More stories

  • in

    Relative tree cover does not indicate a lagged Holocene forest response to monsoon rainfall

    arising from J. Cheng et al. Nature Communications https://doi.org/10.1038/s41467-021-22087-2 (2021)Recently, Cheng J. et al.1 cited and simulated the relative percentage tree cover to interpret the ~3000–4000 years lag between tree cover and East Asian Summer Monsoon (EASM) rainfall. They concluded that vegetation feedback has caused a lagged ecosystem response to EASM rainfall during the Holocene (11.7–0 ka). Here, we question the feasibility of using the relative percentage tree cover to measure vegetation feedback to climate. First, the land cover in northern China includes forests, grasslands, and bare land2. Cheng J. et al.1 did not consider the role of bare land in climate feedback models. Absolute land cover, including forest, grassland, and bare land can accurately reveal feedback to climate3. Second, the biome reconstructions they cited represent changes in vegetation type only, whereas the relationship between vegetation type and vegetation cover is altered by many other factors3,4,5. Third, the paper they cited6 averaged the vegetation types on a millennium scale with an interval of 1000 years, so the view that vegetation has a ~3000–4000 years lag in EASM rainfall is not credible as the lag can be enlarged by data resolution. Therefore, absolute vegetation cover, not relative cover, is a prerequisite for studying ecosystem feedback.Our previous work3 was the first to reconstruct the absolute vegetation cover in northern China based on pollen concentrations in two well-dated sediment cores. Using a random forest method, the vegetation cover at Dali Lake in the forest-steppe transition in northern China was determined for the period from 19,000 cal. yr BP to the present with a resolution of approximately 200 years. Han et al.3 showed that tree cover peaked during the early Holocene and it has gradually declined since the middle Holocene. Pollen percentages are widely used in vegetation reconstruction, but they are challenging to analyze because they can be similar in composition, despite being produced by very different flora7,8. This means they represent the relative fractions of vegetation type and not the absolute vegetation cover (Fig. 1A, B). Han et al.3 suggested that pollen concentration data are suitable for the reconstruction of absolute vegetation cover, particularly in arid and semi-arid regions. Dali Lake represents a typical lake in the semi-arid area of northern China. The random forest model showed that the area had a high tree cover during the early Holocene, which suggests that tree cover was a timely response to Holocene monsoon rainfall and there was no time lag at this specific location. Therefore, the data at Dali Lake challenge the conclusion that tree cover has a ~3000–4000 years lag to EASM rainfall.Fig. 1: Trends in pollen percentage, absolute vegetation cover and fire history during the Holocene at Dali Lake, a typical lake in the semi-arid area of northern China.Changes in the percentages of arboreal and non-arboreal pollen (A)3. Reconstructed absolute tree and grass cover (B)3, with gray, yellow, and green shaded areas indicating the standard deviation of 1000 random forest model results for total cover, grass cover, and tree cover, respectively. Normalized fire activity index in the northern region of eastern monsoonal China (C)10. Z-score of transformed charcoal value showing fire activity trend in the temperate steppe of northern China (D)11.Full size imageMoreover, Cheng J. et al.1 used −17 °C as the threshold for tree and grass transition, but this could be an incorrect citation from Bonan et al.9. In the original text by Bonan et al.9, they showed that both temperate deciduous broadleaved trees and C3 grasses have a tolerance of −17 °C for the coldest month for their survival, but this temperature is not the favored threshold for the shift from grasses to trees. Actually, the trend in absolute vegetation cover was mainly driven by summer temperature, annual precipitation, and fire incidents, which is in line with the vegetation-climate relationships at Dali Lake3. That is, higher monsoon rainfall could increase the competitiveness of trees, while increased fire could increase the competitiveness of grasses as grasses are mostly annual and perennial, and they renew faster than trees after a fire. Between 10,000 and 8000 cal. yr BP, monsoon rainfall peaked and there were relatively few fires, which led to a significant increase in absolute tree cover. Since 6500 cal. yr BP, monsoon rainfall decreased and fire increased, resulting in stronger competition by grasses, which has led to an increased grass cover and reduced tree cover3 (Fig. 1B).The impact of secondary disturbances on vegetation dynamics requires careful consideration, particularly the impact of fires on vegetation cover in semi-arid areas of China, even though vegetation growth is strongly constrained by rainfall in this region. Both the normalized fire index in the northern region of eastern monsoonal China10 and the charcoal value in the temperate steppe of northern China11 show a clear antiphase relationship with the absolute forest cover of the Dali Lake region (Fig. 1B, C, D). However, Cheng J. et al.1 did not discuss fire incidence on vegetation evolution in northern China. Fire has occurred frequently through the Holocene10,12 and it plays an important role in vegetation dynamics based on observational evidence13,14. Particularly, fire is considered as a triggering disturbance that can reduce a forest’s resilience to drought under a drying climate during the mid to late Holocene. For Dali Lake, fire and drying climate has co-driven the evolution of vegetation cover since 6500 cal. yr BP3. Moreover, in northern China, data from Daihai Lake and Hulun Nuur Lake also suggest that fire has accelerated the decline of forest cover and the transition from forest to grass during the Holocene13,14. Unfortunately, Cheng J. et al.1 did not discuss the effect of fire when citing and interpreting the observation data, as scale-dependent fires could make the transition between forest and grassland and their interactions variable.In summary, we believe there are three flaws in the data interpretation of Cheng J. et al.1. (1) They contradict the observed evolution of absolute tree cover at Dali Lake in northern China, which is representative of the marginal area of EASM. Relative percentage tree cover cannot accurately reflect a forest’s response and feedback to past climate change. (2) Both temperate deciduous broadleaved trees and C3 grasses have a tolerance of −17 °C for the coldest month for their survival. Thus, −17 °C is not a correct threshold for the shift from grasses to trees. (3) They contradict the ecological theories of secondary disturbance on vegetation dynamics. Fire and other secondary disturbances may be crucial to the transition between forest and grassland. Interpretations of vegetation feedback might be biased if these important factors are not fully considered. Based on the evidence, their conclusion that vegetation feedback causes lagged ecosystem response to EASM rainfall during the Holocene could be problematic. More

  • in

    The environmental footprint of global food production

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).Article 
    CAS 

    Google Scholar 
    Godfray, H. C. J. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).Article 

    Google Scholar 
    Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).Article 
    CAS 

    Google Scholar 
    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).Article 

    Google Scholar 
    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).Article 
    CAS 

    Google Scholar 
    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).Article 
    CAS 

    Google Scholar 
    Ellis, E. C., Goldewikj, K. K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).
    Google Scholar 
    Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).Article 
    CAS 

    Google Scholar 
    Rosegrant, M. W., Ringler, C. & Zhu, T. Water for agriculture: maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 34, 205–222 (2009).Article 

    Google Scholar 
    Tubiello, F. N. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 21, 2655–2660 (2015).Article 

    Google Scholar 
    Lee, R. Y., Seitzinger, S. & Mayorga, E. Land-based nutrient loading to LMEs: a global watershed perspective on magnitudes and sources. Environ. Dev. 17, 220–229 (2016).Article 

    Google Scholar 
    Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).Article 
    CAS 

    Google Scholar 
    McIntyre, P. B., Liermann, C. A. R. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).Article 
    CAS 

    Google Scholar 
    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).Article 
    CAS 

    Google Scholar 
    Hilborn, R., Banobi, J., Hall, S. J., Pucylowski, T. & Walsworth, T. E. The environmental cost of animal source foods. Front. Ecol. Environ. 16, 329–335 (2018).Article 

    Google Scholar 
    Parker, R. W. R. et al. Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Change 8, 333–337 (2018).Article 
    CAS 

    Google Scholar 
    Davis, K. F. et al. Meeting future food demand with current agricultural resources. Glob. Environ. Change 39, 125–132 (2016).Article 

    Google Scholar 
    Gephart, J. A. et al. The environmental cost of subsistence: optimizing diets to minimize footprints. Sci. Total Environ. 553, 120–127 (2016).Article 
    CAS 

    Google Scholar 
    Gephart, J. A. et al. Environmental performance of blue foods. Nature 597, 360–365 (2021).Article 
    CAS 

    Google Scholar 
    Halpern, B. S. et al. Putting all foods on the same table: achieving sustainable food systems requires full accounting. Proc. Natl Acad. Sci. USA 116, 18152–18156 (2019).Article 
    CAS 

    Google Scholar 
    Béné, C. et al. Feeding 9 billion by 2050—putting fish back on the menu. Food Secur. 7, 261–274 (2015).Article 

    Google Scholar 
    Tacon, A. G. J. & Metian, M. Fish matters: importance of aquatic foods in human nutrition and global food supply. Rev. Fish. Sci. 21, 22–38 (2013).Article 
    CAS 

    Google Scholar 
    Verones, F., Moran, D., Stadler, K., Kanemoto, K. & Wood, R. Resource footprints and their ecosystem consequences. Sci. Rep. 7, 40743 (2017).Article 
    CAS 

    Google Scholar 
    Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).Article 

    Google Scholar 
    Mekonnen, M. M. & Hoekstra, A. Y. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products (UNESCO-IHE, 2010).Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7, 63–68 (2017).Article 
    CAS 

    Google Scholar 
    Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).Article 
    CAS 

    Google Scholar 
    Amoroso, R. O. et al. Bottom trawl fishing footprints on the world’s continental shelves. Proc. Natl Acad. Sci. USA 115, E10275–E10282 (2018).Article 
    CAS 

    Google Scholar 
    Kuempel, C. D. et al. Integrating life cycle and impact assessments to map food’s cumulative environmental footprint. One Earth 3, 65–78 (2020).Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).Article 
    CAS 

    Google Scholar 
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).Article 

    Google Scholar 
    Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).Article 

    Google Scholar 
    Judd, A. D., Backhaus, T. & Goodsir, F. An effective set of principles for practical implementation of marine cumulative effects assessment. Environ. Sci. Policy 54, 254–262 (2015).Article 

    Google Scholar 
    IPBES Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1, 298–303 (2018).Article 

    Google Scholar 
    FAO The State of World Fisheries and Aquaculture 2020 (FAO, 2020).Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).Article 
    CAS 

    Google Scholar 
    FAOSTAT Database: New Food Balances (FAO, 2020); http://www.fao.org/faostat/en/#data/FBSFAOSTAT Database: Production, Crops (FAO, 2020); http://www.fao.org/faostat/en/#data/QCDong, F. et al. Assessing sustainability and improvements in US Midwestern soybean production systems using a PCA–DEA approach. Renew. Agric. Food Syst. 31, 524–539 (2016).Article 

    Google Scholar 
    Watson, R. A. & Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Policy 93, 171–177 (2018).Article 

    Google Scholar 
    Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).Article 

    Google Scholar 
    Clark, M. & Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12, 064016 (2017).Article 

    Google Scholar 
    Balmford, B., Green, R. E., Onial, M., Phalan, B. & Balmford, A. How imperfect can land sparing be before land sharing is more favourable for wild species? J. Appl. Ecol. 56, 73–84 (2019).Article 

    Google Scholar 
    Luskin, M. S., Lee, J. S. H., Edwards, D. P., Gibson, L. & Potts, M. D. Study context shapes recommendations of land-sparing and sharing; a quantitative review. Glob. Food Secur. 16, 29–35 (2018).Article 

    Google Scholar 
    Williams, D. R., Phalan, B., Feniuk, C., Green, R. E. & Balmford, A. Carbon storage and land-use strategies in agricultural landscapes across three continents. Curr. Biol. 28, 2500–2505.e4 (2018).Article 
    CAS 

    Google Scholar 
    Paul, B. G. & Vogl, C. R. Impacts of shrimp farming in Bangladesh: challenges and alternatives. Ocean Coastal Manage. 54, 201–211 (2011).Article 

    Google Scholar 
    Ahmed, N., Cheung, W. W. L., Thompson, S. & Glaser, M. Solutions to blue carbon emissions: shrimp cultivation, mangrove deforestation and climate change in coastal Bangladesh. Mar. Policy 82, 68–75 (2017).Article 

    Google Scholar 
    FAOSTAT Database: Livestock Primary (FAO, 2020); http://www.fao.org/faostat/en/#data/QLRamankutty, N., Ricciardi, V., Mehrabi, Z. & Seufert, V. Trade-offs in the performance of alternative farming systems. Agric. Econ. 50, 97–105 (2019).Article 

    Google Scholar 
    FAOSTAT Database: Detailed Trade Matrix (FAO, 2020); http://www.fao.org/faostat/en/#data/TMFisheries & Aquaculture—Fishery Statistical Collections—Fishery Commodities and Trade (FAO, 2019); http://www.fao.org/fishery/statistics/global-commodities-production/enInternational Food Policy Research Institute. Global spatially-disaggregated crop production statistics data for 2010, version 2.0. Harvard Dataverse https://doi.org/10.7910/DVN/PRFF8V (2019).Clawson, G. et al. Mapping the spatial distribution of global mariculture production. Aquaculture 553, 738066 (2022).Article 

    Google Scholar 
    Petz, K. et al. Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models. Glob. Environ. Change 29, 223–234 (2014).Article 

    Google Scholar 
    Global Fishing Watch. Fishing effort. Fleet daily, v2 100th degree. (2021). https://globalfishingwatch.org/dataset-and-code-fishing-effort/Verdegem, M. C. J., Bosma, R. H. & Verreth, J. A. J. Reducing water use for animal production through aquaculture. Int. J. Water Resour. Dev. 22, 101–113 (2006).Article 

    Google Scholar 
    Bouwman, A. F., Beusen, A. H. W. & Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob. Biogeochem. Cycles 23, GB0A04 (2009).Article 

    Google Scholar 
    Bouwman, A. F., Van Drecht, G. & Van der Hoek, K. W. Nitrogen surface balances in intensive agricultural production systems in different world regions for the period 1970–2030. Pedosphere 15, 137–155 (2005).
    Google Scholar 
    Bouwman, A., Boumans, L. J. M. & Batjes, N. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Glob. Biogeochem. Cycles 16, 8-1–8-14 (2002).Article 

    Google Scholar 
    FAOSTAT Database: Inputs, Fertilizers by Nutrient (FAO, 2020); http://www.fao.org/faostat/en/#data/RFNHeffer, P., Gruere, A. & Roberts, T. Assessment of fertilizer use by crop at the global level 2014–2014/15, International Fertilizer Association (2017).Fertilizer Use by Crop 5th edn (FAO, IFA & IFDC, 2002).Islam, Md. S. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Mar. Pollut. Bull. 50, 48–61 (2005).Article 
    CAS 

    Google Scholar 
    Wang, J., Beusen, A. H. W., Liu, X. & Bouwman, A. F. Aquaculture production is a large, spatially concentrated source of nutrients in Chinese freshwater and coastal seas. Environ. Sci. Technol. 54, 1464–1474 (2020).Article 

    Google Scholar 
    Bouwman, A. F. et al. Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Rev. Fish. Sci. 21, 112–156 (2013).Article 
    CAS 

    Google Scholar 
    Gavrilova, O. et al. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Ch. 10, Intergovernmental Panel on Climate Change (IPCC); Review Editors on Overview: Dario Gómez (Argentina) and William Irving (USA) (2019).Seafood Carbon Emissions Tool, Lisa Max, Robert Parker, Peter Tyedmers, editors; (2020); http://seafoodco2.dal.ca/Hu, Z., Lee, J. W., Chandran, K., Kim, S. & Khanal, S. K. Nitrous oxide (N2O) emission from aquaculture: a review. Environ. Sci. Technol. 46, 6470–6480 (2012).Article 
    CAS 

    Google Scholar 
    IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).Lynch, J., Cain, M., Pierrehumbert, R. & Allen, M. Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environ. Res. Lett. 15, 044023 (2020).Article 
    CAS 

    Google Scholar 
    Global Livestock Environmental Assessment Model, GLEAM, v.2.0.121 (FAO, 2018).Aas, T. S., Ytrestøyl, T. & Åsgård, T. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: an update for 2016. Aquacult. Rep. 15, 100216 (2019).
    Google Scholar 
    Jackson, A. Fish in-fish out (FIFO) explained. Aquacult. Eur. 34, 5–10 (2009).
    Google Scholar 
    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).Article 
    CAS 

    Google Scholar 
    Frazier, M. et al. Global food system pressure data. https://knb.ecoinformatics.org/view/doi:10.5063/F1V69H1B More

  • in

    Contrasting sea ice conditions shape microbial food webs in Hudson Bay (Canadian Arctic)

    Laxon SW, Giles KA, Ridout AL, Wingham DJ, Willatt R, Cullen R, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys Res Lett. 2013;40:732–7.
    Google Scholar 
    Stroeve J, Notz D. Changing state of Arctic sea ice across all seasons. Environ Res Lett. 2018;13:103001.
    Google Scholar 
    Macdonald RW, Kuzyk ZZA. The Hudson Bay system: a northern inland sea in transition. J Mar Syst. 2011;88:337–40.
    Google Scholar 
    Serreze MC, Barry RG. Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Change. 2011;77:85–96.
    Google Scholar 
    Hochheim KP, Barber DG. An update on the ice climatology of the Hudson Bay system. Arctic, Antarctic, and Alpine Research. 2014;46:66–83.
    Google Scholar 
    Gagnon AS, Gough WA. Climate change scenarios for the Hudson Bay region: an intermodel comparison. Climatic Change. 2005;69:269–97.
    Google Scholar 
    Bring A, Shiklomanov A, Lammers RB. Pan-Arctic river discharge: prioritizing monitoring of future climate change hot spots. Earths Future. 2017;5:72–92.
    Google Scholar 
    Comeau AM, Li WKW, Tremblay JÉ, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS One. 2011;6:e27492.PubMed 
    PubMed Central 

    Google Scholar 
    Li W, McLaughlin F, Lovejoy C, Carmack E. Smallest algae thrive as the Arctic Ocean freshens. Science. 2009;326:539.PubMed 

    Google Scholar 
    Ji R, Jin M, Varpe Ø. Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Glob Change Biol. 2013;19:734–41.
    Google Scholar 
    Ardyna M, Mundy C, Mills M, Oziel L, Lacour L, Verin G, et al. Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean. Elem Sci Anthr. 2020;8:e30.
    Google Scholar 
    Kahru M, Brotas V, Manzano-Sarabia M, Mitchell BG. Are phytoplankton blooms occurring earlier in the Arctic? Glob Change Biol. 2011;17:1733–9.
    Google Scholar 
    Barbedo L, Bélanger S, Tremblay J. Climate control of sea-ice edge phytoplankton blooms in the Hudson Bay system. Elem Sci Anthr. 2020;8:1.
    Google Scholar 
    Matthes LC, Ehn JK, Dalman LA, Babb DG, Peeken I, Harasyn M, et al. Environmental drivers of spring primary production in Hudson Bay. Elem Sci Anthr. 2021;9:00160.
    Google Scholar 
    Harvey M, Therriault JC, Simard N. Late-summer distribution of phytoplankton in relation to water mass characteristics in Hudson Bay and Hudson Strait (Canada). Can J Fish Aquat Sci. 1997;54:1937–52.
    Google Scholar 
    Ferland J, Gosselin M, Starr M. Environmental control of summer primary production in the Hudson Bay system: The role of stratification. J Mar Syst. 2011;88:385–400.
    Google Scholar 
    Raven JA. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct Ecol. 1998;12:503–13.
    Google Scholar 
    Tilman D, Kilham SS, Kilham P. Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst. 1982;13:349–72.
    Google Scholar 
    Onda DFL, Medrinal E, Comeau AM, Thaler M, Babin M, Lovejoy C. Seasonal and interannual changes in ciliate and dinoflagellate species assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada). Front Mar Sci. 2017;4:16.
    Google Scholar 
    Campbell K, Mundy CJ, Belzile C, Delaforge A, Rysgaard S. Seasonal dynamics of algal and bacterial communities in Arctic sea ice under variable snow cover. Polar Biol. 2018;41:41–58.
    Google Scholar 
    Forest A, Tremblay JÉ, Gratton Y, Martin J, Gagnon J, Darnis G, et al. Biogenic carbon flows through the planktonic food web of the Amundsen Gulf (Arctic Ocean): a synthesis of field measurements and inverse modeling analyses. Prog Oceanogr. 2011;91:410–36.
    Google Scholar 
    Buchan A, Lecleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.PubMed 

    Google Scholar 
    Cole JJ, Likens GE, Strayer DL. Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol Oceanogr. 1982;27:1080–90.
    Google Scholar 
    Horňák K, Kasalický V, Šimek K, Grossart HP. Strain-specific consumption and transformation of alga-derived dissolved organic matter by members of the Limnohabitans-C and Polynucleobacter-B clusters of Betaproteobacteria. Environ Microbiol. 2017;19:4519–35.PubMed 

    Google Scholar 
    Šimek K, Kasalický V, Zapomělová E, Horňák K. Alga-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Appl Environ Microbiol. 2011;77:7307–15.PubMed 
    PubMed Central 

    Google Scholar 
    Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.PubMed 
    PubMed Central 

    Google Scholar 
    Williams TJ, Wilkins D, Long E, Evans F, Demaere MZ, Raftery MJ, et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ Microbiol. 2013;15:1302–17.PubMed 

    Google Scholar 
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrechet A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.PubMed 

    Google Scholar 
    Armengol L, Calbet A, Franchy G, Rodríguez-Santos A, Hernández-León S. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci Rep. 2019;9:1–19.
    Google Scholar 
    Joly S, Senneville S, Caya D, Saucier FJ. Sensitivity of Hudson Bay Sea ice and ocean climate to atmospheric temperature forcing. Clim Dyn. 2011;36:1835–49.
    Google Scholar 
    Kirillov S, Babb D, Dmitrenko I, Landy D, Lukovich JV, Ehn J, et al. Atmospheric forcing drives the winter sea ice thickness asymmetry of Hudson Bay. Geophys Res Oceans. 2020;125:1–12.
    Google Scholar 
    Tivy A, Howell SEL, Alt B, McCourt S, Chagnon R, Crocker G, et al. Trends and variability in summer sea ice cover in the Canadian Arctic based on the Canadian Ice Service Digital Archive, 1960-2008 and 1968-2008. J Geophys Res Oceans. 2011;116:C03007.
    Google Scholar 
    Barber D, Landry D, Babb D, Kirillov S, Aubry C, Schembri S, et al. Bay-Wide Survey Program Cruise Report – CCGS Amundsen (LEG-1). In: Hudson Bay System Study (BaySys) Phase 1 Report: Hudson Bay Field Program and Data Collection. Landry, DL & Candlish, LM. (Eds). 2019. p. 131–222.Jacquemot L, Kalenitchenko D, Matthes LC, Vigneron A, Mundy CJ, Tremblay JE, et al. Protist communities along freshwater-marine transition zones in Hudson Bay (Canada). Elem Sci Anthr. 2021;9:00111.
    Google Scholar 
    Grasshoff K, Kremling K, Ehrhardt M. Determination of nutrients. In: Methods of Seawater Analysis: Third, Completely Revised and Extended Edition. 1999. p. 159–228.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108:4516–22.PubMed 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high- throughput community sequencing data. Nat Publ Group. 2010;7:335–6.
    Google Scholar 
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:597–604.
    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
    Google Scholar 
    McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, et al. Package ‘vegan’. Community ecology package, version 2(9). 2013;1-295.Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1–14.
    Google Scholar 
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.PubMed 
    PubMed Central 

    Google Scholar 
    Volterra V. Fluctuations in the abundance of a species considered mathematically. Nature. 1926;118:558–60.
    Google Scholar 
    Joli N, Monier A, Logares R, Lovejoy C. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. ISME J. 2017;11:1372–85.PubMed 
    PubMed Central 

    Google Scholar 
    Barber DG, Hop H, Mundy CJ, Else B, Dmitrenko IA, Tremblay JE, et al. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Prog Oceanogr. 2015;139:122–50.
    Google Scholar 
    Tremblay JÉ, Anderson LG, Matrai P, Coupel P, Bélanger S, Michel C, et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog Oceanogr. 2015;139:171–96.
    Google Scholar 
    Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:1–7.
    Google Scholar 
    Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5.Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.PubMed 

    Google Scholar 
    Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol Lett. 2016;19:926–36.PubMed 

    Google Scholar 
    Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol. 2008;10:3349–65.PubMed 

    Google Scholar 
    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science. 2015;10:1–10.
    Google Scholar 
    Chaffron S, Delage E, Budinich M, Vintache D, Henry N, Nef C, et al. Environmental vulnerability of the global ocean epipelagic plankton community interactome. Sci Adv. 2021;7:eabg1921.PubMed 
    PubMed Central 

    Google Scholar 
    Clarke LJ, Bestley S, Bissett A, Deagle BE. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 2019;13:734–7.PubMed 

    Google Scholar 
    Not F, del Campo J, Balagué V, de Vargas C, Massana R. New insights into the diversity of marine picoeukaryotes. PLoS One. 2009;4:e7143.PubMed 
    PubMed Central 

    Google Scholar 
    Bass D, Stentiford GD, Littlewood DTJ, Hartikainen H. Diverse Applications of Environmental DNA Methods in Parasitology. Trends Parasitol. 2015;31:499–513.PubMed 

    Google Scholar 
    Kellogg CTE, Mcclelland JW, Dunton KH, Crump BC. Strong seasonality in arctic estuarine microbial food webs. Front Microbiol. 2019;10:2628.PubMed 
    PubMed Central 

    Google Scholar 
    Nitsche F, Weittere M, Scheckenbach F, Hausmann K, Wylezich C, Ardnt H. Deep sea records of choanoflagellates with a description of two new species. Acta Protozool. 2007;46:99–106.
    Google Scholar 
    Thaler M, Lovejoy C. Biogeography of heterotrophic flagellate populations indicates the presence of generalist and specialist taxa in the Arctic Ocean. Appl Environ Microbiol. 2015;81:2137–48.PubMed 
    PubMed Central 

    Google Scholar 
    Thomsen HA, Østergaard JB, Hansen LE. Loricate choanoflagellates from West Greenland (August 1988) including the description of Spinoeca buckii gen. et sp. nov. Eur J Protistol. 1995;31:38–44.
    Google Scholar 
    Thomsen HA, Østergaard JB. Acanthoecid choanoflagellates from the Atlantic Arctic Region − a baseline study. Heliyon. 2017;3:e00345.PubMed 
    PubMed Central 

    Google Scholar 
    Buck KR, Garrison DL, Cruz S. Distribution and abundance of choanoflagellates (Acanthoecidae) across the ice-edge zone in the Weddell Sea, Antarctica. Mar Biol. 1988;98:263–9.
    Google Scholar 
    Escalera L, Mangoni O, Bolinesi F, Saggiomo M. Austral summer bloom of loricate choanoflagellates in the central Ross Sea polynya. J Eukaryot Microbiol. 2019;66:849–52.PubMed 

    Google Scholar 
    Delmont TO, Hammar KM, Ducklow HW, Yager PL, Post AF. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Front Microbiol. 2014;5:1–13.
    Google Scholar 
    Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Alexander Richter R, Valas R, et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 2012;6:1186–99.PubMed 

    Google Scholar 
    Abell GCJ, Bowman JP. Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol Ecol. 2005;51:265–77.PubMed 

    Google Scholar 
    Delmont TO, Murat Eren A, Vineis JH, Post AF. Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica. Front Microbiol. 2015;6:e1090.
    Google Scholar 
    Stingl U, Desiderio RA, Cho JC, Vergin KL, Giovannoni SJ. The SAR92 clade: an abundant coastal clade of culturable marine bacteria possessing proteorhodopsin. Appl Environ Microbiol. 2007;73:2290–6.PubMed 
    PubMed Central 

    Google Scholar 
    de Sousa AGG, Tomasino MP, Duarte P, Fernández-Méndez M, Assmy P, Ribeiro H, et al. Diversity and composition of pelagic prokaryotic and protist communities in a thin Arctic sea-ice regime. Microb Ecol. 2019;78:388–408.PubMed 

    Google Scholar 
    Rapp JZ, Fernández-Méndez M, Bienhold C, Boetius A. Effects of ice-algal aggregate export on the connectivity of bacterial communities in the central Arctic Ocean. Front Microbiol. 2018;9:1035.PubMed 
    PubMed Central 

    Google Scholar 
    Wemheuer B, Güllert S, Billerbeck S, Giebel HA, Voget S, Simon M, et al. Impact of a phytoplankton bloom on the diversity of the active bacterial community in the southern North Sea as revealed by metatranscriptomic approaches. FEMS Microbiol Ecol. 2014;87:378–89.PubMed 

    Google Scholar 
    Jain A, Krishnan KP. Differences in free-living and particle-associated bacterial communities and their spatial variation in Kongsfjorden, Arctic. J Basic Microbiol. 2017;57:827–38.PubMed 

    Google Scholar 
    Granskog MA, Kuzyk ZZA, Azetsu-Scott K, Macdonald RW. Distributions of runoff, sea-ice melt and brine using δ18o and salinity data – a new view on freshwater cycling in Hudson Bay. J Mar Syst. 2011;88:362–74.
    Google Scholar 
    Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.PubMed 
    PubMed Central 

    Google Scholar 
    Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc Natl Acad Sci USA. 2019;116:11824–32.PubMed 
    PubMed Central 

    Google Scholar 
    Gutierrez-Rodriguez A, Stukel MR, Lopes dos Santos A, Biard T, Scharek R, Vaulot D, et al. High contribution of Rhizaria (Radiolaria) to vertical export in the California Current Ecosystem revealed by DNA metabarcoding. ISME J. 2019;13:964–76.PubMed 

    Google Scholar 
    Bråte J, Krabberød AK, Dolven JK, Ose RF, Kristensen T, Bjørklund KR, et al. Radiolaria associated with large diversity of marine alveolates. Protist. 2012;163:767–77.PubMed 

    Google Scholar 
    Dolven JK, Lindqvist C, Albert VA, Bjørklund KR, Yuasa T, Takahashi O, et al. Molecular diversity of alveolates associated with neritic North Atlantic radiolarians. Protist. 2007;158:65–76.PubMed 

    Google Scholar 
    Decelle J, Martin P, Paborstava K, Pond DW, Tarling G, Mahé F, et al. Diversity, ecology and biogeochemistry of cyst-forming Acantharia (Radiolaria) in the oceans. PLoS One. 2013;8:e53598.PubMed 
    PubMed Central 

    Google Scholar 
    Fernandes GL, Shenoy BD, Damare SR. Diversity of bacterial community in the oxygen minimum zones of Arabian Sea and Bay of Bengal as deduced by illumina sequencing. Front Microbiol. 2020;10:e3153.
    Google Scholar 
    Vigneron A, Cruaud P, Culley A, Couture RM, Lovejoy C, Vincent W. Genomic evidence for sulfur intermediates as new biogeochemical hubs in a model aquatic microbial ecosystem. Microbiome. 2020;9:e46.
    Google Scholar 
    Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Publ Group. 2012;10:381–94.
    Google Scholar 
    Bianchi D, Weber TS, Kiko R, Deutsch C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat Geosci. 2018;11:263–68.
    Google Scholar 
    Michel C, Legendre L, Therriault JC, Demers S, Vandevelde T. Springtime coupling between ice algal and phytoplankton assemblages in southeastern Hudson Bay, Canadian Arctic. Polar Biol. 1993;13:441–9.
    Google Scholar 
    Boetius A, Albrecht S, Bakker K, Bienhold C, Felden J, Fernández-méndez M, et al. Export of algal biomass from the metling Arctic sea ice. Science. 2013;339:1430–2.PubMed 

    Google Scholar 
    Vigneron A, Lovejoy C, Cruaud P, Kalenitchenko D, Culley A, Vincent WF. Contrasting winter versus summer microbial communities and metabolic functions in a permafrost thaw lake. Front Microbiol. 2019;10:e1656.
    Google Scholar 
    Tremblay JÉ, Lee J-H, Gosselin M, Belanger S. Nutrient dynamic and marine biological productivity in the greater Hudson Bay marine region. In: An integrated regional impact study (IRIS) Arcticnet University of Manitoba and ArcticNet. 2019. p. 225–44.Wassmann P, Reigstad M. Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography. 2011;24:220–31.
    Google Scholar  More

  • in

    Effects of mine water on growth characteristics of ryegrass and soil matrix properties

    Our findings indicated that mine water had a certain inhibitory effect on ryegrass seed germination, and the intensity of this inhibitory effect increased with increased mine water proportion. These effects were mainly reflected as changes in germination potential. Concretely, irrigation with mine water prolonged the germination of ryegrass seeds but had no significant effect on germination rate. Min Zhu et al. found that recycled water inhibited the seed germination of turfgrass, and this effect became more notorious when the concentration of reclaimed water increased. This was likely because the water contained salt ions, heavy metal ions, and E. coli, all of which are known to affect seed germination22. The mine water was taken from the Laohutai mining area, where the water composition and quality are good. Therefore, mine water did not significantly affect seed germination and the seeds maybe germinate normally if given sufficient time.The physiological and photosynthetic characteristics of ryegrass were impacted by the mine water, and the intensity of inhibition increased with higher mine water proportions. When the ratio of mine water to clean water reached a certain proportion (1:2, A1 and B1), the physiological and growth characteristics of ryegrass were improved to a certain extent. When only mine water was used for irrigation, the indices were significantly suppressed. In contrast, mixing clear water with mine water for irrigation promoted the physiological characteristics of the plants, as well as photosynthesis. This was likely because the mineral content of mine water is higher. However, mine water not only contains elements needed for plant growth but also some elements and ions that have inhibitory effects on plant growth. Therefore, the quality of ryegrass growth were suppressed when irrigating only with mine water. In contrast, after mixing the mine water with clean water, the concentrations of certain substances that produce adverse effects are diluted, and the mixed irrigation water promoted ryegrass growth in appropriate proportion.A certain concentration of heavy metal elements will affect the absorption of essential elements by plants and produce antagonism, and high concentration can directly lead to plant death. Heavy metal stress affects chlorophyll content through two aspects: Heavy metal destroys enzymes needed for chlorophyll synthesis, affects plant chlorophyll synthesis, and then inhibits plant photosynthesis23. The second is the destruction of chloroplast structure and cell membrane24,25,26. In the treatment of high concentrations of heavy metals, the chlorophyll content of plants is significantly reduced due to the inhibition of chlorophylase or aminolevulinic acid dehydrase, thus inhibiting plant photosynthesis27. The heavy metal threat forcing stimulates the formation of reactive oxygen species that convert fatty acids into toxic lipid peroxides, which damage to plant cells28,29,30. Heavy metal stress can induce a lot of activity in plants sexual oxygen and inhibit the normal metabolism of plants, causing membrane lipid peroxidation and increased plasma membrane permeability31, 32. Low concentration of heavy metal stress will stimulate the protective mechanism of plants, so low concentration of stimulation will not damage plants, on the contrary, may help plant growth. Heavy metal stress causes water loss in plants, and a certain amount of proline can be produced to regulate the water balance of plant cells and reduce the damage degree of plant cells33. SOD, POD and CATT are important antioxidant enzymes in plants, which can scavenge excessive free radicals. The synergistic action of three enzymes can protect plants from free radical damage. When the concentration of heavy metals was low, the activity of protective enzymes increased under the induction of reactive oxygen radicals. However, with the increase of stress degree, the activities of SOD, POD and CAT decreased, which eventually led to the persecution of plant cells34. These conclusions are consistent with the results of this paper. When mine water was mixed with clear water at a ratio of 1:2, heavy metal stress stimulated the protective mechanism of ryegrass most appropriately, and improved plant quality and resistance. On the contrary, when the proportion of mine water increased, the physiological characteristics and quality of ryegrass plants were inhibited to different degrees.Precious Nneka Amori et al. studied physiological traits of leaves and Silverbeet using treated wastewater, the results show that the biomass of plants watered with only the treated wastewater were more than 50% higher than the yield in tap water control and plants exhibited high degree of root foraging1. Libutti et al. irrigated tomato and broccoli with purified agro-industrial effluent and reported that yield and quality traits of agricultural products were not affected35. Radish was grown using a reclaimed synthetic textile wastewater treated in an anoxic-aerobic photobioreactor, and the dry weight, leaf number and leaf area of plant harvest were 49, 19.2 and 62% higher than the growth performance in freshwater irrigation36. FU et al. studied four native Chenopodiaceae plants of Halogeton glomeratus, Kochia scoparia, Suaeda glauca and Chenopodium glaucum in Jinchang area northwest China, from their changes of net photosynthetic rate (Pn), Stomatal conductance (Gs), transpiration rate (Tr). chlorophyll content (Chl), malondialdehyde (MDA), soluble protein (SP), proline (Pro) and antioxidant enzymes activity under the treatment of farmland soil (T1) and sedendary soil mixed with tailing (1:1, T2), they concluded that under T2 treatment, Pn, Gs, and Tr of Halogeton glomeratus and Kochia scoparia were decreased , the other six indexes were increased significantly. Gs, Tr, MDA, Pro, and SOD increased, yet CAT, Chl and Pn of Suaeda glauca decreased significantly, respectively. Pn, Gs, and Tr of Chenopodium glaucum decreased significantly, while SP, POD increased significantly37. Our results also indicated that mine water irrigation had significant effects on soil characteristics. At higher mine water ratios, the soil conductivity increased exponentially, the pH decreased gradually, the content of K+, Na+, Ca2+ and Mg2+ increased, and the content of N, P and K also increased gradually. In contrast, the clean water and mine water mixture had little effect on the soil properties. This was because the salt and metal ions in mine water migrate to the soil during the irrigation process, which significantly changes the soil properties. As a result, the concentration of salt in the soil increased and soil acidity also increased. After mixing with clean water, the concentration of salt decreases, and the influence on the soil matrix weakened. These results also indicated that the growth, physiological, and photosynthetic effects of ryegrass in the pot experiments were better than those in soilless culture, because there were many other organic materials and inorganic ions in soil that could promote growth, whereas the plants in the hydroponic system lacked other nutrients that benefit plant growth. Many existing studies have shown that mine drainage or other wastewater can improve the quality and yield of one or more kinds of plants to different degrees after certain treatment, but some studies also show that the reclaimed water used for irrigation will cause harm to plants, soil and even human health.Jinfang Yang et al. reported that long-term irrigation with mine water significantly reduced the soil respiration rate and soil enzyme activity. Mine water irrigation also significantly inhibited wheat plant height, leaf area, chlorophyll content, and photosynthetic rate, and wheat production was also markedly reduced38. Jianjun Cha found that acidic mining waste water can reduce the pH of the soil profile and increase its electrical conductivity39. Junhao Qin et al. found that if treated mine water is used as an irrigation water source, acidic substances may still be introduced into the soil. This inhibits plant growth and may also enhance leaching of some trace elements in the soil to shallow aquifers, resulting in groundwater pollution40, 41. The results of this study are consistent with the above conclusions, that is, directly irrigating with mine water can significantly inhibit plant growth and photosynthesis, thus affecting the quality of ryegrass plants. MA et al. studied the effects of irrigation with mine wastewater on the physiological characters and heavy metals accumulation of winter wheat. It shows that irrigation with mine wastewater had negative effects on the winter wheat growth and grain yield. At anthesis stage, the leaf area, dry mass per stem, root activity and net photosynthetic rate of winter wheat in treatments were significantly lower and the plant height and leaf chlorophyll content was decreased. In addition, the heavy metals (Cr, Pb, Cu and Zn) contents in the grain of winter wheat under mine wastewater irrigation were significantly higher than those in control, it suggested that the irrigation with mine water could result in the heavy metals accumulation in wheat grain42. A large number of studies have shown that direct use of mine water for irrigation will have a negative impact on soil and plants, but this study found that after a certain processing of mine water (mine water was mixed with clear water in a ratio of 1:2) used for irrigation does not significantly alter soil properties, but can increase plant yield and quality, it will be meaningful to mine water reuse, soil utilization around the mining area and the agriculture.The conclusions of this study are based on mine water from Fushun mining area in Northeast China, but the effects of mine water on plants from other mining areas are uncertain. At the same time, ryegrass, a cold-season turfgrass, is only selected in this study. If it is other kinds of plants, how they respond to mine water irrigation needs further study. What are the effects of mine water irrigation on plants other than ryegrass that need further study. Moreover, this study was only a short-term experiment, and the effects of mine water on the properties of the soil matrix cannot be generalized. Indoor experiments can be regularly watered to maintain moisture, indoor temperature is relatively fixed, while the natural environment is a lot of uncertainty and uncontrollable. Would the results of a small-scale pot experiment in a controlled environment be different if it were applied to a field where there are many uncertainties about soil properties and atmospheric conditions? Long-term field experiments must also be conducted to confirm our findings in more realistic conditions. The use of mine water resources not only has environmental and social benefits but could also bring economic benefits43. This study demonstrated that mine water can be used in ecological restoration and agricultural irrigation in mining areas, and is therefore of great significance to environmental restoration. More

  • in

    Hunting and persecution drive mammal declines in Iran

    Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253. https://doi.org/10.1126/sciadv.1400253 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bradshaw, C. J. A. et al. Underestimating the challenges of avoiding a ghastly future. Front. Environ. Sci. 1, 615469. https://doi.org/10.3389/fcosc.2020.615419 (2021).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. IUCN, Gland, Switzerland. http://www.iucnredlist.org (2020).Murray, K. A., Verde Arregoitia, L. D., Davidson, A., Di Marco, M. & Di Fonzo, M. M. I. Threat to the point: Improving the value of comparative extinction risk analysis for conservation action. Glob. Chang. Biol. 20, 483–494 (2014).Article 
    ADS 

    Google Scholar 
    Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).Article 
    ADS 

    Google Scholar 
    Chichorro, F., Juslén, A. & Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 237, 220–229 (2019).Article 

    Google Scholar 
    Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open. Sci. 3, 160498. https://doi.org/10.1098/rsos.160498 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann, M. et al. The changing fates of the world’s mammals. Phil. Trans. R. Soc. B. 366, 2598–2610 (2011).Article 

    Google Scholar 
    Verde Arregoitia, L. D. Biases, gaps, and opportunities in mammalian extinction risk research. Mammal. Rev. 46, 17–29 (2016).Article 

    Google Scholar 
    Di Marco, M. et al. Drivers of extinction risk in African mammals: The interplay of distribution state, human pressure, conservation response and species biology. Philos. Trans. R. Soc. Lond. B. 369, 1–12 (2014).Article 

    Google Scholar 
    Di Marco, M., Collen, B., Rondinini, C. & Mace, G. M. Historical drivers of extinction risk: Using past evidence to direct future monitoring. Proc. R. Soc. B. 282, 20150928. https://doi.org/10.1098/rspb.2015.0928 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bogoni, J. A., Ferraz, K. M. & Peres, C. A. Continental-scale local extinctions in mammal assemblages are synergistically induced by habitat loss and hunting pressure. Biol. Conserv. 272, 109635. https://doi.org/10.1016/j.biocon.2022.109635 (2022).Article 

    Google Scholar 
    Yusefi, G. H., Faizolahi, K., Darvish, J., Safi, K. & Brito, J. C. The species diversity, distribution and conservation status of the terrestrial mammals of Iran. J. Mammal. 100, 55–71 (2019).Article 

    Google Scholar 
    Keil, P. et al. Spatial scaling of extinction rates: Theory and data reveal nonlinearity and a major upscaling and downscaling challenge. Glob. Ecol. Biogeogr. 27, 2–13 (2018).Article 

    Google Scholar 
    Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993. https://doi.org/10.1038/s41467-020-14771-6 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez, J. P. The difference conservation can make: integrating knowledge to reduce extinction risk. Oryx 51, 1–2 (2017).Article 

    Google Scholar 
    Cardillo, M. & Meijaard, E. Are comparative studies of extinction risk useful for conservation?. Trends Ecol. Evol. 27, 167–171 (2012).Article 

    Google Scholar 
    Davidson, A. D. et al. Geography of current and future global mammal extinction risk. PLoS ONE 12, e0186934. https://doi.org/10.1371/journal.pone.0186934 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Collen, B., Bykova, E., Ling, S., Milner-Gulland, E. J. & Purvis, A. Extinction risk: A comparative analysis of central Asian vertebrates. Biodivers. Conserv. 15, 1859–1871 (2006).Article 

    Google Scholar 
    Peñaranda, D. A. & Simonetti, J. A. Predicting and setting conservation priorities for Bolivian mammals based on biological correlates of the risk of decline. Conserv. Biol. 29, 834–843 (2015).Article 

    Google Scholar 
    Fritz, S. A., Bininda-Emonds, O. R. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: Big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).Article 

    Google Scholar 
    Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol. 2, 909–914 (2004).Article 
    CAS 

    Google Scholar 
    Cardillo, M. et al. The predictability of extinction: Biological and external correlates of decline in mammals. Proc. R. Soc. B. 275, 1441–1448 (2008).Article 

    Google Scholar 
    Yackulic, C. B., Sanderson, E. W. & Uriat, M. Anthropogenic and environmental drivers of modern range loss in large mammals. Proc. Natl. Acad. Sci. USA 108, 4024–4029 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Ripple, W. J. et al. Are we eating the world’s megafauna to extinction?. Conserv Lett 12, e12627. https://doi.org/10.1111/conl.12627 (2019).Article 

    Google Scholar 
    Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. PNAS https://doi.org/10.1073/pnas.1702078114 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bodmer, R. E., Eisenberg, J. E. & Redford, K. H. Hunting and the likelihood of extinction of Amazonian mammals. Conserv. Biol. 11, 460–466 (1997).Article 

    Google Scholar 
    Lee, T. M. & Jetz, W. Unravelling the structure of species extinction risk for predictive conservation science. Proc. R. Soc. B. 278, 1329–1338 (2011).Article 

    Google Scholar 
    Wolf, C. & Ripple, W. J. Prey depletion as a threat to the world’s large carnivores. Roy. Soc Open Sci 3, 160252. https://doi.org/10.1098/rsos.160252 (2016).Article 
    ADS 

    Google Scholar 
    Firouz, E. The complete fauna of Iran. I. B. (Tauris and Co Ltd, London, 2005).Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Davidson, A. D., Hamilton, M. J., Boyer, A. G., Brown, J. H. & Ceballos, G. Multiple ecological pathways to extinction in mammals. Proc. Natl. Acad. Sci. USA 106, 10702–10705 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Hill, J., DeVault, T. & Belant, J. Comparative influence of anthropogenic landscape pressures on cause-specific mortality of mammals. Perspect. Ecol. Conserv. 20, 38–44 (2022).
    Google Scholar 
    DOE-GIS. Areas under protection by the Department of Environment of Iran. Department of the Environment of Iran: GIS and Remote Sensing Section (2016).Kolahi, M., Sakai, T., Moriya, K. & Makhdoum, M. F. Challenges to the future development of Iran’s protected areas system. Environ. Manage. 50, 750–765 (2012).Article 
    ADS 

    Google Scholar 
    Morrison, J. M., Sechrest, W., Dinerstein, E., Wilcove, D. S. & Lamoreux, J. L. Persistence of large mammal faunas as indicators of human impact. J. Mammal. 88, 1363–1380 (2007).Article 

    Google Scholar 
    Ghoddousi, A. et al. The decline of ungulate populations in Iranian protected areas calls for urgent action against poaching. Oryx 53, 151–158 (2017).Article 

    Google Scholar 
    Soofi, M. et al. Assessing the relationship between illegal hunting of ungulates, wild prey occurrence and livestock depredation rate by large carnivores. J. Appl. Ecol. 56, 365–374 (2019).Article 

    Google Scholar 
    Khalatbari, L., Yusefi, G. H., Martinez-Freiria, F., Jowkar, H. & Brito, J. C. Availability of prey and natural habitats are related with temporal dynamics in range and habitat suitability for Asiatic cheetah. Hystrix Ital. J. Mammal. 29, 145–151 (2018).
    Google Scholar 
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).Article 
    ADS 

    Google Scholar 
    Hoffmann, M. et al. The difference conservation makes to extinction risk of the world’s ungulates. Conserv. Biol. 29, 1303–1313 (2015).Article 

    Google Scholar 
    Yusefi, G. H. Conservation biogeography of terrestrial mammals in Iran diversity distribution and vulnerability to extinction. Front Biogeogr 13(2), 49765. https://doi.org/10.21425/F5FBG49765 (2021).Article 

    Google Scholar 
    Faurby, S. & Svenning, J.-C. A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Mol. Phylogenet. Evol. 84, 14–26 (2015).Article 

    Google Scholar 
    R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing (2021).Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).Article 

    Google Scholar 
    Jones, K. et al. PanTHERIA: A species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648. https://doi.org/10.1890/08-1494.1 (2009).Article 

    Google Scholar 
    González-Suárez, M., Lucas, P. M. & Revilla, E. Biases in comparative analyses of extinction risk: Mind the gap. J. Anim. Ecol. 81, 1211–1222 (2012).Article 

    Google Scholar 
    Wang, Y. et al. Ecological correlates of extinction risk in Chinese birds. Ecography 41, 782–794 (2018).Article 

    Google Scholar 
    Wildlife Conservation Society-WCS, and Center for International Earth Science Information Network-CIESIN, Columbia University. Last of the wild project, Version 2, 2005 (LWP-2): Global human influence index (HII) Dataset. https://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic (2005).ESRI ArcGIS Desktop10.6. Redlands, CA: Environmental Systems Research Institute (2017).Hijmans, R. J. et al. raster: geographic data analysis and modeling. https://cran.r-project.org/web/packages/raster/index.html (2018).Pebesma, E. et al. rgdal: bindings for the geospatial data abstraction library. https://cran.r-project.org/web/packages/rgdal/index.html (2018).Bivand, R. et al. maptools: tools for reading and handling spatial objects. https://cran.r-project.org/web/packages/maptools/ index.html (2018).Purvis, A. Phylogenetic approaches to the study of extinction. Annu. Rev. Ecol. Evol. Syst. 39, 301–319 (2008).Article 

    Google Scholar 
    Venables, W. N. & Ripley, B. D. Modern applied statistics with S (Springer, 2002).Book 

    Google Scholar 
    Gittleman, J. L. & Kot, M. Adaptation: Statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39, 227–241 (1990).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodal inference in ecology and solution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).Article 
    CAS 

    Google Scholar 
    Bartón, K. MuMIn: multi-model inference R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020). More

  • in

    Effects of plastic fragments on plant performance are mediated by soil properties and drought

    Peñuelas, J. et al. Assessment of the impacts of climate change on mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environ. Exp. Bot. 152, 49–59 (2018).
    Google Scholar 
    Pugnaire, F. I. et al. Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. 5, eaaz1834 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baho, D. L., Bundschuh, M. & Futter, M. N. Microplastics in terrestrial ecosystems: Moving beyond the state of the art to minimize the risk of ecological surprise. Glob. Change Biol. 27, 3969–3986 (2021).CAS 

    Google Scholar 
    Rillig, M. C., Kim, S. W., Kim, T.-Y. & Waldman, W. R. The global plastic toxicity debt. Environ. Sci. Technol. 55, 2717–2719 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nizzetto, L., Futter, M. & Langaas, S. Are agricultural soils dumps for microplastics of urban origin?. (2016).Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barnes, D. K., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 364, 1985–1998 (2009).CAS 

    Google Scholar 
    Rillig, M. C. Microplastic in terrestrial ecosystems and the soil?. (2012).de Souza Machado, A. A. et al. Microplastics can change soil properties and affect plant performance. Environ. Sci. Technol. 53, 6044–6052 (2019).ADS 
    PubMed 

    Google Scholar 
    Büks, F. & Kaupenjohann, M. Global concentrations of microplastics in soils–A review. Soil 6, 649–662 (2020).ADS 

    Google Scholar 
    Evangeliou, N. et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 11, 1–11 (2020).
    Google Scholar 
    Steinmetz, Z. et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?. Sci. Total Environ. 550, 690–705 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S. & Rillig, M. C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24, 1405–1416 (2018).ADS 

    Google Scholar 
    Qi, Y. et al. Macro-and micro-plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 645, 1048–1056 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Weithmann, N. et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 4, eaap8060 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allen, S. et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12, 339–344 (2019).ADS 
    CAS 

    Google Scholar 
    Kiyama, Y., Miyahara, K. & Ohshima, Y. Active uptake of artificial particles in the nematode Caenorhabditis elegans. J. Exp. Biol. 215, 1178–1183 (2012).PubMed 

    Google Scholar 
    Helmberger, M. S., Tiemann, L. K. & Grieshop, M. J. Towards an ecology of soil microplastics. Funct. Ecol. 34, 550–560 (2020).
    Google Scholar 
    Liu, M. et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ. Pollut. 242, 855–862 (2018).CAS 
    PubMed 

    Google Scholar 
    Lehmann, A., Fitschen, K. & Rillig, M. C. Abiotic and biotic factors influencing the effect of microplastic on soil aggregation. Soil Syst. 3, 21 (2019).CAS 

    Google Scholar 
    de Souza Machado, A. A. et al. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 52, 9656–9665 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, S. W. & Rillig, M. C. Research trends of microplastics in the soil environment: Comprehensive screening of effects. Soil Ecol. Lett. 4, 109–118 (2022).CAS 

    Google Scholar 
    Lehmann, A., Leifheit, E. F., Gerdawischke, M. & Rillig, M. C. Microplastics have shape-and polymer-dependent effects on soil aggregation and organic matter loss–An experimental and meta-analytical approach. Microplast. Nanoplast. 1, 1–14 (2021).
    Google Scholar 
    Wan, Y., Wu, C., Xue, Q. & Hui, X. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 654, 576–582 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Liang, Y., Lehmann, A., Yang, G., Leifheit, E. F. & Rillig, M. C. Effects of microplastic fibers on soil aggregation and enzyme activities are organic matter dependent. Front. Environ. Sci. 9, 97 (2021).
    Google Scholar 
    Lozano, Y. M., Lehnert, T., Linck, L. T., Lehmann, A. & Rillig, M. C. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Front. Plant Sci. 12, 169 (2021).
    Google Scholar 
    Kemper, W. Aggregate stability. Methods Soil Anal. Part 1 Phys. Mineral. Prop. Incl. Stat. Meas. Sampl. 9, 511–519 (1965).
    Google Scholar 
    Rose, C. W. & Rose, C. W. An Introduction to the Environmental Physics of Soil, Water and Watersheds (Cambridge University Press, 2004).
    Google Scholar 
    Horn, R., Taubner, H., Wuttke, M. & Baumgartl, T. Soil physical properties related to soil structure. Soil Tillage Res. 30, 187–216 (1994).
    Google Scholar 
    Beven, K. & Germann, P. Macropores and water flow in soils. Water Resour. Res. 18, 1311–1325 (1982).ADS 

    Google Scholar 
    De Vries, F. T. et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol. Lett. 15, 1230–1239 (2012).PubMed 

    Google Scholar 
    Kaisermann, A., de Vries, F. T., Griffiths, R. I. & Bardgett, R. D. Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. New Phytol. 215, 1413–1424 (2017).CAS 
    PubMed 

    Google Scholar 
    Martorell, C., MartÍnez-Blancas, A. & GarcíaMeza, D. Plant–soil feedbacks depend on drought stress, functional group, and evolutionary relatedness in a semiarid grassland. Ecology 102, e03499 (2021).PubMed 

    Google Scholar 
    Rillig, M. C., Lehmann, A., de Souza Machado, A. A. & Yang, G. Microplastic effects on plants. New Phytol. 223, 1066–1070 (2019).PubMed 

    Google Scholar 
    Lozano, Y. M. & Rillig, M. C. Effects of microplastic fibers and drought on plant communities. Environ. Sci. Technol. 54, 6166–6173 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Denef, K. et al. Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 33, 1599–1611 (2001).CAS 

    Google Scholar 
    Ochoa-Hueso, R. et al. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Glob. Change Biol. 24, 2818–2827 (2018).ADS 

    Google Scholar 
    Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Fu, W. et al. Community response of arbuscular mycorrhizal fungi to extreme drought in a cold-temperate grassland. New Phytol. 234, 2003–2017 (2022).PubMed 

    Google Scholar 
    Lin, D. et al. Microplastics negatively affect soil fauna but stimulate microbial activity: Insights from a field-based microplastic addition experiment. Proc. R. Soc. B 287, 20201268 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boots, B., Russell, C. W. & Green, D. S. Effects of microplastics in soil ecosystems: Above and below ground. Environ. Sci. Technol. 53, 11496–11506 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bosker, T., Bouwman, L. J., Brun, N. R., Behrens, P. & Vijver, M. G. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226, 774–781 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zimmerman, R. & Kardos, L. Effect of bulk density on root growth. Soil Sci. 91, 280–288 (1961).ADS 

    Google Scholar 
    Ruser, R., Sehy, U., Weber, A., Gutser, R. & Munch, J. Main driving variables and effect of soil management on climate or ecosystem-relevant trace gas fluxes from fields of the FAM. In Perspectives for agroecosystem
    management Chp 2.2, 79–120. ISBN 9780444519054 Elsevier, (2008).Huang, Y. et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ. Pollut. 254, 112983 (2019).CAS 
    PubMed 

    Google Scholar 
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).PubMed 

    Google Scholar 
    Hortal, S. et al. Soil microbial community under a nurse-plant species changes in composition, biomass and activity as the nurse grows. Soil Biol. Biochem. 64, 139–146 (2013).CAS 

    Google Scholar 
    Scheurer, M. & Bigalke, M. Microplastics in Swiss floodplain soils. Environ. Sci. Technol. 52, 3591–3598 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fuller, S. & Gautam, A. A procedure for measuring microplastics using pressurized fluid extraction. Environ. Sci. Technol. 50, 5774–5780 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Schloerke, B. et al. GGally: Extension to ‘ggplot2’. R package version 2.1. 2. (2021).Venables, W. & Ripley, B. Modern applied statistics with S fourth edition. Publisher Springer-Verlag, New York. (2002).Lenth, R. V. Emmeans: Estimated marginal means, aka least-squares means. R package version 1.6.3 (2021).R Core Team et al. R: A language and environment for statistical computing. (2013).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).ADS 

    Google Scholar 
    Pedersen, T. L. Patchwork: The composer of plots. R package version 1, 182 (2020).Neuwirth, E. RColorBrewer: ColorBrewer palettes. R package version 1.1-2. (2014). More

  • in

    Environmental RNA as a Tool for Marine Community Biodiversity Assessments

    The current study is the first to directly compare the differences in eukaryotic community diversity by metabarcoding eRNA and eDNA from an estuarine benthic ecosystem. This is also the first study to compare the diversity of environmental RNA and DNA using two of the most common loci examined in metabarcoding applications: COI and 18S. Only a handful of studies have used eRNA to assess diversity through metabarcoding and have demonstrated some differences in detected diversity between eRNA and eDNA in metabarcoding19,29,38. Environmental DNA has many useful applications, but one of the downfalls of DNA is that it can be detected long after an organism has inhabited an area, such as from dead organisms and even significant distances away from the source1. While the persistence of eDNA may be useful in detecting the presence of endangered, rare, or invasive species in marine systems, the persistence of eDNA, such as legacy DNA, may skew the accurate representation of community structure immediately after a disturbance event or during the exact moment of sampling21. Environmental RNA proves to be a useful tool because it is far less persistent in marine environments2,27. In the current study, RNA provides a snapshot of living organisms present in the mesocosms at the time of sampling, compared to DNA which detects past and present organisms in the sample.Benthic ecosystems often have high biodiversity because they are dynamic environments with various substrates favorable for hosting communities39. To date, there is no one loci and associated primer pair that will effectively detect all eukaryotic organisms, and in particular metazoans, so it is beneficial to use multiple loci when looking for a variety of taxa6. Previous marine eDNA studies have demonstrated the preferred method of using two loci to achieve comprehensive metabarcoding for taxonomically diverse environments5,30,40. The current study further demonstrates the need to use at least two different loci for targeted PCR and sequencing to truly capture the wide diversity in rich systems, such as the top oxygenated layer of the marine benthos. Our results demonstrate the types of organisms detected using the 18S loci vary widely from the organisms detected by COI. The 18S loci also detected a higher number of organisms than using the COI loci. The 18S allowed greater detection of metazoans whereas COI was useful in the detection of Oomycota (i.e., a eukaryotic microorganism that resembles fungi) protozoa. Protozoa are often food sources for meiofauna41; therefore, using COI for protozoan detection and 18S for metazoan detection showcases multiple trophic levels present in the mesocosms of the current study. Utilizing multiple loci not only broadens taxonomic diversity detection but can also highlight multiple trophic levels for understanding food webs originating in benthic environments15.A study evaluating arctic benthic diversity similarly found that COI detected fewer taxa than 18S using eDNA metabarcoding, and there was only ~ 40% taxa overlap between markers at the class level42. In the current study, the COI marker using both nucleic acid templates yielded a higher percentage of unassigned taxa after filtering for presence in the majority of mesocosms compared to 18S. A possible explanation for the low metazoan detection by COI may be that the unassigned taxa are metazoans rather than more SAR organisms. Additionally, singly detected metazoans were filtered out of the analysis if they were not detected in at least 4 mesocosms. For example, one type of amphipod was detected in only 3 mesocosm by RNA using the COI marker, but was not detected in any mesocosms using DNA. Therefore, the amphipod observation was excluded from the COI results in Fig. 3 and Table S3 because it was not found in at least 4 mesocosms.Overall, RNA provides a broader assessment of benthic community structure than DNA, particularly when using two loci/ markers for sequencing. In the current study, we used nuclear 18S ribosomal RNA and DNA and mitochondrial COI RNA and DNA sequences as markers for metabarcoding. The number of copies of ribosomal RNA per cell is higher than the copies of ribosomal DNA, and the ratio of RNA: DNA is higher in single-cell organisms, such as protists43. The higher number of unique ASVs detected using eRNA is likely attributed to the higher number of RNA copies of each marker in small, single-cell organisms successfully amplified during PCR, therefore making rare organisms easier to detect. The DNA of highly abundant or higher biomass organisms may “drown out” (i.e., mask) the sequences from lower abundance and biomass organisms during PCR amplification, thus resulting in lower detected α-diversity. The increased detection of ciliates and protozoa using eRNA are consistent with other recent eRNA metabarcoding results that found higher ciliate and protozoan diversity compared to eDNA using the same Uni18S primers19. Positive correlations between organism biomass and sequence copy numbers have been demonstrated for DNA metabarcoding conducted on invertebrate species44. In the current study, RNA allowed for the detected of both larger meiofauna and smaller microfauna, which is optimal for assessing true biodiversity with molecular assays. Chaetonotida, a type of gastrotrich, was the only taxa detected in 4 of the mesocosms using DNA that was not found with RNA. It is possible the chaetonotida may have died during the experiment due to sensitivities to new environmental conditions, and therefore were not detected with RNA. The temperature of the flowing seawater in the mesocosms was approximately 18 °C, and many marine chaetonotida prefer 23–28 °C and high organic matter substrate45.Previous studies have compared the accuracy of conventional morphological identification to molecular metabarcoding methods for assessing biodiversity. In estuarine-specific studies, metabarcoding methods are able to detect the majority of taxa identified with traditional methods and often detected higher species richness, or higher numbers of unique organisms, that was not found conventionally10,46,47. The limiting factor for higher resolution of taxonomic identification is the availability of species-specific sequences in barcoding databases48. However, barcoding databases are becoming more robust as an increasing number of researchers contribute high quality sequencing data to databases7. Therefore, eRNA metabarcoding techniques perform similarly to conventional morphological methods, and may even uncover higher biodiversity in systems like estuaries where meiofauna have been historically understudied and identified.Although eRNA α-diversity is higher compared to eDNA, there is some overlap between ASVs detected with eRNA and eDNA. The higher percentage of overlap between eDNA and eRNA ASVs is predominantly seen in the ASVs detected in all 7 of the mesocosms. The increased overlap in ASVs detected in all 7 mesocosms compared to the relatively lower overlap of ASVs found in only 1 of the 7 mesocosms is due to the filtering of random organisms found in only 1 mesocosm. Detection of a unique organism in a single mesocosm is likely not representative of the sample community and filters potential artifacts that may be introduced during cDNA synthesis from eRNA. However, all uniquely identified ASVs are used in the β-diversity analysis, so the higher number of unique ASVs detected from eRNA are likely driving the significant differences observed between eRNA and eDNA β-diversity. It is possible that using eRNA could increase the statistical power of a study design compared to eDNA because eRNA detects a higher number of ASVs. It is unlikely that a higher number of RNA ASVs could be due to splice variants contributing to unique sequences because the amplified regions of both markers do not contain introns. Therefore, no splicing of transcripts would be expected. Thus, the detected DNA ASVs are from living organisms in the mesocosms and the higher diversity of ASVs detected from RNA demonstrate that RNA is a more suitable option for assessing diversity of living organisms.It is evident that the mesocosms in the current study were rich with meio- and microfauna due to the number of unique organisms and broad diversity of different taxa. It is likely that collecting samples for nucleic acid extraction directly from the field site may result in higher diversity because there is no mechanical disturbance during the laboratory acclimation period and the presence of other organisms in the system, such as fish, macroinvertebrates, or birds. eDNA molecular abundance in samples has been shown to correlate to actual organismal abundance in laboratory environments, but the same correlation is not as apparent in field samples, which is likely due to a variety of collection and processing methods49. eRNA may be the better nucleic acid template for field collection once flash frozen, especially for the detection of protozoans. Future studies will compare the diversity of eukaryotic communities detected using eDNA and eRNA collected directly from the field rather than from sediment core mesocosms. Repeated sampling from a field site may help reduce transient eRNA detection when establishing accurate baseline community composition in field-based biomonitoring studies.Recently, meiofaunal organisms and communities are being explored as bioindicators, which are organisms whose presence are indicators for environmental stress and pollution17. For example, lower meiofaunal diversity and abundance is associated with higher pollution in harbors, and the presence of some genera of nematodes are correlated with higher concentrations of polycyclic aromatic hydrocarbons because they are more tolerant to pollution50. A previous study that used field-collected mesocosms from the same location as our current study found similar phyla detected with a metabarcoding approach; the majority of the sequences detected in benthic communities were from nematodes, arthropods, and the microfaunal SAR clade10. Similarly, the majority of the ASVs detected from the current study also corresponded with nematodes, arthropods, and the SAR clade, as well as other commonly detected meiobenthic organisms, such as polychaetes and Homalorhagida (i.e., mud dragons). A recent study exposed a benthic foraminiferal community to chromium, and found that eRNA metabarcoding was more robust for detecting changes in diversity at lower chromium concentrations compared to eDNA51. The eRNA metabarcoding method used in the current study detected meiofaunal taxa typical of marine or estuarine environments. Therefore, eRNA metabarcoding may be useful for efficiently identifying bioindicator species or taxa impacted by exposures to different contaminants and environmental stressors to aid with management of aquatic systems. Another advantage of eRNA is that RNA provides functional information about how organisms response to stress through altered transcription of activated pathways. eRNA will likely be a more powerful tool than eDNA because it allows for the detection of both bioindicator species and, in the future with increase development of genetic databases, environmental detection of biomarkers of stress through increased transcription of response genes.Many academic researchers are adopting molecular methods using High Throughput Sequencing as the future of biomonitoring surveys; however, few regulatory and environmental management organizations/ agencies have adopted metabarcoding into their routine biomonitoring practices for regulatory purposes. In marine benthic communities, metabarcoding provides a comprehensive assessment of diversity and is useful for detecting a broader array of organisms in biomonitoring surveys especially when using two markers47. eDNA is also useful for monitoring discrete communities (i.e., benthic versus pelagic)52, so it is possible that using eRNA could provide vital information about living organisms in specific environments compared to eDNA. Metabarcoding sequencing and bioinformatic approaches for benthic environments vary among studies, thus requiring some standardization between methods to further advance the use of metabarcoding in conservation and regulatory applications30,53.Like eDNA, some advancements must be made with eRNA to be used as a quantitative tool in molecular ecology. Validation of eDNA metabarcoding for assessing relative abundance of species is rapidly progressing by correlating laboratory studies of DNA shedding with field experiments1,54. Similar validation techniques can be used to develop eRNA metabarcoding as a quantitative or semi-quantitative method. There is growing interest in optimizing eRNA extraction protocols from different types of environmental media to standardize the use of eRNA in downstream molecular applications55. Thus, standardizing eRNA protocols will help with integration into environmental management toolkits for regulatory purposes.RNA poses unique barcoding challenges compared to DNA because the number of RNA transcripts from a gene are not always present in the same proportion compared to the gene copy number per genome (i.e., one DNA copy per cell), especially for differentially expressed genes. However, one possible way to work around this issue is to utilize constitutively expressed marker loci where transcription is generally stable and unaffected by environmental stressors, such as those used as reference genes for quantitative real-time PCR49. Fortunately, many loci chosen for metabarcoding purposes fit this criterium; the transcription of 18S and COI remain steady within the cell regardless of environmental stress.Collecting sediment cores from the environment and bringing them into controlled laboratory settings for community analysis through eRNA metabarcoding is a powerful tool that opens opportunities for this method to be used in a broad range of fields. For instance, field-collected mesocosms could be used in controlled settings to investigate the effects of individual or mixtures of toxicants on entire community and population-level outcomes. Marine sediments are often the ultimate sink for environmental contaminants, such as organic pollutants , heavy metals56, and plastic particles57, yet few studies investigate actual community-level changes in contaminant exposures. Marine benthic environments have high biodiversity, but the breadth of diversity in micro- and meiofaunal organisms is often understudied because traditional morphological methods are immensely time consuming. Sediment core mesocosms could also be used to understand the effects of global climate change stressors, such as fluctuating temperatures, surface water salinity and pH, on communities as well as conventional and emerging contaminants in combination with climate change stressors. Additionally, this method could also be used to understand how communities respond to a significant disturbance event or smaller series of stressors, which are often difficult to measure in environmental settings32,58. In these applications, eRNA is favorable for constructing community composition at a specific moment of the experiment to better regulate anthropogenic causes of environmental stress. More

  • in

    Using bioelectrohydrogenesis left-over residues as a future potential fertilizer for soil amendment

    Electrohydrogenesis effluent as a potential biofertilizerTo characterize the electrohydrogenesis left-over residues as potential biofertilizers, the sample from the operating reactors was performed a 16S rRNA sequencing test, and interestingly, the results revealed that the bio-electrohydrogenesis effluent was enriched with various microorganisms including plant growth-promoting microbes that display biofertilizer-like features. Among the well-known plant-promoting bacterial genera observed in DF-MEC residues included Azospirillum, Mycobacterium, Chryseobacterium, Paenibacillus, Rhizobacter, Pseudomonas, Achromobacter, Bradyrhizobium, Actinomyces, Sphingomonas, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Gordonia, Rhodococcus, Bacillus, Methylobacterium-Methylorubrum, Microbacterium, Flavobacterium, Devosia, Acinetobacter, Mesorhizobium, Enterobacter, Aeromonas, Beijerinckia, etc.24,25,26 (Fig. 2). Lots of investigations working on the feasibility of using biofertilizers other than chemical fertilizers have revealed that those aforementioned microbes play a major role in providing the required nutrients for enhanced crop yield.Figure 2The abundance of the Plant growth-promoting bacteria (genus level) detected from the DF-MEC digestate (%).Full size imageNitrogen-fixing microorganismsThe detected nitrogen-fixing microorganisms from the electrohydrogenesis effluent include Azospirillum sp. (0.11 ± 0.02%), rhizobia (Rhizobium (0.058 ± 0.02%), Bradyrhizobium (0.11 ± 0.04%), and Mesorhizobium (0.1 ± 0.03%)), and Beijerinckia (0.08 ± 0.03%) (Fig. 2) and were repeatedly reported for their superior contribution to the plants’ nitrogen requirements through biological nitrogen fixation, which is an important component of sustainable agriculture25. Although the atmosphere counts about 78% N2, it couldn’t be used by plants in its natural state. Prior to getting used by plants, it needs to be converted to ammonia, which is the readily assimilable form of nitrogen by plants/or crops via a biological nitrogen fixation mechanism25. The biological Nitrogen fixation mechanism is summarized in Fig. 3.Figure 3Mechanism of nitrogen fixation bio-catalyzed by nitrogenase enzyme. The plant growth-promoting bacteria produce nitrogenase which is a complex enzyme consisting of dinitrogenase reductase and dinitrogenase. This complex enzyme plays a major role in molecular N2 fixation. Dinitrogenase reductase provides electrons and dinitrogenase uses those electrons to reduce N2 to NH3. However, oxygen is a potential threat to this process since it has the ability to get bound to the enzyme complex and make it inactive and consequently inhibit the process. Interestingly, bacterial leghemoglobin has a strong affinity for O2 and thus gets bound to free oxygen more strongly and effectively to suppress the available oxygen effects on the whole process of nitrogen fixation.Full size imagePhosphate-solubilizing microorganismsFurthermore, various phosphate-solubilizing and mineralizing strains were also found in bioelectrohydrogenesis residues collected from our DF-MEC integrated reactors. Among those microorganisms with the ability to solubilize/metabolize the insoluble inorganic phosphorus, the dominant bacterial genera included Pseudomonas (0.65 ± 0.15%), Bacillus (0.44 ± 0.11%), Rhodococcus (0.04 ± 0.009%), Rhizobium (0.05 ± 0.02%), Microbacterium sp. (0.04 ± 0.01%), Achromobacter (0.16 ± 0.07%), and Flavobacterium (0.058 ± 0.014%) (Fig. 2). Though enormous amounts of phosphorus are available in the soil, its high portion never contributes to plant growth in its primitive state, unless it is bio-transformed into absorbable forms including monobasic and dibasic. Microbial phosphate solubilizing mechanisms are well described in Fig. 4.Figure 4Inorganic phosphorus solubilization by phosphate-solubilizing rhizobacteria. A bacterium solubilizes inorganic phosphorus through the action of low molecular weight organic acids such as gluconic and citric acids. The hydroxyl (OH) and carboxyl (COOH) groups of these acids chelate the cations bound to phosphate and thus convert insoluble phosphorus into a soluble organic form. The mineralization of soluble phosphorus occurs by synthesizing different phosphatases which catalyze the hydrolysis process. When plants incorporate these solubilized and mineralized phosphorus molecules, eventually, overall plant growth and crop yield significantly increase.Full size imagePhytohormone-producing microorganismsIn this current work, the electrohydrogenesis effluent also contained bacterial genera such as Mycobacterium (0.77 ± 0.18%), Allorhizobium (0.05 ± 0.02%), Pararhizobium (0.05 ± 0.02%), Paenibacillus (1.18 ± 0.24%), Bradyrhizobium (0.11 ± 0.04%), Rhizobium (0.05 ± 0.02%), Acinetobacter (0.14 ± 0.02%), and Azospirillum (0.11 ± 0.025%) (Fig. 2) that have the ability to synthesize indole-3-acetic acid/indole acetic acid (IAA) through indole-3-pyruvic acid and indole-3-acetic aldehyde25. IAA is a well-known type of phytohormone that enhances plant/crop growth. Particularly, Azospirillum sp., also produce various phytohormones namely cytokinins, gibberellins, ethylene, abscisic acid and salicylic acid, auxins, vitamins such as niacin, pantothenic acid, and thiamine. The conceptional model delineating the positive effects of inoculation with Azospirillum sp. a phytohormones-producer plant growth-promoting rhizobacteria and its detailed functions on plant growth are summarized and illustrated in Fig. S1. Therefore, the existence of those rhizobacteria in the bioelectrohydrogenesis residues further implies the suitability of considering the DF-MEC left-over residues as potential biofertilizers.Heavy metals-bioremediating microorganismsSome other bacterial genera with the ability to bioremediate the heavy metal toxicity were also found within the bioelectrohydrogenesis left-over residues as well. Among the detected plant growth-promoting bacterial genera; Rhizobium (0.058 ± 0.023%), Mesorhizobium (0.1 ± 0.026%), Bradyrhizobium (0.11 ± 0.04%), Pseudomonas (0.65 ± 0.15%), and Achromobacter (0.16 ± 0.077%) were reported for their key contribution to alleviate the toxicity of the heavy metals via bioremediation process and improve the soil quality for a relief plant development26 (Fig. 2). Other detected heavy metals-bioremediating microorganisms’ species were Chryseobacterium sp. (0.08 ± 0.007%), Azospirillum (0.11 ± 0.02%), Bacillus (0.44 ± 0.11%), Enterobacter (8.57 ± 0.9%), Gordonia (0.06 ± 0.02%), Paenibacillus (1.18 ± 0.24%), Pseudomonas (0.65 ± 0.15%), and Actinomycetes (0.36 ± 0.05%) that either use microbial siderophores or enzymatic biodegradation process.Electrohydrogenesis left-over residues as a potential source of essential elements for plant growthAs aforementioned in “Materials and methods” section, the electrohydrogenesis left-over residues contained diverse microbial communities that degraded the MEC substrate and generate biogas and inorganic compounds. Moreover, it has been reported that those inorganic nutrients are generally available in fermentation effluent in readily plant-utilizable formats owing to substrate mineralization27. Beside detecting various plant growth-promoting microorganisms in the electrohydrogenesis effluent, a larger number of mineral elements essential for promoted growth and development of crop plants were also investigated and analyzed from the residues. The detected primary and secondary macro-elements’ concentrations in the residues were arranged in decreasing order as follows P  > S  > Na  > K  > N  > Ca  > Mg. Interestingly the findings show that the residues abundantly contained Phosphorus (2.766 × 103 mg/L), Nitrogen (274 mg/L), Potassium (282 mg/L), Calcium (17.66 mg/L), Magnesium (16.3 mg/L), Sulfur (1.225 × 103 mg/L), and Sodium (294.3 mg/L) which are well known as macro-nutrients needed in larger amounts for enhanced plant/ crop growth (Fig. 5).Figure 5Macro-, and micronutrients detected from the bio-electrohydrogenesis left-over residues (mg/L).Full size imageMoreover, small amounts of the microelements including Ni, Pb, Zn, Cu, Cr, Hg, Cd were also found in the electrohydrogenesis residues, and consistently these elements are generally required in small quantities for the development of plants (Fig. 5), otherwise, their high concentrations are toxic for the plant cells thus suppress or inhibit plant growth. The detected concentrations for the main microelements in this current research ranged only from 0.36 to 9.6 × 10–5 mg/L and were all reported to play fundamental roles in plant metabolic reactions.Cultivation of the leguminous crops using electrohydrogenesis left-over residues as fertilizerAfter evaluating the plant-growth promoting bacterial communities and the macro- and micronutrients required for plant/crop growth in the electrohydrogenesis left-over residues, the latter was directly used as fertilizer to grow three different plant species including tomato, chili, and brinjal as afore-described in the “Materials and methods” section. To access the potentials of the electrohydrogenesis effluent as fertilizer, the plants grown in the soil amended with the effluent (Soil + Effluent), were directly compared with their corresponding control plants (Soil + water). The results indicated that at the end of 1st month, the plants with effluent grew faster and generated a good amount of branching than the control plants (see Fig. 6), possibly due to the availability of both microbial species with bio-fertilizing aspects and micro-and macronutrients in the effluent.Figure 6Analysis of the plant growth at the end of the 1st month of cultivation. (a) Tomato in soil with effluent, and its control without effluent (b); (c) Chilli grown in soil with effluent, and its control without effluent (d); and (e) brinjal grown in soil with effluent, and its corresponding control grown without effluent (f) (after 2 months).Full size imageFor instance, tomato (Solanum lycopersicum L.) and chilli (Capsicum annuum L.) height in soil + electrohydrogenesis effluent was ~ 36.9 ± 2.1 cm and ~ 32.6 ± 0.8 cm respectively which was ~ 2.03 and ~ 1.2 times the height of their corresponding plant species in the control protocol, respectively (see Fig. 7). However, the brinjal species (Solanum melongena L.) didn’t show any remarkable height differences in both protocols after a month of cultivation (data not shown), probably due to their low adaptative characteristics to the new environment. However, after the 2nd month, the brinjal height in soil + effluent became 2.7 times that of the brinjal control cultivated without effluent (see Fig. 6e,f). Moreover, both the number of the plants’ leaves and their length in plants cultivated in soil + effluent, were remarkably higher than in plants grown without the supply of the effluent.Figure 7Daily plant growth analysis within one month of cultivation. (a) Tomato growth monitoring, (b) Chili growth analysis.Full size imageAt the end of the 3rd month, the plants in soil + electrohydrogenesis effluent generated more fruit with big size than the control plants (see Fig. 8), but the tomato (Solanum lycopersicum L.) didn’t generate fruits in both protocols at that time probably due to the high weather temperature that inhibitory affected its continuous growth, as previously reported that tomato species are generally so sensitive to temperature change28,29. The final yield was evaluated in terms of the size and number of fruits per cultivated plant. Chili cultivated in soil with MEC effluent generated 3 fruits/plant and its corresponding control without effluent produced only 1 fruit/plant. The chili fruit size in soil + effluent was 16 cm, approximately 18.7% higher than its corresponding control. Moreover, at the time of collecting data, the brinjal plant cultivated in soil with MEC effluent generated brinjal fruits whereas its corresponding cultivated without electrohydrogenesis effluent started flowering (see Fig. 8). These further indicate the significant contribution of the electrohydrogenesis effluent in speeding up the plant growth. Herein, the electrohydrogenesis left-over residues have notably improved the soil quality and significantly promoted the plants’ phenology characterized by plant growth, the generation of new leaves, flowering, and the production of fruits.Figure 8Analysis of plant growth characterized by the flowering and fruiting process at the end of the 3 months. (a) Chili grown in soil with effluent, and its control without effluent (b); (c) brinjal grown in soil with effluent and its corresponding control grown without effluent (d).Full size image More