C. R. et al. Working across space and time: nonstationarity in ecological research and application. Front. Ecol. Environ. 19, 66–72 (2021).
    Google Scholar 
    Riemer, K., Guralnick, R. P. & White, E. P. No general relationship between mass and temperature in endothermic species. eLife 7, e27166 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. Shape-shifting: changing animal morphologies as a response to climatic warming. Trends Ecol. Evol. 36, 1036–1048 (2021).PubMed 

    Google Scholar 
    Baldwin, M. W., Winkler, H., Organ, C. L. & Helm, B. Wing pointedness associated with migratory distance in common-garden and comparative studies of stonechats (Saxicola torquata). J. Evol. Biol. 23, 1050–1063 (2010).CAS 
    PubMed 

    Google Scholar 
    Förschler, M. I. & Bairlein, F. Morphological shifts of the external flight apparatus across the range of a passerine (Northern Wheatear) with diverging migratory behaviour. PLoS ONE 6, e18732 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Macpherson, M. P., Jahn, A. E. & Mason, N. A. Morphology of migration: associations between wing shape, bill morphology and migration in kingbirds (Tyrannus). Biol. J. Linn. Soc. 135, 71–83 (2022).
    Google Scholar 
    Newton, I. The Migration Ecology of Birds (Elsevier, 2010).Clegg, S. M., Kelly, J. F., Kimura, M. & Smith, T. B. Combining genetic markers and stable isotopes to reveal population connectivity and migration patterns in a neotropical migrant, Wilson’s warbler (Wilsonia pusilla). Mol. Ecol. 12, 819–830 (2003).CAS 
    PubMed 

    Google Scholar 
    Bell, C. P. Leap-frog migration in the fox sparrow: minimizing the cost of spring migration. Condor 99, 470–477 (1997).
    Google Scholar 
    Billerman, S., Keeney, B., Rodewald, P. & Schulenberg, T. (eds) Birds of the World (Cornell Laboratory of Ornithology, 2020).Desrochers, A. Morphological response of songbirds to 100 years of landscape change in North America. Ecology 91, 1577–1582 (2010).CAS 
    PubMed 

    Google Scholar 
    Swaddle, J. P. & Lockwood, R. Morphological adaptations to predation risk in passerines. J. Avian Biol. 29, 172–176 (1998).
    Google Scholar 
    Chown, S. L. & Klok, C. J. Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography 26, 445–455 (2003).
    Google Scholar 
    Hsiung, A. C., Boyle, W. A., Cooper, R. J. & Chandler, R. B. Altitudinal migration: ecological drivers, knowledge gaps, and conservation implications: animal altitudinal migration review. Biol. Rev. 93, 2049–2070 (2018).PubMed 

    Google Scholar 
    Barras, A. G., Liechti, F. & Arlettaz, R. Seasonal and daily movement patterns of an alpine passerine suggest high flexibility in relation to environmental conditions. J. Avian Biol. 52, jav.02860 (2021).
    Google Scholar 
    Spence, A. R. & Tingley, M. W. Body size and environment influence both intraspecific and interspecific variation in daily torpor use across hummingbirds. Funct. Ecol. 35, 870–883 (2021).CAS 

    Google Scholar 
    Moreau, R. E. Variation in the western Zosteropidae (Aves). Bull. Br. Mus. Nat. Hist. Zool. 4, 311–433 (1957).
    Google Scholar 
    Hamilton, T. H. The adaptive significances of intraspecific trends of variation in wing length and body size among bird species. Evolution 15, 180–194 (1961).
    Google Scholar 
    Hodkinson, I. D. Terrestrial insects along elevation gradients: species and community responses to altitude. Biol. Rev. 80, 489–513 (2005).PubMed 

    Google Scholar 
    Feinsinger, P., Colwell, R. K., Terborgh, J. & Chaplin, S. B. Elevation and the morphology, flight energetics, and foraging ecology of tropical hummingbirds. Am. Nat. 113, 481–497 (1979).
    Google Scholar 
    Aldrich, J. W. Ecogeographical Variation in Size and Proportions of Song Sparrows (Melospiza melodia) (American Ornithological Society, 1984).Sun, Y. et al. The role of climate factors in geographic variation in body mass and wing length in a passerine bird. Avian Res. 8, 1 (2017).Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582 (2021).PubMed 

    Google Scholar 
    McKechnie, A. E. & Wolf, B. O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6, 253–256 (2010).PubMed 

    Google Scholar 
    Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Riddell, E. A. et al. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021).CAS 
    PubMed 

    Google Scholar 
    Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Youngflesh, C. et al. Migratory strategy drives species-level variation in bird sensitivity to vegetation green-up. Nat. Ecol. Evol. 5, 987–994 (2021).PubMed 

    Google Scholar 
    Blueweiss, L. et al. Relationships between body size and some life history parameters. Oecologia 37, 257–272 (1978).CAS 
    PubMed 

    Google Scholar 
    Kleiber, M. Body size and metabolic rate. Physiol. Rev. 27, 511–541 (1947).CAS 
    PubMed 

    Google Scholar 
    Yodzis, P. & Innes, S. Body size and consumer-resource dynamics. Am. Nat. 139, 1151–1175 (1992).
    Google Scholar 
    Prum, R. O. Interspecific social dominance mimicry in birds: social mimicry in birds. Zool. J. Linn. Soc. 172, 910–941 (2014).
    Google Scholar 
    Pyle, P. Identification Guide to North American Birds: A Compendium of Information on Identifying, Ageing, and Sexing ‘Near-Passerines’ and Passerines in the Hand (Slate Creek Press, 1997).Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).
    Google Scholar 
    Danielson, J. J. & Gesch, D. B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) (US Geological Survey, 2011).Thornton, M. M. et al. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 4 (ORNL Distributed Active Archive Center, 2020).Greenewalt, C. H. The flight of birds: the significant dimensions, their departure from the requirements for dimensional similarity, and the effect on flight aerodynamics of that departure. Trans. Am. Philos. Soc. 65, 1–67 (1975).
    Google Scholar 
    Longo, G. & Montévil, M. Perspectives on Organisms: Biological Time, Symmetries, and Singularities (Springer, 2014).Harvey, P. H. in Scaling in Biology (eds Brown, J. H. & West, G. B.) 253–265 (Oxford Univ. Press, 2000).Orme, D. et al. The caper package: comparative analysis of phylogenetics and evolution in R. R package version 5 (2013).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 

    Google Scholar 
    Nudds, R. L., Kaiser, G. W. & Dyke, G. J. Scaling of avian primary feather length. PLoS ONE 6, e15665 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nudds, R. Wing-bone length allometry in birds. J. Avian Biol. 38, 515–519 (2007).
    Google Scholar 
    Anderson, S. C., Branch, T. A., Cooper, A. B. & Dulvy, N. K. Black-swan events in animal populations. Proc. Natl Acad. Sci. USA 114, 3252–3257 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stan Modeling Language Users Guide and Reference Manual, Version 2.18.0 (Stan Development Team, 2018); http://mc-stan.orgCarpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).Youngflesh, C. MCMCvis: tools to visualize, manipulate, and summarize MCMC output. J. Open Source Softw. 3, 640 (2018).
    Google Scholar 
    Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).
    Google Scholar 
    Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. A 182, 389–402 (2019).
    Google Scholar 
    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall/CRC, 2018).Data Zone (BirdLife International, 2019); http://datazone.birdlife.org/species/requestdisCramp, S. & Brooks, D. Handbook of the Birds of Europe, the Middle East and North Africa. The Birds of the Western Palearctic, Vol. VI. Warblers (Oxford Univ. Press, 1992).Che-Castaldo, J., Che-Castaldo, C. & Neel, M. C. Predictability of demographic rates based on phylogeny and biological similarity. Conserv. Biol. 32, 1290–1300 (2018).PubMed 

    Google Scholar 
    Villemereuil, P., de, Wells, J. A., Edwards, R. D. & Blomberg, S. P. Bayesian models for comparative analysis integrating phylogenetic uncertainty. BMC Evol. Biol. 12, 102 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).CAS 
    PubMed 

    Google Scholar 
    Hendry, A. P. & Kinnison, M. T. Perspective: the pace of modern life: measuring rates of contemporary microevolution. Evolution 53, 1637–1653 (1999).PubMed 

    Google Scholar 
    Gingerich, P. Rates of evolution: effects of time and temporal scaling. Science 222, 159–162 (1983).CAS 
    PubMed 

    Google Scholar 
    Bird, J. P. et al. Generation lengths of the world’s birds and their implications for extinction risk. Conserv. Biol. 34, 1252–1261 (2020).Gingerich, P. D. Rates of evolution. Annu. Rev. Ecol. Evol. Syst. 40, 657–675 (2009).
    Google Scholar 
    Bürger, R. & Lynch, M. Evolution and extinction in a changing environment: a quantitative-genetic analysis. Evolution 49, 151–163 (1995).PubMed 

    Google Scholar 
    Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008).PubMed 

    Google Scholar  More

  • in

    Temporal change in plant communities and its relationship to soil salinity and microtopography on the Caspian Sea coast

    Shomurodov, K. F. & Adilov, B. A. Current state of the flora of Vozrozhdeniya Island (Uzbekistan). Arid Ecosyst. 9, 97–103 (2019).
    Google Scholar 
    Adilov, B. et al. Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage. J. Arid Land 13, 71–87 (2020).
    Google Scholar 
    Kuz’mina, Z. V. & Treshkin, S. E. Soil salinization and dynamics of Tugai vegetation in the southeastern Caspian Sea region and in the Aral Sea coastal region. Eurasian Soil Sci. 30, 642–649 (1997).
    Google Scholar 
    Kuz’mina, Z. V., Shinkarenko, S. S. & Solodovnikov, D. A. Main tendencies in the dynamics of floodplain ecosystems and landscapes of the lower reaches of the Syr Darya river under modern changing conditions. Arid Ecosyst. 9, 226–236 (2019).
    Google Scholar 
    Dimeyeva, L. A. Phytogeography of the northeastern coast of the Caspian Sea: Native flora and recent colonizations. J. Arid Land 5, 439–451 (2013).
    Google Scholar 
    Goryaev, I. A. & Korablev, A. P. Halophytic vegetation in the west caspian lowland. Contemp. Probl. Ecol. 13, 514–521 (2020).
    Google Scholar 
    Novikova, N. M., Volkova, N. A., Ulanova, S. S. & Chemidov, M. M. Change in vegetation on meliorated solonetcic soils of the Peri-Yergenian plain over 10 years (Republic of Kalmykia). Arid Ecosyst. 10, 194–202 (2020).
    Google Scholar 
    Ravanbakhsh, M., Amini, T. & Hosseini, S. M. N. Plant species diversity among ecological species groups in the Caspian Sea coastal sand dune; Case study: Guilan Province, North of Iran. Biodiversitas 16, 16–21 (2015).
    Google Scholar 
    Yan, S., Mu, G., Xu, Y. & Zhao, Z. Quarternary environmental evolution of the Lop Nur region, China. Dili Xuebao/Acta Geogr. Sin. 53, 332–340 (1998).
    Google Scholar 
    Hao, H., Ferguson, D. K., Chang, H. & Li, C. S. Vegetation and climate of the Lop Nur area, China, during the past 7 million years. Clim. Change 113, 323–338 (2012).ADS 

    Google Scholar 
    Li, C. et al. Growth and sustainability of Suaeda salsa in the Lop Nur, China. J. Arid Land 10, 429–440 (2018).
    Google Scholar 
    Barrett, G. Vegetation communities on the shores of a salt lake in semi-arid Western Australia. J. Arid Environ. 67, 77–89 (2006).ADS 

    Google Scholar 
    Neffar, S., Chenchouni, H. & Si Bachir, A. Floristic composition and analysis of spontaneous vegetation of Sabkha Djendli in north-east Algeria. Plant Biosyst. 150, 396–403 (2016).
    Google Scholar 
    Yanina, T. A. The Ponto-Caspian region: Environmental consequences of climate change during the Late Pleistocene. Quat. Int. 345, 88–99 (2014).
    Google Scholar 
    Rychagov, G. I. Pleistocene History of the Caspian Sea (Moscow State University, 1977).
    Google Scholar 
    Rychagov, G. I. The level mode of the Caspian Sea during the last 10000. Vestn. Mosk. Univ. Seriya 5 Geogr. 2, 38–49 (1993).
    Google Scholar 
    Kroonenberg, S. B. et al. Solar-forced 2600 BP and Little Ice Age highstands of the Caspian Sea. Quat. Int. 173–174, 137–143 (2007).
    Google Scholar 
    Kasimov, N. S., Lychagin, M. Y. & Kroonenberg, S. B. Geochemical indication of cyclic fluctuations of the caspian sea level. Vestn. Mosk. Univ. Seriya Geogr. 2, 72–77 (2011).
    Google Scholar 
    Kroonenberg, S. B., Badyukova, E. N., Storms, J. E. A., Ignatov, E. I. & Kasimov, N. S. A full sea-level cycle in 65 years: Barrier dynamics along Caspian shores. Sediment. Geol. 134, 257–274 (2000).ADS 

    Google Scholar 
    Bolikhovskaya, N. & Kasimov, N. The evolution of climate and landscapes of the Lower Volga region during the Holocene. Geogr. Environ. Sustain. 3, 78–97 (2010).
    Google Scholar 
    Magomedov, M.M.-R. & Gasanov, S. M. Features of soil changes under crowns of the shrubberies tamarisk (Tamarix meyeri boiss, T. ramosissima zedeb). South Russ. Ecol. Dev. 6, 12–21 (2014).
    Google Scholar 
    Du, N. et al. Facilitation or competition? The effects of the shrub species tamarix chinensis on herbaceous communities are dependent on the successional stage in an impacted coastal wetland of North China. Wetlands 37, 899–911 (2017).
    Google Scholar 
    Jiang, L., Jiapaer, G., Bao, A., Guo, H. & Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 599–600, 967–980 (2017).ADS 
    PubMed 

    Google Scholar 
    Burke, I. C. et al. Plant–soil interactions in temperate grasslands. In Plant-Induced Soil Changes: Processes and Feedbacks (ed. van Breemen, N.) 121–143 (Springer, 1998). https://doi.org/10.1007/978-94-017-2691-7_7.Chapter 

    Google Scholar 
    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
    Google Scholar 
    Abaturov, B. D. Microdepression microrelief of Caspian Lowland and mechanisms of its formation. Arid. Ecosistemy 16, 31–45 (2010).
    Google Scholar 
    Sapanov, M. K. The results of soil water investigations in Djanybek stationary. Dokuchaev Soil Bull. 83, 22–40 (2016).
    Google Scholar 
    Bolshakov, A. F. & Bazykina, G. S. Natural biogeocenoses and the conditions of their existence. In Biogeocenotic Basis of the Reclamation of Semidesert in the Northern Caspain Lowland (ed. Rode, A. A.) 6–34 (Nauka, 1974).
    Google Scholar 
    Konyushkova, M. V., Nukhimovskaya, Y. D., Gasanova, Z. U. & Stepanova, N. Y. The temporal change in variability of soil salinity and phytodiversity at the coastal plain of the Caspian Sea. Arid Ecosyst. 10, 312–321 (2020).
    Google Scholar 
    Semenkov, I., Konyushkova, M., Heidari, A., Nukhimovskaya, Y. & Klink, G. Data on the soilscape and vegetation properties at the key site in the NW Caspian Sea coast, Russia. Data Br. 31, 105972 (2020).
    Google Scholar 
    Konyushkova, M. V. et al. Spatial and seasonal salt translocation in the young soils at the coastal plains of the Caspian Sea. Quat. Int. 590, 15–25 (2021).
    Google Scholar 
    Semenkov, I., Konyushkova, M., Heidari, A. & Nikolaev, E. Chemical differentiation of recent fine-textured soils on the Caspian Sea coast: A case study in Golestan (Iran) and Dagestan (Russia). Quat. Int. 590, 48–55 (2021).
    Google Scholar 
    Haghani, S. et al. An early ‘Little Ice Age’ brackish water invasion along the south coast of the Caspian Sea (sediment of Langarud wetland) and its wider impacts on environment and people. Holocene 26, 3–16 (2016).ADS 

    Google Scholar 
    Panin, G. N., Mamedov, R. M. & Mitrofanov, I. V. Present State of the Caspian Sea (Nauka, 2005).
    Google Scholar 
    Konyushkova, M. V. et al. The spatial differentiation of soil salinity at the young saline coastal plain of the Caspian region. Dokuchaev Soil Bull. 95, 41–57 (2018).
    Google Scholar 
    Cherepanov, S. K. Vascular Plants of Russia and Adjacent States (Within the Former USSR) (Cambridge University Press, 1995).
    Google Scholar 
    Takhtajan, A. Flowering Plants (Springer Science+Business Media B.V, 2009). https://doi.org/10.1007/978-1-4020-9609-9.Book 

    Google Scholar 
    Govaerts, R., Nic Lughadha, E., Black, N., Turner, R. & Paton, A. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew (Board of Trustees of the Royal Botanic Gardens, 2022).Chase, M. W. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).
    Google Scholar 
    Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).
    Google Scholar 
    Clarke, K. R. & Warwick, R. M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35, 523–531 (1998).
    Google Scholar 
    Semenkov, I. N. et al. The variability of soils and vegetation of hydrothermal fields in the Valley of Geysers at Kamchatka Peninsula. Sci. Rep. 11, 11077 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R Packag. version 1.0.0 (2019).Goryaev, I. A. Regularities of distribution of halophytic vegetation on the Caspian Lowland. Bot. Zhurnal 104, 1072–1089 (2019).
    Google Scholar 
    Soltanmuradova, Z. I. & Teimurov, A. A. Taxonomic structure of the flora of the Primorskaya Lowland of the Republic of Dagestan. South Russ. Ecol. Dev. 3, 38 (2010).
    Google Scholar 
    Zörb, C., Sümer, A., Sungur, A., Flowers, T. J. & Özcan, H. Ranking of 11 coastal halophytes from salt marshes in northwest Turkey according their salt tolerance. Turk. J. Botany 37, 1125–1133 (2013).
    Google Scholar 
    Zhao, Y., Yu, H., Zhang, T. & Guo, J. Mycorrhizal colonization of chenopods and its influencing factors in different saline habitats, China. J. Arid Land 9, 143–152 (2017).
    Google Scholar 
    Podar, D. et al. Morphological, physiological and biochemical aspects of salt tolerance of halophyte Petrosimonia triandra grown in natural habitat. Physiol. Mol. Biol. Plants 25, 1335–1347 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nayyar, H. & Gupta, D. Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environ. Exp. Bot. 58, 106–113 (2006).CAS 

    Google Scholar 
    Way, D. A., Katul, G. G., Manzoni, S. & Vico, G. Increasing water use efficiency along the C3 to C4 evolutionary pathway: A stomatal optimization perspective. J. Exp. Bot. 65, 3683–3693 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Atia, A. et al. Ecophysiological aspects in 105 plants species of saline and arid environments in Tunisia. J. Arid Land 6, 762–770 (2014).
    Google Scholar 
    Pickett, S. T. A. Space-for-time substitution as an alternative to long-term studies. In Long-Term Studies in Ecology 110–135 (1989) https://doi.org/10.1007/978-1-4615-7358-6_5.Walker, L. R., Wardle, D. A., Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98, 725–736 (2010).
    Google Scholar 
    Dimeeva, L. A. Dynamics of vegetation in deserts of Aral and Caspian regions. (2011).Yu, K. et al. Late quaternary environments in the Gobi Desert of Mongolia: Vegetation, hydrological, and palaeoclimate evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 77–91 (2019).
    Google Scholar 
    Cao, X., Tian, F., Dallmeyer, A. & Herzschuh, U. Northern Hemisphere biome changes ( >30°N) since 40 cal ka BP and their driving factors inferred from model-data comparisons. Quat. Sci. Rev. 220, 291–309 (2019).ADS 

    Google Scholar 
    Zhang, D. et al. Response of vegetation to Holocene evolution of westerlies in the Asian Central Arid Zone. Quat. Sci. Rev. 229, 106138 (2020).
    Google Scholar 
    Lu, K. Q. et al. A new approach to interpret vegetation and ecosystem changes through time by establishing a correlation between surface pollen and vegetation types in the eastern central Asian desert. Palaeogeogr. Palaeoclimatol. Palaeoecol. 551, 109762 (2020).
    Google Scholar 
    He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).PubMed 

    Google Scholar 
    Ziffer-Berger, J., Weisberg, P. J., Cablk, M. E. & Osem, Y. Spatial patterns provide support for the stress-gradient hypothesis over a range-wide aridity gradient. J. Arid Environ. 102, 27–33 (2014).ADS 

    Google Scholar 
    Vinogradov, B. V. Plant Indicators and Their Use in the Study of Natural Resources (Visshaya shkola, 1964).
    Google Scholar 
    Luo, C. et al. Characteristics of the modern pollen distribution and their relationship to vegetation in the Xinjiang region, northwestern China. Rev. Palaeobot. Palynol. 153, 282–295 (2009).
    Google Scholar 
    Zhao, Y. & Herzschuh, U. Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau. Veg. Hist. Archaeobot. 18, 245–260 (2009).
    Google Scholar  More

  • in

    Climate change and species facilitation affect the recruitment of macroalgal marine forests

    Intergovernmental Panel on Climate Change (IPCC). The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2022). https://doi.org/10.1017/9781009157964.Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).ADS 

    Google Scholar 
    Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).PubMed 

    Google Scholar 
    Hall-Spencer, J. M. & Harvey, B. P. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerg. Top. Life Sci. 3, 197–206 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Straub, S. C. et al. Resistance, extinction, and everything in between—The diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).
    Google Scholar 
    Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I. & Russell, B. D. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120442 (2013).
    Google Scholar 
    Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl. Acad. Sci. 108, 14515–14520 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harvey, B. P., Kon, K., Agostini, S., Wada, S. & Hall-Spencer, J. M. Ocean acidification locks algal communities in a species-poor early successional stage. Glob. Change Biol. 27, 2174–2187 (2021).ADS 
    CAS 

    Google Scholar 
    Sunday, J. M. et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change 7, 81–85 (2017).ADS 
    CAS 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).
    Google Scholar 
    Schiel, D. R. & Foster, M. S. The population biology of large brown seaweeds: Ecological consequences of multiphase life histories in dynamic coastal environments. Annu. Rev. Ecol. Evol. Syst. 37, 343–372 (2006).
    Google Scholar 
    Wernberg, T. & Filbee-Dexter, K. Missing the marine forest for the trees. Mar. Ecol. Prog. Ser. 612, 209–215 (2019).ADS 

    Google Scholar 
    Cheminée, A. et al. Nursery value of Cystoseira forests for Mediterranean rocky reef fishes. J. Exp. Mar. Biol. Ecol. 442, 70–79 (2013).
    Google Scholar 
    Smale, D. A., Burrows, M. T., Moore, P., O’Connor, N. & Hawkins, S. J. Threats and knowledge gaps for ecosystem services provided by kelp forests: A northeast Atlantic perspective. Ecol. Evol. 3, 4016–4038 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Carbajal, P., Gamarra Salazar, A., Moore, P. J. & Pérez-Matus, A. Different kelp species support unique macroinvertebrate assemblages, suggesting the potential community-wide impacts of kelp harvesting along the Humboldt Current System. Aquat. Conserv. Mar. Freshw. Ecosyst. 32, 14–27 (2022).
    Google Scholar 
    Filbee-Dexter, K. & Wernberg, T. Rise of turfs: A new battlefront for globally declining kelp forests. Bioscience 68, 64–76 (2018).
    Google Scholar 
    Pessarrodona, A. et al. Homogenization and miniaturization of habitat structure in temperate marine forests. Glob. Change Biol. 27, 5262–5275 (2021).CAS 

    Google Scholar 
    Orfanidis, S. et al. Effects of natural and anthropogenic stressors on Fucalean brown seaweeds across different spatial scales in the Mediterranean Sea. Front. Mar. Sci. 8, 1330 (2021).
    Google Scholar 
    Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. 113, 13785–13790 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capdevila, P. et al. Warming impacts on early life stages increase the vulnerability and delay the population recovery of a long-lived habitat-forming macroalga. J. Ecol. 107, 1129–1140 (2019).
    Google Scholar 
    Irving, A. D., Balata, D., Colosio, F., Ferrando, G. A. & Airoldi, L. Light, sediment, temperature, and the early life-history of the habitat-forming alga Cystoseira barbata. Mar. Biol. 156, 1223–1231 (2009).
    Google Scholar 
    Smith, K. E., Moore, P. J., King, N. G. & Smale, D. A. Examining the influence of regional-scale variability in temperature and light availability on the depth distribution of subtidal kelp forests. Limnol. Oceanogr. 67, 314–328 (2022).ADS 

    Google Scholar 
    Smale, D. A. et al. Climate-driven substitution of foundation species causes breakdown of a facilitation cascade with potential implications for higher trophic levels. J. Ecol. 00, 1–13 (2022).
    Google Scholar 
    Hollarsmith, J. A., Buschmann, A. H., Camus, C. & Grosholz, E. D. Varying reproductive success under ocean warming and acidification across giant kelp (Macrocystis pyrifera) populations. J. Exp. Mar. Biol. Ecol. 522, 151247 (2020).
    Google Scholar 
    Verdura, J. et al. Local-scale climatic refugia offer sanctuary for a habitat-forming species during a marine heatwaves. J. Ecol. 109, 1758–1773 (2021).
    Google Scholar 
    Mariani, S. et al. Past and present of Fucales from shallow and sheltered shores in Catalonia. Reg. Stud. Mar. Sci. 32, 100824 (2019).
    Google Scholar 
    Smale, D. A. Impacts of ocean warming on kelp forest ecosystems. New Phytol. 225, 1447–1454 (2020).PubMed 

    Google Scholar 
    Coelho, S. M., Rijstenbil, J. W. & Brown, M. T. Impacts of anthropogenic stresses on the early development stages of seaweeds. J. Aquat. Ecosyst. Stress Recov. 7, 317–333 (2000).CAS 

    Google Scholar 
    de Caralt, S., Verdura, J., Vergés, A., Ballesteros, E. & Cebrian, E. Differential effects of pollution on adult and recruits of a canopy-forming alga: Implications for population viability under low pollutant levels. Sci. Rep. 10, 17825 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capdevila, P. et al. Recruitment patterns in the Mediterranean deep-water alga Cystoseira zosteroides. Mar. Biol. 162, 1165–1174 (2015).CAS 

    Google Scholar 
    Vadas, R. L., Johnson, S. & Norton, T. A. Recruitment and mortality of early post-settlement stages of benthic algae. Br. Phycol. J. 27, 331–351 (1992).
    Google Scholar 
    Koch, M., Bowes, G., Ross, C. & Zhang, X.-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19, 103–132 (2013).ADS 

    Google Scholar 
    Shih, P. M. et al. Biochemical characterization of predicted Precambrian RuBisCO. Nat. Commun. 7, 10382 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cornwall, C. E. et al. Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Sci. Rep. 7, 46297 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hepburn, C. D. et al. Diversity of carbon use strategies in a kelp forest community: Implications for a high CO2 ocean. Glob. Change Biol. 17, 2488–2497 (2011).ADS 

    Google Scholar 
    Porzio, L., Buia, M. C. & Hall-Spencer, J. M. Effects of ocean acidification on macroalgal communities. J. Exp. Mar. Biol. Ecol. 400, 278–287 (2011).CAS 

    Google Scholar 
    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 

    Google Scholar 
    Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms: Biological responses to ocean acidification. Ecol. Lett. 13, 1419–1434 (2010).PubMed 

    Google Scholar 
    Rindi, F. et al. Coralline algae in a changing Mediterranean Sea: How can we predict their future, if we do not know their present?. Front. Mar. Sci. 6, 723 (2019).
    Google Scholar 
    James, R. K., Hepburn, C. D., Cornwall, C. E., McGraw, C. M. & Hurd, C. L. Growth response of an early successional assemblage of coralline algae and benthic diatoms to ocean acidification. Mar. Biol. 161, 1687–1696 (2014).CAS 

    Google Scholar 
    Comeau, S. & Cornwall, C. E. Contrasting effects of ocean acidification on coral reef “animal forests” versus seaweed “kelp forests.” In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds Rossi, S. et al.) 1–25 (Springer International Publishing, 2016) https://doi.org/10.1007/978-3-319-17001-5_29-1.Chapter 

    Google Scholar 
    Airoldi, L. Effects of disturbance, life histories, and overgrowth on coexistence of algal crusts and turfs. Ecology 81, 798–814 (2000).
    Google Scholar 
    Asnaghi, V. et al. Colonisation processes and the role of coralline algae in rocky shore community dynamics. J. Sea Res. 95, 132–138 (2015).ADS 

    Google Scholar 
    Bulleri, F., Bertocci, I. & Micheli, F. Interplay of encrusting coralline algae and sea urchins in maintaining alternative habitats. Mar. Ecol. Prog. Ser. 243, 101–109 (2002).ADS 

    Google Scholar 
    Villas Bôas, A. B. & Figueiredo, M. A. D. O. Are anti-fouling effects in coralline algae species specific?. Braz. J. Oceanogr. 52, 11–18 (2004).
    Google Scholar 
    Bulleri, F., Benedetti-Cecchi, L., Acunto, S., Cinelli, F. & Hawkins, S. J. The influence of canopy algae on vertical patterns of distribution of low-shore assemblages on rocky coasts in the northwest Mediterranean. J. Exp. Mar. Biol. Ecol. 267, 89–106 (2002).
    Google Scholar 
    Maggi, E., Bertocci, I., Vaselli, S. & Benedetti-Cecchi, L. Connell and Slatyer’s models of succession in the biodiversity era. Ecology 92, 1399–1406 (2011).CAS 
    PubMed 

    Google Scholar 
    Irving, A. D., Connell, S. D., Johnston, E. L., Pile, A. J. & Gillanders, B. M. The response of encrusting coralline algae to canopy loss: An independent test of predictions on an Antarctic coast. Mar. Biol. 147, 1075–1083 (2005).
    Google Scholar 
    Irving, A. D., Connell, S. D. & Elsdon, T. S. Effects of kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae. J. Exp. Mar. Biol. Ecol. 310, 1–12 (2004).
    Google Scholar 
    Melville, A. J. & Connell, S. D. Experimental effects of kelp canopies on subtidal coralline algae. Austral. Ecol. 26, 102–108 (2001).
    Google Scholar 
    Breitburg, D. L. Residual effects of grazing: Inhibition of competitor recruitment by encrusting coralline algae. Ecology 65, 1136–1143 (1984).
    Google Scholar 
    Bulleri, F., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J. Facilitation and the niche: Implications for coexistence, range shifts and ecosystem functioning. Funct. Ecol. 30, 70–78 (2016).
    Google Scholar 
    van der Heide, T., Angelini, C., de Fouw, J. & Eklöf, J. S. Facultative mutualisms: A double-edged sword for foundation species in the face of anthropogenic global change. Ecol. Evol. 11, 29–44 (2021).PubMed 

    Google Scholar 
    Molinari-Novoa, E. A. & Guiry, E. Reinstatement of the genera Gongolaria Boehmer and Ericaria Stackhouse (Sargassaceae, Phaeophyceae). Notulae Algarum 1–10 (2020).Celis-Plá, P. S. M., Martinez, B., Korbee, N., Hall-Spencer, J. M. & Figueroa, F. L. Ecophysiological responses to elevated CO2 and temperature in Cystoseira tamariscifolia (Phaeophyceae). Clim. Change 142, 67–81 (2017).ADS 

    Google Scholar 
    Falace, A. et al. Is the South-Mediterranean canopy-forming Ericaria giacconei (= Cystoseira hyblaea) a loser from ocean warming?. Front. Mar. Sci. 8, 1758 (2021).
    Google Scholar 
    Hernández, C. A., Sangil, C., Fanai, A. & Hernández, J. C. Macroalgal response to a warmer ocean with higher CO2 concentration. Mar. Environ. Res. 136, 99–105 (2018).PubMed 

    Google Scholar 
    Falace, A., Kaleb, S., Fuente, G. D. L., Asnaghi, V. & Chiantore, M. Ex situ cultivation protocol for Cystoseira amentacea var. stricta (Fucales, Phaeophyceae) from a restoration perspective. PLoS ONE 13, e0193011 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bevilacqua, S. et al. Climatic anomalies may create a long-lasting ecological phase shift by altering the reproduction of a foundation species. Ecology 100, 1–4 (2019).
    Google Scholar 
    Savonitto, G. et al. Addressing reproductive stochasticity and grazing impacts in the restoration of a canopy-forming brown alga by implementing mitigation solutions. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 1611–1623 (2021).
    Google Scholar 
    Mangialajo, L. et al. Zonation patterns and interspecific relationships of fucoids in microtidal environments. J. Exp. Mar. Biol. Ecol. 412, 72–80 (2012).
    Google Scholar 
    Verlaque, M., Boudouresque, C.-F. & Perret-Boudouresque, M. Mediterranean seaweeds listed as threatened under the Barcelona Convention: A critical analysis. Sci. Rep. Port-Cros Natl. Park. 33, 179–214 (2019).
    Google Scholar 
    Benedetti-Cecchi, L. & Cinelli, F. Effects of canopy cover, herbivores and substratum type on patterns of Cystoseira spp. settlement and recruitment in littoral rockpools. Mar. Ecol. Prog. Ser. 90, 183–191 (1992).ADS 

    Google Scholar 
    Fuente, G. D. L., Chiantore, M., Asnaghi, V., Kaleb, S. & Falace, A. First ex situ outplanting of the habitat-forming seaweed Cystoseira amentacea var. stricta from a restoration perspective. PeerJ 7, e7290 (2019).
    Google Scholar 
    Orlando-Bonaca, M. et al. First restoration experiment for Gongolaria barbata in Slovenian coastal waters. What can go wrong?. Plants 10, 239 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Christie, H. et al. Shifts between sugar kelp and turf algae in Norway: Regime shifts or fluctuations between different opportunistic seaweed species?. Front. Mar. Sci. 6, 72 (2019).
    Google Scholar 
    Orlando-Bonaca, M., Pitacco, V. & Lipej, L. Loss of canopy-forming algal richness and coverage in the northern Adriatic Sea. Ecol. Indic. 125, 107501 (2021).
    Google Scholar 
    Thibaut, T., Blanfune, A., Boudouresque, C.-F. & Verlaque, M. Decline and local extinction of Fucales in French Riviera: The harbinger of future extinctions?. Mediterr. Mar. Sci. 16, 206–224 (2015).
    Google Scholar 
    Thibaut, T., Pinedo, S., Torras, X. & Ballesteros, E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Albères coast (France, North-western Mediterranean). Mar. Pollut. Bull. 50, 1472–1489 (2005).CAS 
    PubMed 

    Google Scholar 
    Leal, P. P. et al. Copper pollution exacerbates the effects of ocean acidification and warming on kelp microscopic early life stages. Sci. Rep. 8, 14763 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernández, P. A., Navarro, J. M., Camus, C., Torres, R. & Buschmann, A. H. Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: A physiological and molecular approach. Sci. Rep. 11, 2510 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Lind, A. C. & Konar, B. Effects of abiotic stressors on kelp early life-history stages. Algae 32, 223–233 (2017).CAS 

    Google Scholar 
    Fernández, P. A. et al. Nitrogen sufficiency enhances thermal tolerance in habitat-forming kelp: Implications for acclimation under thermal stress. Sci. Rep. 10, 3186 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Celis-Plá, P. S. M. et al. Macroalgal responses to ocean acidification depend on nutrient and light levels. Front. Mar. Sci. 2, 26 (2015).
    Google Scholar 
    Mancuso, F. P. et al. Influence of ambient temperature on the photosynthetic activity and phenolic content of the intertidal Cystoseira compressa along the Italian coastline. J. Appl. Phycol. 31, 3069–3076 (2019).CAS 

    Google Scholar 
    Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).
    Google Scholar 
    Vergés, A. et al. Tropical rabbitfish and the deforestation of a warming temperate sea. J. Ecol. 102, 1518–1527 (2014).
    Google Scholar 
    Gaitán-Espitia, J. D. et al. Interactive effects of elevated temperature and pCO2 on early-life-history stages of the giant kelp Macrocystis pyrifera. J. Exp. Mar. Biol. Ecol. 457, 51–58 (2014).
    Google Scholar 
    Leal, P. P., Hurd, C. L., Fernández, P. A. & Roleda, M. Y. Ocean acidification and kelp development: Reduced pH has no negative effects on meiospore germination and gametophyte development of Macrocystis pyrifera and Undaria pinnatifida. J. Phycol. 53, 557–566 (2017).CAS 
    PubMed 

    Google Scholar 
    Roleda, M. Y., Morris, J. N., McGraw, C. M. & Hurd, C. L. Ocean acidification and seaweed reproduction: Increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Glob. Change Biol. 18, 854–864 (2011).ADS 

    Google Scholar 
    Zhang, X. et al. Elevated CO2 concentrations promote growth and photosynthesis of the brown alga Saccharina japonica. J. Appl. Phycol. https://doi.org/10.1007/s10811-020-02108-1 (2020).Article 

    Google Scholar 
    Falkenberg, L. J., Russell, B. D. & Connell, S. D. Contrasting resource limitations of marine primary producers: Implications for competitive interactions under enriched CO2 and nutrient regimes. Oecologia 172, 575–583 (2013).ADS 
    PubMed 

    Google Scholar 
    Nagelkerken, I., Russell, B. D., Gillanders, B. M. & Connell, S. D. Ocean acidification alters fish populations indirectly through habitat modification. Nat. Clim. Change 6, 89–93 (2016).ADS 
    CAS 

    Google Scholar 
    Connell, S. D. & Russell, B. D. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B Biol. Sci. 277, 1409–1415 (2010).
    Google Scholar 
    Cornwall, C. E., Comeau, S. & McCulloch, M. T. Coralline algae elevate pH at the site of calcification under ocean acidification. Glob. Change Biol. 23, 4245–4256 (2017).ADS 

    Google Scholar 
    Martin, S. & Gattuso, J.-P. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob. Change Biol. 15, 2089–2100 (2009).ADS 

    Google Scholar 
    Cornwall, C. E. et al. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE 9, e97235 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gefen-Treves, S. et al. The microbiome associated with the reef builder Neogoniolithon sp. in the eastern Mediterranean. Microorganisms 9, 1374 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, C. R. & Mann, K. H. The crustose coralline alga, Phymatolithon Foslie, inhibits the overgrowth of seaweeds without relying on herbivores. J. Exp. Mar. Biol. Ecol. 96, 127–146 (1986).
    Google Scholar 
    Keats, D. W., Knight, M. A. & Pueschel, C. M. Antifouling effects of epithallial shedding in three crustose coralline algae (Rhodophyta, Coralinales) on a coral reef. J. Exp. Mar. Biol. Ecol. 213, 281–293 (1997).
    Google Scholar 
    Mancuso, F., D’Hondt, S., Willems, A., Airoldi, L. & Clerck, O. Diversity and temporal dynamics of the epiphytic bacterial communities associated with the canopy-forming seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin. Front. Microbiol. 7, 476 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The ups and downs of a canopy-forming seaweed over a span of more than one century. Sci. Rep. 9, 1–10 (2019).
    Google Scholar 
    Cebrian, E. et al. A roadmap for the restoration of Mediterranean macroalgal forests. Front. Mar. Sci. 8, 1456 (2021).
    Google Scholar 
    Gianni, F. et al. Conservation and restoration of marine forests in the Mediterranean Sea and the potential role of Marine Protected Areas. Adv. Oceanogr. Limnol. 4, 83–101 (2013).
    Google Scholar 
    Gorman, D. & Connell, S. D. Recovering subtidal forests in human-dominated landscapes. J. Appl. Ecol. 46, 1258–1265 (2009).
    Google Scholar 
    Riquet, F. et al. Highly restricted dispersal in habitat-forming seaweed may impede natural recovery of disturbed populations. Sci. Rep. 11, 16792 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Halpern, B. S., McLeod, K. L., Rosenberg, A. A. & Crowder, L. B. Managing for cumulative impacts in ecosystem-based management through ocean zoning. Ocean Coast. Manag. 51, 203–211 (2008).
    Google Scholar 
    Verdura, J., Sales, M., Ballesteros, E., Cefalì, M. E. & Cebrian, E. Restoration of a canopy-forming alga based on recruitment enhancement: Methods and long-term success assessment. Front. Plant Sci. 9, 1832 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).ADS 
    CAS 

    Google Scholar 
    Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to Best Practices for Ocean CO2 Measurements. https://repository.oceanbestpractices.org/handle/11329/249 (2007).Spencer Davies, P. Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar. Biol. 101, 389–395. https://doi.org/10.1007/BF00428135 (1989).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. ArXiv14065823 Stat (2015).R: The R Project for Statistical Computing. https://www.r-project.org/.Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, 2018).
    Google Scholar 
    Lenth, R. V. et al. emmeans: Estimated Marginal Means, aka Least-Squares Means (2022). More

  • in

    Towards a unified theory of plant photosynthesis and hydraulics

    Raschke, K., Monteith, J. L. & Weatherley, P. E. How stomata resolve the dilemma of opposing priorities. Phil. Trans. R. Soc. Lond. B 273, 551–560 (1976).Article 
    CAS 

    Google Scholar 
    Brodribb, T. J. & Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brodribb, T. J., Bowman, D. J. M. S., Nichols, S., Delzon, S. & Burlett, R. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol. 188, 533–542 (2010).Article 
    PubMed 

    Google Scholar 
    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Keeling, R. F. et al. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1619240114 (2017).Guerrieri, R. et al. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc. Natl Acad. Sci. USA 116, 16909–16914 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).Article 
    PubMed 

    Google Scholar 
    McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).Article 

    Google Scholar 
    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).Article 
    CAS 

    Google Scholar 
    Damour, G., Simonneau, T., Cochard, H. & Urban, L. An overview of models of stomatal conductance at the leaf level. Plant Cell Environ. 33, 1419–1438 (2010).PubMed 

    Google Scholar 
    Wang, Y., Sperry, J. S., Anderegg, W. R. L., Venturas, M. D. & Trugman, A. T. A theoretical and empirical assessment of stomatal optimization modeling. New Phytol. 227, 311–325 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Anderegg, W. R. L. et al. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecol. Lett. 21, 968–977 (2018).Article 
    PubMed 

    Google Scholar 
    Venturas, M. D. et al. A stomatal control model based on optimization of carbon gain versus hydraulic risk predicts aspen sapling responses to drought. New Phytol. 220, 836–850 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sabot, M. E. B. et al. Plant profit maximization improves predictions of European forest responses to drought. New Phytol. 226, 1638–1655 (2020).Article 
    PubMed 

    Google Scholar 
    Eller, C. B. et al. Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. New Phytol. 226, 1622–1637 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hickler, T., Prentice, I. C., Smith, B., Sykes, M. T. & Zaehle, S. Implementing plant hydraulic architecture within the LPJ Dynamic Global Vegetation Model. Glob. Ecol. Biogeogr. 15, 567–577 (2006).Article 

    Google Scholar 
    Bonan, G. B., Williams, M., Fisher, R. A. & Oleson, K. W. Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum. Geosci. Model Dev. 7, 2193–2222 (2014).Article 

    Google Scholar 
    Christoffersen, B. O. et al. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro). Geosci. Model Dev. 9, 4227–4255 (2016).Article 

    Google Scholar 
    Kennedy, D. et al. Implementing plant hydraulics in the Community Land Model, Version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).Article 

    Google Scholar 
    Cowan, I. R. & Farquhar, G. D. Stomatal function in relation to leaf metabolism and environment. Symp. Soc. Exp. Biol. 31, 471–505 (1977).CAS 
    PubMed 

    Google Scholar 
    Wolf, A., Anderegg, W. R. L. & Pacala, S. W. Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proc. Natl Acad. Sci. USA 113, E7222–E7230 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sperry, J. S. et al. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant Cell Environ. 40, 816–830 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bartlett, M. K., Detto, M. & Pacala, S. W. Predicting shifts in the functional composition of tropical forests under increased drought and CO2 from trade-offs among plant hydraulic traits. Ecol. Lett. 22, 67–77 (2019).Article 
    PubMed 

    Google Scholar 
    Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).Article 
    PubMed 

    Google Scholar 
    Wright, I. J., Reich, P. B. & Westoby, M. Least‐cost input mixtures of water and nitrogen for photosynthesis. Am. Nat.161, 98–111 (2003).Article 
    PubMed 

    Google Scholar 
    Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maire, V. et al. The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS ONE 7, e38345 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 218, 1430–1449 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stocker, B. D. et al. P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 13, 1545–1581 (2020).Article 

    Google Scholar 
    Lavergne, A. et al. Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle. New Phytol. 225, 2484–2497 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sperry, J. S. & Love, D. M. What plant hydraulics can tell us about responses to climate-change droughts. New Phytol. 207, 14–27 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, J.-L., Reynolds, J. F., Harley, P. C. & Tenhunen, J. D. Coordination theory of leaf nitrogen distribution in a canopy. Oecologia 93, 63–69 (1993).Article 
    PubMed 

    Google Scholar 
    Buckley, T. N., John, G. P., Scoffoni, C. & Sack, L. How does leaf anatomy influence water transport outside the xylem? Plant Physiol. 168, 1616–1635 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scoffoni, C. et al. Outside-xylem vulnerability, not xylem embolism, controls leaf hydraulic decline during dehydration. Plant Physiol. 173, 1197–1210 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carminati, A. & Javaux, M. Soil rather than xylem vulnerability controls stomatal response to drought. Trends Plant Sci. 25, 868–880 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Klein, T. et al. Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs. Ecol. Res. 33, 839–855 (2018).CAS 

    Google Scholar 
    Rodriguez-Dominguez, C. M. & Brodribb, T. J. Declining root water transport drives stomatal closure in olive under moderate water stress. New Phytol. 225, 126–134 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sack, L. & Holbrook, N. M. Leaf hydraulics. Annu. Rev. Plant Biol. 57, 361–381 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bourbia, I., Pritzkow, C. & Brodribb, T. J. Herb and conifer roots show similar high sensitivity to water deficit. Plant Physiol. 186, 1908–1918 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W. G. & Prentice, I. C. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agric. Meteorol. 182–183, 204–214 (2013).Article 

    Google Scholar 
    Kanechi, M., Uchida, N., Yasuda, T. & Yamaguchi, T. Non-stomatal inhibition associated with inactivation of rubisco in dehydrated coffee leaves under unshaded and shaded conditions. Plant Cell Physiol. 37, 455–460 (1996).Article 
    CAS 

    Google Scholar 
    Salmon, Y. et al. Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees. New Phytol. 226, 690–703 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dong, N. et al. Components of leaf-trait variation along environmental gradients. New Phytol. 228, 82–94 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Martínez‐Vilalta, J., Poyatos, R., Aguadé, D., Retana, J. & Mencuccini, M. A new look at water transport regulation in plants. New Phytol. 204, 105–115 (2014).Article 
    PubMed 

    Google Scholar 
    Bartlett, M. K., Klein, T., Jansen, S., Choat, B. & Sack, L. The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proc. Natl Acad. Sci. USA 113, 13098–13103 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brodribb, T. J., Holbrook, N. M., Edwards, E. J. & Gutiérrez, M. V. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ. 26, 443–450 (2003).Article 

    Google Scholar 
    Martin‐StPaul, N., Delzon, S. & Cochard, H. Plant resistance to drought depends on timely stomatal closure. Ecol. Lett. 20, 1437–1447 (2017).Article 
    PubMed 

    Google Scholar 
    Skelton, R. P. et al. Low vulnerability to xylem embolism in leaves and stems of North American oaks. Plant Physiol. 177, 1066–1077 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dewar, R. et al. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytol. 217, 571–585 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hölttä, T., Lintunen, A., Chan, T., Mäkelä, A. & Nikinmaa, E. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source–sink flux. Tree Physiol. 37, 851–868 (2017).Article 
    PubMed 

    Google Scholar 
    Pivovaroff, A. L., Sack, L. & Santiago, L. S. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis. New Phytol. 203, 842–850 (2014).Article 
    PubMed 

    Google Scholar 
    Boyer, J. S., Wong, S. C. & Farquhar, G. D. CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials. Plant Physiol. 114, 185–191 (1997).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deans, R. M., Brodribb, T. J., Busch, F. A. & Farquhar, G. D. Optimization can provide the fundamental link between leaf photosynthesis, gas exchange and water relations. Nat. Plants 6, 1116–1125 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhou, S.-X., Medlyn, B. E. & Prentice, I. C. Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species. Ann. Bot. 117, 133–144 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rungwattana, K. et al. Trait evolution in tropical rubber (Hevea brasiliensis) trees is related to dry season intensity. Funct. Ecol. 32, 2638–2651 (2018).Article 

    Google Scholar 
    Dybzinski, R., Farrior, C., Wolf, A., Reich, P. B. & Pacala, S. W. Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual-based model and quantitative comparisons to data. Am. Nat. 177, 153–166 (2011).Article 
    PubMed 

    Google Scholar 
    Hikosaka, K. & Anten, N. P. R. An evolutionary game of leaf dynamics and its consequences for canopy structure. Funct. Ecol. 26, 1024–1032 (2012).Article 

    Google Scholar 
    Franklin, O. et al. Organizing principles for vegetation dynamics. Nat. Plants 6, 444–453 (2020).Article 
    PubMed 

    Google Scholar 
    Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).Article 

    Google Scholar 
    Jasechko, S. et al. Terrestrial water fluxes dominated by transpiration. Nature 496, 347–350 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M. & Guan, K. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytol. 212, 80–95 (2016).Article 
    PubMed 

    Google Scholar 
    Wang, H. et al. Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Glob. Change Biol. 26, 2573–2583 (2020).Article 

    Google Scholar 
    Papastefanou, P. et al. A dynamic model for strategies and dynamics of plant water-potential regulation under drought conditions. Front. Plant Sci. 11, 373 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grieu, P., Guehl, J. M. & Aussenac, G. The effects of soil and atmospheric drought on photosynthesis and stomatal control of gas exchange in three coniferous species. Physiol. Plant. 73, 97–104 (1988).Article 

    Google Scholar 
    Liu, F., Andersen, M. N., Jacobsen, S.-E. & Jensen, C. R. Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Environ. Exp. Bot. 54, 33–40 (2005).Article 
    CAS 

    Google Scholar 
    Tezara, W., Driscoll, S. & Lawlor, D. W. Partitioning of photosynthetic electron flow between CO2 assimilation and O2 reduction in sunflower plants under water deficit. Photosynthetica 46, 127–134 (2008).Article 
    CAS 

    Google Scholar 
    Liu, C.-C. et al. Influence of drought intensity on the response of six woody karst species subjected to successive cycles of drought and rewatering. Physiol. Plant. 139, 39–54 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Posch, S. & Bennett, L. T. Photosynthesis, photochemistry and antioxidative defence in response to two drought severities and with re-watering in Allocasuarina luehmannii. Plant Biol. 11, 83–93 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jiang, M., Kelly, J. W. G., Atwell, B. J., Tissue, D. T. & Medlyn, B. E. Drought by CO2 interactions in trees: a test of the water savings mechanism. New Phytol. 230, 1421–1434 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ennajeh, M., Tounekti, T., Vadel, A. M., Khemira, H. & Cochard, H. Water relations and drought-induced embolism in olive (Olea europaea) varieties ‘Meski’ and ‘Chemlali’ during severe drought. Tree Physiol. 28, 971–976 (2008).Article 
    PubMed 

    Google Scholar 
    Peguero-Pina, J. J., Sancho-Knapik, D., Morales, F., Flexas, J. & Gil-Pelegrín, E. Differential photosynthetic performance and photoprotection mechanisms of three Mediterranean evergreen oaks under severe drought stress. Funct. Plant Biol. 36, 453–462 (2009).Article 
    PubMed 

    Google Scholar 
    Liu, C.-C. et al. Exploitation of patchy soil water resources by the clonal vine Ficus tikoua in karst habitats of southwestern China. Acta Physiol. Plant. 33, 93–102 (2011).Article 

    Google Scholar 
    Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. 18, 339–355 (1995).Article 
    CAS 

    Google Scholar 
    Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).Article 

    Google Scholar 
    Brodribb, T. et al. Linking xylem network failure with leaf tissue death. New Phytol. 232, 68–79 (2021).Article 
    PubMed 

    Google Scholar 
    Klein, T. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct. Ecol. 28, 1313–1320 (2014).Article 

    Google Scholar  More

  • in

    Ecological and evolutionary trends of body size in Pristimantis frogs, the world's most diverse vertebrate genus

    LaBarbera, M. The evolution and ecology of body size. In Patterns and Processes in the History of Life (eds Raup, D. M. & Jablonski, D.) 69–98 (Springer, 1986).
    Google Scholar 
    Peters, R. H. & Peters, R. H. The Ecological Implications of Body Size Vol. 2 (Cambridge University Press, 1986).
    Google Scholar 
    Klingenberg, C. P. & Spence, J. On the role of body size for life-history evolution. Ecol. Entomol. 22(1), 55–68 (1997).
    Google Scholar 
    Blanckenhorn, W. U. The evolution of body size: What keeps organisms small?. Q. Rev. Biol. 75(4), 385–407 (2000).CAS 
    PubMed 

    Google Scholar 
    Sibly, R. M. & Brown, J. H. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl. Acad. Sci. USA 104(45), 17707–17712 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt-Nielsen, K. Scaling in biology: The consequences of size. J. Exp. Zool. 194(1), 287–307 (1975).CAS 
    PubMed 

    Google Scholar 
    Calder, W. A. Size, Function, and Life History (Courier Corporation, 1996).
    Google Scholar 
    Gould, S. J. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41(4), 587–638 (1966).CAS 
    PubMed 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293(5538), 2248–2251 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gearty, W. & Payne, J. L. Physiological constraints on body size distributions in Crocodyliformes. Evolution 74(2), 245–255 (2020).PubMed 

    Google Scholar 
    Maurer, B. A., Brown, J. H. & Rusler, R. D. The micro and macro in body size evolution. Evolution 46(4), 939–953 (1992).PubMed 

    Google Scholar 
    Hone, D. W. & Benton, M. J. The evolution of large size: How does Cope’s Rule work?. Trends Ecol. Evol. 20(1), 4–6 (2005).PubMed 

    Google Scholar 
    Reeve, J. P. & Fairbairn, D. J. Predicting the evolution of sexual size dimorphism. J. Evol. Biol. 14(2), 244–254 (2001).
    Google Scholar 
    Blanckenhorn, W. U. Behavioral causes and consequences of sexual size dimorphism. Ethology 111(11), 977–1016 (2005).
    Google Scholar 
    Wu, H., Jiang, T., Huang, X. & Feng, J. Patterns of sexual size dimorphism in horseshoe bats: Testing Rensch’s rule and potential causes. Sci. Rep. 8(1), 1–13 (2018).ADS 

    Google Scholar 
    Cox, R. M., Butler, M. A. & John-Alder, H. B. The evolution of sexual size dimorphism in reptiles. In Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (eds Fairbairn, D. J. et al.) 38–49 (Oxford University Press, 2007).
    Google Scholar 
    Stillwell, R. C., Blanckenhorn, W. U., Teder, T., Davidowitz, G. & Fox, C. W. Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: From physiology to evolution. Annu. Rev. Entomol. 55, 227–245 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rensch, B. Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse. Bonn. Zool. Beitr. 1, 58–69 (1950).
    Google Scholar 
    Rensch, B. Evolution Above the Species Level (Columbia University Press, 1960).
    Google Scholar 
    Shine, R. Ecological causes for the evolution of sexual dimorphism: A review of the evidence. Q. Rev. Biol. 64(4), 419–461 (1989).CAS 
    PubMed 

    Google Scholar 
    Portik, D. M., Blackburn, D. C. & McGuire, J. A. Macroevolutionary patterns of sexual size dimorphism among African tree frogs (Family: Hyperoliidae). J. Hered. 111(4), 379–391 (2020).PubMed 

    Google Scholar 
    Ceballos, C. P., Adams, D. C., Iverson, J. B. & Valenzuela, N. Phylogenetic patterns of sexual size dimorphism in turtles and their implications for Rensch’s rule. Evol. Biol. 40(2), 194–208 (2013).
    Google Scholar 
    Amado, T. F., Martinez, P. A., Pincheira-Donoso, D. & Olalla-Tárraga, M. Á. Body size distributions of anurans are explained by diversification rates and the environment. Glob. Ecol. Biogeogr. 30(1), 154–164 (2021).
    Google Scholar 
    Starostová, Z., Kubička, L. & Kratochvíl, L. Macroevolutionary pattern of sexual size dimorphism in geckos corresponds to intraspecific temperature-induced variation. J. Evol. Biol. 23(4), 670–677 (2010).PubMed 

    Google Scholar 
    Herczeg, G., Gonda, A. & Merilä, J. Rensch’s rule inverted–female-driven gigantism in nine-spined stickleback Pungitius pungitius. J. Anim. Ecol. 79(3), 581–588 (2010).PubMed 

    Google Scholar 
    Liao, W. B. & Chen, W. Inverse Rensch’s rule in a frog with female-biased sexual size dimorphism. Naturwissenschaften 99(5), 427–431 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cooper, M. I. Sexual size dimorphism and the rejection of Rensch’s rule in Diplopoda (Arthropoda). J. Entomol. Zool. Stud. 6(1), 1582–1587 (2018).
    Google Scholar 
    Cheng, R. C. & Kuntner, M. Phylogeny suggests nondirectional and isometric evolution of sexual size dimorphism in argiopine spiders. Evolution 68(10), 2861–2872 (2014).PubMed 

    Google Scholar 
    Webb, T. J. & Freckleton, R. P. Only half right: Species with female-biased sexual size dimorphism consistently break Rensch’s rule. PLoS ONE 2(9), e897 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaston, K. J., Chown, S. L. & Evans, K. L. Ecogeographical rules: Elements of a synthesis. J. Biogeogr. 35(3), 483–500 (2008).
    Google Scholar 
    Olalla-Tárraga, M. Á. & Rodríguez, M. Á. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: Anurans follow Bergmann’s rule, urodeles its converse. Glob. Ecol. Biogeogr. 16(5), 606–617 (2007).
    Google Scholar 
    Olalla-Tárraga, M. Á., Diniz-Filho, J. A. F., Bastos, R. P. & Rodríguez, M. Á. Geographic body size gradients in tropical regions: Water deficit and anuran body size in the Brazilian Cerrado. Ecography 32(4), 581–590 (2009).
    Google Scholar 
    Gouveia, S. F. & Correia, I. Geographical clines of body size in terrestrial amphibians: Water conservation hypothesis revisited. J. Biogeogr. 43(10), 2075–2084 (2016).
    Google Scholar 
    Pincheira-Donoso, D., Meiri, S., Jara, M., Olalla-Tárraga, M. Á. & Hodgson, D. J. Global patterns of body size evolution are driven by precipitation in legless amphibians. Ecography 42(10), 1682–1690 (2019).
    Google Scholar 
    Nevo, E. Adaptive color polymorphism in cricket frogs. Evolution 27(3), 353–367 (1973).PubMed 

    Google Scholar 
    Ashton, K. G. Do amphibians follow Bergmann’s rule?. Can. J. Zool. 80(4), 708–716 (2002).MathSciNet 

    Google Scholar 
    Bergmann, C. Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien. 1, 595–708 (1847).
    Google Scholar 
    Olalla-Tárraga, M. Á., Rodríguez, M. Á. & Hawkins, B. A. Broad-scale patterns of body size in squamate reptiles of Europe and North America. J. Biogeogr. 33(5), 781–793 (2006).
    Google Scholar 
    Trullas, S. C., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32(5), 235–245 (2007).
    Google Scholar 
    Rodríguez, M. Á., López-Sañudo, I. L. & Hawkins, B. A. The geographic distribution of mammal body size in Europe. Glob. Ecol. Biogeogr. 15(2), 173–181 (2006).
    Google Scholar 
    Olalla-Tárraga, M. Á., Diniz-Filho, J. A. F., Bastos, R. P. & Rodriguez, M. A. Geographic body size gradients in tropical regions: Water deficit and anuran body size in the Brazilian Cerrado. Ecography 32(4), 581–590 (2009).
    Google Scholar 
    Womack, M. C. & Bell, R. C. Two-hundred million years of anuran body-size evolution in relation to geography, ecology and life history. J. Evol. Biol. 33(10), 1417–1432 (2020).PubMed 

    Google Scholar 
    Frost, D. R. Amphibian Species of the World: An online reference, version 6. http://research.amnh.org/herpetology/amphibia/index.php. Accessed 12 July 2021 (2021).
    Acevedo, A. A., Armesto, O. & Palma, R. E. Two new species of Pristimantis (Anura: Craugastoridae) with notes on the distribution of the genus in northeastern Colombia. Zootaxa 4750(4), 499–523 (2020).
    Google Scholar 
    Heinicke, M. P., Duellman, W. E. & Hedges, S. B. Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proc. Natl. Acad. Sci. USA 104(24), 10092–10097 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pinto-Sánchez, N. R. et al. The great American biotic interchange in frogs: Multiple and early colonization of Central America by the South American genus Pristimantis (Anura: Craugastoridae). Mol. Phylogenet. Evol. 62(3), 954–972 (2012).PubMed 

    Google Scholar 
    Zumel, D., Buckley, D. & Ron, S. R. The Pristimantis trachyblepharis species group, a clade of miniaturized frogs: Description of four new species and insights into the evolution of body size in the genus. Zool. J. Linn. Soc. zlab044 (2021).Pincheira-Donoso, D. et al. The multiple origins of sexual size dimorphism in global amphibians. Glob. Ecol. Biogeogr. 30(2), 443–458 (2021).
    Google Scholar 
    Woolbright, L. L. Sexual selection and size dimorphism in anuran amphibia. Am. Nat. 121(1), 110–119 (1983).
    Google Scholar 
    Nali, R. C., Zamudio, K. R., Haddad, C. F. & Prado, C. P. Size-dependent selective mechanisms on males and females and the evolution of sexual size dimorphism in frogs. Am. Nat. 184(6), 727–740 (2014).PubMed 

    Google Scholar 
    Hill, R. et al. Herpetological husbandry observations on the captive reproduction of gaige’s rain frog Pristimantis gaigeae (Dunn 1931). Herpetol. Rev. 41(4), 465 (2010).
    Google Scholar 
    Rojas-Rivera, A., Cortés-Bedoya, S., Gutiérrez-Cárdenas, P. D. A. & Castellanos, J. M. Pristimantis achatinus (Cachabi robber frog). Parental care and clutch size. Herpetol. Rev. 42, 588–589 (2011).
    Google Scholar 
    Granados-Pérez, Y. & Ramirez-Pinilla, M. P. Reproductive phenology of three species of Pristimantis in an Andean cloud forest. Revista Acad. Colomb. Ci. Exact. 44(173), 1083–1098 (2020).
    Google Scholar 
    Levy, D. L. & Heald, R. Biological scaling problems and solutions in amphibians. Cold Spring Harb. Perspect. Biol. 8(1), a019166 (2016).PubMed Central 

    Google Scholar 
    O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geol. Survey Data Series. 691(10), 4–9 (2012).
    Google Scholar 
    Valenzuela-Sánchez, A., Cunningham, A. A. & Soto-Azat, C. Geographic body size variation in ectotherms: Effects of seasonality on an anuran from the southern temperate forest. Front. Zool. 12(1), 1–10 (2015).
    Google Scholar 
    Parsons, J. J. The northern Andean environment. Mt. Res. Dev. 2(3), 253–264 (1982).
    Google Scholar 
    Navas, C. A., Carvajalino-Fernández, J. M., Saboyá-Acosta, L. P., Rueda-Solano, L. A. & Carvajalino-Fernández, M. A. The body temperature of active amphibians along a tropical elevation gradient: Patterns of mean and variance and inference from environmental data. Funct. Ecol. 27(5), 1145–1154 (2013).
    Google Scholar 
    Swemmer, A. M., Knapp, A. K. & Snyman, H. A. Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. J. Ecol. 95(4), 780–788 (2007).
    Google Scholar 
    Losos, J. B. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles (Univ. of California Press, 2011).
    Google Scholar 
    Pincheira-Donoso, D. & Hunt, J. Fecundity selection theory: Concepts and evidence. Biol. Rev. 92(1), 341–356 (2017).PubMed 

    Google Scholar 
    Morrison, C. & Hero, J. M. Geographic variation in life-history characteristics of amphibians: A review. J. Anim. Ecol. 72(2), 270–279 (2003).
    Google Scholar 
    Morrow, C. B., Ernest, S. M. & Kerkhoff, A. J. Macroevolution of dimensionless life-history metrics in tetrapods. Proc. Royal Soc. B. 288, 20210200 (2021).
    Google Scholar 
    Revell, L. J., Harmon, L. J. & Collar, D. C. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57(4), 591–601 (2008).PubMed 

    Google Scholar 
    Kamilar, J. M. & Cooper, N. Phylogenetic signal in primate behaviour, ecology and life history. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1618), 20120341 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, A. L. & Wiens, J. J. Estimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shifts. Evolution 72(1), 39–53 (2018).PubMed 

    Google Scholar 
    Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4(1), 1–8 (2013).
    Google Scholar 
    Mendoza, A. M., Ospina, O. E., Cárdenas-Henao, H. & García-R, J. C. A likelihood inference of historical biogeography in the world’s most diverse terrestrial vertebrate genus: Diversification of direct-developing frogs (Craugastoridae: Pristimantis) across the Neotropics. Mol. Phylogenet. Evol. 85, 50–58 (2015).PubMed 

    Google Scholar 
    Baker, J., Meade, A., Pagel, M. & Venditti, C. Adaptive evolution toward larger size in mammals. Proc. Natl. Acad. Sci. USA 112(16), 5093–5098 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hariharan, I. K., Wake, D. B. & Wake, M. H. Indeterminate growth: Could it represent the ancestral condition?. Cold Spring Harb. Perspect. Biol. 8(2), a019174 (2016).PubMed Central 

    Google Scholar 
    Amado, T. F., Bidau, C. J. & Olalla-Tárraga, M. Á. Geographic variation of body size in New World anurans: Energy and water in a balance. Ecography 42(3), 456–466 (2019).
    Google Scholar 
    Watters, J. L., Cummings, S. T., Flanagan, R. L. & Siler, C. D. Review of morphometric measurements used in anuran species descriptions and recommendations for a standardized approach. Zootaxa 4072, 477–495 (2016).PubMed 

    Google Scholar 
    Lovich, J. E. & Gibbons, J. W. A review of techniques for quantifying sexual size dimorphism. Growth Dev. Aging. 56, 269–269 (1992).CAS 
    PubMed 

    Google Scholar 
    Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29(6), 1695–1701 (2012).CAS 
    PubMed 

    Google Scholar 
    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7(1), 1–8 (2007).
    Google Scholar 
    Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4(5), e88 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A. FigTree, A Graphical Viewer of Phylogenetic Trees. (2007)Olalla-Tárraga, M. A., Bini, L. M., Diniz-Filho, J. A. & Rodríguez, M. Á. Cross-species and assemblage-based approaches to Bergmann’s rule and the biogeography of body size in Plethodon salamanders of eastern North America. Ecography 33(2), 362–368 (2010).
    Google Scholar 
    QGIS.org. QGIS Geographic Information System. QGIS Association. http://www.qgis.org. Accessed 10 July 2021 (2022).Wei, T. et al. Package ‘corrplot’. Statistician. 56(316), e24 (2017).
    Google Scholar 
    James, F. C. Geographic size variation in birds and its relationship to climate. Ecology 51(3), 365–390 (1970).
    Google Scholar 
    Hawkins, B. A. & Felizola Diniz-Filho, J. A. Beyond Rapoport’s rule: Evaluating range size patterns of New World birds in a two-dimensional framework. Glob. Ecol. Biogeogr. 15(5), 461–469 (2006).
    Google Scholar 
    Eager, C. standardize: Tools for standardizing variables for regression in R. R package version 0.21 (2017).Meireles, J. E., O’Meara, B. & Cavender-Bares, J. Linking leaf spectra to the plant tree of life. In Remote Sensing of Plant Biodiversity (eds Cavender-Bares, J. et al.) 155–172 (Springer, 2010).
    Google Scholar 
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401(6756), 877–884 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pagel, M. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48(3), 612–622 (1999).
    Google Scholar 
    Revell, L. J. Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3(2), 217–223 (2012).
    Google Scholar 
    Revell, L. J. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4(8), 754–759 (2013).
    Google Scholar 
    Rabosky, D. L. et al. BAMM tools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5(7), 701–707 (2014).
    Google Scholar 
    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9(2), e89543 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66(4), 477–498 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence diagnosis and output analysis for MCMC. R News. 6(1), 7–11 (2006).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2021). https://www.R-project.org. Accessed 1 June 2021 (2021).Fairbairn, D. J. Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Annu. Rev. Ecol. Evol. Syst. 28(1), 659–687 (1997).
    Google Scholar 
    Fairbairn, D. J. Allometry for sexual size dimorphism: Testing two hypotheses for Rensch’s rule in the water strider Aquarius remigis. Am. Nat. 166(S4), S69–S84 (2005).PubMed 

    Google Scholar 
    Visser, A. G., Beevers, L. & Patidar, S. Complexity in hydroecological modelling: A comparison of stepwise selection and information theory. River Res. Appl. 34(8), 1045–1056 (2018).
    Google Scholar 
    Calcagno, V. & de Mazancourt, C. glmulti: An R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34(12), 1–29 (2010).
    Google Scholar 
    Callaghan, S., Guilyardi, E., Steenman-Clark, L. & Morgan, M. The METAFOR project. in Earth System Modelling-Volume 1 (Springer, 2013).Garamszegi, L. Z. & Mundry, R. Multimodel-inference in comparative analyses. In Modern Phylogenetic Comparative Methods and THEIR Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 305–331 (Springer Berlin, 2014).
    Google Scholar  More

  • in

    The point of no return for species facing heatwaves

    Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1513–1766 (Cambridge Univ. Press, 2021).
    Google Scholar 
    Hesketh, A. V. & Harley, C. D. G. Glob. Change Biol. https://doi.org/10.1111/gcb.16390 (2022).Article 

    Google Scholar 
    Jørgensen, L. B., Ørsted, M., Malte, H., Wang, T. & Overgaard, J. Nature https://doi.org/10.1038/s41586-022-05334-4 (2022).Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Nature Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Cossins, A. R. & Bowler, K. Temperature Biology of Animals (Chapman & Hall, 1987).
    Google Scholar 
    Dell, A. I., Pawar, S. & Savage, V. M. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).Article 
    PubMed 

    Google Scholar 
    Dillon, M. E. et al. Integr. Comp. Biol. 56, 14–30 (2016).Article 
    PubMed 

    Google Scholar 
    Stillman, J. H. Physiology 34, 86–100 (2019).Article 
    PubMed 

    Google Scholar 
    MacMillan, H. A. J. Exp. Biol. 222, jeb191593 (2019).Article 
    PubMed 

    Google Scholar 
    Kingsolver, J. G. & Umbanhowar, J. J. Exp. Biol. 221, jeb167858 (2018).Article 
    PubMed 

    Google Scholar  More