More stories

  • in

    Trout fishers adapting to climate warming

    Cline and colleagues analysed spatiotemporal datasets covering 5000 km of popular trout rivers from 1983 to 2017, finding that fishing pressure was four times higher in cold-water sections of rivers than adjacent cool-water sections of rivers, with fisher spending in cold-water sections generating US$500,000 km−1 year−1 and cool-water sections generating US$60,000 km−1 year−1. Overall, 17% and 35% of the current cold-water habitats are projected to be warmer than 18 °C (the threshold for trout thermal extremes) by 2040 and 2080, respectively, with some river sections possibly experiencing habitat losses in excess of 80% by 2080. The combined effects of cold-water habitat loss and increased frequency and severity of drought on fishing pressure could result in 64% declines in fishing river sections by 2040 and 76% declines by 2080. The cumulative impacts of these environmental changes in fishing spending across these rivers could put a total of US$103 million year−1 and US$192 million year−1 at risk by 2040 and 2080, respectively. More

  • in

    Iran and India: work together to save cheetahs

    The Asiatic cheetah (Acinonyx jubatus venaticus) once roamed throughout the Middle East and central India. Today there remain only an estimated 20 free-ranging individuals in central Iran and 5 in captivity. International economic sanctions against Iran have had devastating effects on its cheetah conservation and management (see go.nature.com/3suohzb; in Farsi). To help overcome these effects, we suggest that Iran work with the Indian government, which is conducting a rewilding programme for cheetahs.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Distribution of soil macrofauna across different habitats in the Eastern European Alps

    Wurst, S., Sonnemann, I. & Zaller, J. G. Soil Macro-Invertebrates: Their Impact on Plants and Associated Aboveground Communities in Temperate Regions. in Aboveground-Belowground Community Ecology. Ecological Studies 234 (eds. Ohgushi, T., Wurst, S. & Johnson, S. N.) 175–200 (Springer International Publishing, 2018).Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. PNAS 111, 5266–5270 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 97, 1057–1117 (2022).Article 

    Google Scholar 
    Potapov, A., Tiunov, A. V. & Scheu, S. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. 94, 37–59 (2019).Article 

    Google Scholar 
    Voroney, R. P. & Heck, R. J. The Soil Habitat. Soil Microbiology, Ecology and Biochemistry (Elsevier Inc., 2015).Wardle, D. A. The influence of biotic interactions on soil biodiversity. Ecol. Lett. 9, 870–886 (2006).Article 

    Google Scholar 
    De Deyn, G. B. & Kooistra, L. The role of soils in habitat creation, maintenance and restoration. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 376 (2021).Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Geitner, C. et al. Soil and Land Use in the Alps—Challenges and Examples of Soil-Survey and Soil-Data Use to Support Sustainable Development. In Soil Mapping and Process Modelling for Sustainable Land Use Management 221–292 (Elsevier, 2017).FAO. Understanding Mountain Soils: A contribution from mountain areas to the International Year of Soils 2015. (2015).Praeg, N. et al. The role of land management and elevation in shaping soil microbial communities: Insights from the Central European Alps. Soil Biol. Biochem. 150, 107951 (2020).CAS 
    Article 

    Google Scholar 
    Somme, L. Adaptations of terrestrial arthropods to the alpine environment. Biol. Rev. 64, 367–407 (1989).Article 

    Google Scholar 
    Meyer, E. & Thaler, K. Animal Diversity at High Altitudes in the Austrian Central Alps. In Arctic and Alpine Biodiversity (eds. Chapin, F. S. & Körner, C.) (Springer Berlin Heidelberg, 1995).Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 1–13 (2020).Article 

    Google Scholar 
    Kempson, D., Lloyd, M. & Ghelardi, R. A new extractor for woodland litter. Pedobiologia 3, 1–30 (1963).
    Google Scholar 
    Tasser, E., Ruffini, F. V. & Tappeiner, U. An integrative approach for analysing landscape dynamics in diverse cultivated and natural mountain areas. Landsc. Ecol. 24, 611–628 (2009).Article 

    Google Scholar 
    European Environment Agency, (EAA). European Union, Copernicus Land Monitoring Service. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (2018).IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106 (2015).Christian, E. & Zicsi, A. A synoptic key to the earthworms of Austria (Oligochaeta: Lumbricidae). Die Bodenkultur 50, 121–131 (1999).Czusdi, C. & Zicsi, A. Earthworms of Hungary (Annelida, Oligochaeta, Lumbricidae). (Hungarian Natural History Museum, 2003).Schaefer, M. Brohmer – Fauna von Deutschland: Ein Bestimmungsbuch unserer heimischen Tierwelt. (Quelle & Meyer Verlag, 2009).Klausnitzer, B. Exkursionsfauna von Deutschland. (Springer Berlin Heidelberg, 2011).Ellis, D. Taxonomic sufficiency in pollution assessment. Mar. Pollut. Bull. 16, 459 (1985).Article 

    Google Scholar 
    Caruso, T. & Migliorini, M. Micro-arthropod communities under human disturbance: is taxonomic aggregation a valuable tool for detecting multivariate change? Evidence from Mediterranean soil oribatid coenoses. Acta Oecol. 30, 46–53 (2006).ADS 
    Article 

    Google Scholar 
    Steinwandter, M., Schlick-Steiner, B. C., Seeber, G. U. H., Steiner, F. M. & Seeber, J. Effects of Alpine land-use changes: Soil macrofauna community revisited. Ecol. Evol. 7, 5389–5399 (2017).Article 

    Google Scholar 
    de Oliveira, S. S. et al. Higher taxa are sufficient to represent biodiversity patterns. Ecol. Indic. 111, 105994 (2020).Article 

    Google Scholar 
    Lavelle, P. et al. Soil macroinvertebrate communities: A world‐wide assessment. Glob. Ecol. Biogeogr. 31, 1261–1276 (2022).Article 

    Google Scholar 
    Pik, A. J., Oliver, I. & Beattie, A. J. Taxonomic sufficiency in ecological studies of terrestrial invertebrates. Austral. Ecol. 24, 555–562 (1999).Article 

    Google Scholar 
    Parisi, V., Menta, C., Gardi, C., Jacomini, C. & Mozzanica, E. Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agric. Ecosyst. Environ. 105, 323–333 (2005).Article 

    Google Scholar 
    Ruiz, N. et al. IBQS: A synthetic index of soil quality based on soil macro-invertebrate communities. Soil Biol. Biochem. 43, 2032–2045 (2011).
    Google Scholar 
    Seeber, J. et al. A 30-years collection of soil macro-invertebrate abundance data from the European Alps. PANGAEA https://doi.org/10.1594/PANGAEA.944405 (2022).de Jong, Y. et al. Fauna Europaea – All European animal species on the web. Biodivers. Data J. 2 (2014).Shannon, C. E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 27, 379–423 (1948).MathSciNet 
    Article 

    Google Scholar 
    Steinberger, K.-H. & Meyer, E. The Spider Fauna of the Nature Reserve Rheindelta (Vorarlberg, Western Austria) (Arachnida: Araneae). Ber. nat.-med. Verein Innsbruck 82, 195–215 (1995).
    Google Scholar 
    Kopeszki, H. & Meyer, E. Species Composition and Abundance of Collembola in Forest Soils in the Provinces of Bozen and Trient (Italy). Ber. nat.-med. Verein Innsbruck 83, 221–237 (1996).
    Google Scholar 
    Geitner, C., Mätzler, A., Bou-Vinals, A., Meyer, E. & Tusch, M. Soil characteristics and colonization by earthworms (Lumbricidae) on pastures and hay meadows in the Brixenbach Valley (Kitzbühel Alps, Tyrol). Die Bodenkultur 65, 39–51 (2014).
    Google Scholar 
    Meyer, E. & Steinberger, K.-H. Über die Bodenfauna in Wäldern Vorarlbergs (Österreich) Bestand und Auswirkungen von Gesteinsmehlapplikationen. Verhandlungen der Gesellschaft für Ökologie 23, 149–164 (1994).
    Google Scholar 
    Peham, T. & Meyer, E. Kommentierte Artenlisten ausgewählter Bodentiergruppen aus der Erhebung des SoilDiv-Projektes in Südtirol. Gredleriana 14, 227–262 (2014).
    Google Scholar 
    Steinwandter, M., Rief, A., Scheu, S., Traugott, M. & Seeber, J. Structural and functional characteristics of high alpine soil macro-invertebrate communities. Eur. J. Soil Biol. 86, 72–80 (2018).Article 

    Google Scholar 
    Steinwandter, M. et al. Does green manuring positively affect the soil macro-invertebrates in vineyards? A case study from Kaltern/Caldaro (South Tyrol, Italy). Gredleriana 18, 17–26 (2018).
    Google Scholar 
    Steinwandter, M. et al. Raw data from: Does green manuring positively affect the soil macro-invertebrates in vineyards? A case study from Kaltern/ Caldaro (South Tyrol, Italy). PANGAEA https://doi.org/10.1594/PANGAEA.900632 (2019).Damisch, K., Steinwandter, M., Tappeiner, U. & Seeber, J. Soil Macroinvertebrate Distribution along a Subalpine Land Use Transect. Mt. Res. Dev. 40, R1–R10 (2020).Article 

    Google Scholar 
    Damisch, K., Steinwandter, M., Tappeiner, U. & Seeber, J. Abundance data from soil macro-invertebrates along a subalpine land-use transect. PANGAEA https://doi.org/10.1594/PANGAEA.918958 (2020).Schneider, E., Steinwandter, M. & Seeber, J. A comparison of Alpine soil macro-invertebrate communities from European larch and Swiss pine forests in the LTSER area “Val Mazia/Matschertal”, South Tyrol. Gredleriana 19, 217–228 (2019).
    Google Scholar 
    Schneider, E., Steinwandter, M. & Seeber, J. Raw data from: A comparison of Alpine soil macro-invertebrate communities from European larch and Swiss pine forests in the LTSER area “Val Mazia/Matschertal”, South Tyrol. PANGAEA https://doi.org/10.1594/PANGAEA.910666 (2020).Seeber, J. et al. Soil invertebrate abundance, diversity, and community composition across steep high elevation snowmelt gradients in the European Alps. Arct. Antarct. Alp. Res. 53, 288–299 (2021).Article 

    Google Scholar 
    Seeber, J. et al. Abundance data from soil macro- and mesofauna of alpine snowbeds in the European Alps (summer 2017). PANGAEA https://doi.org/10.1594/PANGAEA.935737 (2021).Guariento, E. et al. Management intensification of hay meadows and fruit orchards alters soil macro-invertebrate communities differently. Agronomy 10, 767 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Chemolithoautotroph distributions across the subsurface of a convergent margin

    Kelemen PB, Manning CE. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc Natl Acad Sci USA. 2015;112:E3997–4006.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vitale Brovarone A, Sverjensky DA, Piccoli F, Ressico F, Giovannelli D, Daniel I. Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere. Nat Commun. 2020;11:1–1.Article 

    Google Scholar 
    Harris RN, Wang K. Thermal models of the middle America trench at the Nicoya Peninsula, Costa Rica. Geophys Res Lett. 2002;29:6–1.Article 

    Google Scholar 
    Plümper O, King HE, Geisler T, Liu Y, Pabst S, Savov IP, et al. Subduction zone forearc serpentinites as incubators for deep microbial life. Proc Natl Acad Sci USA. 2017;114:4324–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee H, Fischer TP, de Moor JM, Sharp ZD, Takahata N, Sano Y. Nitrogen recycling at the Costa Rican subduction zone: the role of incoming plate structure. Sci Rep. 2017;7:1–10.
    Google Scholar 
    Stern RJ. Subduction zones. Rev Geophys. 2002;40:3–38.Article 

    Google Scholar 
    Fullerton KM, Schrenk MO, Yücel M, Manini E, Basili M, Rogers TJ, et al. Effect of tectonic processes on biosphere–geosphere feedbacks across a convergent margin. Nat Geosci. 2021;14:301–6.CAS 
    Article 

    Google Scholar 
    Barry PH, de Moor JM, Giovannelli D, Schrenk M, Hummer DR, Lopez T, et al. Forearc carbon sink reduces long-term volatile recycling into the mantle. Nature. 2019;568:487–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moore EK, Jelen BI, Giovannelli D, Raanan H, Falkowski PG. Metal availability and the expanding network of microbial metabolisms in the Archaean eon. Nat Geosci. 2017;10:629–36.CAS 
    Article 

    Google Scholar 
    Barnes JD, Cullen J, Barker S, Agostini S, Penniston-Dorland S, Lassiter JC, et al. The role of the upper plate in controlling fluid-mobile element (Cl, Li, B) cycling through subduction zones: Hikurangi forearc, New Zealand. Geosphere. 2019;15:642–58.Article 

    Google Scholar 
    Clift P, Vannucchi P. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev Geophys. 2004;42:1–31.Article 

    Google Scholar 
    Rüpke LH, Morgan JP, Hort M, Connolly JA. Serpentine and the subduction zone water cycle. Earth Planet Sci Lett. 2004;223:17–34.Article 

    Google Scholar 
    Carr MJ, Feigenson MD, Bennett EA. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contrib Miner Pet. 1990;105:369–80.CAS 
    Article 

    Google Scholar 
    Gazel E, Carr MJ, Hoernle K, Feigenson MD, Szymanski D, Hauff F, et al. Galapagos‐OIB signature in southern Central America: mantle refertilization by arc–hot spot interaction. Geochem Geophys Geosyst. 2009;10:1–32.Article 

    Google Scholar 
    Trembath-Reichert E, Butterfield DA, Huber JA. Active subseafloor microbial communities from Mariana back-arc venting fluids share metabolic strategies across different thermal niches and taxa. ISME J. 2019;13:2264–79. https://doi.org/10.1038/s41396-019-0431-y.Power JF, Carere CR, Lee CK, Wakerley GL, Evans DW, Button M, et al. Microbial biogeography of 925 geothermal springs in New Zealand. Nat Commun. 2018;9:1–2.CAS 
    Article 

    Google Scholar 
    Acocella V, Spinks K, Cole J, Nicol A. Oblique back arc rifting of Taupo Volcanic zone. NZ Tecton. 2003;22:1–18.
    Google Scholar 
    Curtis AC, Wheat CG, Fryer P, Moyer CL. Mariana forearc serpentinite mud volcanoes harbor novel communities of extremophilic archaea. Geomicrobiol J. 2013;30:430–41.Article 

    Google Scholar 
    Inskeep WP, Jay ZJ, Herrgard MJ, Kozubal MA, Rusch DB, Tringe SG, et al. Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate linkages between metabolic potential and geochemistry. Front Microbiol. 2013;4:1–21.Article 

    Google Scholar 
    Colman DR, Lindsay MR, Amenabar MJ, Boyd ES. The intersection of geology, geochemistry, and microbiology in continental hydrothermal systems. Astrobiology. 2019;19:1505–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Inskeep WP, Jay ZJ, Tringe SG, Herrgård MJ, Rusch DB, YNP Metagenome Project Steering Committee and Working Group Members. The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front Microbiol. 2013;4:1–15.Article 

    Google Scholar 
    Hou W, Wang S, Dong H, Jiang H, Briggs BR, Peacock JP, et al. A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PloS One. 2013;8:1–15.
    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TB, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Probst AJ, Castelle CJ, Singh A, Brown CT, Anantharaman K, Sharon I, et al. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations. Environ Microbiol. 2017;19:459–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Probst AJ, Ladd B, Jarett JK, Geller-McGrath DE, Sieber CM, Emerson JB, et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat Microbiol. 2018;3:328–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    He C, Keren R, Whittaker M, Farag IF, Doudna J, Cate JH, et al. Genome-resoled metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems. Nat. Microbiol. 2021;6:354–65.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grettenberger CL, Hamilton TL. Metagenome-assembled genomes of novel taxa from an acid mine drainage environment. Appl Environ Microbiol. 2021;87:e0077221. https://doi.org/10.1101/2020.07.02.185728.Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP–a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:1–3.Article 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front Microbiol. 2020;11:37. https://doi.org/10.3389/fmicb.2020.00037.Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Graham ED, Heidelberg JF, Tully BJ. Potential for primary productivity in a globally distributed bacterial phototroph. ISME J. 2018;12:1861–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–27.CAS 

    Google Scholar 
    Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, et al. Autotrophic carbon fixation in archaea. Nat Rev Microbiol. 2010;8:447–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol. 2011;77:1925–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Youssef NH, Farag IF, Hahn CR, Jarett J, Becraft E, Eloe-Fadrosh E, et al. Genomic characterization of candidate division LCP-89 reveals an atypical cell wall structure, microcompartment production, and dual respiratory and fermentative capacities. Appl Environ Microbiol. 2019;85:1–19.Article 

    Google Scholar 
    Nigro LM, King GM. Disparate distributions of chemolithotrophs containing form IA or IC large subunit genes for ribulose-1, 5-bisphosphate carboxylase/oxygenase in intertidal marine and littoral lake sediments. FEMS Microbiol Ecol. 2007;60:113–25.CAS 
    PubMed 
    Article 

    Google Scholar 
    Aminuddin M, Nicholas DJ. Electron transfer during sulphide and sulphite oxidation in Thiobacillus denitrificans. Microbiology. 1974;82:115–23.
    Google Scholar 
    Giovannelli D, Sievert SM, Hügler M, Markert S, Becher D, Schweder T, et al. Insight into the evolution of microbial metabolism from the deep-branching bacterium, Thermovibrio ammonificans. eLife. 2017;6:1–31.Article 

    Google Scholar 
    Nakagawa S, Shataih Z, Banta A, Beveridge TJ, Sako Y, Reysenbach AL. Sulfurihydrogenibium yellowstonense sp. nov., an extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended descriptions of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum. Int J Syst Evol Microbiol. 2005;55:2263–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Leclerque A, Kleespies RGA. Rickettsiella bacterium from the hard tick, Ixodes woodi: molecular taxonomy combining multilocus sequence typing (MLST) with significance testing. PLoS One. 2012;7:e38062. https://doi.org/10.1371/journal.pone.0038062.Quatrini R, Johnson DB. Acidithiobacillus ferrooxidans. Trends Microbiol. 2019;27:282–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, et al. The genome of the ammonia‐oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012;14:3122–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen CY, Chen PC, Weng FC, Shaw GT, Wang D. Habitat and indigenous gut microbes contribute to the plasticity of gut microbiome in oriental river prawn during rapid environmental change. PLoS One. 2017;12:e0181427. https://doi.org/10.1371/journal.pone.0181427.Garcia R, Müller R. The family Myxococcaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Berlin: Springer; 2014. p. 191–212.Garcia R, Müller R. Simulacricoccus ruber gen. nov., sp. nov., a microaerotolerant, non-fruiting, myxospore-forming soil myxobacterium and emended description of the family Myxococcaceae. Int J Syst Evol Microbiol. 2018;68:3101–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Iino T. The family Ignavibacteriaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: other major lineages of bacteria and the archaea. New York, NY: Springer Science + Business Media; 2014. p. 701–3.Petrie L, North NN, Dollhopf SL, Balkwill DL, Kostka JE. Enumeration and characterization of iron (III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium (VI). Appl Environ Microbiol. 2003;69:7467–79.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fincker M, Huber JA, Orphan VJ, Rappé MS, Teske A, Spormann AM. Metabolic strategies of marine subseafloor Chloroflexi inferred from genome reconstructions. Environ Microbiol. 2020;22:3188–204.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen YJ, Leung PM, Wood JL, Bay SK, Hugenholtz P, Kessler AJ, et al. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME J. 2021;15:2986–3004.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Flieder M, Buongiorno J, Herbold CW, Hausmann B, Rattei T, Lloyd KG, et al. Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling. ISME J. 2021;15:3159–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim M, Wilpiszeski RL, Wells M, Wymore AM, Gionfriddo CM, Brooks SC, et al. Metagenome-assembled genome sequences of novel prokaryotic species from the mercury-contaminated East Fork Poplar Creek, Oak Ridge, Tennessee, USA. Microbiol Resour Announc. 2021;10:e00153–21. https://doi.org/10.1128/MRA.00153-21.Santos‐Júnior CD, Logares R, Henrique‐Silva F. Microbial population genomes from the Amazon River reveal possible modulation of the organic matter degradation process in tropical freshwaters. Mol Ecol. 2022;31:206–19.PubMed 
    Article 

    Google Scholar 
    Yamada T, Sekiguchi Y. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi ‘subphylum I’ with natural and biotechnological relevance. Microbes Environ. 2009;24:205–16.PubMed 
    Article 

    Google Scholar 
    Sheik CS, Reese BK, Twing KI, Sylvan JB, Grim SL, Schrenk MO, et al. Identification and removal of contaminant sequences from ribosomal gene databases: lessons from the census of deep life. Front Microbiol. 2018;9:840. https://doi.org/10.3389/fmicb.2018.00840.Doughari HJ, Ndakidemi PA, Human IS, Benade S. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ. 2011;26:101–12.PubMed 
    Article 

    Google Scholar 
    Han XY, Han FS, Segal J. Chromobacterium haemolyticum sp. nov., a strongly haemolytic species. Int J Syst Evol Microbiol. 2008;58:1398–403.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lau MC, Kieft TL, Kuloyo O, Linage-Alvarez B, Van Heerden E, Lindsay MR, et al. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc Natl Acad Sci USA. 2016;113:E7927–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Momper L, Jungbluth SP, Lee MD, Amend JP. Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community. ISME J. 2017;11:2319–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Worzewski T, Jegen M, Kopp H, Brasse H, Taylor Castillo W. Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nat Geosci. 2011;4:108–11.CAS 
    Article 

    Google Scholar 
    Hensen C, Wallmann K, Schmidt M, Ranero CR, Suess E. Fluid expulsion related to mud extrusion off Costa Rica—a window to the subducting slab. Geology. 2004;32:201–4.CAS 
    Article 

    Google Scholar 
    Simpson DR. Aluminum phosphate variants of feldspar. Am Miner. 1977;62:351–5.CAS 

    Google Scholar 
    London DA, Cerny P, Loomis J, Pan JJ. Phosphorus in alkali feldspars of rare-element granitic pegmatites. Can Miner. 1990;28:771–86.CAS 

    Google Scholar 
    Petrillo C, Castaldi S, Lanzilli M, Selci M, Cordone A, Giovannelli D, et al. Genomic and physiological characterization of Bacilli isolated from salt-pans with plant growth promoting features. Front Microbiol. 2021;12:715678. https://doi.org/10.3389/fmicb.2021.715678.Ghiorse WC, Wilson JT. Microbial ecology of the terrestrial subsurface. Adv Appl Microbiol. 1988;33:107–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    Barker WW, Welch SA, Chu S, Banfield JF. Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Miner. 1998;83:1551–63.CAS 
    Article 

    Google Scholar 
    Bennett PC, Rogers JR, Choi WJ, Hiebert FK. Silicates, silicate weathering, and microbial ecology. Geomicrobiol J. 2001;18:3–19.CAS 
    Article 

    Google Scholar 
    Hügler M, Sievert SM. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Ann Rev Mar Sci. 2011;3:261–89.PubMed 
    Article 

    Google Scholar 
    Markert S, Arndt C, Felbeck H, Becher D, Sievert SM, Hügler M, et al. Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science. 2007;315:247–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bar-Even A, Noor E, Milo R. A survey of carbon fixation pathways through a quantitative lens. J Exp Bot. 2012;63:2325–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stevens TO, McKinley JP. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science. 1995;270:450–5.CAS 
    Article 

    Google Scholar 
    Barker WW, Welch SA, Banfield JF. Biogeochemical weathering of silicate minerals. Rev Miner Geochem. 1997;35:391–428.CAS 

    Google Scholar 
    Frank YA, Kadnikov VV, Lukina AP, Banks D, Beletsky AV, Mardanov AV, et al. Characterization and genome analysis of the first facultatively alkaliphilic Thermodesulfovibrio isolated from the deep terrestrial subsurface. Front Microbiol. 2016;7:2000. https://doi.org/10.3389/fmicb.2016.02000.Woycheese KM, Meyer-Dombard DA, Cardace D, Argayosa AM, Arcilla CA. Out of the dark: transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep (Manleluag, Pangasinan, the Philippines). Front Microbiol. 2015;6:1–12.Article 

    Google Scholar 
    Brazelton WJ, Morrill PL, Szponar N, Schrenk MO. Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs. Appl Environ Microbiol. 2013;79:3906–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moser DP, Gihring TM, Brockman FJ, Fredrickson JK, Balkwill DL, Dollhopf ME, et al. Desulfotomaculum and Methanobacterium spp. dominate a 4-to 5-kilometer-deep fault. Appl Environ Microbiol. 2005;71:8773–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schwarzenbach EM, Gill BC, Gazel E, Madrigal P. Sulfur and carbon geochemistry of the Santa Elena peridotites: comparing oceanic and continental processes during peridotite alteration. Lithos. 2016;252:92–108.Article 

    Google Scholar 
    Sánchez‐Murillo R, Gazel E, Schwarzenbach EM, Crespo‐Medina M, Schrenk MO, Boll J, et al. Geochemical evidence for active tropical serpentinization in the Santa Elena Ophiolite, Costa Rica: an analog of a humid early Earth? Geochem Geophys Geosyst. 2014;15:1783–800.Article 

    Google Scholar 
    Crespo-Medina M, Twing KI, Sánchez-Murillo R, Brazelton WJ, McCollom TM, Schrenk MO. Methane dynamics in a tropical serpentinizing environment: the Santa Elena Ophiolite, Costa Rica. Front Microbiol. 2017;8:916. https://doi.org/10.3389/fmicb.2017.00916.DeShon HR, Schwartz SY. Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula, Costa Rica. Geophys Res Lett. 2004;31. https://doi.org/10.1029/2004GL021179.Delmelle P, Stix J. Volcanic gases. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J, editors. Encyclopedia of volcanoes. New York, NY: Elsevier; 2000. p 803–15.Kharaka YK, Mariner RH. Geothermal systems. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J, editors. Encyclopedia of volcanoes. New York, NY: Elsevier; 2000. p. 817–34.Badger MR, Bek EJ. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J Exp Bot. 2008;59:1525–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    West-Roberts JA, Carnevali PB, Scholmerich MC, Al-Shayeb B, Thomas A, Sharrar AM, et al. The Chloroflexi supergroup is metabolically diverse and representatives have novel genes for non-photosynthesis based CO2 fixation. bioRxiv [Preprint]. 2021. Available from: https://doi.org/10.1101/2020.05.14.094862.Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems. 2018;3:1–12.Article 

    Google Scholar 
    Colman DR, Lindsay MR, Boyd ES. Mixing of meteoric and geothermal fluids supports hyperdiverse chemosynthetic hydrothermal communities. Nat Commun. 2019;10:1–3.Article 

    Google Scholar  More

  • in

    Naturalized alien floras still carry the legacy of European colonialism

    Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).
    Google Scholar 
    Winter, M. et al. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proc. Natl Acad. Sci. USA 106, 21721–21725 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pyšek, P. et al. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89, 203–274 (2017).
    Google Scholar 
    Daru, B. H. et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12, 6983 (2021).Yang, Q. et al. The global loss of floristic uniqueness. Nat. Commun. 12, 7290 (2021).van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).PubMed 

    Google Scholar 
    Dawson, W. et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 1, 0186 (2017).Essl, F. et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB Plants 11, plz051 (2019).Pyšek, P. & Richardson, D. M. The biogeography of naturalization in alien plants. J. Biogeogr. 33, 2040–2050 (2006).
    Google Scholar 
    Moser, D. et al. Remoteness promotes biological invasions on islands worldwide. Proc. Natl Acad. Sci. USA 115, 9270–9275 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guo, Q. et al. Latitudinal patterns of alien plant invasions. J. Biogeogr. 48, 253–262 (2021).
    Google Scholar 
    Pyšek, P. et al. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl Acad. Sci. USA 107, 12157–12162 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011).CAS 
    PubMed 

    Google Scholar 
    Helmus, M. R., Mahler, D. L. & Losos, J. B. Island biogeography of the Anthropocene. Nature 513, 543–546 (2014).CAS 
    PubMed 

    Google Scholar 
    di Castri, F. in Biological Invasions: A Global Perspective (ed. Drake, J. et al.), Ch. 1 (Wiley, 1989).Crosby, A. W. Ecological Imperialism: The Biological Expansion of Europe, 900–1900 2nd edn (Cambridge Univ. Press, 2004).Diamond, J. M. Guns, Germs, and Steel: The Fates of Human Societies (Norton, 2005).Nunn, N. & Qian, N. The Columbian exchange: a history of disease, food, and ideas. J. Econ. Perspect. 24, 163–188 (2010).
    Google Scholar 
    Beinart, W. & Middleton, K. Plant transfers in historical perspective: a review article. Environ. Hist. Camb. 10, 3–29 (2004).
    Google Scholar 
    Mrozowski, S. A. in Historical Archaeology (eds Hall, M. & Silliman, S. W.) Ch. 2 (Blackwell, 2006).Brockway, L. H. Science and colonial expansion: the role of the British Royal Botanic Gardens. Am. Ethnol. 6, 449–465 (1979).
    Google Scholar 
    Hulme, P. E. Addressing the threat to biodiversity from botanic gardens. Trends Ecol. Evol. 26, 168–174 (2011).PubMed 

    Google Scholar 
    Baas, P. The golden age of Dutch colonial botany and its impact on garden and herbarium collections. In Proc. Int. Symp. held by The Royal Danish Academy of Sciences and Letters in Copenhagen (eds Friis, I. & Balselv, H.), 53–62 (2017).Anderson, W. Climates of opinion: acclimatization in nineteenth-century France and England. Vic. Stud. 35, 135–157 (1992).CAS 
    PubMed 

    Google Scholar 
    Osborne, M. A. Acclimatizing the world: a history of the paradigmatic colonial science. Osiris 15, 135–151 (2000).CAS 
    PubMed 

    Google Scholar 
    Musgrave, T., Gardner, C. & Musgrave, W. The Plant Hunters Two Hundred Years of Adventure and Discovery (Seven Dials, 1999).Stoner, A. & Hummer, K. 19th and 20th century plant hunters. HortScience 42, 197–199 (2007).
    Google Scholar 
    Williams, K. A. An overview of the U.S. National Plant Germplasm System’s Exploration Program. HortScience 40, 297–301 (2005).
    Google Scholar 
    McCracken, D. P. Gardens of Empire: Botanical Institutions of the Victorian British Empire Garden History Vol. 26 (Leicester Univ. Press, 1997).Mitchener, K. J. & Weidenmier, M. Trade and empire. Econ. J. 118, 1805–1834 (2008).
    Google Scholar 
    World Trade Report 2007: Six Decades of Multilateral Trade Cooperation: What Have We Learnt? (World Trade Organization, 2007).Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA 115, E2264–E2273 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Essl, F. et al. Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Divers. Distrib. 21, 534–547 (2015).
    Google Scholar 
    van Kleunen, M. et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology 100, e02542 (2019).PubMed 

    Google Scholar 
    Soininen, J., McDonald, R. & Hillebrand, H. The distance decay of similarity in ecological communities. Ecography 30, 3–12 (2007).
    Google Scholar 
    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).PubMed 

    Google Scholar 
    Colautti, R. I., Grigorovich, I. A. & MacIsaac, H. J. Propagule pressure: a null model for biological invasions. Biol. Invasions 8, 1023–1037 (2006).
    Google Scholar 
    Cassey, P., Delean, S., Lockwood, J. L., Sadowski, J. S. & Blackburn, T. M. Dissecting the null model for biological invasions: a meta-analysis of the propagule pressure effect. PLoS Biol. 16, e2005987 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Blackburn, T. M., Cassey, P. & Duncan, R. P. Colonization pressure: a second null model for invasion biology. Biol. Invasions 22, 1221–1233 (2020).
    Google Scholar 
    Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).
    Google Scholar 
    Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl Acad. Sci. USA 117, 23643–23651 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Panton, K. J. Historical Dictionary of the British Empire (Rowman & Littlefield, 2015).Brendon, P. The Decline and Fall of the British Empire, 1781–1997 (Cape, 2007).Hulme, P. E. Unwelcome exchange: international trade as a direct and indirect driver of biological invasions worldwide. One Earth 4, 666–679 (2021).
    Google Scholar 
    Levinson, M. The Box: How the Shipping Container Made the World Smaller and the World Economy Bigger (Princeton Univ. Press, 2010).Liebhold, A. M., Brockerhoff, E. G. & Kimberley, M. Depletion of heterogeneous source species pools predicts future invasion rates. J. Appl. Ecol. 54, 1968–1977 (2017).
    Google Scholar 
    Theoharides, K. A. & Dukes, J. S. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176, 256–273 (2007).PubMed 

    Google Scholar 
    Maltby, W. S. The Rise and Fall of the Spanish Empire (Palgrave Macmillan, 2008).Disdier, A. C. & Head, K. The puzzling persistence of the distance effect on bilateral trade. Rev. Econ. Stat. 90, 37–48 (2008).
    Google Scholar 
    Jiménez, A., Pauchard, A., Cavieres, L. A., Marticorena, A. & Bustamante, R. O. Do climatically similar regions contain similar alien floras? A comparison between the Mediterranean areas of central Chile and California. J. Biogeogr. 35, 614–624 (2008).
    Google Scholar 
    Epanchin-Niell, R., McAusland, C., Liebhold, A., Mwebaze, P. & Springborn, M. R. Biological invasions and international trade: managing a moving target. Rev. Environ. Econ. Policy 15, 180–190 (2021).
    Google Scholar 
    Bakewell, P. A History of Latin America (Wiley-Blackwell, 2003).Disney, A. R. A History of Portugal and the Portuguese Empire (Cambridge Univ. Press, 2009).De Zwart, P. Globalization in the early modern era: new evidence from the Dutch-Asiatic Trade, c. 1600–1800. J. Econ. Hist. 76, 520–558 (2016).
    Google Scholar 
    Emmer, P. C. & Gommans, J. J. L. The Dutch Overseas Empire, 1600–1800 (Cambridge Univ. Press, 2021).Melitz, J. & Toubal, F. Native language, spoken language, translation and trade. J. Int. Econ. 93, 351–363 (2014).
    Google Scholar 
    Becker, B. Introducing COLDAT: the colonial dates dataset. Preprint at OSF https://doi.org/10.31219/osf.io/apvqm (2019).Pyšek, P., Richardson, D. M. & Williamson, M. Predicting and explaining plant invasions through analysis of source area floras: some critical considerations. Divers. Distrib. 10, 179–187 (2004).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Hui, C. & McGeoch, M. A. Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am. Nat. 184, 684–694 (2014).PubMed 

    Google Scholar 
    McGeoch, M. A. et al. Measuring continuous compositional change using decline and decay in zeta diversity. Ecology 100, e02832 (2019).Latombe, G., Richardson, D. M., Pyšek, P., Kučera, T. & Hui, C. Drivers of species turnover vary with species commonness for native and alien plants with different residence times. Ecology 99, 2763–2775 (2018).PubMed 

    Google Scholar 
    Latombe, G., McGeoch, M. A., Nipperess, D. A. & Hui, C. zetadiv: an R package for computing compositional change across multiple sites, assemblages or cases. Preprint at bioRxiv https://doi.org/10.1101/324897 (2018).Latombe, G., McGeoch, M. A., Nipperess, D. A. & Hui, C. zetadiv: Functions to compute compositional turnover using zeta diversity. R package version 1.2.0 (2020).Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
    Google Scholar 
    Latombe, G., Hui, C. & McGeoch, M. A. Multi-site generalised dissimilarity modelling: using zeta diversity to differentiate drivers of turnover in rare and widespread species. Methods Ecol. Evol. 8, 431–442 (2017).
    Google Scholar 
    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).Clauset, A., Newman, M. E. J. & Moore, C. Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004).
    Google Scholar 
    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Systems, 1695 (2006).Bonacich, P. Power and centrality: a family of neasures. Am. J. Sociol. 92, 1170–1182 (1987).
    Google Scholar 
    Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 94, 16–36 (2019).
    Google Scholar  More

  • in

    Colonialism shaped today’s biodiversity

    IPCC Climate Change 2022: Summary for Policymakers. (eds Pörtner, H. et al.) (Cambridge Univ. Press, 2022).Lewis, S. L. & Maslin, M. A. The human planet: How we created the Anthropocene. (Yale University Press, 2018).Lenzner, B. et al. Nat. Ecol. Evol. https://doi.org/s41559-022-01865-1 (2022).van Kleunen, M. et al. Nature 525, 100–103 (2015).Article 

    Google Scholar 
    Dawson, W. et al. Nat. Ecol. Evol. 1, 0186 (2017).Article 

    Google Scholar 
    Dyer, E. E. et al. PLoS Biol. 15, e2000942 (2017).Article 

    Google Scholar 
    Mohammed, R. S. et al. Am. Nat. 200, 140–155 (2022).Article 

    Google Scholar 
    Rodrigues, A. S. L. et al. Phil. Trans. R. Soc. Lond. B 374, 20190220 (2019).Article 

    Google Scholar 
    Reddin, C. J., Aberhan, M., Raja, N. B. & Kocsis, Á. T. Glob. Change Biol. 28, 5793–5807 (2022).CAS 
    Article 

    Google Scholar 
    Elton, C. S. The Ecology of Invasions by Animals and Plants. (University of Chicago Press, 1958).Goode, E. Invasive Species Aren’t Always Unwanted. The New York Times https://www.nytimes.com/2016/03/01/science/invasive-species.html (2016).Reo, N. J. & Ogden, L. A. Sustain. Sci. 13, 1443–1452 (2018).Article 

    Google Scholar 
    Simberloff, D. Nature 475, 36 (2011).CAS 
    Article 

    Google Scholar  More

  • in

    Enhanced dust emission following large wildfires due to vegetation disturbance

    Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).Article 

    Google Scholar 
    Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).Article 

    Google Scholar 
    Hamilton, D. S. et al. Earth, wind, fire, and pollution: aerosol nutrient sources and impacts on ocean biogeochemistry. Ann. Rev. Mar. Sci. 14, 303–330 (2022).Article 

    Google Scholar 
    Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 16216–16221 (2019).Article 

    Google Scholar 
    Schlosser, J. S. et al. Analysis of aerosol composition data for western United States wildfires between 2005 and 2015: dust emissions, chloride depletion, and most enhanced aerosol constituents. J. Geophys. Res. Atmos. 122, 8951–8966 (2017).Article 

    Google Scholar 
    Wagner, R., Schepanski, K. & Klose, M. The dust emission potential of agricultural-like fires—theoretical estimates from two conceptually different dust emission parameterizations. J. Geophys. Res. Atmos. 126, e2020JD034355 (2017).
    Google Scholar 
    Ichoku, C. et al. Biomass burning, land-cover change, and the hydrological cycle in northern sub-Saharan Africa. Environ. Res. Lett. 11, 095005 (2016).Article 

    Google Scholar 
    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).Article 

    Google Scholar 
    Duniway, M. C. et al. Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world. Ecosphere 10, e02650 (2019).Article 

    Google Scholar 
    Okin, G. S., Gillette, D. A. & Herrick, J. E. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J. Arid. Environ. 65, 253–275 (2006).Article 

    Google Scholar 
    Raupach, M. R. Drag and drag partition on rough surfaces. Boundary Layer Meteorol. 60, 375–395 (1992).Article 

    Google Scholar 
    Webb, N. P. et al. Vegetation canopy gap size and height: critical indicators for wind erosion monitoring and management. Rangel. Ecol. Manag. 76, 78–83 (2021).Article 

    Google Scholar 
    Ellis, T. M., Bowman, D. M. J. S., Jain, P., Flannigan, M. D. & Williamson, G. J. Global increase in wildfire risk due to climate-driven declines in fuel moisture. Glob. Change Biol. 28, 1544–1559 (2022).Article 

    Google Scholar 
    Ravi, S. et al. Aeolian processes and the biosphere. Rev. Geophys. 49, RG3001 (2011).Article 

    Google Scholar 
    Wagenbrenner, N. S., Germino, M. J., Lamb, B. K., Robichaud, P. R. & Foltz, R. B. Wind erosion from a sagebrush steppe burned by wildfire: Measurements of PM10 and total horizontal sediment flux. Aeolian Res. 10, 25–36 (2013).Article 

    Google Scholar 
    Wagenbrenner, N. S. A large source of dust missing in Particulate Matter emission inventories? Wind erosion of post-fire landscapes. Elementa 5, 2 (2017).
    Google Scholar 
    Jeanneau, A. C., Ostendorf, B. & Herrmann, T. Relative spatial differences in sediment transport in fire-affected agricultural landscapes: a field study. Aeolian Res. 39, 13–22 (2019).Article 

    Google Scholar 
    Deb, P. et al. Causes of the widespread 2019–2020 Australian bushfire season. Earths Future 8, e2020EF001671 (2020).Article 

    Google Scholar 
    Nogrady, B. & Nicky, B. The climate link to Australia’s fires. Nature 577, 610–612 (2020).Yu, Y. & Ginoux, P. Assessing the contribution of the ENSO and MJO to Australian dust activity based on satellite- and ground-based observations. Atmos. Chem. Phys. 21, 8511–8530 (2021).Article 

    Google Scholar 
    Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. & Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50, RG3005 (2012).Article 

    Google Scholar 
    Yu, Y., Kalashnikova, O. V., Garay, M. J., Lee, H. & Notaro, M. Identification and characterization of dust source regions across North Africa and the Middle East using MISR satellite observations. Geophys. Res. Lett. 45, 6690–6701 (2018).Article 

    Google Scholar 
    Brianne, P., Rebecca, H. & David, L. The fate of biological soil crusts after fire: a meta-analysis. Glob. Ecol. Conserv. 24, e01380 (2020).Article 

    Google Scholar 
    Rodriguez-Caballero, E. et al. Global cycling and climate effects of aeolian dust controlled by biological soil crusts. Nat. Geosci. 15, 458–463 (2022).Article 

    Google Scholar 
    Goudie, A. S. & Middleton, N. J. Desert Dust in the Global System (Springer, 2006).Ginoux, P. Atmospheric chemistry: warming or cooling dust? Nat. Geosci. 10, 246–247 (2017).Article 

    Google Scholar 
    DeMott, P. J. et al. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl Acad. Sci. USA 107, 11217–11222 (2010).Article 

    Google Scholar 
    Yu, H. et al. The fertilizing role of African dust in the Amazon rainforest: a first multiyear assessment based on data from cloud–aerosol lidar and infrared Pathfinder satellite observations. Geophys. Res. Lett. 42, 1984–1991 (2015).Article 

    Google Scholar 
    Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).Article 

    Google Scholar 
    Sarangi, C. et al. Dust dominates high-altitude snow darkening and melt over high-mountain Asia. Nat. Clim. Change 10, 1045–1051 (2020).Article 

    Google Scholar 
    Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).Article 

    Google Scholar 
    Zheng, B. et al. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 7, eabh2646 (2021).Article 

    Google Scholar 
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).Article 

    Google Scholar 
    Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 1–17 (2021).Article 

    Google Scholar 
    Yu, Y. et al. Machine learning–based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nat. Commun. 13, 1250 (2022).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. How reliable are CMIP5 models in simulating dust optical depth? Atmos. Chem. Phys. 18, 12491–12510 (2018).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. Climatic factors contributing to long-term variations in surface fine dust concentration in the United States. Atmos. Chem. Phys. 18, 4201–4215 (2018).Article 

    Google Scholar 
    Bodí, M. B. et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127 (2014).Article 

    Google Scholar 
    NCAR Command Language v.6.6.2 (NCAR, 2019); https://doi.org/10.5065/D6WD3XH5Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).Article 

    Google Scholar 
    Ramo, R. et al. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl Acad. Sci. USA 118, 1–7 (2021).Article 

    Google Scholar 
    Diner, D. J. et al. Multi-angle imaging spectroradiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 36, 1072–1087 (1998).Article 

    Google Scholar 
    Pu, B. et al. Retrieving the global distribution of the threshold of wind erosion from satellite data and implementing it into the Geophysical Fluid Dynamics Laboratory land–atmosphere model (GFDL AM4.0/LM4.0). Atmos. Chem. Phys. 20, 55–81 (2020).Article 

    Google Scholar 
    Sayer, A. M., Hsu, N. C., Bettenhausen, C. & Jeong, M. J. Validation and uncertainty estimates for MODIS collection 6 ‘Deep Blue’ aerosol data. J. Geophys. Res. Atmos. 118, 7864–7872 (2013).Article 

    Google Scholar 
    Hsu, N. C. et al. Enhanced Deep Blue aerosol retrieval algorithm: the second generation. J. Geophys. Res. Atmos. 118, 9296–9315 (2013).Article 

    Google Scholar 
    Ginoux, P., Garbuzov, D. & Hsu, N. C. Identification of anthropogenic and natural dust sources using moderate resolution imaging spectroradiometer (MODIS) Deep Blue level 2 data. J. Geophys. Res. 115, D05204 (2010).Article 

    Google Scholar 
    Eck, T. F. et al. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 104, 31333–31349 (1999).Article 

    Google Scholar 
    Anderson, T. L. et al. Testing the MODIS satellite retrieval of aerosol fine-mode fraction. J. Geophys. Res. 110, 1–16 (2005).Article 

    Google Scholar 
    Baddock, M. C., Bullard, J. E. & Bryant, R. G. Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sens. Environ. 113, 1511–1528 (2009).Article 

    Google Scholar 
    Baddock, M. C., Ginoux, P., Bullard, J. E. & Gill, T. E. Do MODIS-defined dust sources have a geomorphological signature? Geophys. Res. Lett. 43, 2606–2613 (2016).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. Projection of American dustiness in the late 21st century due to climate change. Sci. Rep. 7, 5553 (2017).Article 

    Google Scholar 
    Pu, B., Ginoux, P., Kapnick, S. B. & Yang, X. Seasonal prediction potential for springtime dustiness in the United States. Geophys. Res. Lett. 46, 9163–9173 (2019).Article 

    Google Scholar 
    Garay, M. J. et al. Introducing the 4.4 km spatial resolution multi-angle imaging spectroradiometer (MISR) aerosol product. Atmos. Meas. Tech. 13, 593–628 (2020).Article 

    Google Scholar 
    Kalashnikova, O. V., Kahn, R., Sokolik, I. N. & Li, W.-H. Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes. J. Geophys. Res. 110, D18S14 (2005).Article 

    Google Scholar 
    Yu, Y. et al. Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite, radiometric, and station data. J. Geophys. Res. Atmos. 118, 13253–13264 (2013).Article 

    Google Scholar 
    Yu, Y., Notaro, M., Kalashnikova, O. V. & Garay, M. J. Climatology of summer Shamal wind in the Middle East. J. Geophys. Res. Atmos. 121, 289–305 (2016).Article 

    Google Scholar 
    Yu, Y. et al. Disproving the Bodélé depression as the primary source of dust fertilizing the Amazon rainforest. Geophys. Res. Lett. 47, e2020GL088020 (2020).Article 

    Google Scholar 
    Giles, D. M. et al. Advancements in the Aerosol Robotic Network (AERONET) version 3 database—automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 12, 169–209 (2019).Article 

    Google Scholar 
    O’Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N. & Thulasiraman, S. Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res. Atmos. 108, 1–15 (2003).
    Google Scholar 
    Winker, D. M. et al. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 26, 2310–2323 (2009).Article 

    Google Scholar 
    Esselborn, M. et al. Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006. Tellus B 61, 131–143 (2009).Article 

    Google Scholar 
    Kim, M. H. et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 11, 6107–6135 (2018).Article 

    Google Scholar 
    Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS Vegetation Index User’s Guide (Collection 6) (Univ. Arizona, 2015).Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).Article 

    Google Scholar 
    Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016).Article 

    Google Scholar 
    Remer, L. A., Kaufman, Y. J., Holben, B. N., Thompson, A. M. & McNamara, D. Biomass burning aerosol size distribution and modeled optical properties. J. Geophys. Res. Atmos. 103, 31879–31891 (1998).Article 

    Google Scholar 
    Tegen, I. & Lacis, A. A. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res. Atmos. 101, 19237–19244 (1996).Article 

    Google Scholar 
    Friedl, M. A. & Sulla-Menashe, D. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product 6 (USGS, 2018).Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P. & Friedl, M. A. Hierarchical mapping of annual global land cover 2001 to present: the MODIS collection 6 land cover product. Remote Sens. Environ. 222, 183–194 (2019).Article 

    Google Scholar 
    Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: state-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).Article 

    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).Article 

    Google Scholar 
    Preimesberger, W., Scanlon, T., Su, C.-H., Gruber, A. & Dorigo, W. Homogenization of structural breaks in the global ESA CCI Soil Moisture multisatellite climate data record. IEEE Trans. Geosci. Remote Sens. 59, 2845–2862 (2021).Article 

    Google Scholar 
    Minola, L. et al. Near-surface mean and gust wind speeds in ERA5 across Sweden: towards an improved gust parametrization. Clim. Dyn. 55, 887–907 (2020).Article 

    Google Scholar 
    Molina, M. O., Gutiérrez, C. & Sánchez, E. Comparison of ERA5 surface wind speed climatologies over Europe with observations from the HadISD dataset. Int. J. Climatol. 41, 4864–4878 (2021).Article 

    Google Scholar 
    Klose, M. et al. Mineral dust cycle in the Multiscale Online Nonhydrostatic Atmosphere Chemistry model (MONARCH) version 2.0. Geosci. Model Dev. 14, 6403–6444 (2021).Article 

    Google Scholar 
    Mondal, A., Kundu, S. & Mukhopadhyay, A. Rainfall trend analysis by Mann–Kendall test: a case study of north-eastern part of Cuttack District, Orissa. Int. J. Geol. Earth Environ. Sci. 2, 2277–208170 (2012).
    Google Scholar 
    Yu, Y. & Ginoux, P. Dust emission following large wildfires. figshare. 2022. https://doi.org/10.6084/m9.figshare.20648055.v2 More

  • in

    Global distribution of soil fauna functional groups and their estimated litter consumption across biomes

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro.2017.87 (2017).Article 
    PubMed 

    Google Scholar 
    Frouz, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332, 161–172 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Hicks Pries, C. E., Castanha, C., Porras, R., Phillips, C. & Torn, M. S. Response to comment on “The whole-soil carbon flux in response to warming”. Science 359, 1420–1423 (2018).Article 

    Google Scholar 
    Lavelle, P. et al. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33, 159–193 (1997).CAS 

    Google Scholar 
    Frouz, J., Špaldoňová, A., Fričová, K. & Bartuška, M. The effect of earthworms (Lumbricus rubellus) and simulated tillage on soil organic carbon in a long-term microcosm experiment. Soil. Biol. Biochem. 78, 58–64 (2014).CAS 
    Article 

    Google Scholar 
    Lavelle, P., Blanchart, E., Martin, A., Martin, S. & Schaefer, R. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Assoc. Trop. Biol. 25, 130–150 (2016).
    Google Scholar 
    Lavelle, P. et al. Earthworms as a resource in tropical agroecosystems. Nat. Res. 34, 26–41 (1998).
    Google Scholar 
    Lavelle, P. Diversity of soil fauna and ecosystem function. Biol. Int. J. 33, 3–16 (1996).
    Google Scholar 
    Ruiz, N., Lavelle, P. & Jiménez, J. Soil macrofauna field manual. Recherche 113 (2008).Xiong, W. et al. Soil protist communities form a dynamic hub in the soil microbiome. ISME J. 12, 634–638 (2018).PubMed 
    Article 

    Google Scholar 
    Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns in belowground communities. Ecol. Lett. 12, 1238–1249 (2009).PubMed 
    Article 

    Google Scholar 
    Nielsen, U. N. et al. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Glob. Ecol. Biogeogr. 23, 968–978 (2014).Article 

    Google Scholar 
    Špaldoňová, A. & Frouz, J. The role of Armadillidium vulgare (Isopoda: Oniscidea) in litter decomposition and soil organic matter stabilization. Appl. Soil. Ecol. https://doi.org/10.1016/j.apsoil.2014.04.012 (2014).Article 

    Google Scholar 
    McCay, T. S., Cardelus, C. L. & Neatrour, M. A. Rate of litter decay and litter macroinvertebrates in limed and unlimed forests of the Adirondack Mountains, USA. For. Ecol. Manag. 304, 254–260 (2013).Article 

    Google Scholar 
    Slade, E. M. & Riutta, T. Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments. Basic Appl. Ecol. 13, 423–431 (2012).Article 

    Google Scholar 
    Joly, F.-X., Coq, S., Coulis, M., Nahmani, J. & Hättenschwiler, S. Litter conversion into detritivore faeces reshuffles the quality control over C and N dynamics during decomposition. Funct. Ecol. https://doi.org/10.1111/1365-2435.13178 (2018).Article 

    Google Scholar 
    Hättenschwiler, S. Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Glob. Change Biol. https://doi.org/10.1046/j.1365-2486.2001.00402.x (2015).Article 

    Google Scholar 
    Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008).ADS 
    Article 

    Google Scholar 
    Brussaard, L., Pulleman, M. M., Ouédraogo, É., Mando, A. & Six, J. Soil fauna and soil function in the fabric of the food web. Pedobiologia (Jena) 50, 447–462 (2007).Article 

    Google Scholar 
    Frouz, J., Elhottová, D., Kuráž, V. & Šourková, M. Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: Results of a field microcosm experiment. Appl. Soil Ecol. 33, 308–320 (2006).Article 

    Google Scholar 
    García-Palacios, P., Maestre, F. T., Kattge, J. & Wall, D. H. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 16, 1045–1053 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Melguizo-Ruiz, N. et al. Field exclusion of large soil predators impacts lower trophic levels and decreases leaf-litter decomposition in dry forests. J. Anim. Ecol. 89, 334–346 (2020).PubMed 
    Article 

    Google Scholar 
    Lavelle, P. et al. Soil macroinvertebrate communities: A world-wide assessment. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13492 (2022).Article 

    Google Scholar 
    Coq, S. et al. Faeces traits as unifying predictors of detritivore effects on organic matter turnover. Geoderma 422, 115940 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Lavelle, P. et al. Soil aggregation, ecosystem engineers and the C cycle. Act Oecol. 105, 103561 (2020).Article 

    Google Scholar 
    Filser, J. et al. Soil fauna: Key to new carbon models. Soil 2, 565–582 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Joly, F. X. et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 3, 1–9 (2020).MathSciNet 
    Article 

    Google Scholar 
    Frouz, J., Roubíčková, A., Heděnec, P. & Tajovský, K. Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. Eur. J. Soil Biol. 68, 18 (2015).CAS 
    Article 

    Google Scholar 
    Lavelle, P., Blanchart, E., Martin, A., Martin, S. & Spain, A. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Biotropica 25, 130–150 (1993).Article 

    Google Scholar 
    Crowther, T. W. & A’Bear, A. D. Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent. Fungal Ecol. 5, 277–281 (2012).Article 

    Google Scholar 
    Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).Article 

    Google Scholar 
    Tordoff, G. M., Boddy, L. & Jones, T. H. Species-specific impacts of collembola grazing on fungal foraging ecology. Soil. Biol. Biochem. 40, 434–442 (2008).CAS 
    Article 

    Google Scholar 
    Meysman, F. J. R., Middelburg, J. J. & Heip, C. H. R. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 21, 688–695 (2006).PubMed 
    Article 

    Google Scholar 
    Frouz, J. et al. Soil food web changes during spontaneous succession at post mining sites: A possible ecosystem engineering effect on food web organization? PLoS ONE 8, e79694 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frouz, J., Moradi, J., Püschel, D. & Rydlová, J. Earthworms affect growth and competition between ectomycorrhizal and arbuscular mycorrhizal plants. Ecosphere 10, e02736 (2019).Article 

    Google Scholar 
    Marichal, R. et al. Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Appl. Soil. Ecol. 83, 177–185 (2014).Article 

    Google Scholar 
    Prescott, C. E. & Vesterdal, L. Forest ecology and management decomposition and transformations along the continuum from litter to soil organic matter in forest soils. For. Ecol. Manag. 498, 119522 (2021).Article 

    Google Scholar 
    Kampichler, C. & Bruckner, A. The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biol. Rev. Camb. Philos. Soc. 84, 375–389 (2009).PubMed 
    Article 

    Google Scholar 
    Brennan, K. E. C., Christie, F. J. & York, A. Global climate change and litter decomposition: More frequent fire slows decomposition and increases the functional importance of invertebrates. Glob. Change. Biol. 15, 2958–2971 (2009).ADS 
    Article 

    Google Scholar 
    Birkhofer, K. et al. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE 7, e43292 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. Molecular study of worldwide distribution and diversity of soil animals. PNAS 108, 17720–17725 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    James, S. W. et al. Comment on Global distribution of earthworm diversity. Science 371, 4629 (2021).Article 

    Google Scholar 
    Cesarz, S. et al. Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil. Biol. Biochem. 62, 36–45 (2013).CAS 
    Article 

    Google Scholar 
    Eppinga, M. B., Kaproth, M. A., Collins, A. R. & Molofsky, J. Litter feedbacks, evolutionary change and exotic plant invasion. J. Ecol. 99, 503–514 (2011).
    Google Scholar 
    Harrison, K. A., Bol, R. & Bardgett, R. D. Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? Soil. Biol. Biochem. 40, 228–237 (2008).CAS 
    Article 

    Google Scholar 
    Wardle, D. A., Yeates, G. W., Barker, G. M. & Bonner, K. I. The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol. Biochem. 38, 1052–1062 (2006).CAS 
    Article 

    Google Scholar 
    Zhang, D., Hui, D., Luo, Y. & Zhou, G. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. J. Plant Ecol. 1, 85–93 (2008).Article 

    Google Scholar 
    Preston, C. M. & Trofymow, J. A. Variability in litter quality and its relationship to litter decay in Canadian forests. Botany 78, 1269–1287 (2000).Article 

    Google Scholar 
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. PNAS 115, 6506–6511 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersen, D. C. Below-ground herbivory in natural communities: A review emphasizing fossorial animals. Q. Rev. Biol. 62, 261–286 (1987).Article 

    Google Scholar 
    Cepáková, S. & Frouz, J. Changes in chemical composition of litter during decomposition: A review of published 13C NMR spectra. Plant Nutr. Soil Sci. 15, 805–815 (2015).
    Google Scholar 
    Pietsch, K. A. et al. Global relationship of wood and leaf litter decomposability: The role of functional traits within and across plant organs. Glob. Ecol. Biogeogr. 23, 1046–1057 (2014).Article 

    Google Scholar 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 
    Article 

    Google Scholar 
    Ponge, J.-F. Plant–soil feedbacks mediated by humus forms: A review. Soil. Biol. Biochem. 57, 1048–1060 (2013).CAS 
    Article 

    Google Scholar 
    Salmon, S., Mantel, J., Frizzera, L. & Zanella, A. Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate. For. Ecol. Manag. 237, 47–56 (2006).Article 

    Google Scholar 
    Desie, E. et al. Positive feedback loop between earthworms, humus form and soil pH reinforces earthworm abundance in European forests. Funct. Ecol. 34, 2598–2610 (2020).Article 

    Google Scholar 
    Samson, F. B. & Knopf, F. L. (eds) Organisms as Ecosystem Engineers BT—Ecosystem Management: Selected Readings 130–147 (Springer, 1996).
    Google Scholar 
    Araujo, P. I., Yahdjian, L. & Austin, A. T. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina? Oecologia 168, 221–230 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Frouz, J. et al. Soil biota in post-mining sites along a climatic gradient in the USA: Simple communities in shortgrass prairie recover faster than complex communities in tallgrass prairie and forest. Soil. Biol. Biochem. 67, 212–225 (2013).CAS 
    Article 

    Google Scholar 
    Hattenschwiler, S., Tiunov, A. V. & Scheu, S. Biodiversity and litter decomposition interrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 191–218 (2005).Article 

    Google Scholar 
    Deckmyn, G. et al. KEYLINK: Towards a more integrative soil representation for inclusion in ecosystem scale models I. Review and model concept. PeerJ 8, 1–69 (2020).Article 

    Google Scholar 
    Héry, M. et al. Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. SME J. 2, 92–104 (2008).
    Google Scholar 
    Roubickova, A., Mudrak, O. & Frouz, J. Effect of earthworm on growth of late succession plant species in postmining sites under laboratory and field conditions. Biol. Fert. Soils 45, 769–774 (2009).Article 

    Google Scholar 
    Bodine, M. C. & Ueckert, D. N. Effect litter in west of desert termites on herbage and in a shortgrass Texas. J. Range. Manag. 28, 353–358 (1975).Article 

    Google Scholar 
    Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).PubMed 
    Article 

    Google Scholar 
    Petersen, H. & Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288 (1982).Article 

    Google Scholar 
    Gongalsky, K. B., Persson, T. & Pokarzhevskii, A. D. Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test. Appl. Soil Ecol. 39, 84–90 (2008).Article 

    Google Scholar 
    Simpson, J. E., Slade, E., Riutta, T. & Taylor, M. E. Factors affecting soil fauna feeding activity in a fragmented lowland temperate deciduous woodland. PLoS ONE 7, 0029616 (2012).ADS 
    Article 

    Google Scholar 
    Clarke, A. Is there a universal temperature dependence of metabolism? Funct. Ecol. 18, 252–256 (2004).Article 

    Google Scholar 
    Coq, S. & Ibanez, S. Soil fauna contribution to winter decomposition in subalpine grasslands. Soil Org. https://doi.org/10.25674/so91iss3pp107 (2019).Article 

    Google Scholar 
    Frouz, J., Špaldoňová, A., Lhotáková, Z. & Cajthaml, T. Major mechanisms contributing to the macrofauna-mediated slow down of litter decomposition. Soil. Biol. Biochem. 91, 23–31 (2015).CAS 
    Article 

    Google Scholar 
    Frouz, J., Šustr, V. & Kalčík, J. Energetic budget of three species of bibionid larvae. In Contributions to Soil Zoology in Central Europe I. ISB AS CR, České Budějovice, 15–18 (2005).Frouz, J., Jedlička, P., Šimáčková, H. & Lhotáková, Z. The life cycle, population dynamics, and contribution to litter decomposition of Penthetria holosericea (Diptera: Bibionidae) in an alder forest. Eur. J. Soil Biol. 71, 21–27 (2015).Article 

    Google Scholar 
    Brovkin, V. et al. Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences 9, 565–576 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Buis, G. M. et al. Controls of aboveground net primary production in mesic savanna grasslands: An inter-hemispheric comparison. Ecosystems 12, 982–995 (2009).CAS 
    Article 

    Google Scholar 
    O’Neill, D. W. & Abson, D. J. To settle or protect? A global analysis of net primary production in parks and urban areas. Ecol. Econ. 69, 319–327 (2009).Article 

    Google Scholar 
    Pan, S. et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J. Geogr. Sci. 25, 1027–1044 (2015).Article 

    Google Scholar 
    Yanai, R. D. et al. Litterfall and litter chemistry change over time in an old-growth temperate forest, northeastern China. For. Ecol. Manag. 43, 279–287 (1999).
    Google Scholar 
    Shchelchkova, M., Davydov, S., Fyodorov-Davydov, D., Davydova, A. & Boeskorov, G. The characteristics of a relic steppe of Northeast Asia: Refuges of the Pleistocene Mammoth steppe (an example from the Lower Kolyma area). IOP Conf. Ser. Earth Environ. Sci. 438, 012025 (2020).Article 

    Google Scholar 
    Ayuke, F. O. et al. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Appl. Soil Ecol. 48, 53–62 (2011).Article 

    Google Scholar 
    Blanchart, E. et al. Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agric. Conspec. Sci. 72, 81–87 (2007).
    Google Scholar 
    Korboulewsky, N., Perez, G. & Chauvat, M. How tree diversity affects soil fauna diversity: A review. Soil Biol. Biochem. 94, 94–106 (2016).CAS 
    Article 

    Google Scholar 
    Frouz, J., Pizl, V., Cienciala, E. & Kalcik, J. Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry 94, 111–121 (2009).CAS 
    Article 

    Google Scholar 
    Milton, Y. & Kaspari, M. Bottom-up and top-down regulation of decomposition in a tropical forest. Oecologia 153, 163–172 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    Öpik, M., Moora, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 94, 778–790 (2006).Article 

    Google Scholar 
    Portela, M. B. et al. Do ecological corridors increase the abundance of soil fauna? Écoscience 27, 45–57 (2020).Article 

    Google Scholar 
    Prieto, I., Almagro, M., Bastida, F. & Querejeta, J. I. Altered leaf litter quality exacerbates the negative impact of climate change on decomposition. J. Ecol. 107, 2364–2382 (2019).CAS 
    Article 

    Google Scholar 
    Van der Putten, W. H. et al. Plant-soil feedbacks: The past, the present and future challenges. J. Ecol. 101, 265–276 (2013).Article 

    Google Scholar 
    Artz, R. et al. European atlas of soil. Biodiversity. https://doi.org/10.13140/RG.2.1.3178.2880 (2010).Article 

    Google Scholar 
    Orgiazzi, A. et al. Global Soil Biodiversity Atlas (European Soil Data Centre, 2016).
    Google Scholar 
    Peng, Y. et al. Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community. Geoderma 407, 115570 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Bardgett, R. D. The Biology of Soil: A Community and Ecosystem Approach 255 (Oxford University Press, 2005).Book 

    Google Scholar 
    Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jackson, R. B., Mooney, H. A. & Schulze, E.-D. A global budget for fine root biomass, surface area, and nutrient contents. PNAS 94, 7362–7366 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sanchez, G. PLS Path Modeling with R, 235 (2013).Holland, E. A. et al. A global database of litterfall mass and litter pool carbon and nutrients. 10.3334/ORNLDAAC/1244 (2014).Palpurina, S. et al. The type of nutrient limitation affects the plant species richness–productivity relationship: Evidence from dry grasslands across Eurasia. J. Ecol. 107, 1038–1050 (2019).CAS 
    Article 

    Google Scholar 
    Green, C. & Byrne, K. A. Biomass: Impact on carbon cycle and greenhouse gas emissions. In Encyclopedia of Energy (ed. Cleveland, C. J.) 223–236 (Elsevier, 2004).Chapter 

    Google Scholar 
    Liang, W. et al. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agric. For. Meteorol. 204, 22–36 (2015).ADS 
    Article 

    Google Scholar 
    Ise, T., Litton, C. M., Giardina, C. P. & Ito, A. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. J. Geo. Res. Biogeosci. 115, 1–11 (2010).
    Google Scholar 
    Ni, J. Net primary production, carbon storage and climate change in Chinese biomes. Nord. J. Bot. 20, 415–426 (2000).Article 

    Google Scholar 
    Jandl, R. et al. How strongly can forest management influence soil carbon sequestration? Geoderma 137, 253–268 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Reeves, M. C., Moreno, A. L., Bagne, K. E. & Running, S. W. Estimating climate change effects on net primary production of rangelands in the United States. Clim. Change 126, 429–442 (2014).ADS 
    Article 

    Google Scholar 
    Cappai, C. et al. Small-scale spatial variation of soil organic matter pools generated by cork oak trees in Mediterranean agro-silvo-pastoral systems. Geoderma 304, 59–67 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Clark, D. A. et al. Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecol. Appl. 11, 371–384 (2001).Article 

    Google Scholar 
    Yanai, R. D., Arthur, M. A., Acker, M., Levine, C. R. & Park, B. B. Variation in mass and nutrient concentration of leaf litter across years and sites in a northern hardwood forest. Can. J. For. Res. 42, 1597–1610 (2012).CAS 
    Article 

    Google Scholar  More