Pörtner, H. O. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Cimate (2019).Genevier, L. G. C., Jamil, T., Raitsos, D. E., Krokos, G. & Hoteit, I. Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. Glob. Chang. Biol. 25, 2338–2351 (2019).ADS
PubMed
Article
Google Scholar
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science (80-.) 359, 80–83 (2018).ADS
CAS
Article
Google Scholar
Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).CAS
PubMed
Article
Google Scholar
Suggett, D. J. & Smith, D. J. Coral bleaching patterns are the outcome of complex biological and environmental networking. Glob. Chang. Biol. 26, 68–79 (2020).ADS
PubMed
Article
Google Scholar
Baker, A. C., Glynn, P. W. & Riegl, B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80, 435–471 (2008).ADS
Article
Google Scholar
Brown, B. E., Dunne, R. P., Scoffin, T. P. & Le Tissier, M. D. A. Solar damage in intertidal corals. Mar. Ecol. Prog. Ser. 105, 219–230 (1994).ADS
Article
Google Scholar
Suggett, D. J. & Smith, D. J. Interpreting the sign of coral bleaching as friend vs. foe. Glob. Chang. Biol. 17, 45–55 (2011).ADS
Article
Google Scholar
Maynard, J. A., Anthony, K. R. N., Marshall, P. A. & Masiri, I. Major bleaching events can lead to increased thermal tolerance in corals. Mar. Biol. 155, 173–182 (2008).Article
Google Scholar
Weis, V. M. The susceptibility and resilience of corals to thermal stress: adaptation, acclimatization or both?: NEWS and VIEWS. Mol. Ecol. 19, 1515–1517 (2010).PubMed
Article
Google Scholar
Meyer, E., Aglyamova, G. V. & Matz, M. V. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol. Ecol. 20, 3599–3616 (2011).CAS
PubMed
Google Scholar
Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science (80-.) 348, 1460–1462 (2015).ADS
CAS
Article
Google Scholar
Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, 1–17 (2021).Article
Google Scholar
Evensen, N. et al. Empirically derived thermal thresholds of four coral species along the Red Sea using a portable and standardized experimental approach. Coral Reefs 41, 239–252 (2022).Article
Google Scholar
Song, M. et al. The impact of acute thermal stress on the metabolome of the black rockfish (Sebastes schlegelii). PLoS ONE 14, 1–23 (2019).Article
Google Scholar
Kim, K. S. et al. Physiological responses to short-term thermal stress in mayfly (Neocloeon triangulifer) larvae in relation to upper thermal limits. J. Exp. Biol. 220, 2598–2605 (2017).PubMed
Article
Google Scholar
Juárez, O. E. et al. Transcriptomic and metabolic response to chronic and acute thermal exposure of juvenile geoduck clams Panopea globosa. Mar. Genomics 42, 1–13 (2018).PubMed
Article
Google Scholar
Pallarés, S., Arribas, P., Céspedes, V., Millán, A. & Velasco, J. Lethal and sublethal behavioural responses of saline water beetles to acute heat and osmotic stress. Ecol. Entomol. 37, 508–520 (2012).Article
Google Scholar
Qin, G. et al. Temperature-induced physiological stress and reproductive characteristics of the migratory seahorse Hippocampus erectus during a thermal stress simulation. Biol. Open 7, 1–7 (2018).CAS
Google Scholar
Zanuzzo, F. S., Bailey, J. A., Garber, A. F. & Gamperl, A. K. Comparative Biochemistry and Physiology, Part A The acute and incremental thermal tolerance of Atlantic cod (Gadus morhua) families under normoxia and mild hypoxia ☆. Comp. Biochem. Physiol. Part A 233, 30–38 (2019).CAS
Article
Google Scholar
Cunning, R. et al. Census of heat tolerance among Florida ’ s threatened staghorn corals finds resilient individuals throughout existing nursery populations. (2021).Evensen, N. R., Fine, M., Perna, G., Voolstra, C. R. & Barshis, D. J. Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. Limnol. Oceanogr. https://doi.org/10.1002/lno.11715 (2021).Article
Google Scholar
Morikawa, M. K. & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Natl. Acad. Sci. U. S. A. 116, 10586–10591 (2019).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Rose, N. H., Bay, R. A., Morikawa, M. K. & Palumbi, S. R. Polygenic evolution drives species divergence and climate adaptation in corals. Evolution (N. Y.) 72, 82–94 (2018).
Google Scholar
Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: lessons from Ofu, American Samoa. Front. Mar. Sci. 4, 1–14 (2018).CAS
Article
Google Scholar
Voolstra, C. R. et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob. Chang. Biol. 26, 4328–4343 (2020).ADS
PubMed
Article
Google Scholar
Klepac, C. N. & Barshis, D. J. High-resolution in situ thermal metrics coupled with acute heat stress experiments reveal differential coral bleaching susceptibility. Coral Reefs https://doi.org/10.1007/s00338-022-02276-1 (2022).Article
Google Scholar
Gardner, S. G. et al. A multi-trait systems approach reveals a response cascade to bleaching in corals. BMC Biol. 15, 117 (2017).PubMed
PubMed Central
Article
Google Scholar
Madin, J. S. et al. A trait-based approach to advance coral reef science. Trends Ecol. Evol. 31, 419–428 (2016).PubMed
Article
Google Scholar
Suggett, D. J. et al. Toward bio-optical phenotyping of reef-forming corals using light-induced fluorescence transient-fast repetition rate fluorometry. Limnol. Oceanogr. Methods https://doi.org/10.1002/lom3.10479 (2022).Article
Google Scholar
Krueger, T. et al. Differential coral bleaching-contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 190, 15–25 (2015).CAS
Article
Google Scholar
Leggat, W. et al. Differential responses of the coral host and their algal symbiont to thermal stress. PLoS ONE 6, e26687 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Nitschke, M. R. et al. Utility of photochemical traits as diagnostics of thermal tolerance amongst great barrier reef corals. Front. Mar. Sci. 5, 1–18 (2018).Article
Google Scholar
Warner, M. E., Fittt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Natl. Acad. Sci. 96, 8007–8012 (1999).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Fitt, W. K., Brown, B. E., Warner, M. E. & Dunne, R. P. Coral bleaching: Interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65 (2001).Article
Google Scholar
Tolosa, I., Treignier, C., Grover, R. & Ferrier-Pagès, C. Impact of feeding and short-term temperature stress on the content and isotopic signature of fatty acids, sterols, and alcohols in the scleractinian coral Turbinaria reniformis. Coral Reefs 30, 763–774 (2011).ADS
Article
Google Scholar
Grottoli, A. G. et al. Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS ONE 13, e0191156 (2018).PubMed
PubMed Central
Article
Google Scholar
Chow, M. H., Tsang, R. H. L., Lam, E. K. Y. & Ang, P. Quantifying the degree of coral bleaching using digital photographic technique. J. Exp. Mar. Bio. Ecol. 479, 60–68 (2016).Article
Google Scholar
Nielsen, J. J. V. et al. Physiological effects of heat and cold exposure in the common reef coral Acropora millepora. Coral Reefs 39, 259–269 (2020).Article
Google Scholar
McLachlan, R. H., Price, J. T., Solomon, S. L. & Grottoli, A. G. Thirty years of coral heat-stress experiments: a review of methods. Coral Reefs 39, 885–902 (2020).Article
Google Scholar
Edmunds, P. J. & Burgess, S. C. Correction: Size-dependent physiological responses of the branching coral Pocillopora verrucosa to elevated temperature and PCO2 (J. Exp. Biol. (2016) 219 (3896-3906) doi: 10.1242/jeb.146381). J. Exp. Biol. 221, 3896–3906 (2018).Article
Google Scholar
Madin, J. S., Baird, A. H., Dornelas, M. & Connolly, S. R. Mechanical vulnerability explains size-dependent mortality of reef corals. Ecol. Lett. 17, 1008–1015 (2014).PubMed
PubMed Central
Article
Google Scholar
Pausch, R. E., Williams, D. E. & Miller, M. W. Impacts of fragment genotype, habitat, and size on outplanted elkhorn coral success under thermal stress. Mar. Ecol. Prog. Ser. 592, 109–117 (2018).ADS
Article
Google Scholar
Shenkar, N., Fine, M. & Loya, Y. Size matters: bleaching dynamics of the coral Oculina patagonica. Mar. Ecol. Prog. Ser. 294, 181–188 (2005).ADS
Article
Google Scholar
Middlebrook, R., Anthony, K. R. N., Hoegh-Guldberg, O. & Dove, S. Heating rate and symbiont productivity are key factors determining thermal stress in the reef-building coral Acropora formosa. J. Exp. Biol. 213, 1026–1034 (2010).CAS
PubMed
Article
Google Scholar
Hoey, A. et al. Recent advances in understanding the effects of climate change on coral reefs. Diversity 8, 12 (2016).Article
Google Scholar
Marhoefer, S. R. et al. Signatures of adaptation and acclimatization to reef flat and slope habitats in the coral pocillopora damicornis. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.704709 (2021).Article
Google Scholar
Cornwell, B. et al. Widespread variation in heat tolerance and symbiont load are associated with growth tradeoffs in the coral acropora hyacinthus in palau. Elife 10, 1–15 (2021).Article
Google Scholar
McClanahan, T. R. et al. Large geographic variability in the resistance of corals to thermal stress. Glob. Ecol. Biogeogr. 29, 2229–2247 (2020).Article
Google Scholar
Magozzi, S. & Calosi, P. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming. Glob. Chang. Biol. 21, 181–194 (2015).ADS
PubMed
Article
Google Scholar
Drury, C., Manzello, D. & Lirman, D. Genotype and local environment dynamically influence growth, disturbance response and survivorship in the threatened coral, Acropora cervicornis. PLoS ONE 12, 1–21 (2017).Article
Google Scholar
McLachlan, R. H., Dobson, K. L., Schmeltzer, E. R., Thurber, R. V. & Grottoli, A. G. A review of coral bleaching specimen collection, preservation, and laboratory processing methods. PeerJ 9, 1–21 (2021).Article
Google Scholar
Okubo, N., Motokawa, T. & Omori, M. When fragmented coral spawn? Effect of size and timing on survivorship and fecundity of fragmentation in Acropora formosa. Mar. Biol. 151, 353–363 (2007).Article
Google Scholar
Bruno, J. F. Fragmentation in Madracis mirabilis (Duchassaing and Michelotti): How common is size-specific fragment survivorship in corals?. J. Exp. Mar. Bio. Ecol. 230, 169–181 (1998).Article
Google Scholar
Suggett, D. J. et al. Optimizing return-on-effort for coral nursery and outplanting practices to aid restoration of the Great Barrier Reef. Restor. Ecol. 27, 683–693 (2019).Article
Google Scholar
Howlett, L., Camp, E. F., Edmondson, J., Henderson, N. & Suggett, D. J. Coral growth, survivorship and return-on-effort within nurseries at high-value sites on the Great Barrier Reef. PLoS ONE 16, 1–15 (2021).Article
Google Scholar
Veal, C. J., Carmi, M., Fine, M. & Hoegh-Guldberg, O. Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29, 893–897 (2010).ADS
Article
Google Scholar
Voolstra, C. R. et al. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. Mol. Ecol. 30, 4466–4480 (2021).CAS
PubMed
Article
Google Scholar
Dove, S. et al. Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnol. Oceanogr. 51, 1149–1158 (2006).ADS
Article
Google Scholar
Traylor-Knowles, N., Rose, N. H., Sheets, E. A. & Palumb, S. Early tracriptional responses during heat stress in the coral Acropora hyacinthus. Biol. Bull. 232, 91–100 (2017).CAS
PubMed
Article
Google Scholar
Schuback, N. et al. Single-turnover variable chlorophyll fluorescence as a tool for assessing phytoplankton photosynthesis and primary productivity: opportunities, caveats and recommendations. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.690607 (2021).Article
Google Scholar
Macadam, A., Nowell, C. J. & Quigley, K. Machine learning for the fast and accurate assessment of fitness in coral early life history. Remote Sens. 13, 1–17 (2021).Article
Google Scholar
Teague, J., Willans, J., Allen, M. J., Scott, T. B. & Day, J. C. C. Applied marine hyperspectral imaging; coral bleaching from a spectral viewpoint. Spectrosc. Eur. 31, 13–17 (2019).CAS
Google Scholar
Davies, S. W., Ries, J. B., Marchetti, A. & Castillo, K. D. Symbiodinium functional diversity in the Coral Siderastrea siderea Is influenced by thermal stress and reef environment, but not ocean acidification. Front. Mar. Sci. 5, 1–14 (2018).Article
Google Scholar
Tang, J. et al. Increased ammonium assimilation activity in the scleractinian coral pocillopora damicornis but not its symbiont after acute heat stress. Front. Mar. Sci. 7, 1–10 (2020).ADS
Article
Google Scholar
Sweet, M. et al. Species-specific variations in the metabolomic profiles of Acropora hyacinthus and Acropora millepora mask acute temperature stress effects in adult coral colonies. Front. Mar. Sci. 8, 1–15 (2021).Article
Google Scholar
Newton, J. R., Smith-Keune, C. & Jerry, D. R. Thermal tolerance varies in tropical and sub-tropical populations of barramundi (Lates calcarifer) consistent with local adaptation. Aquaculture 308, S128–S132 (2010).Article
Google Scholar
Waltham, N. J. & Sheaves, M. Acute thermal tolerance of tropical estuarine fish occupying a man-made tidal lake, and increased exposure risk with climate change. Estuar. Coast. Shelf Sci. 196, 173–181 (2017).ADS
Article
Google Scholar
Iwabuchi, B. L. & Gosselin, L. A. Implications of acute temperature and salinity tolerance thresholds for the persistence of intertidal invertebrate populations experiencing climate change. Ecol. Evol. 10, 7739–7754 (2020).PubMed
PubMed Central
Article
Google Scholar
Cox, J., Schubert, A. M., Travisano, M. & Putonti, C. Adaptive evolution and inherent tolerance to extreme thermal environments. BMC Evol. Biol. https://doi.org/10.1186/1471-2148-10-75 (2010).Article
PubMed
PubMed Central
Google Scholar
Quigley, K. M., Bay, L. K. & Willis, B. L. Temperature and water quality-related patterns in sediment-associated Symbiodinium communities impact symbiont uptake and fitness of juveniles in the genus Acropora. Front. Mar. Sci. 4, 1–17 (2017).Article
Google Scholar
Voolstra, C. R. et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00214-3 (2021).Article
Google Scholar
Cocciardi, J. M. et al. Adjustable temperature array for characterizing ecological and evolutionary effects on thermal physiology. Methods Ecol. Evol. 2019, 1339–1346 (2019).Article
Google Scholar
Smith, G. & Spillman, C. New high-resolution sea surface temperature forecasts for coral reef management on the Great Barrier Reef. Coral Reefs 38, 1039–1056 (2019).ADS
Article
Google Scholar
Bainbridge, S. J. Temperature and light patterns at four reefs along the Great Barrier Reef during the 2015–2016 austral summer: understanding patterns of observed coral bleaching. J. Oper. Oceanogr. 10, 16–29 (2017).
Google Scholar
Siebeck, U. E., Marshall, N. J., Klüter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).ADS
Article
Google Scholar
Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science (80-.) 344, 895–899 (2014).ADS
CAS
Article
Google Scholar
Saxby, T., Dennison, W. C. & Hoegh-Guldberg, O. Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Mar. Ecol. Prog. Ser. 248, 85–97 (2003).ADS
Article
Google Scholar
Deschaseaux, E. S. M., Deseo, M. A., Shepherd, K. M., Jones, G. B. & Harrison, P. L. Air blasting as the optimal approach for the extraction of antioxidants in coral tissue. J. Exp. Mar. Bio. Ecol. 448, 146–148 (2013).CAS
Article
Google Scholar
Holmes, G., Ortiz, J., Kaniewska, P. & Johnstone, R. Using three-dimensional surface area to compare the growth of two Pocilloporid coral species. Mar. Biol. 155, 421–427 (2008).Article
Google Scholar
Naumann, M. S., Niggl, W., Laforsch, C., Glaser, C. & Wild, C. Coral surface area quantification-evaluation of established techniques by comparison with computer tomography. Coral Reefs 28, 109–117 (2009).ADS
Article
Google Scholar
Ritchie, R. J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89, 27–41 (2006).CAS
PubMed
Article
Google Scholar
Licthenthaler, H. K. Chlorophylls and carotenoids – pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382 (1987).Article
Google Scholar
R Core Team. R: a language and environment for statistical computing. (2020).Hartig, F. & Lohse, L. Package ‘DHARMa’ residual diangonstics for hierarchical (multi-level/mixed) regression models (2021).Brooks, M. E. et al. glmmTMB balances speed and flexibility among packaages for zero-inflated generalized linear mixed modelling. R Journal 9, 378–400 (2017).Article
Google Scholar
Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 1–32 (2018).
Google Scholar
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article
Google Scholar
Oksanen, J. et al. Vegan (2020).Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, 2008).MATH
Book
Google Scholar More