More stories

  • in

    Strength-mass scaling law governs mass distribution inside honey bee swarms

    Our experimental data reveals a scaling law between the mass of a layer along the vertical coordinate, M(z), and the weight that it supports, W(z), namely: (W(z) sim M(z)^a) with (a approx 1.5). To better understand the physical mechanism that yields this scaling law, we derive the force balance equation of a layer of the swarm and solve for W(z). We then equate the analytical expression for W(z) with the experimentally determined scaling law, (W(z) sim M(z)^a), to connect the swarm mass distribution to the exponent a and formulate the expressions for M(z) and W(z) in terms of a. We then consider a dimensional analysis of the strength of each layer of the swarm, S, or the maximum weight that it can support before the grip of the bees on one another breaks. As will be described in detail below, we find that (S sim M^{1.5}), which is close to the experimentally determined (a = 1.53). Deviation from this value increases the fraction of maximum strength exerted by different parts of the swarm.Force balance model of the weight distribution in the swarmWe assume that the swarm is at quasi-equilibrium (the shape does not change although individual bees may move), that all of the bees in each layer contribute equally to supporting the weight of the bees underneath that layer, that the layer thickness is very small, and that the swarm is radially symmetrical about the z-axis. We use a cylindrical coordinate system with a vertical coordinate z, as shown in Fig. 1e, and we consider layers of the swarm along the z-axis of thickness dz. Variables labeled with a tilde, as in (tilde{W}(z)), represent analytically derived expressions; variables without a tilde, as in W(z), represent values determined with power law fits to experimental data.We begin our analysis by applying the force balance principle to each layer of a swarm. As shown by the free body diagram in Fig. 1f, the force with which each layer of bees has to grasp the layer above it is equal to the weight of that layer and all of the layers underneath it: (tilde{F} = tilde{W}(z)). We express (tilde{W}(z)) using the force balance equation (a continuous version of the discrete definition in Eq. (5).):$$begin{aligned} tilde{W}(z) = g int _z^L tilde{M}(z) dz, end{aligned}$$
    (8)
    where the mass of bees per layer is (tilde{M}(z)), the swarm length is L, and g is the gravitational constant. Inspired by our experimental observation that the mass of the layers near the base is highest and the mass of the layers at the tip of the swarm is lowest in Fig. 3a, we model (tilde{M}(z)) as a monotonically decreasing function of z. To keep the units consistent, we normalize the z coordiante by the length of the swarm:$$begin{aligned} tilde{M}(z) = c left( 1-frac{z}{L}right) ^{tilde{b}}, end{aligned}$$
    (9)
    where the c factor in this expression ensures that the units of the mass per layer are mass/length, and (tilde{b}) is an unknown exponent. Choosing this function form allows us to easily integrate the expression for (tilde{W}(z)) when we substitute (tilde{M}(z)) into it, set this force balance derivation for (tilde{W}(z)) equal to the experimentally determined expression (W(z) = C M(z)^a), and compare the exponents a and (tilde{b}).To solve the expression for (tilde{W}(z)), we substitute the expression for (tilde{M}(z)), Eq. (9), into Eq. (8) and integrate. We then express (tilde{b}) in terms of the experimentally determined a by equating this expression for (tilde{W}(z)) to the scaling law we observe in our experiments, Eq. (7), (W(z) = C tilde{M}(z)^a). The exponent in the expression for (tilde{M(z)}), Eq. (9), is$$begin{aligned} tilde{b} = frac{1}{a-1}. end{aligned}$$
    (10)
    The weight supported by each layer is then:$$begin{aligned} tilde{W}(z) = cLg left( 1 – frac{1}{a}right) left( 1-frac{z}{L}right) ^{frac{a}{a-1}}. end{aligned}$$
    (11)
    Next, we test how well our force balance model predicts the data by comparing the predicted value of (tilde{b}) using the force balance to the value of b calculated using experimental fits. We first separate the expression for the layer mass, Eq. (9) into the product of the layer area, (tilde{A}(z)) and the layer density, (tilde{rho }(z)):$$begin{aligned} tilde{M}(z) sim tilde{A}(z) tilde{rho }(z). end{aligned}$$
    (12)
    To simplify our analysis, we model (tilde{A}(z)) and (tilde{rho }(z)) with a similar monotonically decreasing function to that in Eq. (9):$$begin{aligned} tilde{A}(z) = c_1 left( 1-frac{z}{L}right) ^{tilde{b}_1}, end{aligned}$$
    (13)
    and$$begin{aligned} tilde{rho }(z) =c_2 left( 1-frac{z}{L}right) ^{tilde{b}_2} end{aligned}$$
    (14)
    we can then separately measure the effect of the changes in area and density on the exponent in the mass per layer expression in Eq. (9), (tilde{b} = tilde{b}_1 + tilde{b}_2).We first calculate (tilde{b}) using the expression derived from the force balance, Eq. (10), and our experimental result for a, which yields (tilde{b} = 2 pm 0.47). Second, we calculate b by separately calculating power law fits to the data for A(z) in Fig. 2e according to Eq. (13) and (rho (z)) in Fig. 2d according to Eq. (14), which yields (b_1 = 1.38 pm 0.2) and (b_2 = 0.51 pm 0.09). Thus, (b = b_1 + b_2 = 1.89 pm 0.25). See Supplementary Fig. S5(a–c) for log-log plots of M(z), A(z) and (rho (z)), and Supplementary Fig. S5(d–f) for plots of the resulting b, (b_1), and (b_2).We calculate the deviation of (tilde{b}) from b, (frac{tilde{b} – b}{tilde{b}} = 0.03 pm 0.11), and plot the deviation of b from (tilde{b}) in Supplementary Fig. S5(g) as a comparison for the individual CT scans. The values of b and (tilde{b}) being on the same order of magnitude validates the model and allows us to compare (tilde{W}(z)) to a maximum strength of each layer, which we find with dimensional analysis in the following section.Strength of a swarm layer and individual beesThe strength of the layer, (tilde{S}(z)), or the maximum weight that it could support, can be greater than or equal to (tilde{W}(z)): (tilde{S}(z) ge tilde{W}(z)). If the weight of the bees underneath a layer were to exceed its strength (tilde{S}(z)), the layer would not be able to support the weight of those bees, and the swarm would break apart. We perform a dimensional analysis on the strength of each layer to find the relationship between the mass of a layer and its maximum strength, (tilde{S}(z) sim tilde{M}(z)^{alpha }). Force is proportional to mass, which is proprtional to volume, or a length cubed, so a layer’s strength scales with length cubed, (tilde{S}(z) propto L^3). The mass of each layer, with units of mass/length, is proportional to an area, or a length squared, so (tilde{M}(z)) scales with length squared, (tilde{M}(z) propto L^2). Thus, (alpha) must be 1.5 for (tilde{S}(z) sim tilde{M}(z)^{alpha }) to be dimensionally correct. This is similar to the relationship between weightifting capacity and body weight in Ref.16.Estimating (tilde{W}(z)/tilde{S}(z)) gives a measure of how much of its maximum strength each layer uses to hold up the rest of the swarm:$$begin{aligned} frac{tilde{W}(z)}{tilde{S}(z)} sim left( 1-frac{1}{a}right) left( 1-frac{z}{L}right) ^frac{2a-3}{2a-2} end{aligned}$$
    (15)
    The average number of bees that a bee in a swarm layer supports, (tilde{F}_{bee}(z)), is equal to the mass of bees supported by a layer divided by the sum of the mass of bees in a layer of bees that has the thickness of the length of a bee, (l approx 1.5), as a continuous version of the discrete equation in Eq. (6):$$begin{aligned} tilde{F}_{bee}(z) =frac{int _z^L tilde{M}(z) dz}{int _z^{z+l} tilde{M}(z) dz}. end{aligned}$$
    (16)
    After integrating, we get an expression for (tilde{F}_{bee} (z)):$$begin{aligned} tilde{F}_{bee}(z)= frac{left( 1-frac{z}{L}right) ^{frac{a}{a-1}}}{left( 1-frac{z}{L}right) ^{frac{a}{a-1}} – left( 1-frac{z + l}{L}right) ^{frac{a}{a-1}}}. end{aligned}$$
    (17)
    We use the expression for (frac{tilde{W}(z)}{tilde{S}(z)}), Eq. (15), and (tilde{F}_{bee}(z)), Eq. (17), in the next section to evaluate how the force distribution in the swarm would change for swarms with different values of a.Effect of a on the mass of each layer, the fraction of its maximum stregnth it uses, and the average force per beeWe now consider the effect of varying a on the mass and force distribution inside the swarm. To visualize the effect of a on the distribution of bees, we plot the mass per layer of a 1000-g, 12.5 cm long swarm, (tilde{M}(z)) vs. z/L, with (a = 1.5, 1.01, 1000), and (-0.2) in Fig. 3c and the corresponding average force per bee, (F_{bee}(z)) vs. z/L in Fig. 3d. These values of a are example values for the four possible cases of mass distribution in the swarm. We then evaluate how these values of a affect the fraction of maximum strength each layer uses to support the layers underneath it using Eq. (15).If (a approx alpha), as we found in our experiments, layers with higher mass near the attachment surface support the less massive layers under them, as in the solid black line in Fig. 3c. Correspondingly, Fig. 3d shows (tilde{F}_{bee}(z=0) approx 3) at the top of the swarm, and decreases towards the tip. The strength of each layer and the weight it supports are proportional to one another, (tilde{W}(z)/tilde{S}(z) sim 1/3), meaning that the fraction of maximum strength used by a layer is the same for all z. If (1< a < alpha), the swarm approaches one massive layer of bees, as in the dashed purple line in Fig. 3c. The dimensional analysis results in a very small fraction of the total strength used by this layer, (tilde{W}(z)/tilde{S}(z) rightarrow 0 (1-frac{z}{L})^{-infty }). The force supported by each bee in Fig. 3d shows (tilde{F}_{bee}(z) = 1) for the entire swarm, meaning that each bee only supports its own weight. This configuration would either require packing a large number of bees into one very dense or one very wide layer. A swarm with one very dense layer at the top would compress all of the bees; a swarm with one very wide layer would require a large surface area, which would put the swarm in danger from predators and changes in weather. Thus, despite a potentially lower fraction of strength used by the largest layer of bees, this configuration would put the swarm in danger by requiring a large surface area.For values of (a > alpha), as (a rightarrow infty), all the layers of the swarm have the same mass, as in the dash-dot red line in Fig. 3c. The force per bee in Fig. 3d shows (tilde{F}_{bee}(z=0) approx 8) at the top of the swarm, 2.5 times that of the (a = alpha) configuration. In this configuration, the top layers use a higher percentage of their available strength than the lower layers, (tilde{W}(z)/tilde{S}(z) rightarrow (1-frac{z}{L})). Thus, for large swarms, the bees that support the swarm would be under more strain, and the swarm would be more likely to break under external perturbation.Finally, (a < 0) ((0 le a le 1) results in negative values for (tilde{W}(z))) would suggest that the top layers of the swarm have a lower mass than the bottom layers, as in the dotted orange line in Fig. 3c. This is not a realistic range of values for a, but we include it here as a demonstration of a potential mass distribution with the largest layers being on the bottom of the swarm. This configuration would put even more strain on the layers of bees at the top of the swarm, as smaller layers near the attachment surface have a smaller maximum strength. As (a rightarrow 0) on the (a < 0) side, (tilde{W}(z)/tilde{S}(z) rightarrow infty (1-z/L)^{1.5}), and bees in the top layers use a much greater fraction of their strength than bees in the bottom layers. Accordingly, the mean force per bee in Fig. 3d exceeds the maximum bee grip strength of 35 bee weights, and the swarm could not support itself in this configuration.The swarm configuration with (a approx 1.5) uses the full strength of each layer and puts a lower strain on the bees than most other values of a, and avoids weight distributions that could expose a large number of bees to external danger. More

  • in

    Enhanced dust emission following large wildfires due to vegetation disturbance

    Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).Article 

    Google Scholar 
    Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).Article 

    Google Scholar 
    Hamilton, D. S. et al. Earth, wind, fire, and pollution: aerosol nutrient sources and impacts on ocean biogeochemistry. Ann. Rev. Mar. Sci. 14, 303–330 (2022).Article 

    Google Scholar 
    Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 16216–16221 (2019).Article 

    Google Scholar 
    Schlosser, J. S. et al. Analysis of aerosol composition data for western United States wildfires between 2005 and 2015: dust emissions, chloride depletion, and most enhanced aerosol constituents. J. Geophys. Res. Atmos. 122, 8951–8966 (2017).Article 

    Google Scholar 
    Wagner, R., Schepanski, K. & Klose, M. The dust emission potential of agricultural-like fires—theoretical estimates from two conceptually different dust emission parameterizations. J. Geophys. Res. Atmos. 126, e2020JD034355 (2017).
    Google Scholar 
    Ichoku, C. et al. Biomass burning, land-cover change, and the hydrological cycle in northern sub-Saharan Africa. Environ. Res. Lett. 11, 095005 (2016).Article 

    Google Scholar 
    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).Article 

    Google Scholar 
    Duniway, M. C. et al. Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world. Ecosphere 10, e02650 (2019).Article 

    Google Scholar 
    Okin, G. S., Gillette, D. A. & Herrick, J. E. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J. Arid. Environ. 65, 253–275 (2006).Article 

    Google Scholar 
    Raupach, M. R. Drag and drag partition on rough surfaces. Boundary Layer Meteorol. 60, 375–395 (1992).Article 

    Google Scholar 
    Webb, N. P. et al. Vegetation canopy gap size and height: critical indicators for wind erosion monitoring and management. Rangel. Ecol. Manag. 76, 78–83 (2021).Article 

    Google Scholar 
    Ellis, T. M., Bowman, D. M. J. S., Jain, P., Flannigan, M. D. & Williamson, G. J. Global increase in wildfire risk due to climate-driven declines in fuel moisture. Glob. Change Biol. 28, 1544–1559 (2022).Article 

    Google Scholar 
    Ravi, S. et al. Aeolian processes and the biosphere. Rev. Geophys. 49, RG3001 (2011).Article 

    Google Scholar 
    Wagenbrenner, N. S., Germino, M. J., Lamb, B. K., Robichaud, P. R. & Foltz, R. B. Wind erosion from a sagebrush steppe burned by wildfire: Measurements of PM10 and total horizontal sediment flux. Aeolian Res. 10, 25–36 (2013).Article 

    Google Scholar 
    Wagenbrenner, N. S. A large source of dust missing in Particulate Matter emission inventories? Wind erosion of post-fire landscapes. Elementa 5, 2 (2017).
    Google Scholar 
    Jeanneau, A. C., Ostendorf, B. & Herrmann, T. Relative spatial differences in sediment transport in fire-affected agricultural landscapes: a field study. Aeolian Res. 39, 13–22 (2019).Article 

    Google Scholar 
    Deb, P. et al. Causes of the widespread 2019–2020 Australian bushfire season. Earths Future 8, e2020EF001671 (2020).Article 

    Google Scholar 
    Nogrady, B. & Nicky, B. The climate link to Australia’s fires. Nature 577, 610–612 (2020).Yu, Y. & Ginoux, P. Assessing the contribution of the ENSO and MJO to Australian dust activity based on satellite- and ground-based observations. Atmos. Chem. Phys. 21, 8511–8530 (2021).Article 

    Google Scholar 
    Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. & Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50, RG3005 (2012).Article 

    Google Scholar 
    Yu, Y., Kalashnikova, O. V., Garay, M. J., Lee, H. & Notaro, M. Identification and characterization of dust source regions across North Africa and the Middle East using MISR satellite observations. Geophys. Res. Lett. 45, 6690–6701 (2018).Article 

    Google Scholar 
    Brianne, P., Rebecca, H. & David, L. The fate of biological soil crusts after fire: a meta-analysis. Glob. Ecol. Conserv. 24, e01380 (2020).Article 

    Google Scholar 
    Rodriguez-Caballero, E. et al. Global cycling and climate effects of aeolian dust controlled by biological soil crusts. Nat. Geosci. 15, 458–463 (2022).Article 

    Google Scholar 
    Goudie, A. S. & Middleton, N. J. Desert Dust in the Global System (Springer, 2006).Ginoux, P. Atmospheric chemistry: warming or cooling dust? Nat. Geosci. 10, 246–247 (2017).Article 

    Google Scholar 
    DeMott, P. J. et al. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl Acad. Sci. USA 107, 11217–11222 (2010).Article 

    Google Scholar 
    Yu, H. et al. The fertilizing role of African dust in the Amazon rainforest: a first multiyear assessment based on data from cloud–aerosol lidar and infrared Pathfinder satellite observations. Geophys. Res. Lett. 42, 1984–1991 (2015).Article 

    Google Scholar 
    Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).Article 

    Google Scholar 
    Sarangi, C. et al. Dust dominates high-altitude snow darkening and melt over high-mountain Asia. Nat. Clim. Change 10, 1045–1051 (2020).Article 

    Google Scholar 
    Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).Article 

    Google Scholar 
    Zheng, B. et al. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 7, eabh2646 (2021).Article 

    Google Scholar 
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).Article 

    Google Scholar 
    Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 1–17 (2021).Article 

    Google Scholar 
    Yu, Y. et al. Machine learning–based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nat. Commun. 13, 1250 (2022).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. How reliable are CMIP5 models in simulating dust optical depth? Atmos. Chem. Phys. 18, 12491–12510 (2018).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. Climatic factors contributing to long-term variations in surface fine dust concentration in the United States. Atmos. Chem. Phys. 18, 4201–4215 (2018).Article 

    Google Scholar 
    Bodí, M. B. et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127 (2014).Article 

    Google Scholar 
    NCAR Command Language v.6.6.2 (NCAR, 2019); https://doi.org/10.5065/D6WD3XH5Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).Article 

    Google Scholar 
    Ramo, R. et al. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl Acad. Sci. USA 118, 1–7 (2021).Article 

    Google Scholar 
    Diner, D. J. et al. Multi-angle imaging spectroradiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 36, 1072–1087 (1998).Article 

    Google Scholar 
    Pu, B. et al. Retrieving the global distribution of the threshold of wind erosion from satellite data and implementing it into the Geophysical Fluid Dynamics Laboratory land–atmosphere model (GFDL AM4.0/LM4.0). Atmos. Chem. Phys. 20, 55–81 (2020).Article 

    Google Scholar 
    Sayer, A. M., Hsu, N. C., Bettenhausen, C. & Jeong, M. J. Validation and uncertainty estimates for MODIS collection 6 ‘Deep Blue’ aerosol data. J. Geophys. Res. Atmos. 118, 7864–7872 (2013).Article 

    Google Scholar 
    Hsu, N. C. et al. Enhanced Deep Blue aerosol retrieval algorithm: the second generation. J. Geophys. Res. Atmos. 118, 9296–9315 (2013).Article 

    Google Scholar 
    Ginoux, P., Garbuzov, D. & Hsu, N. C. Identification of anthropogenic and natural dust sources using moderate resolution imaging spectroradiometer (MODIS) Deep Blue level 2 data. J. Geophys. Res. 115, D05204 (2010).Article 

    Google Scholar 
    Eck, T. F. et al. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 104, 31333–31349 (1999).Article 

    Google Scholar 
    Anderson, T. L. et al. Testing the MODIS satellite retrieval of aerosol fine-mode fraction. J. Geophys. Res. 110, 1–16 (2005).Article 

    Google Scholar 
    Baddock, M. C., Bullard, J. E. & Bryant, R. G. Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sens. Environ. 113, 1511–1528 (2009).Article 

    Google Scholar 
    Baddock, M. C., Ginoux, P., Bullard, J. E. & Gill, T. E. Do MODIS-defined dust sources have a geomorphological signature? Geophys. Res. Lett. 43, 2606–2613 (2016).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. Projection of American dustiness in the late 21st century due to climate change. Sci. Rep. 7, 5553 (2017).Article 

    Google Scholar 
    Pu, B., Ginoux, P., Kapnick, S. B. & Yang, X. Seasonal prediction potential for springtime dustiness in the United States. Geophys. Res. Lett. 46, 9163–9173 (2019).Article 

    Google Scholar 
    Garay, M. J. et al. Introducing the 4.4 km spatial resolution multi-angle imaging spectroradiometer (MISR) aerosol product. Atmos. Meas. Tech. 13, 593–628 (2020).Article 

    Google Scholar 
    Kalashnikova, O. V., Kahn, R., Sokolik, I. N. & Li, W.-H. Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes. J. Geophys. Res. 110, D18S14 (2005).Article 

    Google Scholar 
    Yu, Y. et al. Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite, radiometric, and station data. J. Geophys. Res. Atmos. 118, 13253–13264 (2013).Article 

    Google Scholar 
    Yu, Y., Notaro, M., Kalashnikova, O. V. & Garay, M. J. Climatology of summer Shamal wind in the Middle East. J. Geophys. Res. Atmos. 121, 289–305 (2016).Article 

    Google Scholar 
    Yu, Y. et al. Disproving the Bodélé depression as the primary source of dust fertilizing the Amazon rainforest. Geophys. Res. Lett. 47, e2020GL088020 (2020).Article 

    Google Scholar 
    Giles, D. M. et al. Advancements in the Aerosol Robotic Network (AERONET) version 3 database—automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 12, 169–209 (2019).Article 

    Google Scholar 
    O’Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N. & Thulasiraman, S. Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res. Atmos. 108, 1–15 (2003).
    Google Scholar 
    Winker, D. M. et al. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 26, 2310–2323 (2009).Article 

    Google Scholar 
    Esselborn, M. et al. Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006. Tellus B 61, 131–143 (2009).Article 

    Google Scholar 
    Kim, M. H. et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 11, 6107–6135 (2018).Article 

    Google Scholar 
    Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS Vegetation Index User’s Guide (Collection 6) (Univ. Arizona, 2015).Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).Article 

    Google Scholar 
    Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016).Article 

    Google Scholar 
    Remer, L. A., Kaufman, Y. J., Holben, B. N., Thompson, A. M. & McNamara, D. Biomass burning aerosol size distribution and modeled optical properties. J. Geophys. Res. Atmos. 103, 31879–31891 (1998).Article 

    Google Scholar 
    Tegen, I. & Lacis, A. A. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res. Atmos. 101, 19237–19244 (1996).Article 

    Google Scholar 
    Friedl, M. A. & Sulla-Menashe, D. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product 6 (USGS, 2018).Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P. & Friedl, M. A. Hierarchical mapping of annual global land cover 2001 to present: the MODIS collection 6 land cover product. Remote Sens. Environ. 222, 183–194 (2019).Article 

    Google Scholar 
    Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: state-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).Article 

    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).Article 

    Google Scholar 
    Preimesberger, W., Scanlon, T., Su, C.-H., Gruber, A. & Dorigo, W. Homogenization of structural breaks in the global ESA CCI Soil Moisture multisatellite climate data record. IEEE Trans. Geosci. Remote Sens. 59, 2845–2862 (2021).Article 

    Google Scholar 
    Minola, L. et al. Near-surface mean and gust wind speeds in ERA5 across Sweden: towards an improved gust parametrization. Clim. Dyn. 55, 887–907 (2020).Article 

    Google Scholar 
    Molina, M. O., Gutiérrez, C. & Sánchez, E. Comparison of ERA5 surface wind speed climatologies over Europe with observations from the HadISD dataset. Int. J. Climatol. 41, 4864–4878 (2021).Article 

    Google Scholar 
    Klose, M. et al. Mineral dust cycle in the Multiscale Online Nonhydrostatic Atmosphere Chemistry model (MONARCH) version 2.0. Geosci. Model Dev. 14, 6403–6444 (2021).Article 

    Google Scholar 
    Mondal, A., Kundu, S. & Mukhopadhyay, A. Rainfall trend analysis by Mann–Kendall test: a case study of north-eastern part of Cuttack District, Orissa. Int. J. Geol. Earth Environ. Sci. 2, 2277–208170 (2012).
    Google Scholar 
    Yu, Y. & Ginoux, P. Dust emission following large wildfires. figshare. 2022. https://doi.org/10.6084/m9.figshare.20648055.v2 More

  • in

    The effect of putrescine on space use and activity in sea lamprey (Petromyzon marinus)

    Hume, J. B. et al. Managing native and non-native sea lamprey (Petromyzon marinus) through anthropogenic change: A prospective assessment of key threats and uncertainties. J. Great Lakes Res. 47, S704–S722 (2021).Article 

    Google Scholar 
    Siefkes, M. J. Use of physiological knowledge to control the invasive sea lamprey (Petromyzon marinus) in the Laurentian Great Lakes. Conserv. Physiol. 5, 1–18 (2017).Article 

    Google Scholar 
    Hunn, J. B. & Youngs, W. D. Role of physical barriers in the control of Sea Lamprey (Petrorn yzon marinus). Can. J. Fish. Aquat. Sci. 37, 2118–2122 (1980).Article 

    Google Scholar 
    Christie, M. R., Sepúlveda, M. S. & Dunlop, E. S. Rapid resistance to pesticide control is predicted to evolve in an invasive fish. Sci. Rep. 9, 18157. https://doi.org/10.1038/s41598-019-54260-5 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cline, T. J. et al. Climate impacts on landlocked sea lamprey: Implications for host-parasite interactions and invasive species management. Ecosphere 5(6), 68. https://doi.org/10.1890/ES14-00059.1 (2014).Article 

    Google Scholar 
    Lennox, R. J. et al. Potential changes to the biology and challenges to the management of invasive sea lamprey Petromyzon marinus in the Laurentian Great Lakes due to climate change. Glob. Change Biol. 26, 1118–1137. https://doi.org/10.1111/gcb.14957 (2020).ADS 
    Article 

    Google Scholar 
    Siefkes, M. J., Johnson, N. S. & Muir, A. M. A renewed philosophy about supplemental sea lamprey controls. J. Great Lakes Res. 47, S742–S752 (2021).Article 

    Google Scholar 
    Fissette, S. D. et al. Progress towards integrating an understanding of chemical ecology into sea lamprey control. J. Great Lakes Res. 47, S660–S672 (2021).CAS 
    Article 

    Google Scholar 
    Miehls, S. et al. The future of barriers and trapping methods in the sea lamprey (Petromyzon marinus) control program in the Laurentian Great Lakes. Rev. Fish Biol. Fish. 30, 1–24 (2020).Article 

    Google Scholar 
    Imre, I., Di Rocco, R. T., Belanger, C. F., Brown, G. E. & Johnson, N. S. The behavioural response of adult Petromyzon marinus to damage-released alarm and predator cues. J. Fish Biol. 84, 1490–1502 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kats, L. B. & Dill, L. M. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5, 361–394 (1998).Article 

    Google Scholar 
    Wisenden, B. D. Olfactory assessment of predation risk in the aquatic environment. Philos. Trans. R. Soc. B Biol. Sci. 355, 1205–1208 (2000).Wisenden, B. D., Chivers, D. P., Brown, G. E. & Smith, R. J. The role of experience in risk assessment: Avoidance of areas chemically labelled with fathead minnow alarm pheromone by conspecifics and heterospecifics. Ecoscience 2, 116–122 (1995).Article 

    Google Scholar 
    Bairos-Novak, K. R., Ferrari, M. C. O. & Chivers, D. P. A novel alarm signal in aquatic prey: Familiar minnows coordinate group defences against predators through chemical disturbance cues. J. Anim. Ecol. 88, 1281–1290 (2019).PubMed 
    Article 

    Google Scholar 
    Chivers, D. P. & Smith, R. J. F. Chemical alarm signalling in aquatic predator-prey systems: A review and prospectus. Ecoscience 5, 338–352 (1998).Article 

    Google Scholar 
    Ferrari, M. C. O., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: A review and prospectus. Can. J. Zool. 88, 698–724 (2010).Article 

    Google Scholar 
    Lawrence, B. J. & Smith, R. J. F. Behavioral response of solitary fathead minnows, Pimephales promelas, to alarm substance. J. Chem. Ecol. 3, 209–219 (1989).Article 

    Google Scholar 
    Bals, J. D. & Wagner, C. M. Behavioral responses of sea lamprey (Petromyzon marinus) to a putative alarm cue derived from conspecific and heterospecific sources. Behaviour 149, 901–923 (2012).Article 

    Google Scholar 
    Hume, J. B. & Wagner, C. M. A death in the family: Sea lamprey (Petromyzon marinus) avoidance of confamilial alarm cues diminishes with phylogenetic distance. Ecol. Evol. 8, 3751–3762 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wagner, C. M., Stroud, E. M. & Meckley, T. D. A deathly odor suggests a new sustainable tool for controlling a costly invasive species. Can. J. Fish. Aquat. Sci. 68, 1157–1160 (2011).Article 

    Google Scholar 
    Byford, G. J., Wagner, C. M., Hume, J. B. & Moser, M. L. Do native pacific lamprey and invasive sea lamprey share an alarm cue? Implications for use of a natural repellent to guide imperiled pacific lamprey into fishways. North Am. J. Fish. Manag. 36, 1090–1096 (2016).Article 

    Google Scholar 
    Wagner, C. M., Kierczynski, K. E., Hume, J. B. & Luhring, T. M. Exposure to a putative alarm cue reduces downstream drift in larval sea lamprey Petromyzon marinus in the laboratory. J. Fish Biol. 89, 1897–1904 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Di Rocco, R. T., Johnson, N. S., Brege, L., Imre, I. & Brown, G. E. Sea lamprey avoid areas scented with conspecific tissue extract in Michigan streams. Fish. Manag. Ecol. 23, 548–560 (2016).Article 

    Google Scholar 
    Hume, J. B., Luhring, T. M. & Wagner, C. M. Push, pull, or push–pull? An alarm cue better guides sea lamprey towards capture devices than a mating pheromone during the reproductive migration. Biol. Invasions 22, 2129–2142 (2020).Article 

    Google Scholar 
    Hume, J. B. et al. Application of a putative alarm cue hastens the arrival of invasive sea lamprey (Petromyzon marinus) at a trapping location. Can. J. Fish. Aquat. Sci. 72, 1799–1806 (2015).CAS 
    Article 

    Google Scholar 
    Blumstein, D. T. Habituation and sensitization: New thoughts about old ideas. Anim. Behav. 120, 255–262 (2016).Article 

    Google Scholar 
    Greggor, A. L., Berger-Tal, O. & Blumstein, D. T. the rules of attraction: The necessary role of animal cognition in explaining conservation failures and successes. Ann. Rev. Ecol. Evol. Syst. 51, 483–503 (2020).Article 

    Google Scholar 
    Imre, I., Di Rocco, R. T., McClure, H., Johnson, N. S. & Brown, G. E. Migratory-stage sea lamprey Petromyzon marinus stop responding to conspecific damage-released alarm cues after 4 h of continuous exposure in laboratory conditions. J. Fish Biol. 90, 1297–1304 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagner, C. M., Bals, J. D., Hanson, M. E. & Scott, A. M. Attenuation and recovery of an avoidance response to a chemical antipredator cue in an invasive fish: implications for use as a repellent in conservation. Cons. Phys. 10, 1–12 (2022).CAS 

    Google Scholar 
    Hussain, A. et al. High-affinity olfactory receptor for the death-associated odor cadaverine. Proc. Natl. Acad. Sci. U. S. A. 110, 19579–19584 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yao, M. et al. The ancient chemistry of avoiding risks of predation and disease. Evol. Biol. 36, 267–281 (2009).Article 

    Google Scholar 
    Wisman, A. & Shrira, I. The smell of death: Evidence that putrescine elicits threat management. Front. Psychol. 6, 1–11 (2015).Article 

    Google Scholar 
    Oliveira, T. A. et al. Death-associated odors induce stress in zebrafish. Horm. Behav. 65, 340–344 (2014).PubMed 
    Article 

    Google Scholar 
    Pinel, J. P. J., Gorzalka, B. B. & Ladak, F. Cadaverine and Putrescine Initiate the Burial of Dead Conspecifics by Rats. Physiol. Behav. 27, 819–824 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prounis, G. S. & Shields, W. M. Necrophobic behavior in small mammals. Behav. Processes 94, 41–44 (2013).PubMed 
    Article 

    Google Scholar 
    Sun, Q., Haynes, K. F. & Zhou, X. Dynamic changes in death cues modulate risks and rewards of corpse management in a social insect. Funct. Ecol. 31, 697–706 (2017).Article 

    Google Scholar 
    Heale, V. R., Petersen, K. & Vanderwolf, C. H. Effect of colchicine-induced cell loss in the dentate gyms and Ammon’s horn on the olfactory control of feeding in rats. Brain. Res. J. 712, 213–220 (1996).CAS 
    Article 

    Google Scholar 
    Rolen, S. H., Sorensen, P. W., Mattson, D. & Caprio, J. Polyamines as olfactory stimuli in the goldfish Carassius auratus. J. Exp. Biol. 206, 1683–1696 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dissanayake, A. A., Wagner, C. M. & Nair, M. G. Nitrogenous compounds characterized in the deterrent skin extract of migratory adult sea lamprey from the Great Lakes region. PLoS ONE 14(5), e0217417. https://doi.org/10.1371/journal.pone.0168609 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cooke, M., Leeves, N. & White, C. Time profile of putrescine, cadaverine, indole and skatole in human saliva. Arch. Oral Biol. 9969, 323–327 (2003).Article 

    Google Scholar 
    Tilden, J. An account of a singular property of lamprey eels. Mem. Amer. Acad. Sci. 46, 335–336 (1809).
    Google Scholar 
    Di Rocco, R. T., Belanger, C. F., Imre, I., Brown, G. E. & Johnson, N. S. Daytime avoidance of chemosensory alarm cues by adult sea lamprey (Petromyzon marinus). Can. J. Fish. Aquat. Sci. 830, 824–830 (2014).Article 

    Google Scholar 
    Imre, I., Di Rocco, R. T., Brown, G. E. & Johnson, N. S. Habituation of adult sea lamprey repeatedly exposed to damage-released alarm and predator cues. Environ. Biol. Fishes 99, 613–620 (2016).Article 

    Google Scholar 
    Ferrari, M. C. O., Messier, F. & Chivers, D. P. Degradation of chemical alarm cues under natural conditions: Risk assessment by larval woodfrogs. Chemoecology 17, 263–266 (2008).Article 

    Google Scholar 
    Brown, G. E., Rive, A. C., Ferrari, M. C. O. & Chivers, D. P. The dynamic nature of antipredator behavior: Prey fish integrate threat-sensitive antipredator responses within background levels of predation risk. Behav. Ecol. Sociobiol. 61, 9–16 (2006).Article 

    Google Scholar 
    McCann, E. L., Johnson, N. S., Hrodey, P. J. & Pangle, K. L. Characterization of sea lamprey stream entry using dual-frequency identification sonar. Trans. Am. Fish. Soc. 147, 514–524 (2018).Article 

    Google Scholar 
    Binder, T. R. & McDonald, D. G. Is there a role for vision in the behaviour of sea lampreys (Petromyzon marinus) during their upstream spawning migration?. Can. J. Fish. Aquat. Sci. 64, 1403–1412 (2007).Article 

    Google Scholar 
    Wagner, C. M., Jones, M. L., Twohey, M. B. & Sorensen, P. W. A field test verifies that pheromones can be useful for sea lamprey (Petromyzon marinus) control in the Great Lakes. Can. J. Fish. Aquat. Sci. 63, 475–479 (2006).CAS 
    Article 

    Google Scholar 
    Wagner, C. M., Twohey, M. B. & Fine, J. M. Conspecific cueing in the sea lamprey: Do reproductive migrations consistently follow the most intense larval odour?. Anim. Behav. 78, 593–599 (2009).Article 

    Google Scholar 
    Boulêtreau, S. et al. High predation of native sea lamprey during spawning migration. Sci. Rep. 10, 6122. https://doi.org/10.1038/s41598-020-62916-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sjöberg, K. Time-related predator/prey interactions between birds and fish in a northern Swedish river. Oecologia 80, 1–10 (1989).ADS 
    PubMed 
    Article 

    Google Scholar 
    Fanselow, M. S., Hoffman, A. N. & Zhuravka, I. Timing and the transition between modes in the defensive behavior system. Behav. Processes 166, 103890. https://doi.org/10.1016/j.beproc.2019.103890 (2019).Fanselow, M. S. & Lester, L. S. A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In Evolution and Learning (ed. Bolles, R.C. & Beecher, M.D.) 185–211 (Earlbaum, 1988).Dissanayake, A. A., Wagner, C. M. & Nair, M. G. Chemical characterization of lipophilic constituents in the skin of migratory adult sea lamprey from the Great Lakes Region. PLoS ONE 11(12), e0168609. https://doi.org/10.1371/journal.pone.0168609 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dissanayake, A. A., Wagner, C. M. & Nair, M. G. Evaluation of health benefits of sea lamprey (Petromyzon marinus) isolates using in vitro antiinflammatory and antioxidant assays. PLoS ONE 16(11), e0259587. https://doi.org/10.1371/journal.pone.0259587 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    UFR-Committee. Guidelines for the use of fishes in research. Am. Fish. Soc. Symp., Bethesday, Maryland (2013).Association, A. V. M. Guidelines for the Euthanasia of. Animals https://doi.org/10.1016/B978-012088449-0.50009-1 (2013).Article 

    Google Scholar 
    du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the arrive guidelines 2.0. PLoS Biol. 18, 1–65 (2020).Friard, O. & Gamba, M. BORIS: A free versatile open-source event-logging software for video/ audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    Domenici, P. Context-dependent variability in the components of fish escape response: Integrating locomotor performance and behavior. J. Exp. Biol. 313, 59–79 (2010).
    Google Scholar 
    Perrault, K., Imre, I. & Brown, G. E. Behavioural response of larval sea lamprey (Petromyzon marinus) in a laboratory environment to potential damage-released chemical alarm cues. Can. J. Zool. 92, 443–447 (2014).Article 

    Google Scholar 
    Curtis, V., de Barra, M. & Aunger, R. Disgust as an adaptive system for disease avoidance behaviour. Philos. Trans. R. Soc. B Biol. Sci. 366, 389–401 (2011).Fanselow, M. S. The role of learning in threat imminence and defensive behaviors. Curr. Opin. Behav. Sci. 24, 44–49 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Helfman, G. S. Threat-sensitive predator avoidance in damselfish-trumpetfish interactions. Behav. Ecol. Sociobiol. 24, 47–58 (1989).Article 

    Google Scholar 
    Stephenson, J. F., Perkins, S. E. & Cable, J. Transmission risk predicts avoidance of infected conspecifics in Trinidadian guppies. J. Anim. Ecol. 87, 1525–1533 (2018).PubMed 
    Article 

    Google Scholar 
    Sepahi, A. et al. Olfactory sensory neurons mediate ultrarapid antiviral immune responses in a TrkA-dependent manner. Proc. Natl. Acad. Sci. U.S.A. 116, 12428–12436 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Croft, D. P., Edenbrow, M., Darden, S. K. & Cable, J. Effect of gyrodactylid ectoparasites on host behaviour and social network structure in guppies Poecilia reticulata. Behav. Ecol. Sociobiol. 65, 2219–2227 (2011).Article 

    Google Scholar 
    Luhring, T. M. et al. A semelparous fi sh continues upstream migration when exposed to alarm cue, but adjusts movement speed and timing. Anim. Behav. 121, 41–51 (2016).Article 

    Google Scholar 
    Laframboise, A. J., Ren, X., Chang, S., Dubuc, R. & Zielinski, B. S. Olfactory sensory neurons in the sea lamprey display polymorphisms. Neurosci. Lett. 414, 277–281 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Buchinger, T. J., Siefkes, M. J., Zielinski, B. S., Brant, C. O. & Li, W. Chemical cues and pheromones in the sea lamprey (Petromyzon marinus). Front. Zool. 12, 1–11 (2015).Article 

    Google Scholar 
    Halgand, F. et al. Defining intact protein primary structures from saliva: A step toward the human proteome project. Anal. Chem. 84, 4383–4395 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mackay, R. N., Wood, T. C. & Moore, P. A. Running away or running to? Do prey make decisions solely based on the landscape of fear or do they also include stimuli from a landscape of safety? J. Exp. Biol. 224, jeb242687. https://doi.org/10.1242/jeb.242687 (2021).Meckley, T. D., Gurarie, E., Miller, J. R. & Michaelwagner, C. How fishes find the shore: Evidence for orientation to bathymetry from the non-homing sea lamprey. Can. J. Fish. Aquat. Sci. 74, 2045–2058 (2017).Article 

    Google Scholar 
    Hume, J. B., Lucas, M. C., Reinhardt, U., Hrodey, P. J. & Wagner, C. M. Sea lamprey (Petromyzon marinus) transit of a ramp equipped with studded substrate: Implications for fish passage and invasive species control. Ecol. Eng. 155, 1–11 (2020).Article 

    Google Scholar 
    Ioannou, C. C., Ramnarine, I. W. & Torney, C. J. High-predation habitats affect the social dynamics of collective exploration in a shoaling fish. Sci. Adv. 3, e1602682. https://doi.org/10.1126/sciadv.1602682 (2017).Schaerf, T. M., Dillingham, P. W. & Ward, A. J. W. The effects of external cues on individual and collective behavior of shoaling fish. Sci. Adv. 3, e1603201. https://doi.org/10.1126/SCIADV.ABN2232 (2017).Hoare, D. J., Couzin, I. D., Godin, J. G. J. & Krause, J. Context-dependent group size choice in fish. Anim. Behav. 67, 155–164 (2004).Article 

    Google Scholar 
    Siefkes, M. J., Winterstein, S. R. & Li, W. Evidence that 3-keto petromyzonol sulphate specifically attracts ovulating female sea lamprey Petromyzon marinus. Anim. Behav. 70, 1037–1045 (2005).Article 

    Google Scholar 
    Wisenden, B. D. Evidence for incipient alarm signalling in fish. J. Anim. Ecol. 88, 1278–1280 (2019).PubMed 
    Article 

    Google Scholar 
    Petersen, R. S. The role of traditional ecological knowledge in understanding a species and river system at risk: Pacific Lamprey in the Lower Klamath Basin (Oregon State University, 2006).
    Google Scholar 
    Barton, B. A. Stress in fishes: A diversity of responses with particular reference to changes in. Integ. Comp. Biol. 525, 517–525 (2002).Article 

    Google Scholar 
    Lawrence, M. J., Godin, J. J. & Cooke, S. J. Comparative Biochemistry and Physiology, Part A Does experimental cortisol elevation mediate risk-taking and antipredator behaviour in a wild teleost fish?. Comp. Biochem. Physiol. Part A 226, 75–82 (2018).CAS 
    Article 

    Google Scholar 
    Conrad, J. L., Weinersmith, K. L., Brodin, T. & Saltz, J. B. Behavioural syndromes in fishes: A review with implications for ecology and fisheries management. J. Fish Biol. 78, 395–435 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanches, F. H. C., Miyai, C. A., Pinho-Neto, C. F. & Barreto, R. E. Stress responses to chemical alarm cues in Nile tilapia. Physiol. Behav. 149, 8–13 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rehnberg, B. G. & Schreck, C. B. Chemosensory detection of predators by coho salmon (Oncorhynchus kisutch): Behavioral reaction and the physiological stress response1. Can. J. Zool. 65, 481–485 (1987).CAS 
    Article 

    Google Scholar 
    Rehnberg, B. G., Smith, R. J. F. & Sloley, B. D. The reaction of pearl dace (Pisces, Cyprinidae) to alarm substance: Time-course of behavior, brain amines, and stress physiology. Can. J. Zool. 65, 2916–2921 (1987).CAS 
    Article 

    Google Scholar 
    Close, D. A., Yun, S. S., McCormick, S. D., Wildbill, A. J. & Li, W. 11-Deoxycortisol is a corticosteroid hormone in the lamprey. Proc. Natl. Acad. Sci. U. S. A. 107, 13942–13947 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shaughnessy, C. A. & Mccormick, S. D. 11-Deoxycortisol is a stress responsive and gluconeogenic hormone in a jawless vertebrate, the sea lamprey (Petromyzon marinus). J. Exp. Biol. 224, jeb241943. https://doi.org/10.1242/jeb.241943 (2021).Cull, F. et al. Consequences of experimental cortisol manipulations on the thermal biology of the checkered puffer (Sphoeroides testudineus) in laboratory and field environments. J. Therm. Biol. 47, 63–74 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pleizier, N., Wilson, A. D. M., Shultz, A. D. & Cooke, S. J. Puffed and bothered: Personality, performance, and the effects of stress on checkered puffer fish. Physiol. Behav. 152, 68–78 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lawrence, M. J. et al. An experimental evaluation of the role of the stress axis in mediating predator-prey interactions in wild marine fish. Comp. Biochem. Physiol. Part A 207, 21–29 (2017).CAS 
    Article 

    Google Scholar 
    Atema, J., Kingsford, M. J. & Gerlach, G. Larval reef fish could use odour for detection, retention and orientation to reefs. Mar. Ecol. Prog. Ser. 241, 151–160 (2002).ADS 
    Article 

    Google Scholar 
    Gardiner, J. M. & Atema, J. Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. J. Exp. Biol. 210, 1925–1934 (2007).PubMed 
    Article 

    Google Scholar 
    Jutfelt, F., Sundin, J., Raby, G. D., Krång, A. S. & Clark, T. D. Two-current choice flumes for testing avoidance and preference in aquatic animals. Methods Ecol. Evol. 8, 379–390 (2017).Article 

    Google Scholar 
    Moser, M. L., Almeida, P. R., Kemp, P. S. & Sorensen, P. W. Lamprey Spawning Migration in Lampreys: Biology, Conservation and Control. (ed. Docker, M. F.) 215–263 (Springer, 2015).Imre, I., Brown, G. E., Bergstedt, R. A. & Mcdonald, R. Use of chemosensory cues as repellents for sea lamprey: Potential directions for population management. J. Great Lakes Res. 36, 790–793 (2010).CAS 
    Article 

    Google Scholar 
    Merrick, M. J. & Koprowski, J. L. Should we consider individual behavior differences in applied wildlife conservation studies?. Biol. Conserv. 209, 34–44 (2017).Article 

    Google Scholar  More

  • in

    Global distribution of soil fauna functional groups and their estimated litter consumption across biomes

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro.2017.87 (2017).Article 
    PubMed 

    Google Scholar 
    Frouz, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332, 161–172 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Hicks Pries, C. E., Castanha, C., Porras, R., Phillips, C. & Torn, M. S. Response to comment on “The whole-soil carbon flux in response to warming”. Science 359, 1420–1423 (2018).Article 

    Google Scholar 
    Lavelle, P. et al. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33, 159–193 (1997).CAS 

    Google Scholar 
    Frouz, J., Špaldoňová, A., Fričová, K. & Bartuška, M. The effect of earthworms (Lumbricus rubellus) and simulated tillage on soil organic carbon in a long-term microcosm experiment. Soil. Biol. Biochem. 78, 58–64 (2014).CAS 
    Article 

    Google Scholar 
    Lavelle, P., Blanchart, E., Martin, A., Martin, S. & Schaefer, R. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Assoc. Trop. Biol. 25, 130–150 (2016).
    Google Scholar 
    Lavelle, P. et al. Earthworms as a resource in tropical agroecosystems. Nat. Res. 34, 26–41 (1998).
    Google Scholar 
    Lavelle, P. Diversity of soil fauna and ecosystem function. Biol. Int. J. 33, 3–16 (1996).
    Google Scholar 
    Ruiz, N., Lavelle, P. & Jiménez, J. Soil macrofauna field manual. Recherche 113 (2008).Xiong, W. et al. Soil protist communities form a dynamic hub in the soil microbiome. ISME J. 12, 634–638 (2018).PubMed 
    Article 

    Google Scholar 
    Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns in belowground communities. Ecol. Lett. 12, 1238–1249 (2009).PubMed 
    Article 

    Google Scholar 
    Nielsen, U. N. et al. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Glob. Ecol. Biogeogr. 23, 968–978 (2014).Article 

    Google Scholar 
    Špaldoňová, A. & Frouz, J. The role of Armadillidium vulgare (Isopoda: Oniscidea) in litter decomposition and soil organic matter stabilization. Appl. Soil. Ecol. https://doi.org/10.1016/j.apsoil.2014.04.012 (2014).Article 

    Google Scholar 
    McCay, T. S., Cardelus, C. L. & Neatrour, M. A. Rate of litter decay and litter macroinvertebrates in limed and unlimed forests of the Adirondack Mountains, USA. For. Ecol. Manag. 304, 254–260 (2013).Article 

    Google Scholar 
    Slade, E. M. & Riutta, T. Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments. Basic Appl. Ecol. 13, 423–431 (2012).Article 

    Google Scholar 
    Joly, F.-X., Coq, S., Coulis, M., Nahmani, J. & Hättenschwiler, S. Litter conversion into detritivore faeces reshuffles the quality control over C and N dynamics during decomposition. Funct. Ecol. https://doi.org/10.1111/1365-2435.13178 (2018).Article 

    Google Scholar 
    Hättenschwiler, S. Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Glob. Change Biol. https://doi.org/10.1046/j.1365-2486.2001.00402.x (2015).Article 

    Google Scholar 
    Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008).ADS 
    Article 

    Google Scholar 
    Brussaard, L., Pulleman, M. M., Ouédraogo, É., Mando, A. & Six, J. Soil fauna and soil function in the fabric of the food web. Pedobiologia (Jena) 50, 447–462 (2007).Article 

    Google Scholar 
    Frouz, J., Elhottová, D., Kuráž, V. & Šourková, M. Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: Results of a field microcosm experiment. Appl. Soil Ecol. 33, 308–320 (2006).Article 

    Google Scholar 
    García-Palacios, P., Maestre, F. T., Kattge, J. & Wall, D. H. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 16, 1045–1053 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Melguizo-Ruiz, N. et al. Field exclusion of large soil predators impacts lower trophic levels and decreases leaf-litter decomposition in dry forests. J. Anim. Ecol. 89, 334–346 (2020).PubMed 
    Article 

    Google Scholar 
    Lavelle, P. et al. Soil macroinvertebrate communities: A world-wide assessment. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13492 (2022).Article 

    Google Scholar 
    Coq, S. et al. Faeces traits as unifying predictors of detritivore effects on organic matter turnover. Geoderma 422, 115940 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Lavelle, P. et al. Soil aggregation, ecosystem engineers and the C cycle. Act Oecol. 105, 103561 (2020).Article 

    Google Scholar 
    Filser, J. et al. Soil fauna: Key to new carbon models. Soil 2, 565–582 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Joly, F. X. et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 3, 1–9 (2020).MathSciNet 
    Article 

    Google Scholar 
    Frouz, J., Roubíčková, A., Heděnec, P. & Tajovský, K. Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. Eur. J. Soil Biol. 68, 18 (2015).CAS 
    Article 

    Google Scholar 
    Lavelle, P., Blanchart, E., Martin, A., Martin, S. & Spain, A. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Biotropica 25, 130–150 (1993).Article 

    Google Scholar 
    Crowther, T. W. & A’Bear, A. D. Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent. Fungal Ecol. 5, 277–281 (2012).Article 

    Google Scholar 
    Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).Article 

    Google Scholar 
    Tordoff, G. M., Boddy, L. & Jones, T. H. Species-specific impacts of collembola grazing on fungal foraging ecology. Soil. Biol. Biochem. 40, 434–442 (2008).CAS 
    Article 

    Google Scholar 
    Meysman, F. J. R., Middelburg, J. J. & Heip, C. H. R. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 21, 688–695 (2006).PubMed 
    Article 

    Google Scholar 
    Frouz, J. et al. Soil food web changes during spontaneous succession at post mining sites: A possible ecosystem engineering effect on food web organization? PLoS ONE 8, e79694 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frouz, J., Moradi, J., Püschel, D. & Rydlová, J. Earthworms affect growth and competition between ectomycorrhizal and arbuscular mycorrhizal plants. Ecosphere 10, e02736 (2019).Article 

    Google Scholar 
    Marichal, R. et al. Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Appl. Soil. Ecol. 83, 177–185 (2014).Article 

    Google Scholar 
    Prescott, C. E. & Vesterdal, L. Forest ecology and management decomposition and transformations along the continuum from litter to soil organic matter in forest soils. For. Ecol. Manag. 498, 119522 (2021).Article 

    Google Scholar 
    Kampichler, C. & Bruckner, A. The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biol. Rev. Camb. Philos. Soc. 84, 375–389 (2009).PubMed 
    Article 

    Google Scholar 
    Brennan, K. E. C., Christie, F. J. & York, A. Global climate change and litter decomposition: More frequent fire slows decomposition and increases the functional importance of invertebrates. Glob. Change. Biol. 15, 2958–2971 (2009).ADS 
    Article 

    Google Scholar 
    Birkhofer, K. et al. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE 7, e43292 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. Molecular study of worldwide distribution and diversity of soil animals. PNAS 108, 17720–17725 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    James, S. W. et al. Comment on Global distribution of earthworm diversity. Science 371, 4629 (2021).Article 

    Google Scholar 
    Cesarz, S. et al. Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil. Biol. Biochem. 62, 36–45 (2013).CAS 
    Article 

    Google Scholar 
    Eppinga, M. B., Kaproth, M. A., Collins, A. R. & Molofsky, J. Litter feedbacks, evolutionary change and exotic plant invasion. J. Ecol. 99, 503–514 (2011).
    Google Scholar 
    Harrison, K. A., Bol, R. & Bardgett, R. D. Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? Soil. Biol. Biochem. 40, 228–237 (2008).CAS 
    Article 

    Google Scholar 
    Wardle, D. A., Yeates, G. W., Barker, G. M. & Bonner, K. I. The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol. Biochem. 38, 1052–1062 (2006).CAS 
    Article 

    Google Scholar 
    Zhang, D., Hui, D., Luo, Y. & Zhou, G. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. J. Plant Ecol. 1, 85–93 (2008).Article 

    Google Scholar 
    Preston, C. M. & Trofymow, J. A. Variability in litter quality and its relationship to litter decay in Canadian forests. Botany 78, 1269–1287 (2000).Article 

    Google Scholar 
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. PNAS 115, 6506–6511 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersen, D. C. Below-ground herbivory in natural communities: A review emphasizing fossorial animals. Q. Rev. Biol. 62, 261–286 (1987).Article 

    Google Scholar 
    Cepáková, S. & Frouz, J. Changes in chemical composition of litter during decomposition: A review of published 13C NMR spectra. Plant Nutr. Soil Sci. 15, 805–815 (2015).
    Google Scholar 
    Pietsch, K. A. et al. Global relationship of wood and leaf litter decomposability: The role of functional traits within and across plant organs. Glob. Ecol. Biogeogr. 23, 1046–1057 (2014).Article 

    Google Scholar 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 
    Article 

    Google Scholar 
    Ponge, J.-F. Plant–soil feedbacks mediated by humus forms: A review. Soil. Biol. Biochem. 57, 1048–1060 (2013).CAS 
    Article 

    Google Scholar 
    Salmon, S., Mantel, J., Frizzera, L. & Zanella, A. Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate. For. Ecol. Manag. 237, 47–56 (2006).Article 

    Google Scholar 
    Desie, E. et al. Positive feedback loop between earthworms, humus form and soil pH reinforces earthworm abundance in European forests. Funct. Ecol. 34, 2598–2610 (2020).Article 

    Google Scholar 
    Samson, F. B. & Knopf, F. L. (eds) Organisms as Ecosystem Engineers BT—Ecosystem Management: Selected Readings 130–147 (Springer, 1996).
    Google Scholar 
    Araujo, P. I., Yahdjian, L. & Austin, A. T. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina? Oecologia 168, 221–230 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Frouz, J. et al. Soil biota in post-mining sites along a climatic gradient in the USA: Simple communities in shortgrass prairie recover faster than complex communities in tallgrass prairie and forest. Soil. Biol. Biochem. 67, 212–225 (2013).CAS 
    Article 

    Google Scholar 
    Hattenschwiler, S., Tiunov, A. V. & Scheu, S. Biodiversity and litter decomposition interrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 191–218 (2005).Article 

    Google Scholar 
    Deckmyn, G. et al. KEYLINK: Towards a more integrative soil representation for inclusion in ecosystem scale models I. Review and model concept. PeerJ 8, 1–69 (2020).Article 

    Google Scholar 
    Héry, M. et al. Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. SME J. 2, 92–104 (2008).
    Google Scholar 
    Roubickova, A., Mudrak, O. & Frouz, J. Effect of earthworm on growth of late succession plant species in postmining sites under laboratory and field conditions. Biol. Fert. Soils 45, 769–774 (2009).Article 

    Google Scholar 
    Bodine, M. C. & Ueckert, D. N. Effect litter in west of desert termites on herbage and in a shortgrass Texas. J. Range. Manag. 28, 353–358 (1975).Article 

    Google Scholar 
    Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).PubMed 
    Article 

    Google Scholar 
    Petersen, H. & Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288 (1982).Article 

    Google Scholar 
    Gongalsky, K. B., Persson, T. & Pokarzhevskii, A. D. Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test. Appl. Soil Ecol. 39, 84–90 (2008).Article 

    Google Scholar 
    Simpson, J. E., Slade, E., Riutta, T. & Taylor, M. E. Factors affecting soil fauna feeding activity in a fragmented lowland temperate deciduous woodland. PLoS ONE 7, 0029616 (2012).ADS 
    Article 

    Google Scholar 
    Clarke, A. Is there a universal temperature dependence of metabolism? Funct. Ecol. 18, 252–256 (2004).Article 

    Google Scholar 
    Coq, S. & Ibanez, S. Soil fauna contribution to winter decomposition in subalpine grasslands. Soil Org. https://doi.org/10.25674/so91iss3pp107 (2019).Article 

    Google Scholar 
    Frouz, J., Špaldoňová, A., Lhotáková, Z. & Cajthaml, T. Major mechanisms contributing to the macrofauna-mediated slow down of litter decomposition. Soil. Biol. Biochem. 91, 23–31 (2015).CAS 
    Article 

    Google Scholar 
    Frouz, J., Šustr, V. & Kalčík, J. Energetic budget of three species of bibionid larvae. In Contributions to Soil Zoology in Central Europe I. ISB AS CR, České Budějovice, 15–18 (2005).Frouz, J., Jedlička, P., Šimáčková, H. & Lhotáková, Z. The life cycle, population dynamics, and contribution to litter decomposition of Penthetria holosericea (Diptera: Bibionidae) in an alder forest. Eur. J. Soil Biol. 71, 21–27 (2015).Article 

    Google Scholar 
    Brovkin, V. et al. Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences 9, 565–576 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Buis, G. M. et al. Controls of aboveground net primary production in mesic savanna grasslands: An inter-hemispheric comparison. Ecosystems 12, 982–995 (2009).CAS 
    Article 

    Google Scholar 
    O’Neill, D. W. & Abson, D. J. To settle or protect? A global analysis of net primary production in parks and urban areas. Ecol. Econ. 69, 319–327 (2009).Article 

    Google Scholar 
    Pan, S. et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J. Geogr. Sci. 25, 1027–1044 (2015).Article 

    Google Scholar 
    Yanai, R. D. et al. Litterfall and litter chemistry change over time in an old-growth temperate forest, northeastern China. For. Ecol. Manag. 43, 279–287 (1999).
    Google Scholar 
    Shchelchkova, M., Davydov, S., Fyodorov-Davydov, D., Davydova, A. & Boeskorov, G. The characteristics of a relic steppe of Northeast Asia: Refuges of the Pleistocene Mammoth steppe (an example from the Lower Kolyma area). IOP Conf. Ser. Earth Environ. Sci. 438, 012025 (2020).Article 

    Google Scholar 
    Ayuke, F. O. et al. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Appl. Soil Ecol. 48, 53–62 (2011).Article 

    Google Scholar 
    Blanchart, E. et al. Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agric. Conspec. Sci. 72, 81–87 (2007).
    Google Scholar 
    Korboulewsky, N., Perez, G. & Chauvat, M. How tree diversity affects soil fauna diversity: A review. Soil Biol. Biochem. 94, 94–106 (2016).CAS 
    Article 

    Google Scholar 
    Frouz, J., Pizl, V., Cienciala, E. & Kalcik, J. Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry 94, 111–121 (2009).CAS 
    Article 

    Google Scholar 
    Milton, Y. & Kaspari, M. Bottom-up and top-down regulation of decomposition in a tropical forest. Oecologia 153, 163–172 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    Öpik, M., Moora, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 94, 778–790 (2006).Article 

    Google Scholar 
    Portela, M. B. et al. Do ecological corridors increase the abundance of soil fauna? Écoscience 27, 45–57 (2020).Article 

    Google Scholar 
    Prieto, I., Almagro, M., Bastida, F. & Querejeta, J. I. Altered leaf litter quality exacerbates the negative impact of climate change on decomposition. J. Ecol. 107, 2364–2382 (2019).CAS 
    Article 

    Google Scholar 
    Van der Putten, W. H. et al. Plant-soil feedbacks: The past, the present and future challenges. J. Ecol. 101, 265–276 (2013).Article 

    Google Scholar 
    Artz, R. et al. European atlas of soil. Biodiversity. https://doi.org/10.13140/RG.2.1.3178.2880 (2010).Article 

    Google Scholar 
    Orgiazzi, A. et al. Global Soil Biodiversity Atlas (European Soil Data Centre, 2016).
    Google Scholar 
    Peng, Y. et al. Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community. Geoderma 407, 115570 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Bardgett, R. D. The Biology of Soil: A Community and Ecosystem Approach 255 (Oxford University Press, 2005).Book 

    Google Scholar 
    Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jackson, R. B., Mooney, H. A. & Schulze, E.-D. A global budget for fine root biomass, surface area, and nutrient contents. PNAS 94, 7362–7366 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sanchez, G. PLS Path Modeling with R, 235 (2013).Holland, E. A. et al. A global database of litterfall mass and litter pool carbon and nutrients. 10.3334/ORNLDAAC/1244 (2014).Palpurina, S. et al. The type of nutrient limitation affects the plant species richness–productivity relationship: Evidence from dry grasslands across Eurasia. J. Ecol. 107, 1038–1050 (2019).CAS 
    Article 

    Google Scholar 
    Green, C. & Byrne, K. A. Biomass: Impact on carbon cycle and greenhouse gas emissions. In Encyclopedia of Energy (ed. Cleveland, C. J.) 223–236 (Elsevier, 2004).Chapter 

    Google Scholar 
    Liang, W. et al. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agric. For. Meteorol. 204, 22–36 (2015).ADS 
    Article 

    Google Scholar 
    Ise, T., Litton, C. M., Giardina, C. P. & Ito, A. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. J. Geo. Res. Biogeosci. 115, 1–11 (2010).
    Google Scholar 
    Ni, J. Net primary production, carbon storage and climate change in Chinese biomes. Nord. J. Bot. 20, 415–426 (2000).Article 

    Google Scholar 
    Jandl, R. et al. How strongly can forest management influence soil carbon sequestration? Geoderma 137, 253–268 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Reeves, M. C., Moreno, A. L., Bagne, K. E. & Running, S. W. Estimating climate change effects on net primary production of rangelands in the United States. Clim. Change 126, 429–442 (2014).ADS 
    Article 

    Google Scholar 
    Cappai, C. et al. Small-scale spatial variation of soil organic matter pools generated by cork oak trees in Mediterranean agro-silvo-pastoral systems. Geoderma 304, 59–67 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Clark, D. A. et al. Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecol. Appl. 11, 371–384 (2001).Article 

    Google Scholar 
    Yanai, R. D., Arthur, M. A., Acker, M., Levine, C. R. & Park, B. B. Variation in mass and nutrient concentration of leaf litter across years and sites in a northern hardwood forest. Can. J. For. Res. 42, 1597–1610 (2012).CAS 
    Article 

    Google Scholar  More

  • in

    Effects of Rhizophagus intraradices on soybean yield and the composition of microbial communities in the rhizosphere soil of continuous cropping soybean

    Liu, X. Q. et al. Geographic differentiation and phylogeographic relationships among world soybean populations. Crop J. 8(2), 260–272 (2020).Article 

    Google Scholar 
    Coleman, K. et al. The potential for soybean to diversify the production of plant-based protein in the UK. Sci. Total Environ. 767(3), 144903 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, W. W., Feng, Z. Z., Wang, X. K., Liu, X. B. & Hu, E. Z. Quantification of ozone exposure- and stomatal uptake-yield response relationships for soybean in Northeast China. Sci. Total Environ. 599–600, 710–720 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Strom, N., Hu, W. M., Haarith, D. & Chen, S. Y. Interactions between soil properties, fungal communities, the soybean cyst nematode, and crop yield under continuous corn and soybean monoculture. Appl. Soil Ecol. 147, 103388 (2019).Article 

    Google Scholar 
    Fernandez-Gnecco, G. et al. Microbial community analysis of soils under different soybean cropping regimes in the Argentinean south-eastern Humid Pampas. Fems Microbiol. Ecol. 97(3), 007 (2021).Article 

    Google Scholar 
    Bai, L., Cui, J. Q., Jie, W. G. & Cai, B. Y. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields. Microbiol. Res. 180, 49–56 (2015).PubMed 
    Article 

    Google Scholar 
    Liu, J. J., Yu, Z. H., Yao, Q. & Hu, X. J. Distinct soil bacterial communities in response to the cropping system in a Mollisol of northeast China. Appl. Soil Ecol. 119, 407–416 (2017).Article 

    Google Scholar 
    Zeng, H. L. et al. The influence of Bt maize cultivation on communities of arbuscular mycorrhizal fungi revealed by MiSeq sequencing. Front. Microbiol. 9, 3275 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barbosa, M. V. et al. Aggregation of a ferruginous nodular gleysol in a pasture area in Cuba under the influence of Arbuscular mycorrhizal fungi associated with hybrid Urochloa. Soil Till. Res. 208(1), 104905 (2021).Article 

    Google Scholar 
    Zhang, F. G., Liu, M. H., Li, Y., Che, Y. & Xiao, Y. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci. Total Environ. 655, 1150–1158 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kokkoris, V. et al. Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi. Curr. Biol. 31(7), 1531–1538 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prates, J. P. et al. Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS ONE 14(1), e0209093 (2019).Article 

    Google Scholar 
    Silvana, V. B., Longo, S., Marro, N. & Urcelay, C. The global invader Ligustrum lucidum accumulates beneficial arbuscular mycorrhizal fungi in a novel range. Plant Ecol. 222, 397–408 (2021).Article 

    Google Scholar 
    Chang, Q. et al. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Environ. Pollut. 2018(241), 607 (2018).Article 

    Google Scholar 
    Bi, Y. et al. Arbuscular mycorrhizal fungi alleviate root damage stress induced by simulated coal mining subsidence ground fissures. Sci. Total Environ. 652, 398–405 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    Ma, X. N., Luo, W. Q., Li, J. & Wu, F. Arbuscular mycorrhizal fungi increase both concentrations and bioavilability of Zn in wheat (Triticum aestivum L.) grain on Zn-spiked soils. Appl. Soil Ecol. 135, 91–97 (2019).Article 

    Google Scholar 
    Srivastava, S., Johny, L. & Adholeya, A. Review of patents for agricultural use of arbuscular mycorrhizal fungi. Mycorrhiza 31(2), 127–136 (2021).PubMed 
    Article 

    Google Scholar 
    Kabdwal, B. C., Sharma, R. & Tewari, R. Field efficacy of different combinations of Trichoderma harzianum, Pseudomonas fluorescens, and arbuscular mycorrhiza fungus against the major diseases of tomato in Uttarakhand (India). Egypt. J. Biol. Pest Control 29, 1 (2019).Article 

    Google Scholar 
    Jie, W. G., Bai, L., Yu, W. J. & Cai, B. Y. Analysis of interspecific relationships between Funneliformis mosseae and Fusarium oxysporum in the continuous cropping of soybean rhizosphere soil during the branching period. Biocontrol Sci. Technol. 25(9), 1036–1051 (2015).Article 

    Google Scholar 
    Jie, W. G., Lin, J. X., Guo, N., Cai, B. Y. & Yan, X. F. Community composition of rhizosphere fungi as affected by Funneliformis mosseae in soybean continuous cropping soil during seedling period. Chil. J. Agric. Res. 79(3), 356–365 (2019).Article 

    Google Scholar 
    Jie, W. G., Lin, J. X., Guo, N., Cai, B. Y. & Yan, X. F. Effects of Funneliformis mosseae on mycorrhizal colonization, plant growth and the composition of bacterial community in the rhizosphere of continuous cropping soybean at seedling stage. Int. J. Agric. Biol. 22(5), 1173–1180 (2019).CAS 

    Google Scholar 
    Jie, W. G., Yao, Y. X., Guo, N., Zhang, Y. Z. & Qiao, W. Effects of Rhizophagus intraradices on plant growth and the composition of microbial communities in the roots of continuous cropping soybean at maturity. Sustainability 13, 6623 (2021).CAS 
    Article 

    Google Scholar 
    Yang, Y. R. et al. Interactive effects of exogenous melatonin and Rhizophagus intraradices on saline-alkaline stress tolerance in Leymus chinensis. Mycorrhiza 30(2), 357–371 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Phillips, J. M. & Hayman, D. S. Improved procedures for clearing roots and staining parasitic and vesicula-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55(1), 158–161 (1970).Article 

    Google Scholar 
    Geng, Y. F., Qiu, Q., Mao, J. H. & Jing, Y. B. Effects of arbuscular mycorrhizal fungi inoculation and different inoculation amount on seedlings of Mesua ferrea. J. Fujian For. Sci. Technol. 43(03), 67–71 (2016).
    Google Scholar 
    Schütz, L., Saharan, K., Mäder, P., Boller, T. & Mathimaran, N. Rate of hyphal spread of arbuscular mycorrhizal fungi from pigeon pea to finger millet and their contribution to plant growth and nutrient uptake in experimental microcosms. Appl. Soil Ecol. 169(248), 104156 (2022).Article 

    Google Scholar 
    Fehr, W. R. & Caviness, C. E. Stages of Soybean Development. Special Report 80. Ames Cooperative Extension Service, Agriculture and Home Economic Experiment Station 1–11 (Iowa State University Press, 1977).
    Google Scholar 
    Zhou, N., Liu, P., Wang, Z. Y. & Xu, G. D. The effects of rapeseed root exudates on the forms of aluminum in aluminum stressed rhizosphere soil. Crop Prot. 30(6), 631–636 (2011).CAS 
    Article 

    Google Scholar 
    Dorn-In, S., Bassitta, R., Schwaiger, K., Bauer, J. & Holzel, C. S. Specific amplification of bacterial DNA by optimized so-called universal bacterial primers in samples rich of plant DNA. J. Microbiol. Methods 113, 50–56 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, D. P. & Peay, K. G. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE 9(2), e90234 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7(5), 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21), 2957–2963 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19), 2460–2461 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, H. B. & Boutros, P. C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 12, 35 (2011).Article 

    Google Scholar 
    Spagnoletti, F. N., Balestrasse, K., Lavado, R. S. & Giacometti, R. Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean. Ecotoxicol. Environ. Safe 133(11), 47–56 (2016).CAS 
    Article 

    Google Scholar 
    Song, Y. Y., Chen, D. M., Lu, K., Sun, Z. X. & Zeng, R. S. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front. Plant Sci. 6, 786 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ramadan, A., Muroi, A. & Arimura, G. Herbivore-induced maize volatiles serve as priming cues for resistance against post-attack by the specialist armyworm Mythimna separata. J. Plant Interact. 6(2–3), 155–158 (2011).CAS 
    Article 

    Google Scholar 
    Spagnoletti, F. N., Leiva, M., Chiocchio, V. & Lavado, R. S. Phosphorus fertilization reduces the severity of charcoal rot (Macrophomina phaseolina) and the arbuscular mycorrhizal protection in soybean. J. Plant Nutr. Soil Sci. 181, 855–860 (2018).CAS 
    Article 

    Google Scholar 
    Wehner, J., Antunes, P. M., Powell, J. R., Mazukatow, J. & Rillig, M. C. Plant pathogen protection by arbuscular mycorrhizas: A role for fungal diversity? Pedobiologia 53(3), 197–201 (2010).Article 

    Google Scholar 
    Al-Askar, A. A. & Rashad, Y. M. Arbuscular mycorrhizal fungi: A biocontrol agent against common. Plant Pathol. 9, 31–38 (2010).Article 

    Google Scholar 
    Marschner, P. M., Crowley, D. E. & Lieberei, R. L. Arbuscular mycorrhizal infection changes the bacterial 16s rDNA community composition in the rhizosphere of maize. Mycorrhiza 11(6), 297–302 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turrini, A., Avio, L., Giovannetti, M. & Agnolucci, M. Functional complementarity of arbuscular mycorrhizal fungi and associated microbiota: The challenge of translational research. Front. Plant Sci. 9, 1407 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Giovannetti, M., Avio, L. & Sbrana, C. Fungal spore germination and pre-symbiotic mycelial growth-physiological and genetic aspects. In Arbuscular Mycorrhizas Physiology and Function (eds Koltai, H. & Kapulnik, Y.) 3–32 (Springer, 2010).Chapter 

    Google Scholar 
    Linderman, R. G. Mycorrhizal interactions with the rhizosphere microflora-the mycorrhizosphere effect. Phytopathology 78(3), 366–371 (1988).
    Google Scholar 
    Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 1, 541–556 (2009).Article 

    Google Scholar 
    Shoresh, M., Harman, G. E. & Mastouri, F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 48(1), 21–43 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, E. et al. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr. Biol. 22(23), 2242–2246 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zamioudis, C. & Pieterse, C. M. J. Modulation of host immunity by beneficial microbes. Mol. Plant Microbe 25(2), 139–150 (2012).CAS 
    Article 

    Google Scholar 
    Haichar, F. Z. et al. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2(12), 1221–1230 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Linderman, R. G. Vesicular arbuscular mycorrhizae and soil microbial interactions, in Mycorrhizae in sustainable agriculture. ASA Spec. Publ. 54, 45–70 (1992).
    Google Scholar 
    Harrier Lucy, A. & Watson, C. A. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag. Sci. 60(2), 149–157 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, G. S. The role of phosphorous nutrition in interactions of vesicular arbuscular mycorrhizal fungi with soilborne nematodes and fungi. Phytopathology 78(3), 371–374 (1988).CAS 

    Google Scholar 
    Schwob, I., Ducher, M. & Coudret, A. Effects of climatic factors on native arbuscular mycorrhizae and Meloidogyne exigua in a Brazilian rubber tree (Hevea brasilensis) plantation. Plant Pathol. 48(1), 19–25 (2010).Article 

    Google Scholar  More

  • in

    Ecological sensitivity and vulnerability of fishing fleet landings to climate change across regions

    Sumaila, U. R. & Tai, T. C. End overfishing and increase the resilience of the ocean to climate change. Front. Mar. Sci. 7, 1–8 (2020).Article 

    Google Scholar 
    Sumaila, U. R. et al. Benefits of the paris agreement to ocean life, economies, and people. Sci. Adv. 5, 1–10 (2019).Article 

    Google Scholar 
    Beaudreau, A. H. et al. Thirty years of change and the future of Alaskan fisheries: Shifts in fishing participation and diversification in response to environmental, regulatory and economic pressures. Fish Fish. 20, 601–619 (2019).
    Google Scholar 
    Finkbeiner, E. M. The role of diversification in dynamic small-scale fisheries: Lessons from Baja California Sur. Mexico. Glob. Environ. Chang. 32, 139–152 (2015).Article 

    Google Scholar 
    Johnson, J. E. et al. Assessing and reducing vulnerability to climate change: Moving from theory to practical decision-support. Mar. Policy 74, 220–229 (2016).Article 

    Google Scholar 
    IPCC. Climate Change 2007: Synthesis Report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. (2007).Johnson, J. E. & Welch, D. J. Climate change implications for Torres Strait fisheries: Assessing vulnerability to inform adaptation. Clim. Change 135, 611–624 (2016).ADS 
    Article 

    Google Scholar 
    IPCC. Annex I: Glossary. in IPCC special report on the ocean and cryosphere in a changing climate e [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)] 677–702 (Cambridge University Press, 2019). https://doi.org/10.1017/9781009157964.010Cheung, W. W. L., Watson, R., Morato, T., Pitcher, T. J. & Pauly, D. Intrinsic vulnerability in the global fish catch. Mar. Ecol. Prog. Ser. 333, 1–12 (2007).ADS 
    Article 

    Google Scholar 
    Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 80(279), 860 (1998).ADS 
    Article 

    Google Scholar 
    Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Rashid Sumaila, U. Projected change in global fisheries revenues under climate change. Sci. Rep. 6(6), 13 (2016).
    Google Scholar 
    Heck, N. et al. Fisheries at risk: Vulnerability of fisheries to climate change (Nat. Conserv. Tech. Rep, 2020).
    Google Scholar 
    Allison, E. H. et al. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 10, 173–196 (2009).Article 

    Google Scholar 
    DuFour, M. R. et al. Portfolio theory as a management tool to guide conservation and restoration of multi-stock fish populations. Ecosphere 6(12), 1 (2015).Article 

    Google Scholar 
    Kasperski, S. & Holland, D. S. Income diversification and risk for fishermen. Proc. Natl. Acad. Sci. U. S. A. 110, 2076–2081 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bahri, T. et al. Adaptive management of fisheries in response to climate change. FAO Fisheries and Aquaculture Technical Paper 667, (FAO, 2021).Barker, M. J. & Schluessel, V. Managing global shark fisheries: Suggestions for prioritizing management strategies. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 325–347 (2005).Article 

    Google Scholar 
    Fletcher, W. J. F. & Fletcher, W. J. The application of qualitative risk assessment methodology to prioritize issues for fisheries management. ICES J. Mar. Sci. 62, 1576–1587 (2005).Article 

    Google Scholar 
    Cheung, W. W. L. The future of fishes and fisheries in the changing oceans. J. Fish Biol. 92, 790–803 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cinner, J. E. et al. Evaluating social and ecological vulnerability of coral reef fisheries to climate change. PLoS ONE 8(9), e74321 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colburn, L. L. et al. Indicators of climate change and social vulnerability in fishing dependent communities along the Eastern and Gulf Coasts of the United States. Mar. Policy 74, 323–333 (2016).Article 

    Google Scholar 
    Pinnegar, J. K. et al. Assessing vulnerability and adaptive capacity of the fisheries sector in Dominica: Long-term climate change and catastrophic hurricanes. ICES J. Mar. Sci. 76, 1353–1367 (2019).
    Google Scholar 
    Aragão, G. M. et al. The importance of regional differences in vulnerability to climate change for demersal fisheries. ICES J. Mar. Sci. 1, 1–13 (2021).
    Google Scholar 
    Payne, M. R., Kudahl, M., Engelhard, G. H., Peck, M. A. & Pinnegar, J. K. Climate risk to European fisheries and coastal communities. Proc. Natl. Acad. Sci. U. S. A. 118, e2018086118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baptista, V., Silva, P. L., Relvas, P., Teodósio, M. A. & Leitão, F. Sea surface temperature variability along the Portuguese coast since 1950. Int. J. Climatol. 38, 1145–1160 (2018).Article 

    Google Scholar 
    Leitão, F. et al. (2019) A 60-year time series analyses of the upwelling along the Portuguese coast. Water 11(11), 1285 (2019).Article 

    Google Scholar 
    Leitão, F., Relvas, P., Cánovas, F., Baptista, V. & Teodósio, A. Northerly wind trends along the Portuguese marine coast since 1950. Theor. Appl. Climatol. 137(1), 19 (2018).
    Google Scholar 
    Bueno-Pardo, J. et al. Trends and drivers of marine fish landings in Portugal since its entrance in the European Union. ICES J. Mar. Sci. 77, 988–1001 (2020).Article 

    Google Scholar 
    Leitão, F., Maharaj, R. R., Vieira, V. M. N. C. S., Teodósio, A. & Cheung, W. W. L. The effect of regional sea surface temperature rise on fisheries along the Portuguese Iberian Atlantic coast. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1351–1359 (2018).Article 

    Google Scholar 
    Leitão, F., Alms, V. & Erzini, K. A multi-model approach to evaluate the role of environmental variability and fishing pressure in sardine fisheries. J. Mar. Syst. 139, 128–138 (2014).Article 

    Google Scholar 
    Ullah, H., Leitão, F., Baptista, V. & Chícharo, L. An analysis of the impacts of climatic variability and hydrology on the coastal fisheries, Engraulis encrasicolus and Sepia officinalis, of Portugal. Ecohydrol. Hydrobiol. 12, 337–352 (2012).Article 

    Google Scholar 
    EUMOFA. The EU Fish Market – Highlights the EU in the world market supply consumption import-export landings in the EU aquaculture (2021) https://doi.org/10.2771/563899DGPM. Relatório de Monitorização da Estratégia Nacional para o Mar 2013–2020, Documento de Suporte às Políticas do Mar. (2020).Almeida, C., Karadzic, V. & Vaz, S. The seafood market in Portugal: Driving forces and consequences. Mar. Policy 61, 87–94 (2015).Article 

    Google Scholar 
    Pita, C. & Gaspar, M. (2020) Small-Scale Fisheries in Portugal: Current Situation, Challenges and Opportunities for the Future. In Small-Scale Fisheries in Europe: Status, Resilience and Governance. Springer, Cham 283–305https://doi.org/10.1007/978-3-030-37371-9_14Baeta, F., José Costa, M. & Cabral, H. Changes in the trophic level of Portuguese landings and fish market price variation in the last decades. Fish. Res. 97, 216–222 (2009).Article 

    Google Scholar 
    Leitão, F. Landing profiles of Portuguese fisheries: Assessing the state of stocks. Fish. Manag. Ecol. 22, 152–163 (2015).Article 

    Google Scholar 
    Quentin Grafton, R. Adaptation to climate change in marine capture fisheries. Mar. Policy 34, 606–615 (2010).Article 

    Google Scholar 
    Bueno-Pardo, J. et al. Climate change vulnerability assessment of the main marine commercial fish and invertebrates of Portugal. Sci. Rep. 11, 2958 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Szynaka, M. J., Erzini, K., Gonçalves, J. M. S. & Campos, A. Identifying métiers using landings profiles: An octopus-driven multi-gear coastal fleet. J. Mar. Sci. Eng. 9, 1022 (2021).Article 

    Google Scholar 
    Gamito, R., Teixeira, C. M., Costa, M. J. & Cabral, H. N. Climate-induced changes in fish landings of different fleet components of Portuguese fisheries. Reg. Environ. Chang. 13, 413–421 (2013).Article 

    Google Scholar 
    Leitão, F., Baptista, V., Zeller, D. & Erzini, K. Reconstructed catches and trends for mainland Portugal fisheries between 1938 and 2009: Implications for sustainability, domestic fish supply and imports. Fish. Res. 155, 33–50 (2014).Article 

    Google Scholar 
    Teixeira, C. M. et al. Trends in landings of fish species potentially affected by climate change in Portuguese fisheries. Reg. Environ. Chang. 14, 657–669 (2014).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant graphics for data analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 3–900051–07–0 (2020).Zuur, A. F., Fryer, R. J., Jolliffe, I. T., Dekker, R. & Beukema, J. J. Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 14, 665–685 (2003).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Smith, G. M. (2007) Analysing Ecological Data. https://doi.org/10.1007/978-0-387-45972-1Anderson, M., Gorley, R. & Clarke, K. PERMANOVA for PRIMER: Guide to software and statistical methods. (PRIMER-E Ltd., 2008).Heppell, S. S., Heppell, S. a, Read, A. J. & Crowder, L. B. Effects of fishing on long-lived marine organisms. In Marine conservation biology: The science of maintaining the sea’s biodiversity (eds. Norse, E. & Crowder, L.) 211–231 (Island Press, 2005).Maynou, F. et al. Estimating trends of population decline in long-lived marine species in the Mediterranean sea based on fishers’ perceptions. PLoS ONE 6, e21818 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rolland, V., Barbraud, C. & Weimerskirch, H. Combined effects of fisheries and climate on a migratory long-lived marine predator. J. Appl. Ecol. 45, 4–13 (2008).Article 

    Google Scholar 
    Alves, L. M. F., Correia, J. P. S., Lemos, M. F. L., Novais, S. C. & Cabral, H. Assessment of trends in the Portuguese elasmobranch commercial landings over three decades (1986–2017). Fish. Res. 230, 105648 (2020).Article 

    Google Scholar 
    Correia, J. P., Morgado, F., Erzini, K. & Soares, A. M. V. M. Elasmobranch landings for the Portuguese commercial fishery from 1986 to 2009. Arquipel. Life Mar. Sci. 33, 81–109 (2016).
    Google Scholar 
    Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinnegar, J. K. & Engelhard, G. H. The ‘shifting baseline’ phenomenon: A global perspective. Rev. Fish Biol. Fish. 18, 1–16 (2008).Article 

    Google Scholar 
    Moura, T. et al. Assessing spatio-temporal changes in marine communities along the Portuguese continental shelf and upper slope based on 25 years of bottom trawl surveys. Mar. Environ. Res. 160, 105044 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Martins, M. M., Skagen, D., Marques, V., Zwolinski, J. & Silva, A. Changes in the abundance and spatial distribution of the Atlantic chub mackerel (Scomber colias) in the pelagic ecosystem and fisheries off Portugal. Sci. Mar. 77, 551–563 (2013).Article 

    Google Scholar 
    Bordalo-Machado, P. & Figueiredo, I. The fishery for black scabbardfish (Aphanopus carbo Lowe, 1839) in the Portuguese continental slope. Rev. Fish Biol. Fish. 19, 49–67 (2009).Article 

    Google Scholar 
    Gordo, L. S. Black scabbardfish (Aphanopus carbo Lowe, 1839) in the southern Northeast Atlantic: Considerations on its fishery. Sci. Mar. 73, 11–16 (2009).Article 

    Google Scholar 
    Campos, A., Fonseca, P., Fonseca, T. & Parente, J. Definition of fleet components in the Portuguese bottom trawl fishery. Fish. Res. 83, 185–191 (2007).Article 

    Google Scholar 
    Bueno-Pardo, J. et al. Deep-sea crustacean trawling fisheries in Portugal: Quantification of effort and assessment of landings per unit effort using a Vessel Monitoring System (VMS). Sci. Rep. 7, 1–10 (2017).ADS 
    Article 

    Google Scholar 
    Gamito, R., Pita, C., Teixeira, C., Costa, M. J. & Cabral, H. N. Trends in landings and vulnerability to climate change in different fleet components in the Portuguese coast. Fish. Res. 181, 93–101 (2016).Article 

    Google Scholar 
    García-Seoane, E., Marques, V., Silva, A. & Angélico, M. M. Spatial and temporal variation in pelagic community of the western and southern Iberian Atlantic waters. Estuar. Coast. Shelf Sci. 221, 147–155 (2019).ADS 
    Article 

    Google Scholar 
    Vinagre, C., Duarte, F., Cabral, H. & Jose, M. Impact of climate warming upon the fish assemblages of the Portuguese coast under different scenarios. Reg. Environ. Change 11(4), 779. https://doi.org/10.1007/s10113-011-0215-z (2011).Article 

    Google Scholar 
    Goulart, P., Veiga, F. J. & Grilo, C. The evolution of fisheries in Portugal: A methodological reappraisal with insights from economics. Fish. Res. 199, 76–80 (2018).Article 

    Google Scholar 
    Pita, C., Pereira, J., Lourenço, S., Sonderblohm, C. & Pierce, G. J. (2015) The Traditional Small-Scale Octopus Fishery in Portugal: Framing Its Governability. 117–132. https://doi.org/10.1007/978-3-319-17034-3_7Pita, C. et al. Fisheries for common octopus in Europe: Socioeconomic importance and management. Fish. Res. 235, 105820 (2021).Article 

    Google Scholar 
    Moreno, A. et al. Essential habitats for pre-recruit Octopus vulgaris along the Portuguese coast. Fish. Res. 152, 74–85 (2014).ADS 
    Article 

    Google Scholar 
    Sbrana, M. et al. Spatiotemporal abundance pattern of deep-water rose shrimp, parapenaeus longirostris, and Norway lobster, nephrops norvegicus, in european mediterranean waters. Sci. Mar. 83, 71–80 (2019).Article 

    Google Scholar 
    Quattrocchi, F., Fiorentino, F., Lauria, V. & Garofalo, G. The increasing temperature as driving force for spatial distribution patterns of Parapenaeus longirostris (Lucas 1846) in the Strait of Sicily (Central Mediterranean Sea). J. Sea Res. 158, 101871 (2020).Article 

    Google Scholar 
    Colloca, F., Mastrantonio, G., Lasinio, G. J., Ligas, A. & Sartor, P. Parapenaeus longirostris (Lucas, 1846) an early warning indicator species of global warming in the central Mediterranean Sea. J. Mar. Syst. 138, 29–39 (2014).Article 

    Google Scholar 
    Woods, P. J. et al. (2021) A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change. ICES J. Mar. Sci. fsab146Gonzalez-Mon, B. et al. Spatial diversification as a mechanism to adapt to environmental changes in small-scale fisheries. Environ. Sci. Policy 116, 246–257 (2021).Article 

    Google Scholar 
    Garza-Gil, M. D., Torralba-Cano, J. & Varela-Lafuente, M. M. Evaluating the economic effects of climate change on the European sardine fishery. Reg. Environ. Chang. 11, 87–95 (2011).Article 

    Google Scholar 
    Borges, M. F., Santos, A. M. P., Crato, N., Mendes, H. & Mota, B. Sardine regime shifts off Portugal: A time series analysis of catches and wind conditions. Sci. Mar. 67, 235–244 (2003).Article 

    Google Scholar 
    Garrido, S. et al. Temperature and food-mediated variability of European Atlantic sardine recruitment. Prog. Oceanogr. 159, 267–275 (2017).ADS 
    Article 

    Google Scholar 
    ICES. Report of the working group on southern horse mackerel, anchovy and sardine (WGHANSA). (2018).Szalaj, D. et al. Food-web dynamics in the Portuguese continental shelf ecosystem between 1986 and 2017: Unravelling drivers of sardine decline. Estuar. Coast. Shelf Sci. 251, 107259 (2021).Article 

    Google Scholar 
    Feijó, D. et al. Catch and yield trends of the Portuguese purse seine fishery (2006–2018). Front. Mar. Sci. https://doi.org/10.3389/conf.fmars.2019.08.00013 (2019).Article 

    Google Scholar 
    Schickele, A., Francour, P. & Raybaud, V. European cephalopods distribution under climate-change scenarios. Sci. Rep. 11, 3930 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Purcell, S. W., Crona, B. I., Lalavanua, W. & Eriksson, H. Distribution of economic returns in small-scale fisheries for international markets: A value-chain analysis. Mar. Policy 86, 9–16 (2017).Article 

    Google Scholar 
    Thiao, D., Leport, J., Ndiaye, B. & Mbaye, A. Need for adaptive solutions to food vulnerability induced by fish scarcity and unaffordability in Senegal. Aquat. Living Resour. 31, 25 (2018).Article 

    Google Scholar 
    Education, A. & Variability, H. Cardoso, C., Lourenço, H., Costa, S., Gonçalves, S. & Leonor Nunes, M. Survey Into the Seafood Consumption Preferences and Patterns in the Portuguese Population. J. Food Prod. Mark. 22, 421–435 (2016).Article 

    Google Scholar 
    Holsten, A. & Kropp, J. P. An integrated and transferable climate change vulnerability assessment for regional application. Nat. Hazards 64, 1977–1999 (2012).Article 

    Google Scholar 
    Umweltbundesamt guidelines for climate impact and vulnerability assessments recommendations of the interministerial working group on adaptation to climate change of the German federal government for our environment. More

  • in

    Benthic exometabolites and their ecological significance on threatened Caribbean coral reefs

    Benthic organism exudate collectionsExudate collections from benthic organisms were conducted on board the R/V Walton Smith in November 2018 in Lameshur Bay, St. John, U.S. Virgin Islands within the Virgin Islands National Park. In brief, we collected six species of benthic organisms (n = 6 specimens), incubated these organisms in separate containers for 8 h, and harvested the incubation water to characterize the composition of dissolved metabolites in their exudates. A description of the exudate collections is included below (additional details available in Supplementary Methods).Before each organism experiment, 58 l of surface (non-reef) seawater was collected ~1 mile offshore (18 17.127° N, 064 44.312° W, 31.6 m depth). Cells and particles were removed using peristaltic pressure through a 0.2 µm filter (47 mm, Omnipore, EMD Millipore Corporation, Billerica, MA, USA) using metabolomics-grade tubing and this filtrate (filtered seawater) was collected for the incubations. Additionally, two to three, 2 l filtrate subsets per experiment were acidified with concentrated hydrochloric acid (final concentration 1% volume/volume) and subjected to solid-phase-extraction (SPE) using a negative vacuum pressure of –3.7 to –5 100xkPA in Hg, to serve as controls. Before SPE, 6 ml, 1 gm Bond Elut PPL cartridges (Agilent, Santa Clara, CA, USA) were pre-conditioned with 6 ml of 100% HPLC-grade methanol.For the experiments, six species of benthic organisms were collected from reefs around Lameshur Bay by SCUBA divers. Experiments were completed on three stony corals (Porites astreoides, Siderastrea siderea, and Psuedodiploria strigosa), two octocorals (Plexaura homomalla and Gorgonia ventalina), and one encrusting alga (Ramicrusta textilis) (Table S1). P. astreoides, S. siderea, and R. textilis were held in a seawater table for 24 h (hrs) before the incubations and colonies from the other three species were held for 2-3 h due to timing constraints. Coral and algal fragments were generally small (2.5-5.0 cm in length).For each incubation, nine, acid-washed, 10 l polycarbonate bins (with lids) containing filtered seawater (4 l) were secured into an illuminated aquarium table (Prime HD, Aqua illumination, Bethlehem, PA, USA) (Photosynthetically Active Radiation = ~350–600 µmol quanta m−2 s−1). Air bubblers with sterilized Fluorinated Ethylene Propylene (FEP) tubing (890 Tubing, Nalgene, Thermo Scientific, Waltham, MA, USA) were used to inject air into each bin. Surface seawater was circulated through the aquarium table to maintain reef seawater temperature (29.5 °C). Six colonies/fragments of one species were randomly placed into 6 bins. The other 3 bins were reserved for control incubations containing filtered seawater only. A sensor (8 K HOBO/PAR loggers; Onset, Wareham, MA) monitored temperature and light conditions (data not shown). At the end of each 8 h experiment, colonies/fragments were wrapped in combusted aluminum foil and flash frozen in a charged dry shipper. The water in all incubations was re-filtered (as outlined above) and 2 l of each filtrate were acidified and subjected to SPE as described above. SPE cartridges were wrapped in combusted aluminum foil, placed in Whirl-Pak (Nasco, Madison, WI, USA) bags, and frozen at –20 °C.Metabolomics analyses and data processingAt the Woods Hole Oceanographic Institution (WHOI), metabolites were eluted from the thawed cartridges into combusted, borosilicate test tubes using 100% methanol (Optima grade) within 3 months of collection. The eluents were transferred into combusted amber 8 ml vials and nearly dried using a vacuum centrifuge. Samples were reconstituted in 200 µL of 95:5 (v/v) Milli-Q (MQ, Millipore Sigma, Burlington, MA, USA) water: acetonitrile with a deuterated standard mix added as an internal control (Table S2), vortexed, and prepared for targeted and untargeted metabolomics analyses in both positive and negative ion modes as described previously [16]. Samples prepared for untargeted analyses were further diluted (1:200) with the reconstitution solvent. A pooled sample (technical replicate) was made by combining aliquots from all samples and was injected repeatedly to assess instrument drift over the course of the run and for downstream sample processing. Samples prepared for targeted metabolomics were analyzed using an ultra-high performance liquid chromatography system (UHPLC; Accela Open Autosampler and Accela 1250 Pump, Thermo Scientific, Waltham, MA, USA) coupled to a heated electrospray ionization source (H-ESI) and a triple stage quadrupole mass spectrometer (TSQ Vantage, Thermo Scientific), operated in selected reaction monitoring (SRM) mode. Samples prepared for untargeted metabolomics were analyzed with a UHPLC system (Vanquish UHPLC, Thermo Scientific) coupled to an ultra-high resolution mass spectrometer (Orbitrap Fusion Lumos, Thermo Scientific). MS/MS spectra were collected in a data-dependent manner using higher energy collisional dissociation (HCD) with a normalized collision energy of 35% (detailed methods provided in [16]). A Waters Acquity HSS T3 column (2.1 × 100 mm, 1.8 μm) equipped with a Vanguard pre-column was used for chromatographic separation at 40 °C for targeted and untargeted analyses. Sample order was randomized and the pooled sample was analyzed after every six samples.For targeted metabolomics analysis, tandem MS/MS data files were converted into .mzML files using msconvert and processed with El-MAVEN [49]. Calibration curves for each compound (8 points each) were constructed based on the integrated peak areas using El-MAVEN. The concentrations of metabolites in the original samples were determined by dividing each concentration by the volume of the filtrate that passed through each PPL column. Finally, metabolite concentrations above the limits of detection and quantification were corrected for extraction efficiency using in-house values determined using standard protocols [50]. Statistical analyses of targeted metabolite concentrations were conducted using Welch’s independent t-tests and ANOVAs or Wilcoxon rank sum tests if data were not normally distributed (additional details in Supplementary Methods). We determined the mass of each colony and conducted Pearson correlations to investigate if colony size significantly correlated with concentrations of targeted metabolites, but no correlations were found.For the untargeted metabolomics analyses, raw files containing MS1 and MS/MS data were converted into .mzML files using msconvert and processed using XCMS [51]. Ion modes were analyzed separately. Before processing with XCMS, the R package AutoTuner [52] was used to find XCMS processing parameters appropriate for the data. In XCMS, the CentWave algorithm picked peaks using a gaussian fit. The specific parameters for peak picking for both ion modes were: noise = 10,000, peak-width = 3–15, ppm = 15, prefilter = c(2,168.600), integrate = 2, mzdiff = –0.005, snthresh = 10. Obiwarp was used to adjust retention times and this step was followed by correspondence analysis. For statistical analyses, including permutational PERMANOVA adonis tests and non-metric multidimensional scaling analysis (NMDS), MS1 features (defined as unique pairings of mass-to-charge (m/z) values with retention times) in both ion modes were culled following XCMS if they: (1) had >1 average fold change in the MQ blanks compared to the other samples, (2) occurred in less than 20% of samples (excluding pooled controls), and/or (3) were invariant (relative standard deviation of More

  • in

    Interconnected marine habitats form a single continental-scale reef system in South America

    Roelfsema, C., Phinn, S., Jupiter, S., Comley, J. & Albert, S. Mapping coral reefs at reef to reef-system scales, 10s–1000s km2, using object-based image analysis. Int. J. Remote Sens. 34, 6367–6388 (2013).Article 

    Google Scholar 
    Soares, M. O., Tavares, T. C. L. & Carneiro, P. Mesophotic ecosystems: Distribution, impacts and conservation in the South Atlantic. Divers. Distrib. 25(2), 255–268 (2019).
    Google Scholar 
    Leão, Z. M. A. N. et al. Brazilian coral reefs in a period of global change: A synthesis. Braz. J. Oceanogr. 64, 97–116 (2016).Article 

    Google Scholar 
    Leão, Z. M. A. N., Kikuchi, R. K. P. & Oliveira, M. D. M. The coral reef province of Brazil. World Seas: An Environmental Evaluation Volume I: Europe, the Americas and West Africa vol. 1 (Elsevier Ltd., 2018).Collette, B. B. & Rützler, K. Reef fishes over sponge bottoms off the mouth of the Amazon River. in Proceedings of Third International Coral Reef Symposium (ed. Taylor, D. L.) vol. 1 305–310 (Rosenstiel School of Marine and Atmospheric Science, 1977).Cordeiro, R. T. S., Neves, B. M., Rosa-Filho, J. S. & Pérez, C. D. Mesophotic coral ecosystems occur offshore and north of the Amazon River. Bull. Mar. Sci. 91, 491–510 (2015).Article 

    Google Scholar 
    Moura, R. L. et al. An extensive reef system at the Amazon River mouth. Sci. Adv. 2, e1501252 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Francini-Filho, R. B. et al. Perspectives on the Great Amazon Reef: Extension, biodiversity, and threats. Front Mar Sci 5, 1–5 (2018).ADS 
    Article 

    Google Scholar 
    de Mahiques, M. M. et al. Insights on the evolution of the living Great Amazon Reef System, equatorial West Atlantic. Sci. Rep. 9, 1–8 (2019).Article 

    Google Scholar 
    Vale, N. F. et al. Distribution, morphology and composition of mesophotic ‘reefs’ on the Amazon Continental Margin. Mar. Geol. 447, 106779 (2022).ADS 
    Article 

    Google Scholar 
    Moura, R. L. et al. Tropical rhodolith beds are a major and belittled reef fish habitat. Sci. Rep. 11, 1–10 (2021).Article 

    Google Scholar 
    Rocha, L. A. Patterns of distribution and processes of speciation in Brazilian reef fishes. J. Biogeogr. 30, 1161–1171 (2003).Article 

    Google Scholar 
    Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 31, 22–47 (2008).
    Google Scholar 
    Vale, N. F. et al. Structure and composition of rhodoliths from the Amazon River mouth, Brazil. J. S. Am. Earth Sci. 84, 149–159 (2018).Article 

    Google Scholar 
    IMaRS/USF, IRD, UNEP/WCMC, The WorldFish Center & WRI. Global Coral Reefs composite dataset compiled from multiple sources for use in the Reefs at Risk Revisited project incorporating products from the Millennium Coral Reef Mapping Project. Preprint at (2011).Soares, M. O. et al. Challenges and perspectives for the Brazilian semi-arid coast under global environmental changes. Perspect. Ecol. Conserv. 19, 267–278 (2021).
    Google Scholar 
    Castro, C. B. & Pires, D. O. Brazilian coral reefs: What we already know and what is still missing. Bull. Mar. Sci. 69, 357–371 (2001).
    Google Scholar 
    Leão, Z., Kikuchi, R. & Testa, V. Corals and coral reefs of Brazil. in Latin American Coral Reefs (ed. Cortés, J.) 9–52 (Elsevier Science Inc., 2003). https://doi.org/10.1016/B978-044451388-5/50003-5.Laborel-Deguen, F., Castro, C. B., Nunes, F. D. & Pires, D. O. Recifes brasileiros: o legado de Laborel. (Museu Nacional, 2019).Carneiro, P. et al. Marine hardbottom environments in the beaches of Ceará state, equatorial coast of Brazil. Arquivos de Ciências do Mar 54, 120–153 (2021).Carneiro, P. B. M. et al. Structure, growth and CaCO3 production in a shallow rhodolith bed from a highly energetic siliciclastic-carbonate coast in the equatorial SW Atlantic Ocean. Mar. Environ. Res. 166, 105280 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Testa, V., Bosence, D. W. J. & Universita, C. Physical and biological controls on the formation of carbonate and siliciclastic bedforms on the north-east Brazilian shelf. Sedimentology 46, 279–301 (1999).ADS 
    Article 

    Google Scholar 
    Carneiro, P. & Morais, J. O. de. Carbonate sediment production in the equatorial continental shelf of South America: Quantifying Halimeda incrassata (Chlorophyta) contributions. J. S. Am. Earth Sci. 72, 1–6 (2016).Milliman, J. D. Role of Calcareous Algae in Atlantic Continental Margin Sedimentation. in Fossil algae: recent results and developments (ed. Flügel, E.) 232–247 (Springer, 1977). https://doi.org/10.1007/978-3-642-66516-5_26.Knoppers, B., Ekau, W. & Figueiredo, A. G. The coast and shelf of east and northeast Brazil and material transport. Geo-Mar. Lett. 19, 171–178 (1999).ADS 
    Article 

    Google Scholar 
    Vital, H. The north and northeast Brazilian tropical shelves. in Continental shelves of the world: their evolution during the lasta glacio-eustatic cycle (eds. Chiocci, F. L. & Chivas, A. R.) 35–46 (Geological Society, 2014).Soares, M. de O. et al. Brazilian marine animal forests: A new world to discover in the southwestern Atlantic. Mar. Anim. For. 1–38. https://doi.org/10.1007/978-3-319-17001-5_51-1 (2016).Soares, M. O. et al. Impacts of a changing environment on marginal coral reefs in the Tropical Southwestern Atlantic Ocean. Coast. Manag. 210, 105692 (2021).
    Google Scholar 
    Santos, C. L. A., Vital, H., Amaro, V. E. & de Kikuchi, R. K. P. Mapping of the submerged reefs in the coast of the Rio Grande do Norte, near Brazil: Macau to Maracajau. Revista Brasileira de Geofisica 25, 27–36 (2007).Article 

    Google Scholar 
    Neto, I. C., Córdoba, V. C. & Vital, H. Morfologia, microfaciologia e diagênese de beachrocks costa-afora adjacentes à costa norte do Rio Grande do Norte, brasil. Geociências 32, 471–490 (2013).
    Google Scholar 
    Gomes, M. P. et al. The investigation of a mixed carbonate-siliciclastic shelf, NE Brazil: Side-scan sonar imagery, underwater photography, and surface-sediment data. Ital. J. Geosci. 134, 9–22 (2015).Article 

    Google Scholar 
    Soares, M. O., Rossi, S., Martins, F. A. S. & Carneiro, P. The forgotten reefs: Benthic assemblage coverage on a sandstone reef (Tropical South-western Atlantic). J. Mar. Biol. Assoc. U.K. 97(8), 1585–1592. https://doi.org/10.1017/S0025315416000965 (2017).Article 

    Google Scholar 
    Morais, J. O., Ximenes Neto, A. R., Pessoa, P. R. S. & Souza, L. P. Morphological and sedimentary patterns of a semi-arid shelf, Northeast Brazil. Geo-Ma. Lett. 40, 835–842. https://doi.org/10.1007/s00367-019-00587-x (2019).Cordeiro, R. T., Neves, B. M., Kitahara, M. v., Arantes, R. C. & Perez, C. D. First assessment on Southwestern Atlantic equatorial deep-sea coral communities. Deep-Sea Res. Part I Oceanogr. Res. Papers 163, 103344 (2020).Freitas, J. E. P. & Lotufo, T. M. C. Reef fish assemblage and zoogeographic affinities of a scarcely known region of the western equatorial Atlantic. J. Mar. Biol. Assoc. U.K. 95, 623–633 (2015).Article 

    Google Scholar 
    Soares, M. O., Davis, M., Paiva, C. C. de & Carneiro, P. Mesophotic ecosystems: Coral and fish assemblages in a tropical marginal reef (northeastern Brazil). Mar. Biodivers. 1–6 (2016). https://doi.org/10.1007/s12526-016-0615-x.Carneiro, P. B. M., Sátiro, I., COE, C. M. & Mendonça, K. V. Valoração ambiental do Parque Estadual Marinho da Pedra da Risca do Meio, Ceará, Brasil. Arquivo de Ciências do Mar 50, 25–41 (2017).Gomes, M. P., Vital, H. & Droxler, A. W. Terraces, reefs, and valleys along the Brazil northeast outer shelf: Deglacial sea-level archives?. Geo-Mar. Lett. 40, 699–711. https://doi.org/10.1007/s00367-020-00666-4 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).PubMed 
    Article 

    Google Scholar 
    Raitsos, D. E. et al. Sensing coral reef connectivity pathways from space. Sci. Rep. 7, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    Silveira, I. C. A., Miranda, L. B. & Brown, W. S. On the origins of the North Brazil Current. J. Geophys. Res. 99, 22501–22512 (1994).ADS 
    Article 

    Google Scholar 
    Dias, F. J. da S., Castro, B. M. & Lacerda, L. D. Tidal and low-frequency currents off the Jaguaribe River estuary (4° S, 37° 4′ W), northeastern Brazil. Ocean Dynamics 68, 967–985 (2018).Wellington, G. M. & Victor, B. C. Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Mar. Biol. 101, 557–567 (1989).Article 

    Google Scholar 
    Victor, B. C. Duration of the planktonic larval stage of one hundred species of Pacific and Atlantic wrasses (family Labridae). Mar. Biol. 90, 317–326 (1986).Article 

    Google Scholar 
    Endo, C. A. K., Gherardi, D. F. M., Pezzi, L. P. & Lima, L. N. Low connectivity compromises the conservation of reef fishes by marine protected areas in the tropical South Atlantic. Sci. Rep. 9, 1–11 (2019).Article 

    Google Scholar 
    Gomes, M. P. et al. Nature and condition of outer shelf habitats on the drowned Açu Reef, Northeast Brazil. in Seafloor Geomorphology as Benthic Habitat 571–585 (Elsevier, 2020). https://doi.org/10.1016/b978-0-12-814960-7.00034-8.Neto, I. C., Córdoba, V. C. & Vital, H. Petrografia de beachrock em zona costa afora adjacente ao litoral norte do Rio Grande do Norte Brasil. Quat. Environ. Geosci. 2, 12–18 (2010).
    Google Scholar 
    Gomes, M. P., Vital, H., Bezerra, F. H. R., de Castro, D. L. & Macedo, J. W. de P. The interplay between structural inheritance and morphology in the Equatorial Continental Shelf of Brazil. Mar. Geol. 355, 150–161 (2014).Rovira, D. P. T., Gomes, M. P. & Longo, G. O. Underwater valley at the continental shelf structures benthic and fish assemblages of biogenic reefs. Estuar. Coast. Shelf Sci. 224, 245–252 (2019).ADS 
    Article 

    Google Scholar 
    Tosetto, E. G., Bertrand, A., Neumann-Leitão, S. & Nogueira Júnior, M. The Amazon River plume, a barrier to animal dispersal in the Western Tropical Atlantic. Sci. Rep. 12, 537 (2022).ADS 
    Article 

    Google Scholar 
    Cord, I. et al. Brazilian marine biogeography: A multi-taxa approach for outlining sectorization. Mar. Biol. 169, 61 (2022).Article 

    Google Scholar 
    Moalic, Y. et al. Biogeography revisited with network theory: Retracing the history of hydrothermal vent communities. Syst. Biol. 61, 127 (2012).PubMed 
    Article 

    Google Scholar 
    López-Pérez, A. et al. The coral communities of the Islas Marias archipelago, Mexico: Structure and biogeographic relevance to the Eastern Pacific. Mar. Ecol. 37, 679–690 (2016).ADS 
    Article 

    Google Scholar 
    Cordeiro, C. A. M. M. et al. Conservation status of the southernmost reef of the Amazon Reef System: The Parcel de Manuel Luís. Coral Reefs 40, 165–185 (2021).Article 

    Google Scholar 
    Segal, B. & Castro, C. B. Coral community structure and sedimentation at different distances from the coast of the Abrolhos Bank Brazil. Braz. J. Oceanogr. 59, 119–129 (2011).Article 

    Google Scholar 
    Aued, A. W. et al. Large-scale patterns of benthic marine communities in the Brazilian Province. PLoS ONE 13, e0198452 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soares, M. O. et al. Marginal Reefs in the Anthropocene: They Are Not Noah’s Ark. in Perspectives on the Marine Animal Forests of the World (eds. Rossi, S. & Bramanti, L.) 87–128 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-57054-5_4.Perry, C. T. & Larcombe, P. Marginal and non-reef-building coral environments. Coral Reefs 22, 427–432 (2003).Article 

    Google Scholar 
    Riegl, B. & Piller, W. E. Coral frameworks revisited – reefs and coral carpets in the northern Red Sea. Coral Reefs 18, 241–253 (1999).Article 

    Google Scholar 
    Rodríguez-Martínez, R. E., Jordán-Garza, A. G., Maldonado, M. A. & Blanchon, P. Controls on coral-ground development along the Northern Mesoamerican Reef Tract. PLoS ONE 6, e28461 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lotufo, T. M. et al. Sessile epifauna of Ceará´s shelf – high dominance of sponges. in 7th International Sponge Symposium – Biodiversity, Innovation, Sustainability 123–123 (Museu Nacional – UFRJ, 2006).Fonseca, V. P., Pennino, M. G., de Nóbrega, M. F., Oliveira, J. E. L. & de Figueiredo Mendes, L. Identifying fish diversity hot-spots in data-poor situations. Mar. Environ. Res. 129, 365–373 (2017).Olavo, G., Costa, P. A. S., Martins, A. S. & Ferreira, B. P. Shelf-edge reefs as priority areas for conservation of reef fish diversity in the tropical Atlantic. Aquat. Conserv. Mar. Freshwat. Ecosyst. 21, 199–209 (2011).Article 

    Google Scholar 
    Eduardo, L. N. et al. Identifying key habitat and spatial patterns of fish biodiversity in the tropical Brazilian continental shelf. Cont. Shelf Res. 166, 108–118 (2018).ADS 
    Article 

    Google Scholar 
    Carneiro, P. B. de M. et al. Structure, growth and CaCO3 production in a shallow rhodolith bed from a highly energetic siliciclastic-carbonate coast in the equatorial SW Atlantic Ocean. Mar. Environ. Res. 166, 105280 (2021).Costa, A. C. P., Garcia, T. M., Paiva, B. P., Ximenes Neto, A. R. & Soares, M. de O. Seagrass and rhodolith beds are important seascapes for the development of fish eggs and larvae in tropical coastal areas. Mar. Environ. Res. 161, 105064 (2020).Testa, V. & Bosence, D. W. J. Carbonate-siliciclastic sedimentation on a high-energy, ocean-facing, tropical ramp, NE Brazil. in Carbonate Ramps (eds. Wright, V. P. & Burchette, T. P.) 55–71 (The Geological Society, 1998).Ximenes Neto, A. R., de Morais, J. O. & Ciarlini, C. Modern and relict sedimentary systems of the semi-arid continental shelf in NE Brazil. J. S. Am. Earth Sci. 84, 56–68 (2018).CAS 
    Article 

    Google Scholar 
    Ximenes Neto, A. R., Morais, J. O. de, Paula, L. F. S. de & Pinheiro, L. de S. Transgressive deposits and morphological patterns in the equatorial Atlantic shallow shelf (Northeast Brazil). Region. Stud. Mar. Sci. 24, 212–224 (2018).Sponaugle, S., Lee, T., Kourafalou, V. & Pinkard, D. Florida Current frontal eddies and the settlement of coral reef fishes. Limnol. Oceanogr. 50, 1033–1048 (2005).ADS 
    Article 

    Google Scholar 
    Cruz, R. et al. Large-scale oceanic circulation and larval recruitment of the spiny lobster Panulirus argus (Latreille, 1804). Crustaceana 88, 298–323 (2015).Article 

    Google Scholar 
    Luiz, O. J. et al. Ecological traits influencing range expansion across large oceanic dispersal barriers: Insights from tropical Atlantic reef fishes. Proc. R. Soc. B Biol. Sci. 279, 1033–1040 (2012).Article 

    Google Scholar 
    Romero-Torres, M., Treml, E. A., Blanchon, P., Acosta, A. & Paz-García, D. A. The Eastern Tropical Pacific coral population connectivity and the role of the Eastern Pacific Barrier. Sci. Rep. 8, 1–13 (2018).CAS 
    Article 

    Google Scholar 
    Leal, C. v. et al. Integrative taxonomy of Amazon Reefs’ Arenosclera spp.: A new clade in the Haplosclerida (Demospongiae). Front. Mar. Sci. 4, 291 (2017).Peluso, L. et al. Contemporary and historical oceanographic processes explain genetic connectivity in a Southwestern Atlantic coral. Sci. Rep. 8, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    Targino, A. K. G. & Gomes, P. B. Distribution of sea anemones in the Southwest Atlantic: Biogeographical patterns and environmental drivers. Mar. Biodivers. 50, 1–17 (2020).Article 

    Google Scholar 
    Barroso, C. X., Lotufo, T. M. da C. & Matthews-Cascon, H. Biogeography of Brazilian prosobranch gastropods and their Atlantic relationships. J. Biogeogr. 43, 2477–2488 (2016).Pinheiro, H. T. et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers. Distrib. 24, 951–965 (2018).Article 

    Google Scholar 
    Medeiros, A. P. M. et al. Deep reefs are not refugium for shallow-water fish communities in the southwestern Atlantic. Ecol. Evol. 11, 4413–4427 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sammon, J. W. A nonlinear mapping for data structure analysis. IEEE Trans. Comput. C–18, 401–409 (1969).Prim, R. C. Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389–1401 (1957).ADS 
    Article 

    Google Scholar  More