More stories

  • in

    Mapping tropical forest functional variation at satellite remote sensing resolutions depends on key traits

    We hypothesized that functionally distinct forest types can be mapped at moderate spatial resolutions, using a combination of canopy foliar traits and canopy structure information. Our analysis of LiDAR and imaging spectroscopy data at spatial resolutions ranging from 4 to 200 m (16 m2–40,000 m2), with an emphasis on the 30 m (900 m2) spaceborne hyperspectral spatial resolution, reveals that few remotely sensed canopy properties are needed to successfully identify ecologically distinct forest types at two diverse tropical forest sites in Malaysian Borneo. In testing our second hypothesis that mapped forest types exhibit distinct ecosystem function, we found that forest types identified using remotely sensed leaf P, LMA, Max H, and canopy cover at 20 m height (Cover20) closely align with forest types defined from field-based floristic surveys29,30,31,32,33 and inventory plot-based measurements of growth and mortality rates (Fig. 4b). Our approach, however, enables mapping of their entire spatial extent (Fig. 1) and reveals important structural and functional variation within areas characterized as a single forest type in previous studies (Fig. 3). Current and forthcoming satellite hyperspectral platforms, including PRISMA (30 m), CHIME (20–30 m), and SBG (30 m), have or will have comparable spectral resolution, higher temporal revisits, and much greater geographic coverage. The ability to conduct this type of analysis using remote sensing measurements at 30 m resolution suggests that our method can be applied to these emerging spaceborne imaging spectroscopy data to reveal important differences in structure and function across the world’s tropical forests.Nested functional forest types revealedTo test our first hypothesis, rather than making an a priori decision about the number of k-means clusters (k), we explored the capacity of remotely sensed data to reveal ecologically relevant variation in forest types. Baldeck and Asner took a similar unsupervised approach to estimating beta diversity in South Africa34. Because the choice of k directly influences analysis outcomes, careful selection of k is required. Different approaches for identifying the number of clusters, using the Gapk and Wk elbow metrics35, yielded varying optimal numbers of clusters for the Sepilok and Danum landscapes (Fig. 1, Supplementary Figs. 4 and 5). However, at both sites, a comparison of results based on different values of k revealed ecologically meaningful structural and functional differences and graduated transitions between forest types (Fig. 2, Supplementary Figs. 7 and 8), indicating that the exploration of traits that aggregate or separate forest types as k changes is a valuable exercise. Overlap between the remotely sensed forest type boundaries and inventory plots within distinct forest types indicate that the series of clustered forests align closely with forest types defined based on in situ data on species composition and ecosystem structure. In part, this type of analysis requires careful selection of the number of clusters. Additionally, however, we gained valuable insights via the exploration of varying numbers of clusters as it relates to biologically meaningful categorization of forest types. Extending this method to other parts of the tropics will require similar decision-making, which will either require user input, or the development of robust automated algorithms for selecting k.Forest types capture differences in ecosystem dynamicsWe further evaluated the canopy traits and structural attributes that were most critical for mapping distinct forest types, hypothesizing that mapped forest types exhibit distinct ecosystem function. Forest types revealed by the cluster analyses were distributed along the leaf economic spectrum, where the leaf economic spectrum characterizes a tradeoff in plant growth strategies36. LMA, which can covary strongly with leaf N and P, is a key indicator of plant growth strategies along the spectrum37. At the slow-return end of the leaf economics spectrum, plants in nutrient-poor conditions with low leaf nutrient concentrations invest in leaf structure and defense, expressed as high LMA, strategizing longer-lived, tougher leaves with slower decomposition rates. This strategy comes at the cost of slower growth. At the quick-return end of the spectrum, plants in nutrient-rich environments with higher leaf nutrient concentrations invest less in structure and defense, enabling faster growth and more rapid leaf turnover, i.e., shorter leaf lifespans. This quick-return growth strategy supports higher photosynthetic rates and more rapid carbon gain36.In this study, the principal components and clustering results yielded forest types that are indicative of community level differences associated with leaf economic spectrum differences. The nutrient rich sites (Danum1 and Danum2, Supplementary Fig. 8) show high canopy N and P and low LMA compared to the nutrient poor and acidic sites (Sandstone and Kerangas), which contributes to lower leaf photosynthetic capacity (Vcmax) and growth (Fig. 4b). Foliar N:P also increased with site fertility, confirming that tropical forests are primarily limited by phosphorus, and not nitrogen38,39, with large implications for carbon sequestration in these forests. Orthogonal differences in canopy structure and architecture between Danum forest types and Sepilok Sandstone and Alluvial forests could be indicative of ecosystem scale differences in the sensitivity of these forests to endogenous disturbance processes40.The significant differences in aboveground carbon stocks and growth and mortality rates between forest types further suggests strong differences in ecosystem dynamics. In general, growth rates varied inversely to aboveground carbon, and higher aboveground carbon corresponded to lower mortality rates. As an example, the Sepilok sandstone forests, which are largely comprised of slow-growing dipterocarp species29,33, had the highest median aboveground carbon (236 Mg C ha−1), with higher canopy P and N, and lower LMA. The taller canopy and low canopy leaf nutrient concentrations are consistent with the low growth and mortality rates found in the sandstone forest, indicating a slow-growth strategy yielding larger trees and higher aboveground carbon stocks. In contrast, alluvial forests exhibit high turnover with mortality and growth rates higher relative to Sandstone forests corresponding to lower aboveground carbon on average. Kerangas forests exhibited low aboveground carbon despite an intermediate plot-level growth rate, and mortality rates that were significantly lower than the Danum or alluvial forest types. Kerangas forests, which were characterized by the highest LMA, lowest foliar P and N (Fig. 2a), and the lowest plot-level aboveground carbon density (186 Mg C ha−1; Fig. 4a), are known to have higher stem densities, lower canopy heights, and long-lived leaves5,32,41, suggesting well-developed strategies for nutrient retention42. Interestingly, despite significantly different aboveground carbon and demography, the kerangas and sandstone forests did not differ in LAI or canopy architecture (P:H); although maximum height, Cover20, and Hpeak LAI were significantly higher in the sandstone forest, highlighting the need to account for differences beyond LAI when scaling processes from leaves to ecosystems.In addition, when three forest types were distinguished at Sepilok, the alluvial inventory plot had significantly higher aboveground carbon than the remote sensing-derived alluvial forest extent (Fig. 4a, p  More

  • in

    A sustainable pathway to increase soybean production in Brazil

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Marin, F. R. et al. Protecting the Amazon forest and reducing global warming via agricultural intensification. Nat. Sustain. https://doi.org/10.1038/s41893-022-00968-8 (2022). More

  • in

    Metabolic genes on conjugative plasmids are highly prevalent in Escherichia coli and can protect against antibiotic treatment

    Retrieval of E. coli plasmid sequencesAll E. coli sequences were downloaded from the NCBI FTP server in May 2020. To establish an initial collection of plasmids, only complete genomes with an associated plasmid were retained. All genomes were verified for belonging to the species E. coli using kmerfinder (https://cge.cbs.dtu.dk/services/KmerFinder/). Sequence type (ST) was determined via multi-locus sequence typing (MLST) based on the 7-gene Achtman scheme using pubMLST (https:/github.com/tseemann/mlst). Only genomes with exact matches were assigned for each ST and used for subsequent analysis. To ensure our sequences were sufficiently representative of E. coli pathogens expected in nature, a systematic literature search (see description below and Fig. S1) was conducted to establish an expected distribution of STs (Table S1). This information was used to update our initial collection to match the top 4 most prevalent STs (131, 11, 73, and 95). Specifically, to identify supplementary plasmid sequences, genome accession IDs were chosen from EnteroBase based on the following criteria: the strain was matched to the correct ST and had a high-quality genome sequence (based on N50  > 20,000 and the number of contigs  0.1, 2-tailed student t test). For the second method, all kanR plasmids were used, and instead changed the hosts such that DH5αPro cells were in competition with DH5αPro containing a spontaneous rifampicin-resistant mutant (rifR). Any rifR strain was quantified on rifampicin-containing plates, and the second strain was quantified by rifampicin CFU minus CFU obtained on blank plates. We established that rifR exhibited no fitness defects by (1) growth rates between the wild-type (WT) strain (W) and rifR (M) (Fig. S5D), and (2) directly competing the two control strains (Fig. S5E). In both cases, results were statistically indistinguishable (p  > 0.1, two-tailed student t test). KanR/cmR and WT/rifR experiments were each conducted in LB or M9CAG, respectively. In all cases, experiments were repeated with at least three independent biological replicates.Time-kill measurements in the presence of carbenicillinAll strains were grown as previously described. Time-kill experiments entailed hourly measurements of CFU in presence of carbenicillin at either 3.75 μg/mL (3x IC50) or 5 μg/mL (4x IC50) over a span of 2 or 3 h, including time 0. Specifically, overnight cultures were first diluted 1:100 into LB media containing 1 mM IPTG and 50 μg/mL kanamycin and sub-cultured for two hours in a 37 °C incubator with shaking at 250 rpm. Following this, cell density was adjusted as necessary to achieve a starting OD600 of ~0.15 in all cases. Adjusted subcultures were then aliquoted into a 96-well plate and the appropriate carbenicillin treatments were added directly to the well. Plates were sealed with a paper film and placed in a 37 °C incubator with shaking at 250 rpm. Initial collection for time=0 was acquired before carbenicillin treatment. Thereafter, 10 μL of culture was removed from the well every hour, 10-fold serial dilutions were performed and 10 μL was plated on blank LB agar with three technical replicates at each time point. Colonies were counted after plates were grown for 16 h in a 37 °C incubator to determine CFU. This procedure utilized 14 strains of DH5αPro transformed with kanR plasmids of interest – ctrl, katG, lpxM, yfbR, aroH, pld, fdtC, agp, eptC, arcA, argF, mmuM, ahr, and fabG. CFUs were averaged for all technical replicates, and experiments were conducted with at least three independent biological replicates.Oxygen consumption rateOxygen consumption rates (OCR) were obtained with the Resipher device from Lucid Scientific. The selected strains were grown overnight as previously described. Overnight cultures were resuspended in M9CAG media with 1 mM IPTG and 50 μg/mL kanamycin, and placed in 25 °C for one hour to initiate gene expression. Following this, cells were diluted 10x into M9CAG media containing kanamycin and IPTG, and 100 μL was aliquoted per well into a 96-well microtiter plate according to the manufacturer’s instructions. Plates were placed at 30 °C to minimize growth, and oxygen concentration (μM) was measured immediately thereafter. 24 wells were measured consisting of 6 technical replicates for each strain. Given the clear well-well variability (Fig. S8B, C), data shown are for one biological replicate. However, qualitative trends were consistently reproduced in multiple independent experiments.StatisticsIn all cases where t tests and ANOVA’s were used, data was first verified to be normally distributed using Kolmogorov test for normality. Otherwise, Mann-Whitney U-tests were conducted. For panels with multiple tests, Bonferroni correction was used to adjust the p values. To determine whether any metabolic category was significantly dependent on incompatibility groups, we implemented logistic regressions in MATLAB with the function fitglm. Random forest classification was used to establish the relative importance of prevalent metabolic genes and gene categories predicting the presence of antibiotic resistance genes. Chi-square tests were conducted to determine significant co-occurrence of individual antibiotic resistant and metabolism genes. Dissociative relationships were distinguished by the odds ratios from the chi-square tests. To investigate whether the strong associations and disassociations were driven by evolutionary constraints, or simply artifacts of a common ancestor, we re-ran our statistical analysis using Coinfinder [29] to take in our gene presence-absence data, along with the genome phylogeny, and compute the Bonferroni-corrected statistical likelihood of coincidence (either associations or dissociations), thereby accounting for evolutionary relatedness. More

  • in

    Introducing African cheetahs to India is an ill-advised conservation attempt

    Jhala, Y. V. et al. Action Plan for Introduction of Cheetah in India (Wildlife Insititute of India, National Tiger Conservation Authority and Madhya Pradesh Forest Department, 2021).Durant, S. M. et al. Proc. Natl Acad. Sci. USA 114, 528–533 (2017).Article 
    CAS 

    Google Scholar 
    Broekhuis, F. et al. Ecography 44, 358–369 (2021).Article 

    Google Scholar 
    Lindsey, P. et al. (eds) Cheetah (Acinonyx jubatus) Population Habitat Viability Assessment Workshop Report. Conservation Breeding Specialist Group (SSC / IUCN) / CBSG Southern Africa (Endangered Wildlife Trust, 2009)Mills, M. G. L. & Mills, M. E. J. Kalahari Cheetahs: Adaptation to an Arid Region (Oxford Univ. Press, 2017).Weise, F. J. et al. PeerJ 5, e4096 (2017).Article 

    Google Scholar 
    Clavel, J., Robert, A., Devictor, V. & Juilliard, R. J. Wildl. Mgmt. 72, 1203–1210 (2008).Article 

    Google Scholar 
    Cheetah Conservation Fund. Project Cheetah: Mission Fact Sheet (Cheetah Conservation Fund, 2022).Boast, L. K. et al. in Cheetahs: Biology and Conservation (eds Marker, L. et al.) 275–289 (Elsevier Science, 2018).PTI. Have to be realistic about losses; not easy to bring back animal from extinction: cheetah expert. thehindu.com, https://www.thehindu.com/sci-tech/energy-and-environment/have-to-be-realistic-about-losses-not-easy-to-bring-back-animal-from-extinction-cheetah-expert/article65909157.ece (September 2022).Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review (HM Treasury, 2021).Melzheimer, J. et al. Proc. Natl Acad. Sci. USA 117, 33325–33333 (2020).Article 
    CAS 

    Google Scholar 
    Khalatbari, L. et al. Science 362, 1255 (2018).Article 
    CAS 

    Google Scholar 
    Gopalaswamy, A. M. et al. Proc. Natl Acad. Sci. USA 119, e2203244119 (2022).Article 
    CAS 

    Google Scholar 
    Madhusudan, M. D. & Vanak, A. T. J. Biogeography https://doi.org/10.1111/jbi.14471 (2022).Article 

    Google Scholar  More

  • in

    Autotoxicity of Ambrosia artemisiifolia and Ambrosia trifida and its significance for the regulation of intraspecific populations density

    Dorning, M. & Cipollini, D. Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects. Plant Ecol. 184, 287–296 (2006).Article 

    Google Scholar 
    Greer, M. J., Wilson, G. W., Hickman, K. R. & Wilson, S. M. Experimental evidence that invasive grasses use allelopathic biochemicals as a potential mechanism for invasion: Chemical warfare in nature. Plant Soil 385, 165–179 (2014).Article 
    CAS 

    Google Scholar 
    Möhler, H., Diekötter, T., Herrmann, J. D. & Donath, T. W. Allelopathic vs. autotoxic potential of a grassland weed-evidence from a seed germination experiment. Plant Ecol. Divers. 11, 539–549 (2018).Article 

    Google Scholar 
    Callaway, R. M. & Aschehoug, E. T. Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science 290, 521–523 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Niu, H. B., Liu, W. X., Wan, F. H. & Liu, B. An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: Altered soil microbial communities facilitate the invader and inhibit natives. Plant Soil 294, 73–85 (2007).Article 
    CAS 

    Google Scholar 
    Wardle, D. A., Karban, R. & Callaway, R. M. The ecosystem and evolutionary contexts of allelopathy. Trends Ecol. Evol. 26, 655–662 (2011).Article 
    PubMed 

    Google Scholar 
    Meiners, S. J., Kong, C. H., Ladwig, L. M., Pisula, N. L. & Lang, K. A. Developing an ecological context for allelopathy. Plant Ecol. 213, 1221–1227 (2012).Article 

    Google Scholar 
    Liebhold, A. M., Brockerhoff, E. G., Kalisz, S., Nunez, M. A. & Wardle, D. A. Biological invasions in forest ecosystems. Biol. Invasions 19, 3437–3458 (2017).Article 

    Google Scholar 
    Liao, H. X. et al. Soil microbes regulate forest succession in a subtropical ecosystem in China: Evidence from a mesocosm experiment. Plant Soil 430, 277–289 (2018).Article 
    CAS 

    Google Scholar 
    Wardle, D. A., Nilsson, M. C., Gallet, C. & Zackrisson, O. An ecosystem-level perspective of allelopathy. Biol. Rev. 73, 305–319 (2010).Article 

    Google Scholar 
    Hierro, J. L. & Callaway, R. M. Allelopathy and exotic plant invasion. Plant Soil 256, 29–39 (2003).Article 
    CAS 

    Google Scholar 
    Uddin, M. N., Robinson, R. W., Buultjens, A., Harun, M. A. & Shampa, S. H. Role of allelopathy of Phragmites australis in its invasion processes. J. Exp. Mar. Biol. Ecol. 486, 237–244 (2017).Article 

    Google Scholar 
    Thiébaut, G., Tarayre, M. & Rodríguez-Pérez, H. Allelopathic effects of native versus invasive plants on one major invader. Front. Plant Sci. 2, 854 (2019).Article 

    Google Scholar 
    Smith, M., Cecchi, L., Skjøth, C. A., Karrer, G. & Šikoparijae, B. Common ragweed: A threat to environmental health in Europe. Environ. Int. 61, 115–126 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Montagnani, C., Gentili, R., Smith, M., Guarino, M. F. & Citterio, S. The worldwide spread, success, and impact of ragweed (Ambrosia spp.). Crit. Rev. Plant Sci. 36, 1–40 (2017).Article 

    Google Scholar 
    Zeng, K., Zhu, Y. Q. & Liu, J. X. Research progress on ragweed (Ambrosia). Acta Prataculturae Sin. 19, 212–219 (2010).
    Google Scholar 
    Jacobs, R. L. et al. Responses to ragweed pollen in a pollen challenge chamber versus seasonal exposure identify allergic rhinoconjunctivitis endotypes. J. Allergy Clin. Immun. 130, 122-127.e8 (2012).Article 
    PubMed 

    Google Scholar 
    Lake, R. I. et al. Climate change and future pollen allergy in Europe. Environ. Health Perspect. 125, 385–391 (2017).Article 
    PubMed 

    Google Scholar 
    Wang, J. J., Zhao, B. Y., Li, M. T. & Li, R. Ecological invasion plant-bitter weed (Ambrosia artemisiifolia) and integrated control strategy. Pratacultural Sci. 023, 71–75 (2006).CAS 

    Google Scholar 
    Deng, Z. Z., Bai, J. D., Zhao, C. Y. & Li, J. S. Advance in invasion mechanisms of Ambrosia artemisiifolia. Pratacultural Sci. 32, 54–63 (2015).
    Google Scholar 
    Dong, H. G. et al. Diffusion and intrusion features of Ambrosia artemisiifolia and Ambrosia trifida in Yili River Valley. J. Arid Land Resour. Environ. 31, 175–180 (2017).
    Google Scholar 
    Vink, J. P. et al. Glyphosate-resistant giant ragweed (Ambrosia trifida) control in dicamba-tolerant soybean. Weed Technol. 26, 422–428 (2012).Article 
    CAS 

    Google Scholar 
    Simard, M. J. & Benoit, D. L. Effect of repetitive mowing on common ragweed (Ambrosia artemisiifolia L.) pollen and seed production. Ann. Agric. Environ. Med. 18, 55–62 (2011).PubMed 

    Google Scholar 
    Goplen, J. J. et al. Seedbank depletion and emergence patterns of giant ragweed (Ambrosia trifida) in Minnesota cropping systems. Weed Sci. 65, 52–60 (2017).Article 

    Google Scholar 
    Jurik, T. W. Population distributions of plant size and light environment of giant ragweed (Ambrosia trifida L.) at three densities. Oecologia 87, 539–550 (1991).Article 
    ADS 
    PubMed 

    Google Scholar 
    Patracchini, C., Vidotto, F. & Ferrero, A. Common ragweed (Ambrosia artemisiifolia) growth as affected by plant density and clipping. Weed Technol. 25, 268–276 (2011).Article 

    Google Scholar 
    Kazinczi, G. Ragweed seed bank in the soils of arable fields of Transdanubia, Hungary. Hung. Weed Res. Technol. 19(1), 21–36 (2018).
    Google Scholar 
    Essl, F. et al. Biological flora of the British Isles: Ambrosia artemisiifolia. J. Ecol. 103, 1069–1098 (2015).Article 

    Google Scholar 
    Goplen, J. J. Giant Ragweed (Ambrosia trifida) Seed Bank Dynamics and Management. (Master’s dissertation, University of Minnesota.) Retrieved from https://hdl.handle.net11299174767 (2015).Yoda, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. 14, 107–129 (1963).
    Google Scholar 
    Friedman, J. & Waller, G. R. Allelopathy and autotoxicity. Trends Biochem. Sci. 10, 47–50 (1985).Article 
    CAS 

    Google Scholar 
    Weller, D. E. The interspecific size-density relationship among crowded plant stands and its implications for the −3/2 power rule of self-thinning. Am. Nat. 133, 20–41 (1989).Article 

    Google Scholar 
    Deng, J. et al. Autotoxicity of phthalate esters in tobacco root exudates: Effects on seed germination and seedling growth. Pedosphere 27, 1073–1082 (2017).Article 
    CAS 

    Google Scholar 
    Sudatti, D. B., Duarte, H. M., Soares, A. R., Salgado, L. T. & Pereira, R. C. New ecological role of seaweed secondary metabolites as autotoxic and allelopathic. Front. Plant Sci. 11, 347 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singh, H. P., Batish, D. & Kohil, R. Autotoxicity: Concepts, organisms, and ecological significance. Plant Sci. 18, 757–772 (1999).CAS 

    Google Scholar 
    Chon, S. U. et al. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Prot. 21, 1077–1082 (2002).Article 
    CAS 

    Google Scholar 
    Chen, B. M., D’Antonio, C. M., Molinari, N. & Peng, S. L. Mechanisms of influence of invasive grass litter on germination and growth of coexisting species in California. Biol. Invasions 20, 1881–1897 (2018).Article 

    Google Scholar 
    Chen, L. C., Wang, S. L., Wang, P. & Kong, C. H. Autoinhibition and soil allelochemical (cyclic dipeptide) levels in replanted Chinese fir (Cunninghamia lanceolata) plantations. Plant Soil 374, 793–801 (2014).Article 
    CAS 

    Google Scholar 
    Perry, L. G. et al. Retracted: Dual role for an allelochemical: catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment. J. Ecol. 93, 1126–1135 (2005).Article 
    CAS 

    Google Scholar 
    Yu, J. Q., Ye, S. F., Zhang, M. F. & Hu, W. H. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 31, 129–139 (2003).Article 
    CAS 

    Google Scholar 
    Kong, C. H., Wang, P. & Xu, X. H. Allelopathic interference of Ambrosia trifida with wheat (Triticum aestivum). Agric. Ecosyst. Environ. 119, 416–420 (2007).Article 
    CAS 

    Google Scholar 
    Béres, I., Kazinczi, G. & Narwal, S. S. Allellopathic plants. 4. Common ragweed (Ambrosia elatior L. syn. A. artemisiifolia). Allelopathy J. 9, 27–34 (2002).
    Google Scholar 
    Bauer, J. T., Shannon, S. M., Stoops, R. E. & Reynolds, H. L. Context dependency of the allelopathic effects of Lonicera maackii on seed germination. Plant Ecol. 213, 1907–1916 (2012).Article 

    Google Scholar 
    Renne, I. J., Sinn, B. T., Shook, G. W., Sedlacko, D. M. & Hierro, J. L. Eavesdropping in plants: Delayed germination via biochemical recognition. J. Ecol. 102, 86–94 (2014).Article 

    Google Scholar 
    Loydi, A., Donath, T. W., Eckstein, R. L. & Otte, A. Non-native species litter reduces germination and growth of resident forbs and grasses: Allelopathic, osmotic or mechanical effects?. Biol. Invasions 17, 581–595 (2014).Article 

    Google Scholar 
    Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–266 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bonea, D., Bonciu, E., Niculescu, M. & Olaru, A. L. The allelopathic, cytotoxic and genotoxic effect of Ambrosia artemisiifolia on the germination and root meristems of Zea mays. Caryologia 71, 24–28 (2017).Article 

    Google Scholar 
    Dadkhah, A. Allelopathic effect of sugar beet (Beta vulgaris) and eucalyptus (Eucalyptus camaldulensis) on seed germination and growth of Portulaca oleracea. Russ. Agric. Sci. 39, 117–123 (2013).Article 

    Google Scholar 
    Zheng, L. & Feng, Y. L. Allelopathic effects of Eupatorium adenophorum Spreng on. seed germination and seedling growth in ten herbaceous species. Acta Ecol. Sin. 25, 2782–2787 (2005).CAS 

    Google Scholar 
    Brückner, D. J. The allelopathic effect of ragweed (Ambrosia artemisiifolia L.) on the germination of cultivated plants. Novenytermeles 47, 635–644 (1998).
    Google Scholar 
    Qin, R. M. et al. The evolution of increased competitive ability, innate competitive advantages, and novel biochemical weapons act in concert for a tropical invader. New Phytol. 197, 979–988 (2012).Article 
    PubMed 

    Google Scholar 
    Zheng, Y. L. et al. Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. New Phytol. 205, 1350–1359 (2015).Article 
    PubMed 

    Google Scholar 
    Kaushal, R., Verma, K. S. & Singh, K. N. Effect of Grewia optiva and Populus deltoides leachatesv on field crops. Allelopathy J. 11, 229–234 (2003).
    Google Scholar 
    Kumari, A. & Kohli, R. Autotoxicity of ragweed parthenium (Parthenium hysterophorus). Weed Sci. 35, 629–632 (1987).Article 

    Google Scholar 
    Einhellig, F. A. Allelopathy: Current status and future goals. In Allelopathy: Organisms, processes and applications (ed. Inderjit Dakshini, K. M. M.) 1–24 (Am Chem. Soc, Washington, 1995).
    Google Scholar 
    Hadack, F. Secondary metabolites as plant traits: Current assessment and future perspectives. Crit. Rev. Plant Sci. 21, 273–322 (2002).Article 

    Google Scholar 
    Rice, E. L. Biological Control of Weeds and Plant Diseases (Oklahomka Press, 1995).
    Google Scholar 
    Choi, B. et al. Common ragweed-derived phenolic compounds and their effects on germination and seedling growth of weed species. Weed Turfgrass Sci. 30, 396–404 (2010).
    Google Scholar 
    Friedman, J. & Waller, G. R. Seeds as allelopathic agents. Chem. Ecol. 9, 1107–1117 (1983).Article 
    CAS 

    Google Scholar 
    Canals, R. M., Emeterio, L. S. & Peralta, J. Autotoxicity in Lolium rigidum: Analyzing the role of chemically mediated interactions in annual plant populations. J. Theor. Biol. 235, 402–407 (2005).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    San Emeterio, L., Damgaard, C. & Canals, R. M. Modelling the combined effect of chemical interference and resource competition on the individual growth of two herbaceous populations. Plant Soil 292, 95–103 (2007).Article 
    CAS 

    Google Scholar 
    Dickerson, C. T. Studies on the germination, growth, development and control of Common Ragweed (Ambrosia artemisiifolia L.). PhD thesis, Cornell University, Ann Arbor (1968).Nuutinen, V. & Butt, K. R. Homing ability widens the sphere of influence of the earthworm Lumbricus terrestris L. Soil Biol. Biochem. 37, 805–807 (2005).Article 
    CAS 

    Google Scholar 
    Favaretto, A., Scheffer-basso, S. M. & Perez, N. B. Autotoxicity in tough lovegrass (Eragrostis plana). Planta Daninha 35(35), e017164046 (2017).
    Google Scholar 
    Sinkkonen, A. Modelling the effect of autotoxicity on density-dependent phytotoxicity. J. Theor. Biol. 244, 218–227 (2007).Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Zhang, S. S., Shi, F. Q., Yang, W. Z., Xiang, Z. Y. & Duan, Z. L. Autotoxicity as a cause for natural regeneration failure in Nyssa yunnanensis and its implications for conservation. Isr. J. Plant Sci. 62, 187–197 (2015).Article 

    Google Scholar 
    Liu, Y. et al. Relationship between seed germination and invasion of Ambrosia artemisiifolia and A. trifida at different positions. Acta Ecol. Sin. 39, 9079–9088 (2019).

    Google Scholar  More

  • in

    Distribution, source apportionment, and risk analysis of heavy metals in river sediments of the Urmia Lake basin

    Basic characteristics of river sedimentsA considerable variation was found in the distribution of clay (81 to 48.4 g kg−1), silt (145 to 656 g kg−1), and sand (38 to 821 g kg−1) particles among sediment materials. The associated coefficient of variations (CV) was 57, 59.5, and 41%, respectively. Statistical data related to the physicochemical properties of sediments and their main elements are reported in Table 2. The variations in particle size distribution located sediment material in seven textural classes ranging from loamy sand to silty clay. The high variability in particle size distribution suggests that different sets of geogenic and anthropogenic processes are enacted in the development and distribution of sediments in the rivers. The pH and CCE ranged from 7.4 to 8.2 and 31 to 251 g kg−1, respectively, indicating the dominancy of alkaline-calcareous condition. None of the sediment samples exhibited salinity conditions (EC  > 4 dS m−1) with EC in the range of 0.3 to 1.4 dS m−1. A relatively low range of OM was found in all samples ranging from 7 to 61 g kg−1 with a mean value of 19 g kg−1. This range of OM coincides with the corresponding values in regional soils47. Except for pH, other sediments properties demonstrated above 35% of CV illustrating a wide range of variability in sediments’ physicochemical properties across the study rivers.Table 2 Summary statistics of sediment properties.Full size tableThe highest concentration among major elements was observed in SiO2, varying between 37.5 and 55.2%, with a mean percentage of 44.9%. This element followed in magnitude by Al2O3 (8.9–15.9%), CaO (5–14.3%), Fe2O3 (4.8–10%), MgO (2.4–17.2%), K2O (1.2–3.1%), Na2O (0.68–2.7%), SO3 (0.01–4.8% g kg−1) (Table 2). Considering the semi-arid climatic condition of the study region, higher levels of SiO2 and lower levels of Al2O3 may indicate that the silicate minerals forming the sediments of the area have not been subjected to severe weathering processes. Likewise, the Na2/K2O ratio was greater than 1 in the majority of sediment samples, implying an enrichment of potassium feldspar and the relatively intense weathering of Na-bearing minerals in the region48,49. The CIA value was in the range of 64.9 to 85.7% with a mean percentage of 72.9%, representing a moderate chemical weathering intensity of lithological materials (65%  Pb  > Cu  > Cd which varied largely among the sampling points. The level of Zn, Cu, Cd, Pb, and Ni varied in the ranges of 32.6–87.5, 14.2–33.3, 0.42–4.8, 14.5–69.5, and 20.1–183.5 mg kg-1, respectively, for winter, and 35.3–92.5, 15.6–35.1, 0.47–5.1, 15.5–73.1, 23.2–188.3 mg kg−1 for summer. The obtained ranges are comparable with data found in previous studies in Asia4,54,55,54.Figure 2The comparison of the mean concentration of Zn, Cu, Cd, Pb, and Ni elements in the study rivers’ sediments during summer and winter. Different letters show significant differences in metal content among rivers pooled over seasons at P  More

  • in

    Spatial assortment of soil organisms supports the size-plasticity hypothesis

    Geisen S, Wall DH, van der Putten WH. Challenges and opportunities for soil biodiversity in the anthropocene. Curr Biol. 2019;29:R1036–44.Article 
    CAS 
    PubMed 

    Google Scholar 
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Gossner MM, Lewinsohn TM, Kahl T, Grassein F, Boch S, Prati D, et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature. 2016;540:266–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA. 2015;112:10967–72.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberti M, Correa C, Marzluff JM, Hendry AP, Palkovacs EP, Gotanda KM, et al. Global urban signatures of phenotypic change in animal and plant populations. Proc Natl Acad Sci USA. 2017;114:8951–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    El-Sabaawi R. Trophic structure in a rapidly urbanizing planet. Funct Ecol. 2018;32:1718–28.Article 

    Google Scholar 
    Yu S, Wu Z, Xu G, Li C, Wu Z, Li Z, et al. Inconsistent patterns of soil fauna biodiversity and soil physicochemical characteristic along an urbanization gradient. Front Ecol Evol. 2022;9:824004.Article 

    Google Scholar 
    Zambrano L, Aronson MFJ, Fernandez T. The consequences of landscape fragmentation on socio-ecological patterns in a rapidly developing urban area: a case study of the National Autonomous University of Mexico. Front. Environ Sci. 2019;7:152.
    Google Scholar 
    Wilson MC, Chen XY, Corlett RT, Didham RK, Ding P, Holt RD, et al. Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc Ecol. 2016;31:219–27.Article 

    Google Scholar 
    Guilland C, Maron PA, Damas O, Ranjard L. Biodiversity of urban soils for sustainable cities. Environ Chem Lett. 2018;16:1267–82.Article 
    CAS 

    Google Scholar 
    Dou Y, Kuang W. A comparative analysis of urban impervious surface and green space and their dynamics among 318 different size cities in China in the past 25 years. Sci. Total Environ. 2020;706:135828.Article 
    CAS 
    PubMed 

    Google Scholar 
    Francini G, Hui N, Jumpponen A, Kotze D, Romantschuk M, Allen J, et al. Soil biota in boreal urban greenspace: responses to plant type and age. Soil Biol Biochem. 2018;118:145–55.Article 
    CAS 

    Google Scholar 
    Corline NJ, Peek RA, Montgomery J, Katz JVE, Jeffres CA. Understanding community assembly rules in managed floodplain food webs. Ecosphere. 2021;12:e03330.Article 

    Google Scholar 
    Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J. 2018;12:1072–83.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu W, Graham EB, Dong Y, Zhong L, Zhang J, Qiu C, et al. Balanced stochastic versus deterministic assembly processes benefit diverse yet uneven ecosystem functions in representative agroecosystems. Environ Microbiol. 2021;23:391–404.Article 
    CAS 
    PubMed 

    Google Scholar 
    Thakur MP, Phillips HR, Brose U, De Vries FT, Lavelle P, Loreau M, et al. Towards an integrative understanding of soil biodiversity. Biol Rev. 2020;95:350–64.Article 
    PubMed 

    Google Scholar 
    Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K, Tedersoo L. Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J. 2016;10:885–96.Article 
    PubMed 

    Google Scholar 
    Luan L, Jiang Y, Cheng M, Dini-Andreote F, Sui Y, Xu Q, et al. Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nat Commun. 2020;11:1–11.Article 

    Google Scholar 
    Isabwe A, Yang JR, Wang Y, Wilkinson DM, Graham EB, Chen H, et al. Riverine bacterioplankton and phytoplankton assembly along an environmental gradient induced by urbanization. Limnol Oceanogr. 2022;67:1943–58.Article 
    CAS 

    Google Scholar 
    Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zinger L, Taberlet P, Schimann H, Bonin A, Boyer F, De Barba M, et al. Body size determines soil community assembly in a tropical forest. Mol Ecol. 2019;28:528–43.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jiao S, Yang Y, Xu Y, Zhang J, Lu Y. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J. 2020;14:202–16.Article 
    PubMed 

    Google Scholar 
    Jiao S, Chen W, Wei G. Biogeography and ecological diversity patterns of rare and abundant bacteria in oil‐contaminated soils. Mol Ecol. 2017;26:5305–17.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wu W, Lu H-P, Sastri A, Yeh Y-C, Gong G-C, Chou W-C, et al. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities. ISME J. 2018;12:485–94.Article 
    PubMed 

    Google Scholar 
    Farjalla VF, Srivastava DS, Marino NA, Azevedo FD, Dib V, Lopes PM, et al. Ecological determinism increases with organism size. Ecology. 2012;93:1752–9.Article 
    PubMed 

    Google Scholar 
    Carscadden KA, Emery NC, Arnillas CA, Cadotte MW, Afkhami ME, Gravel D, et al. Niche breadth: causes and consequences for ecology, evolution, and conservation. Q Rev Biol. 2020;95:179–214.Article 

    Google Scholar 
    Beissinger SR. Ecological mechanisms of extinction. Proc Natl Acad Sci USA. 2000;97:11688–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poiani KA, Richter BD, Anderson MG, Richter HE. Biodiversity conservation at multiple scales: functional sites, landscapes, and networks. Bioscience. 2000;50:133–46.Article 

    Google Scholar 
    Yang J, Zhang X, Jin X, Seymour M, Richter C, Logares R, et al. Recent advances in environmental DNA-based biodiversity assessment and conservation. Divers Distrib. 2021;27:1876–9.Article 

    Google Scholar 
    Breed MF, Harrison PA, Blyth C, Byrne M, Gaget V, Gellie NJC, et al. The potential of genomics for restoring ecosystems and biodiversity. Nat Rev Genet. 2019;20:615–28.Article 
    CAS 
    PubMed 

    Google Scholar 
    Department of Economic and Social Affairs (DESA). World Urbanization Prospects. The 2018 Revision. United Nations. 2019. https://population.un.org/wup/publications/Files/WUP2018-Report.pdf. Accessed 13 Mar 2022.Qiao Z, Wang B, Yao H, Li Z, Scheu S, Zhu Y-G, et al. Urbanization and greenspace type as determinants of species and functional composition of collembola communities. Geoderma. 2022;428:116175.Article 

    Google Scholar 
    Shrestha S, Cui S, Xu L, Wang L, Manandhar B, Ding S. Impact of land use change due to urbanisation on surface runoff using GIS-based SCS–CN Method: a case study of Xiamen City, China. Land. 2021;10:839.Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. 2022. Vienna, Austria. https://www.R-project.org/.Wickham. H ggplot2: elegant graphics for data analysis. Springer-Verlag New York, 2016.Kassambara A. ggpubr: ‘ggplot2’ based publication ready plots. 2020. https://CRAN.R-project.org/package=ggpubr.Morlon H, Chuyong G, Condit R, Hubbell S, Kenfack D, Thomas D, et al. A general framework for the distance–decay of similarity in ecological communities. Ecol Lett. 2008;11:904–17.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goslee S, D. Urban, Goslee, MS. ecodist: dissimilarity-based functions for rcological analysis. 2020. https://cran.r-project.org/web/packages/ecodist/index.html.Ofiţeru ID, Lunn M, Curtis TP, Wells GF, Criddle CS, Francis CA, et al. Combined niche and neutral effects in a microbial wastewater treatment community. Proc Natl Acad Sci USA. 2010;107:15345–50.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016;10:655–64.Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen W, Ren K, Isabwe A, Chen H, Liu M, Yang J. Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. Microbiome. 2019;7:138.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chase JM, Kraft NJ, Smith KG, Vellend M, Inouye BD. Using null models to disentangle variation in community dissimilarity from variation in α‐diversity. Ecosphere. 2011;2:1–11.Article 

    Google Scholar 
    Pandit SN, Kolasa J, Cottenie K. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology. 2009;90:2253–62.Article 
    PubMed 

    Google Scholar 
    Salazar G. EcolUtils: utilities for community ecology analysis. 2019. https://github.com/GuillemSalazar/EcolUtils.Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM. Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol. 2015;29:592–9.Article 

    Google Scholar 
    Cadotte MW, Tucker CM. Should environmental filtering be abandoned? Trends Ecol Evol. 2017;32:429–37.Article 
    PubMed 

    Google Scholar 
    Leibold MA, McPeek MA. Coexistence of the niche and neutral perspectives in community ecology. Ecology. 2006;87:1399–410.Article 
    PubMed 

    Google Scholar 
    Evans S, Martiny JB, Allison SD. Effects of dispersal and selection on stochastic assembly in microbial communities. ISME J. 2017;11:176–85.Article 
    PubMed 

    Google Scholar 
    Jiang Y, Liu M, Zhang J, Chen Y, Chen X, Chen L, et al. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level. ISME J. 2017;11:2705–17.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Douhan GW, Vincenot L, Gryta H, Selosse M-A. Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol. 2011;115:569–97.Article 
    PubMed 

    Google Scholar 
    Granot I, Belmaker J. Niche breadth and species richness: correlation strength, scale and mechanisms. Glob Ecol Biogeogr. 2020;29:159–70.Article 

    Google Scholar 
    Sexton JP, Montiel J, Shay JE, Stephens MR, Slatyer RA. Evolution of ecological niche breadth. Annu Rev Ecol Evol Syst Annu Rev Ecol Evol S. 2017;48:183–206.Article 

    Google Scholar 
    Fraaije RGA, ter Braak CJF, Verduyn B, Verhoeven JTA, Soons MB. Dispersal versus environmental filtering in a dynamic system: drivers of vegetation patterns and diversity along stream riparian gradients. J Ecol. 2015;103:1634–46.Article 

    Google Scholar 
    Soininen J, McDonald R, Hillebrand H. The distance decay of similarity in ecological communities. Ecography. 2007;30:3–12.Article 

    Google Scholar 
    Zhang K, Delgado-Baquerizo M, Zhu Y-G, Chu H. Space is more important than season when shaping soil microbial communities at a large spatial scale. mSystems. 2020;5:e00783–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ma B, Dai Z, Wang H, Dsouza M, Liu X, He Y, et al. Distinct biogeographic patterns for archaea, bacteria, and fungi along the vegetation gradient at the continental scale in Eastern China. mSystems. 2017;2:e00174–16.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang J, Zhang T, Li L, Li J, Feng Y, Lu Q. The patterns and drivers of bacterial and fungal β-diversity in a typical dryland ecosystem of northwest China. Front Microbiol. 2017;8:2126.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang L, Chen L, Zhang D, Peng Y, Song Y, Kou D, et al. Stochastic processes regulate belowground community assembly in alpine grasslands on the Tibetan Plateau. Environ Microbiol. 2021;24:179–94.Article 
    PubMed 

    Google Scholar 
    Chen Q-L, Hu H-W, Yan Z-Z, Li C-Y, Nguyen B-AT, Sun A-Q, et al. Deterministic selection dominates microbial community assembly in termite mounds. Soil Biol Biochem. 2021;152:108073.Article 
    CAS 

    Google Scholar 
    Huang S, Tucker MA, Hertel AG, Eyres A, Albrecht J. Scale-dependent effects of niche specialisation: the disconnect between individual and species ranges. Ecol Lett. 2021;24:1408–19.Article 
    PubMed 

    Google Scholar 
    Rapacciuolo G, Blois JL. Understanding ecological change across large spatial, temporal and taxonomic scales: integrating data and methods in light of theory. Ecography. 2019;42:1247–66.
    Google Scholar 
    van der Gast CJ. Microbial biogeography: the end of the ubiquitous dispersal hypothesis? Environ Microbiol. 2015;17:544–6.Article 
    PubMed 

    Google Scholar 
    Levy-Booth DJ, Giesbrecht IJW, Kellogg CTE, Heger TJ, D’Amore DV, Keeling PJ, et al. Seasonal and ecohydrological regulation of active microbial populations involved in DOC, CO2, and CH4 fluxes in temperate rainforest soil. ISME J. 2019;13:950–63.Article 
    CAS 
    PubMed 

    Google Scholar 
    De Gannes V, Bekele I, Dipchansingh D, Wuddivira MN, De Cairies S, Boman M, et al. Microbial community structure and function of soil following ecosystem conversion from native forests to teak plantation forests. Front Microbiol. 2016;7:1976.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Männistö M, Vuosku J, Stark S, Saravesi K, Suokas M, Markkola A, et al. Bacterial and fungal communities in boreal forest soil are insensitive to changes in snow cover conditions. FEMS Microbiol. 2018;94:fiy123.
    Google Scholar 
    Sakarika M, Spanoghe J, Sui Y, Wambacq E, Grunert O, Haesaert G, et al. Purple non‐sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment. Microb Biotechnol. 2020;13:1336–65.Article 
    CAS 
    PubMed 

    Google Scholar 
    Kernaghan G, Patriquin G. Diversity and host preference of fungi co-inhabiting Cenococcum mycorrhizae. Fungal Ecol. 2015;17:84–95.Article 

    Google Scholar 
    Lumibao CY, Kimbrough ER, Day RH, Conner WH, Krauss KW, Van Bael SA. Divergent biotic and abiotic filtering of root endosphere and rhizosphere soil fungal communities along ecological gradients. FEMS Microbiol. 2020;96:fiaa124.Article 
    CAS 

    Google Scholar 
    Rueckert S, Betts EL, Tsaousis AD. The symbiotic spectrum: where do the gregarines fit? Trends Parasitol. 2019;35:687–94.Article 
    PubMed 

    Google Scholar 
    Butaeva F, Paskerova G, Entzeroth R. Ditrypanocystis sp.(Apicomplexa, Gregarinia, Selenidiidae): the mode of survival in the gut of Enchytraeus albidus (Annelida, Oligochaeta, Enchytraeidae) is close to that of the coccidian genus Cryptosporidium. Tsitologiia. 2006;48:695–704.CAS 
    PubMed 

    Google Scholar 
    Pavao-Zuckerman MA, Coleman DC. Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community. Appl Soil Ecol. 2007;35:329–39.Article 

    Google Scholar 
    Gaspar C, Borges PA, Gaston KJ. Diversity and distribution of arthropods in native forests of the Azores archipelago. Arquipelago: Life Mar Sci. 2008;25:1–30.
    Google Scholar 
    Suter RB, Doyle G, Shane CM. Oviposition site selection by Frontinella pyramitela (Araneae, Linyphiidae). J Arachnol. 1987;15:349–54.Tian T, Ren Q, Fan J, Haseeb M, Zhang R. Too dry or too wet soils have a negative impact on larval pupation of fall armyworm. J Appl Entomol. 2022;146:196–202.Article 

    Google Scholar 
    Marczylo EL, Macchiarulo S, Gant TW. Metabarcoding of soil fungi from different urban greenspaces around Bournemouth in the UK. EcoHealth. 2021;18:315–30.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corline NJ, Peek RA, Montgomery J, Katz JVE, Jeffres CA. Understanding community assembly rules in managed floodplain food webs. Ecosphere. 2021;12:e03330.Article 

    Google Scholar 
    Schlägel UE, Grimm V, Blaum N, Colangeli P, Dammhahn M, Eccard JA, et al. Movement-mediated community assembly and coexistence. Biol Rev Camb Philos Soc. 2020;95:1073–96.Article 
    PubMed 

    Google Scholar 
    Stubner S. Enumeration of 16S rDNA of desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen™ detection. J Microbiol Methods. 2002;50:155–64.Article 
    CAS 
    PubMed 

    Google Scholar 
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Toju H, Tanabe AS, Yamamoto S, Sato H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PloS One. 2012;7:e40863.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abarenkov K, Henrik Nilsson R, Larsson KH, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi–recent updates and future perspectives. New Phytol. 2010;186:281–5.Article 
    PubMed 

    Google Scholar 
    Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner H-W, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.Article 
    CAS 
    PubMed 

    Google Scholar 
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2012;41:D597–604.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Porazinska DL, Giblin‐Davis RM, Faller L, Farmerie W, Kanzaki N, Morris K, et al. Evaluating high‐throughput sequencing as a method for metagenomic analysis of nematode diversity. Mol Ecol Res. 2009;9:1439–50.Article 
    CAS 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–96.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool. 2013;10:1–14.Article 

    Google Scholar 
    Porter TM, Hajibabaei M. Over 2.5 million COI sequences in GenBank and growing. PloS One. 2018;13:e0200177.Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Orangutan genome mix-up muddies conservation efforts

    Mistakes in a landmark paper that reported the first orangutan genomes might have implications for breeding programmes.Credit: Fiona Rogers/Nature Picture Library

    Susie the Sumatran orangutan was a genetic pioneer — the first of her species to have her genome fully sequenced. Her genetic library, and that of ten other orangutans, appeared in a landmark paper in Nature in 20111 that has underpinned hundreds of subsequent studies.But in August, researchers revealed that eight of the sequences in this paper had mistakenly been assigned to the wrong orangutans2. Nature issued a correction from the authors of the original paper3.The scale of the errors sparked ire on social media, and some scientists have warned that the mistakes could have repercussions for orangutan breeding programmes. “Well that’s a bit of a f&£k up orang-utan genome researchers — only mildly embarrassing guys and girls”, tweeted Michael Sweet, a molecular ecologist at the University of Derby, UK.
    Africa: sequence 100,000 species to safeguard biodiversity
    It’s not clear how these swapped identities have affected orangutan research. But researchers involved in the new analysis believe the discovery might highlight how issues in the scientific community — including the pressure to publish and a reliance on peer review to catch mistakes — could allow such errors to slip into the scientific record.“I think there are errors like this in many, many published papers,” says Graham Banes, an evolutionary biologist formerly at the University of Wisconsin–Madison who led the reanalysis of the 2011 paper. “In some ways, we’re lucky that this was just orangutans. What if this was a biomedical paper and people were developing therapies based on published data?”“It’s fairly easy for these things to occur,” adds Robert Fulton, a genomic scientist at Washington University School of Medicine in St Louis, Missouri, who was part of the team behind the original paper and is a co-author on the reanalysis. “What’s important is that that the data are now correct.” Devin Locke, who led the preparation of the 2011 paper and was formerly a colleague of Fulton’s at Washington University, did not respond to questions about the work.Hybrid headacheDetailed ‘reference’ genomes, such as those published in the 2011 Nature paper, are a key tool for biologists. In 2017, Banes and his team were using the genomes to study what happens when different species of orangutan interbreed, a process called hybridization.They noticed that the names given to some of the samples didn’t match the animals’ reported sex. For example, the 2011 paper reported that an orangutan named Dolly was male. But according to the orangutan studbook — a record of orangutans living in zoos — Dolly was female. Even stranger, Banes found that some of the genomes marked as male lacked a Y chromosome. “There was just this series of things that didn’t make sense,” he recalls.
    Major wildlife report struggles to tally humanity’s exploitation of species
    Banes and his colleagues eventually found that the 2011 paper had misidentified all but two of the orangutan genomes. Some mistakes seem to be the result of typos. In one case, a sample from a male orangutan was given an ID number that actually corresponded to a sample from an African pig in a tissue repository. Other samples seem to have had their identities swapped during laboratory work. The 2011 study helped to pin down when Bornean and Sumatran orangutans split into separate species, and compared their genomes with those of other primates. These conclusions are largely uncompromised by the mix-up. But Banes says that the errors could have implications for other research, including his own.Banes uses genetic data to provide zoos with recommendations about their captive breeding programmes. Zoos try to avoid crossbreeding orangutan species, partly to mimic wild populations and also because hybrids can suffer high rates of miscarriage and birth defects, says Banes. While re-examining the samples from the 2011 paper, the team realized that one of the sequences thought to be Sumatran (Pongo abelii) was actually Tapanuli (Pongo tapanuliensis), a third species of orangutan that was only described in 20174.Unfortunately, the 2011 paper had wrongly assigned the Tapanuli genome to Baldy, a male orangutan, rather than its actual owner, a female orangutan named Bubbles (both are now dead). Banes says that his team came “perilously close” to announcing in a paper that Baldy was Tapanuli.Although Baldy has no living descendants, Bubbles has several offspring at zoos around the world, all of which are Sumatran–Tapanuli hybrids. Zookeepers will now have to decide whether to stop breeding Bubbles’ descendants to avoid further hybridization, says Vincent Nijman, an anthropologist at Oxford Brookes University, UK.‘Bigger concerns’However, Nijman also argues that the errors will have little effect on orangutan conservation as a whole. Zoos often bill their animals as a back-up for endangered species, but conservationists are much more focused on the thousands of orangutans in the wild that are threatened by deforestation. “I think we have bigger concerns than some mixed-up samples,” says Erik Meijaard, a conservation scientist at Borneo Futures, a conservation consultancy company based in Bandar Seri Begawan, Brunei.
    Scientists warn deal to save biodiversity is in jeopardy
    Michael Krützen, an evolutionary geneticist at the University of Zurich in Switzerland, agrees that although the errors are “annoying”, their impact on downstream research is probably minimal. However, he says that the problems might be an example of how academia’s publish-or-perish environment could lead to “sloppy” work, as researchers race to publish their work in high-tier journals.Banes agrees that this kind of pressure — along with an over-reliance on a peer-review system that does not offer its volunteer reviewers tangible financial or professional benefits — could lead to errors slipping into published manuscripts.A spokesperson for Nature declined to comment on why the errors in the 2011 paper were not caught by peer review, citing concerns about confidentiality. (Nature’s news team is editorially independent of its academic publishing operation). “However, we would like to stress that we take our responsibility to maintain the accuracy of the scientific record very seriously,” they wrote in an e-mail. “If issues are raised about any paper we have published, we will look into them carefully and update the literature where appropriate.”Banes says that it’s important not to blame individual scientists for such errors, not least because it could discourage efforts to correct mistakes in future. “I think any scientist could have made these mistakes,” he says. “But if we all jump out and say, ‘oh my god, how could they have been so stupid?’, no one is ever going to correct anything. That shame is detrimental to science.” More