More stories

  • in

    High deforestation trajectories in Cambodia slowly transformed through economic land concession restrictions and strategic execution of REDD+ protected areas

    Deforestation trajectories and economic driversCambodia has undergone significant forest loss in recent decades—with 2.6 million hectares of forest cover loss occurring since 2001, equating to 29.5% of forest cover7 and 1.45 billion tonnes of CO2 emissions8. The deforestation rates have increased by 76% in the last decade (2011–2021) compared to the previous (2001–2010; Fig. 1b)7. We find forest loss has occurred within three distinct Phases demonstrated by changepoint analysis: (1) Phase 1: steady rise from 2000 to 2009 (average = 0.82%/year), (2) Phase 2: peak years from 2010 to 2013 (average = 2.3%/year), (3) Phase 3: moderate phase from 2014 to 2021 (average = 1.6%/year). Whilst the annual rate of deforestation has declined since the Phase 2, Cambodia currently has the highest country-level annual rate of forest loss globally7, illustrating the relentless deforestation spreading across the landscape. Critically, much of this forest loss and degradation is occurring in mature primary forests (Fig. 1b), which hold significant carbon and are home to rich biodiversity and keystone species17,18,19.
    This deforestation in Cambodia has been attributed to the widespread development of Economic Land Concessions (ELCs), the expansion of numerous agricultural frontiers and relentless illegal logging20,21,22. These drivers have been abetted by the establishment of an extensive national road network (Fig. 1a)20—developed to promote economic growth and urban–rural connectivity23. The majority (88.4%) of these roads have been funded by foreign governments (the People’s Republic of China: 38.5%, Japan: 37.9%, and Republic of Korea: 12.0%)18—all of whom have established land concessions within Cambodia’s borders24 through the allocation of state land into private land for long-term industrial plantations22,25. The expansion of ELCs across Cambodia (average addition of 105,000 ha/year of ELC land since 1998) has been directly attributed to up to 40% of the country’s deforestation21, with further indirect impacts due to encroachment into rural community lands (indigenous areas, community forests, subsistence agricultural fields). This results in landlessness, poverty, and land conflicts, forcing communities to migrate in search of arable land, further contributing to the growing degradation and destruction of forests22,26,27,28,29.Strategic government interventionProtected areas expanded across Cambodia in 1993 following a royal decree26; the legal details of which were delineated in the 2008 Protected Areas Law, introducing protected categories, wildlife corridors and strict laws prohibiting development9. While over 80 protected areas currently exist covering 35% of Cambodian land10, they are still under substantial threat30. In further efforts to curb deforestation, the Royal Government of Cambodia ordered the suspension of new ELCs and revocation of a subset of existing ELCs in 2012 (Order 01BB)31. This resulted in a reduction of ELCs from a peak of ~ 2.1 million ha in 2012 to ~ 1.6 million ha from 2014 onward (Fig. 1b), with a significant positive correlation between the quantity of land classified as ELCs and the country-level deforestation rate (R = 0.87, p  More

  • in

    Canopy arthropod declines along a gradient of olive farming intensification

    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).ADS 
    PubMed 

    Google Scholar 
    Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS 
    PubMed 

    Google Scholar 
    Wilson, E. O. The little things that run the world (the importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).
    Google Scholar 
    Isaacs, R., Tuell, J., Fiedler, A., Gardiner, M. & Landis, D. Maximizing arthropod-mediated ecosystem services in agricultural landscapes: The role of native plants. Front. Ecol. Environ. 7, 196–203 (2009).
    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. U.S.A. 118, e2002548117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neves, B. & Pires, I. M. The Mediterranean diet and the increasing demand of the olive oil sector: Shifts and environmental consequences. Region. 5, 101–112 (2018).
    Google Scholar 
    Silveira, A. et al. The sustainability of agricultural intensification in the early 21st century: Insights from the olive oil production in Alentejo (Southern Portugal). In Changing Societies: Legacies and Challenges. The Diverse Worlds of Sustainability, 247–275 (2018).Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Salomone, R. & Ioppolo, G. Environmental impacts of olive oil production: A Life Cycle Assessment case study in the province of Messina (Sicily). J. Clean. Prod. 28, 88–100 (2012).
    Google Scholar 
    Rallo, L. et al. High-density olive plantations. Hortic. Rev. Am. Soc. Hortic. Sci. 41, 303–383 (2013).
    Google Scholar 
    Santos, S. A. P., Pereira, J. A., Torres, L. M. & Nogueira, A. J. A. Evaluation of the effects, on canopy arthropods, of two agricultural management systems to control pests in olive groves from north-east of Portugal. Chemosphere 67, 131–139 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gkisakis, V., Volakakis, N., Kollaros, D., Bàrberi, P. & Kabourakis, E. M. Soil arthropod community in the olive agroecosystem: Determined by environment and farming practices in different management systems and agroecological zones. Agric. Ecosyst. Environ. 218, 178–189 (2016).
    Google Scholar 
    Beaufoy, G. EU Policies for Olive Farming. Unsustainable on all counts (WWF and Birdlife International, Brussels, 2001).
    Google Scholar 
    EFNCP. The environmental impact of olive oil production in the EU: Practical options for improving the environmental impact. European Forum on Nature Conservation and Pastoralism & Asociación para el Análisis y Reforma de la Política Agro-rural, Brussels. https://ec.europa.eu/environment/agriculture/pdf/oliveoil.pdf (2000).Vanwalleghem, T. Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agric. Ecosyst. Environ. 142, 341–351 (2011).
    Google Scholar 
    Simões, M. P., Belo, A. F., Pinto-Cruz, C. & Pinheiro, A. C. Natural vegetation management to conserve biodiversity and soil water in olive orchards. Span. J. Agric. Res. 12, 633–643 (2014).
    Google Scholar 
    Milgroom, J., Soriano, M. A., Garrido, J. M., Gómez, J. A. & Fereres, E. The influence of a shift from conventional to organic olive farming on soil management and erosion risk in southern Spain. Renew. Agric. Food Syst. 22, 1–10 (2007).
    Google Scholar 
    Lodolini, E. M. & Neri, D. Organic olive farming. African J. Agric. Res. 8, 6426–6434 (2013).
    Google Scholar 
    Rallo, L. Iberian olive growing in a time of change. Chron. Horticult. 49, 27–30 (2010).
    Google Scholar 
    Diez, C. M. et al. Cultivar and tree density as key factors in the long-term performance of super high-density olive orchards. Front. Plant Sci. 7, 1–13 (2016).
    Google Scholar 
    Allen, H. D., Randall, R. E., Amable, G. S. & Devereux, B. J. The impact of changing olive cultivation practices on the ground flora of olive groves in the Messara and Psiloritis regions, Crete, Greece. L. Degrad. Dev. 17, 249–327 (2006).
    Google Scholar 
    Herrera, J. M., Costa, P., Medinas, D., Marques, J. T. & Mira, A. Community composition and activity of insectivorous bats in Mediterranean olive farms. Anim. Conserv. 18, 557–566 (2015).
    Google Scholar 
    Costa, A. et al. Structural simplification compromises the potential of common insectivorous bats to provide biocontrol services against the major olive pest Prays oleae. Agric. Ecosyst. Environ. 287, 106708 (2020).
    Google Scholar 
    Morgado, R. et al. A Mediterranean silent spring? The effects of olive farming intensification on breeding bird communities. Agric. Ecosyst. Environ. 288, 106694 (2020).
    Google Scholar 
    Ruano, F. et al. Use of arthropods for the evaluation of the olive-orchard management regimes. Agric. For. Entomol. 6, 111–120 (2004).
    Google Scholar 
    Jerez-Valle, C., García, P. A., Campos, M. & Pascual, F. A simple bioindication method to discriminate olive orchard management types using the soil arthropod fauna. Appl. Soil Ecol. 76, 42–51 (2014).
    Google Scholar 
    Carpio, A. J., Castro, J. & Tortosa, F. S. Arthropod biodiversity in olive groves under two soil management systems: Presence versus absence of herbaceous cover crop. Agric. For. Entomol. 21, 58–68 (2018).
    Google Scholar 
    Rey, P. J. et al. Landscape-moderated biodiversity effects of ground herb cover in olive groves: Implications for regional biodiversity conservation. Agric. Ecosyst. Environ. 277, 61–73 (2019).
    Google Scholar 
    Mccomb, W. C. & Noble, R. E. Invertebrate use of natural tree cavities and vertebrate nest boxes. Am. Midl. Nat. 107, 163–172 (1982).
    Google Scholar 
    Bovyn, R. A., Lordon, M. C., Grecco, A. E., Leeper, A. C. & LaMontagne, J. M. Tree cavity availability in urban cemeteries and city parks. J. Urban Ecol. 5, 1–9 (2019).
    Google Scholar 
    Ribera, I., Dolédec, S., Downie, I. & Foster, G. Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82, 1112–1129 (2001).
    Google Scholar 
    Barbaro, L. & van Halder, I. Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography 32, 321–333 (2009).
    Google Scholar 
    Steffan-Dewenter, I. & Tscharntke, T. Butterfly community structure in fragmented habitats. Ecol. Lett. 3, 449–456 (2000).
    Google Scholar 
    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).ADS 
    PubMed 

    Google Scholar 
    Medinas, D. et al. Road effects on bat activity depend on surrounding habitat type. Sci. Total Environ. 660, 340–347 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    INE. Estatísticas Agrícolas – 2018. Lisboa. Instituto Nacional de Estatística. https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_publicacoes&PUBLICACOESpub_boui=358629204&PUBLICACOESmodo=2 (2019).Rodríguez-Cohard, J. C., Sánchez-Martínez, J. D. & Garrido-Almonacid, A. Strategic responses of the European olive-growing territories to the challenge of globalization. Eur. Plan. Stud. 28, 2261–2283 (2020).
    Google Scholar 
    Reis, P. O olival em Portugal. Dinâmicas, tecnologias e relação com o desenvolvimento rural. Instituto Nacional de Investigação Agrária e Veterinária. http://www.iniav.pt/fotos/editor2/caderno_olivalemportugal.pdf (2014).Yi, Z., Jinchao, F., Dayuan, X., Weiguo, S. & Axmacher, J. C. A comparison of terrestrial arthropod sampling methods. J. Resour. Ecol. 3, 174–182 (2012).
    Google Scholar 
    Leather, S. R. Insect Sampling in Forest Ecosystems (Wiley-Blackwell, New Jersey, 2008).
    Google Scholar 
    Paredes, D., Cayuela, L. & Campos, M. Synergistic effects of ground cover and adjacent vegetation on natural enemies of olive insect pests. Agric. Ecosyst. Environ. 173, 72–80 (2013).
    Google Scholar 
    Porcel, M., Cotes, B., Castro, J. & Campos, M. The effect of resident vegetation cover on abundance and diversity of green lacewings (Neuroptera: Chrysopidae) on olive trees. J. Pest Sci. 90, 195–206 (2017).
    Google Scholar 

    Álvarez, H. A. et al. Semi-natural habitat complexity affects abundance and movement of natural enemies in organic olive orchards. Agric. Ecosyst. Environ. 285, 106618 (2019).
    Google Scholar 
    Paredes, D., Cayuela, L., Gurr, G. M. & Campos, M. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?. PLoS ONE 10, e0117265 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gkisakis, V. D. et al. Olive canopy arthropods under organic, integrated, and conventional management. The effect of farming practices, climate and landscape. Agroecol. Sustain. Food Syst. 42, 843–858 (2018).
    Google Scholar 
    Sanz-Cortés, F. et al. Phenological growth stages of olive trees (Olea europaea). Ann. Appl. Biol. 140, 151–157 (2002).
    Google Scholar 
    Rodríguez, E., González, B. & Campos, M. Natural enemies associated with cereal cover crops in olive groves. Bullet. Insectol. 65, 43–49 (2012).
    Google Scholar 
    Morente, M., Campos, M. & Ruano, F. Evaluation of two different methods to measure the effects of the management regime on the olive-canopy arthropod community. Agric. Ecosyst. Environ. 259, 111–118 (2018).
    Google Scholar 
    Cardenas, M., Pascual, F., Campos, M. & Pekar, S. The spider assemblage of olive groves under three management systems. Environ. Entomol. 44, 509–518 (2015).PubMed 

    Google Scholar 
    Hegazi, E. M. et al. Seasonality in the occurrence of two lepidopterous olive pests in Egypt. Insect Sci. 18, 565–574 (2011).
    Google Scholar 
    Markó, V., Keresztes, B., Fountain, M. T. & Cross, J. V. Prey availability, pesticides and the abundance of orchard spider communities. Biol. Control 48, 115–124 (2009).
    Google Scholar 
    Picchi, M. S., Marchi, S., Albertini, A. & Petacchi, R. Organic management of olive orchards increases the predation rate of overwintering pupae of Bactrocera oleae (Diptera: Tephritidae). Biol. Control 108, 9–15 (2017).
    Google Scholar 
    Caruso, T. & Migliorini, M. Micro-arthropod communities under human disturbance: Is taxonomic aggregation a valuable tool for detecting multivariate change? Evidence from Mediterranean soil oribatid coenoses. Acta Oecol. 30, 46–53 (2006).ADS 

    Google Scholar 
    Schipper, A. M., Lotterman, K., Geertsma, M., Leuven, R. S. E. W. & Hendriks, A. J. Using datasets of different taxonomic detail to assess the influence of floodplain characteristics on terrestrial arthropod assemblages. Biodivers. Conserv. 19, 2087–2110 (2010).
    Google Scholar 
    Timms, L. L., Bowden, J. J., Summerville, K. S. & Buddle, C. M. Does species-level resolution matter? Taxonomic sufficiency in terrestrial arthropod biodiversity studies. Insect Conserv. Divers. 6, 453–462 (2013).
    Google Scholar 
    Unwin, D. M. A Key to the Families of British Beetles (Field Studies Council, 1984).Goulet, H. & Huber, J. Hymenoptera of the World: An identification Guide to Families. (Agriculture Canada publication, 1993).Johnson, N. F. & Triplehorn, C. A. Borror and DeLong’s Introduction to the Study of Insects 7th edn. (Thomson Brooks/Cole, Belmont, 2005).
    Google Scholar 
    Fletcher, M. J., and updates. Identification keys and checklists for the leafhoppers, planthoppers and their relatives occurring in Australia and neighbouring areas (Hemiptera: Auchenorrhyncha). https://idtools.dpi.nsw.gov.au/keys/auch/index.html (2009).Mata, L. & Goula, M. Clave de familias de Heterópteros de la Península Ibérica (Insecta, Hemiptera, Heteroptera). Versión 1. Publicaciones del Centre de Recursos de Biodiversitat Animal, Universitat de Barcelona. http://www.ub.edu/crba/publicacions/Clau%20heteropters/Volum4_Clave_de_Familias_de_Heteropteros_de_la_P.Iberica.pdf (2011).Oosterbroek, P. The European families of the Diptera. Identification, diagnosis, biology. (Royal Dutch Society for Natural History (KNNV) Publishing, Utrecht, 2015).World Spider Catalog. Version 19. Natural History Museum Bern. http://wsc.nmbe.ch (2018).Campos, M. Lacewing in Andalusian olive orchards. In Lacewing in the Crop Environment (eds McEwen, P. et al.) 492–497 (Cambridge University Press, Cambridge, 2001).
    Google Scholar 
    Wilson, E. O. & Hölldobler, B. The rise of the ants: A phylogenetic and ecological explanation. Proc. Natl. Acad. Sci. U. S. A. 102, 7411–7414 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martínez-Núñez, C. et al. Ant community potential for pest control in olive groves: Management and landscape effects. Agric. Ecosyst. Environ 305, 107185 (2021).
    Google Scholar 
    Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B. 273, 1715–1727 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Holland, J. M. et al. Semi-natural habitats support biological control, pollination and soil conservation in Europe. A review. Agron. Sustain. Dev. 37, 31 (2017).
    Google Scholar 

    Paredes, D. et al. Landscape simplification increases Bactrocera oleae abundance in olive groves: Adult population dynamics in different land uses. J. Pest Sci. https://doi.org/10.1007/s10340-022-01489-1 (2022).Article 

    Google Scholar 
    Thies, C., Roschewitz, I. & Tscharntke, T. The landscape context of cereal aphid–parasitoid interactions. Proc. R. Soc. B. 285, 203–210 (2005).
    Google Scholar 
    Pinto-Correia, T., Ribeiro, N. & Sá-Sousa, P. Introducing the montado, the cork and holm oak agroforestry system of Southern Portugal. Agrofor. Syst. 82, 99–104 (2011).
    Google Scholar 
    Morgado, R. et al. Drivers of irrigated olive grove expansion in Mediterranean landscapes and associated biodiversity impacts. Landsc. Urban Plan. 225, 104429 (2022).
    Google Scholar 
    Direção-Geral do Território. Carta de Uso e Ocupação do Solo de Portugal Continental para 2015 (COS2015). http://www.dgterritorio.pt/dados_abertos/cos/ (2015).Roswell, M., Dushoff, J. & Winfree, R. A conceptual guide to measuring species diversity. Oikos 130, 321–338 (2021).
    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 
    Penado, A. et al. From pastures to forests: Changes in Mediterranean wild bee communities after rural land abandonment. Insect Conserv. Divers. 15, 325–336 (2022).
    Google Scholar 
    Ovaskainen, O. & Abrego, N. Joint Species Distribution Modelling. With Applications in R. (Cambridge University Press, 2020).Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Google Scholar 
    Macgregor-Fors, I. & Payton, M. E. Contrasting diversity values: Statistical inferences based on overlapping confidence intervals. PLoS ONE 8, e56794 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tikhonov, G. et al. Joint species distribution modelling with the r-package Hmsc. Methods Ecol. Evol. 11, 442–447 (2019).
    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).
    Google Scholar 
    Wickramasinghe, L. P., Harris, S. H., Jones, G. & Jennings, N. V. Abundance and species richness of nocturnal insects on organic and conventional farms: Effects of agricultural intensification on bat foraging. Conserv. Biol. 8, 1283–1292 (2004).
    Google Scholar 
    Galloway, A. D., Seymour, C. L., Gaigher, R. & Pryke, J. S. Organic farming promotes arthropod predators, but this depends on neighbouring patches of natural vegetation. Agric. Ecosyst. Environ. 310, 107295 (2021).
    Google Scholar 
    Hevia, V., Ortega, J., Azcárate, F. M., López, C. A. & González, J. A. Exploring the effect of soil management intensity on taxonomic and functional diversity of ants in Mediterranean olive groves. Agric. For. Entomol. 21, 109–118 (2019).
    Google Scholar 
    Vitanović, E. et al. Arthropod communities within the olive canopy as bioindicators of different management systems. Span. J. Agric. Res. 16, e0301 (2018).
    Google Scholar 
    Vasconcelos, S. et al. Long-term consequences of agricultural policy decisions: How are forests planted under EEC regulation 2080/92 affecting biodiversity 20 years later?. Biol. Conserv. 236, 393–403 (2019).
    Google Scholar 
    Tscharntke, T. et al. When natural habitat fails to enhance biological pest control—five hypotheses. Biol. Conserv. 204, 449–458 (2016).
    Google Scholar 
    Ortega, M., Pascual, S. & Rescia, A. J. Spatial structure of olive groves and scrublands affects Bactrocera oleae abundance: A multi-scale analysis. Basic Appl. Ecol. 17, 696–705 (2016).
    Google Scholar 
    Martínez-Núñez, C. et al. Direct and indirect effects of agricultural practices, landscape complexity and climate on insectivorous birds, pest abundance and damage in olive groves. Agric. Ecosyst. Environ. 304, 107145 (2020).
    Google Scholar 
    Paredes, D., Karp, D. S., Chaplin-Kramer, R., Benítez, E. & Campos, M. Natural habitat increases natural pest control in olive groves: Economic implications. J. Pest Sci. 92, 1111–1121 (2019).
    Google Scholar 
    Attwood, S. J., Maron, M., House, P. N. & Zammit, C. Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management?. Glob. Ecol. Biogeogr. 17, 585–599 (2008).
    Google Scholar 
    Miranda, M. A., Miquel, M., Terrassa, J., Melis, N. & Monerris, M. Parasitism of Bactrocera oleae (Diptera; Tephritidae) by Psyttalia concolor (Hymenoptera; Braconidae) in the Balearic Islands (Spain). J. Appl. Entomol. 132, 798–805 (2008).
    Google Scholar 
    Álvarez, H. A., Morente, M., Campos, M. & Ruano, F. L. madurez de las cubiertas vegetales aumenta la presencia de enemigos naturales y la resiliencia de la red trófica de la copa del olivo. Ecosistemas 28, 92–106 (2019).
    Google Scholar 
    Rusch, A., Valantin-Morison, M., Sarthou, J. P. & Roger-Estrade, J. Biological control of insect pests in agroecosystems. Effects of crop management, farming systems, and seminatural habitats at the landscape scale: A review. Adv. Agron. 109, 219–259 (2010).
    Google Scholar 
    Greenop, A., Cook, S. M., Wilby, A., Pywell, R. F. & Woodcock, B. A. Invertebrate community structure predicts natural pest control resilience to insecticide exposure. J. Appl. Ecol. 57, 2441–2453 (2020).CAS 

    Google Scholar 
    Porcel, M., Ruano, F., Cotes, B., Peña, A. & Campos, M. Agricultural management systems affect the green lacewing community (Neuroptera: Chrysopidae) in olive orchards in southern Spain. Environ. Entomol. 42, 97–106 (2013).CAS 
    PubMed 

    Google Scholar 
    Stamou, G. P. Arthropods of Mediterranean-Type Ecosystems (Springer, 2012).Santos, J. L. et al. A farming systems approach to linking agricultural policies with biodiversity and ecosystem services. Front. Ecol. Environ. 19, 168–175 (2021).
    Google Scholar 
    Ribeiro, P. F. et al. An applied farming systems approach to infer conservation-relevant agricultural practices for agri-environment policy design. Land Use Policy 58, 165–172 (2016).
    Google Scholar 
    Herrera, J. M. et al. A food web approach reveals the vulnerability of biocontrol services by birds and bats to landscape modification at regional scale. Sci. Rep. 11, 1–10 (2021).
    Google Scholar 
    Solomou, A. D. & Sfougaris, A. I. Bird community characteristics as indicators of sustainable management in olive grove ecosystems of Central Greece. J. Nat. Hist. 49, 301–325 (2015).
    Google Scholar 
    Piñeiro, V. et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat Sustain. 3, 809–820 (2020).
    Google Scholar  More

  • in

    Genomic basis for early-life mortality in sharpsnout seabream

    Sale, P. F. & Steneck, R. S. Critical Science Gaps Impede Use of No-take Fishery Reserves (University of Maine/University of New Hampshire Sea Grant College Program, 2005).Book 

    Google Scholar 
    Hilborn, R. & Walters, C. J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty (Springer, 2013).
    Google Scholar 
    Hamilton, S. L., Regetz, J. & Warner, R. R. Postsettlement survival linked to larval life in a marine fish. Proc. Natl. Acad. Sci. 105, 1561–1566 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raventos, N. & Macpherson, E. Effect of pelagic larval growth and size-at-hatching on post-settlement survivorship in two temperate labrid fish of the genus Symphodus. Mar. Ecol. Prog. Ser. 285, 205–211 (2005).ADS 
    Article 

    Google Scholar 
    Johnson, D. W., Christie, M. R., Stallings, C. D., Pusack, T. J. & Hixon, M. A. Using post-settlement demography to estimate larval survivorship: A coral reef fish example. Oecologia 179, 729–739 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Garrido, S. et al. Born small, die young: Intrinsic, size-selective mortality in marine larval fish. Sci. Rep. 5, 17065 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shima, J. S. et al. Reproductive phenology across the lunar cycle: Parental decisions, offspring responses, and consequences for reef fish. Ecology 101, e03086 (2020).PubMed 
    Article 

    Google Scholar 
    Pini, J., Planes, S., Rochel, E., Lecchini, D. & Fauvelot, C. Genetic diversity loss associated to high mortality and environmental stress during the recruitment stage of a coral reef fish. Coral Reefs 30, 399–404 (2011).ADS 
    Article 

    Google Scholar 
    Bourret, V., Dionne, M. & Bernatchez, L. Detecting genotypic changes associated with selective mortality at sea in Atlantic salmon: Polygenic multilocus analysis surpasses genome scan. Mol. Ecol. 23, 4444–4457 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Planes, S. & Lenfant, P. Temporal change in the genetic structure between and within cohorts of a marine fish, Diplodus sargus, induced by a large variance in individual reproductive success. Mol. Ecol. 11, 1515–1524 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Planes, S. & Romans, P. Evidence of genetic selection for growth in new recruits of a marine fish. Mol. Ecol. 13, 2049–2060 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davidson, W. S. Adaptation genomics: Next generation sequencing reveals a shared haplotype for rapid early development in geographically and genetically distant populations of rainbow trout. Mol. Ecol. 21, 219–222 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carreras, C. et al. East is east and west is west: Population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). Divers. Distrib. 26, 382–398 (2020).Article 

    Google Scholar 
    Carreras, C. et al. Population genomics of an endemic Mediterranean fish: Differentiation by fine scale dispersal and adaptation. Sci. Rep. 7, 43417 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Babbucci, M. et al. An integrated genomic approach for the study of mandibular prognathism in the European seabass (Dicentrarchus labrax). Sci. Rep. 6, 38673 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barbanti, A. et al. Helping decision making for reliable and cost-effective 2b-RAD sequencing and genotyping analyses in non-model species. Mol. Ecol. Resour. 20, 795–806 (2020).CAS 
    Article 

    Google Scholar 
    Torrado, H., Carreras, C., Raventos, N., Macpherson, E. & Pascual, M. Individual-based population genomics reveal different drivers of adaptation in sympatric fish. Sci. Rep. 10, 12683 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xuereb, A. et al. Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate (Parastichopus californicus). Mol. Ecol. 27, 2347–2364 (2018).PubMed 
    Article 

    Google Scholar 
    Benestan, L. et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 25, 5073–5092 (2016).PubMed 
    Article 

    Google Scholar 
    Lu, F. et al. Switchgrass genomic diversity, ploidy, and evolution: Novel insights from a network-based SNP discovery protocol. PLoS Genet. 9, e1003215 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, S., Meyer, E., McKay, J. K. & Matz, M. V. 2b-RAD: A simple and flexible method for genome-wide genotyping. Nat. Methods 9, 808–810 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raventos, N. & Macpherson, E. Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar. Biol. 138, 1115–1120 (2001).Article 

    Google Scholar 
    Torrado, H. et al. Impact of individual early life traits in larval dispersal: A multispecies approach using backtracking models. Prog. Oceanogr. 192, 102518 (2021).Article 

    Google Scholar 
    Schunter, C. et al. A novel integrative approach elucidates fine-scale dispersal patchiness in marine populations. Sci. Rep. 9, 10796 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hixon, M. A. & Carr, M. H. Synergistic predation, density dependence, and population regulation in marine fish. Science 277, 946–949 (1997).CAS 
    Article 

    Google Scholar 
    Macpherson, E. et al. Mortality of juvenile fishes of the genus Diplodus in protected and unprotected areas in the western Mediterranean Sea. Mar. Ecol. Prog. Ser. 160, 135–147 (1997).ADS 
    Article 

    Google Scholar 
    Macpherson, E. Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. J. Exp. Mar. Biol. Ecol. 220, 127–150 (1998).Article 

    Google Scholar 
    Eckert, G. J. Estimates of adult and juvenile mortality for labrid fishes at One Tree Reef, Great Barrier Reef. Mar. Biol. 95, 167–171 (1987).Article 

    Google Scholar 
    Pascual, M., Rives, B., Schunter, C. & Macpherson, E. Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 12, e0176419 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schunter, C. et al. Matching genetics with oceanography: Directional gene flow in a Mediterranean fish species. Mol. Ecol. 20, 5167–5181 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ciotti, B. J. & Planes, S. Within-generation consequences of postsettlement mortality for trait composition in wild populations: An experimental test. Ecol. Evol. 9, 2550–2561 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoklavich, M. M. & Bailey, K. M. Hatching period, growth and survival of young walleye pollock Theragra chalcogramma as determined from otolith analysis. Mar. Ecol. Prog. Ser. 64, 13–23 (1990).ADS 
    Article 

    Google Scholar 
    Cargnelli, L. M. & Gross, M. R. The temporal dimension in fish recruitment: Birth date, body size, and size-dependent survival in a sunfish (bluegill: Lepomis macrochirus). Can. J. Fish. Aquat. Sci. 53, 360–367 (1996).Article 

    Google Scholar 
    Moginie, B. F. & Shima, J. S. Hatch date and growth rate drives reproductive success in nest-guarding males of a temperate reef fish. Mar. Ecol. Prog. Ser. 592, 197–206 (2018).ADS 
    Article 

    Google Scholar 
    Sponaugle, S., Boulay, J. N. & Rankin, T. L. Growth- and size-selective mortality in pelagic­larvae of a common reef fish. Aquat. Biol. 13, 263–273 (2011).Article 

    Google Scholar 
    Biro, P. A., Abrahams, M. V., Post, J. R. & Parkinson, E. A. Behavioural trade-offs between growth and mortality explain evolution of submaximal growth rates. J. Anim. Ecol. 75, 1165–1171 (2006).PubMed 
    Article 

    Google Scholar 
    Litvak, M. K. & Leggett, W. C. Age and size-selective predation on larval fishes: the bigger-is-better hypothesis revisited. Mar. Ecol. Prog. Ser. 81, 13–24 (1992).ADS 
    Article 

    Google Scholar 
    D’Alessandro, E. K., Sponaugle, S. & Cowen, R. K. Selective mortality during the larval and juvenile stages of snappers (Lutjanidae) and great barracuda Sphyraena barracuda. Mar. Ecol. Prog. Ser. 474, 227–242 (2013).ADS 
    Article 

    Google Scholar 
    Meekan, M. G. et al. Bigger is better: Size-selective mortality throughout the life history of a fast-growing clupeid, Spratelloides gracilis. Mar. Ecol. Progress Ser. 317, 237–244 (2006).ADS 
    Article 

    Google Scholar 
    Takasuka, A., Aoki, I. & Mitani, I. Evidence of growth-selective predation on larval Japanese anchovy Engraulis japonicus in Sagami Bay. Mar. Ecol. Prog. Ser. 252, 223–238 (2003).ADS 
    Article 

    Google Scholar 
    Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 3, 509–535 (2011).PubMed 
    Article 

    Google Scholar 
    Raventos, N., Torrado, H., Arthur, R., Alcoverro, T. & Macpherson, E. Temperature reduces fish dispersal as larvae grow faster to their settlement size. J. Anim. Ecol. 90, 1419–1432 (2021).PubMed 
    Article 

    Google Scholar 
    Logsdon, N. J., Deshpande, A., Harris, B. D., Rajashankar, K. R. & Walter, M. R. Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proc. Natl. Acad. Sci. 109, 12704–12709 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eldon, B., Riquet, F., Yearsley, J., Jollivet, D. & Broquet, T. Current hypotheses to explain genetic chaos under the sea. Curr. Zool. 62, 551–566 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Macpherson, E., Gordoa, A. & Garcia-Rubies, A. Biomass size spectra in littoral fishes in protected and unprotected areas in the NW Mediterranean. Estuarine Coast. Shelf Sci. 55, 777–788 (2002).ADS 
    Article 

    Google Scholar 
    Garcia-Rubies, A. & Zabala I Limousin, M. Effects of total fishing prohibition on the rocky fish assemblages of Medes Islands marine reserve (NW Mediterranean). Sci. Mar. 54(4), 317–328 (1990).
    Google Scholar 
    Vigliola, L. et al. Spatial and temporal patterns of settlement among sparid fishes of the genus Diplodus in the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 168, 45–56 (1998).ADS 
    Article 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goudet, J. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).Article 

    Google Scholar 
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wickham, H. ggplot2. (2009). https://doi.org/10.1007/978-0-387-98141-3.Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol. Ecol. 27, 2215–2233 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Natsidis, P., Tsakogiannis, A., Pavlidis, P., Tsigenopoulos, C. S. & Manousaki, T. Phylogenomics investigation of sparids (Teleostei: Spariformes) using high-quality proteomes highlights the importance of taxon sampling. Commun. Biol. 2, 400 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Al-Shahrour, F. et al. FatiGO: A functional profiling tool for genomic data: Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Res. 35, W91–W96 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, M., Zhao, Y. & Zhang, B. Efficient test and visualization of multi-set intersections. Sci. Rep. 5, 16923 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Vapour pressure deficit determines critical thresholds for global coffee production under climate change

    Vega, F. E., Rosenquist, E. & Collins, W. Global project needed to tackle coffee crisis. Nature 425, 343 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Craparo, A. C. W., Van Asten, P. J. A., Läderach, P., Jassogne, L. T. P. & Grab, S. W. Coffea arabica yields decline in Tanzania due to climate change: global implications. Agric. For. Meteorol. 207, 1–10 (2015).ADS 
    Article 

    Google Scholar 
    Davis, A. P. et al. High extinction risk for wild coffee species and implications for coffee sector sustainability. Sci. Adv. 5, eaav3473 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis, A. P., Gole, T. W., Baena, S. & Moat, J. The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS ONE 7, e47981 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis, A. P., Mieulet, D., Moat, J., Sarmu, D. & Haggar, J. Arabica-like flavour in a heat-tolerant wild coffee species. Nat. Plants 7, 413–418 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moat, J., Gole, T. W. & Davis, A. P. Least concern to endangered: applying climate change projections profoundly influences the extinction risk assessment for wild Arabica coffee. Global Change Biol. 25, 390–403 (2019).ADS 
    Article 

    Google Scholar 
    Moat, J. et al. Resilience potential of the Ethiopian coffee sector under climate change. Nat. Plants 3, 17081 (2017).PubMed 
    Article 

    Google Scholar 
    Kath, J. et al. Not so robust: Robusta coffee production is highly sensitive to temperature. Global Change Biol. 26, 3677–3688 (2020).ADS 
    Article 

    Google Scholar 
    Liu, L. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 1–9 (2020).ADS 
    CAS 

    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).PubMed 
    Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds. Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).Burke, M. et al. Higher temperatures increase suicide rates in the United States and Mexico. Nat. Clim. Change 8, 723–729 (2018).ADS 
    Article 

    Google Scholar 
    Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schneider, S. H. Abrupt non-linear climate change, irreversibility and surprise. Global Environ. Change 14, 245–258 (2004).Article 

    Google Scholar 
    Lenton, T. M. Early warning of climate tipping points. Nat. Clim. Change 1, 201–209 (2011).ADS 
    Article 

    Google Scholar 
    Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature. 575, 592–595 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).ADS 
    Article 

    Google Scholar 
    Lobell, D. B., Deines, J. M. & Tommaso, S. D. Changes in the drought sensitivity of US maize yields. Nat. Food 1, 729–735 (2020).Article 

    Google Scholar 
    Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rigden, A., Mueller, N., Holbrook, N., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).Article 

    Google Scholar 
    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McDowell, N. G. et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294–308 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Sinclair, T. R. et al. Limited-transpiration response to high vapor pressure deficit in crop species. Plant Sci. 260, 109–118 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    López, J., Way, D. A. & Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Global Change Biol. 27, 1704–1720 (2021).ADS 
    Article 

    Google Scholar 
    McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).ADS 
    Article 

    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).Article 

    Google Scholar 
    Fong, Y., Huang, Y., Gilbert, P. B. & Permar, S. R. chngpt: threshold regression model estimation and inference. BMC Bioinformatics 18, 1–7 (2017).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).ADS 
    Article 

    Google Scholar 
    Forster, P. M., Maycock, A. C., McKenna, C. M. & Smith, C. J. Latest climate models confirm need for urgent mitigation. Nat. Clim. Change 10, 7–10 (2020).ADS 
    Article 

    Google Scholar 
    Forster, P. M. et al. Projections of when temperature change will exceed 2 °C above pre-industrial levels. Nat. Clim. Change 10, 407–412 (2011).
    Google Scholar 
    Joshi, M., Hawkins, E., Sutton, R., Lowe, J. & Frame, D. Projections of when temperature change will exceed 2 °C above pre-industrial levels. Nat. Clim. Change 1, 407–412 (2011).ADS 
    Article 

    Google Scholar 
    IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in press).Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).ADS 

    Google Scholar 
    Sinclair, T. R., Hammer, G. L. & Van Oosterom, E. J. Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Funct. Plant Biol. 32, 945–952 (2005).PubMed 
    Article 

    Google Scholar 
    Martins, M. Q. et al. Protective response mechanisms to heat stress in interaction with high [CO2] conditions in Coffea spp. Front. Plant Sci. 7, 947 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodrigues, W. P. et al. Long‐term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra‐optimal temperatures in tropical Coffea arabica and C. canephora species. Global Change Biol. 22, 415–431 (2016).ADS 
    Article 

    Google Scholar 
    Ghini, R. et al. Coffee growth, pest and yield responses to free-air CO2 enrichment. Clim. Change 132, 307–320 (2015).ADS 
    Article 

    Google Scholar 
    Rakocevic, M. et al. The vegetative growth assists to reproductive responses of Arabic coffee trees in a long-term FACE experiment. Plant Growth Regul. 91, 305–316 (2020).CAS 
    Article 

    Google Scholar 
    Hammer, G. L. et al. Designing crops for adaptation to the drought and high‐temperature risks anticipated in future climates. Crop Sci. 60, 605–621 (2020).Article 

    Google Scholar 
    Gennari, P., Rosero-Moncayo, J. & Tubiello, F. N. The FAO contribution to monitoring SDGs for food and agriculture. Nat. Plants 5, 1196–1197 (2019).PubMed 
    Article 

    Google Scholar 
    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G. & Lobell, D. B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 11, 306–312 (2021).ADS 
    Article 

    Google Scholar 
    Davis, A. P. et al. Hot coffee: the identity, climate profiles, agronomy, and beverage characteristics of Coffea racemosa and C. zanguebariae. Front. Sustain. Food Syst. 5, 740137 (2021).Article 

    Google Scholar 
    Sarmiento-Soler, A. et al. Disentangling effects of altitude and shade cover on coffee fruit dynamics and vegetative growth in smallholder coffee systems. Agric. Ecosyst. Environ. 326, 107786 (2022).CAS 
    Article 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Barton, K. MuMIn: multi-model inference. R-Forge http://r-forge.r-project.org/projects/mumin/ (2009).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org/ (2021).Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Najafi, E., Devineni, N., Khanbilvardi, R. M. & Kogan, F. Understanding the changes in global crop yields through changes in climate and technology. Earths Future 6, 410–427 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Ovalle-Rivera, O. et al. Assessing the accuracy and robustness of a process-based model for coffee agroforestry systems in Central America. Agrofor. Syst. 94, 2033–2051 (2020).Article 

    Google Scholar 
    Varma, S. & Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics 7, 1–8 (2006).Article 

    Google Scholar 
    Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Son, H. & Fong, Y. Fast grid search and bootstrap-based inference for continuous two-phase polynomial regression models. Environmetrics 32, e2664 (2021).MathSciNet 
    Article 

    Google Scholar 
    Wintgens, J. N. et al. Coffee: Growing, Processing, Sustainable Production. A Guidebook for Growers, Processors, Traders, and Researchers (Wiley, 2004). More

  • in

    Brain de novo transcriptome assembly of a toad species showing polymorphic anti-predatory behavior

    Sample collection and RNA preparationWe analyzed 6 adult yellow-bellied toad individuals representative of distinct behavioral profiles, i.e. prolonged unken-reflex display vs no unken-reflex display (thereafter referred as “ + ” and “-“, respectively). Behavioral profiles were scored as in Chiocchio et al.12: 3 toads showed prolonged unken-reflex (+), whereas the other 3 did not show unken-reflex (−), as reported in Table 1. Sampling procedures were approved by the Italian Ministry of Ecological Transition and the Italian National Institute for Environmental Protection and Research (ISPRA; permit number: 20824, 18-03-2020). After dissection, brain tissue was immediately stored in RNAprotect Tissue Reagent (Quiagen) until RNA extraction. RNA extractions were performed using the RNeasy Plus Kit (Quiagen), according to the manufacturer’ instructions. RNA quality and concentration were assessed by means of both a spectrophotometer and a Bioanalyzer (Agilent Cary60 UV-vis and Agilent 2100, respectively – Agilent Technologies, Santa Clara, USA).Table 1 Summary of the 6 libraries deposited in the Sequence Read Archive (SRA) of NCBI, in terms of number of raw and trimmed reads per sample.Full size tableLibrary preparation and sequencingLibrary preparation and RNA sequencing were performed by NOVOGENE (UK) COMPANY LIMITED using Illumina NovaSeq platform. Library construction was carried out using the NEBNext® Ultra ™ RNA Library Prep Kit for Illumina®, following manufacturer instructions. Briefly, after the quality control check, the mRNA sample was isolated from the total RNA by using magnetic beads made of oligos d(T)25 (i.e. polyA-tail mRNA enrichment). Subsequently, mRNA was randomly fragmented, and a cDNA synthesis step proceeded using random hexamers and the reverse transcriptase enzyme. Once the synthesis of the first chain has finished, the second chain was synthesized with the addition of the Illumina buffer, dNTPs, RNase H and polymerase I of E.coli, by means of the Nick translation method. Then, the resulting products went through purification, repair, A-tailing and adapter ligation. Fragments of the appropriate size were enriched by PCR, the indexed P5 and P7 primers were introduced, and the final products were purified. Finally, the Illumina Novaseq 6000 sequencing system was used to sequence the libraries, through a paired-end 150 bp (PE150) strategy. We obtained on average 52.7 million reads for each library. The sequencing data are available at the NCBI Sequence Read Archive (project ID PRJNA76401320).Pre-assembly processing stageA total of 316,329,573 pairs of reads was generated by Illumina sequencing. All of them went to a cleaning analytic step. The quality of the raw reads was assessed with the FastQC 0.11.5 tool (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc), in order to estimate the RNAseq quality profiles. The quality estimators were generated for both the raw and trimmed data. The quality assessment metrics for trimmed data were aggregated across all samples into a single report for a summary visualization with MultiQC software tool21 v.1.9 (see Fig. 1). To remove low quality bases and adapter sequences, raw reads were also analyzed through a quality trimming step with Trimmomatic22, v.0.39 (setting the option SLIDINGWINDOW: 4: 15, MINLEN: 36, and HEADCROP: 13). All the unpaired reads were discarded. After the cleaning step and removal of low-quality reads, 297,354,405 clean reads (i.e. 94% of raw reads) were maintained for building the de novo transcriptome assembly (see Table 1).Fig. 1The cleaned reads from all samples were assessed with FastQC and visualized with MultiQC. (a) Read count distribution for mean sequence quality. (b) Mean quality scores distribution. (c) Read length distribution. (d) Per Sequence GC Content.Full size image
    De novo transcriptome assembly and quality assessmentAs there is no reference genome for B. pachypus, we performed a de novo transcriptome assembly procedure. The workflow of the bioinformatic pipelines is shown in Fig. 2. All the described bioinformatics analyses were performed on the high-performance computing systems provided by ELIXIR-IT HPC@CINECA23.Fig. 2Workflow of the bioinformatic pipeline, from raw input data to annotated contigs, for the de novo transcriptome assembly of B. pachypus.Full size imageTo construct an optimized de novo transcriptome, avoiding chimeric transcripts, we employed rnaSPAdes24, a tool for de novo transcriptome assembly from RNA-Seq data implemented in the SPAdes v.3.14.1 package. rnaSPAdes automatically detected two k-mer sizes, approximately one third and half of the maximal read length (the two detected k-mer sizes were 45 and 67 nucleotides, respectively). At this stage, a total of 1,118,671 assembled transcripts were generated by rnaSPAdes runs, with an average length of 689.41 bp and an N50 of 1474 bp (Table 2).Table 2 Similarity rate of newly assembled transcripts versus the de novo transcriptome of B. pachypus.Full size tableResults from the assembly procedures were validated through three independent validator algorithms implemented in BUSCO25 v.4.1.4, DETONATE26 v.1.11 and TransRate27 v.1.0.3. These tools generate several metrics used as a guide to evaluate error sources in the assembly process and provide evidence about the quality of the assembled transcriptome. Busco provides a quantitative measure of transcriptome quality and completeness, based on evolutionarily-informed expectations of gene content from the near-universal, ultra-conserved eukaryotic proteins (eukaryota_odb9) database. Detonate (DE novo TranscriptOme rNa-seq Assembly with or without the Truth Evaluation) is a reference-free evaluation method based on a novel probabilistic model that depends only on the assembly and the RNA-Seq reads used to construct it. Transrate generates standard metrics and remapping statistics. No reference protein sequences were used for the assessment with Transrate. The main metrics resulted from the assembly validators are shown in Table 2 (“Before CD-HIT-est” column). After this triple assessment validation step, the result of the assembly procedure become the input for the CD-HIT-est v.4.8.128 program, a hierarchical clustering tool used to avoid redundant transcripts and fragmented assemblies common in the process of de novo assembly, providing unique genes. CD-HIT-est was run using the default parameters, corresponding to a similarity of 95%. Subsequently, a second validation step was launched on the CD-HIT-est output file. To refine the final transcriptome dataset, a further hierarchical clustering step was performed by running CORSET v1.0629. Then, the output of CORSET was validated by BUSCO, and quality assessment was performed with HISAT230,31 by mapping the trimmed reads to the reference transcriptome (unigenes). Results from all validation steps are shown in Table 2 and discussed in the “Technical Validation” paragraph.Finally, the CORSET output was run on TransDecoder32,33, the current standard tool that identifies long open read frames (ORFs) in assembled transcripts, using default parameters. TransDecoder by default performs ORF prediction on both strands of assembled transcripts regardless of the sequenced library. It also ranks ORFs based on their completeness, and determines if the 5 ‘end is incomplete by looking for any length of AA codons upstream of a start codon (M) without a stop codon. We adopted the “Longest ORF” rule and selected the highest 5 AUG (relative to the inframe stop codon) as the translation start site.Transcriptome annotationWe employed different kinds of annotations for the de novo assembly. We introduced DIAMOND34, an open-source algorithm based on double indexing that is 20,000 times faster than BLASTX on short reads and has a similar degree of sensitivity. Like BLASTX, DIAMOND attempts to determine exhaustively all significant alignments for a given query. Most sequence comparison programs, including BLASTX, follow the seed-and-extend paradigm. In this two-phase approach, users search first for matches of seeds (short stretches of the query sequence) in the reference database, and this is followed by an ‘extend’ phase that aims to compute a full alignment. The following parameter settings were applied: DIAMOND-fast DIAMOND BLASTX-t 48 -k 250 -min-score 40; DIAMOND-sensitive: DIAMOND BLASTX -t 48 -k 250 -sensitive -min-score 40.Contigs were aligned with DIAMOND on Nr, SwissProt and TrEMBL to retrieve the corresponding best annotations. An annotation matrix was then generated by selecting the best hit for each database. Following the analysis of BLASTX against Nr, SwissProt and TremBL, we obtained respectively: 123,086 (64.57%), 77,736 (40.78%), 122,907 (64.48%) contigs. The results obtained following the analysis with BLASTP against Nr, SwissProt and TrEMBL were 96,321 (50.53%), 57,877 (30.36%) and 97,256 (51.02%) contigs respectively. All the information on the resulting datasets is resumed in Table 3.Table 3 Summary of homology annotation hits on the different databases queried in this study.Full size tableThe output obtained by the BLASTX annotation consisted in a total of 77391 sequences simultaneously mapped on the three queried databases (i.e., Nr, SwissProt and TrEMBL). The output obtained following the BLASTP annotation consisted in a total of 57704 sequences simultaneously mapped on the three databases. Venn diagrams are presented in Fig. 3, showing the redundancy of the annotations in the different databases for both DIAMOND BLASTX (Fig. 3a) and DIAMOND BLASTP (Fig. 3b). Furthermore, the ten most represented species and the ten hits of the gene product obtained respectively with BLASTX and BLASTP by mapping the transcripts against the reference database Nr are shown in Figs. 4 and 5. Since BLASTX translated nucleotide sequence searches against protein sequences the BLASTX results are more exhaustive than BLASTP results. Contigs were also processed with InterProScan35 to detect InterProScan signatures. The InterPro database (http://www.ebi.ac.uk/interpro/) integrates together predictive models or ‘signatures’ representing protein domains, families and functional sites from multiple, diverse source databases: Gene3D, PANTHER, Pfam, PIRSF, PRINTS, ProDom, PROSITE, SMART, SUPERFAMILY and TIGRFAMs. The obtained InterProScan results for all the unigenes are available on Figshare in the form of Tab Separated Values (tsv) file format, which includes the GO and KEGG annotated contigs, respectively.Fig. 3Venn diagrams for the number of contigs annotated with DIAMOND (BLASTX (a) and BLASTP (b) functions) against the three databases: Nr, SwissProt, TREMBL.Full size imageFig. 4Most represented species and gene product hits. Top 10 best species (a) and protein (b) hits present in the reference database (Nr, BLASTX).Full size imageFig. 5Most represented species and gene product hits. Top 10 best species (a) and protein (b) hits present in the reference database (Nr, BLASTP).Full size imageComparison with Bombina orientalis brain transcriptomeWe compared the brain de novo transcriptome of B. pachypus with the brain de novo transcriptome of B. orientalis, recently produced in the frame of a prey-catching conditioning experiment17,18. The B. orientalis transcriptome resource was downloaded from GEO archive of NCBI (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171766). To make the datasets comparable, we first performed ORF prediction on B. orientalis trascriptome using Transdecoder, using default settings. Results from the B. orientalis trascriptome ORF prediction are available in Figshare at the following link https://doi.org/10.6084/m9.figshare.20319633/). We also applied the makedb function implemented in DIAMOND to create the protein database index. Then, we aligned the B. pachypus predicted coding sequences and proteins (query files) against the B. orientalis protein database (reference) using DIAMOND BLASTX and BLASTP, respectively. We obtained 167041 matches from BLASTX and 156248 matches for BLASTP. Results from the BLASTX and BLASTP comparisons, and the most matched proteins, are available on Figshare36 (link available in next paragraph). More

  • in

    Low functional vulnerability of fish assemblages to coral loss in Southwestern Atlantic marginal reefs

    Birkeland, C. Coral Reefs in the Anthropocene (Springer, 2015).Book 

    Google Scholar 
    Kleypas, J. A., Mcmanus, J. W. & Meñez, L. A. B. Environmental limits to coral reef development: Where do we draw the line?. Am. Zool. 39(1), 146–159. https://doi.org/10.1093/icb/39.1.146 (1999).Article 

    Google Scholar 
    Perry, C. T. & Larcombe, P. Marginal and non-reef-building coral environments. Coral Reefs 22, 427–432. https://doi.org/10.1007/s00338-003-0330-5 (2003).Article 

    Google Scholar 
    Wilkinson, C. R. Global and local threats to coral reef functioning and existence: review and predictions. Mar. Freshw. Res. 50, 867–878. https://doi.org/10.1071/mf99121 (1999).Article 

    Google Scholar 
    Mies, M. et al. South atlantic coral reefs are major global warming refugia and less susceptible to bleaching. Front. Mar. Sci. 7, 514. https://doi.org/10.3389/fmars.2020.00514 (2020).Article 

    Google Scholar 
    Leão, Z. M. A. N. et al. Brazilian coral reefsin a period of global change: A synthesis. Braz. J. Oceanogr. 64, 97–116. https://doi.org/10.1590/S1679-875920160916064sp2 (2016).Article 

    Google Scholar 
    Coker, D. J., Wilson, S. K. & Pratchett, M. S. Importance of live coral habitat for reef fishes. Rev. Fish Biol. Fish. 24, 89–126. https://doi.org/10.1007/s11160-013-9319-5 (2014).Article 

    Google Scholar 
    Alvarez-Filip, L., Gill, J. A. & Dulvy, N. K. Complex reef architecture supports more small-bodied fishes and longer food chains on Caribbean reefs. Ecosphere 2, 118. https://doi.org/10.1890/ES11-00185.1 (2011).Article 

    Google Scholar 
    Wilson, S. K., Graham, N. A. J., Pratchett, M. S., Jones, G. P. & Polunin, N. V. C. Multiple disturbances and the global degradation of coral reefs: Are reef fishes at risk or resilient?. Glob. Change Biol. 12, 2220–2234. https://doi.org/10.1111/j.1365-2486.2006.01252.x (2006).ADS 
    Article 

    Google Scholar 
    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264. https://doi.org/10.1038/s41467-019-09238-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the coral reef crisis. Nature 429, 827–833. https://doi.org/10.1038/nature02691 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933. https://doi.org/10.1126/science.1085046 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493. https://doi.org/10.1038/s43017-020-0068-4 (2020).ADS 
    Article 

    Google Scholar 
    Bleuel, J., Pennino, M. G. & Longo, G. O. Coral distribution and bleaching vulnerability areas in Southwestern Atlantic under ocean warming. Sci. Rep. 11, 12833. https://doi.org/10.1038/s41598-021-92202-2 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fontoura, L. et al. The macroecology of reef fish agonistic behaviour. Ecography 43, 1278–1290. https://doi.org/10.1111/ecog.05079 (2020).Article 

    Google Scholar 
    Inagaki, K. Y., Pennino, M. G., Floeter, S. R., Hay, M. E. & Longo, G. O. Trophic interactions will expand geographically but be less intense as oceans warm. Glob. Change Biol. 26, 6805–6812. https://doi.org/10.1111/gcb.15346 (2020).ADS 
    Article 

    Google Scholar 
    Longo, G. O., Hay, M. E., Ferreira, C. E. L. & Floeter, S. R. Trophic interactions across 61 degrees of latitude in the Western Atlantic. Glob. Ecol. Biogeogr. 28, 107–117. https://doi.org/10.1111/geb.12806 (2019).Article 

    Google Scholar 
    Pratchett, M. S. et al. Effects of climate-induced coral bleaching on coral-reef fishes: Ecological and economic consequences. Oceanogr. Mar. Biol. Annu. Rev. 46, 251–296. https://doi.org/10.1201/9781420065756.ch6 (2008).Article 

    Google Scholar 
    Graham, N. A. J. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300. https://doi.org/10.1111/j.1523-1739.2007.00754.x (2007).Article 
    PubMed 

    Google Scholar 
    Strona, G. et al. Global tropical reef fish richness could decline by around half if corals are lost. Proc. R. Soc. B 288, 20210274. https://doi.org/10.1098/rspb.2021.0274 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McClenachan, L. Extinction risk in reef fishes 199–207 (Cambridge University Press, 2015).
    Google Scholar 
    Power, M. E. et al. Challenges in the quest for keystones. Bioscience 46, 609–620. https://doi.org/10.2307/1312990 (1996).Article 

    Google Scholar 
    Pereira, P. H. C. et al. The influence of multiple factors upon reef fish abundance and species richness in a tropical coral complex. Ichthyol. Res. 61, 375–384. https://doi.org/10.1007/s10228-014-0409-8 (2014).Article 

    Google Scholar 
    Coni, E. O. C. et al. An evaluation of the use of branching fire-corals (Millepora spp.) as refuge by reef fish in the Abrolhos Bank, eastern Brazil. Environ. Biol. Fish. 96, 45–55. https://doi.org/10.1007/s10641-012-0021-6 (2013).Article 

    Google Scholar 
    Graham, N. A. J. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348. https://doi.org/10.1111/j.1461-0248.2011.01592.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471. https://doi.org/10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2 (2006).Article 
    PubMed 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28(3), 167–177. https://doi.org/10.1016/j.tree.2012.10.004 (2013).Article 
    PubMed 

    Google Scholar 
    Pimiento, C. et al. Functional diversity of marine megafauna in the Anthropocene. Sci. Adv. 6, 7650. https://doi.org/10.1126/sciadv.aay7650 (2020).ADS 
    Article 

    Google Scholar 
    Loiola, M. et al. Structure of marginal coral reef assemblages under different turbidity regime. Mar. Environ. Res. 147, 138–148. https://doi.org/10.1016/j.marenvres.2019.03.013 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aued, A. W. et al. Large-scale patterns of benthic marine communities in the Brazilian Province. PLoS ONE 13, e0198452. https://doi.org/10.1371/journal.pone.0198452 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leão, Z. M. A. N., Kikuchi, R. K. P. & Testa, V. Corals and Coral Reefs of Brazil 9–52 (Elsevier Publisher, 2003).
    Google Scholar 
    Pinheiro, H. T. et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers. Distrib. 24, 951–965. https://doi.org/10.1111/ddi.12729 (2018).Article 

    Google Scholar 
    Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–47. https://doi.org/10.1111/j.1365-2699.2007.01790.x (2008).Article 

    Google Scholar 
    Cord, I. et al. Brazilian marine biogeography: A multi-taxa approach for outlining sectorization. Mar. Biol. 169(5), 61. https://doi.org/10.1007/s00227-022-04045-8 (2022).Article 

    Google Scholar 
    Leal, I. C. S., Araújo, M. E. D., Cunha, S. R. D. & Pereira, P. H. C. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities. Mar. Environ. Res. 108, 45–54. https://doi.org/10.1016/j.marenvres.2015.04.009 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kéry, M. & Royle, J. A. Applied hierarchical modeling in ecology: Analysis of distribution abundance and species richness in R and BUGS. In Prelude and Static Models Vol. 1 (eds Kéry, M. & Royle, J. A.) (Academic Press, 2016).MATH 

    Google Scholar 
    Hadj-Hammou, J., Mouillot, D. & Graham, N. A. J. Response and effect traits of coral reef fish. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.640619 (2021).Article 

    Google Scholar 
    McLean, M. et al. Trait similarity in reef fish faunas across the world’s oceans. PNAS 118(12), e2012318118. https://doi.org/10.1073/pnas.2012318118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454. https://doi.org/10.1002/fee.2088 (2019).Article 

    Google Scholar 
    Eggertsen, L. et al. Seaweed beds support more juvenile reef fish than seagrass beds in a south-western Atlantic tropical seascape. Estuar. Coast. Shelf S. 196, 97–108. https://doi.org/10.1016/j.ecss.2017.06.041 (2017).ADS 
    Article 

    Google Scholar 
    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS 111, 13757–13762. https://doi.org/10.1073/pnas.1317625111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Briggs, J. C. Marine Zoogeography (McGraw-Hill, 1974).
    Google Scholar 
    Garcia, G. S., Dias, M. S. & Longo, G. O. Trade-off between number and length of remote videos for rapid assessments of reef fish assemblages. J. Fish Biol. 99(3), 896–904. https://doi.org/10.1111/jfb.14776 (2021).Article 
    PubMed 

    Google Scholar 
    Quimbayo, J. P. et al. Life-history traits, geographical range, and conservation aspects ofreef fishes from the Atlantic and Eastern Pacific. Ecology 102, e03298. https://doi.org/10.1002/ecy.3298 (2021).Article 
    PubMed 

    Google Scholar 
    Katsanevakis, S. et al. Monitoring marine populations and communities: methods dealing with imperfect detectability. Aquat. Biol. 16, 31–52. https://doi.org/10.3354/ab00426 (2012).Article 

    Google Scholar 
    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301. https://doi.org/10.1890/07-1206.1 (2008).Article 
    PubMed 

    Google Scholar 
    Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740. https://doi.org/10.1111/geb.12299 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021)Kellner, K. jagsUI: A Wrapper Around ‘rjags’ to Streamline ‘JAGS’ Analyses. R package version 1.5.2. https://CRAN.R-project.org/package=jagsUI (2021)Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book 

    Google Scholar 
    Ferreira, C. E. L., Gonçalves, J. E. A. & Coutinho, R. Community structure of fishes and habitat complexity on a tropical rocky shore. Environ. Biol. Fish. 61, 353–369 (2001).Article 

    Google Scholar 
    Fulton, C. J. et al. Macroalgal meadow habitats support fish and fisheries in diverse tropical seascapes. Fish Fish. 21, 700–717. https://doi.org/10.1111/faf.12455 (2020).Article 

    Google Scholar 
    Ferreira, L. C. L. et al. Different responses of massive and branching corals to a major heatwave at the largest and richest reef complex in South Atlantic. Mar. Biol. 168, 54. https://doi.org/10.1007/s00227-021-03863-6 (2021).CAS 
    Article 

    Google Scholar 
    Lonzetti, B. C., Vieira, E. A. & Longo, G. O. Ocean warming can help zoanthids outcompete branching hydrocorals. Coral Reefs 41, 175–189. https://doi.org/10.1007/s00338-021-02212-9 (2022).Article 

    Google Scholar 
    Grillo, A. C., Candido, C. F., Giglio, V. J. & Longo, G. O. Unusual high coral cover in a Southwestern Atlantic subtropical reef. Mar. Biodivers. 51, 77. https://doi.org/10.1007/s12526-021-01221-9 (2021).Article 

    Google Scholar 
    Matheus, Z. et al. Benthic reef assemblages of the Fernando de Noronha Archipelago, tropical South-west Atlantic: Effects of depth, wave exposure and cross-shelf positioning. PLoS ONE 14(1), e0210664. https://doi.org/10.1371/journal.pone.0210664 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meirelles, P. M. et al. Baseline assessment of mesophotic reefs of the vitória-trindade seamount chain based on water quality, microbial diversity, benthic cover and fish biomass data. PLoS ONE 10(6), e0130084. https://doi.org/10.1371/journal.pone.0130084 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferreira, C. E. L., Floeter, S. R., Gasparini, J. L., Ferreira, B. P. & Joyeux, J. C. Trophic structure patterns of Brazilian reef fishes: A latitudinal comparison. J. Biogeogr. 31, 1093–1106. https://doi.org/10.1111/j.1365-2699.2004.01044.x (2004).Article 

    Google Scholar 
    Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567. https://doi.org/10.1111/gcb.14911 (2020).ADS 
    Article 

    Google Scholar 
    MacNeil, M. A. et al. Accounting for detectability in reef-fish biodiversity estimates. Mar. Ecol.-Prog. Ser. 367, 249–260. https://doi.org/10.3354/meps07580 (2008).ADS 
    Article 

    Google Scholar 
    Capitani, L., de Araujo, J. N., Vieira, E. A., Angelini, R. & Longo, G. O. Ocean warming will reduce standing biomass in a Tropical Western Atlantic reef ecosystem. Ecosystems 25, 843–857. https://doi.org/10.1007/s10021-021-00691-z (2022).Article 

    Google Scholar 
    Fogliarini, C. O., Longo, G. O., Francini-Filho, R. B., McClenachan, L. & Bender, M. G. Sailing into the past: Nautical charts reveal changes over 160 years in the largest reef complex in the South Atlantic Ocean. PECON 20(3), 231–239. https://doi.org/10.1007/10.1016/j.pecon.2022.05.003 (2022).Article 

    Google Scholar 
    Gasparini, J. L., Floeter, S. R., Ferreira, C. E. L. & Sazima, I. Marine ornamental trade in Brazil. Biodivers. Conserv. 14, 2883–2899. https://doi.org/10.1007/s10531-004-0222-1 (2005).Article 

    Google Scholar 
    Francini-Filho, R. B. et al. Brazil 163–198 (Springer, 2019).
    Google Scholar 
    Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: Form, function and interdependence. Biol. Rev. 92, 878–901. https://doi.org/10.1111/brv.12259 (2017).Article 
    PubMed 

    Google Scholar 
    Nunes, L. T. et al. Ecology of Prognathodes obliquus, a butterflyfish endemic to mesophotic ecosystems of St. Peter and St. Paul’s Archipelago. Coral Reefs 38, 955–960. https://doi.org/10.1007/s00338-019-01822-8 (2019).ADS 
    Article 

    Google Scholar 
    Liedke, A. et al. Abundance, diet, foraging and nutritional condition of the banded butterflyfish (Chaetodon striatus) along the western Atlantic. Mar. Biol. 163, 6. https://doi.org/10.1007/s00227-015-2788-4 (2016).CAS 
    Article 

    Google Scholar  More

  • in

    First direct evidence of adult European eels migrating to their breeding place in the Sargasso Sea

    Schmidt, J. Breeding places and migrations of the eel. Nature 111, 51–54 (1923).ADS 
    Article 

    Google Scholar 
    Tucker, D. W. A new solution to the Atlantic eel problem. Nature 183, 495–501 (1959).ADS 
    Article 

    Google Scholar 
    Voorhis, A. D. & Hersey, J. B. Oceanic thermal fronts in the Sargasso Sea. J. Geophys. Res. 69(18), 3809–3814 (1964).ADS 
    Article 

    Google Scholar 
    Kleckner, R. C. & McCleave, J. D. The northern limit of spawning by Atlantic eels (Anguilla spp.) in the Sargasso Sea in relation to thermal fronts and surface water masses. J. Mar. Res. 46, 647–667 (1988).Article 

    Google Scholar 
    Ullman, D. S., Cornillon, P. C. & Shan, Z. On the characteristics of subtropical fronts in the North Atlantic. J. Geophys. Res: Oceans 112, C01010 (2007).ADS 

    Google Scholar 
    Miller, M. J. et al. Spawning by the European eel across 2000 km of the Sargasso Sea. Biol. Lett. 15, 20180835 (2019).Article 

    Google Scholar 
    Westerberg, H. et al. Larval abundance across the European eel spawning area: An analysis of recent and historic data. Fish. 19, 890–902 (2018).
    Google Scholar 
    Halliwell, G. R. Jr., Olson, D. B. & Peng, G. Stability of the Sargasso Sea subtropical frontal zone. J. Phys. Oceanogr. 24(6), 1166–1183 (1994).ADS 
    Article 

    Google Scholar 
    van Ginneken, V. J. T. & Maes, G. E. The European eel (Anguilla anguilla, Linnaeus), its lifecycle, evolution and reproduction: A literature review. Rev. Fish Biol. Fish. 15, 367–398 (2005).Article 

    Google Scholar 
    Friedland, K. D., Miller, M. J. & Knights, B. Oceanic changes in the Sargasso Sea and declines in recruitment of the European eel. ICES J. Mar. Sci. 64, 519–530 (2007).Article 

    Google Scholar 
    Jacoby, D. M. P. et al. Synergistic patterns of threat and the challenges facing global anguillid eel conservation. Glob. Ecol. Conserv. 4, 321–333 (2015).Article 

    Google Scholar 
    Béguer-Pon, M. et al. Tracking anguillid eels: Five decades of telemetry-based research. Mar. Freshw. Res. 69, 199 (2018).Article 

    Google Scholar 
    Righton, D. et al. Important questions to progress science and sustainable management of anguillid eels. Fish 22, 762–788 (2021).
    Google Scholar 
    Aoyama, J. Life history and evolution of migration in catadromous eels (genus Anguilla). Aquat. Bio Sci. Monogr. 2, 1–42 (2009).
    Google Scholar 
    Tsukamoto, K., Aoyama, J. & Miller, M. J. Migration, speciation, and the evolution of diadromy in anguillid eels. Can. J. Fish. Aquat. Sci. 59, 1989–1998 (2002).Article 

    Google Scholar 
    Tesch, F.-W. Telemetric observations on the spawning migration of the eel (Anguilla anguilla) west of the European continental shelf. Env. Biol. Fish. 3, 203–209 (1978).Article 

    Google Scholar 
    Aarestrup, K. et al. Oceanic spawning migration of the European eel (Anguilla anguilla). Science 325, 1660 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Westerberg, H. et al. Behaviour of stocked and naturally recruited European eels during migration. Mar. Ecol. Prog. Ser. 496, 145–157 (2014).ADS 
    Article 

    Google Scholar 
    Amilhat, E. et al. First evidence of European eels exiting the Mediterranean Sea during their spawning migration. Sci. Rep. 6, 21817 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Righton, D. et al. Empirical observations of the spawning migration of European eels: The long and dangerous road to the Sargasso Sea. Sci. Adv. 2, e1501694 (2016).ADS 
    Article 

    Google Scholar 
    Verhelst, P. et al. Mapping silver eel migration routes in the North Sea. Sci Rep. 12, 318 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuroki, M. et al. Hatching time and larval growth of Atlantic eels in the Sargasso Sea. Mar. Biol. 164, 118. https://doi.org/10.1007/s00227-017-3150-9 (2017).Article 

    Google Scholar 
    Acton, L. et al. What is the Sargasso Sea? The problem of fixing space in a fluid ocean. Polit. Geogr. 68, 86–100 (2019).Article 

    Google Scholar 
    GEBCO Compilation Group. GEBCO 2020 Grid. https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9 (2020).Miller, M. J. & Hanel, R. The Sargasso Sea Subtropical Gyre: The spawning and larval development area of both freshwater and marine eels. Sargasso Sea Alliance Science Report Series, 7, 20 pp (2011).Munk, P. et al. Oceanic fronts in the Sargasso Sea control the early life and drift of Atlantic eels. Proc. Biol. Sci. 277, 3593–3599 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Béguer-Pon, M., Castonguay, M., Shan, S., Benchetrit, J. & Dodson, J. J. Direct observations of American eels migrating across the continental shelf to the Sargasso Sea. Nat. Commun. 6, 8705 (2015).ADS 
    Article 

    Google Scholar 
    Westin, L. The spawning migration of European silver eel (Anguilla anguilla L.) with particular reference to stocked eel in the Baltic. Fish. Res. 38(3), 257–270 (1998).
    Article 

    Google Scholar 
    Tesch, F.-W., Wendt, T. & Karlsson, L. Influence of geomagnetism on the activity and orientation of the eel, Anguilla anguilla (L.), as evident from laboratory experiments. Ecol. Freshw. Fish 1(1), 52–60 (1992).Article 

    Google Scholar 
    Tesch, F.-W. The Eel (Blackwell Science, Oxford, UK, 2003).Book 

    Google Scholar 
    Durif, C. M. F. et al. Magnetic compass orientation in the European eel. PLoS ONE 8(3), e59212 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Schabetsberger, R. et al. Hydrographic features of anguillid spawning areas: Potential signposts for migrating eels. Mar. Ecol. Prog. Ser. 554, 141–155 (2016).ADS 
    Article 

    Google Scholar 
    Naisbett-Jones, L. C., Putman, N. F., Stephenson, J. F., Ladak, S. & Young, K. A. A magnetic map leads juvenile European eels to the Gulf stream. Curr. Biol. 27, 1236–1240 (2017).CAS 
    Article 

    Google Scholar 
    Dekker, W. Status of the European eel stock and fisheries. In Eel Biology (eds Aida, K. et al.) 237–254 (Springer, New York, 2003).Chapter 

    Google Scholar 
    Drouineau, H. et al. Freshwater eels: A symbol of the effects of global change. Fish Fish (Oxf) 19, 903–930 (2018).Article 

    Google Scholar 
    ICES. Joint EIFAAC/ICES/GFCM Working Group on Eels (WGEEL). ICES Scientific Reports. 2(85) (2020).Pike, C., Crook, V. & Gollock, M. Anguilla anguilla. The IUCN Red List of Threatened Species 2020: e.T60344A152845178 (2020).Durif, C., Dufour, S. & Elie, P. The silvering process of Anguilla anguilla: A new classification from the yellow resident to the silver migrating stage. J. Fish. Biol. 66, 1025–1043 (2005).Article 

    Google Scholar 
    Pankhurst, N. W. Relation of visual changes to the onset of sexual maturation in the European eel Anguilla Anguilla (L.). J. Fish Biol. 21, 127–140 (1982).Article 

    Google Scholar 
    Økland, F., Thorstad, E. B., Westerberg, H., Aarestrup, K. & Metcalfe, J. D. Development and testing of attachment methods for pop-up satellite archival transmitters in European eel. Anim. Biotelem. 1, 3 (2013).Article 

    Google Scholar  More

  • in

    Substantial differences in soil viral community composition within and among four Northern California habitats

    To compare soil viral community composition within and across terrestrial habitats on a regional scale, viromes were generated from 34 near-surface (top 15 cm) soil samples, with a total of 30 viromes included in downstream ecological analyses (see Supplementary Methods). The analyzed viromes were collected from four distinct habitats (wetlands, grasslands, chaparral shrublands, and woodlands, each with 7, 14, 4, and 5 viromes, respectively) across five field sites (Fig. S1 for sampling scheme, Table S1 for soil properties). Following quality filtering, the 30 viromes generated an average of 72,950,833 reads and 416 contigs ≥10 Kbp per virome (Table S2). Wetland viromes yielded more contigs ≥10 Kbp than viromes from other habitats, both in total and on average per virome (Table S2). We used VIBRANT to identify 3490 viral contigs in our assemblies, which were clustered into 3,432 viral operational taxonomic units (vOTUs), defined as ≥10 Kbp viral contigs sharing ≥ 95% average nucleotide identity over 85% contig length [17]. Constrained analysis of principal coordinates (CAP analysis) revealed strong clustering by habitat rather than by site, implying that, where environmental parameters are substantially different, environmental conditions are stronger drivers of viral community composition than geographic distance (Fig. S2).Multiple lines of evidence suggest that wetter soils harbored greater viral diversity than drier soils. We recovered the most vOTUs from wetlands, both in total (56% of all vOTUs were from wetlands) and per virome (on average, 307 vOTUs were recovered per wetland virome, compared to 116 from all habitats) (Fig. 1A). Unsurprisingly, wetlands had significantly greater moisture content than other habitats (Fig. 1B; ANOVA followed by Tukey multiple comparisons of means, p 100 Km distances here. Taken together, we propose that soil viral communities often display high heterogeneity within and among habitats, presumably due to a combination of host adaptations and microdiversity, dispersal limitation, and fluctuating environmental conditions over space and time. More