More stories

  • in

    Lessons from COVID-19 for wildlife ranching in a changing world

    Pascual, U. et al. Biodiversity and the challenge of pluralism. Nat. Sustain. 4, 567–572 (2021).Article 

    Google Scholar 
    Cumming, G. S. The relevance and resilience of protected areas in the Anthropocene. Anthropocene 13, 46–56 (2016).Article 

    Google Scholar 
    Cumming, G. S. et al. Understanding protected area resilience: a multi-scale, social-ecological approach. Ecol. Appl. 25, 299–319 (2015).Article 

    Google Scholar 
    Ellis, E. C. & Mehrabi, Z. Half Earth: promises, pitfalls, and prospects of dedicating half of Earth’s land to conservation. Curr. Opin. Environ. Sustain. 38, 22–30 (2019).Article 

    Google Scholar 
    Golden Kroner, R. E. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019).Article 
    CAS 

    Google Scholar 
    Palfrey, R., Oldekop, J. & Holmes, G. Conservation and social outcomes of private protected areas. Conserv. Biol. 35, 1098–1110 (2021).Article 

    Google Scholar 
    Gurney, G. G. et al. Biodiversity needs every tool in the box: use OECMs. Nature 595, 646–649 (2021).Article 
    CAS 

    Google Scholar 
    Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).Article 

    Google Scholar 
    Taylor, W. A. et al. South Africa’s private wildlife ranches protect globally significant populations of wild ungulates. Biodivers. Conserv. 30, 4111–4135 (2021).Article 

    Google Scholar 
    Child, B. A., Musengezi, J., Parent, G. D. & Child, G. F. T. The economics and institutional economics of wildlife on private land in Africa. Pastoralism 2, 18 (2012).Article 

    Google Scholar 
    Kiffner, C. et al. Community-based wildlife management area supports similar mammal species richness and densities compared to a national park. Ecol. Evol. 10, 480–492 (2020).Article 

    Google Scholar 
    Naidoo, R. et al. Complementary benefits of tourism and hunting to communal conservancies in Namibia. Conserv. Biol. 30, 628–638 (2016).Article 

    Google Scholar 
    Cousins, J., Sadler, J. & Evans, J. Exploring the role of private wildlife ranching as a conservation tool in South Africa: stakeholder perspectives. Ecol. Soc. 13, 43 (2008).Article 

    Google Scholar 
    Kamal, S., Grodzińska-Jurczak, M. & Brown, G. Conservation on private land: a review of global strategies with a proposed classification system. J. Environ. Plann. Manage. 58, 576–597 (2015).Article 

    Google Scholar 
    Ogar, E., Pecl, G. & Mustonen, T. Science must embrace traditional and indigenous knowledge to solve our biodiversity crisis. One Earth 3, 162–165 (2020).Article 

    Google Scholar 
    De Vos, A. & Cumming, G. S. The contribution of land tenure diversity to the spatial resilience of protected area networks. People Nat. 1, 331–346 (2019).Article 

    Google Scholar 
    Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 37, 421–448 (2012).Article 

    Google Scholar 
    Cumming, G. & Collier, J. Change and identity in complex systems. Ecol. Soc. 10, 29 (2005).Article 

    Google Scholar 
    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).Article 

    Google Scholar 
    Leslie, P. & McCabe, J. T. Response diversity and resilience in social–ecological systems. Curr. Anthropol. 54, 114–143 (2013).Article 

    Google Scholar 
    Clements, H. S., Knight, M., Jones, P. & Balfour, D. Private rhino conservation: diverse strategies adopted in response to the poaching crisis. Conserv. Lett. 13, e12741 (2020).Article 

    Google Scholar 
    Carpenter, S., Walker, B., Anderies, J. M. & Abel, N. From metaphor to measurement: resilience of what to what? Ecosystems 4, 765–781 (2001).Article 

    Google Scholar 
    Parker, K., De Vos, A., Clements, H. S., Biggs, D. & Biggs, R. Impacts of a trophy hunting ban on private land conservation in South African biodiversity hotspots. Conserv. Sci. Pract. 2, e214 (2020).
    Google Scholar 
    World Travel & Tourism Council. The Economic Impact of Global Wildlife Tourism (WTTC, 2019).Lindsey, P. et al. Conserving Africa’s wildlife and wildlands through the COVID-19 crisis and beyond. Nat. Ecol. Evol. 4, 1300–1310 (2020).Article 

    Google Scholar 
    Hambira, W. L., Stone, L. S. & Pagiwa, V. Botswana nature-based tourism and COVID-19: transformational implications for the future. Dev. South. Afr. 39, 51–67 (2021).Article 

    Google Scholar 
    Mudzengi, B. K., Gandiwa, E., Muboko, N. & Mutanga, C. N. Innovative community ecotourism coping and recovery strategies to COVID-19 pandemic shocks: the case of Mahenye. Dev. South. Afr. 39, 68–83 (2021).Article 

    Google Scholar 
    Waithaka, J. et al. Impacts of COVID-19 on protected and conserved areas: a global overview and regional perspectives. Parks 27, 41–56 (2021).Article 

    Google Scholar 
    Smith, M. K. S. et al. Sustainability of protected areas: vulnerabilities and opportunities as revealed by COVID-19 in a national park management agency. Biol. Conserv. 255, 108985 (2021).Article 

    Google Scholar 
    Miller-Rushing, A. J. et al. COVID-19 pandemic impacts on conservation research, management, and public engagement in US national parks. Biol. Conserv. 257, 109038 (2021).Article 

    Google Scholar 
    Thurstan, R. H. et al. Envisioning a resilient future for biodiversity conservation in the wake of the COVID‐19 pandemic. People Nat. 3, 990–1013 (2021).Article 

    Google Scholar 
    Taylor, W. A., Lindsey, P. A., Nicholson, S. K., Relton, C. & Davies-Mostert, H. T. Jobs, game meat and profits: the benefits of wildlife ranching on marginal lands in South Africa. Biol. Conserv. 245, 108561 (2020).Article 

    Google Scholar 
    Chidakel, A., Eb, C. & Child, B. The comparative financial and economic performance of protected areas in the Greater Kruger National Park, South Africa: functional diversity and resilience in the socio-economics of a landscape-scale reserve network.J. Sustain. Tour. 28, 1100–1119 (2020).Article 

    Google Scholar 
    Saayman, M., van der Merwe, P. & Saayman, A. The economic impact of trophy hunting in the South African wildlife industry. Glob. Ecol. Conserv. 16, e00510 (2018).Article 

    Google Scholar 
    Hall, R. A political economy of land reform in South Africa. Rev. Afr. Polit. Econ. 31, 213–227 (2004).Article 

    Google Scholar 
    Mkhize, N. Game farm conversions and the land question: unpacking present contradictions and historical continuities in farm dwellers’ tenure insecurity in Cradock. J. Contemp. Afr. Stud. 32, 207–219 (2014).Article 

    Google Scholar 
    Thakholi, L. Conservation labour geographies: subsuming regional labour into private conservation spaces in South Africa. Geoforum 123, 1–11 (2021).Article 

    Google Scholar 
    Brandt, F. Power battles on South African trophy-hunting farms: farm workers, resistance and mobility in the Karoo. J. Contemp. Afr. Stud. 34, 165–181 (2016).Article 

    Google Scholar 
    Child, B. & Barnes, G. The conceptual evolution and practice of community-based natural resource management in southern Africa: past, present and future. Environ. Conserv. 37, 283–295 (2010).Article 

    Google Scholar 
    Clements, H. S., Baum, J. & Cumming, G. S. Money and motives: an organizational ecology perspective on private land conservation. Biol. Conserv. 197, 108–115 (2016).Article 

    Google Scholar 
    van der Merwe, P., Saayman, A. & Jacobs, C. Assessing the economic impact of COVID-19 on the private wildlife industry of South Africa. Glob. Ecol. Conserv. 28, e01633 (2021).Article 

    Google Scholar 
    Clements, H. S. & Cumming, G. S. Traps and transformations influencing the financial viability of tourism on private-land conservation areas. Conserv. Biol. 32, 424–436 (2018).Article 

    Google Scholar 
    Winterbach, C. W., Whitesell, C. & Somers, M. J. Wildlife abundance and diversity as indicators of tourism potential in northern Botswana. PLoS ONE 10, e0135595 (2015).Article 

    Google Scholar 
    Di Minin, E., Fraser, I., Slotow, R. & MacMillan, D. C. Understanding heterogeneous preference of tourists for big game species: implications for conservation and management. Anim. Conserv. 16, 249–258 (2013).Article 

    Google Scholar 
    Clements, H. S., Biggs, R. & Cumming, G. S. Cross-scale and social–ecological changes constitute main threats to private land conservation in South Africa. J. Environ. Manag. 274, 111235 (2020).Article 

    Google Scholar 
    Breen, C. et al. Integrating cultural and natural heritage approaches to marine protected areas in the MENA region. Mar. Policy 132, 104676 (2021).Article 

    Google Scholar 
    Munasinghe, H. The politics of the past: constructing a national identity through heritage conservation. Int. J. Herit. Stud. 11, 251–260 (2005).Article 

    Google Scholar 
    MacKinnon, K. et al. Strengthening the global system of protected areas post-2020: a perspective from the IUCN World Commission on Protected Areas. Parks 36, 281–296 (2020).
    Google Scholar 
    van Kerkhoff, L. et al. Towards future-oriented conservation: managing protected areas in an era of climate change. Ambio 48, 699–713 (2019).Article 

    Google Scholar 
    De Vos, A. et al. Pathogens, disease, and the social–ecological resilience of protected areas. Ecol. Soc. 21, 20 (2016).Article 

    Google Scholar 
    Bengtsson, J. et al. Reserves, resilience and dynamic landscapes. Ambio 32, 389–396 (2003).Article 

    Google Scholar 
    Broom, D. M., Galindo, F. A. & Murgueitio, E. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. R. Soc. B 280, 20132025 (2013).Article 
    CAS 

    Google Scholar 
    IPBES Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).Marnewick, D., Jonas, H. & Stevens, C. Site-level Methodology for Identifying Other Effective Area-based Conservation Measures (OECMs) Draft Version 1.0 (IUCN: Gland, Switzerland; 2020).Nalau, J., Becken, S. & Mackey, B. Ecosystem-based adaptation: a review of the constraints. Environ. Sci. Policy 89, 357–364 (2018).Article 

    Google Scholar 
    Hartung, C. et al. Open Data Kit: tools to build information services for developing regions. In Proc. 4th ACM/IEEE International Conference on Information and Communication Technologies and Development (ed Unwin, T.) pp 1–12 (Association for Computing Machinery, New York, NY, United States; 2010).Oksanen, A. J. et al. Vegan: Community Ecology Package. R version 2.6–2 (2022). https://cran.r-project.org/web/packages/vegan/vegan.pdfWard, J. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).Article 

    Google Scholar 
    Maechler, M. et al. Cluster: Finding Groups in Data. R version 2.0.3 (2015). https://cran.microsoft.com/snapshot/2015-11-17/web/packages/cluster/cluster.pdfR Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). More

  • in

    Dual ancestries and ecologies of the Late Glacial Palaeolithic in Britain

    Housley, R. A., Gamble, C. S., Street, M. & Pettitt, P. Radiocarbon evidence for the lateglacial human recolonisation of Northern Europe. Proc. Prehist. Soc. 63, 25–54 (1997).
    Google Scholar 
    Blockley, S. P. E., Donahue, R. E. & Pollard, A. M. Radiocarbon calibration and Late Glacial occupation in northwest Europe. Antiquity 74, 112–119 (2000).
    Google Scholar 
    Terberger, T., Barton, N. & Street, M. in Humans, Environment and Chronology of the Late Glacial of the North European Plain (eds Street, M. et al.) 189–207 (Romisch-Germanisches Zentralmuseum, 2009).Miller, R. Mapping the expansion of the Northwest Magdalenian. Quat. Int. 272–273, 209–230 (2012).
    Google Scholar 
    Riede, F. & Pedersen, J. B. Late Glacial human dispersals in Northern Europe and disequilibrium dynamics. Hum. Ecol. 46, 621–632 (2018).
    Google Scholar 
    Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).CAS 
    PubMed 

    Google Scholar 
    Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Villalba-Mouco, V. et al. Survival of Late Pleistocene hunter-gatherer ancestry in the Iberian Peninsula. Curr. Biol. 29, 1169–1177 (2019).Willis, K. J. & Whittaker, R. J. Perspectives: paleoecology. The refugial debate. Science 287, 1406–1407 (2000).CAS 
    PubMed 

    Google Scholar 
    Sommer, R. S. & Nadachowski, A. Glacial refugia of mammals in Europe: evidence from fossil records. Mamm. Rev. 36, 251–265 (2006).
    Google Scholar 
    Bennett, K. D. & Provan, J. What do we mean by ‘refugia’? Quat. Sci. Rev. 27, 2449–2455 (2008).
    Google Scholar 
    Terberger, T. & Street, M. Hiatus or continuity? New results for the question of pleniglacial settlement in Central Europe. Antiquity 76, 691–698 (2002).
    Google Scholar 
    Maier, A. in The Central European Magdalenian. Vertebrate Paleobiology and Paleoanthropology (ed. Maier, A.) 231–241 (Springer, 2015).Reade, H. et al. Radiocarbon chronology and environmental context of Last Glacial Maximum human occupation in Switzerland. Sci. Rep. 10, 4694 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stevens, R. E., Hermoso-Buxán, X. L., Marín-Arroyo, A. B., González-Morales, M. R. & Straus, L. G. Investigation of Late Pleistocene and Early Holocene palaeoenvironmental change at El Mirón cave (Cantabria, Spain): insights from carbon and nitrogen isotope analyses of red deer. Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 46–60 (2014).
    Google Scholar 
    Clark, C. D., Hughes, A. L. C., Greenwood, S. L., Jordan, C. & Sejrup, H. P. Pattern and timing of retreat of the last British–Irish Ice Sheet. Quat. Sci. Rev. 44, 112–146 (2012).
    Google Scholar 
    Currant, A. P. & Jacobi, R. in The Ancient Human Occupation of Britain Vol. 14 (eds Ashton, N. et al.) 165–180 (Elsevier, 2011).Walker, M. J. C. et al. Devensian lateglacial environmental changes in Britain: a multi-proxy environmental record from Llanilid, South Wales, UK. Quat. Sci. Rev. 22, 475–520 (2003).
    Google Scholar 
    Hill, T. C. B. et al. Devensian late-glacial environmental change in the Gordano Valley, North Somerset, England: a rare archive for southwest Britain. J. Paleolimnol. 40, 431–444 (2008).
    Google Scholar 
    Jacobi, R. M. & Higham, T. F. G. The early Lateglacial re-colonization of Britain: new radiocarbon evidence from Gough’s Cave, southwest England. Quat. Sci. Rev. 28, 1895–1913 (2009).
    Google Scholar 
    Jacobi, R. & Higham, T. in The Ancient Human Occupation of Britain Vol. 14 (eds Ashton, N. M. et al.) 223–247 (Elsevier, 2011).Grimm, S. B. & Weber, M.-J. The chronological framework of the Hamburgian in the light of old and new 14C dates. Quartär. 55, 17–40 (2008).
    Google Scholar 
    Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brace, S. et al. Ancient genomes indicate population replacement in Early Neolithic Britain. Nat. Ecol. Evol. 3, 765–771 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Jacobi, R. M. & Higham, T. F. G. The ‘Red Lady’ ages gracefully: new ultrafiltration AMS determinations from Paviland. J. Hum. Evol. 55, 898–907 (2008).CAS 
    PubMed 

    Google Scholar 
    Schulting, R. J. et al. A mid-upper Palaeolithic human humerus from Eel Point, South Wales, UK. J. Hum. Evol. 48, 493–505 (2005).PubMed 

    Google Scholar 
    Richards, M. P., Hedges, R. E. M., Jacobi, R., Current, A. & Stringer, C. FOCUS: Gough’s Cave and Sun Hole Cave human stable isotope values indicate a high animal protein diet in the British Upper Palaeolithic. J. Archaeol. Sci. 27, 1–3 (2000).
    Google Scholar 
    Proctor, C., Douka, K., Proctor, J. W. & Higham, T. The age and context of the KC4 Maxilla, Kent’s Cavern, UK. Eur. J. Archaeol. 20, 74–97 (2017).
    Google Scholar 
    Richards, M. P., Jacobi, R., Cook, J., Pettitt, P. B. & Stringer, C. B. Isotope evidence for the intensive use of marine foods by Late Upper Palaeolithic humans. J. Hum. Evol. 49, 390–394 (2005).CAS 
    PubMed 

    Google Scholar 
    Bello, S. M., Saladié, P., Cáceres, I., Rodríguez-Hidalgo, A. & Parfitt, S. A. Upper Palaeolithic ritualistic cannibalism at Gough’s Cave (Somerset, UK): the human remains from head to toe. J. Hum. Evol. 82, 170–189 (2015).PubMed 

    Google Scholar 
    Andrews, P. & Fernández-Jalvo, Y. Cannibalism in Britain: taphonomy of the Creswellian (Pleistocene) faunal and human remains from Gough’s Cave (Somerset, England). Bull. Nat. Hist. Mus. Geol. 58, 59–81 (2003).
    Google Scholar 
    Bello, S. M., Parfitt, S. A. & Stringer, C. B. Earliest directly-dated human skull-cups. PLoS ONE 6, e17026 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Currant, A. P., Jacobi, R. M. & Stringer, C. B. Excavations at Gough’s Cave, Somerset 1986–7. Antiquity 63, 131–136 (1989).
    Google Scholar 
    Davies, M. in Limestones and Caves of Wales (ed. Ford, T. D.) 92–101 (Cambridge Univ. Press, 1989).Dawkins, W. B. Memorandum on the remains from the cave at the Great Ormes Head. Proc. Liverp. Geol. Soc. 4, 156–159 (1880).
    Google Scholar 
    Sieveking, G. & de, G. The Kendrick’s Cave mandible. Br. Mus. Q. 35, 230–250 (1971).
    Google Scholar 
    Pettitt, P. B. Discovery, nature and preliminary thoughts about Britain’s first cave art.Capra 5,1–12 (2003).
    Google Scholar 
    Bello, S. M., Wallduck, R., Parfitt, S. A. & Stringer, C. B. An Upper Palaeolithic engraved human bone associated with ritualistic cannibalism. PLoS ONE 12, e0182127 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Bocherens, H. & Drucker, D. Isotope evidence for paleodiet of late Upper Paleolithic humans in Great Britain: a response to Richards et al. 2005. J. Hum. Evol. 51, 440–442 (2006).PubMed 

    Google Scholar 
    Fernandes, R., Millard, A. R., Brabec, M., Nadeau, M.-J. & Grootes, P. Food reconstruction using isotopic transferred signals (FRUITS): a Bayesian model for diet reconstruction. PLoS ONE 9, e87436 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).
    Google Scholar 
    Kloss-Brandstätter, A. et al. HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum. Mutat. 32, 25–32 (2011).PubMed 

    Google Scholar 
    Skoglund, P., Storå, J., Götherström, A. & Jakobsson, M. Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 40, 4477–4482 (2013).CAS 

    Google Scholar 
    Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).CAS 
    PubMed 

    Google Scholar 
    Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Harney, É., Patterson, N., Reich, D. & Wakeley, J. Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics 217, iyaa045 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Currant, A. & Jacobi, R. A formal mammalian biostratigraphy for the Late Pleistocene of Britain. Quat. Sci. Rev. 20, 1707–1716 (2001).
    Google Scholar 
    Pickard, C. & Bonsall, C. Post-glacial hunter-gatherer subsistence patterns in Britain: dietary reconstruction using FRUITS. Archaeol. Anthropol. Sci. 12, 142 (2020).
    Google Scholar 
    Stevens, R. E., Jacobi, R. M. & Higham, T. F. G. Reassessing the diet of Upper Palaeolithic humans from Gough’s Cave and Sun Hole, Cheddar Gorge, Somerset, UK. J. Archaeol. Sci. 37, 52–61 (2010).
    Google Scholar 
    Sala, N. & Conard, N. Taphonomic analysis of the hominin remains from Swabian Jura and their implications for the mortuary practices during the Upper Paleolithic. Quat. Sci. Rev. 150, 278–300 (2016).
    Google Scholar 
    Saladié, P. & Rodríguez-Hidalgo, A. Archaeological evidence for cannibalism in prehistoric Western Europe: from Homo antecessor to the Bronze Age. J. Archaeol. Method Theory 24, 1034–1071 (2017).
    Google Scholar 
    Cook, J. Ice Age Art: Arrival of the Modern Mind (British Museum Press, 2013).Gupta, S., Collier, J. S., Palmer-Felgate, A. & Potter, G. Catastrophic flooding origin of shelf valley systems in the English Channel. Nature 448, 342–345 (2007).CAS 
    PubMed 

    Google Scholar 
    Mills, W. in From the Atlantic to Beyond the Bug River. Finding and Defining the Federmesser-Gruppen/Azilian (eds Grimm, S. B. et al.) 1–24 (Propylaeum, 2020).Amkreutz, L. et al. What lies beneath … Late Glacial human occupation of the submerged North Sea landscape. Antiquity 92, 22–37 (2018).
    Google Scholar 
    Ward, I., Larcombe, P. & Lillie, M. The dating of Doggerland—post-glacial geochronology of the southern North Sea. Environ. Archaeol. 11, 207–218 (2006).
    Google Scholar 
    Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. B. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52, 103–112 (2010).CAS 

    Google Scholar 
    Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B 370, 20130624 (2015).
    Google Scholar 
    Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).CAS 
    PubMed 

    Google Scholar 
    Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl Acad. Sci. USA 104, 14616–14621 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petr, M., Vernot, B. & Kelso, J. admixr—R package for reproducible analyses using ADMIXTOOLS. Bioinformatics 35, 3194–3195 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Busing, F. M., Meijer, E. & Van Der Leeden, R. Delete-m jackknife for unequal m. Stat. Comput. 9, 3–8 (1999).
    Google Scholar 
    Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014).PubMed 

    Google Scholar 
    Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gallego Llorente, M. et al. Ancient Ethiopian genome reveals extensive Eurasian admixture throughout the African continent. Science 350, 820–822 (2015).CAS 
    PubMed 

    Google Scholar 
    Villalba-Mouco, V. et al. Survival of Late Pleistocene hunter-gatherer ancestry in the Iberian Peninsula. Curr. Biol. 29, 1169–1177 (2019).CAS 
    PubMed 

    Google Scholar  More

  • in

    The environmental footprint of global food production

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).Article 
    CAS 

    Google Scholar 
    Godfray, H. C. J. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).Article 

    Google Scholar 
    Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).Article 
    CAS 

    Google Scholar 
    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).Article 

    Google Scholar 
    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).Article 
    CAS 

    Google Scholar 
    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).Article 
    CAS 

    Google Scholar 
    Ellis, E. C., Goldewikj, K. K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).
    Google Scholar 
    Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).Article 
    CAS 

    Google Scholar 
    Rosegrant, M. W., Ringler, C. & Zhu, T. Water for agriculture: maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 34, 205–222 (2009).Article 

    Google Scholar 
    Tubiello, F. N. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 21, 2655–2660 (2015).Article 

    Google Scholar 
    Lee, R. Y., Seitzinger, S. & Mayorga, E. Land-based nutrient loading to LMEs: a global watershed perspective on magnitudes and sources. Environ. Dev. 17, 220–229 (2016).Article 

    Google Scholar 
    Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).Article 
    CAS 

    Google Scholar 
    McIntyre, P. B., Liermann, C. A. R. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).Article 
    CAS 

    Google Scholar 
    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).Article 
    CAS 

    Google Scholar 
    Hilborn, R., Banobi, J., Hall, S. J., Pucylowski, T. & Walsworth, T. E. The environmental cost of animal source foods. Front. Ecol. Environ. 16, 329–335 (2018).Article 

    Google Scholar 
    Parker, R. W. R. et al. Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Change 8, 333–337 (2018).Article 
    CAS 

    Google Scholar 
    Davis, K. F. et al. Meeting future food demand with current agricultural resources. Glob. Environ. Change 39, 125–132 (2016).Article 

    Google Scholar 
    Gephart, J. A. et al. The environmental cost of subsistence: optimizing diets to minimize footprints. Sci. Total Environ. 553, 120–127 (2016).Article 
    CAS 

    Google Scholar 
    Gephart, J. A. et al. Environmental performance of blue foods. Nature 597, 360–365 (2021).Article 
    CAS 

    Google Scholar 
    Halpern, B. S. et al. Putting all foods on the same table: achieving sustainable food systems requires full accounting. Proc. Natl Acad. Sci. USA 116, 18152–18156 (2019).Article 
    CAS 

    Google Scholar 
    Béné, C. et al. Feeding 9 billion by 2050—putting fish back on the menu. Food Secur. 7, 261–274 (2015).Article 

    Google Scholar 
    Tacon, A. G. J. & Metian, M. Fish matters: importance of aquatic foods in human nutrition and global food supply. Rev. Fish. Sci. 21, 22–38 (2013).Article 
    CAS 

    Google Scholar 
    Verones, F., Moran, D., Stadler, K., Kanemoto, K. & Wood, R. Resource footprints and their ecosystem consequences. Sci. Rep. 7, 40743 (2017).Article 
    CAS 

    Google Scholar 
    Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).Article 

    Google Scholar 
    Mekonnen, M. M. & Hoekstra, A. Y. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products (UNESCO-IHE, 2010).Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7, 63–68 (2017).Article 
    CAS 

    Google Scholar 
    Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).Article 
    CAS 

    Google Scholar 
    Amoroso, R. O. et al. Bottom trawl fishing footprints on the world’s continental shelves. Proc. Natl Acad. Sci. USA 115, E10275–E10282 (2018).Article 
    CAS 

    Google Scholar 
    Kuempel, C. D. et al. Integrating life cycle and impact assessments to map food’s cumulative environmental footprint. One Earth 3, 65–78 (2020).Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).Article 
    CAS 

    Google Scholar 
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).Article 

    Google Scholar 
    Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).Article 

    Google Scholar 
    Judd, A. D., Backhaus, T. & Goodsir, F. An effective set of principles for practical implementation of marine cumulative effects assessment. Environ. Sci. Policy 54, 254–262 (2015).Article 

    Google Scholar 
    IPBES Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1, 298–303 (2018).Article 

    Google Scholar 
    FAO The State of World Fisheries and Aquaculture 2020 (FAO, 2020).Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).Article 
    CAS 

    Google Scholar 
    FAOSTAT Database: New Food Balances (FAO, 2020); http://www.fao.org/faostat/en/#data/FBSFAOSTAT Database: Production, Crops (FAO, 2020); http://www.fao.org/faostat/en/#data/QCDong, F. et al. Assessing sustainability and improvements in US Midwestern soybean production systems using a PCA–DEA approach. Renew. Agric. Food Syst. 31, 524–539 (2016).Article 

    Google Scholar 
    Watson, R. A. & Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Policy 93, 171–177 (2018).Article 

    Google Scholar 
    Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).Article 

    Google Scholar 
    Clark, M. & Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12, 064016 (2017).Article 

    Google Scholar 
    Balmford, B., Green, R. E., Onial, M., Phalan, B. & Balmford, A. How imperfect can land sparing be before land sharing is more favourable for wild species? J. Appl. Ecol. 56, 73–84 (2019).Article 

    Google Scholar 
    Luskin, M. S., Lee, J. S. H., Edwards, D. P., Gibson, L. & Potts, M. D. Study context shapes recommendations of land-sparing and sharing; a quantitative review. Glob. Food Secur. 16, 29–35 (2018).Article 

    Google Scholar 
    Williams, D. R., Phalan, B., Feniuk, C., Green, R. E. & Balmford, A. Carbon storage and land-use strategies in agricultural landscapes across three continents. Curr. Biol. 28, 2500–2505.e4 (2018).Article 
    CAS 

    Google Scholar 
    Paul, B. G. & Vogl, C. R. Impacts of shrimp farming in Bangladesh: challenges and alternatives. Ocean Coastal Manage. 54, 201–211 (2011).Article 

    Google Scholar 
    Ahmed, N., Cheung, W. W. L., Thompson, S. & Glaser, M. Solutions to blue carbon emissions: shrimp cultivation, mangrove deforestation and climate change in coastal Bangladesh. Mar. Policy 82, 68–75 (2017).Article 

    Google Scholar 
    FAOSTAT Database: Livestock Primary (FAO, 2020); http://www.fao.org/faostat/en/#data/QLRamankutty, N., Ricciardi, V., Mehrabi, Z. & Seufert, V. Trade-offs in the performance of alternative farming systems. Agric. Econ. 50, 97–105 (2019).Article 

    Google Scholar 
    FAOSTAT Database: Detailed Trade Matrix (FAO, 2020); http://www.fao.org/faostat/en/#data/TMFisheries & Aquaculture—Fishery Statistical Collections—Fishery Commodities and Trade (FAO, 2019); http://www.fao.org/fishery/statistics/global-commodities-production/enInternational Food Policy Research Institute. Global spatially-disaggregated crop production statistics data for 2010, version 2.0. Harvard Dataverse https://doi.org/10.7910/DVN/PRFF8V (2019).Clawson, G. et al. Mapping the spatial distribution of global mariculture production. Aquaculture 553, 738066 (2022).Article 

    Google Scholar 
    Petz, K. et al. Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models. Glob. Environ. Change 29, 223–234 (2014).Article 

    Google Scholar 
    Global Fishing Watch. Fishing effort. Fleet daily, v2 100th degree. (2021). https://globalfishingwatch.org/dataset-and-code-fishing-effort/Verdegem, M. C. J., Bosma, R. H. & Verreth, J. A. J. Reducing water use for animal production through aquaculture. Int. J. Water Resour. Dev. 22, 101–113 (2006).Article 

    Google Scholar 
    Bouwman, A. F., Beusen, A. H. W. & Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob. Biogeochem. Cycles 23, GB0A04 (2009).Article 

    Google Scholar 
    Bouwman, A. F., Van Drecht, G. & Van der Hoek, K. W. Nitrogen surface balances in intensive agricultural production systems in different world regions for the period 1970–2030. Pedosphere 15, 137–155 (2005).
    Google Scholar 
    Bouwman, A., Boumans, L. J. M. & Batjes, N. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Glob. Biogeochem. Cycles 16, 8-1–8-14 (2002).Article 

    Google Scholar 
    FAOSTAT Database: Inputs, Fertilizers by Nutrient (FAO, 2020); http://www.fao.org/faostat/en/#data/RFNHeffer, P., Gruere, A. & Roberts, T. Assessment of fertilizer use by crop at the global level 2014–2014/15, International Fertilizer Association (2017).Fertilizer Use by Crop 5th edn (FAO, IFA & IFDC, 2002).Islam, Md. S. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Mar. Pollut. Bull. 50, 48–61 (2005).Article 
    CAS 

    Google Scholar 
    Wang, J., Beusen, A. H. W., Liu, X. & Bouwman, A. F. Aquaculture production is a large, spatially concentrated source of nutrients in Chinese freshwater and coastal seas. Environ. Sci. Technol. 54, 1464–1474 (2020).Article 

    Google Scholar 
    Bouwman, A. F. et al. Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Rev. Fish. Sci. 21, 112–156 (2013).Article 
    CAS 

    Google Scholar 
    Gavrilova, O. et al. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Ch. 10, Intergovernmental Panel on Climate Change (IPCC); Review Editors on Overview: Dario Gómez (Argentina) and William Irving (USA) (2019).Seafood Carbon Emissions Tool, Lisa Max, Robert Parker, Peter Tyedmers, editors; (2020); http://seafoodco2.dal.ca/Hu, Z., Lee, J. W., Chandran, K., Kim, S. & Khanal, S. K. Nitrous oxide (N2O) emission from aquaculture: a review. Environ. Sci. Technol. 46, 6470–6480 (2012).Article 
    CAS 

    Google Scholar 
    IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).Lynch, J., Cain, M., Pierrehumbert, R. & Allen, M. Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environ. Res. Lett. 15, 044023 (2020).Article 
    CAS 

    Google Scholar 
    Global Livestock Environmental Assessment Model, GLEAM, v.2.0.121 (FAO, 2018).Aas, T. S., Ytrestøyl, T. & Åsgård, T. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: an update for 2016. Aquacult. Rep. 15, 100216 (2019).
    Google Scholar 
    Jackson, A. Fish in-fish out (FIFO) explained. Aquacult. Eur. 34, 5–10 (2009).
    Google Scholar 
    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).Article 
    CAS 

    Google Scholar 
    Frazier, M. et al. Global food system pressure data. https://knb.ecoinformatics.org/view/doi:10.5063/F1V69H1B More

  • in

    Deforestation slowed last year — but not enough to meet climate goals

    Deforested areas rim a highway running through the state of Amazonas, in Brazil.Credit: Michael Dantas/AFP/Getty

    Countries are failing to meet international targets to stop global forest loss and degradation by 2030, according to a report. It is the first to measure progress since world leaders set the targets last year at the 26th United Nations Climate Change Conference of the Parties (COP26) in Glasgow, UK. Preserving forests, which can store carbon and, in some cases, provide local cooling, is a crucial part of a larger strategy to curb global warming.
    Tropical forests have big climate benefits beyond carbon storage
    The analysis, called the Forest Declaration Assessment, shows that the rate of global deforestation slowed by 6.3% in 2021, compared with the baseline average for 2018–20. But this “modest” progress falls short of the annual 10% cut needed to end deforestation by 2030, says Erin Matson, a consultant at Climate Focus, an advisory company headquartered in Amsterdam, and author of the assessment, published on 24 October.“It’s a good start, but we are not on track,” Matson said at a press briefing, although she cautioned that the assessment looks at only one year’s worth of data. A clearer picture of deforestation trends will emerge in successive years, she added.The assessment, which was carried out by a number of civil-society and research groups, including the World Resources Institute, an environmental think tank in Washington DC, comes as nations gear up for the next big climate summit (COP27), to be held in November in Sharm El-Sheikh, Egypt. Scientists agree that in order to limit global warming to 1.5–2 °C above preindustrial levels — a threshold beyond which Earth’s climate will become profoundly disrupted — deforestation must end.Tropical forests are keyTo track deforestation over the past year, the groups analysed indicators such as changes in forest canopy, as measured by satellite data, and the forest landscape integrity index, which is a measure of the ecological health of forests. The slow progress they found is mainly attributable to a few tropical countries where deforestation is highest (see ‘Progress report’). Among them is Brazil — the world’s largest contributor to tree loss — which saw a 3% rise in the rate of deforestation in 2021, compared with the baseline years. Rates also rose in heavy deforesters Bolivia and the Democratic Republic of the Congo, by 6% and 3%, respectively, over the same period.

    Adapted from the 2022 Forest Declaration Assessment

    The loss of tropical forests, in particular, is worrisome because a growing body of research shows that besides sequestering carbon, these forests can physically cool nearby areas by creating clouds, humidifying the air and releasing certain cooling molecules. Keeping tropical forests standing provides a massive boost to global cooling that current policies ignore, says a report, “Not Just Carbon”, released alongside the Forest Declaration Assessment.A region made up of tropical countries in Asia is the only one on track to halt deforestation by 2030, according to the assessment (see ‘Movement towards goal’). The region cut the rate at which it lost humid, old-growth forests last year by 20% from the 2018–20 baseline, mostly thanks to large strides made by Indonesia — normally one of the world’s largest contributors to deforestation — where the loss of old-growth forests fell by 25% in 2021 compared with the previous year.

    Adapted from the 2022 Forest Declaration Assessment

    “The progress we see is driven by exceptional results in some countries,” Matson said.Efforts by the government and corporations in Indonesia to address the environmental harms of palm-oil production were key to progress, the assessment says. For example, as of 2020, more than 80% of palm-oil refiners had promised not to cut down or degrade any more forests. And in 2018, the Indonesian government imposed a moratorium on new palm-oil plantations. But the ban expired last year, raising concerns that progress might eventually be reversed.Finance laggingGlobal demand for commodities such as beef, fossil fuels and timber drive much of the forest loss that occurs today, as industry seeks to clear trees for new pastures and resource extraction. Matson said that many governments haven’t introduced reforms, such as protected-area regulations or fiscal incentives to encourage the private sector to safeguard forests, and that this is stalling progress.“Stronger mandatory action is needed,” she said.
    How much can forests fight climate change?
    In particular, nations are lagging behind in terms of fiscal support for forest protection and restoration. On the basis of previous assessments, the report estimates that forest conservation efforts require somewhere between US$45 billion and $460 billion per year if nations are to meet the 2030 goal. At present, commitments average less than 1% of what is needed per year, it concludes.Matson said that nations need to improve transparency on financing by setting interim milestones and publicly reporting progress. Michael Wolosin, a climate-solutions adviser at Conservation International, a non-profit environmental organization headquartered in Arlington, Virginia, would like to see donor countries recommit to their forest finance pledges at COP27 this year.However, Constance McDermott, an environmental-change researcher at the University of Oxford, UK, cautions against focusing too much on “estimates of forest cover change and dollars spent”. Social equity for Indigenous people and those in local communities should be part of discussions relating to deforestation, but is mostly missing, she says. These communities are the best forest stewards, and more effort is needed to support them by strengthening land rights and addressing land-use challenges that they identify, she says.Otherwise, McDermott warns that “global efforts to stop deforestation are more than likely to reinforce global, national and local inequalities”. More

  • in

    Contrasting sea ice conditions shape microbial food webs in Hudson Bay (Canadian Arctic)

    Laxon SW, Giles KA, Ridout AL, Wingham DJ, Willatt R, Cullen R, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys Res Lett. 2013;40:732–7.
    Google Scholar 
    Stroeve J, Notz D. Changing state of Arctic sea ice across all seasons. Environ Res Lett. 2018;13:103001.
    Google Scholar 
    Macdonald RW, Kuzyk ZZA. The Hudson Bay system: a northern inland sea in transition. J Mar Syst. 2011;88:337–40.
    Google Scholar 
    Serreze MC, Barry RG. Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Change. 2011;77:85–96.
    Google Scholar 
    Hochheim KP, Barber DG. An update on the ice climatology of the Hudson Bay system. Arctic, Antarctic, and Alpine Research. 2014;46:66–83.
    Google Scholar 
    Gagnon AS, Gough WA. Climate change scenarios for the Hudson Bay region: an intermodel comparison. Climatic Change. 2005;69:269–97.
    Google Scholar 
    Bring A, Shiklomanov A, Lammers RB. Pan-Arctic river discharge: prioritizing monitoring of future climate change hot spots. Earths Future. 2017;5:72–92.
    Google Scholar 
    Comeau AM, Li WKW, Tremblay JÉ, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS One. 2011;6:e27492.PubMed 
    PubMed Central 

    Google Scholar 
    Li W, McLaughlin F, Lovejoy C, Carmack E. Smallest algae thrive as the Arctic Ocean freshens. Science. 2009;326:539.PubMed 

    Google Scholar 
    Ji R, Jin M, Varpe Ø. Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Glob Change Biol. 2013;19:734–41.
    Google Scholar 
    Ardyna M, Mundy C, Mills M, Oziel L, Lacour L, Verin G, et al. Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean. Elem Sci Anthr. 2020;8:e30.
    Google Scholar 
    Kahru M, Brotas V, Manzano-Sarabia M, Mitchell BG. Are phytoplankton blooms occurring earlier in the Arctic? Glob Change Biol. 2011;17:1733–9.
    Google Scholar 
    Barbedo L, Bélanger S, Tremblay J. Climate control of sea-ice edge phytoplankton blooms in the Hudson Bay system. Elem Sci Anthr. 2020;8:1.
    Google Scholar 
    Matthes LC, Ehn JK, Dalman LA, Babb DG, Peeken I, Harasyn M, et al. Environmental drivers of spring primary production in Hudson Bay. Elem Sci Anthr. 2021;9:00160.
    Google Scholar 
    Harvey M, Therriault JC, Simard N. Late-summer distribution of phytoplankton in relation to water mass characteristics in Hudson Bay and Hudson Strait (Canada). Can J Fish Aquat Sci. 1997;54:1937–52.
    Google Scholar 
    Ferland J, Gosselin M, Starr M. Environmental control of summer primary production in the Hudson Bay system: The role of stratification. J Mar Syst. 2011;88:385–400.
    Google Scholar 
    Raven JA. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct Ecol. 1998;12:503–13.
    Google Scholar 
    Tilman D, Kilham SS, Kilham P. Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst. 1982;13:349–72.
    Google Scholar 
    Onda DFL, Medrinal E, Comeau AM, Thaler M, Babin M, Lovejoy C. Seasonal and interannual changes in ciliate and dinoflagellate species assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada). Front Mar Sci. 2017;4:16.
    Google Scholar 
    Campbell K, Mundy CJ, Belzile C, Delaforge A, Rysgaard S. Seasonal dynamics of algal and bacterial communities in Arctic sea ice under variable snow cover. Polar Biol. 2018;41:41–58.
    Google Scholar 
    Forest A, Tremblay JÉ, Gratton Y, Martin J, Gagnon J, Darnis G, et al. Biogenic carbon flows through the planktonic food web of the Amundsen Gulf (Arctic Ocean): a synthesis of field measurements and inverse modeling analyses. Prog Oceanogr. 2011;91:410–36.
    Google Scholar 
    Buchan A, Lecleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.PubMed 

    Google Scholar 
    Cole JJ, Likens GE, Strayer DL. Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol Oceanogr. 1982;27:1080–90.
    Google Scholar 
    Horňák K, Kasalický V, Šimek K, Grossart HP. Strain-specific consumption and transformation of alga-derived dissolved organic matter by members of the Limnohabitans-C and Polynucleobacter-B clusters of Betaproteobacteria. Environ Microbiol. 2017;19:4519–35.PubMed 

    Google Scholar 
    Šimek K, Kasalický V, Zapomělová E, Horňák K. Alga-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Appl Environ Microbiol. 2011;77:7307–15.PubMed 
    PubMed Central 

    Google Scholar 
    Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.PubMed 
    PubMed Central 

    Google Scholar 
    Williams TJ, Wilkins D, Long E, Evans F, Demaere MZ, Raftery MJ, et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ Microbiol. 2013;15:1302–17.PubMed 

    Google Scholar 
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrechet A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.PubMed 

    Google Scholar 
    Armengol L, Calbet A, Franchy G, Rodríguez-Santos A, Hernández-León S. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci Rep. 2019;9:1–19.
    Google Scholar 
    Joly S, Senneville S, Caya D, Saucier FJ. Sensitivity of Hudson Bay Sea ice and ocean climate to atmospheric temperature forcing. Clim Dyn. 2011;36:1835–49.
    Google Scholar 
    Kirillov S, Babb D, Dmitrenko I, Landy D, Lukovich JV, Ehn J, et al. Atmospheric forcing drives the winter sea ice thickness asymmetry of Hudson Bay. Geophys Res Oceans. 2020;125:1–12.
    Google Scholar 
    Tivy A, Howell SEL, Alt B, McCourt S, Chagnon R, Crocker G, et al. Trends and variability in summer sea ice cover in the Canadian Arctic based on the Canadian Ice Service Digital Archive, 1960-2008 and 1968-2008. J Geophys Res Oceans. 2011;116:C03007.
    Google Scholar 
    Barber D, Landry D, Babb D, Kirillov S, Aubry C, Schembri S, et al. Bay-Wide Survey Program Cruise Report – CCGS Amundsen (LEG-1). In: Hudson Bay System Study (BaySys) Phase 1 Report: Hudson Bay Field Program and Data Collection. Landry, DL & Candlish, LM. (Eds). 2019. p. 131–222.Jacquemot L, Kalenitchenko D, Matthes LC, Vigneron A, Mundy CJ, Tremblay JE, et al. Protist communities along freshwater-marine transition zones in Hudson Bay (Canada). Elem Sci Anthr. 2021;9:00111.
    Google Scholar 
    Grasshoff K, Kremling K, Ehrhardt M. Determination of nutrients. In: Methods of Seawater Analysis: Third, Completely Revised and Extended Edition. 1999. p. 159–228.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108:4516–22.PubMed 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high- throughput community sequencing data. Nat Publ Group. 2010;7:335–6.
    Google Scholar 
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:597–604.
    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
    Google Scholar 
    McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, et al. Package ‘vegan’. Community ecology package, version 2(9). 2013;1-295.Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1–14.
    Google Scholar 
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.PubMed 
    PubMed Central 

    Google Scholar 
    Volterra V. Fluctuations in the abundance of a species considered mathematically. Nature. 1926;118:558–60.
    Google Scholar 
    Joli N, Monier A, Logares R, Lovejoy C. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. ISME J. 2017;11:1372–85.PubMed 
    PubMed Central 

    Google Scholar 
    Barber DG, Hop H, Mundy CJ, Else B, Dmitrenko IA, Tremblay JE, et al. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Prog Oceanogr. 2015;139:122–50.
    Google Scholar 
    Tremblay JÉ, Anderson LG, Matrai P, Coupel P, Bélanger S, Michel C, et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog Oceanogr. 2015;139:171–96.
    Google Scholar 
    Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:1–7.
    Google Scholar 
    Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5.Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.PubMed 

    Google Scholar 
    Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol Lett. 2016;19:926–36.PubMed 

    Google Scholar 
    Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol. 2008;10:3349–65.PubMed 

    Google Scholar 
    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science. 2015;10:1–10.
    Google Scholar 
    Chaffron S, Delage E, Budinich M, Vintache D, Henry N, Nef C, et al. Environmental vulnerability of the global ocean epipelagic plankton community interactome. Sci Adv. 2021;7:eabg1921.PubMed 
    PubMed Central 

    Google Scholar 
    Clarke LJ, Bestley S, Bissett A, Deagle BE. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 2019;13:734–7.PubMed 

    Google Scholar 
    Not F, del Campo J, Balagué V, de Vargas C, Massana R. New insights into the diversity of marine picoeukaryotes. PLoS One. 2009;4:e7143.PubMed 
    PubMed Central 

    Google Scholar 
    Bass D, Stentiford GD, Littlewood DTJ, Hartikainen H. Diverse Applications of Environmental DNA Methods in Parasitology. Trends Parasitol. 2015;31:499–513.PubMed 

    Google Scholar 
    Kellogg CTE, Mcclelland JW, Dunton KH, Crump BC. Strong seasonality in arctic estuarine microbial food webs. Front Microbiol. 2019;10:2628.PubMed 
    PubMed Central 

    Google Scholar 
    Nitsche F, Weittere M, Scheckenbach F, Hausmann K, Wylezich C, Ardnt H. Deep sea records of choanoflagellates with a description of two new species. Acta Protozool. 2007;46:99–106.
    Google Scholar 
    Thaler M, Lovejoy C. Biogeography of heterotrophic flagellate populations indicates the presence of generalist and specialist taxa in the Arctic Ocean. Appl Environ Microbiol. 2015;81:2137–48.PubMed 
    PubMed Central 

    Google Scholar 
    Thomsen HA, Østergaard JB, Hansen LE. Loricate choanoflagellates from West Greenland (August 1988) including the description of Spinoeca buckii gen. et sp. nov. Eur J Protistol. 1995;31:38–44.
    Google Scholar 
    Thomsen HA, Østergaard JB. Acanthoecid choanoflagellates from the Atlantic Arctic Region − a baseline study. Heliyon. 2017;3:e00345.PubMed 
    PubMed Central 

    Google Scholar 
    Buck KR, Garrison DL, Cruz S. Distribution and abundance of choanoflagellates (Acanthoecidae) across the ice-edge zone in the Weddell Sea, Antarctica. Mar Biol. 1988;98:263–9.
    Google Scholar 
    Escalera L, Mangoni O, Bolinesi F, Saggiomo M. Austral summer bloom of loricate choanoflagellates in the central Ross Sea polynya. J Eukaryot Microbiol. 2019;66:849–52.PubMed 

    Google Scholar 
    Delmont TO, Hammar KM, Ducklow HW, Yager PL, Post AF. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Front Microbiol. 2014;5:1–13.
    Google Scholar 
    Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Alexander Richter R, Valas R, et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 2012;6:1186–99.PubMed 

    Google Scholar 
    Abell GCJ, Bowman JP. Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol Ecol. 2005;51:265–77.PubMed 

    Google Scholar 
    Delmont TO, Murat Eren A, Vineis JH, Post AF. Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica. Front Microbiol. 2015;6:e1090.
    Google Scholar 
    Stingl U, Desiderio RA, Cho JC, Vergin KL, Giovannoni SJ. The SAR92 clade: an abundant coastal clade of culturable marine bacteria possessing proteorhodopsin. Appl Environ Microbiol. 2007;73:2290–6.PubMed 
    PubMed Central 

    Google Scholar 
    de Sousa AGG, Tomasino MP, Duarte P, Fernández-Méndez M, Assmy P, Ribeiro H, et al. Diversity and composition of pelagic prokaryotic and protist communities in a thin Arctic sea-ice regime. Microb Ecol. 2019;78:388–408.PubMed 

    Google Scholar 
    Rapp JZ, Fernández-Méndez M, Bienhold C, Boetius A. Effects of ice-algal aggregate export on the connectivity of bacterial communities in the central Arctic Ocean. Front Microbiol. 2018;9:1035.PubMed 
    PubMed Central 

    Google Scholar 
    Wemheuer B, Güllert S, Billerbeck S, Giebel HA, Voget S, Simon M, et al. Impact of a phytoplankton bloom on the diversity of the active bacterial community in the southern North Sea as revealed by metatranscriptomic approaches. FEMS Microbiol Ecol. 2014;87:378–89.PubMed 

    Google Scholar 
    Jain A, Krishnan KP. Differences in free-living and particle-associated bacterial communities and their spatial variation in Kongsfjorden, Arctic. J Basic Microbiol. 2017;57:827–38.PubMed 

    Google Scholar 
    Granskog MA, Kuzyk ZZA, Azetsu-Scott K, Macdonald RW. Distributions of runoff, sea-ice melt and brine using δ18o and salinity data – a new view on freshwater cycling in Hudson Bay. J Mar Syst. 2011;88:362–74.
    Google Scholar 
    Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.PubMed 
    PubMed Central 

    Google Scholar 
    Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc Natl Acad Sci USA. 2019;116:11824–32.PubMed 
    PubMed Central 

    Google Scholar 
    Gutierrez-Rodriguez A, Stukel MR, Lopes dos Santos A, Biard T, Scharek R, Vaulot D, et al. High contribution of Rhizaria (Radiolaria) to vertical export in the California Current Ecosystem revealed by DNA metabarcoding. ISME J. 2019;13:964–76.PubMed 

    Google Scholar 
    Bråte J, Krabberød AK, Dolven JK, Ose RF, Kristensen T, Bjørklund KR, et al. Radiolaria associated with large diversity of marine alveolates. Protist. 2012;163:767–77.PubMed 

    Google Scholar 
    Dolven JK, Lindqvist C, Albert VA, Bjørklund KR, Yuasa T, Takahashi O, et al. Molecular diversity of alveolates associated with neritic North Atlantic radiolarians. Protist. 2007;158:65–76.PubMed 

    Google Scholar 
    Decelle J, Martin P, Paborstava K, Pond DW, Tarling G, Mahé F, et al. Diversity, ecology and biogeochemistry of cyst-forming Acantharia (Radiolaria) in the oceans. PLoS One. 2013;8:e53598.PubMed 
    PubMed Central 

    Google Scholar 
    Fernandes GL, Shenoy BD, Damare SR. Diversity of bacterial community in the oxygen minimum zones of Arabian Sea and Bay of Bengal as deduced by illumina sequencing. Front Microbiol. 2020;10:e3153.
    Google Scholar 
    Vigneron A, Cruaud P, Culley A, Couture RM, Lovejoy C, Vincent W. Genomic evidence for sulfur intermediates as new biogeochemical hubs in a model aquatic microbial ecosystem. Microbiome. 2020;9:e46.
    Google Scholar 
    Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Publ Group. 2012;10:381–94.
    Google Scholar 
    Bianchi D, Weber TS, Kiko R, Deutsch C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat Geosci. 2018;11:263–68.
    Google Scholar 
    Michel C, Legendre L, Therriault JC, Demers S, Vandevelde T. Springtime coupling between ice algal and phytoplankton assemblages in southeastern Hudson Bay, Canadian Arctic. Polar Biol. 1993;13:441–9.
    Google Scholar 
    Boetius A, Albrecht S, Bakker K, Bienhold C, Felden J, Fernández-méndez M, et al. Export of algal biomass from the metling Arctic sea ice. Science. 2013;339:1430–2.PubMed 

    Google Scholar 
    Vigneron A, Lovejoy C, Cruaud P, Kalenitchenko D, Culley A, Vincent WF. Contrasting winter versus summer microbial communities and metabolic functions in a permafrost thaw lake. Front Microbiol. 2019;10:e1656.
    Google Scholar 
    Tremblay JÉ, Lee J-H, Gosselin M, Belanger S. Nutrient dynamic and marine biological productivity in the greater Hudson Bay marine region. In: An integrated regional impact study (IRIS) Arcticnet University of Manitoba and ArcticNet. 2019. p. 225–44.Wassmann P, Reigstad M. Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography. 2011;24:220–31.
    Google Scholar  More

  • in

    Basin-scale biogeography of Prochlorococcus and SAR11 ecotype replication

    Fuhrman JA, Campbell L. Marine ecology – microbial microdiversity. Nature. 1998;393:410–1.CAS 

    Google Scholar 
    Thompson JR, Pacocha S, Pharino C, Klepac-Ceraj V, Hunt DE, Benoit J, et al. Genotypic diversity within a natural coastal bacterioplankton population. Science. 2005;307:1311–3.CAS 
    PubMed 

    Google Scholar 
    Oh S, Buddenborg S, Yoder-Himes DR, Tiedje JM, Konstantinidis KT. Genomic diversity of Escherichia isolates from diverse habitats. PLoS ONE. 2012;7:e47005.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci USA. 2008;105:7774–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed 

    Google Scholar 
    Raes EJ, Bodrossy L, van de Kamp J, Bissett A, Ostrowski M, Brown MV, et al. Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean. Proc Natl Acad Sci USA. 2018;115:EB266–EB75.
    Google Scholar 
    Brown MV, Fuhrman JA. Marine bacterial microdiversity as revealed by internal transcribed spacer analysis. Aquat Microb Ecol. 2005;41:15–23.
    Google Scholar 
    Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science. 2006;311:1737–40.CAS 
    PubMed 

    Google Scholar 
    Larkin AA, Blinebry SK, Howes C, Chandler J, Zinser ER, Johnson ZI. Niche partitioning and biogeography of high light adapted Prochlorococcus across taxonomic ranks in the North Pacific. ISME J. 2016;10:1555–67.PubMed 
    PubMed Central 

    Google Scholar 
    Zinser ER, Johnson ZI, Coe A, Karaca E, Veneziano D, Chisholm SW. Influence of light and temperature on Prochlorococcus ecotype distributions in the Atlantic Ocean. Limnol Oceanogr. 2007;52:2205–20.
    Google Scholar 
    Carlson M, Ribalet F, Maidanik I, Durham BP, Hulata Y, Ferrón S, et al. Viruses affect picocyanobacterial abundance and biogeography in the North Pacific Ocean. Nat Microbiol. 2022;7:570–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Follett CL, Dutkiewicz S, Ribalet F, Zakem E, Caron D, Armbrust EV, et al. Trophic interactions with heterotrophic bacteria limit the range of Prochlorococcus. Proc Natl Acad Sci USA. 2022;119:e2110993118.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore LR, Rocap G, Chisholm SW. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature. 1998;393:464–7.CAS 
    PubMed 

    Google Scholar 
    Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol. 2008;10:147–61.PubMed 

    Google Scholar 
    Carlson CA, Morris R, Parsons R, Treusch AH, Giovannoni SJ, Vergin K. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J. 2009;3:283–95.CAS 
    PubMed 

    Google Scholar 
    Ribalet F, Swalwell J, Clayton S, Jimenez V, Sudek S, Lin YJ, et al. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc Natl Acad Sci USA. 2015;112:8008–12.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pernthaler A, Pernthaler J, Schattenhofer M, Amann R. Identification of DNA-synthesizing bacterial cells in coastal North Sea plankton. Appl Environ Microbiol. 2002;68:5728–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Del Giorgio PA, Gasol JM. Physiological structure and single-cell activity in marine bacterioplankton. In: Kirchman DL, editor. Microbial ecology of the oceans. 2nd ed. New Jersey:John Wiley & Sons, Inc.; 2008. p. 243–298.Lin Y, Gazsi K, Lance VP, Larkin A, Chandler J, Zinser ER, et al. In situ activity of a dominant Prochlorococcus ecotype (eHL-II) from rRNA content and cell size. Environ Microbiol. 2013;15:2736–47.CAS 
    PubMed 

    Google Scholar 
    Kirchman DL. Growth rates of microbes in the oceans. Annu Rev Mar Sci. 2016;8:285–309.
    Google Scholar 
    Landry MR, Selph KE, Yang EJ. Decoupled phytoplankton growth and microzooplankton grazing in the deep euphotic zone of the eastern equatorial Pacific. Mar Ecol Prog Ser. 2011;421:13–24.
    Google Scholar 
    Selph KE, Landry MR, Taylor AG, Yang E-J, Measures CI, Yang J, et al. Spatially-resolved taxon-specific phytoplankton production and grazing dynamics in relation to iron distributions in the Equatorial Pacific between 110 and 140 degrees W. Deep Sea Res Part II Top Stud Oceanogr. 2011;58:358–77.CAS 

    Google Scholar 
    Hunt DE, Lin Y, Church MJ, Karl DM, Tringe SG, Izzo LK, et al. Relationship between abundance and specific activity of bacterioplankton in open ocean surface waters. Appl Environ Microbiol. 2013;79:177–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sintes E, Herndl GJ. Quantifying substrate uptake by individual cells of marine bacterioplankton by catalyzed reporter deposition fluorescence in situ hybridization combined with microautoradiography. Appl Environ Microbiol. 2006;72:7022–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hall E, Maixner F, Franklin O, Daims H, Richter A, Battin T. Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches. Ecosystems. 2011;14:261–73.
    Google Scholar 
    Musat N, Foster R, Vagner T, Adam B, Kuypers MM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev. 2012;36:486–511.CAS 
    PubMed 

    Google Scholar 
    Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol. 2014;16:2568–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sebastián M, Gasol JM. Visualization is crucial for understanding microbial processes in the ocean. Philos Trans R Soc Lond B. 2019;374:20190083.
    Google Scholar 
    Korem T, Zeevi D, Suez J, Weinberger A, Avnit-Sagi T, Pompan-Lotan M, et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science. 2015;349:1101–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown CT, Olm MR, Thomas BC, Banfield JF. Measurement of bacterial replication rates in microbial communities. Nat Biotech. 2016;34:1256–63.CAS 

    Google Scholar 
    Gao Y, Li H. Quantifying and comparing bacterial growth dynamics in multiple metagenomic samples. Nat Methods. 2018;15:1041–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emiola A, Zhou W, Oh J. Metagenomic growth rate inferences of strains in situ. Sci Adv. 2020;6:eaaz2299.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Long ANM, Hou SW, Ignacio-Espinoza JC, Fuhrman JA. Benchmarking microbial growth rate predictions from metagenomes. ISME J. 2020;15:183–195.PubMed 
    PubMed Central 

    Google Scholar 
    Carroll J, Van Oostende N, Ward BB. Evaluation of genomic sequence-based growth rate methods for synchronized Synechococcus cultures. Appl Environ Microbiol. 2021;01743-21.Vaulot D, Marie D. Diel variability of photosynthetic picoplankton in the equatorial Pacific. J Geophys Res Oceans. 1999;104:3297–310.CAS 

    Google Scholar 
    Hunter-Cevera KR, Neubert MG, Olson RJ, Shalapyonok A, Solow AR, Sosik HM. Seasons of Syn. Limnol Oceanogr. 2020;65:1085–102.PubMed 

    Google Scholar 
    Baer SE, Rauschenberg S, Garcia CA, Garcia NS, Martiny AC, Twining BS, et al. Carbon and nitrogen productivity during spring in the oligotrophic Indian Ocean along the GO-SHIP IO9N transect. Deep Sea Res Part II Top Stud Oceanogr. 2019;161:81–91.CAS 

    Google Scholar 
    Larkin AA, Garcia CA, Ingoglia KA, Garcia NS, Baer SE, Twining BS, et al. Subtle biogeochemical regimes in the Indian Ocean revealed by spatial and diel frequency of Prochlorococcus haplotypes. Limnol Oceanogr. 2020;65:S220–S32.CAS 

    Google Scholar 
    Larkin AA, Garcia CA, Garcia N, Brock ML, Lee JA, Ustick LJ, et al. High spatial resolution global ocean metagenomes from Bio-GO-SHIP repeat hydrography transects. Sci Data. 2021;8:1–6.
    Google Scholar 
    Baym M, Kryazhimskiy S, Lieberman TD, Chung H, Desai MM, Kishony R. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE. 2015;10:e0128036.PubMed 
    PubMed Central 

    Google Scholar 
    Wandro S, Oliver A, Gallagher T, Weihe C, England W, Martiny JBH, et al. Predictable molecular adaptation of coevolving Enterococcus faecium and lytic phage EfV12-phi1. Front Microbiol. 2019;9:3192.PubMed 
    PubMed Central 

    Google Scholar 
    Oliver A, LaMere B, Weihe C, Wandro S, Lindsay KL, Wadhwa PD, et al. Cervicovaginal microbiome composition is associated with metabolic profiles in healthy pregnancy. mBio. 2020;11:e01851–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 

    Google Scholar 
    van Dongen S, Abreu-Goodger C. Using MCL to extract clusters from networks. In: van Helden J, Toussaint A, Thieffry D, editors. Bacterial molecular networks: methods and protocol. New Jersey:Humana Totowa; 2012. p. 281–295.Bergeron A, Mixtacki J, Stoye J. A unifying view of genome rearrangements. In: Proceeding of the International Workshop on Algorithms in Bioinformatics. Berlin, Heidelberg: Springer; 2006. p. 163–73.Hilker R, Sickinger C, Pedersen CNS, Stoye J. UniMoG-a unifying framework for genomic distance calculation and sorting based on DCJ. Bioinformatics. 2012;28:2509–11.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gelman A, Carlin JB, Stern HS, Dunson D, Vehtari A, Rubin DB. Bayesian data analysis: 3rd ed. Boca Raton:Chapman and Hall/CRC; 2013.Martiny AC, Ustick L, Garcia CA, Lomas MW. Genomic adaptation of marine phytoplankton populations regulates phosphate uptake. Limnol Oceanogr. 2020;65:S340–S50.CAS 

    Google Scholar 
    Garcia CA, Hagstrom GI, Larkin AA, Ustick LJ, Levin SA, Lomas MW, et al. Linking regional shifts in microbial genome adaptation with surface ocean biogeochemistry. Philos Trans R Soc Lond, B. 2020;375:20190254.CAS 

    Google Scholar 
    Ustick LJ, Larkin AA, Garcia CA, Garcia NS, Brock ML, Lee JA, et al. Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation. Science. 2021;372:287–291.CAS 
    PubMed 

    Google Scholar 
    Delmont TO, Eren AM. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ 2018;6:e4320.PubMed 
    PubMed Central 

    Google Scholar 
    Worden AZ, Binder BJ. Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat Microb Ecol. 2003;30:159–74.
    Google Scholar 
    Casey JR, Boiteau RM, Engqvist MKM, Finkel ZV, Li G, Liefer J, et al. Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology. Sci Adv. 2022;8:eabl4930.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berube PM, Rasmussen A, Braakman R, Stepanauskas R, Chisholm SW. Emergence of trait variability through the lens of nitrogen assimilation in Prochlorococcus. Elife. 2019;8:e41043.PubMed 
    PubMed Central 

    Google Scholar 
    Luo HW, Benner R, Long RA, Hu JJ. Subcellular localization of marine bacterial alkaline phosphatases. Proc Natl Acad Sci USA. 2009;106:21219–23.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schapiro JM, Libby SJ, Fang FC. Inhibition of bacterial DNA replication by zinc mobilization during nitrosative stress. Proc Natl Acad Sci USA. 2003;100:8496–501.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hantke K. Bacterial zinc uptake and regulators. Curr Opin Microbiol. 2005;8:196–202.CAS 
    PubMed 

    Google Scholar 
    Glass JB, Axler RP, Chandra S, Goldman CR. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Front Microbiol. 2012;3:331.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 2007;5:e77.PubMed 
    PubMed Central 

    Google Scholar 
    Noell SE, Barrell GE, Suffridge C, Morré J, Gable KP, Graff JR, et al. SAR11 cells rely on enzyme multifunctionality to transport and metabolize a range of polyamine compounds. 2021. https://www.biorxiv.org/content/10.1101/2021.05.13.444117v1.Binder BJ, Chisholm SW. Cell-cycle regulation in marine Synechcococcus sp strains. Appl Environ Microbiol. 1995;61:708–17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zinser ER, Lindell D, Johnson ZI, Futschik ME, Steglich C, Coleman ML, et al. Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, Prochlorococcus. PLoS ONE. 2009;4:e5135.PubMed 
    PubMed Central 

    Google Scholar 
    Hynes AM, Rhodes KL, Binder BJ. Assessing cell cycle-based methods of measuring Prochlorococcus division rates using an individual-based model. Limnol Oceanogr-Meth. 2015;13:640–50.
    Google Scholar 
    Vieira-Silva S, Rocha EP. The systemic imprint of growth and its uses in ecological (meta) genomics. PLoS Genet. 2010;6:e1000808.PubMed 
    PubMed Central 

    Google Scholar 
    Weissman JL, Hou SW, Fuhrman JA. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc Natl Acad Sci USA. 2021;118:e2016810118.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chase AB, Karaoz U, Brodie EL, Gomez-Lunar Z, Martiny AC, Martiny JB. Microdiversity of an abundant terrestrial bacterium encompasses extensive variation in ecologically relevant traits. mBio. 2017;8:e01809–17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olm MR, Crits-Christoph A, Bouma-Gregson K, Firek BA, Morowitz MJ, Banfield JF. inStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains. Nat Biotechnol. 2021;39:727–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA. 2013;110:9824–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown MV, Lauro FM, DeMaere MZ, Muir L, Wilkins D, Thomas T, et al. Global biogeography of SAR11 marine bacteria. Mol Sys Biol. 2012;8:595.
    Google Scholar  More

  • in

    Effects of plastic fragments on plant performance are mediated by soil properties and drought

    Peñuelas, J. et al. Assessment of the impacts of climate change on mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environ. Exp. Bot. 152, 49–59 (2018).
    Google Scholar 
    Pugnaire, F. I. et al. Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. 5, eaaz1834 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baho, D. L., Bundschuh, M. & Futter, M. N. Microplastics in terrestrial ecosystems: Moving beyond the state of the art to minimize the risk of ecological surprise. Glob. Change Biol. 27, 3969–3986 (2021).CAS 

    Google Scholar 
    Rillig, M. C., Kim, S. W., Kim, T.-Y. & Waldman, W. R. The global plastic toxicity debt. Environ. Sci. Technol. 55, 2717–2719 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nizzetto, L., Futter, M. & Langaas, S. Are agricultural soils dumps for microplastics of urban origin?. (2016).Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barnes, D. K., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 364, 1985–1998 (2009).CAS 

    Google Scholar 
    Rillig, M. C. Microplastic in terrestrial ecosystems and the soil?. (2012).de Souza Machado, A. A. et al. Microplastics can change soil properties and affect plant performance. Environ. Sci. Technol. 53, 6044–6052 (2019).ADS 
    PubMed 

    Google Scholar 
    Büks, F. & Kaupenjohann, M. Global concentrations of microplastics in soils–A review. Soil 6, 649–662 (2020).ADS 

    Google Scholar 
    Evangeliou, N. et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 11, 1–11 (2020).
    Google Scholar 
    Steinmetz, Z. et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?. Sci. Total Environ. 550, 690–705 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S. & Rillig, M. C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24, 1405–1416 (2018).ADS 

    Google Scholar 
    Qi, Y. et al. Macro-and micro-plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 645, 1048–1056 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Weithmann, N. et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 4, eaap8060 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allen, S. et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12, 339–344 (2019).ADS 
    CAS 

    Google Scholar 
    Kiyama, Y., Miyahara, K. & Ohshima, Y. Active uptake of artificial particles in the nematode Caenorhabditis elegans. J. Exp. Biol. 215, 1178–1183 (2012).PubMed 

    Google Scholar 
    Helmberger, M. S., Tiemann, L. K. & Grieshop, M. J. Towards an ecology of soil microplastics. Funct. Ecol. 34, 550–560 (2020).
    Google Scholar 
    Liu, M. et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ. Pollut. 242, 855–862 (2018).CAS 
    PubMed 

    Google Scholar 
    Lehmann, A., Fitschen, K. & Rillig, M. C. Abiotic and biotic factors influencing the effect of microplastic on soil aggregation. Soil Syst. 3, 21 (2019).CAS 

    Google Scholar 
    de Souza Machado, A. A. et al. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 52, 9656–9665 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, S. W. & Rillig, M. C. Research trends of microplastics in the soil environment: Comprehensive screening of effects. Soil Ecol. Lett. 4, 109–118 (2022).CAS 

    Google Scholar 
    Lehmann, A., Leifheit, E. F., Gerdawischke, M. & Rillig, M. C. Microplastics have shape-and polymer-dependent effects on soil aggregation and organic matter loss–An experimental and meta-analytical approach. Microplast. Nanoplast. 1, 1–14 (2021).
    Google Scholar 
    Wan, Y., Wu, C., Xue, Q. & Hui, X. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 654, 576–582 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Liang, Y., Lehmann, A., Yang, G., Leifheit, E. F. & Rillig, M. C. Effects of microplastic fibers on soil aggregation and enzyme activities are organic matter dependent. Front. Environ. Sci. 9, 97 (2021).
    Google Scholar 
    Lozano, Y. M., Lehnert, T., Linck, L. T., Lehmann, A. & Rillig, M. C. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Front. Plant Sci. 12, 169 (2021).
    Google Scholar 
    Kemper, W. Aggregate stability. Methods Soil Anal. Part 1 Phys. Mineral. Prop. Incl. Stat. Meas. Sampl. 9, 511–519 (1965).
    Google Scholar 
    Rose, C. W. & Rose, C. W. An Introduction to the Environmental Physics of Soil, Water and Watersheds (Cambridge University Press, 2004).
    Google Scholar 
    Horn, R., Taubner, H., Wuttke, M. & Baumgartl, T. Soil physical properties related to soil structure. Soil Tillage Res. 30, 187–216 (1994).
    Google Scholar 
    Beven, K. & Germann, P. Macropores and water flow in soils. Water Resour. Res. 18, 1311–1325 (1982).ADS 

    Google Scholar 
    De Vries, F. T. et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol. Lett. 15, 1230–1239 (2012).PubMed 

    Google Scholar 
    Kaisermann, A., de Vries, F. T., Griffiths, R. I. & Bardgett, R. D. Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. New Phytol. 215, 1413–1424 (2017).CAS 
    PubMed 

    Google Scholar 
    Martorell, C., MartÍnez-Blancas, A. & GarcíaMeza, D. Plant–soil feedbacks depend on drought stress, functional group, and evolutionary relatedness in a semiarid grassland. Ecology 102, e03499 (2021).PubMed 

    Google Scholar 
    Rillig, M. C., Lehmann, A., de Souza Machado, A. A. & Yang, G. Microplastic effects on plants. New Phytol. 223, 1066–1070 (2019).PubMed 

    Google Scholar 
    Lozano, Y. M. & Rillig, M. C. Effects of microplastic fibers and drought on plant communities. Environ. Sci. Technol. 54, 6166–6173 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Denef, K. et al. Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 33, 1599–1611 (2001).CAS 

    Google Scholar 
    Ochoa-Hueso, R. et al. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Glob. Change Biol. 24, 2818–2827 (2018).ADS 

    Google Scholar 
    Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Fu, W. et al. Community response of arbuscular mycorrhizal fungi to extreme drought in a cold-temperate grassland. New Phytol. 234, 2003–2017 (2022).PubMed 

    Google Scholar 
    Lin, D. et al. Microplastics negatively affect soil fauna but stimulate microbial activity: Insights from a field-based microplastic addition experiment. Proc. R. Soc. B 287, 20201268 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boots, B., Russell, C. W. & Green, D. S. Effects of microplastics in soil ecosystems: Above and below ground. Environ. Sci. Technol. 53, 11496–11506 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bosker, T., Bouwman, L. J., Brun, N. R., Behrens, P. & Vijver, M. G. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226, 774–781 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zimmerman, R. & Kardos, L. Effect of bulk density on root growth. Soil Sci. 91, 280–288 (1961).ADS 

    Google Scholar 
    Ruser, R., Sehy, U., Weber, A., Gutser, R. & Munch, J. Main driving variables and effect of soil management on climate or ecosystem-relevant trace gas fluxes from fields of the FAM. In Perspectives for agroecosystem
    management Chp 2.2, 79–120. ISBN 9780444519054 Elsevier, (2008).Huang, Y. et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ. Pollut. 254, 112983 (2019).CAS 
    PubMed 

    Google Scholar 
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).PubMed 

    Google Scholar 
    Hortal, S. et al. Soil microbial community under a nurse-plant species changes in composition, biomass and activity as the nurse grows. Soil Biol. Biochem. 64, 139–146 (2013).CAS 

    Google Scholar 
    Scheurer, M. & Bigalke, M. Microplastics in Swiss floodplain soils. Environ. Sci. Technol. 52, 3591–3598 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fuller, S. & Gautam, A. A procedure for measuring microplastics using pressurized fluid extraction. Environ. Sci. Technol. 50, 5774–5780 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Schloerke, B. et al. GGally: Extension to ‘ggplot2’. R package version 2.1. 2. (2021).Venables, W. & Ripley, B. Modern applied statistics with S fourth edition. Publisher Springer-Verlag, New York. (2002).Lenth, R. V. Emmeans: Estimated marginal means, aka least-squares means. R package version 1.6.3 (2021).R Core Team et al. R: A language and environment for statistical computing. (2013).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).ADS 

    Google Scholar 
    Pedersen, T. L. Patchwork: The composer of plots. R package version 1, 182 (2020).Neuwirth, E. RColorBrewer: ColorBrewer palettes. R package version 1.1-2. (2014). More

  • in

    Hunting and persecution drive mammal declines in Iran

    Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253. https://doi.org/10.1126/sciadv.1400253 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bradshaw, C. J. A. et al. Underestimating the challenges of avoiding a ghastly future. Front. Environ. Sci. 1, 615469. https://doi.org/10.3389/fcosc.2020.615419 (2021).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. IUCN, Gland, Switzerland. http://www.iucnredlist.org (2020).Murray, K. A., Verde Arregoitia, L. D., Davidson, A., Di Marco, M. & Di Fonzo, M. M. I. Threat to the point: Improving the value of comparative extinction risk analysis for conservation action. Glob. Chang. Biol. 20, 483–494 (2014).Article 
    ADS 

    Google Scholar 
    Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).Article 
    ADS 

    Google Scholar 
    Chichorro, F., Juslén, A. & Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 237, 220–229 (2019).Article 

    Google Scholar 
    Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open. Sci. 3, 160498. https://doi.org/10.1098/rsos.160498 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann, M. et al. The changing fates of the world’s mammals. Phil. Trans. R. Soc. B. 366, 2598–2610 (2011).Article 

    Google Scholar 
    Verde Arregoitia, L. D. Biases, gaps, and opportunities in mammalian extinction risk research. Mammal. Rev. 46, 17–29 (2016).Article 

    Google Scholar 
    Di Marco, M. et al. Drivers of extinction risk in African mammals: The interplay of distribution state, human pressure, conservation response and species biology. Philos. Trans. R. Soc. Lond. B. 369, 1–12 (2014).Article 

    Google Scholar 
    Di Marco, M., Collen, B., Rondinini, C. & Mace, G. M. Historical drivers of extinction risk: Using past evidence to direct future monitoring. Proc. R. Soc. B. 282, 20150928. https://doi.org/10.1098/rspb.2015.0928 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bogoni, J. A., Ferraz, K. M. & Peres, C. A. Continental-scale local extinctions in mammal assemblages are synergistically induced by habitat loss and hunting pressure. Biol. Conserv. 272, 109635. https://doi.org/10.1016/j.biocon.2022.109635 (2022).Article 

    Google Scholar 
    Yusefi, G. H., Faizolahi, K., Darvish, J., Safi, K. & Brito, J. C. The species diversity, distribution and conservation status of the terrestrial mammals of Iran. J. Mammal. 100, 55–71 (2019).Article 

    Google Scholar 
    Keil, P. et al. Spatial scaling of extinction rates: Theory and data reveal nonlinearity and a major upscaling and downscaling challenge. Glob. Ecol. Biogeogr. 27, 2–13 (2018).Article 

    Google Scholar 
    Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993. https://doi.org/10.1038/s41467-020-14771-6 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez, J. P. The difference conservation can make: integrating knowledge to reduce extinction risk. Oryx 51, 1–2 (2017).Article 

    Google Scholar 
    Cardillo, M. & Meijaard, E. Are comparative studies of extinction risk useful for conservation?. Trends Ecol. Evol. 27, 167–171 (2012).Article 

    Google Scholar 
    Davidson, A. D. et al. Geography of current and future global mammal extinction risk. PLoS ONE 12, e0186934. https://doi.org/10.1371/journal.pone.0186934 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Collen, B., Bykova, E., Ling, S., Milner-Gulland, E. J. & Purvis, A. Extinction risk: A comparative analysis of central Asian vertebrates. Biodivers. Conserv. 15, 1859–1871 (2006).Article 

    Google Scholar 
    Peñaranda, D. A. & Simonetti, J. A. Predicting and setting conservation priorities for Bolivian mammals based on biological correlates of the risk of decline. Conserv. Biol. 29, 834–843 (2015).Article 

    Google Scholar 
    Fritz, S. A., Bininda-Emonds, O. R. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: Big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).Article 

    Google Scholar 
    Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol. 2, 909–914 (2004).Article 
    CAS 

    Google Scholar 
    Cardillo, M. et al. The predictability of extinction: Biological and external correlates of decline in mammals. Proc. R. Soc. B. 275, 1441–1448 (2008).Article 

    Google Scholar 
    Yackulic, C. B., Sanderson, E. W. & Uriat, M. Anthropogenic and environmental drivers of modern range loss in large mammals. Proc. Natl. Acad. Sci. USA 108, 4024–4029 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Ripple, W. J. et al. Are we eating the world’s megafauna to extinction?. Conserv Lett 12, e12627. https://doi.org/10.1111/conl.12627 (2019).Article 

    Google Scholar 
    Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. PNAS https://doi.org/10.1073/pnas.1702078114 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bodmer, R. E., Eisenberg, J. E. & Redford, K. H. Hunting and the likelihood of extinction of Amazonian mammals. Conserv. Biol. 11, 460–466 (1997).Article 

    Google Scholar 
    Lee, T. M. & Jetz, W. Unravelling the structure of species extinction risk for predictive conservation science. Proc. R. Soc. B. 278, 1329–1338 (2011).Article 

    Google Scholar 
    Wolf, C. & Ripple, W. J. Prey depletion as a threat to the world’s large carnivores. Roy. Soc Open Sci 3, 160252. https://doi.org/10.1098/rsos.160252 (2016).Article 
    ADS 

    Google Scholar 
    Firouz, E. The complete fauna of Iran. I. B. (Tauris and Co Ltd, London, 2005).Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Davidson, A. D., Hamilton, M. J., Boyer, A. G., Brown, J. H. & Ceballos, G. Multiple ecological pathways to extinction in mammals. Proc. Natl. Acad. Sci. USA 106, 10702–10705 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Hill, J., DeVault, T. & Belant, J. Comparative influence of anthropogenic landscape pressures on cause-specific mortality of mammals. Perspect. Ecol. Conserv. 20, 38–44 (2022).
    Google Scholar 
    DOE-GIS. Areas under protection by the Department of Environment of Iran. Department of the Environment of Iran: GIS and Remote Sensing Section (2016).Kolahi, M., Sakai, T., Moriya, K. & Makhdoum, M. F. Challenges to the future development of Iran’s protected areas system. Environ. Manage. 50, 750–765 (2012).Article 
    ADS 

    Google Scholar 
    Morrison, J. M., Sechrest, W., Dinerstein, E., Wilcove, D. S. & Lamoreux, J. L. Persistence of large mammal faunas as indicators of human impact. J. Mammal. 88, 1363–1380 (2007).Article 

    Google Scholar 
    Ghoddousi, A. et al. The decline of ungulate populations in Iranian protected areas calls for urgent action against poaching. Oryx 53, 151–158 (2017).Article 

    Google Scholar 
    Soofi, M. et al. Assessing the relationship between illegal hunting of ungulates, wild prey occurrence and livestock depredation rate by large carnivores. J. Appl. Ecol. 56, 365–374 (2019).Article 

    Google Scholar 
    Khalatbari, L., Yusefi, G. H., Martinez-Freiria, F., Jowkar, H. & Brito, J. C. Availability of prey and natural habitats are related with temporal dynamics in range and habitat suitability for Asiatic cheetah. Hystrix Ital. J. Mammal. 29, 145–151 (2018).
    Google Scholar 
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).Article 
    ADS 

    Google Scholar 
    Hoffmann, M. et al. The difference conservation makes to extinction risk of the world’s ungulates. Conserv. Biol. 29, 1303–1313 (2015).Article 

    Google Scholar 
    Yusefi, G. H. Conservation biogeography of terrestrial mammals in Iran diversity distribution and vulnerability to extinction. Front Biogeogr 13(2), 49765. https://doi.org/10.21425/F5FBG49765 (2021).Article 

    Google Scholar 
    Faurby, S. & Svenning, J.-C. A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Mol. Phylogenet. Evol. 84, 14–26 (2015).Article 

    Google Scholar 
    R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing (2021).Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).Article 

    Google Scholar 
    Jones, K. et al. PanTHERIA: A species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648. https://doi.org/10.1890/08-1494.1 (2009).Article 

    Google Scholar 
    González-Suárez, M., Lucas, P. M. & Revilla, E. Biases in comparative analyses of extinction risk: Mind the gap. J. Anim. Ecol. 81, 1211–1222 (2012).Article 

    Google Scholar 
    Wang, Y. et al. Ecological correlates of extinction risk in Chinese birds. Ecography 41, 782–794 (2018).Article 

    Google Scholar 
    Wildlife Conservation Society-WCS, and Center for International Earth Science Information Network-CIESIN, Columbia University. Last of the wild project, Version 2, 2005 (LWP-2): Global human influence index (HII) Dataset. https://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic (2005).ESRI ArcGIS Desktop10.6. Redlands, CA: Environmental Systems Research Institute (2017).Hijmans, R. J. et al. raster: geographic data analysis and modeling. https://cran.r-project.org/web/packages/raster/index.html (2018).Pebesma, E. et al. rgdal: bindings for the geospatial data abstraction library. https://cran.r-project.org/web/packages/rgdal/index.html (2018).Bivand, R. et al. maptools: tools for reading and handling spatial objects. https://cran.r-project.org/web/packages/maptools/ index.html (2018).Purvis, A. Phylogenetic approaches to the study of extinction. Annu. Rev. Ecol. Evol. Syst. 39, 301–319 (2008).Article 

    Google Scholar 
    Venables, W. N. & Ripley, B. D. Modern applied statistics with S (Springer, 2002).Book 

    Google Scholar 
    Gittleman, J. L. & Kot, M. Adaptation: Statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39, 227–241 (1990).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodal inference in ecology and solution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).Article 
    CAS 

    Google Scholar 
    Bartón, K. MuMIn: multi-model inference R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020). More