More stories

  • in

    Ecological risk and health risk analysis of soil potentially toxic elements from oil production plants in central China

    Description of PTEsThe descriptive statistics of the contents of soil PTEs in the study area were shown in Table 1. From Table 1, the mean contents of As and Ni in the oil-affected soils exceeded their corresponding risk screening values33, which may damage the soil ecological environment and affect crop growth. Compared with the secondary standard of soil environmental quality34, the mean contents of As, Cu and Zn were all lower than their corresponding Grade II standard values, but the mean contents of Cd, Cr, Ni and Pb in the oil-affected soils were 1.07, 7.46, 7.14 and 1.36 times of their standard values. In contrast with the background value of Hubei province35, except Mn, the mean contents of As, Cd, Cr, Cu, Ni, Pb, Zn and Ba in the oil-affected soils all exceeded their background values. Meanwhile, the variation coefficient of Cr (1.41) was greater than 1. In general, the soil Cd concentration in the study area was higher than that around Gudao Town, a typical oil-producing region of the Shengli Oilfield in the Yellow River Delta, China12, and from Yellow River Delta, a traditional oil field in China9, but was lower than that around two crude oil flow stations in the Niger Delta, Nigeria36. The concentrations of other PTEs were higher than the corresponding element concentrations, detected in the soil around Gudao Town, a typical oil-producing region of the Shengli Oilfield in the Yellow River Delta, China12, from Yellow River Delta, a traditional oil field in China9, and around two crude oil flow stations in the Niger Delta, Nigeria36. The above analysis exhibited that PTEs in the oil-affected soils had a certain degree of accumulation and may be affected by human activities.Table 1 Statistical characteristics for potential toxic elements in in the study area (mg·kg−1).Full size tableLevels of PTEs enrichment and pollutionThe EF and PLI of soil PTEs in the study area were calculated to evaluate the pollution degree of soil PTEs. The calculation results of EF and PLI were shown in Fig. 2 and Table S4. From Fig. 2, the mean EF values of PTEs were showed as Pb  > Cr  > Ni  > As  > Cd  > Zn  > Cu  > Ba. The mean EFs of all PTEs were greater than 1. Among them, the average EF of Cu, Zn and Ba was between 1 and 2, which was slightly enriched. And As (2.18) and Cd (2.12) were moderately enriched. In particular, the average EF values of Cr, Ni and Pb were 14.23, 8.69 and 15.45, respectively, reaching a significant enrichment level, and all samples of Cr, Ni and Pb were at moderate or above enrichment, of which 10% of the Cr samples were extreme pollution, 85% of Cr samples, 95% of Ni and 5% of Pb (Table S4) were significantly enriched. These proved that these PTEs were generally enriched in the study area, especially Cr, Ni and Pb.Figure 2The map of enrichment factor and contamination factor of PTEs in the study area.Full size imageExcept Mn, the average CF values of other PTEs were all  > 1 (Fig. 2), indicating that the accumulation of Mn in the study area was relatively light, and there was no obvious Mn pollution. The CF values of all samples of As, Cr, Ni and Pb, 80% of Cd samples, 75% of Cu samples, 30% of Mn samples, 65% of Zn samples and 75% of Ba samples (Table S4) were higher than 1. And the mean CF values of Cr, Ni and Pb were 14.21, 7.58 and 12.73, respectively, certifying that the pollution of Cr, Ni and Pb in the study area was considerably serious. PLI was calculated based on the CF value of PTEs, and the results were shown in Fig. 2. The average value of PLI was 2.62, indicating that the soil PTEs in the study area were seriously polluted.Spatial distribution of soil PTEs in the study areaGeostatistical analysis was utilized to do ordinary Kriging interpolation of the PTEs in the study area, the results were shown in Fig. 3. As shown in Fig. 3, the spatial distribution of As, Cr, Ni, Zn and Ba was relatively consistent, and their hot spots were concentrated in the southeast, northwest, and central and eastern parts of the study area where oil wells were distributed. The spatial distribution of Cr and Ni exhibited that there were large-scale hotspots near the oil wells, and the content of Cr and Ni in these hotspots was much higher than second-level environmental quality standards of China, which proved that the content of soil Cr and Ni was significantly affected by the oil production activities of the oil production plant. There were crude oil leaks in B and C, and the contents of Zn and Ba in the vicinity of these two oil wells were relatively high, indicating that soil Zn and Ba in this area may be affected by the crude oil leakage, resulting in a certain degree of accumulation in the soil. The area with the second highest As content mainly resided in the middle of the study area. According to the survey, the herbicides were sprayed every year around the H oil well in the middle of the study area, indicating that the accumulation of As in the soil was not only related to oil extraction activities, but also to the use of pesticides (contains copper arsenate, sodium arsenate, etc.)10, 14. In addition, the hot spots of spatial distribution of Pb, Cd and Mn were concentrated in the southeast, and Cu was mainly concentrated in the southeast and midwest. As analyzed above, in addition to Mn, the PTEs Pb, Cd and Cu all have a certain degree of accumulation. And the investigation found that there were many petroleum machinery manufacturing plants in the central and eastern part of the study area, therefore, the accumulation of Pb, Cd and Cu in the soil may be related to factors such as petroleum extraction, crude oil leakage and machinery manufacturing. The above analysis indicated that the influence of human activities is evident on the distribution of soil PTEs3, 23.Figure 3spatial distribution map of soil PTEs in the study area.Full size imagePotential ecological risk assessmentThe potential ecological risk assessment model after adjusting the threshold was used to evaluate the PER of the oil production plant. The individual potential ecological risk of PTEs was shown in Table 2. From Table 2, the average ({E}_{r}^{i}) values of PTEs were Cr  > Pb  > Cd  > Ni  > As  > Cu  > Zn  > Mn. The average ({E}_{r}^{i}) values of Cr and Pb were 79.62 and 63.64, respectively, reaching a relatively high level of potential ecological risk; the average ({E}_{r}^{i}) values of Cd and Ni were 55.95 and 37.91, respectively, which were at medium potential ecological risk level; the average ({E}_{r}^{i}) values of other PTEs were all lower than 30, with minor potential ecological risk. Specifically, all samples of Cu, Mn and Zn were at slight potential ecological risk level; 5% of As samples, 80% of Cd, 85% of Cr, 80% of Ni and 100% of Pb (Table S5) were at medium and above potential ecological risk. In particular, the potential ecological risks of 35% of Cd samples, 10% of Cr samples, 5% of Ni samples and 80% of Pb samples (Table S5) were relatively high, 10% Cd samples reached high potential ecological risk level, and 10% Cr samples had extremely high potential ecological risk. In summary, Geostatistical analysis shows that the hotspot distribution of all PTEs in the study area is almost related to the distribution of oil wells. In addition, the hotspot distribution of PTEs may also be related to factors such as agricultural and industrial activities3. The average value of PER in the study area was 265.08, and the proportions of the three risk levels of medium, slightly high and high were 5%, 75% and 20%, respectively (Table S5). It proved that the study area was at a higher potential ecological risk. Among them, the PER values of samples A, B, D, E, F, G, H, I and J (Table 2) were all greater than 280, reaching fairly high ecological risk.Table 2 Single ecological risk index and potential ecological risk of soil PTEs in study area.Full size tableHuman health risk assessmentThe non-carcinogenic risk assessment of As, Cd, Cr, Cu, Mn, Ni, Pb, Zn and Ba in the soils of the study area was carried out, and the assessment results were shown in Table 3. The THI values of children and adults under the three exposure routes of soil PTEs in the study area were 7.31 and 1.03, respectively, and the THI values were all  > 1, which indicated that soil PTEs around the oil production plants posed significant non-carcinogenic health risks to children and adults. The non-carcinogenic hazardous quotient (HQ) of children and adults in Table 3 revealed that the HQ of all PTEs for adults under each exposure route was less than 1, while the HQ of Cr and Pb for children under the oral intake route was greater than 1, which were 4.91 and 1.17, respectively. For HQ with different exposure routes of the same PTE, each soil PTE presented the risk of oral ingestion  > oral and nasal inhalation risk  > skin contact risk. The result was in agreement with the reports14, 37. Therefore, oral intake was the main exposure route of non-carcinogenic risk, and oral intake of Cr and Pb caused serious non-carcinogenic risk to children. Statistical analysis of HI for soil PTEs in the study area showed that the HI values of PTEs for children were significantly higher than those of adults, and the HI values of PTEs in children and adults were all Cr  > Pb  >   > As  > Ni  > Mn  > Ba  > Cu  > Zn  > Cd. Among them, the HI values of all PTEs for adults were less than 1, indicating that the non-carcinogenic risks caused by a single PTE did not have a significant impact on adults; while the HI values of Cr and Pb for children were 4.93 and 1.17 greater than 1, indicating that they have caused serious non-carcinogenic risk to local children. In addition, the HI values of As and Ni for children and the HI values of As, Cr and Pb for adults were all greater than 0.1, which requires attention. In summary, children suffered from significant non-carcinogenic risk, and adults suffered from minor non-carcinogenic risk in the study area; soil Cr and Pb were the most important non-carcinogenic risk factors for children and adults in the study area.Table 3 Non-cancer and cancer risk assessment of adults and children under different exposure routes.Full size tableIn this study, soil As, Cd, Cr, Ni and Pb from the study area were assessed for carcinogenic risk, and the results were shown in Table 3. The TCRI of children and adults under the three exposure routes of these five PTEs were 9.44E−04 and 5.75E−04, respectively, indicating that soil PTEs around the oil production plants have caused serious carcinogenic risk to local children and adults. The CR values of children and adults showed that the CR values of Cr (6.33E−04) and Ni (2.64E−04) for children, and Cr (3.87E−04) and Ni (1.49E−04) for adults were all greater than 10–4. In addition, As, Cr and Cd all presented oral intake risk  > oronasal inhalation risk  > skin contact risk. In conclusion, Cr and Ni caused serious carcinogenic risk for children and adults in the study area, and oral intake was also the primary way of carcinogenic risk. The CRI statistics of adults and children exhibited that the CRI values of all PTEs were lower than those of children. The CRI values of the PTEs in adults and children under the three exposure routes were Cr  > Ni  >   > As  > Pb  >   > Cd. Among them, the CRI values of Cr and Ni in children and adults by oral intake were both greater than 10–4, showing a strong carcinogenic risk. It is noteworthy that the assessment based on total concentrations of PTEs in soil might overestimate potential health risks38. The above analysis revealed that both children and adults in the study area suffered from serious carcinogenic risks, and Cr and Ni were the chiefly carcinogenic risk factors. More

  • in

    Protecting boreal caribou habitat can help conserve biodiversity and safeguard large quantities of soil carbon in Canada

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57. https://doi.org/10.1038/nature09678 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ceballos, G. et al. Accelerated human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, 5. https://doi.org/10.1126/sciadv.1400253 (2015).Article 

    Google Scholar 
    Purvis, A. et al. IPBES global assessment on biodiversity and ecosystem services chapter 2.2 status and trends. Nature https://doi.org/10.5281/zenodo.5517457.svg (2019).Balvernara, P. et al. IPBES global assessment on biodiversity and ecosystem services chapter 2.2 status and trends. Drivers. Change https://doi.org/10.5281/zenodo.5517423 (2019).Carrol, C. & Noss, R. F. Rewilding in the face of climate change. Conserv. Biol. 35, 155–167. https://doi.org/10.1111/cobi.13531 (2020).Article 

    Google Scholar 
    Barr, S. L., Larson, B. M. H., Beechey, T. J. & Scott, D. J. Assessing climate change adaptation progress in Canada’s protected areas. Can. Geog. 65, 152–165. https://doi.org/10.1111/cag.12635 (2020).Article 

    Google Scholar 
    Convention on Biological Diversity. Aichi Target 11, Convention on Biological Diversity. https://www.cbd.int/aichi-targets/target/11. Accessed 14 May 2021.United Nations. Climate Change Pathways. https://unfccc.int/climate-action/marrakech-partnership/reporting-and-tracking/climate_action_pathways. Accessed 12 Sept 2022.Government of Canada. Canada’s nature legacy: Protecting our nature conservation/nature-legacy.html (2021).Coristine, L. E. et al. Informing Canada’s commitment to biodiversity conservation: A science-based framework to help guide protected areas designation through Target 1 and beyond. Facets 3, 531–562. https://doi.org/10.1139/facets-2017-0102 (2017).Article 

    Google Scholar 
    De Barros, A. E. et al. Identification of areas in Brazil that optimize areas that optimize conservation of forest carbon, Jaguars and Biodiversity. Conserv. Biol. 28, 580–593. https://doi.org/10.1111/cobi.12202 (2013).Article 
    PubMed 

    Google Scholar 
    Jantz, P., Scott, S. & Laporte, N. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nat. Clim. Change 4, 138–142. https://doi.org/10.1038/nclimate2105 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Beaudrot, L. et al. Limited carbon and biodiversity co-benefits for tropical mammals and birds. Ecol. Appl. 26, 10998–11111. https://doi.org/10.1890/15-0935 (2016).Article 

    Google Scholar 
    Morelli, T. L. et al. Climate-change refugia: Biodiversity in a slow lane. Front. Ecol. Environ. 18, 228–234. https://doi.org/10.1002/fee.2189 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stralberg, et al. Macrorefugia for North American trees ad songbirds: Climatic limiting factors and multi-scale topographic influences. Glob. Ecol. Biogeogr. 27, 690–703. https://doi.org/10.1111/geb.12731 (2018).Article 

    Google Scholar 
    Caroll, C. & Ray, J. C. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change. Glob. Chang Biol. 27, 3395–3414. https://doi.org/10.1111/gcb.15645 (2020).Article 

    Google Scholar 
    Bradshaw, C. J., Warkentin, I. G. & Sodhi, N. S. Urgent preservation of boreal carbon stocks and biodiversity. Trends Ecol. Evol. 24, 541–548. https://doi.org/10.1016/j.tree.2009.03.019 (2009).Article 
    PubMed 

    Google Scholar 
    Harris, L. I. et al. The essential carbon service provided by northern peatlands. Front. Ecol. Environ. 20, 222–230 (2022).Article 

    Google Scholar 
    Environment and Climate Change Canada. Canadian Environmental Sustainability Indicators: Canada’s conserved areas. environmental-indicators/conserved-areas.html (2020).Office of the Auditor General of Canada. Lessen learnt from 30 years of climate change challenges and opportunities. https://www.oag-bvg.gc.ca/internet/English/att__e_43948.html#hd3l (2020).Shea, T. et al. Canada’s Conservation Vision: A report of the National Advisory Panel. Government of Canada, 43 pp (2018).Environment and Climate Change Canada. Pan-Canadian Approach to transforming species at risk conservation in Canada. species-at-risk-conservation.html (2018).Bergerund, A. T. Caribou, wolves and man. Trends Ecol. Evol. 3, 68–72. https://doi.org/10.1016/0169-5347(88)90019-5 (1988).Article 

    Google Scholar 
    Vernier, L. A. et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests. Environ. Rev. 22, 457–490. https://doi.org/10.1139/er-2013-0075 (2014).Article 

    Google Scholar 
    Wells, J. V., Dawson, N., Culver, N., Reid, F. A. & Slegers, S. M. The state of conservation in North America’s Borel Forest: Issues and opportunities. Front. For. Glob. Change 3, 90. https://doi.org/10.3389/ffgc.2020.00090/full (2020).Article 

    Google Scholar 
    COSEWIC. COSEWIC assessment and update status report on the woodland caribou Rangifer tarandus caribou in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 98 pp. (2002).COSEWIC. COSEWIC assessment and status report on the caribou Rangifer tarandus, Newfoundland population, Atlantic-Gaspésie population and Boreal population, in Canada. Committee on the Status of Endangered Wildlifein Canada. Ottawa. xxiii + 128 pp. (2014).Environment and Climate Change Canada. Amended Recovery Strategy for the Woodland Caribou (Rangifer tarandus caribou), Boreal Population, in Canada. Species at Risk Act Recovery Strategy Series. Environment and Climate Change Canada, Ottawa. xiii + 143pp. (2020).Environment and Climate Change Canada. Report on the Progress of Recovery Strategy Implementation for the Woodland Caribou (Rangifer tarandus caribou), Boreal population in Canada for the Period 2012–2017. Species at Risk Act Recovery Strategy Series. Environment and Climate Change Canada, Ottawa. ix + 94 (2017).Hebblewhite, M. Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biol. Conserv. 206, 102–111. https://doi.org/10.1016/j.biocon.2016 (2017).Article 

    Google Scholar 
    Fortin, D., McLoughlin, P. D. & Hebblewhite, M. When the protection of a threatened species depends on the economy of a foreign nation. PLoS ONE 15, e0229555. https://doi.org/10.1371/journal.pone.0229555 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Drever, R. C. et al. Conservation through co-occurrence: Woodland caribou as a focal species for boreal biodiversity. Biol. Conserv. 232, 238–252. https://doi.org/10.1016/j.biocon.2019.01.026 (2019).Article 

    Google Scholar 
    Government of Canada. Pan-Canadian Framework on clean growth and climate change climatechange/pan-canadian-framework.html.Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet Chang 128, 24–30. https://doi.org/10.1016/j.gloplacha.2015.02.004 (2015).ADS 
    Article 

    Google Scholar 
    Jennings, M. D. Gap analysis: Concept, methods, recent results. Land Ecol. 5, 15–20 (2010).
    Google Scholar 
    Environment and Climate Change Canada. Canadian Protected and Conserved Areas database. national-wildlife-areas/protected-conserved-areas-database (2019).DeLuca, T. H. & Boisvenue, C. Boreal forest soil carbon: Distribution function and modelling. Forestry 85, 161–184. https://doi.org/10.1093/forestry/cps003 (2012).Article 

    Google Scholar 
    Price, et al. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 21, 322–365. https://doi.org/10.1139/er-2013-0042 (2013).Article 

    Google Scholar 
    Southee, F. M., Edwards, B. A., Chetkiewicz, C. B. & O’Connor, C. M. Freshwater conservation planning in the far north of Ontario, Canada: Identifying priority watersheds for conservation of fish biodiversity in an intact boreal landscape. Facets 6, 90–117. https://doi.org/10.1139/facets-2020-0015 (2021).Article 

    Google Scholar 
    Mitchell, M. G. E. et al. Identifying key ecosystem service providing areas to inform national-scale conservation planning. Environ. Res. Lett. 16, 014038. https://doi.org/10.1088/1748-9326/abc121 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Labadie, G. P. D., McLoughlin, M. H. & Fortin, D. Insect-mediated apparent competition between mammals in a boreal food web. Proc. Natl. Acad. Sci. U S A. 118, e2022892118. https://doi.org/10.1073/pnas.2022892118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cameron, V. & Hargreaves, A. L. Spatial distribution and conservation hotspots of mammals in Canada. Facets 5, 692–703. https://doi.org/10.1139/facets-2020-0018 (2020).Article 

    Google Scholar 
    Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. PNAS 103, 19374–19379. https://doi.org/10.1073/pnas.0609334103 (2016).ADS 
    Article 

    Google Scholar 
    Anielski, M. & Wilson, S. Counting Canada’s natural capital: Assessing the real value of Canada’s boreal ecosystems. Ottawa, On: Canadian Boreal Initiative and Pembina Institute counting-canadas-natural-capital (2009).Kumaraswamy, S. & Udyakumar, M. Biodiversity banking: A strategic conservation mechanism. Biodiver. Conserv. 20, 1155–1165. https://doi.org/10.1007/s10531-011-0020-5 (2011).Article 

    Google Scholar 
    Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374. https://doi.org/10.1038/s41893-018-0100-6 (2018).Article 

    Google Scholar 
    Godden, L. & Cowell, S. Conservation planning and Indigenous governance in Australia’s Indigenous Protected Areas. Restor. Ecol. 24, 692–697. https://doi.org/10.1111/rec.12394 (2016).Article 

    Google Scholar 
    Greg Brown, B. & Fagerholm, N. Empirical PPGIS/PGIS mapping of ecosystem services: A review and evaluation. Ecol. Ser. 13, 119–133. https://doi.org/10.1016/j.ecoser.2014.10.007 (2021).Article 

    Google Scholar 
    Martin, A. E., Neave, E., Kirby, P., Drever, C. R. & Johnson, C. A. Multi-objective optimization can balance trade-offs among boreal caribou, biodiversity, and climate change objectives when conservation hotspots do not overlap. Sci. Rep. 12, 11895. https://doi.org/10.1038/s41598-022-15274-8 (2022).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    COSEWIC. Canadian Wildlife Species at Risk. Committee on the Status of Endangered Wildlife in Canada (2018).Alberta Environment and Parks and Alberta Conservation Association. Status of the Arctic Grayling (Thymallus arcticus) in Alberta: Update 2015. Alberta Environment and Parks. Alberta Wildlife Status Report No. 57 (Update 2015). Edmonton, AB. 96 pp. (2015).Environment and Climate Change Canada (ECCC). 2016. Range map extents, species at risk, Canada. Government of Canada. Open Government Dataset. https://open.canada.ca/data/en/dataset/d00f8e8c-40c4-435a-b790-980339ce3121.Magurran, A. E. Measuring Biological Diversity 256 (Blackwell Publishing, 2004).
    Google Scholar 
    Caissy, P., Klemet-N’Guessan, S., Jackiw, R., Eckert, C. G. & Hargreaves, A. L. High conservation priority of range-edge plant populations not matched by habitat protection or research effort. Biol. Conserv. 249, 108732 (2020).Article 

    Google Scholar 
    Gaston, K. J. Rarity 201 (Chapman & Hall, 1994).Book 

    Google Scholar 
    Stralberg, D. Velocity-based macrorefugia for North American ecoregions. Zenodo. https://doi.org/10.5281/zenodo.2579337 (2019).Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853. https://doi.org/10.1038/nclimate2392 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Chen, I., Hill, J. K., Ohlemüller, R. D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026. https://doi.org/10.1126/science.1206432 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Woodall, C. W. et al. An indicator of tree migration in forests of the eastern United States. For. Ecol. Manag. 257, 1434–1444 (2009).Article 

    Google Scholar 
    Iverson, L. R., Schwartz, M. W. & Prasad, A. M. How fast and far might tree species migrate in the eastern United States due to climate change? Glob. Ecol. Biogeogr. 13, 209–219 (2004).Article 

    Google Scholar 
    McLachlan, J. S., Hellmann, J. J. & Schwartz, M. W. A framework for debate of assisted migration in an era of climate change. Conserv. Biol. 21, 297–302 (2007).Article 

    Google Scholar 
    Sittaro, F., Paquette, A., Messier, C. & Nock, C. A. Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits. Glob. Change Biol. 23, 3292–3301. https://doi.org/10.1111/gcb.13622 (2017).ADS 
    Article 

    Google Scholar 
    Ping, C. L. et al. Carbon stores and biogeochemical properties of soils under black spruce forest, Alaska. Soil Sci. Soc. Am. J. 74, 969–978. https://doi.org/10.2136/sssaj2009.0152 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 

    Google Scholar 
    Chung, N. C., Miasojedow, B., Startek, M. & Gambin, A. Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinform. 29, 644. https://doi.org/10.1186/s12859-019-3118-5 (2019).Article 

    Google Scholar 
    Chung, N. C., Miasojedow, B., Startek, M. & Gambin A. Jaccard: Test Similarity Between Binary Data using Jaccard/Tanimoto Coefficients. R package version 0.1.0. https://CRAN.R-project.org/package=jaccard (2018). More

  • in

    A function-based typology for Earth’s ecosystems

    We developed the IUCN Global Ecosystem Typology in the following sequence of steps: design criteria; hierarchical structure and definition of levels; generic ecosystem assembly model; top-down classification of the upper hierarchical levels; iterative circumscription of the units and ecosystem-specific adaptations of the assembly model; full description of the units; and map compilation. Some iteration proved necessary, as the description and review process sometimes revealed a need for circumscribing additional units.Design criteria and other typologiesUnder the auspices of the IUCN Commission on Ecosystem Management, we developed six design principles to guide the development of a typology that would meet the needs for global ecosystem reporting, risk assessment, natural capital accounting and ecosystem management: (1) representation of ecological processes and ecosystem functions; (2) representation of biota; (3) conceptual consistency throughout the biosphere; (4) scalable structure; (5) spatially explicit units; and (6) parsimony and utility (see Supplementary Table 1.1 and Supplementary Information, Appendix 1 for definitions and rationale).We assessed 23 existing ecological classifications with global coverage of terrestrial, freshwater, and/or marine environments against these principles to determine their fitness for IUCN’s purpose (Supplementary Information, Appendix 1). These include general classifications of land, water or bioclimate, as well as classifications of units that conform with the definition of ecosystems adopted in the United Nations Convention on Biological Diversity45 or an equivalent definition in the IUCN Red List of Ecosystems30. We reviewed documentation on methods of derivation, descriptions of classification units and maps to assess each classification against the six design principles (Supplementary Table 1.2 for details).Typology structure and ecosystem assemblyWe developed the structure of the Global Ecosystem Typology and the generic ecosystem assembly model at a workshop attended by 48 terrestrial, freshwater and marine ecosystem experts at Kings College London, UK, in May 2017. Participants agreed that a hierarchical structure would provide an effective framework for integrating ecological processes and functional properties (Supplementary Table 1.1, design principle 1), and biotic composition (principle 2) into the typology, while also meeting the requirement for scalability (principle 4). Although neither function nor composition were intended to take primacy within the typology, we reasoned that a hierarchy representing functional features in the upper levels is likely to support generalizations and predictions by leveraging evolutionary convergence13. By contrast, a typology reflecting compositional similarities in its upperlevels is less likely to be stable owing to dynamism of species assemblages and evolving knowledge on species taxonomy and distributions. Furthermore, representation of compositional relationships at a global scale would require many more units in upper levels, and possibly more hierarchical levels. Therefore, we concluded that a hierarchical structure recognizing compositional variants at lower levels within broad functionally based groupings at upper levels would be more parsimonious and robust (principle 6) than one representing composition at upper levels and functions at lower levels.Workshop participants initially agreed that three hierarchical levels for ecosystem function and three levels for biotic composition could be sufficient to represent global variation across the whole biosphere. Participants developed the concepts of these levels into formal definitions (Supplementary Table 3.1), which were reviewed and refined during the development process.To ensure conceptual consistency of the typology and its units throughout the biosphere (principle 3), we drew from community assembly theory to develop a generic model of ecosystem assembly. The traditional community assembly model incorporates three types of filters (dispersal, the abiotic environment and biotic interactions) that determine which biota from a larger pool of potential colonists can occupy and persist in an area13. We extended this model to ecosystems by: (1) defining three groups of abiotic filters (resources, ambient environment and disturbance regimes) and two groups of biotic filters (biotic interactions and human activity); (2) incorporating evolutionary processes that shape characteristic biotic properties of ecosystems over time; (3) defining the outcomes of filtering and evolution in terms of all ecosystem properties including both ecosystem-level functions and species-level traits, rather than only in terms of species traits and composition; and (4) incorporating interactions and feedbacks among filters and selection agents and ecosystem properties to elucidate hypotheses about processes that influence temporal and spatial variability in the properties of ecosystems and their component biota. In community assembly, only a small number of filters are likely to be important in any given habitat13. In keeping with this proposition, we used the generic model to identify biological and physical features that distinguish functionally different groups of ecosystems from one another by focusing on different ecological drivers that come to the fore in structuring their assembly and shaping their properties.Hierarchical levelsThe top level of classification (Fig. 2 and Extended Data Tables 1–4) defines five core realms of the biosphere based on contrasting media that reflect ecological processes and functional properties: terrestrial; freshwaters and inland saline waters (hereafter freshwater); marine; subterranean; and atmospheric. Biome gradient concepts25 highlight continuous variation in ecosystem properties, which is represented in the typology by transitional realms that mark the interfaces between the five core realms (for example, floodplains (terrestrial–freshwater), estuaries (freshwater–marine), and so on). In Supplementary Information, Appendix 3 (pages 3–16) and Supplementary Table 3.1, we describe the five core realms and review the hypothesized assembly filters and ecosystem properties that distinguish different groups within them. The atmospheric realm is included for comprehensive coverage, but we deferred resolution of its lower levels because its biota is poorly understood, sparse, itinerant and represented mainly by dispersive life stages46.Functional biomes (level 2) are components of the biosphere united by one or more major assembly processes that shape key ecosystem functions and ecological processes, irrespective of taxonomic identity (Supplementary Information, Appendix 3, page 17). Our interpretation aligns broadly with ‘functional biomes’ described elsewhere24,25,47, extended here to reflect dominant assembly filters and processes across all realms, rather than the more restricted basis of climate-vegetation relationships that traditionally underpin biome definition on land. Hence, the 25 functional biomes (Supplementary Information, Appendix 4, pages 52–186 and https://global-ecosystems.org/) include some ‘traditional’ terrestrial biomes47, as well as lentic and lotic freshwater systems, pelagic and benthic marine systems, and anthropogenic functional biomes assembled and usually maintained by human activity48.Level 3 of the typology defines 110 ecosystem functional groups described with illustrated profiles in Supplementary Information, Appendix 4 (pages 52–186) and at https://global-ecosystems.org/. These are key units for generalization and prediction, because they include ecosystem types with convergent ecosystem properties shaped by the dominance of a common set of drivers (Supplementary Information, Appendix 3, pages 17–19). Ecosystem functional groups are differentiated along environmental gradients that define spatial and temporal variation in ecological drivers (Figs. 2 and 3 and Supplementary Figs. 3.2 and 3.4). For example, depth gradients of light and nutrients differentiate functional groups in pelagic ocean waters (Fig. 3c and Extended Data Table 4), influencing assembly directly and indirectly through predation. Resource gradients defined by flow regimes (influenced by catchment precipitation and evapotranspiration) and water chemistry, modulated by environmental gradients in temperature and geomorphology, differentiate functional groups of freshwater ecosystems25 (Fig. 3b and Extended Data Table 3). Terrestrial functional groups are distinguished primarily by gradients in water and nutrient availability and by temperature and seasonality (Fig. 3a and Extended Data Table 1), which mediate uptake of those resources and regulate competitive dominance and productivity of autotrophs. Disturbance regimes, notably fire, are important global drivers in assembly of some terrestrial ecosystem functional groups49.Three lower levels of the typology distinguish functionally similar ecosystems based on biotic composition. Our focus in this paper is on global functional relationships of ecosystems represented in the upper three levels of the typology, but the lower levels (Supplementary Information, Appendix 3, pages 19 and 20) are crucial for representing the biota in the typology, and facilitate the scaling up of information from established local-scale typologies that support decisions where most conservation action takes place. These lower levels are being developed progressively through two contrasting approaches with different trade-offs, strengths and weaknesses. First, level 4 units (regional ecosystem subgroups) are ecoregional expressions of ecosystem functional groups developed from the top-down by subdivisions based on biogeographic boundaries (for example, in ref. 50) that serve as simple and accessible proxies for biodiversity patterns51. Second, level 5 units (global ecosystem types) are also regional expressions of ecosystem functional groups, but unlike level 4 units they are explicitly linked to local information sources by bottom-up aggregation52 and rationalization of level 6 units from established subglobal ecological classifications. Subglobal classifications, such as those for different countries (see examples for Chile and Myanmar in Supplementary Tables 3.3 and 3.4), are often developed independently of one another, and thus may involve inconsistencies in methods and thematic resolution of units (that is, broadly defined or finely split). Aggregation of level 6 units to broader units at level 5 based on compositional resemblance is necessary to address inconsistencies among different subglobal classifications and produce compositionally distinctive units suitable for global or regional synthesis.Integrating local classifications into the global typology, rather than replacing them, exploits considerable efforts and investments to produce existing classifications, already developed with local expertise, accuracy and precision. By placing national and regional ecosystems into a global context, this integration also promotes local ownership of information to support local action and decisions, which are critical to ecosystem conservation and management outcomes (Supplementary Information, Appendix 3, page 20). These benefits of bottom-up approaches come at the cost of inevitable inconsistencies among independently developed classifications from different regions, a limitation avoided in the top-down approach applied to level 4.Circumscribing upper-level unitsWe formed specialist working groups (terrestrial/subterranean, freshwater and marine) to develop descriptions of the units within the upper levels of the hierarchy, subdividing realms into functional biomes, and biomes into ecosystem functional groups. We used definitions of the hierarchical levels (Supplementary Table 3.1) and the conceptual model of ecosystem assembly (Fig. 1) to maintain consistency in defining the units at each level during iterative discussions within and between the working groups.Working groups agreed on preliminary lists of functional biomes and ecosystem functional groups by considering variation in major drivers along ecological gradients (Figs. 2 and 3 and Supplementary Figs. 3.2 and 3.4) based on published literature, direct experience and expertise of working group members, and consultation with colleagues in their respective research networks. After the workshop, working groups sought recent global reviews of the candidate units and recent case studies of exemplars to shape descriptions of the major groups of ecosystem drivers and properties for each unit. Circumscriptions and descriptions of the units were reviewed and revised iteratively to ensure clear distinctions among units, with a total of 206 reviews of descriptive profiles undertaken by 60 specialists, a mean of 2.4 reviews per profile (Supplementary Table 5.1). The working groups concurrently adapted the generic model of ecosystem assembly (Fig. 1) to represent working hypotheses on salient drivers and ecosystem properties for each ecosystem functional group.Incorporating human influenceVery few of the ecological typologies reviewed in Supplementary Information, Appendix 1 integrate anthropogenic ecosystems in their classificatory frameworks. Anthropogenic influences create challenges for ecosystem classification, as they may modify defining features of ecosystems to a degree that varies from negligible to major transformation across different locations and times. We addressed this problem by distinguishing transformative outcomes of human activity at levels 2 and 3 of the typology from lesser human influences that may be represented either at levels 5 and 6, or through measurements of ecosystem integrity or condition that reflect divergence from reference states arising from human activity.Anthropogenic ecosystems grouped within levels 2 and 3 were thus defined as those created and sustained by intensive human activities, or arising from extensive modification of natural ecosystems such that they function very differently. These activities are ultimately driven by socio-economic and cultural-spiritual processes that operate across local to global scales of human organization. In many agricultural and aquacultural systems and some others, cessation of those activities may lead to transformation into ecosystem types with qualitatively different properties and organizational processes (see refs. 53,54 for cropland and urban examples, respectively). Indices such as human appropriation of net primary productivity55, combined with land-use maps56, offer useful insights into the distribution of some anthropogenic ecosystems, but further development of indices is needed to adequately represent others, particularly in marine, and freshwater environments. Beyond land-use classification and mapping approaches (Supplementary Information, Appendix 1, page 6), a more comprehensive elaboration of the intensity of human influence underpinning the diverse range of anthropogenic ecosystems requires a multidimensional framework incorporating land-use inputs, outputs, their interactions, legacies of earlier activity and changes in system properties17.Where less intense human activities occur within non-anthropogenic ecosystem types, we focused descriptions on low-impact reference states. Therefore, human activities are not shown as drivers in the assembly models for non-anthropogenic ecosystem groups, even though they may have important influences on the contemporary ecosystem distribution. This approach enables the degree and nature of human influence to be described and measured against these reference states using assessment methods such as the Red List of Ecosystems protocol30, with appropriate data on ecosystem change.Indicative distribution mapsFinally, to produce spatially explicit representations of the units at level 3 of the typology (principle 5), we sought published global maps (sources in Supplementary Table 4.1) that were congruent with the concepts of respective ecosystem functional groups. Where several candidate maps were available, we selected maps with the closest conceptual alignment, finest spatial resolution, global coverage, most recent data and longest time series. The purpose of maps for our study was to visualize global distributions. Prior to applications of map data to spatial analysis, we recommend critical review of methods and validation outcomes reported in each data source to ensure fitness for purpose (Supplementary Information, Appendix 4).Extensive searches of published literature and data archives identified high-quality datasets for some ecosystem functional groups (for example, T1.3 Tropical–subtropical montane rainforests; MT1.4 Muddy shorelines; M1.5 Sea ice) and datasets that met some of these requirements for a number of other ecosystem functional groups (see Supplementary Table 4.1 for details). Where evaluations by authors or reviewers identified limitations in available maps, we used global environmental data layers and biogeographic regionalizations as masks to adjust source maps and improve their congruence to the concept of the relevant functional group (for example, F1.2 Permanent lowland rivers). For ecosystem functional groups with no specific global mapping, we used ecoregions50,57,58 as biogeographic templates to identify broad areas of occurrence. We consulted ecoregion descriptions, global and regional reviews, national and regional ecosystem maps, and applied in situ knowledge of participating experts to identify ecoregions that contain occurrences of the relevant ecosystem functional group (for example, T4.4 Temperate woodlands) (see Supplementary Table 4.1 for details). We mapped ecosystem functional groups as major occurrences where they dominated a landscape or seascape matrix and minor occurrences where they were present, but not dominant in landscape–seascape mosaics, or where dominance was uncertain. Although these two categories in combination communicate more information about ecosystem distribution than binary maps, simple spatial overlays using minor occurrences are likely to inflate spatial statistics. The maps are progressively upgraded in new versions of the typology as explicit spatial models are developed and new data sources become available (see ref. 27 for a current archive of spatial data).The classification and descriptive profiles, including maps, for each functional biome and ecosystem functional group underwent extensive consultation, and targeted peer review and revision through a series of four phases described in Supplementary Information, Appendix 5 (pages 2–4). The reviewer comments and revisions from targeted peer review are documented in Supplementary Table 5.1. In all, more than 100 ecosystem specialists have contributed to the development of v2.1 of the typology.LimitationsUneven knowledge of Earth’s biosphere has constrained the delimitation and description of units within the typology. There is a considerable research bias across the full range of Earth’s ecosystems, with few formal research studies evaluating the relative influence of different ecosystem drivers in many of the functional groups, and abiotic assembly filters generally receiving more attention than biotic and dispersal filters. This poses challenges for developing standardized models of assembly for each ecosystem functional group. The models therefore represent working hypotheses, for which available evidence varies from large bodies of published empirical evidence to informal knowledge of ecosystem experts and their extensive research networks. Large numbers of empirical studies exist for some forest functional groups, savannas, temperate heathlands in Mediterranean-type climates, coral reefs, rocky shores, kelp forests, trophic webs in pelagic waters, small permanent freshwater lakes, and others (see references in the respective profiles (Supplementary Information, Appendix 4)). For example, Bond49 reviewed empirical and modelling evidence on the assembly and function of tropical savannas that make up three ecosystem functional groups, showing that they have a large global biophysical envelope that overlaps with tropical dry forests, and that their distribution and dynamics within that envelope is strongly influenced by top-down regulation via biotic filters (large herbivores and their predators) and recurrent disturbance regimes (fires). Despite the development of this critical knowledge base, savannas suffer from an awareness disparity that hinders effective conservation and management59. In other ecosystems, our assembly models rely more heavily on inferences and generalizations of experts drawn from related ecosystems, are more sensitive to interpretations of participating experts, and await empirical testing and adjustment as understanding improves. Empirical tests could examine hypothesized variation in ecosystem properties along gradients within and between ecosystem functional groups and should return incremental improvements on group delineation and description of assembly processes.High-quality maps at suitable resolution are not yet available for the full set of ecosystem functional groups, which limits current readiness for global analysis. The maps most fit for global synthesis are based on remote sensing and environmental predictors that align closely to the concept of their ecosystem functional group, incorporate spatially explicit ground observations and have low rates of omission and commission errors, ‘high’ spatial resolution (that is, rasters of 1 km2 (30 arcsec) or better), and time series of changes. Sixty of the maps currently in our archive27 aligned directly or mostly with the concept of their corresponding ecosystem functional group, while the remainder were based on indirect spatial proxies, and most were derived from polygon data or rasters of 30 arcsec or finer (Supplementary Table 4.1). Maps for 81 functional groups were based either on known records, or on spatial data validated by quantitative assessments of accuracy or efficacy. Therefore, we suggest that maps currently available for 60–80 of the 110 functional groups are potentially suitable for global spatial analysis of ecosystem distributions. Although, a significant advance on broad proxies such as ecoregions, the maps currently available for ecosystem functional groups would benefit from expanded application of recent advances in remote sensing, environmental datasets, spatial modelling and cloud computing to redress inequalities in reliability and resolution. The most urgent priorities for this work are those identified in Supplementary Table 4.1 as relying on indirect proxies for alignment to concept, qualitative evaluation by experts and coarse resolution ( >1 km2) spatial data.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Factors determining the dorsal coloration pattern of aposematic salamanders

    Dobzhansky, T. Geographical variation in lady-beetles. Am. Nat. 67, 97–126 (1933).Article 

    Google Scholar 
    Jablonski, N. G. & Chaplin, G. Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. 107, 8962–8968 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Wallace, A. R. The colors of animals and plants. Am. Nat. 11, 641–662. https://doi.org/10.1086/271979 (1877).Article 

    Google Scholar 
    Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).Article 

    Google Scholar 
    Branham, M. A. & Wenzel, J. W. The origin of photic behavior and the evolution of sexual communication in fireflies (Coleoptera: Lampyridae). Cladistics 19, 1–22. https://doi.org/10.1016/s0748-3007(02)00131-7 (2003).Article 
    PubMed 

    Google Scholar 
    Maan, M. E. & Cummings, M. E. Female preferences for aposematic signal components in a polymorphic poison frog. Evolution 62, 2334–2345. https://doi.org/10.1111/j.1558-5646.2008.00454.x (2008).Article 
    PubMed 

    Google Scholar 
    Poulton, E. B. The Colours of Animals: Their Meaning and Use, Especially Considered in the Case of Insects (D. Appleton, 1890).
    Google Scholar 
    Ruxton, G. D., Sherratt, T. N. & Michael, P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry (Oxford University Press, 2004).Book 

    Google Scholar 
    Mappes, J., Marples, N. & Endler, J. A. The complex business of survival by aposematism. Trends Ecol. Evol. 20, 598–603 (2005).Article 

    Google Scholar 
    Joron, M. & Mallet, J. L. Diversity in mimicry: paradox or paradigm?. Trends Ecol. Evol. 13, 461–466 (1998).CAS 
    Article 

    Google Scholar 
    Summers, R. W. et al. An experimental study of the effects of predation on the breeding productivity of capercaillie and black grouse. J. Appl. Ecol. 41, 513–525 (2004).Article 

    Google Scholar 
    Nokelainen, O., Hegna, R. H., Reudler, J. H., Lindstedt, C. & Mappes, J. Trade-off between warning signal efficacy and mating success in the wood tiger moth. Proc. R. Soc. B Biol. Sci. 279, 257–265 (2012).Article 

    Google Scholar 
    Ronka, K. et al. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol. Lett. 23, 1654–1663. https://doi.org/10.1111/ele.13597 (2020).Article 
    PubMed 

    Google Scholar 
    Abram, P. K. et al. An insect with selective control of egg coloration. Curr. Biol. 25, 2007–2011. https://doi.org/10.1016/j.cub.2015.06.010 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Briolat, E. S. et al. Diversity in warning coloration: selective paradox or the norm?. Biol. Rev. 94, 388–414. https://doi.org/10.1111/brv.12460 (2019).Article 
    PubMed 

    Google Scholar 
    Frost-Mason, S. K. & Mason, K. A. What insights into vertebrate pigmentation has the axolotl model system provided?. Int. J. Dev. Biol. 40, 685–693 (1996).CAS 
    PubMed 

    Google Scholar 
    Stückler, S., Cloer, S., Hödl, W. & Preininger, D. Carotenoid intake during early life mediates ontogenetic colour shifts and dynamic colour change during adulthood. Anim. Behav. 187, 121–135. https://doi.org/10.1016/j.anbehav.2022.03.007 (2022).Article 

    Google Scholar 
    Benito, M. M., Gonzalez-Solis, J. & Becker, P. H. Carotenoid supplementation and sex-specific trade-offs between colouration and condition in common tern chicks. J. Comp. Physiol. B 181, 539–549. https://doi.org/10.1007/s00360-010-0537-z (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Stuckert, A. M. M. et al. Variation in pigmentation gene expression is associated with distinct aposematic color morphs in the poison frog Dendrobates auratus. BMC Evol. Biol. 19, 15. https://doi.org/10.1186/s12862-019-1410-7 (2019).Article 

    Google Scholar 
    Ohsaki, N. A common mechanism explaining the evolution of female-limited and both-sex Batesian mimicry in butterflies. J. Anim. Ecol. 74, 728–734 (2005).Article 

    Google Scholar 
    Grill, C. P. & Moore, A. J. Effects of a larval antipredator response and larval diet on adult phenotype in an aposematic ladybird beetle. Oecologia 114, 274–282 (1998).ADS 
    Article 

    Google Scholar 
    Friman, V. P., Lindstedt, C., Hiltunen, T., Laakso, J. & Mappes, J. Predation on multiple trophic levels shapes the evolution of pathogen virulence. PLoS ONE 4, e6761 (2009).ADS 
    Article 

    Google Scholar 
    Rojas, B. Behavioural, ecological, and evolutionary aspects of diversity in frog colour patterns. Biol. Rev. 92, 1059–1080. https://doi.org/10.1111/brv.12269 (2017).Article 
    PubMed 

    Google Scholar 
    Hegna, R. H., Saporito, R. A. & Donnelly, M. A. Not all colors are equal: predation and color polytypism in the aposematic poison frog Oophaga pumilio. Evol. Ecol. 27, 831–845 (2013).Article 

    Google Scholar 
    Pizzigalli, C. et al. Eco-geographical determinants of the evolution of ornamentation in vipers. Biol. J. Linnean Soc. 130, 345–358 (2020).Article 

    Google Scholar 
    Nielsen, M. E. & Mappes, J. Out in the open: behavior’s effect on predation risk and thermoregulation by aposematic caterpillars. Behav. Ecol. 31, 1031–1039 (2020).Article 

    Google Scholar 
    Lindstedt, C., Suisto, K., Burdfield-Steel, E., Winters, A. E. & Mappes, J. Defense against predators incurs high reproductive costs for the aposematic moth Arctia plantaginis. Behav. Ecol. 31, 844–850. https://doi.org/10.1093/beheco/araa033 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freeborn, L. R. The Genetic, Cellular, and Evolutionary Basis of Skin Coloration in the Highly Polymorphic Poison Frog, Oophaga pumilio (University of Pittsburgh, 2021).
    Google Scholar 
    Garcia, T. S., Straus, R. & Sih, A. Temperature and ontogenetic effects on color change in the larval salamander species Ambystoma barbouri and Ambystoma texanum. Can. J. Zool. 81, 710–715. https://doi.org/10.1139/z03-036 (2003).Article 

    Google Scholar 
    Caspers, B. A. et al. Developmental costs of yellow colouration in fire salamanders and experiments to test the efficiency of yellow as a warning colouration. Amphibia-Reptilia 41, 373–385. https://doi.org/10.1163/15685381-bja10006 (2020).Article 

    Google Scholar 
    Wells, K. D. The Ecology and Behaviour of Amphibians (The University of Chicago Press, 2007).Book 

    Google Scholar 
    Balogova, M., Kyselova, M. & Uhrin, M. Changes in dorsal spot pattern in adult Salamandra salamandra (LINNAEUS, 1758). Herpetozoa 28, 167–171 (2016).
    Google Scholar 
    Brejcha, J. et al. Variability of colour pattern and genetic diversity of Salamandra salamandra (Caudata: Salamandridae) in the Czech Republic. J. Vertebr. Biol. https://doi.org/10.25225/jvb.21016 (2021).Article 

    Google Scholar 
    Romeo, G., Giovine, G., Ficetola, G. F. & Manenti, R. Development of the fire salamander larvae at the altitudinal limit in Lombardy (north-western Italy): effect of two cohorts occurrence on intraspecific aggression. North-West J. Zool. 11, 234–240 (2015).
    Google Scholar 
    Manenti, R. & Ficetola, G. F. Salamanders breeding in subterranean habitats: local adaptations or behavioural plasticity?. J. Zool. 289, 182–188. https://doi.org/10.1111/j.1469-7998.2012.00976.x (2013).Article 

    Google Scholar 
    Manenti, R., Conti, A. & Pennati, R. Fire salamander (Salamandra salamandra) males’ activity during breeding season: effects of microhabitat features and body size. Acta Herpetol. 12, 29–36 (2017).
    Google Scholar 
    Weitere, M., Tautz, D., Neumann, D. & Steinfartz, S. Adaptive divergence vs. environmental plasticity: tracing local genetic adaptation of metamorphosis traits in salamanders. Mol. Ecol. 13, 1665–1677. https://doi.org/10.1111/j.1365-294X.2004.02155.x (2004).Article 
    PubMed 

    Google Scholar 
    Manenti, R., Denoel, M. & Ficetola, G. F. Foraging plasticity favours adaptation to new habitats in fire salamanders. Anim. Behav. 86, 375–382. https://doi.org/10.1016/j.anbehav.2013.05.028 (2013).Article 

    Google Scholar 
    Fernandez-Conradi, P., Mocellin, L., Desfossez, E. & Rasmann, S. Seasonal changes in arthropod diversity patterns along an Alpine elevation gradient. Ecol. Entomol. 45(5), 1035–1043 (2020).Article 

    Google Scholar 
    Roslin, T. et al. Higher predation risk for insect prey at low latitudes and elevations. Science 356, 742–744. https://doi.org/10.1126/science.aaj1631 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ficetola, G. F., Manenti, R., De Bernardi, F. & Padoa-Schioppa, E. Can patterns of spatial autocorrelation reveal population processes? An analysis with the fire salamander. Ecography 35, 693–703. https://doi.org/10.1111/j.1600-0587.2011.06483.x (2012).Article 

    Google Scholar 
    Maiorano, L., Montemaggiori, A., Ficetola, G. F., O’Connor, L. & Thuiller, W. Tetra-EU 1.0: a species-level trophic meta-web of European tetrapods. Glob. Ecol. Biogeogr. 29, 1452–1457 (2020).Article 

    Google Scholar 
    Caldonazzi, M., Nistri, A. & Tripepi, S. in Amphibia Vol. XLII (eds B. Lanza et al.) 221–227 (2007).Morales-Castilla, I., Matias, M. G., Gravel, D. & Araújo, M. B. Inferring biotic interactions from proxies. Trends Ecol. Evol. 30, 347–356 (2015).Article 

    Google Scholar 
    Bernini, F. et al. Atlante degli Anfibi e dei Rettili della Lombardia (Provincia di Cremona, 2004).Peñalver-Alcázar, M., Galán, P. & Aragón, P. Assessing Rensch’s rule in a newt: roles of primary productivity and conspecific density in interpopulation variation of sexual size dimorphism. J. Biogeogr. 46, 2558–2569. https://doi.org/10.1111/jbi.13680 (2019).Article 

    Google Scholar 
    Limongi, L., Ficetola, G. F., Romeo, G. & Manenti, R. Environmental factors determining growth of salamander larvae: a field study. Curr. Zool. 61, 421–427. https://doi.org/10.1093/czoolo/61.3.421 (2015).Article 

    Google Scholar 
    Czeczuga, B. Some carotenoids in Chironomus annularius Meig. larvae (Diptera: Chironomidae). Hydrobiologia 36, 353–360. https://doi.org/10.1007/BF00039794 (1970).CAS 
    Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    visreg: Visualization of regression models. R package version 2.2-0. http://CRAN.R-project.org/package=visreg (2015).Preißler, K. et al. More yellow more toxic? Sex rather than alkaloid content is correlated with yellow coloration in the fire salamander. J. Zool. 308, 293–300. https://doi.org/10.1111/jzo.12676 (2019).Article 

    Google Scholar 
    Kikuchi, D. W., Herberstein, M. E., Barfield, M., Holt, R. D. & Mappes, J. Why aren’t warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biol. Rev. 96, 2446–2460 (2021).Article 

    Google Scholar 
    Abd El-Wakeil, K. F. Trophic structure of macro- and meso-invertebrates in Japanese coniferous forest: carbon and nitrogen stable isotopes analyses. Biochem. Systematics Ecol. 37, 317–324. https://doi.org/10.1016/j.bse.2009.05.008 (2009).CAS 
    Article 

    Google Scholar 
    Frelich, L. E. et al. Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate-boreal forest. Philos. Trans. R. Soc. B Biol. Sci. 367, 2955–2961. https://doi.org/10.1098/rstb.2012.0235 (2012).Article 

    Google Scholar 
    Umbers, K. D. L., Silla, A. J., Bailey, J. A., Shaw, A. K. & Byrne, P. G. Dietary carotenoids change the colour of Southern corroboree frogs. Biol. J. Linnean Soc. 119, 436–444. https://doi.org/10.1111/bij.12818 (2016).Article 

    Google Scholar 
    Balogova, M. & Uhrin, M. Sex-biased dorsal spotted patterns in the fire salamander (Salamandra salamandra). Salamandra 51, 12–18 (2015).
    Google Scholar 
    Arenas, L. M. & Stevens, M. Diversity in warning coloration is easily recognized by avian predators. J. Evol. Biol. 30, 1288–1302. https://doi.org/10.1111/jeb.13074 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilby, B. L., Burfeind, D. D. & Tibbetts, I. R. Better red than dead? Potential aposematism in a harpacticoid copepod, Metis holothuriae. Mar. Environ. Res. 74, 73–76. https://doi.org/10.1016/j.marenvres.2011.12.001 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Przeczek, K., Mueller, C. & Vamosi, S. M. The evolution of aposematism is accompanied by increased diversification. Integr. Zool. 3, 149–156. https://doi.org/10.1111/j.1749-4877.2008.00091.x (2008).Article 
    PubMed 

    Google Scholar 
    Moore, M. P. & Martin, R. A. On the evolution of carry-over effects. J Anim. Ecol. 88, 1832–1844. https://doi.org/10.1111/1365-2656.13081 (2019).Article 
    PubMed 

    Google Scholar 
    Raffaëlli, J. Les Urodeles du monde (Penclen Edition, 2007).Velo-Anton, G., Zamudio, K. R. & Cordero-Rivera, A. Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra). Heredity 108, 410–418. https://doi.org/10.1038/Hdy.2011.91 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rodriguez, A. et al. Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches. Mol. Phylogenet. Evol. 115, 16–26. https://doi.org/10.1016/j.ympev.2017.07.009 (2017).Article 
    PubMed 

    Google Scholar 
    Speed, M. P. & Ruxton, G. D. Aposematism: what should our starting point be?. Proc. Biol. Sci. 272, 431–438. https://doi.org/10.1098/rspb.2004.2968 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tarvin, R. D., Powell, E. A., Santos, J. C., Ron, S. R. & Cannatella, D. C. The birth of aposematism: high phenotypic divergence and low genetic diversity in a young clade of poison frogs. Mol. Phylogenet. Evol. 109, 283–295. https://doi.org/10.1016/j.ympev.2016.12.035 (2017).Article 
    PubMed 

    Google Scholar 
    Jusczcyk, W. & Zakrzewski, M. External morphology of larval stages of the spotted salamander Salamandra salamandra (L.). Acta Biol. Crac. 23, 127–135. https://doi.org/10.1111/jzo.12676 (1981).Article 

    Google Scholar  More

  • in

    New catalogue of Earth’s ecosystems

    Keith, D. A. et al. Nature https://doi.org/10.1038/s41586-022-05318-4 (2022).Article 

    Google Scholar 
    Domesday Book, or, The Great Survey of England of William the Conqueror A.D. MLXXXVI (Ordnance Survey Office, 1862).McMahon, G. et al. Environ. Manage. 28, 293–316 (2001).PubMed 
    Article 

    Google Scholar 
    Spalding, M. D. et al. BioScience 57, 573–583 (2007).Article 

    Google Scholar 
    Holdridge, L. R. Science 105, 367–368 (1947).PubMed 
    Article 

    Google Scholar 
    Köppen, W. in Handbuch der Klimatologie (eds Köppen, W. & Geiger, G. C.) 1–44 (Gebrüder Borntraeger, 1936).
    Google Scholar 
    Whittaker, R. H. Communities and Ecosystems (Macmillan, 1975).
    Google Scholar 
    Keddy, P. A. Trends Ecol. Evol. 9, 231–234 (1994).PubMed 
    Article 

    Google Scholar 
    United Nations. Convention on Biological Diversity (UN, 1992).
    Google Scholar 
    MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton Univ. Press, 1972).
    Google Scholar 
    Schoener, T. W. in Community Ecology (eds Diamond, J. D. & Case, T. ) 467–479 (Harper & Row, 1986).
    Google Scholar 
    Winemiller, K. O., Fitzgerald, D. B., Bower, L. M. & Pianka, E. R. Ecol. Lett. 18, 737–751 (2015).PubMed 
    Article 

    Google Scholar  More

  • in

    Response of soil viral communities to land use changes

    Characteristics of LVD dataset and assembled vOTUsThe land use virome dataset LVD was derived from 2.6 billion paired clean reads of sequences across 50 viromes of 25 samples with five types of land uses (Supplementary Data 2). A total of 6,442,065 contigs ( >1500 bp) were yielded, of which 764,466 (11.8%) contigs were identified as putative viral genomes through VIBRANT. Subsequently, putative false positive viral genomes were removed (see Methods section), and 27,951 and 48,936 bona fide viral genomes were retained from the 25 intracellular VLPs (iVLPs) and 25 extracellular VLPs (eVLPs) viromes, respectively. These genomes were clustered into 25,941 and 45,152 vOTUs for iVLPs and eVLPs viromes, respectively, in which the iVLPs and eVLPs viromes shared 11,467 (19.2%) vOTUs. Subsequently, they were merged and dereplicated, resulting in 59,626 vOTUs (Supplementary Data 3) for the following analysis. A total of 8112 (13.6%) vOTUs genomes were classified as complete, in which the median length of all and circular vOTUs were 25,183 bp and 45,511 bp, respectively (Supplementary Fig. 4).To explore the taxonomic affiliation of vOTUs in family and genus-level, a gene-sharing network consist of 59,626 vOTUs genomes from this study and 3502 reference phage genomes (from NCBI Viral RefSeq version 201) revealed 6009 VCs comprising of 37,224 vOTUs, of which 34,417 vOTUs were from LVD, besides 2794 singletons (2653 from LVD dataset), 16,056 outliers (15,833 from LVD) and 8492 overlaps (8061 from LVD) were detected (Supplementary Data 4). Of these, only 157 VCs contained genomes from both the RefSeq and LVD dataset (1864 viral genomes) (Supplementary Data 4). Most of VCs (1837, 30.4%) included only two members.At the family level, most of vOTUs were classified into Siphoviridae (712 by vConTACT2 and 29,671 (50.9%) by Demovir, tailed dsDNA), Podoviridae (610 by vConTACT2 and 9923 (17.6 %) by Demovir, tailed dsDNA), Myoviridae (485 by vConTACT2 and 5445 (9.9%) by Demovir, tailed dsDNA), Tectiviridae (50 by vConTACT2 and 10 (0.10%) by Demovir, non-tailed dsDNA) (Fig. 1). Besides, the Eukaryotic viruses Herpesviridae (159 by Demovir, 0.26%, dsDNA), Phycodnaviridae (120 (0.20%) by Demovir, dsDNA); the Virophage Family Lavidaviridae (15 (0.03%) by Demovir) were detected as well, but a majority of vOTUs were unclassified in genus-level.Fig. 1: The taxonomic assignment of LVD.Pie charts showing the affiliation of 56,870 vOTUs at family level assigned by script Demovir (a). and the affiliation of 1864 vOTUs at family level assigned by package vConTACT2 (b). Source data are provided in the Source Data file.Full size imageViral community structures differ across land use typesBray–Curtis dissimilarity of viral communities (median 0.9951) showed strong heterogeneity of viral communities among different sites (Fig. 2a). While, the Bray–Curtis dissimilarity (median: 0.5109) between paired viral communities of iVLPs and eVLPs from each site have a significant lower heterogeneity than inter-sites (Wilcox.test, p  0.05; Fig. 2b). Therefore, the paired iVLPs and eVLPs viromes from each site were merged for subsequently viral community analysis.Fig. 2: The macrodiversity of soil viral communities.a Boxplot showing Bray–Curtis dissimilarity of viral communities of intra-sites (between the corresponding community of iVLPs and eVLPs, n = 25) and inter-sites (between different sample sites, n = 300). The minima, maxima, center, bounds of box and whiskers in boxplots from bottom to top represented percentile 0, 10, 25, 50, 75, 90, and 100, respectively, the difference between different zones was tested using the two-sided Wilcox.test, ****p  More

  • in

    The future of Viscum album L. in Europe will be shaped by temperature and host availability

    Walas, Ł, Ganatsas, P., Iszkuło, G., Thomas, P. A. & Dering, M. Spatial genetic structure and diversity of natural populations of Aesculus hippocastanum L. in Greece. PLoS ONE 14, e0226225 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Song, Y. G. et al. Past, present and future suitable areas for the relict tree Pterocarya fraxinifolia (Juglandaceae): Integrating fossil records, niche modeling, and phylogeography for conservation. Eur. J. For. Res. 140, 1323–1339 (2021).Article 

    Google Scholar 
    Dyderski, M. K., Paź, S., Frelich, L. E. & Jagodziński, A. M. How much does climate change threaten European forest tree species distributions?. Glob. Change Biol. 24, 1150–1163 (2018).ADS 
    Article 

    Google Scholar 
    Chakraborty, D., Móricz, N., Rasztovits, E., Dobor, L. & Schueler, S. Provisioning forest and conservation science with high-resolution maps of potential distribution of major European tree species under climate change. Ann. For. Sci. 78, 1–18 (2021).Article 

    Google Scholar 
    Williams, J. N. et al. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 15, 565–576 (2009).Article 

    Google Scholar 
    Watling, J. I. et al. Performance metrics and variance partitioning reveal sources of uncertainty in species distribution models. Ecol. Modell. 309, 48–59 (2015).ADS 
    Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. [Internet] Maxent software for modeling species niches and distributions. url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 13 July 2022.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X. & Pino, J. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol. Conserv. 166, 221–230 (2013).Article 

    Google Scholar 
    Rigling, A., Eilmann, B., Koechli, R. & Dobbertin, M. Mistletoe-induced crown degradation in Scots pine in a xeric environment. Tree Physiol. 30, 845–852 (2010).PubMed 
    Article 

    Google Scholar 
    Sangüesa-Barreda, G., Linares, J. C. & Camarero, J. J. Mistletoe effects on Scots pine decline following drought events: Insights from within-tree spatial patterns, growth and carbohydrates. Tree Physiol. 32, 585–598 (2012).PubMed 
    Article 

    Google Scholar 
    Kollas, C., Gutsch, M., Hommel, R., Lasch-Born, P. & Suckow, F. Mistletoe-induced growth reductions at the forest stand scale. Tree Physiol. 38, 735–744 (2018).PubMed 
    Article 

    Google Scholar 
    Schulze, E. D. & Ehleringer, J. R. The effect of nitrogen supply on growth and water-use efficiency of xylem-tapping mistletoes. Planta 162, 268–275 (1984).PubMed 
    Article 

    Google Scholar 
    Escher, P. et al. Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album L: Effect of abscisic acid (ABA) in the xylem sap of its host (Populus x euamericana). Plant Physiol. Biochem. 46, 64–70 (2008).PubMed 
    Article 

    Google Scholar 
    Zweifel, R., Bangerter, S., Rigling, A. & Sterck, F. J. Pine and mistletoes: How to live with a leak in the water flow and storage system?. J. Exp. Bot. 63, 2565–2578 (2012).PubMed 
    Article 

    Google Scholar 
    Mutlu, S., Osma, E., Ilhan, V., Turkoglu, H. I. & Atici, O. Mistletoe (Viscum album) reduces the growth of the Scots pine by accumulating essential nutrient elements in its structure as a trap. Trees 30, 815–824 (2016).Article 

    Google Scholar 
    Tsopelas, P., Angelopoulos, A., Economou, A. & Soulioti, N. Mistletoe (Viscum album) in the fir forest of Mount Parnis Greece. For. Ecol. Manag. 202, 59–65 (2004).Article 

    Google Scholar 
    Dobbertin, M. & Rigling, A. Pine mistletoe (Viscum album ssp. austriacum) contributes to Scots pine (Pinus sylvestris) mortality in the Rhone valley of Switzerland. For. Pathol. 36, 309–322 (2006).Article 

    Google Scholar 
    Lech, P., Żółciak, A. & Hildebrand, R. Occurrence of European mistletoe (Viscum album L.) on forest trees in Poland and its dynamics of spread in the period 2008–2018. Forests 11, 83 (2020).Article 

    Google Scholar 
    Iszkuło, G. et al. Jemioła jako zagrożenie dla zdrowotności drzewostanów iglastych. Sylwan 164, 226–236 (2020) ([In Polish]).
    Google Scholar 
    Mellado, A., Morillas, L., Gallardo, A. & Zamora, R. Temporal dynamic of parasite-mediated linkages between the forest canopy and soil processes and the microbial community. New Phytol. 211, 1382–1392 (2016).PubMed 
    Article 

    Google Scholar 
    Mellado, A. & Zamora, R. Generalist birds govern the seed dispersal of a parasitic plant with strong recruitment constraints. Oecologia 176, 139–147 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Hódar, J. A., Lázaro-González, A. & Zamora, R. Beneath the mistletoe: parasitized trees host a more diverse herbaceous vegetation and are more visited by rabbits. Ann. For. Sci. 75, 1–8 (2018).Article 

    Google Scholar 
    Zuber, D. Biological flora of Central Europe: Viscum album L. Flora Morphol. Distrib Funct. Ecol. Plants 199, 181–203 (2004).Article 

    Google Scholar 
    Urech, K. & Baumgartner, S. Chemical constituents of Viscum album L.: Implications for the pharmaceutical preparation of mistletoe. In: Mistletoe: From mythology to evidence-based medicine. (eds. Zänker, K.S. & Kaveri, S. V.), 11–23. (S. Karger AG, Basel, Switzerland, 2015).Singh, B. N. et al. European Viscum album: a potent phytotherapeutic agent with multifarious phytochemicals, pharmacological properties and clinical evidence. RSC Adv. 6, 23837–23857 (2016).ADS 
    Article 

    Google Scholar 
    Jeffree, C. E. & Jeffree, E. P. Redistribution of the potential geographical ranges of mistletoe and colorado beetle in Europe in response to the temperature component of climate change. Funct. Ecol. 10, 562–577 (1996).Article 

    Google Scholar 
    Troels-Smith, J. Ivy, mistletoe and elm climate indicators-fodder plants. A contribution to the interpretation of the pollen zone border VII-VIII. Dan. Geol. Undersøg. IV Række 4, 1–32 (1960).
    Google Scholar 
    Dobbertin, M. et al. The upward shift in altitude of pine mistletoe (Viscum album ssp. austriacum) in Switzerland—the result of climate warming?. Int. J. Biometeorol. 50, 40–47 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    Zamora, R. & Mellado, A. Identifying the abiotic and biotic drivers behind the elevational distribution shift of a parasitic plant. Plant Biol. 21, 307–317 (2019).PubMed 
    Article 

    Google Scholar 
    Barney, C. W., Hawksworth, F. G. & Geils, B. W. Hosts of Viscum album. Eur. J. Plant Pathol. 28, 187–208 (1998).
    Google Scholar 
    Böhling, N. et al. Notes on the Cretan mistletoe, Viscum album subsp. creticum subsp. nova (Loranthaceae/Viscaceae). Isr. J. Plant Sci. 50, 77–84 (2002).
    Google Scholar 
    Plants of the World Online [Internet] url: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:921668-1. Accessed 13 July 2022.Zuber, D. & Widmer, A. Phylogeography and host race differentiation in the European mistletoe (Viscum album L.). Mol. Ecol. 18, 1946–1962 (2009).PubMed 
    Article 

    Google Scholar 
    Schaller, G., Urech, K., Grazi, G. & Giannattasio, M. Viscotoxin composition of the three European subspecies of Viscum album. Planta Med 64, 677–678 (1998).PubMed 
    Article 

    Google Scholar 
    Kahle-Zuber, D. Biology and evolution of the European mistletoe (Viscum album). Doctoral Thesis. ETH Zurich. (2008).Zuber, D. & Widmer, A. Genetic evidence for host specificity in the hemi-parasitic Viscum album L. (Viscaceae). Mol. Ecol. 9, 1069–1073 (2000).PubMed 
    Article 

    Google Scholar 
    Mejnartowicz, L. Relationship and genetic diversity of mistletoe [Viscum album L.] subspecies. Acta Soc. Bot. Pol. Pol. 75, 39–49 (2006).Article 

    Google Scholar 
    Xie, W., Adolf, J. & Melzig, M. F. Identification of Viscum album L. miRNAs and prediction of their medicinal values. PLoS ONE 12, e0187776 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Valle, A. C. V., de Carvalho, A. C. & Andrade, R. V. Viscum album-literature review. Int. J. Sci. Res 10, 63–71 (2021).
    Google Scholar 
    Schröder, L. et al. The gene space of European mistletoe (Viscum album). Plant J. 109, 278–294 (2022).PubMed 
    Article 

    Google Scholar 
    Sangüesa-Barreda, G. et al. Delineating limits: Confronting predicted climatic suitability to field performance in mistletoe populations. J. Ecol. 106, 2218–2229 (2018).Article 

    Google Scholar 
    GBIF.org [Internet] GBIF Occurrence Download Doi: https://doi.org/10.15468/dl.zw6f5q. Accessed 27 July 2021.GBIF.org [Internet] GBIF Occurrence Download Doi: https://doi.org/10.15468/dl.6wmc9d. Accessed 6 August 2021.FloraWeb [Internet] url: https://www.floraweb.de. Accessed 10 December 2021.Pladias – Database of the Czech Flora and Vegetation. [Internet] url: www.pladias.cz. Accessed 14 July 2022.Zając, A., Zając, M., Tertil, R. & Harman, I. Atlas rozmieszczenia roślin naczyniowych w Polsce. 593 (Instytut Botaniki Uniwersytetu Jagiellońskiego, Kraków, 2001) [In Polish].Idžojtić, M., Kogelnik, M., Franjić, J. & Škvorc, Ž. Hosts and distribution of Viscum album L. ssp. album in Croatia and Slovenia. Plant Biosyst. 140, 50–55 (2006).Article 

    Google Scholar 
    Varga, I. et al. Changes in the Distribution of European Mistletoe (Viscum album) in Hungary During the Last Hundred Years. Folia Geobot 49, 559–577 (2014).Article 

    Google Scholar 
    Wild, J. et al. Plant distribution data for the Czech Republic integrated in the Pladias database. Preslia 91, 1–24 (2019).Article 

    Google Scholar 
    Krasylenko, Y. et al. The European mistletoe (Viscum album L.): Distribution, host range, biotic interactions, and management worldwide with special emphasis on Ukraine. Botany 98, 499–516 (2020).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the Earth land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karger D. N., et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad Digital Repository (2018).Gutjahr, O. et al. Max planck institute earth system model (MPI-ESM1. 2) for the high-resolution model intercomparison project (HighResMIP). Geosci. Model Dev. 12, 3241–3281 (2019).ADS 
    Article 

    Google Scholar 
    Hijmans, R. J., & van Etten, J. raster: Geographic analysis and modeling with raster data. R package version 2.0-12. (2012).R Core Team. The Comprehensive R Archive Network. [Internet] url: https://cran.r-project.org/ Accessed 14 July 2022.Chakraborty, D., Móricz, N., Rasztovits, E., Dobor, L. & Schueler, S. Provisioning forest and conservation science with European tree species distribution models under climate change (Version v1). Zenodo https://doi.org/10.5281/zenodo.3686918 (2020).Wang, Z., Chang, Y. I., Ying, Z., Zhu, L. & Yang, Y. A parsimonious threshold-independent protein feature selection method through the area under receiver operating characteristic curve. Bioinformatics 23, 2788–2794 (2007).PubMed 
    Article 

    Google Scholar 
    Lobo, J. M., Jiménez-Valverde, A. & Hortal, J. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33, 103–114 (2010).Article 

    Google Scholar 
    QGIS Development Team. QGIS Geographic Information Sys-tem. Open Source Geospatial Foundation Project. [Internet]. url: https://www.qgis.org/en/site/. Accessed 14 July 2022.Fischer, J. T. Water relations of mistletoes and their hosts. In: The biology of mistletoes. (eds. Calder, M., & Bernhard, T.), 163–184 (Academic Press, Sydney, 1983).Skre, O. The regional distribution of vascular plants in Scandinavia with requirements for high summer temperatures. Norweg. J. Bot. 26, 295–318 (1979).
    Google Scholar 
    Wangerin, B. Loranthaceae. In: Lebensgeschichte der Blütenpflanzen Mitteleuropas (eds. Kirchner, O. V., Loew, E., & Schroeter, C.) 2, 953–1146 (E. Ulmer, Stuttgart, 1937).Rybalka, I. A. Relationship between density of the white mistletoe (Viscum album L.) and some landscape and environmental characteristics of urban areas in the case of Kharkiv. Ekologicheskiy Vestnik 1, 87–97 (2017).
    Google Scholar 
    Patykowski, J. & Kołodziejek, J. Comparative analysis of antioxidant activity in leaves of different hosts infected by mistletoe (Viscum album L. subsp. album). Arch. Biol. Sci. 65, 851–861 (2013).Article 

    Google Scholar 
    Skrypnik, L., Maslennikov, P., Feduraev, P., Pungin, A. & Belov, N. Ecological and landscape factors affecting the spread of European mistletoe (Viscum album L.) in urban areas (A Case Study of the Kaliningrad City, Russia). Plants 9, 394 (2020).PubMed Central 
    Article 

    Google Scholar 
    Kunick, W. Veränderungen von Flora und Vegetation einer Grosstadt dargestellt am Beispiel von Berlin (West). PhD Thesis, Technische Universität (1974). [In German].Kołodziejek, J., Patykowski, J. & Kołodziejek, R. Distribution, frequency and host patterns of European mistletoe (Viscum album subsp. album) in the major city of Lodz Poland. Biol. 68, 55–64 (2013).
    Google Scholar 
    Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 12, 662–666 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geol. Surv. Data Ser. 691, 4–9 (2012).
    Google Scholar 
    Luther, P., Becker, H. & Leroi, R. Die Mistel: Botanik, Lektine, medizinische Anwendung. Springer (1987).Gazol, A. et al. Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. J. Biogeogr. 42, 1150–1162 (2015).Article 

    Google Scholar 
    Tikkanen, O. P. et al. Freezing tolerance of seeds can explain differences in the distribution of two widespread mistletoe subspecies in Europe. For. Ecol. Manag. 482, 118806 (2021).Article 

    Google Scholar 
    Pilichowski, S. et al. Wpływ Viscum album ssp. austriacum (Wiesb.) Vollm. na przyrost radialny Pinus sylvestris L. Sylwan 162, 452–459 (2018) ([In Polish]).
    Google Scholar 
    Szmidla, H., Tkaczyk, M., Plewa, R., Tarwacki, G. & Sierota, Z. Impact of common mistletoe (Viscum album L.) on scots pine forests—A call for action. Forests 10, 847 (2019).Article 

    Google Scholar 
    Wójcik, R. & Kędziora, W. Abundance of Viscum in central Poland: Results from a large-scale mistletoe inventory. Environ. Sci. Proc. 3, 98 (2020).
    Google Scholar 
    Sangüesa-Barreda, G., Linares, J. C. & Camarero, J. J. Drought and mistletoe reduce growth and water-use efficiency of Scots pine. For. Ecol. Manag. 296, 64–73 (2013).Article 

    Google Scholar 
    Mathiasen, R. L., Nickrent, D. L., Shaw, D. C. & Watson, D. M. Mistletoes: Pathology, systematics, ecology, and management. Plant Dis. 92, 988–1006 (2008).PubMed 
    Article 

    Google Scholar 
    Catal, Y. & Carus, S. Effect of pine mistletoe on radial growth of crimean pine (Pinus nigra) in Turkey. J. Environ. Biol. 32, 263 (2011).PubMed 

    Google Scholar 
    Skre, O. High temperature demands for growth and development in Norway Spruce [Picea abies (L.) Karst.] in Scandinavia. Meld Nor Landbrukshøgsk 51, 1–29 (1971).
    Google Scholar 
    Utaaker, K. A temperature-growth index—the respiration equivalent—used in climatic studies on the meso-scale in Norway. Agric. Meteorol. 5, 351–359 (1968).Article 

    Google Scholar 
    Iversen, J. Viscum, Hedera and Ilex as climate indicators: A contribution to the study of the post-glacial temperature climate. Geol. fören. Stockh. förh. 66, 463–483 (1944).Article 

    Google Scholar 
    Briggs, J. Mistletoe, Viscum album (Santalaceae), in Britain and Ireland; a discussion and review of current status and trends. Brit. Ir. Bot. 3, 419–454 (2021).
    Google Scholar  More

  • in

    Marine subsidies produce cactus forests on desert islands

    Bartz, K. K. & Naiman, R. J. Effects of Salmon-Borne nutrients on riparian soils and vegetation in Southwest Alaska. Ecosystems 8, 529–545 (2005).Article 

    Google Scholar 
    Erskine, P. D. et al. Subantarctic Macquarie Island—a model ecosystem for studying animal-derived nitrogen sources using 15N natural abundance. Oecologia 117, 187–193 (1998).ADS 
    PubMed 
    Article 

    Google Scholar 
    Hocking, M. D. & Reimchen, T. E. Salmon species, density and watershed size predict magnitude of marine enrichment in riparian food webs. Oikos 118(9), 1307–1318 (2009).Article 

    Google Scholar 
    Hocking, M. D. & Reynolds, J. D. Impacts of salmon on riparian plant diversity. Science 331, 1609–1612 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hocking, M. D., & Reimchen, T. E. Salmon-derived nitrogen in terrestrial invertebrates from coniferous forests of the Pacific Northwest. BMC Ecol. 2, 4. https://doi.org/10.1186/1472-6785-2-4 (2002).Bilby, R. E., Fransen, B. R. & Bisson, P. A. Incorporation of nitrogen and carbon from spawning coho salmon into the trophic system of small streams: Evidence from stable isotopes. Can. J. Fish Aquat. Sci. 53, 164–173 (1996).Article 

    Google Scholar 
    Talley, D. M. et al. Research challenges at the land–sea interface. Estuar. Coast. Shelf Sci. 58, 699–702 (2003).ADS 
    Article 

    Google Scholar 
    Mizutani, H. & Wada, E. Nitrogen and carbon isotope ratios in seabird rookeries and their ecological implications. Ecology 69(2), 340–349 (1988).Article 

    Google Scholar 
    Rowe, J. A., Litton, C. M., Lepczyk, C. A. & Popp, B. N. Impacts of endangered seabirds on nutrient cycling in montane forest ecosystems of Hawai’i. Pac. Sci. 71(4), 495–509 (2017).Article 

    Google Scholar 
    Sanchez-Pinero, F. & Polis, G. A. Bottom-up dynamics of allochthonous input: Direct and indirect effects of seabirds on islands. Ecology 81(11), 3117–3132 (2000).Article 

    Google Scholar 
    Wait, D. A., Aubrey, D. P. & Anderson, W. B. Seabird guano influences on desert islands: Soil chemistry and herbaceous species richness and productivity. J. Arid Environ. 60, 681–695 (2005).ADS 
    Article 

    Google Scholar 
    Stapp, P., Polis, G. A. & Pinero, F. S. Stable isotopes reveal strong marine and El Nino effects on island food webs. Nature 401, 467–469 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Anderson, W. B., Wait, D. A. & Stapp, P. Resources from another place and time: Responses to pulses in a spatially subsidized system. Ecology 89(3), 660–670 (2008).PubMed 
    Article 

    Google Scholar 
    Ellis, J. C. Marine birds on land: A review of plant biomass, species richness, and community composition in seabird colonies. Plant Ecol. 181(2), 227–241 (2005).Article 

    Google Scholar 
    Fukami, T. et al. Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol. Lett. 9, 1299–1307 (2006).PubMed 
    Article 

    Google Scholar 
    Wootton, J. T. Direct and indirect effects of nutrients on intertidal community structure: Variable consequences of seabird guano. J. Exp. Mar. Biol. Ecol. 151, 139–153 (1991).Article 

    Google Scholar 
    McCauley, D. J., et al., From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Sci. Rep. 2, 409. https://doi.org/10.1038/srep00409 (2012).Young, H. S., McCauley, D. J., Dunbar, R. B. & Dirzo, R. Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies. Proc. Natl. Acad. Sci. U.S.A. 107(5), 2072–2077 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lindeboom, H. J. The nitrogen pathway in a Penguin rookery. Ecology 65(1), 269–277 (1984).CAS 
    Article 

    Google Scholar 
    Mizutani, H., Kabaya, Y. & Wada, E. Ammonia volatilization and high 15N/14N ratio in a penguin rookery in Antarctica. Geochem. J. 19(6), 323–327 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    Anderson, W. B. & Polis, G. A. Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118, 324–332 (1999).ADS 
    PubMed 
    Article 

    Google Scholar 
    Polis, G. A. & Hurd, S. D. Linking marine and terrestrial food webs: Allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am. Nat. 147, 396–423 (1996).Article 

    Google Scholar 
    Goss, N. S. New and rare birds found breeding on the San Pedro Martir Isle. University of California Press 5, 240–244 (1888).
    Google Scholar 
    Velarde, E., et al., Nesting seabirds of the Gulf of California’s Offshore islands: Diversity, ecology and conservation. in Biodiversity, Ecosystems, and Conservation in Northern Mexico, Carton, J.-L. E., Ceballos, G., Felger, R. S. Eds. (Oxford University Press, 2005) pp. 452–470.Wilder, B. T., Felger, R. S. & Ezcurra, E. Controls of plant diversity and composition on a desert archipelago. PeerJ 7, e7286. https://doi.org/10.7717/peerj.7286 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellis, J., Fariña, J. & Witman, J. Nutrient transfer from sea to land: the case of gulls and cormorants in the Gulf of Maine. J. Anim. Ecol. 75, 565–574 (2006).PubMed 
    Article 

    Google Scholar 
    Wilder, B. T., Felger, R. S. & Morales, H. R. Succulent plant diversity of the Sonoran Islands, Gulf of California Mexico. Haseltonia 2008(14), 127–160 (2008).Article 

    Google Scholar 
    Lucassen, F. et al. The stable isotope composition of nitrogen and carbon and elemental contents in modern and fossil seabird guano from Northern Chile—Marine sources and diagenetic effects. PLoS ONE 12(6), e0179440. https://doi.org/10.1371/journal.pone.0179440 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, D. δ15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 16(3), 153–162 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Szpak, P., Longstaffe, F. J., Millaire, J.-F. & White, C. D. Stable isotope biogeochemistry of seabird guano fertilization: Results from growth chamber studies with maize (Zea mays). PLoS ONE 7(3), e33741. https://doi.org/10.1371/journal.pone.0033741 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezcurra, E., et al. Natural History and Evolution of the World’s Deserts. Global Deserts Outlook. United Nations Environment Programme (UNEP), 1–26 (2006).Yetman, D. The Great Cacti: Ethnobotany and biogeography (University of Arizona Press, 2007).
    Google Scholar 
    Álvarez-Borrego, S. Physical oceanography. in A New Island Biogeography of the Sea of Cortés, Case, T. J., Cody, M. L., Ezcurra, E. Eds. (Oxford University Press, 2002), pp. 41–59.Douglas, R., Gonzalez-Yajimovich, O., Ledesma-Vazquez, J. & Staines-Urias, F. Climate forcing, primary production and the distribution of Holocene biogenic sediments in the Gulf of California. Quatern. Sci. Rev. 26, 115–129 (2007).ADS 
    Article 

    Google Scholar 
    Urbán, J. Marine mammals of the Gulf of California: An overview of diversity and conservation status. in The Gulf of California: Biodiversity and conservation, R. C. Brusca, Ed. (The University of Arizona Press and the Arizona-Sonora Desert Museum, 2010), pp. 188–209.Hastings, P. A., Findley, L. T., & Van der Heiden, A. M. Fishes of the Gulf of California. in: Brusca, R. C., (eds) The Gulf of California: Biodiversity and conservation 96–118, The University of Arizona Press and the Arizona-Sonora Desert Museum (2010).
    Google Scholar 
    Polis, G. A., Hurd, S. D., Jackson, C. T. & Sanchez Piñero, F. El Niño effects on the dynamics and control of an Island ecosystem in the Gulf of California. Ecology 78, 1884–1897 (1997).
    Google Scholar 
    Wilder, B. T. & Felger, R. S. Dwarf giants, guano, and isolation: The flora and vegetation of San Pedro Mártir Island, Gulf of California, Mexico. Proc. San Diego Soc. Nat. Hist. 42, 1–24 (2010).
    Google Scholar 
    Medel-Narvaez, A., Leon Luz, J. L., Freaner-Martinez, F. & Molina-Freaner, F. Patterns of abundance and population structure of Pachycereus pringlei (Cactaceae), a columnar cactus of the Sonoran Desert. Plant Ecol. 187, 1–14 (2006).Article 

    Google Scholar 
    Felger, R.S., Wilder, B.T. in collaboration with Romero-Morales, H. Plant Life of a Desert Archipelago: Flora of the Sonoran Islands in the Gulf of California. Tucson, University of Arizona Press (2012).Wilkinson, C. E., Hocking, M. D. & Reimchen, T. E. Uptake of salmon-derived nitrogen by mosses and liverworts in Coastal British Columbia. Oikos 108, 85–98 (2005).CAS 
    Article 

    Google Scholar 
    Barrett, K., Wait, D. A. & Anderson, W. B. Small island biogeography in the Gulf of California: Lizards, the subsidized island biogeography hypothesis, and the small island effect. J. Biogeogr. 30, 1575–1581 (2003).Article 

    Google Scholar 
    Young, H. S., McCauley, D. J. & Dirzo, R. Differential responses to guano fertilization among tropical tree species with varying functional traits. Am. J. Bot. 98, 207–214 (2011).PubMed 
    Article 

    Google Scholar 
    Nobel, P. S. Environmental Biology of Agaves and Cacti. Cambridge University Press (2003).Ramirez, K. S., Craine, J. M. & Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18(6), 1918–1927 (2012).ADS 
    Article 

    Google Scholar 
    Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396, 1–26 (2015).CAS 
    Article 

    Google Scholar 
    Schoeninger, M. J. & DeNiro, M. J. Nitrogen and carbon isotope composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta 48(4), 625–639 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem. Cycles 17(1), 1031. https://doi.org/10.1029/2002GB001903 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Kahmen, A., Wanek, W. & Buchmann, N. Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 156, 861–870 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bowen, T. Unknown Island: Seri Indians, Europeans, and San Esteban Island in the Gulf of California (University of New Mexico Press, 2000).
    Google Scholar 
    Evans, R. D. Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 6(3), 121–126 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dolby, G., Bennett, S. E. K., Lira-Noriega, A., Wilder, B. T. & Munguia-Vega, A. Assessing the geological and climatic forcing of biodiversity and evolution surrounding the Gulf of California. J. Southw. 57, 391–455 (2015).Article 

    Google Scholar 
    Case, T. J., Cody, M. L., & Ezcurra, E. A New Island Biogeography of the Sea of Cortés (Oxford University Press, 2002).Book 

    Google Scholar 
    Tershy, B. R. & Breese, D. The birds of San Pedro Mártir Island, Gulf of California Mexico. West. Birds 28, 96–107 (1997).
    Google Scholar 
    Tershy, B. R., Breese, D. & Croll, D. A. Human perturbations and conservation strategies for San Pedro Mártir Island, Islas de Golfo de California Reserve México. Environ. Conserv. 24, 261–270 (1997).Article 

    Google Scholar 
    Wilder, B. T. Historical biogeography of the Midriff Islands in the Gulf of California, Mexico. Dissertation. Riverside: UC, Riverside (2014).Post, D. M. et al. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kiljunen, M. et al. A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. J. Appl. Ecol. 43, 1213–1222 (2006).CAS 
    Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).Article 

    Google Scholar 
    R Core Team, R: A language and environment for statistical computing. https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2022). More