More stories

  • in

    Evapotranspiration frequently increases during droughts

    Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).CAS 

    Google Scholar 
    Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).CAS 

    Google Scholar 
    Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).CAS 

    Google Scholar 
    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).CAS 

    Google Scholar 
    Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).CAS 

    Google Scholar 
    Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).CAS 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).CAS 

    Google Scholar 
    Short Gianotti, D. J., Rigden, A. J., Salvucci, G. D. & Entekhabi, D. Satellite and station observations demonstrate water availability’s effect on continental-scale evaporative and photosynthetic land surface dynamics. Water Resour. Res. 55, 540–554 (2019).
    Google Scholar 
    Anderegg, W. R. L., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).CAS 

    Google Scholar 
    Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).CAS 

    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).CAS 

    Google Scholar 
    Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Chang. 10, 691–695 (2020).CAS 

    Google Scholar 
    Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).CAS 

    Google Scholar 
    Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).CAS 

    Google Scholar 
    Teuling, A. J. et al. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071–2075 (2013).
    Google Scholar 
    Mastrotheodoros, T. et al. More green and less blue water in the Alps during warmer summers. Nat. Clim. Chang. 10, 155–161 (2020).
    Google Scholar 
    Peterson, T. J., Saft, M., Peel, M. C. & John, A. Watersheds may not recover from drought. Science 372, 745–749 (2021).CAS 

    Google Scholar 
    Helbig, M. et al. Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nat. Clim. Chang. 10, 555–560 (2020).CAS 

    Google Scholar 
    Massmann, A., Gentine, P. & Lin, C. When does vapor pressure deficit drive or reduce evapotranspiration? J. Adv. Model. Earth Syst. 11, 3305–3320 (2019).
    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Orth, R. & Destouni, G. Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nat. Commun. 9, 3602 (2018).
    Google Scholar 
    Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Chang. 10, 191–199 (2020).
    Google Scholar 
    Chu, H., Baldocchi, D. D., John, R., Wolf, S. & Reichstein, M. Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. J. Geophys. Res. Biogeosci. 122, 289–307 (2017).
    Google Scholar 
    Ukkola, A. M. et al. Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts. Environ. Res. Lett. 11, 104012 (2016).
    Google Scholar 
    Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett. 45, 6495–6503 (2018).
    Google Scholar 
    De Kauwe, M. G. et al. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic–xeric gradient in Europe. Biogeosciences 12, 7503–7518 (2015).
    Google Scholar 
    Dong, J., Lei, F. & Crow, W. T. Land transpiration–evaporation partitioning errors responsible for modeled summertime warm bias in the central United States. Nat. Commun. 13, 336 (2022).CAS 

    Google Scholar 
    Kennedy, D. et al. Implementing plant hydraulics in the Community Land Model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).
    Google Scholar 
    Novick, K. A. et al. Confronting the water potential information gap. Nat. Geosci. 15, 158–164 (2022).CAS 

    Google Scholar 
    Liu, Y., Holtzman, N. M. & Konings, A. G. Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion. Hydrol. Earth Syst. Sci. 25, 2399–2417 (2021).CAS 

    Google Scholar 
    Lin, Y.-S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Chang. 5, 459–464 (2015).CAS 

    Google Scholar 
    Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).CAS 

    Google Scholar 
    Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).CAS 

    Google Scholar 
    Lehmann, P., Merlin, O., Gentine, P. & Or, D. Soil texture effects on surface resistance to bare-soil evaporation. Geophys. Res. Lett. 45, 10398–10405 (2018).
    Google Scholar 
    Fatichi, S. et al. Soil structure is an important omission in Earth System Models. Nat. Commun. 11, 522 (2020).CAS 

    Google Scholar 
    McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).CAS 

    Google Scholar 
    Baldocchi, D., Ma, S. & Verfaillie, J. On the inter- and intra-annual variability of ecosystem evapotranspiration and water use efficiency of an oak savanna and annual grassland subjected to booms and busts in rainfall. Glob. Chang. Biol. 27, 359–375 (2021).CAS 

    Google Scholar 
    Condon, L. E., Atchley, A. L. & Maxwell, R. M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020).CAS 

    Google Scholar 
    Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).CAS 

    Google Scholar 
    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).CAS 

    Google Scholar 
    Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).CAS 

    Google Scholar 
    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS 

    Google Scholar 
    Zhao, M. et al. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 4, 56–62 (2021).
    Google Scholar 
    Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 6, 1019–1022 (2016).
    Google Scholar 
    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).CAS 

    Google Scholar 
    Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).CAS 

    Google Scholar 
    Zhao, M., Geruo, A., Velicogna, I. & Kimball, J. S. A global gridded dataset of GRACE drought severity index for 2002–14: comparison with PDSI and SPEI and a case study of the Australia Millennium Drought. J. Hydrometeorol. 18, 2117–2129 (2017).
    Google Scholar 
    Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).
    Google Scholar 
    Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 52, 7490–7502 (2016).
    Google Scholar 
    Adler, R. F. et al. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).
    Google Scholar 
    Sun, Q. et al. A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev. Geophys. 56, 79–107 (2018).
    Google Scholar 
    Gebremichael, M. et al. Error uncertainty analysis of GPCP monthly rainfall products: a data-based simulation study. J. Appl. Meteorol. 42, 1837–1848 (2003).
    Google Scholar 
    Rodell, M. et al. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 31, L20504 (2004).
    Google Scholar 
    Major River Basins of the World (Global Runoff Data Centre, 2020).Pascolini-Campbell, M. A., Reager, J. T. & Fisher, J. B. GRACE-based mass conservation as a validation target for basin-scale evapotranspiration in the contiguous United States. Water Resour. Res. 56, e2019WR026594 (2020).
    Google Scholar 
    Fekete, B. M., Vörösmarty, C. J. & Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles 16, 15-1–15-10 (2002).
    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    Google Scholar 
    Myneni, R., Knyazikhin, Y. & Park, T (ed. NASA EOSDIS Land Processes DAAC) (2021).Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
    Google Scholar 
    Sulla-Menashe, D. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product (US Geological Survey, 2018).Zhao, M., Aa, G., Liu, Y. & Konings, A. Evapotranspiration frequently increases during droughts. Zenodo https://doi.org/10.5281/zenodo.6842054 (2022). More

  • in

    Experimentally increased snow depth affects high Arctic microarthropods inconsistently over two consecutive winters

    Callaghan, T. V. et al. Multiple effects of changes in arctic snow cover. Ambio 40, 32–45 (2011).
    Google Scholar 
    Cooper, E. J. Warmer shorter winters disrupt arctic terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 271 (2014).
    Google Scholar 
    IPCC. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. https://doi.org/10.1017/CBO9781107415324. (Cambridge University Press, 2013).Seastedt, T. R. The role of microarthropods in decomposition and mineralization processes. Annu. Rev. Entomol. 29, 25–46 (1984).
    Google Scholar 
    Osler, G. H. & Sommerkorn, M. Toward a complete soil C and N cycle: Incorporating the soil fauna. Ecology 88, 1611–1621 (2007).PubMed 

    Google Scholar 
    Coulson, S. J. et al. The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea, Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biol. Biochem. 68, 440–470 (2014).CAS 

    Google Scholar 
    Hodkinson, I. D. Terrestrial and freshwater invertebrates. In Arctic Biodiversity Assessment (ed. Barry, T.) 246–274 (Arctic Council, 2013).
    Google Scholar 
    Strathdee, A. T. & Bale, J. S. Life on the edge: Insect ecology in arctic environments. Annu. Rev. Entomol. 43, 85–106 (1998).CAS 
    PubMed 

    Google Scholar 
    Templer, P. H. et al. Impact of a reduced winter snowpack on litter arthropod abundance and diversity in a northern hardwood forest ecosystem. Biol. Fertil. Soils 48, 413–424 (2012).
    Google Scholar 
    Bokhorst, S., Metcalfe, D. B. & Wardle, D. A. Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biol. Biochem. 62, 157–164 (2013).CAS 

    Google Scholar 
    Slatyer, R. A., Nash, M. A. & Hoffmann, A. A. Measuring the effects of reduced snow cover on Australia’s alpine arthropods. Austral Ecol. 42, 844–857 (2017).
    Google Scholar 
    Bokhorst, S. et al. Extreme winter warming events more negatively impact small rather than large soil fauna: Shift in community composition explained by traits not taxa. Glob. Change Biol. 18, 1152–1162 (2012).ADS 

    Google Scholar 
    Sulkava, P. & Huhta, V. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil. Appl. Soil Ecol. 22, 225–239 (2003).
    Google Scholar 
    Konestabo, H. S., Michelsen, A. & Holmstrup, M. Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem. Appl. Soil Ecol. 36, 136–146 (2007).
    Google Scholar 
    Coulson, S. J., Leinaas, H. P., Ims, R. A. & Søvik, G. Experimental manipulation of the winter surface ice layer: The effects on a high arctic soil microarthropod community. Ecography 23, 299–306 (2000).
    Google Scholar 
    Dollery, R., Hodkinson, I. D. & Jonsdottir, I. S. Impact of warming and timing of snow melt on soil microarthropod assemblages associated with Dryas-dominated plant communities on Svalbard. Ecography 29, 111–119 (2006).
    Google Scholar 
    Ávila-Jimenez, M. L., Coulson, S. J., Solhoy, T. & Sjoblom, A. Overwintering of terrestrial Arctic arthropods: The fauna of Svalbard now and in the future. Polar Res. 29, 127–137 (2010).
    Google Scholar 
    Makkonen, M. et al. Traits explain the responses of a sub-arctic Collembola community to climate manipulation. Soil Biol. Biochem. 43, 377–384 (2011).CAS 

    Google Scholar 
    Lindo, Z. Warming favours small-bodied organisms through enhanced reproduction and compositional shifts in belowground systems. Soil Biol. Biochem. 91, 271–278 (2015).CAS 

    Google Scholar 
    Hågvar, S. A review of Fennoscandian arthropods living on and in snow. Eur. J. Entomol. 107, 281–298 (2010).
    Google Scholar 
    Hao, C., Chen, T.-W., Wu, Y., Chang, L. & Wu, D. Snow microhabitats provide food resources for winter-active Collembola. Soil Biol. Biochem. 143, 107731 (2020).CAS 

    Google Scholar 
    Christenson, L. et al. Winter climate change influences on soil faunal distribution and abundance: Implications for decomposition in the Northern Forest. Northeast. Nat. 24, B209–B234 (2017).
    Google Scholar 
    Convey, P. et al. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates. J. Therm. Biol. 54, 111–117 (2015).PubMed 

    Google Scholar 
    Krab, E. J., Monteux, S., Weedon, J. T. & Dorrepaal, E. Plant expansion drives bacteria and collembola communities under winter climate change in frost-affected tundra. Soil Biol. Biochem. 138, 107569 (2019).CAS 

    Google Scholar 
    Sörensen, J. G. & Holmstrup, M. Cryoprotective dehydration is widespread in Arctic springtails. J. Insect Physiol. 57, 1147–1153 (2011).PubMed 

    Google Scholar 
    Convey, P., Coulson, S. J., Worland, M. R. & Sjöblom, A. The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biol. 41, 1587–1605 (2018).
    Google Scholar 
    Birkemoe, T. & Leinaas, H. P. Reproductive biology of the arctic collembolan Hypogastrura tullbergi. Ecography 22, 31–39 (1999).
    Google Scholar 
    Birkemoe, T. & Leinaas, H. P. Effects of temperature on the development of an arctic Collembola (Hypogastrura tullbergi). Funct. Ecol. 14, 693–700 (2001).
    Google Scholar 
    Kankaanpää, T. et al. Spatiotemporal snowmelt patterns within a high Arctic landscape, with implications for flora and fauna. Arct. Antarct. Alp. Res. 50, e1415624 (2018).
    Google Scholar 
    Cooper, E. J., Dullinger, S. & Semenchuk, P. Late snowmelt delays plant development and results in lower reproductive success in the high arctic. Plant Sci. 180, 157–167 (2011).CAS 
    PubMed 

    Google Scholar 
    Krab, E. J. et al. Winter warming effects on tundra shrub performance are species-specific and dependent on spring conditions. J. Ecol. 106, 599–612 (2018).CAS 

    Google Scholar 
    Wheeler, H. C., Hoye, T. T., Schmidt, N. M., Svenning, J.-C. & Forchhammer, M. C. Phenological mismatch with abiotic conditions-implications for flowering in Arctic plants. Ecology 96, 775–787 (2015).PubMed 

    Google Scholar 
    Wheeler, J. A. et al. The snow and the willows: Earlier spring snowmelt reduces performance in the low-lying alpine shrub Salix herbacea. J. Ecol. 104, 1041–1050 (2016).CAS 

    Google Scholar 
    Pollierer, M. M., Langel, R., Körner, C., Maraun, M. & Scheu, S. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol. Lett. 10, 729–736 (2007).PubMed 

    Google Scholar 
    Coulson, S. J., Hodkinson, I. D. & Webb, N. R. Microscale distribution patterns in high Arctic soil microarthropod communities: The influence of plant species within the vegetation mosaic. Ecography 26, 801–809 (2003).
    Google Scholar 
    Hodkinson, I. D. et al. Global change and Arctic ecosystems: Conclusions and predictions from experiments with terrestrial invertebrates on Spitsbergen. Arct. Alp. Res. 30, 306–313 (1998).
    Google Scholar 
    Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E. & Skaugen, T. E. Temperature and precipitation development at Svalbard 1900–2100. Adv. Meteorol. 2011, 893790 (2011).
    Google Scholar 
    Alatalo, J. M., Jagerbrand, A. K. & Cuchta, P. Collembola at three alpine subarctic sites resistant to twenty years of experimental warming. Sci. Rep. 5, 18161 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coulson, S. J. et al. Effects of experimental temperature elevation on high-arctic soil microarthropod populations. Polar Biol. 16, 147–153 (1996).
    Google Scholar 
    Decker, K. L. M., Wang, D., Waite, C. & Scherbatskoy, T. Snow removal and ambient air temperature effects on forest soil temperatures in Northern Vermont. Soil Sci. Soc. Am. J. 67, 1234–1242 (2003).ADS 
    CAS 

    Google Scholar 
    van Pelt, W. J. J. et al. Multidecadal climate and seasonal snow conditions in Svalbard. J. Geophys. Res. Earth Surf. 121, 2100–2117 (2016).ADS 

    Google Scholar 
    Semenchuk, P. R. et al. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra. Biogeochemistry 124, 81–94 (2015).
    Google Scholar 
    Sjursen, H., Michelsen, A. & Jonasson, S. Effects of long-term soil warming and fertilisation on microarthropod abundances in three sub-arctic ecosystems. Appl. Soil Ecol. 30, 148–161 (2005).
    Google Scholar 
    Meehan, M. L. et al. Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia 83, 150672 (2020).
    Google Scholar 
    Harte, J., Rawa, A. & Price, V. Effects of manipulated soil microclimate on mesofaunal biomass and diversity. Soil Biol. Biochem. 28, 313–322 (1996).CAS 

    Google Scholar 
    Siepel, H. Life history tactics of soil microarthropods. Biol. Fertil. Soils 18, 263–278 (1994).
    Google Scholar 
    Chernova, N. M., Potapov, M. B., Savenkova, Y. Y. & Bokova, A. I. Ecological significance of parthenogenesis in Collembola. Zool. Zhurnal 88, 1455–1470 (2009).
    Google Scholar 
    Birkemoe, T. & Somme, L. Population dynamics of two collembolan species in an Arctic tundra. Pedobiologia 42, 131–145 (1998).
    Google Scholar 
    Bokhorst, S. et al. Contrasting responses of springtails and mites to elevation and vegetation type in the sub-Arctic. Pedobiologia 67, 57–64 (2018).
    Google Scholar 
    Widenfalk, L. A., Malmstrom, A., Berg, M. P. & Bengtsson, J. Small-scale Collembola community composition in a pine forest soil—Overdispersion in functional traits indicates the importance of species interactions. Soil Biol. Biochem. 103, 52–62 (2016).CAS 

    Google Scholar 
    Morgner, E. The importance of winter in annual ecosystem respiration in the High Arctic: Effects of snow depth in two vegetation types. Polar Res. 29, 474–474 (2010).
    Google Scholar 
    Green, K. & Slatyer, R. Arthropod community composition along snowmelt gradients in snowbeds in the Snowy Mountains of south-eastern Australia. Austral Ecol. 45, 144–157 (2020).
    Google Scholar 
    Ayres, E. et al. Experimentally increased snow accumulation alters soil moisture and animal community structure in a polar desert. Polar Biol. 33, 897–907 (2010).
    Google Scholar 
    Semenchuk, P. R., Elberling, B. & Cooper, E. J. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard. Ecol. Evol. 3, 2586–2599 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Morsdorf, M. A. et al. Deepened winter snow significantly influences the availability and forms of nitrogen taken up by plants in High Arctic tundra. Soil Biol. Biochem. 135, 222–234 (2019).CAS 

    Google Scholar 
    Cooper, E. J., Little, C. J., Pilsbacher, A. K. & Morsdorf, M. A. Disappearing green: Shrubs decline and bryophytes increase with nine years of increased snow accumulation in the High Arctic. J. Veg. Sci. 30, 857–867 (2019).
    Google Scholar 
    Mundra, S. et al. Ectomycorrhizal and saprotrophic fungi respond differently to long-term experimentally increased snow depth in the High Arctic. Microbiologyopen 5, 856–869 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schneider, K. & Maraun, M. Feeding preferences among dark pigmented fungal taxa (“Dematiacea”) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari). Pedobiologia 49, 61–67 (2005).
    Google Scholar 
    Krab, E. J., Berg, M. P., Aerts, R., van Logtestijn, R. S. P. & Cornelissen, J. H. C. Vascular plant litter input in subarctic peat bogs changes Collembola diets and decomposition patterns. Soil Biol. Biochem. 63, 106–115 (2013).CAS 

    Google Scholar 
    Jucevica, E. & Melecis, V. Global warming affect Collembola community: A long-term study. Pedobiologia 50, 177–184 (2006).
    Google Scholar 
    Krab, E. J., Oorsprong, H., Berg, M. P. & Cornelissen, J. H. C. Turning northern peatlands upside down: Disentangling microclimate and substrate quality effects on vertical distribution of Collembola. Funct. Ecol. 24, 1362–1369 (2010).
    Google Scholar 
    Zettel, J. Alpine Collembola—Adaptations and strategies for survival in harsh environments. Zool. Anal. Complex Syst. 102, 73–89 (2000).
    Google Scholar 
    Block, W. Terrestrial arthropods and low-temperature. Cryobiology 18, 436–444 (1981).CAS 
    PubMed 

    Google Scholar 
    Semenchuk, P. R., Christiansen, C. T., Grogan, P., Elberling, B. & Cooper, E. J. Long-term experimentally deepened snow decreases growing-season respiration in a low- and high-arctic tundra ecosystem. J. Geophys. Res. Biogeosci. 121, 1236–1248 (2016).
    Google Scholar 
    Semenchuk, P. R. et al. Soil organic carbon depletion and degradation in surface soil after long-term non-growing season warming in High Arctic Svalbard. Sci. Total Environ. 646, 158–167 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gillespie, M. A. K. et al. Status and trends of terrestrial arthropod abundance and diversity in the North Atlantic region of the Arctic. Ambio 49, 718–731 (2020).PubMed 

    Google Scholar 
    Andriuzzi, W. S., Adams, B. J., Barrett, J. E., Virginia, R. A. & Wall, D. H. Observed trends of soil fauna in the Antarctic Dry Valleys: Early signs of shifts predicted under climate change. Ecology 99, 312–321 (2018).CAS 
    PubMed 

    Google Scholar 
    Staub, B. & Delaloye, R. Using near-surface ground temperature data to derive snow insulation and melt indices for mountain permafrost applications. Permafr. Periglac. Process. 28, 237–248 (2017).
    Google Scholar 
    Rendos, M. et al. Organic carbon content and temperature as substantial factors affecting diversity and vertical distribution of Collembola on forested scree slopes. Eur. J. Soil Biol. 75, 180–187 (2016).
    Google Scholar 
    Fjellberg, A. The Collembola of the Norwegian Arctic Islands (Norsk Polarinstitutt, 1994).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (R Foundation for Statistical Computing, 2020). Accessed 06 June 2020. More

  • in

    Exceptional preservation of internal organs in a new fossil species of freshwater shrimp (Caridea: Palaemonoidea) from the Eocene of Messel (Germany)

    De Grave, S., & Fransen, C. H. J. M. Carideorum Catalogus: The Recent Species of the Dendrobranchiate, Stenopodidean, Procarididean and Caridean Shrimps (Crustacea: Decapoda). Zool. Meded. 85, (2011).Garassino, A. The macruran decapod crustaceans of the Lower Cretaceous (Lower Barremian) of Las Hoyas (Cuenca, Spain). Atti Soc. it. Sci. nat. Museo civ. Stor. nat. Milano 137, 101–126 (1997).Bravi, S., Coppa, M. G., Garassino, A., & Patricelli, R. Palaemon vesolensis n. sp. (Crustacea, Decapoda) from the Plattenkalk of Vesole Mount (Salerno, Southern Italy). Atti Soc. it. Sci. nat. Museo civ. Stor. nat. Milano 140, 141–169 (1999).Colleary, C. et al. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils. Proc. Natl. Acad. Sci. U.S.A. 11241, 12592–12597 (2015).Article 
    ADS 

    Google Scholar 
    Vinther, J., Briggs, D. E., Clarke, J., Mayr, G. & Prum, R. O. Structural coloration in a fossil feather. Biol. Lett. 6, 128–131 (2010).Article 
    PubMed 

    Google Scholar 
    McNamara, M. E. et al. Fossilised biophotonic nanostructures reveal the original colors of 47 million-year-old moths. PLoS Biol. 9, e1001200 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rietschel, S. Taphonomic biasing in the Messel Fauna and Flora. Cour. Forsch. Inst. Senckenberg 107, 169–182 (1988).
    Google Scholar 
    Wolf, H. W. Schätze im Schiefer (Westermann, 1991).Rabenstein, R. Messel 2000 – Das Weltnaturerbe Deutschlands (eds Forschungsinstitut Senckenberg) (2000).Gruber, G., & Micklich, N. Messel – Treasures of the Eocene (Hessisches Landesmuseum Darmstadt, 2007).Wedmann, S. Annotated taxon-list of the invertebrate animals from the Eocene fossil site Grube Messel near Darmstadt Germany. Cour. Forsch. Inst. Senckenberg 255, 103–110 (2005).
    Google Scholar 
    Schaal, S. F. K. & Rabenstein, R. D. Tagebau Messel in Linien und Zahlen. Senckenberg Nat. Forsch. Mus. 142, 376–377 (2012).
    Google Scholar 
    Moshayedi, M., Lenz, O. K., Wilde, V. & Hinderer, M. The recolonisation of volcanically disturbed Eocene habitats of Central Europe: the maar lakes of Messel and Offenthal (SW Germany) compared. Paleobiodivers. Paleoenviron. 100, 951–973 (2020).Article 

    Google Scholar 
    Schulz, R., Harms, F.-J. & Felder, M. Die Forschungsbohrung Messel 2001: Ein Beitrag zur Entschlüsselung der Genese einer Ölschieferlagerstätte. Z. angew. Geol. 2002, 9–17 (2002).
    Google Scholar 
    Felder, M. & Harms, F. J. Lithologie und genetische Interpretation der vulkano-sedimentären Ablagerungen aus der Grube Messel anhand der Forschungsbohrung Messel 2001 und weiterer Bohrungen (Eozän, Messel-Formation, Sprendlinger Horst, Südhessen). Cour. Forsch. Inst. Senckenberg 252, 151–203 (2004).
    Google Scholar 
    Büchel, G. N., & Schaal, S. F. K. The formation of the Messel maar in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 62–103 (Schweizerbart, 2018).Der, G. K. Messeler Ölschiefer – ein Algenlaminit. Cour. Forsch. Inst. Senckenberg 131, 1–143 (1990).
    Google Scholar 
    Lenz, O. K., Wilde, V. & Riegel, W. Recolonization of a Middle Eocene volcanic site: quantitative palynology of the initial phase of the maar lake of Messel (Germany). Rev. Palaeobot. Palynol. 145, 217–242 (2007).Article 

    Google Scholar 
    Bauersachs, T., Schouten, S. & Schwark, L. Characterization of the sedimentary organic matter preserved in Messel oil shale by bulk geochemistry and stable isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 410, 390–400 (2014).Article 

    Google Scholar 
    Mertz, D. F. & Renne, P. R. A numerical age for the Messel fossil deposit (UNESCO world natural heritage site) from 40Ar/39Ar dating. Cour. Forsch. Inst. Senckenberg 255, 67–75 (2005).
    Google Scholar 
    Lenz, O. K., Wilde, V., Mertz, D. F. & Riegel, W. New palynology-based astronomical and revised 40Ar/39Ar ages for the Eocene maar lake of Messel (Germany). Int. J. Earth Sci. 104, 873–889 (2015).Article 
    CAS 

    Google Scholar 
    Lenz, O. K. & Wilde, V. Changes in Eocene plant diversity and composition of vegetation: The lacustrine archive of Messel (Germany). Paleobiology 44, 709–735 (2018).Article 

    Google Scholar 
    Lenz, O. K., Wilde, V, Riegel, W., & Harms, F-J. A 600 k.y. record of El Niño–Southern Oscillation (ENSO): evidence for persisting teleconnections during the Middle Eocene greenhouse climate of Central Europe. Geology 38, 627–630 (2010).Lenz, O. K., Wilde, V, & Riegel, W. Paleoclimate – Learning from the past for the future in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 16–23 (Schweizerbart, 2018).Grein, M., Utescher, T., Wilde, V. & Roth-Nebelsick, A. Reconstruction of the middle Eocene climate of Messel using palaeobotanical data. Neues Jb. Geol. Paläontol. Abh. 260, 305–318 (2011).Article 

    Google Scholar 
    Tütken, T. Isotope compositions (C, O, Sr, Nd) of vertebrate fossils from the Middle Eocene oil shale of Messel, Germany: Implications for their taphonomy and palaeoenvironment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 92–109 (2014).Article 

    Google Scholar 
    Wilde, V. The fossil flora of Messel in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 42–61 (Schweizerbart, 2018).Smith, K. T., Schaal, S. F. K. & Habersetzer, J. (eds.) Messel: An Ancient Greenhouse Ecosystem. (Schweizerbart, 2018).Wedmann, S., Hörnschemeyer, T., Engel, M. S., Zetter, R. & Grímsson, F. The last meal of an Eocene pollen-feeding fly. Curr. Biol. 31, 2020–2026 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wedmann, S. Jewels in the oil shale – insects and other invertebrates in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 62–103 (Schweizerbart, 2018).Franzen J. L. Odd-toed ungulates – Early horses and tapiromorphs in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 292–301 (Schweizerbart, 2018).Franzen, J. L., Aurich, C. & Habersetzer, J. Description of a well preserved fetus of the European Eocene Equoid Eurohippus messelensis. PLoS ONE 10, e0137985 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Franzen J. L., & Gingerich, P. D. Primates – Rareties in Messel in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 240–247 (Schweizerbart, 2018).Franzen, J. L. et al. Complete primate skeleton from the middle Eocene of Messel in Germany: Morphology and paleobiology. PLoS ONE 4(5), e5723 (2009).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Houša, V. Bechleja inopinata n. g., n. sp., nový ráček z českých třetihor (Decapoda, Palaemonidae). Ústřed. Ústavu Geol. Sborník 23, 365–377 (1957).Glaessner, M. F. Decapoda. In Part R Arthropoda 4(2) Treatise on Invertebrate Paleontology (ed Moore, R. C.) (The University of Kansas Press and The Geological Society of America, 1969).De Grave, S., Cai, Y. & Anker, A. Global diversity of shrimps (Crustacea: Decapoda: Caridea) in freshwater. Hydrobiologia 595, 287–293 (2008).Article 

    Google Scholar 
    Garassino, A. & Bravi, S. Palaemon antonellae new species (Crustacea, Decapoda, Caridea) from the Lower Cretaceous “Platydolomite” of profeti (Caserta, Italy). J. Paleontol. 77, 589–592 (2003).Article 

    Google Scholar 
    Schweitzer, C., Karasawa, H., Schweigert, G., Feldmann, R. & Garassino, A. Systematic list of fossil decapod crustacean species. Crustac. Monogr. 10, 1–222 (2010).
    Google Scholar 
    Plotnick, R. E. Taphonomy of a modern shrimp: implications for the arthropod fossil record. Palaios 1, 286–293 (1986).Article 
    ADS 

    Google Scholar 
    Klompmaker, A. A., Portell, R. W. & Frick, M. G. Comparative experimental taphonomy of eight marine arthropods indicates distinct differences in preservation potential. Palaeontology 60, 773–794 (2017).Article 

    Google Scholar 
    Vannier, J., Schoenemann, B., Gillot, T., Charbonnier, S. & Clarkson, E. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic. Nat. Commun. 7, 1–9 (2016).Article 

    Google Scholar 
    Jauvion, C., Audo, D., Charbonnier, S. & Vannier, J. Virtual dissection and lifestyle of a 165-million-year-old female polychelidan lobster. Arthropod Struct. Dev. 45, 122–132 (2016).Article 
    PubMed 

    Google Scholar 
    Pazinato, P. G., Jauvion, C., Schweigert, G., Haug, J. T. & Haug, C. After 100 years: a detailed view of an eumalacostracan crustacean from the Upper Jurassic Solnhofen Lagerstätte with raptorial appendages unique to Euarthropoda. Lethaia 54, 55–72 (2021).Article 

    Google Scholar 
    Briggs, D. E. G. & Kear, A. J. Decay and mineralization of shrimps. Palaios 9, 431–456 (1994).Article 
    ADS 

    Google Scholar 
    Wuttke, M. Conservation-dissolution-transformation. On the behaviour of biogenic materials during fossilization In Messel: an insight into the history of life and of the earth (eds. Schaal, S. & Ziegler, W.) 263–275 (Claredon, 1992).Thompson, J. R. Comments on phylogeny of section Caridea (Decapoda Natantia) and the phylogenetic importance of the Oplophoridea. Proc. Symp. Crustacea Part 1, 314–326 (1967).
    Google Scholar 
    Ashelby, C. W., De Grave, S. & Johnson, M. L. Preliminary observations on the mandibles of palaemonoid shrimp (Crustacea: Decapoda: Caridea: Palaemonoidea). PeerJ 3, e846 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Felgenhauer, B. E., & Abele, L. G. Phylogenetic relationships among shrimp-like decapods. In Crustacean Phylogeny (ed Schram, F. R.) 291–311 (A. A. Balkema, 1983).Wowor, D., Cai, Y., & Ng, P. K. L. Crustacea: Decapoda, Caridea. In Freshwater Invertebrates of the Malaysian Region (eds Yule, C. M. & Y. H. Sen, Y. H.) 337–357 (Academy of Sciences Malaysia, 2004).Rodd, F. H., & Reznick, D. N. Life History Evolution in Guppies: III. The Impact of Prawn Predation on Guppy Life Histories. Oikos 62, 13–19 (1991).Felgenhauer, B. E. & Abele, L. G. Feeding structures of two atyid shrimps, with comments on Caridean phylogeny. J. Crustac. Biol. 5, 397–419 (1985).Article 

    Google Scholar 
    de Mazancourt, V., Marquet, G., & Keith, P. The “Pinocchio-shrimp effect”: First evidence of variation in rostrum length with the environment in Caridina H. Milne-Edwards, 1837 (Decapoda: Caridea: Atyidae). J. Crustac. Biol. 37, 249–257 (2017).Zimmermann, G. et al. Geometric morphometrics of carapace of Macrobrachium australe (Crustacea: Palaemonidae) from Reunion Island. Acta Zool. 93, 492–500 (2012).Article 

    Google Scholar 
    Bauer, R. T. Amphidromy in shrimps: a life cycle between rivers and the sea. Lat. Am. J. Aquat. Res. 41, 633–650 (2013).Article 

    Google Scholar 
    Jalihal, D. R., Sankolli, K. N. & Shenoy, S. Evolution of larval developmental patterns and the process of freshwaterization in the prawn genus Macrobrachium Bate, 1868 (Decapoda, Palaemonidae). Crustaceana 65, 365–376 (1993).Article 

    Google Scholar 
    Grande, L. Paleontology of the Green River Formation, with a review of the fish fauna. Bull. Geol. Surv. Wyoming 63, 1–333 (1984).
    Google Scholar 
    Grande, L. The Lost World of Fossil Lake: snapshots from deep time (University of Chicago Press, 2013).Micklich, N. Peculiarities of the Messel fish fauna and their palaeoecological implications: A case study. Palaeobiodivers. Palaeoenviron. 92, 585–629 (2012).Article 

    Google Scholar 
    Micklich, N. Actinopterygians—the fishes of the Messel lake. in Messel: An Ancient Greenhouse Ecosystem (eds. Smith, K. T., Schaal, S. F. K. & Habersetzer, J.) 104–111 (Schweizerbart, 2018).Christodoulou, M., Anastasiadou, C., Jugovic, J., & Tzomos, T. Freshwater Shrimps (Atyidae, Palaemonidae, Typhlocarididae) in the Broader Mediterranean Region: Distribution, Life Strategies, Threats, Conservation Challenges and Taxonomic Issues. In A Global Overview of the Conservation of Freshwater Decapod Crustaceans (eds Kawai, T. & Cumberlidge, N.) 199–236 (Springer, 2016).Anger, K. Neotropical Macrobrachium (Caridea: Palaemonidae): On the biology, origin, and radiation of freshwater-invading shrimp. J. Crustac. Biol. 33, 151–183 (2013).Article 

    Google Scholar  More

  • in

    Characterizing phenotypic diversity in marine populations of the threespine stickleback

    Bell, M. A. & Foster, S. A. The Evolutionary Biology of the Threespine Stickleback (Oxford University Press, 1994).
    Google Scholar 
    Seebacher, F., Webster, M. M., James, R. S., Tallis, J. & Ward, A. J. W. Morphological differences between habitats are associated with physiological and behavioural trade-offs in stickleback (Gasterosteus aculeatus). R. Soc. Open Sci. 3, 160316 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolnick, D. I. et al. Phenotype-dependent native habitat preference facilitates divergence between parapatric lake and stream stickleback. Evolution 63, 2004–2016 (2009).PubMed 

    Google Scholar 
    Svanbäck, R. & Schluter, D. Niche specialization influences adaptive phenotypic plasticity in the threespine stickleback. Am. Nat. 180, 50–59 (2012).PubMed 

    Google Scholar 
    Caldecutt, W. J. & Adams, D. C. Morphometrics of trophic osteology in the threespine stickleback, Gasterosteus aculeatus. Copeia 1998, 827–838 (1998).
    Google Scholar 
    Yershov, P. & Sukhotin, A. Age and growth of marine three-spined stickleback in the White Sea 50 years after a population collapse. Polar Biol. 38, 1813–1823 (2015).
    Google Scholar 
    Dorgham, A. S. et al. Morphological variation of threespine stickleback (Gasterosteus aculeatus) on different stages of spawning period. Proc. KarRC RAS 59–73 (2018). https://doi.org/10.17076/them819.DeFaveri, J. & Merilä, J. Evidence for adaptive phenotypic differentiation in Baltic Sea sticklebacks. J. Evol. Biol. 26, 1700–1715 (2013).CAS 
    PubMed 

    Google Scholar 
    Shaw, K. A., Scotti, M. L. & Foster, S. A. Ancestral plasticity and the evolutionary diversification of courtship behaviour in threespine sticklebacks. Anim. Behav. 73, 415–422 (2007).
    Google Scholar 
    McGee, M. D., Schluter, D. & Wainwright, P. C. Functional basis of ecological divergence in sympatric stickleback. BMC Evol. Biol. 13, 277 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Berner, D., Grandchamp, A.-C. & Hendry, A. P. Variable progress toward ecological speciation in parapatry: Stickleback across eight lake-stream transitions. Evolution 63, 1740–1753 (2009).PubMed 

    Google Scholar 
    Walker, J. A. Ecological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L. (Gasterosteidae) body shape. Biol. J. Linn. Soc. 61, 3–50 (1997).
    Google Scholar 
    Hagen, D. W. & Gilbertson, L. G. Geographic variation and environmental selection in Gasterosteus aculeatus L. in the Pacific Northwest America. Evolution 26, 32–51 (1972).CAS 
    PubMed 

    Google Scholar 
    Smith, C., Zięba, G., Spence, R., Klepaker, T. & Przybylski, M. Three-spined stickleback armour predicted by body size, minimum winter temperature and pH. J. Zool. 311, 13–22 (2020).
    Google Scholar 
    Aguirre, W. E. & Bell, M. A. Twenty years of body shape evolution in a threespine stickleback population adapting to a lake environment: Stickleback body shape evolution. Biol. J. Linn. Soc. 105, 817–831 (2012).
    Google Scholar 
    Lavin, P. A. & McPhail, J. D. The evolution of freshwater diversity in the threespine stickleback (Gasterosteus aculeatus): Site-specific differentiation of trophic morphology. Can. J. Zool. 63, 2632–2638 (1985).
    Google Scholar 
    Matthews, B., Marchinko, K. B., Bolnick, D. I. & Mazumder, A. Specialization of trophic position and habitat use by sticklebacks in an adaptive radiation. Ecology 91, 1025–1034 (2010).PubMed 

    Google Scholar 
    Lefébure, R., Larsson, S. & Byström, P. A temperature-dependent growth model for the three-spined stickleback Gasterosteus aculeatus. J. Fish Biol. 79, 1815–1827 (2011).PubMed 

    Google Scholar 
    Foster, S. A. Inference of evolutionary pattern: Diversionary displays of three-spined sticklebacks. Behav. Ecol. 5, 114–121 (1992).
    Google Scholar 
    Taylor, E. B. & McPhail, J. D. Evolutionary history of an adaptive radiation in species pairs of threespine sticklebacks (Gasterosteus): Insights from mitochondrial DNA. Biol. J. Linn. Soc. 66, 271–291 (1999).
    Google Scholar 
    Hohenlohe, P. A., Bassham, S., Currey, M. & Cresko, W. A. Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes. Phil. Trans. R. Soc. B 367, 395–408 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker, J. A. & Bell, M. A. Net evolutionary trajectories of body shape evolution within a microgeographic radiation of threespine sticklebacks (Gasterosteus aculeatus). J. Zool. 252, 293–302 (2000).
    Google Scholar 
    Kristjánsson, B. K., Skúlason, S. & Noakes, D. L. G. Rapid divergence in a recently isolated population of threespine stickleback (Gasterosteus aculeatus L.). Evol. Ecol. Res. 4, 659–672 (2002).
    Google Scholar 
    Wund, M. A., Baker, J. A., Clancy, B., Golub, J. L. & Foster, S. A. A test of the “flexible stem” model of evolution: Ancestral plasticity, genetic accommodation, and morphological divergence in the threespine stickleback radiation. Am. Nat. 172, 449–462 (2008).PubMed 

    Google Scholar 
    Arif, S., Aguirre, W. E. & Bell, M. A. Evolutionary diversification of opercle shape in Cook Inlet threespine stickleback. Biol. J. Linn. Soc. 97, 832–844 (2009).
    Google Scholar 
    Terekhanova, N. V. et al. Fast evolution from precast bricks: Genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus. PLoS Genet. 10, e1004696 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Miller, S. E., Roesti, M. & Schluter, D. A single interacting species leads to widespread parallel evolution of the stickleback genome. Curr. Biol. 29, 530–537 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ab Ghani, N. I., Herczeg, G. & Merilä, J. Effects of perceived predation risk and social environment on the development of three-spined stickleback (Gasterosteus aculeatus) morphology. Biol. J. Linn. Soc. 118, 520–535 (2016).
    Google Scholar 
    DeFaveri, J. & Merilä, J. Local adaptation to salinity in the three-spined stickleback?. J. Evol. Biol. 27, 290–302 (2014).CAS 
    PubMed 

    Google Scholar 
    Jakubavičiūtė, E., De Blick, Y., Dainys, J., Ložys, L. & Olsson, J. Morphological divergence of three-spined stickleback in the Baltic Sea—Implications for stock identification. Fish. Res. 204, 305–315 (2018).
    Google Scholar 
    Yanos, C. L. et al. Predator biomass and vegetation influence the coastal distribution of threespine stickleback morphotypes. Ecol. Evol. 00, 1–12 (2021).
    Google Scholar 
    Fang, B., Merilä, J., Ribeiro, F., Alexandre, C. M. & Momigliano, P. Worldwide phylogeny of three-spined sticklebacks. Mol. Phylogenet. Evol. 127, 613–625 (2018).PubMed 

    Google Scholar 
    Ortí, G., Bell, M. A., Reimchen, T. E. & Meyer, A. Global survey of mitochondrial DNA sequences in the threespine sticklebacks: Evidence for recent migrations. Evolution 48, 608–622 (1994).PubMed 

    Google Scholar 
    Mäkinen, H. S. & Merilä, J. Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe: Evidence for multiple glacial refugia. Mol. Phylogenet. Evol. 46, 167–182 (2008).PubMed 

    Google Scholar 
    Thomson, R. E. Oceanography of the British Columbia Coast (Department of Fisheries and Oceans, 1981).
    Google Scholar 
    Emmett, R. et al. Geographic signatures of North American west coast estuaries. Estuaries 23, 765 (2000).CAS 

    Google Scholar 
    Dallimore, A. & Jmieff, D. Canadian west coast fjords and inlets. Geol. Soc. Spec. Pub. 344, 143–162 (2010).
    Google Scholar 
    Schoch, G. C., Albert, D. M. & Shanley, C. S. An estuarine habitat classification for a complex fjordal island archipelago. Estuaries Coasts 37, 160–176 (2014).
    Google Scholar 
    Rudnick, D. L. & Ferrari, R. Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science 283, 526–529 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barrett, R. D. H., Rogers, S. M. & Schluter, D. Environment specific pleiotropy facilitates divergence at the Ectodysplasin locus in threespine stickleback. Evolution 63, 2831–2837 (2009).PubMed 

    Google Scholar 
    McCairns, R. J. S. & Bernatchez, L. Plasticity and heritability of morphological variation within and between parapatric stickleback demes. J. Evol. Biol. 25, 1097–1112 (2012).CAS 
    PubMed 

    Google Scholar 
    Webster, M. M., Atton, N., Hart, P. J. B. & Ward, A. J. W. Habitat-specific morphological variation among threespine sticklebacks (Gasterosteus aculeatus) within a drainage basin. PLoS ONE 6, e21060 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spoljaric, M. A. & Reimchen, T. E. 10 000 years later: evolution of body shape in Haida Gwaii three-spined stickleback. J. Fish. Biol. 70, 1484–1503 (2007).
    Google Scholar 
    Spoljaric, M. A. & Reimchen, T. E. Habitat-dependent reduction of sexual dimorphism in geometric body shape of Haida Gwaii threespine stickleback. Biol. J. Linn. Soc. 95, 505–516 (2008).
    Google Scholar 
    Spoljaric, M. A. & Reimchen, T. E. Habitat-specific trends in ontogeny of body shape in stickleback from coastal archipelago: Potential for rapid shifts in colonizing populations. J. Morphol. 272, 590–597 (2011).CAS 
    PubMed 

    Google Scholar 
    Morris, M. R. J. et al. Gene expression plasticity evolves in response to colonization of freshwater lakes in threespine stickleback. Mol. Ecol. 23, 3226–3240 (2014).PubMed 

    Google Scholar 
    Ramler, D., Mitteroecker, P., Shama, L. N. S., Wegner, K. M. & Ahnelt, H. Nonlinear effects of temperature on body form and developmental canalization in the threespine stickleback. J. Evol. Biol. 27, 497–507 (2014).CAS 
    PubMed 

    Google Scholar 
    Mazzarella, A. B., Voje, K. L., Hansson, T. H., Taugbøl, A. & Fischer, B. Strong and parallel salinity-induced phenotypic plasticity in one generation of threespine stickleback. J. Evol. Biol. 28, 667–677 (2015).CAS 
    PubMed 

    Google Scholar 
    Leinonen, T., Cano, J. M., Mäkinen, H. & Merilä, J. Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. J. Evol. Biol. 19, 1803–1812 (2006).CAS 
    PubMed 

    Google Scholar 
    Schluter, D., Marchinko, K. B., Barrett, R. D. H. & Rogers, S. M. Natural selection and the genetics of adaptation in threespine stickleback. Phil. Trans. R. Soc. B 365, 2479–2486 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Rogers, S. M. et al. Genetic signature of adaptive peak shift in threespine stickleback. Evolution 66, 2439–2450 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Jamniczky, H. A., Barry, T. N. & Rogers, S. M. Eco-evo-devo in the study of adaptive divergence: Examples from threespine stickleback (Gasterosteus aculeatus). Integr. Comp. Biol. 55, 166–178 (2015).PubMed 

    Google Scholar 
    Gow, J. L., Rogers, S. M., Jackson, M. & Schluter, D. Ecological predictions lead to the discovery of a benthic–limnetic sympatric species pair of threespine stickleback in Little Quarry Lake, British Columbia. Can. J. Zool. 86, 564–571 (2008).
    Google Scholar 
    McPhail, J. D. Genetic evidence for a species pair in Enos Lake, British Columbia. Can. J. Zool. 62, 1402–1408 (1984).
    Google Scholar 
    McPhail, J. D. Ecology and evolution of sympatric sticklebacks (Gasterosteus): Origin of the species pairs. Can. J. Zool. 71, 515–523 (1993).
    Google Scholar 
    Kimmel, C. B., Aguirre, W., Ullmann, B., Currey, M. & Cresko, W. Allometric change accompanies opercular shape evolution in Alaskan threespine sticklebacks. Behaviour 145, 669–691 (2008).
    Google Scholar 
    Wootton, R. J. A Functional Biology of Sticklebacks (Croom Helm, 1984).
    Google Scholar 
    Kitano, J., Mori, S. & Peichel, C. L. Sexual dimorphism in the external morphology of the threespine stickleback (Gasterosteus aculeatus). Copeia 2, 336–349 (2007).
    Google Scholar 
    Aguirre, W. E., Ellis, K. E., Kusenda, M. & Bell, M. A. Phenotypic variation and sexual dimorphism in anadromous threespine stickleback: Implications for postglacial adaptive radiation. Biol. J. Linn. Soc. 95, 465–478 (2008).
    Google Scholar 
    Davenne, E. & Masson, D. Water properties in the Straits of Georgia and Juan de Fuca. 41 http://www.pac.dfo-mpo.gc.ca/sci/osap/projects/straitofgeorgia/JdFG_e.pdf (2001).Irvine, J. R. & Crawford, W. R. State of the Ocean Report for the Pacific North Coast Integrated Management Area (PNCIMA). 51 (2011).DFO. Data from British Columbia (BC) Lighthouses. Department of Fisheries and Oceans https://www.dfo-mpo.gc.ca/science/data-donnees/lightstations-phares/index-eng.html (2020).Palumbi, S. R. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Evol. Syst. 25, 547–572 (1994).
    Google Scholar 
    Griffin, D. A. & LeBlond, P. H. Estuary/ocean exchange controlled by spring-neap tidal mixing. Estuar. Coast Shelf. Sci. 30, 275–297 (1990).ADS 

    Google Scholar 
    Vaz, N., Dias, J. M., Leitão, P. & Martins, I. Horizontal patterns of water temperature and salinity in an estuarine tidal channel: Ria de Aveiro. Ocean Dyn. 55, 416–429 (2005).ADS 

    Google Scholar 
    Rybkina, E. V., Ivanova, T. S., Ivanov, M. V., Kucheryavyy, A. V. & Lajus, D. L. Habitat preference of three-spined stickleback juveniles in experimental conditions and in wild eelgrass. J. Mar. Biol. Ass. UK 97, 1437–1445 (2017).
    Google Scholar 
    Flynn, S., Cadrin, C. & Filatow, D. Estuaries in British Columbia. 6 (2006).Kelly, J. R., Proctor, H. & Volpe, J. P. Intertidal community structure differs significantly between substrates dominated by native eelgrass (Zostera marina L.) and adjacent to the introduced oyster Crassostrea gigas (Thunberg) in British Columbia, Canada. Hydrobiologia 596, 57–66 (2008).
    Google Scholar 
    Fagherazzi, S. et al. Ecogeomorphology of Salt Marshes. In The Ecogeomorphology of Tidal Marshes (eds Blum, L. K. & Marani, M.) 182–200 (American Geophysical Union, 2004).
    Google Scholar 
    Campbell, A. Vegetation-environment relationships and plant community classification and ordination in British Columbia coastal salt marshes. Master’s Thesis. (University of British Columbia, 1986).Kjerfve, B. Comparative oceanography of coastal lagoons. in Estuarine Variability (ed. Wolfe, D. A.) 63–81 (Academic Press, 1986). https://doi.org/10.1016/B978-0-12-761890-6.50009-5.Barnes, R. S. K. & de Villiers, C. J. Animal abundance and food availability in coastal lagoons and intertidal marine sediments. J. Mar. Biol. Ass. UK 80, 193–202 (2000).
    Google Scholar 
    Saimoto, R. K. Life history of marine stickleback in Oyster Lagoon, British Columbia. Master’s Thesis. (University of British Columbia, 1993).King, R. W. The threespine stickleback adaptive radiation: Salinity, plasticity, and the important of ancestry. Doctoral Dissertation. (Clark University, 2016).Ahnelt, H. Imprecise naming: the anadromous and the sea spawning threespine stickleback should be discriminated by names. Biologia 73, 389–392 (2018).
    Google Scholar 
    Morris, M. R. J., Bowles, E., Allen, B. E., Jamniczky, H. A. & Rogers, S. M. Contemporary ancestor? Adaptive divergence from standing genetic variation in Pacific marine threespine stickleback. BMC Evol. Biol. 18, 113 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Kim, S.-Y., Costa, M. M., Esteve-Codina, A. & Velando, A. Transcriptional mechanisms underlying life-history responses to climate change in the three-spined stickleback. Evol. Appl. 10, 718–730 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sambrook, R. J. Interactions between threespine stickleback (Gasterosteus aculeatus linnæus) and juvenile Chinook salmon (Oncorhynchus tshawytscha Walbaum) in an estuarine marsh. Master’s Thesis. (University of British Columbia, 1990). https://doi.org/10.14288/1.0098704.Jakubavičiūtė, E., Bergström, U., Eklöf, J. S., Haenel, Q. & Bourlat, S. J. DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem. PLoS ONE 12, e0186929 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Kennedy, G. J. A. & Strange, C. D. The distribution of salmonids in upland streams in relation to depth and gradient. J. Fish Biol. 20, 579–591 (1982).
    Google Scholar 
    Macdonald, J. S., Birtwell, I. K. & Kruzynski, G. M. Food and habitat utilization by juvenile salmonids in the Campbell River estuary. Can. J. Fish. Aquat. Sci. 44, 1233–1246 (1987).
    Google Scholar 
    Everest, F. H. & Chapman, D. W. Habitat selection and spatial interaction by juvenile chinook salmon and steelhead trout in two Idaho streams. J. Fish. Res. Bd. Can. 29, 91–100 (2011).
    Google Scholar 
    McPhail, J. D. Speciation and the evolution of reproductive isolation in the sticklebacks (Gasterosteus) of south-western British Columbia. In The Evolutionary Biology of the Threespine Stickleback (eds Bell, M. A. & Foster, S. A.) 399–471 (Oxford University Press, 1994).
    Google Scholar 
    Kimmel, C. B. et al. Independent axes of genetic variation and parallel evolutionary divergence of opercle bone shape in threespine stickleback. Evolution 66, 419–434 (2012).PubMed 

    Google Scholar 
    Østbye, K. et al. The temporal window of ecological adaptation in postglacial lakes: A comparison of head morphology, trophic position and habitat use in Norwegian threespine stickleback populations. BMC Evol. Biol. 16, 102 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Aguirre, W. E. & Akinpelu, O. Sexual dimorphism of head morphology in three-spined stickleback Gasterosteus aculeatus. J. Fish Biol. 77, 802–821 (2010).CAS 
    PubMed 

    Google Scholar 
    Reimchen, T. E. & Nosil, P. Variable predation regimes predict the evolution of sexual dimorphism in a population of threespine stickleback. Evolution 58, 1274 (2004).CAS 
    PubMed 

    Google Scholar 
    Pistore, A. Ontogeny of population-specific phenotypic variation in the threespine stickleback. Master’s Thesis. (University of Calgary, 2018).Yurtseva, A. O. et al. Aging three-spined sticklebacks Gasterosteus aculeatus: Comparison of estimates from three structures. J. Fish Biol. 95, 802–811 (2019).PubMed 

    Google Scholar 
    Picard, P. Jr., Dodson, J. J. & FitzGerald, G. J. Habitat segregation among the age groups of Gasterosteus aculeatus (Pisces: Gasterosteidae) in the middle St. Lawrence estuary, Canada. Can. J. Zool. 68, 1202–1208 (1990).
    Google Scholar 
    Reimchen, T. E., Bergström, C. A. & Nosil, P. Natural selection and the adaptive radiation of Haida Gwaii stickleback. Evol. Ecol. Res. 15, 241–269 (2013).
    Google Scholar 
    Raeymaekers, J. A. M., Delaire, L. & Hendry, A. P. Genetically based differences in nest characteristics between lake, inlet, and hybrid threespine stickleback from the Misty system, British Columbia, Cananda. Evol. Ecol. Res. 11, 905–919 (2009).
    Google Scholar 
    Di Poi, C., Lacasse, J., Rogers, S. M. & Aubin-Horth, N. Evolution of stress reactivity in stickleback. Evol. Ecol. Res. 17, 395–405 (2016).
    Google Scholar 
    Weber, J. N., Bradburd, G. S., Stuart, Y. E., Stutz, W. E. & Bolnick, D. I. Partitioning the effects of isolation by distance, environment, and physical barriers on genomic divergence between parapatric threespine stickleback. Evolution 71, 342–356 (2017).PubMed 

    Google Scholar 
    Rohlf, F. J. Package: tpsUtil, tps file utility program. Version 1. 61. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, NY. (2015).Rohlf, F. J. Package: tpsDig, digitize landmarks and outlines. Version 2. 05. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, NY. (2005).Adams, D. C., Collyer, M. L. & Kaliontzopoupou, A. Geomorph: Software for geometric morphometric analysis (2020).Zelditch, M. L., Swiderski, D. L. & Sheets, H. D. Geometric Morphometrics for Biologists: A Primer (Elsevier Academic Press, 2012).MATH 

    Google Scholar 
    Galipaud, M., Gillingham, M. A. F., David, M. & Dechaume-Moncharmont, F.-X. Ecologists overestimate the importance of predictor variables in model averaging: A plea for cautious interpretations. Methods Ecol. Evol. 5, 983–991 (2014).
    Google Scholar 
    Scheipl, F., Greven, H. & Kuechenhoff, H. Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Comput. Stat. Data Anal. 52, 3283–3299 (2008).MathSciNet 
    MATH 

    Google Scholar 
    Robinson, J. James Robinson’s functions. Version 0. 0. 0. 1. Retrieved from https://rdrr.io/github/jpwrobinson/funk/. (2019).Bartoń, K. R Package: MuMIn: Multi-model inference. Version 1. 43. 17. Retrieved from https://CRAN.R-project.org/package=MuMIn. (2020).Frank, A. Diagnosing collinearity in mixed models from lme4 R package, vif.mer function [R script]. Retrieved from https://raw.githubusercontent.com/aufrank/R-hacks/master/mer-utils.R. GitHub https://raw.githubusercontent.com/aufrank/R-hacks/master/mer-utils.R. (2011).Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. https://doi.org/10.3389/fpsyg.2013.00863 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Optimal settings and advantages of drones as a tool for canopy arthropod collection

    UAVs indeed proved to be a practical, efficient, and accurate tool in sampling insects within four different habitats in Quebec. Furthermore, different drone settings of speed, height, and net diameter may yield different insect orders, which can be useful in studies that aim to target specific insects. Nonetheless, only height, and not speed, net diameter or drone type influenced insect abundance. Compared with Lindgren funnels, drones were not only able to catch more insects in less time, but also a wider array of the insect community diversity.Our study successfully shows the promise of using drones to collect forest and wetland canopy arthropods. More arthropods were collected flying at zero meters (grazing the canopy) than flying at one meter, while different speed, net size and drone type had less of an effect on insect yield (Fig. 2). The one-meter setting was expected to yield different arthropod diversity, such as fewer terrestrial families (ex. Araneae) and more aerial families (ex. Diptera) compared to the grazing zero-meter setting. However, the proportions of the top three orders (Diptera, Hemiptera, and Araneae) were similar among settings (Fig. 3). The capture of arachnids at one meter above the canopy can be explained by webs that are attached to taller foliage in proximity to the area, or spiders ‘ballooning’ in the airspace on silk threads25. Because canopy height was not always uniform, flying while grazing the canopy underneath the drone was at times lower than other parts of the canopy. Another explanation could be jumping spiders (ex. family Salticidae) which have been found to react to a disturbance or threat by leaping, possibly into the drone net26. Though the main three orders were in similar proportion, the one-meter setting caught five fewer orders in total than the zero-meter setting did. Flying at one meter was the only setting that captured no insects of order Coleoptera, Hymenoptera, or Orthoptera, suggesting that these orders spend time in and among the wetland canopy, and are seldom above the grassy canopy (Fig. 3). Most importantly, this setting only caught nine insects total over all flights, revealing itself to be an inefficient method of insect collection. This can be due to the number of insects available to be collected at each height. When flying at one meter, the net has access to only aerial insects in flight above the canopy (ex. flies). Flying while grazing the canopy, however, gives the researcher access to the same aerial insects in flight above the canopy, but also aerial insects in flight within the canopy (ex. bees), aerial insects at rest on the canopy (ex. leafhoppers), and terrestrial insects on the canopy (ex. ants). Thus, flying the drone while grazing the canopy opens the possibility of capturing three more insect groups compared to flying above the canopy. It is also possible that there are indeed many insects to be caught solely in the airspace, but that the ideal height for collecting insects strictly above the canopy is either less than or greater than one meter—which is the only height above the canopy that we tested.This sampling period caught three total insects from order Odonata, with two of the three being caught with the 18-inch diameter net setting (Fig. 3). As these dragonflies are typically fast flyers and of large body size, perhaps the extra diameter of the larger net was helpful in increasing the chances of catching Odonates, though we do not have enough data to make solid conclusions. This would be a valuable line of future research for studies focused on dragonflies, or other large and fast-flying insects.Flying the drone and hanging sweep net at 20 km/hr yielded the highest number and proportion of insects in the order Hemiptera, which are often found at rest within the canopy27. We speculate that the faster speed of the drone striking the grassy canopy more swiftly, thus giving the insects resting on the grasses less of an opportunity to evade the threat of the approaching net. Future studies targeting the collection of true bugs should utilize a faster drone speed in flight to optimize yield.With 84% of insects found within the second layer of our net, we conclude that our novel net design with two layers of tulle is satisfactory in retaining insects and preventing most from escaping when landing the drone. In addition to the insects counted, we never witnessed any insects flying out during landing stages. We believe that our methodology of flying the drone in quickly and covering the opening of the net with cardboard before landing the drone, in addition to the extra layer of netting, was successful at retaining the insects caught. Determining how to fly the drone and net over the two forest canopy habitats was a challenge. When flying, it was impossible for the drone camera to look both forward—to see obstacles coming up, and downwards—to see how close the net was hanging regarding the top of the canopy. For this reason, we used a second drone as a spotter for the first, the pilot of which could give instructions on moving up or down. Forest canopies were particularly difficult, as the height from one tree to the next was always different, the drone had to be constantly adjusted. We experienced many snags on branches, although they were not damaging to the net or drone. Once we became comfortable flying the drone low enough to graze the canopy, snagging became a common occurrence that was easily remedied. In fact, snagging the net probably helped in the collection of insects on those branches—a technique that could be honed and used in future studies using nets and drones over forest canopies.Over our 12 days of sampling habitat canopies with drones, we were able to determine that wetlands had the highest diversity and abundance of the four habitats examined, with lake habitats showing the lowest Shannon-Weiner Diversity index (H’), and the highest Pielou’s evenness index (J). It is unsurprising that lakes showed the most even distribution of families, as is often the case with habitats having low species richness, as there are less competitors that could dominate the habitat28. Habitat, humidity, and temperature were the most important variables affecting drone insect yield, with habitat being the common variable in all high scoring models. Wetlands had by the far the most insects collected, in addition to the highest diversity and species richness. This can be explained simply by the plant composition in wetlands compared to the other habitats. While coniferous and deciduous forests are dominated by a few species (and lakes have little to no vegetation over the water) wetlands can host a wide variety of plant species. Because insect diversity correlates with plant richness and abundance, wetlands can provide shelter and sustenance for many more groups of insects that the other habitats we studied29.Lindgren funnels disproportionately collected insects from order Coleoptera (Fig. 7). Although Lindgren funnels have been used in papers reporting results focused on insects of orders Hemiptera30,31,32,33 and Diptera34,35,36, it is unclear whether some were targeted studies or all simply bycatch of the funnel from other experiments. Instead, Lindgren funnels are overwhelmingly used in Coleoptera studies as the funnels resemble a tree and attracts various wood-boring beetles37,38,39,40,41. This attraction explains the large number and proportion of beetles caught in funnels in this study. However, diversity indices show that in three of four habitats, drones collect a higher diversity sample than the Lindgren funnels (Tables 1 and 2). Thus, though Lindgren funnels are undoubtedly effective at collecting beetles from the environment, our results indicate that the drone collection method is preferable when seeking an accurate representation of the insect diversity of the habitat. Studies focused on Coleoptera could also employ this method, which would be helpful in determining the status and proportion of beetles within the population and compared to other insect orders.In addition to the larger diversity collected by drones, the temporal advantage of this technique over the funnels can not be understated. During our study, it took three Lindgren funnel traps established for seven days to collect a total of 36 insects at the wetland sites (0.001 insect collected per minute). Comparatively, at the same height and placement, drones were able to collect 391 insects in only a combined 36 min (10.9 insects collected per minute) (Fig. 7). This large difference in both yield and time scale demonstrates that the drone collection method is vastly more efficient at arthropod sampling compared to the Lindgren funnels.While this study was successful at validating the usefulness of drones in canopy entomology studies and insect collection in general, it does have its limitations. Optimal drone settings were only examined at wetland grassy canopy sites, and it is possible that the drone might perform differently within different habitats. For example, grazing the canopy at 20 km/hr might result in high insect yield at wetlands, where the lack of obstacles made it relatively easy to fly quickly. But the same settings may be unrealistic and prone to net snagging when sampling over other habitats, such as the coniferous forest canopy. Furthermore, Lindgren funnels were an acceptable comparison to drone collection for yield and diversity at some habitats, however it was impossible to get the funnels up into the canopy where sampling took place at coniferous and deciduous sites. There is no doubt that the advantage of this method lies in its accessibility, speed, and safety—studies that need more precise and fine sampling might not benefit from drones.Overall, our research demonstrates that drones are an efficient and accurate tool in collecting a wide diversity of insects above the canopies of different habitats. Benefits included rapidly and safely sampling the airspace while drawbacks included battery life limiting the duration of sampling. If this new technique is integrated into the field of entomology, canopy studies can be done much more often, for less money, and more safely than they have been done using other techniques. In 2019, a review of the potential causes of decline of aerial insectivores concluded that insect declines and changes in high quality prey availability could be a large driver of insectivore declines9. However, there is a lack of research detailing insect trends over time. The drone collection method used in this study could provide the missing link between the need for more research of aerial canopy insects and the limitations of the current methodology in entomology. This technique can be used in conjunction with aerial insectivore surveys and diet studies to begin to determine the relationship between declining predators and prey. Future research may also use and add to our guidelines to customize drone and net settings for studies targeting specific insect orders or families. More

  • in

    Intrinsic individual variation in daily activity onset and plastic responses on temporal but not spatial scales in female great tits

    Carothers, J. H. & Jaksić, F. M. Time as a Niche difference: The role of interference competition. Oikos 42, 403–406 (1984).
    Google Scholar 
    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).
    Google Scholar 
    Lesmeister, D. B., Nielsen, C. K., Schauber, E. M. & Hellgren, E. C. Spatial and temporal structure of a mesocarnivore guild in midwestern North America. Wildl. Monogr. 191, 1–61 (2015).
    Google Scholar 
    Chmura, H. E. et al. Plasticity and repeatability of activity patterns in free-living Arctic ground squirrels. Anim. Behav. 169, 81–91 (2020).
    Google Scholar 
    Helm, B. et al. Two sides of a coin: Ecological and chronobiological perspectives of timing in the wild. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160246 (2017).
    Google Scholar 
    Alós, J., Martorell-Barceló, M. & Campos-Candela, A. Repeatability of circadian behavioural variation revealed in free-ranging marine fish. R. Soc. Open Sci. 4, 160791 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Schlicht, L. & Kempenaers, B. The effects of season, sex, age and weather on population-level variation in the timing of activity in Eurasian Blue Tits Cyanistes caeruleus. Ibis 162, 1146–1162 (2020).
    Google Scholar 
    Helm, B. & Visser, M. E. Heritable circadian period length in a wild bird population. Proc. R. Soc. B Biol. Sci. 277, 3335–3342 (2010).
    Google Scholar 
    Nikhil, K. L., Abhilash, L. & Sharma, V. K. Molecular correlates of circadian clocks in fruit fly drosophila melanogaster populations exhibiting early and late emergence chronotypes. J. Biol. Rhythms 31, 125–141 (2016).CAS 
    PubMed 

    Google Scholar 
    Allebrandt, K. V. et al. CLOCK gene variants associate with sleep duration in two independent populations. Biol. Psychiatry 67, 1040–1047 (2010).CAS 
    PubMed 

    Google Scholar 
    Maukonen, M. et al. Genetic associations of chronotype in the finnish general population. J. Biol. Rhythms 35, 501–511 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roecklein, K. A. et al. Melanopsin gene variations interact with season to predict sleep onset and chronotype. Chronobiol. Int. 29, 1036–1047 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinmeyer, C., Kempenaers, B. & Mueller, J. C. Testing for associations between candidate genes for circadian rhythms and individual variation in sleep behaviour in blue tits. Genetica 140, 219–228 (2012).CAS 
    PubMed 

    Google Scholar 
    Stuber, E. F., Baumgartner, C., Dingemanse, N. J., Kempenaers, B. & Mueller, J. C. Genetic correlates of individual differences in sleep behavior of free-living great tits (Parus major). G3 GenesGenomesGenetics 6, 599–607 (2016).CAS 

    Google Scholar 
    Cuthill, I. C. & Macdonald, W. A. Experimental manipulation of the dawn and dusk chorus in the blackbird Turdus merula. Behav. Ecol. Sociobiol. 26, 209–216 (1990).
    Google Scholar 
    Grava, T., Grava, A. & Otter, K. A. Supplemental feeding and dawn singing in black-capped chickadees. Condor 111, 560–564 (2009).
    Google Scholar 
    Saggese, K., Korner-Nievergelt, F., Slagsvold, T. & Amrhein, V. Wild bird feeding delays start of dawn singing in the great tit. Anim. Behav. 81, 361–365 (2011).
    Google Scholar 
    Dominoni, D. M. Effects of artificial light at night on daily and seasonal organization of European blackbirds (Turdus merula). https://kops.uni-konstanz.de/handle/123456789/32198 Accessed 23 February 2022 (2013).
    Lehmann, M., Spoelstra, K., Visser, M. E. & Helm, B. Effects of temperature on circadian clock and chronotype: An experimental study on a passerine bird. Chronobiol. Int. 29, 1062–1071 (2012).PubMed 

    Google Scholar 
    Zsebők, S. et al. Short- and long-term repeatability and pseudo-repeatability of bird song: Sensitivity of signals to varying environments. Behav. Ecol. Sociobiol. 71, 154 (2017).
    Google Scholar 
    Raap, T., Pinxten, R. & Eens, M. Artificial light at night disrupts sleep in female great tits (Parus major) during the nestling period and is followed by a sleep rebound. Environ. Pollut. 215, 125–134 (2016).CAS 
    PubMed 

    Google Scholar 
    Grunst, M. L., Grunst, A. S., Pinxten, R. & Eens, M. Variable and consistent traffic noise negatively affect the sleep behavior of a free-living songbird. Sci. Total Environ. 778, 146338 (2021).CAS 
    PubMed 

    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).CAS 
    PubMed 

    Google Scholar 
    Stuber, E. F. et al. Perceived predation risk affects sleep behaviour in free-living great tits Parus major. Anim. Behav. 98, 157–165 (2014).
    Google Scholar 
    Niemelä, P. T. & Dingemanse, N. J. Individual versus pseudo-repeatability in behaviour: Lessons from translocation experiments in a wild insect. J. Anim. Ecol. 86, 1033–1043 (2017).PubMed 

    Google Scholar 
    Garamszegi, L. Z. & Møller, A. P. Partitioning within-species variance in behaviour to within- and between-population components for understanding evolution. Ecol. Lett. 20, 599–608 (2017).PubMed 

    Google Scholar 
    Niemelä, P. T. & Dingemanse, N. J. On the usage of single measurements in behavioural ecology research on individual differences. Anim. Behav. 145, 99–105 (2018).
    Google Scholar 
    Browne, W. J., McCleery, R. H., Sheldon, B. C. & Pettifor, R. A. Using cross-classified multivariate mixed response models with application to life history traits in great tits (Parus major). Stat. Model. 7, 217–238 (2007).MathSciNet 
    MATH 

    Google Scholar 
    Pettifor, R. A., Sheldon, B. C., Browne, W. J., Rasbash, J. & McCleery, R.
    H. Partitioning of Phenotypic Variance in Life-history Traits in the Great Tit, Parus major.
    https://seis.bristol.ac.uk/~frwjb/materials/phenovar.pdf (2003). Accessed 23 February 2022.Casasole, G. et al. Neither artificial light at night, anthropogenic noise nor distance from roads are associated with oxidative status of nestlings in an urban population of songbirds. Comp. Biochem. Physiol. A 210, 14–21 (2017).CAS 

    Google Scholar 
    Payevsky, V. A. Mortality rate and population density regulation in the great tit, Parus major L.: A review. Russ. J. Ecol. 37, 180 (2006).
    Google Scholar 
    Vermeulen, A., Eens, M., Van Dongen, S. & Müller, W. Does baseline innate immunity change with age? A multi-year study in great tits. Exp. Gerontol. 92, 67–73 (2017).CAS 
    PubMed 

    Google Scholar 
    Haftorn, S. Incubation during the egg-laying period in relation to clutch-size and other aspects of reproduction in the great tit Parus major. Ornis Scand. Scand. J. Ornithol. 12, 169–185 (1981).
    Google Scholar 
    Grunst, M. L., Grunst, A. S., Pinxten, R., Eens, G. & Eens, M. An experimental approach to investigating effects of artificial light at night on free-ranging animals: Implementation, results and directions for future research. J. Vis. Exp. 180, e63381 (2022).

    Google Scholar 
    Halfwerk, W. et al. Low-frequency songs lose their potency in noisy urban conditions. Proc. Natl. Acad. Sci. 108, 14549–14554 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Specht, R. Avisoft-saslab pro: Sound analysis and synthesis laboratory. Avis. Bioacoustics
    http://avisoft.com/SASLab_deutsch.pdf Accessed 23 February 2022 (2002).Iserbyt, A., Griffioen, M., Borremans, B., Eens, M. & Müller, W. How to quantify animal activity from radio-frequency identification (RFID) recordings. Ecol. Evol. 8, 10166–10174 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Raap, T., Pinxten, R. & Eens, M. Light pollution disrupts sleep in free-living animals. Sci. Rep. 5, 13557 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Meijdam, M., Müller, W., Thys, B. & Eens, M. No relationship between chronotype and timing of breeding when variation in daily activity patterns across the breeding season is taken into account. Ecol. Evol. 12, e9353 (2022).PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. R Found. Stat. Comput. https://www.R-project.org/ Accessed 23 February 2022 (2013).Rousset, F. & Ferdy, J.-B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37, 781–790 (2014).
    Google Scholar 
    Araya-Ajoy, Y. G., Mathot, K. J. & Dingemanse, N. J. An approach to estimate short-term, long-term and reaction norm repeatability. Methods Ecol. Evol. 6, 1462–1473 (2015).
    Google Scholar 
    Mitchell, D. J., Dujon, A. M., Beckmann, C. & Biro, P. A. Temporal autocorrelation: A neglected factor in the study of behavioral repeatability and plasticity. Behav. Ecol. 31, 222–231 (2020).
    Google Scholar 
    Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Graham, J. L., Cook, N. J., Needham, K. B., Hau, M. & Greives, T. J. Early to rise, early to breed: A role for daily rhythms in seasonal reproduction. Behav. Ecol. 28, 1266–1271 (2017).
    Google Scholar 
    Maury, C., Serota, M. W. & Williams, T. D. Plasticity in diurnal activity and temporal phenotype during parental care in European starlings Sturnus vulgaris. Anim. Behav. 159, 37–45 (2020).
    Google Scholar 
    Schlicht, L., Valcu, M., Loës, P., Girg, A. & Kempenaers, B. No relationship between female emergence time from the roosting place and extrapair paternity. Behav. Ecol. 25, 650–659 (2014).
    Google Scholar 
    Steinmeyer, C., Schielzeth, H., Mueller, J. C. & Kempenaers, B. Variation in sleep behaviour in free-living blue tits, Cyanistes caeruleus: Effects of sex, age and environment. Anim. Behav. 80, 853–864 (2010).
    Google Scholar 
    Stuber, E. F., Dingemanse, N. J., Kempenaers, B. & Mueller, J. C. Sources of intraspecific variation in sleep behaviour of wild great tits. Anim. Behav. 106, 201–221 (2015).
    Google Scholar 
    Raap, T., Pinxten, R. & Eens, M. Cavities shield birds from effects of artificial light at night on sleep. J. Exp. Zool. Part Ecol. Integr. Physiol. 329, 449–456 (2018).
    Google Scholar 
    Edelaar, P., Siepielski, A. M. & Clobert, J. Matching habitat choice causes directed gene flow: A neglected dimension in evolution and ecology. Evolution 62, 2462–2472 (2008).PubMed 

    Google Scholar 
    Gorissen, L. & Eens, M. Interactive communication between male and female great tits (Parus major) during the dawn chorus. Auk 121, 184–191 (2004).
    Google Scholar 
    Halfwerk, W., Bot, S. & Slabbekoorn, H. Male great tit song perch selection in response to noise-dependent female feedback. Funct. Ecol. 26, 1339–1347 (2012).
    Google Scholar 
    Steinmeyer, C., Mueller, J. C. & Kempenaers, B. Individual variation in sleep behaviour in blue tits Cyanistes caeruleus: Assortative mating and associations with fitness-related traits. J. Avian Biol. 44, 159–168 (2013).
    Google Scholar 
    Cain, J. R. & Wilson, W. O. The influence of specific environmental parameters on the circadian rhythms of chickens. Poult. Sci. 53, 1438–1447 (1974).CAS 
    PubMed 

    Google Scholar 
    Zhang, Z. C. et al. Circadian clock genes are rhythmically expressed in specific segments of the hen oviduct. Poult. Sci. 95, 1653–1659 (2016).CAS 
    PubMed 

    Google Scholar 
    Womack, R. J. Clocks in the wild: biological rhythms of great tits and the environment. https://theses.gla.ac.uk/81345/ Accessed 23 February 2022 (2020).Dominoni, D., Smit, J. A. H., Visser, M. E. & Halfwerk, W. Multisensory pollution: Artificial light at night and anthropogenic noise have interactive effects on activity patterns of great tits (Parus major). Environ. Pollut. 256, 113314 (2020).CAS 
    PubMed 

    Google Scholar 
    Matthysen, E., Adriaensen, F. & Dhondt, A. A. Multiple responses to increasing spring temperatures in the breeding cycle of blue and great tits (Cyanistes caeruleus, Parus major). Glob. Change Biol. 17, 1–16 (2011).
    Google Scholar  More

  • in

    Extreme escalation of heat failure rates in ectotherms with global warming

    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford Univ. Press, 2009).Cossins, A. R. & Bowler, K. Temperature Biology of Animals (Chapman and Hall, 1987).Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).CAS 
    PubMed 

    Google Scholar 
    Kellermann, V. et al. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl Acad. Sci. USA 109, 16228–16233 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Hofmann, G. E. & Todgham, A. E. Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu. Rev. Physiol. 72, 127–145 (2010).CAS 
    PubMed 

    Google Scholar 
    Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).PubMed 

    Google Scholar 
    Sunday, J. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).
    Google Scholar 
    Parratt, S. R. et al. Temperatures that sterilize males better match global species distributions than lethal temperatures. Nat. Clim. Change 11, 481–484 (2021).
    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
    Google Scholar 
    Schmidt-Nielsen, K. Animal physiology: Adaptation and Environment 5th edn (Cambridge Univ. Press, 1997).Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2014).
    Google Scholar 
    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).CAS 
    PubMed 

    Google Scholar 
    Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).CAS 
    PubMed 

    Google Scholar 
    Jørgensen, L. B., Malte, H. & Overgaard, J. How to assess Drosophila heat tolerance: unifying static and dynamic tolerance assays to predict heat distribution limits. Funct. Ecol. 33, 629–642 (2019).
    Google Scholar 
    Hollingsworth, M. J. Temperature and length of life in Drosophila. Exp. Gerontol. 4, 49–55 (1969).CAS 
    PubMed 

    Google Scholar 
    Fry, F. E. J., Hart, J. S. & Walker, K. F. Lethal Temperature Relations for a Sample of Young Speckled Trout, Salvelinus fontinalis 9–35 (Univ. Toronto, 1946).MacLean, H. J. et al. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Philos. Trans. R. Soc. B 374, 20180548 (2019).
    Google Scholar 
    Pörtner, H.-O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).PubMed 

    Google Scholar 
    Ørsted, M., Jørgensen, L. B. & Overgaard, J. Finding the right thermal limit: a framework to reconcile ecological, physiological, and methodological aspects of CTmax in ectotherms. J. Exp. Biol. 225, jeb244514 (2022).Brown, J. H., Gillooly, J. F., Alle, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Google Scholar 
    Munch, S. B. & Salinas, S. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proc. Natl Acad. Sci. USA 106, 13860–13864 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jørgensen, L. B., Malte, H., Ørsted, M., Klahn, N. A. & Overgaard, J. A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Sci. Rep. 11, 12840 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Rezende, E. L., Castañeda, L. E. & Santos, M. Tolerance landscapes in thermal ecology. Funct. Ecol. 28, 799–809 (2014).
    Google Scholar 
    Bowler, K. Heat death in poikilotherms: is there a common cause? J. Therm. Biol. 76, 77–79 (2018).PubMed 

    Google Scholar 
    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).CAS 
    PubMed 

    Google Scholar 
    Buckley, L. B., Huey, R. B. & Kingsolver, J. G. Asymmetry of thermal sensitivity and the thermal risk of climate change. Glob. Ecol. Biogeogr. 31, 2231–2244 (2022).Overgaard, J., Kearney, M. R. & Hoffmann, A. A. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Glob. Change Biol. 20, 1738–1750 (2014).
    Google Scholar 
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).CAS 
    PubMed 

    Google Scholar 
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).
    Google Scholar 
    Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc. Natl Acad. Sci. USA 106, 3835–3840 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woods, H. A., Dillon, M. E. & Pincebourde, S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol 54, 86–97 (2015).PubMed 

    Google Scholar 
    Stevenson, R. D. The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am. Nat. 126, 362–386 (1985).
    Google Scholar 
    Chen, I., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 
    PubMed 

    Google Scholar 
    Buckley, L. B. & Kingsolver, J. G. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Annu. Rev. Ecol. Evol. Syst. 43, 205–226 (2012).
    Google Scholar 
    Roeder, K. A., Bujan, J., de Beurs, K. M., Weiser, M. D. & Kaspari, M. Thermal traits predict the winners and losers under climate change: an example from North American ant communities. Ecosphere 12, e03645 (2021).
    Google Scholar 
    Penick, C. A., Diamond, S. E., Sanders, N. J. & Dunn, R. R. Beyond thermal limits: comprehensive metrics of performance identify key axes of thermal adaptation in ants. Funct. Ecol. 31, 1091–1100 (2017).
    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Integr. Comp. Biol. 19, 357–366 (1979).
    Google Scholar 
    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19, 1372–1385 (2016).PubMed 

    Google Scholar 
    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals the scale of prediction. Science 320, 1296–1297 (2008).CAS 
    PubMed 

    Google Scholar 
    Kingsolver, J. G., Diamond, S. E. & Buckley, L. B. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct. Ecol. 27, 1415–1423 (2013).
    Google Scholar 
    Kingsolver, J. G. & Woods, H. A. Beyond thermal performance curves: modeling time-dependent effects of thermal stress on ectotherm growth rates. Am. Nat. 187, 283–294 (2016).PubMed 

    Google Scholar 
    Kingsolver, J. G., Higgins, J. K. & Augustine, K. E. Fluctuating temperatures and ectotherm growth: distinguishing non-linear and time-dependent effects. J. Exp. Biol. 218, 2218–2225 (2015).PubMed 

    Google Scholar 
    Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).PubMed 

    Google Scholar 
    Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl Acad. Sci. USA 116, 5588–5596 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).CAS 
    PubMed 

    Google Scholar 
    Hausfather, Z. & Peters, G. P. Emissions—the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).CAS 
    PubMed 

    Google Scholar 
    Tollefson, J. How hot will Earth get by 2100? Nature 580, 443–445 (2020).CAS 
    PubMed 

    Google Scholar 
    Assis, J. et al. Bio‐ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).
    Google Scholar 
    Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).
    Google Scholar 
    Jørgensen, L. B., Ørsted, M., Malte, H., Wang, T. & Overgaard, J. Data from: Extreme escalation of heat failure rates in ectotherms with global warming. Zenodo https://doi.org/10.5281/zenodo.6979789 (2022).Grove, T. J., McFadden, L. A., Chase, P. B. & Moerland, T. S. Effects of temperature, ionic strength and pH on the function of skeletal muscle myosin from a eurythermal fish, Fundulus heteroclitus. J. Muscle Res. Cell Motil. 26, 191–197 (2005).CAS 
    PubMed 

    Google Scholar 
    Doudoroff, P. The resistance and acclimatization of marine fishes to temperature changes. II. Experiments with Fundulus and Atherinops. Biol. Bull. 88, 194–206 (1945).
    Google Scholar 
    Sirikharin, R., Söderhäll, I. & Söderhäll, K. Characterization of a cold-active transglutaminase from a crayfish, Pacifastacus leniusculus. Fish Shellfish Immunol. 80, 546–549 (2018).CAS 
    PubMed 

    Google Scholar 
    Becker, C. D. & Genoway, R. G. Resistance of crayfish to acute thermal shock: preliminary studies. in Proc. Thermal Ecology NTIS Conf. 730505 (eds Gibbons, J. W. & Sharitz, R. R.) 146–150 (NTIS, 1974).Widdows, J. Effect of temperature and food on the heart beat, ventilation rate and oxygen uptake of Mytilus edulis. Mar. Biol. 20, 269–276 (1973).
    Google Scholar 
    Wallis, R. L. Thermal tolerance of Mytilus edulis of eastern Australia. Mar. Biol. 30, 183–191 (1975).
    Google Scholar 
    Gray, J. The mechanism of ciliary movement. III. The effect of temperature. Proc. R. Soc. B 95, 6–15 (1923).CAS 

    Google Scholar 
    Shertzer, R. H., Hart, R. G. & Pavlick, F. M. Thermal acclimation in selected tissues of the leopard frog Rana pipiens. Comp. Biochem. Physiol. A 51, 327–334 (1975).CAS 
    PubMed 

    Google Scholar 
    Orr, P. R. Heat death. II. Differential response of entire animal (Rana pipiens) and several organ systems. Physiol. Zool. 28, 294–302 (1955).
    Google Scholar 
    Lighton, J. R. B. & Duncan, F. D. Energy cost of locomotion: validation of laboratory data by in situ respirometry. Ecology 83, 3517–3522 (2002).
    Google Scholar 
    Heatwole, H. & Harrington, S. Heat tolerances of some ants and beetles from the pre-Saharan steppe of Tunisia. J. Arid Environ. 16, 69–77 (1989).
    Google Scholar  More

  • in

    Thermal acclimation and metabolic scaling of a groundwater asellid in the climate change scenario

    Li, J. & Thompson, D. W. Widespread changes in surface temperature persistence under climate change. Nature 599(7885), 425–430. https://doi.org/10.1038/s41586-021-03943-z (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Raftery, A. E., Zimmer, A., Frierson, D. M., Startz, R. & Liu, P. Less than 2 °C warming by 2100 unlikely. Nat. Clim. Change 7, 637–641 (2017).ADS 
    CAS 

    Google Scholar 
    Olabi, A. G. et al. Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renew. Sustain. Energy Rev. 153, 111710. https://doi.org/10.1016/j.rser.2021.111710 (2022).CAS 

    Google Scholar 
    Badino, G. Cave temperatures and global climatic change. Int. J. Speleol. 33(1), 103–114 (2004).
    Google Scholar 
    Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11(12), 926–932 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Figura, S., Livingstone, D. M., Hoehn, E. & Kipfer, R. Regime shift in groundwater temperature triggered by the Arctic Oscillation. Geophys. Res. Lett. 38(23), 401–405 (2011).
    Google Scholar 
    Mueller, M. H., Huggenberger, P. & Epting, J. Combining monitoring and modelling tools as a basis for city-scale concepts for a sustainable thermal management of urban groundwater resources. Sci. Total Environ. 627, 1121–1136 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Taylor, C. A. & Stefan, H. G. Shallow groundwater temperature response to climate change and urbanization. J. Hydrol. 375, 601–612 (2009).ADS 
    CAS 

    Google Scholar 
    Dehghani, R., Poudeh, H. T. & Izadi, Z. The effect of climate change on groundwater level and its prediction using modern meta-heuristic model. Ground. Sustain. Dev. 16, 100702. https://doi.org/10.1016/j.gsd.2021.100702 (2022).
    Google Scholar 
    Lenton, T. M. et al. Climate tipping points—Too risky to bet against. Nature 57, 592–595 (2019).ADS 

    Google Scholar 
    Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50(1), 85–94 (2021).PubMed 

    Google Scholar 
    Stein, H. et al. Stygoregions—A promising approach to a bioregional classification of groundwater systems. Sci. Rep. 2, 673. https://doi.org/10.1038/srep00673 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baković, N., Matoničkin Kepčija, R. & Siemensma, F. J. Transitional and small aquatic cave habitats diversification based on protist assemblages in the Veternica cave (Medvednica Mt., Croatia). Subterr. Biol. 42, 43–60 (2022).
    Google Scholar 
    Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11(10), 707–717 (2018).ADS 
    CAS 

    Google Scholar 
    Chen, Z. et al. The World Karst Aquifer Mapping project: Concept, mapping procedure and map of Europe. Hydrogeol. J. 25, 771–785 (2017).ADS 

    Google Scholar 
    Eme, D. et al. Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 41(2), 424–436 (2018).
    Google Scholar 
    Manenti, R. et al. The stenoendemic cave-dwelling planarians (Platyhelminthes, Tricladida) of the Italian Alps and Apennines: conservation issues. J. Nat. Conserv. 45, 90–97 (2018).
    Google Scholar 
    Zagmajster, M., Malard, F., Eme, D. & Culver, D. C. Subterranean biodiversity patterns from global to regional scales. In Cave Ecology, Ecological Studies—Analysis and Synthesis (eds Moldovan, O. et al.) 19–227 (Springer, 2018).
    Google Scholar 
    Hose, G. C. et al. Invertebrate traits, diversity and the vulnerability of groundwater ecosystems. Funct. Ecol. 36, 2200. https://doi.org/10.1111/1365-2435.14125 (2022).CAS 

    Google Scholar 
    Angilletta, M. J. Jr. & Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).
    Google Scholar 
    Pallarées, S. et al. Loss of heat acclimation capacity could leave subterranean specialists highly sensitive to climate change. Anim. Conserv. 24(3), 482–490 (2020).
    Google Scholar 
    Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281, 20132612. https://doi.org/10.1098/rspb.2013.2612 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Castaño-Sánchez, A., Hose, G. C. & Reboleira, A. S. P. Ecotoxicological effects of anthropogenic stressors in subterranean organisms: A review. Chemosphere 244, 125422. https://doi.org/10.1016/j.chemosphere.2019.125422 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Castaño-Sánchez, A., Hose, G. C. & Reboleira, A. S. P. Salinity and temperature increase impact groundwater crustaceans. Sci. Rep. 10(1), 1–9 (2020).
    Google Scholar 
    Issartel, J., Hervant, F., Voituron, Y., Renault, D. & Vernon, P. Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comp. Biochem. Physiol. Mol. Amp Integr. Physiol. 141, 1–7 (2005).
    Google Scholar 
    Issartel, J., Voituron, Y. & Hervant, F. Impact of temperature on the survival, the activity and the metabolism of the cave-dwelling Niphargus virei, the ubiquitous stygobiotic N. rhenorhodanensis and the surface-dwelling Gammarus fossarum (Crustacea, Amphipoda). Subterr. Biol. 5, 9–14 (2007).
    Google Scholar 
    Mermillod-Blondin, F. et al. Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment. J. Exp. Biol. 216, 1683–1694 (2013).CAS 
    PubMed 

    Google Scholar 
    Di Lorenzo, T. et al. Metabolic rates of a hypogean and an epigean species of copepod in an alluvial aquifer. Freshw. Biol. 60, 426–435 (2015).
    Google Scholar 
    Di Lorenzo, T. & Galassi, D. M. P. Effect of temperature rising on the stygobitic crustacean species Diacyclops belgicus: Does global warming affect groundwater populations? Water 9, 951. https://doi.org/10.3390/w9120951 (2017).ADS 
    CAS 

    Google Scholar 
    Mammola, S. et al. Climate change going deep: The effects of global climatic alterations on cave ecosystems. Anthr. Rev. 6(1–2), 98–116 (2019).
    Google Scholar 
    Jones, K. et al. The critical thermal maximum of diving beetles (Coleoptera: Dytiscidae): A comparison of subterranean and surface-dwelling species. Curr. Opin. Insect. Sci. 1, 100019 (2021).
    Google Scholar 
    Pörtner, H. O. Physiological basis of temperature-dependent biogeography: Trade-offs in muscle design and performance in polar ectotherms. J. Exp. Biol. 205, 2217–2230 (2022).
    Google Scholar 
    Clarke, A. & Fraser, K. P. P. Why does metabolism scale with temperature? Funct. Ecol. 18, 243–251 (2004).
    Google Scholar 
    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. 108, 10591–10596 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Willmer, P., Stone, G. & Johnston, I. Environmental Physiology of Animals (Wiley, 2009).
    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hervant, F., Mathieu, J., Barré, H., Simon, K. & Pinon, C. Comparative study on the behavioural, ventilatory, and respiratory responses of hypogean and epigean crustaceans to long-term starvation and subsequent feeding. Comp. Biochem. Physiol. B 118A, 1277–1283 (1997).CAS 

    Google Scholar 
    Wilhelm, F. M., Taylor, S. J. & Adams, G. L. Comparison of routine metabolic rates of the stygobite, Gammarus acherondytes (Amphipoda: Gammaridae) and the stygophile, Gammarus troglophilus. Freshwat. Biol. 51, 1162–1174 (2006).
    Google Scholar 
    Reboleira, A. S. P. S., Borges, P., Gonçalves, F., Serrano, A. R. M. & Oromí, P. The subterranean fauna of a biodiversity hotspot region—Portugal: An overview and its conservation. Int. J. Speleol. 40(1), 23–37 (2011).
    Google Scholar 
    Reboleira, A. S. P. S., Abrantes, N., Oromí, P. & Gonçalves, F. J. M. Acute toxicity of copper sulfate and potassium dichromate on stygobiont Proasellus: General aspects of groundwater ecotoxicology and future perspectives. Water Air Soil Pollut. 224, 1550. https://doi.org/10.1007/s11270-013-1550-0 (2013).ADS 
    CAS 

    Google Scholar 
    Morvan, C. et al. Timetree of Aselloidea reveals species diversification dynamics in groundwater. Syst. Biol. 62(4), 512–522 (2013).CAS 
    PubMed 

    Google Scholar 
    Castaño-Sánchez, A., Malard, F., Kalčikova, G. & Reboleira, A. S. P. S. Novel protocol for acute in situ ecotoxicity test using native crustaceans applied to groundwater ecosystems. Water 13(8), 1132. https://doi.org/10.3390/w13081132 (2021).CAS 

    Google Scholar 
    Di Lorenzo, T. et al. Recommendations for ecotoxicity testing with stygobiotic species in the framework of groundwater environmental risk assessment. Sci. Total Environ. 681(1), 292–304 (2019).ADS 
    MathSciNet 
    PubMed 

    Google Scholar 
    Rezende, E. L., Tejedo, M. & Santos, M. Estimating the adaptative potential of critical thermal limits: Methodological problems and evolutionary implications. Funct. Ecol. 25, 111–121 (2011).
    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford University Press, 1991).
    Google Scholar 
    Dodds, P. S., Rothman, D. H. & Weitz, J. S. Re-examination of the “3/4” law of metabolism. J. Theor. Biol. 209, 9–27 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology (Chapman & Hall/CRC Press, 2006).MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2018).Simčič, T. & Sket, B. Comparison of some epigean and troglobiotic animals regarding their metabolism intensity. Examination of a classical assertion. Int. J. Speleol. 48, 133–144 (2019).
    Google Scholar 
    Hazell, S. P., Pedersen, B. P., Worland, M. R., Blackburn, T. M. & Bale, J. S. A method for the rapid measurement of thermal tolerance traits in studies of small insects. Physiol. Entomol. 33(4), 389–394 (2008).
    Google Scholar 
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224. https://doi.org/10.1038/s41558-018-0067-3 (2018).ADS 

    Google Scholar 
    Ficetola, G. F., Lunghi, E. & Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 43(5), 724–734 (2020).
    Google Scholar 
    Sánchez-Fernández, D., Rizzo, V. & Bourdeau, C. The deep subterranean environment as a model system in ecological, biogeographical and evolutionary research. Subterr. Biol. 25, 1–7 (2018).
    Google Scholar 
    Pallarés, S. et al. Loss of heat acclimation capacity could leave subterranean specialists highly sensitive to climate change. Anim. Conserv. 24(3), 482–490 (2021).MathSciNet 

    Google Scholar 
    Griebler, C. & Avramov, M. Groundwater ecosystem services: A review. Freshw. Sci. 34(1), 355–367 (2015).
    Google Scholar 
    Saccò, M. et al. Stygofaunal diversity and ecological sustainability of coastal groundwater ecosystems in a changing climate: The Australian paradigm. Freshw. Biol. https://doi.org/10.1111/fwb.13987 (2022).
    Google Scholar 
    Ikeda, T., Kanno, Y., Ozaki, K. & Shinada, A. Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Mar. Biol. 139, 587–596 (2001).
    Google Scholar 
    Mezek, T., Simčič, T., Arts, M. T. & Brancelj, A. Effect of fasting on hypogean (Niphargus stygius) and epigean (Gammarus fossarum) amphipods: A laboratory study. Aquat. Ecol. 44(2), 397–408 (2010).CAS 

    Google Scholar 
    Hüppop, K. The role of metabolism in the evolution of cave animals. NSS Bulletin 47, 136–146 (1985).
    Google Scholar 
    Humphreys, W. F. Hydrogeology and groundwater ecology: Does each inform the other? Hydrogeol. J. 17(1), 5–21 (2009).ADS 
    CAS 

    Google Scholar 
    Glazier, D. S. The 3/4-power law is not universal: Evolution of isometric, ontogenetic metabolic scaling in pelagic animals. Bioscience 56(4), 325–332 (2006).
    Google Scholar 
    Sánchez-Fernández, D., Galassi, D. M. P., Wynne, J. J., Cardoso, P. & Mammola, S. Don’t forget subterranean ecosystems in climate change agendas. Nat. Clim. Change 11, 458–459 (2021).ADS 

    Google Scholar 
    Reboleira, A. S. P. S. et al. Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil. Environ. Microbiome 17, 41 (2022).PubMed 
    PubMed Central 

    Google Scholar  More