More stories

  • in

    Sperm whale acoustic abundance and dive behaviour in the western North Atlantic

    Data collectionBetween June 27 and August 25, 2016, 6600 km of simultaneous visual and passive acoustic line transect surveys were completed on the National Oceanic and Atmospheric Administration (NOAA) ship Henry B. Bigelow5. Survey effort was distributed along saw tooth track lines spanning the continental slope from Virginia (US) to the southern tip of Nova Scotia (Canada) (36–42 N) and on several larger track lines over the abyssal plain. Two teams of visual observers independently recorded sightings of marine mammals using high-powered Fujinon binoculars (25 × 150; Fujifilm, Valhalla, NY) as well as environmental conditions (e.g. sea state) every 30 min.The speed of sound in water was collected three times each day (morning, noon, evening) by measuring conductivity, temperature, and depth (CTD) at specific intervals in the water column. The sound speed closest to the depth of the towed hydrophone array was extracted. On alternating survey days, Simrad EK60 single beam scientific echosounders operating at frequencies of 18, 38, 70, 120 and 200 kHz were used to collect active acoustic data.When possible during daylight hours (06:00–18:00 ET), passive acoustic data were collected continuously using a custom-built linear array composed of eight hydrophone elements and a depth sensor (Keller America Inc. PA7FLE, Newport News, VA) within two oil-filled modular sections separated by 30 m of cable (Fig. 1). The array was towed 300 m behind the vessel at approximately 5–10 m depth while the vessel was in waters more than 100 m deep and underway at speeds of 16–20 km/h. For more details see DeAngelis et al.31, with the only change being that two APC hydrophones and one Reson hydrophone in the aft section were replaced with HTI-96-Min hydrophones (High Tech, Inc., Long Beach, MS). The HTI’s had a flat frequency response from 1 to 30 kHz (− 167 dB re V/uPa ± 1.5 dB). Recordings were made using the acoustical software PAMGuard (v.1.15.02)34. This analysis used the data recorded by the last two 192 kHz sampled hydrophones in the array (MF5 and MF6).Figure 1The linear towed array included eight hydrophone elements and a depth sensor within two oil-filled modular sections separated by 30 m of cable. Six hydrophones sampled at 192 kHz (MF1–MF6) and two sampled at 500 kHz. The hydrophones were connected to two National Instruments sound cards (NI-USB-6356). A high pass filter of 1 kHz was applied by the recording system to reduce the amount of vessel noise in the recordings. This analysis used the passive acoustic data from MF5 and MF6. The schematic is not to scale.Full size imageClick detection and 2D event localizationThe passive acoustic data were filtered using a Butterworth band pass filter (4th order) between 2 and 20 kHz and decimated to 96 kHz to improve sperm whale click resolution. Clicks were automatically detected using the PAMGuard (v.2.01.03) general sperm whale click detector with a trigger threshold of 12 dB.Using PAMGuard’s bearing time display, all detections were reviewed to classify click types and mark click trains as “events” based on consistent changes in bearing, audible sound, ICI and spectral characteristics. Each event was marked to an individual level, tracking a whale from the first to the last detected click15,35. All events containing usual clicks were localized with PAMGuard’s Target Motion Analysis (TMA) module’s 2D simplex optimization algorithm. For further analysis, events were truncated at a slant range of 6500 m (Supplementary Fig. S1).Echosounder analysisA regression analysis was run using the R package MASS36. To account for overdispersion, a negative binomial generalized linear model (GLM) with a log link function was applied to a dataset of the daily acoustic detections33. Echosounder state (active versus passive), month (June, July, August), and habitat type (slope or abyssal) were included as covariates, with the total number of daily detections as the response variable. The track line distance covered per day was used as an offset for effort. The best fitting model was selected based on backwards stepwise selection using Akaike’s information criterion (AIC) and the single-term deletion method using Chi-squared goodness-of-fit tests37.3D localizationExtracting a .wav clip for each click and attributing metadataAn automated process was developed using the R package PAMpal38 (v. 0.14.0) to extract the time of each click in the marked events from PAMGuard databases, generate a .wav clip for each click, and attribute all metadata (e.g., event 2D localization, array depth, radial distance, sea state, and sound speed) necessary for estimating the click depth.Slant delayUsing the methods established by DeAngelis et al.31 and custom Matlab R2021a (MathWorks Inc., Natick, NA) scripts, the multipath arrival of clicks and surface reflected echoes were used to mathematically convert the linear array into a 2D planar array and estimate 3D localizations. Using the .wav clips exported from PAMPal, the time delay between the click and the corresponding surface reflected echo, known as the slant delay, was measured via autocorrelation. Within the autocorrelation solution’s envelope of correlation values, the optimal slant delay was measured using the peak with the highest correlation value above a threshold of 0.02 and within an expected time window after the direct click of 0.0005–0.015 s. Although theoretically a surface reflected echo could have arrived less than a millisecond ( 5 min) were categorized as U shaped, and as shallow ( 1600 m) based on the maximum click depth (Fig. 3).Figure 3Example of click depths (m) over time (min) for events categorized as (a) U shaped and shallow ( 1600 m).Full size imageClick depths were then binned at 400 m intervals to account for an animal’s unknown horizontal movement over time as well as uncertainty in the estimated click depths, and the total time an animal spent within each depth bin was calculated. For each event with a U shaped click depth pattern, the depth bin in which the bottom phase occurred6 was determined. Finally, to assess if a whale was diving in the water column or close to the seafloor, the depth bin in which the 90th percentile of the click depths was recorded was compared to the bin including the seafloor depth. If the whale was more than 400 m above the seafloor, it was determined to be diving in the water column.Distance samplingDepth-corrected average horizontal perpendicular distancesFor each event, a depth-corrected average horizontal perpendicular distance was calculated using the TMA derived perpendicular slant range and the average depth or an assumed depth in the Pythagorean theorem19,31. The weighted mean, first quartile, and third quartile of the average depths were tested as assumed depths for events excluded from 3D localization. If depth was greater than or equal to the slant range the perpendicular distance was coerced to 0, indicating the whale was diving directly below the track line. The resulting distribution of depth-corrected perpendicular distances that aligned most with distance sampling theory was used in the final distance analysis.Acoustic density and abundance estimationThe R package Distance41,42 (v.1.0.4) was used to estimate two separate detection functions based on the uncorrected slant ranges and the depth-corrected perpendicular distances. Half-normal, uniform, and hazard rate key functions were tested with cosine, simple polynomial, and Hermite polynomial adjustment terms. The best fitting models were selected based on the AIC, the Kolmogorov–Smirnov (K–S) test, the Cramer-von Mises (CvM) test, quantile–quantile plots, and visual review of the fitted models43. The probability of detection, abundance, and effective strip half width (ESW) were then estimated for foraging sperm whales.Permitting authorityData used in this manuscript were collected during surveys that were completed under U.S. Marine Mammal Protection Act permit numbers 17355 and 21371 issued to the Northeast Fisheries Science Center. More

  • in

    Temporal variation in the prokaryotic community of a nearshore marine environment

    Bunse, C. & Pinhassi, J. Marine bacterioplankton seasonal succession dynamics. Trends Microbiol. 25, 494–505. https://doi.org/10.1016/j.tim.2016.12.013 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mestre, M., Höfer, J., Sala, M. M. & Gasol, J. M. Seasonal variation of bacterial diversity along the marine particulate matter continuum. Front. Microbiol. 11, 1590. https://doi.org/10.3389/fmicb.2020.01590 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611. https://doi.org/10.1126/science.1218344 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Gilbert, J. A. et al. The seasonal structure of microbial communities in the Western English Channel. Environ. Microbiol. 11, 3132–3139. https://doi.org/10.1111/j.1462-2920.2009.02017.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sintes, E., Witte, H., Stodderegger, K., Steiner, P. & Herndl, G. J. Temporal dynamics in the free-living bacterial community composition in the coastal North Sea. FEMS Microbiol. Ecol. 83, 413–424. https://doi.org/10.1111/1574-6941.12003 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lindh, M. V. et al. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling. Environ. Microbiol. 17, 2459–2476. https://doi.org/10.1111/1462-2920.12720 (2015).Article 
    PubMed 

    Google Scholar 
    El-Swais, H., Dunn, K. A., Bielawski, J. P., Li, W. K. W. & Walsh, D. A. Seasonal assemblages and short-lived blooms in coastal north-west Atlantic Ocean bacterioplankton. Environ. Microbiol. 17, 3642–3661. https://doi.org/10.1111/1462-2920.12629 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ward, C. S. et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 11, 1412–1422. https://doi.org/10.1038/ismej.2017.4 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teeling, H. et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. Elife 5, e11888. https://doi.org/10.7554/eLife.11888 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tinta, T. et al. Bacterial community shift is induced by dynamic environmental parameters in a changing coastal ecosystem (northern Adriatic, northeastern Mediterranean Sea) – a 2-year time-series study. Environ. Microbiol. 17, 3581–3596. https://doi.org/10.1111/1462-2920.12519 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Salter, I. et al. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J. 9, 347–360. https://doi.org/10.1038/ismej.2014.129 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308. https://doi.org/10.1038/ismej.2011.107 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alonso-Sáez, L. et al. Seasonality in bacterial diversity in north-west Mediterranean coastal waters: Assessment through clone libraries, fingerprinting and FISH. FEMS Microbiol. Ecol. 60, 98–112. https://doi.org/10.1111/j.1574-6941.2006.00276.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alonso-Sáez, L., Díaz-Pérez, L. & Morán, X. A. G. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton. Environ. Microbiol. 17, 3766–3780. https://doi.org/10.1111/1462-2920.12801 (2015).Article 
    PubMed 

    Google Scholar 
    Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 1–7. https://doi.org/10.1038/nmicrobiol.2016.5 (2016).CAS 
    Article 

    Google Scholar 
    Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146. https://doi.org/10.1038/nrmicro3417 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Najdek, M. et al. Dynamics of environmental conditions during the decline of a Cymodocea nodosa meadow. Biogeosciences 17, 3299–3315. https://doi.org/10.5194/bg-17-3299-2020 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Najdek, M. et al. Effects of the invasion of Caulerpa cylindracea in a Cymodocea nodosa meadow in the Northern Adriatic Sea. Front. Mar. Sci. 7, 602055. https://doi.org/10.3389/fmars.2020.602055 (2020).Article 

    Google Scholar 
    Ladau, J. et al. Global marine bacterial diversity peaks at high latitudes in winter. ISME J. 7, 1669–1677. https://doi.org/10.1038/ismej.2013.37 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    García, F. C., Alonso-Sáez, L., Morén, X. A. G. & López-Urrutia, Á. Seasonality in molecular and cytometric diversity of marine bacterioplankton: The re-shuffling of bacterial taxa by vertical mixing. Environ. Microbiol. 17, 4133–4142. https://doi.org/10.1111/1462-2920.12984 (2015).Article 
    PubMed 

    Google Scholar 
    Reinthaler, T., Winter, C. & Herndl, G. J. Relationship between bacterioplankton richness, respiration, and production in the southern North Sea. Appl. Environ. Microbiol. 71, 2260–2266. https://doi.org/10.1128/AEM.71.5.2260-2266.2005 (2005).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mozetič, P. et al. Recent trends towards oligotrophication of the Northern Adriatic: Evidence from chlorophyll a time series. Estuaries Coast 33, 362–375. https://doi.org/10.1007/s12237-009-9191-7 (2010).CAS 
    Article 

    Google Scholar 
    Manna, V., De Vittor, C., Giani, M., Del Negro, P. & Celussi, M. Long-term patterns and drivers of microbial organic matter utilization in the northernmost basin of the Mediterranean Sea. Mar. Environ. Res. 164, 105245. https://doi.org/10.1016/j.marenvres.2020.105245 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ivančić, I. et al. Long-term changes in heterotrophic prokaryotes abundance and growth characteristics in the northern Adriatic Sea. J. Mar. Syst. 82, 206–216. https://doi.org/10.1016/j.jmarsys.2010.05.008 (2010).Article 

    Google Scholar 
    Bowman, J. P. The family Cryomorphaceae. In The Prokaryotes: Other Major Lineages of Bacteria and the Archaea (eds Rosenberg, E. et al.) (Springer, New York, 2014). https://doi.org/10.1007/978-3-642-38954-2_135.Chapter 

    Google Scholar 
    Ngugi, D. K. & Stingl, U. High-quality draft single-cell genome sequence of the NS5 marine group from the coastal Red Sea. Genome Announc. 6, e00565-18. https://doi.org/10.1128/genomeA.00565-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korlević, M., Pop Ristova, P., Garić, R., Amann, R. & Orlić, S. Bacterial diversity in the South Adriatic Sea during a strong, deep winter convection year. Appl. Environ. Microbiol. 81, 1715–1726; https://doi.org/10.1128/AEM.03410-14 (2015).Korlević, M. et al. Bacterial diversity across a highly stratified ecosystem: A salt-wedge Mediterranean estuary. Syst. Appl. Microbiol. 39, 398–408. https://doi.org/10.1016/j.syapm.2016.06.006 (2016).Article 
    PubMed 

    Google Scholar 
    Hoarfrost, A. et al. Global ecotypes in the ubiquitous marine clade SAR86. ISME J. 14, 178–188. https://doi.org/10.1038/s41396-019-0516-7 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Šilović, T., Balagué, V., Orlić, S. & Pedrós-Alió, C. Picoplankton seasonal variation and community structure in the northeast Adriatic coastal zone. FEMS Microbiol. Ecol. 82, 678–691. https://doi.org/10.1111/j.1574-6941.2012.01438.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Palenik, B. et al. The genome of a motile marine Synechococcus. Nature 424, 1037–1042. https://doi.org/10.1038/nature01943 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Spring, S. & Riedel, T. Mixotrophic growth of bacteriochlorophyll a-containing members of the OM60/NOR5 clade of marine gammaproteobacteria is carbon-starvation independent and correlates with the type of carbon source and oxygen availability. BMC Microbiol. 13, 117. https://doi.org/10.1186/1471-2180-13-117 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durham, B. P. et al. Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome. Stand. Genomic Sci. 9, 632–645. https://doi.org/10.4056/sigs.4998989 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carlson, C. A. et al. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J. 3, 283–295. https://doi.org/10.1038/ismej.2008.117 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vergin, K. L. et al. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series study site by phylogenetic placement of pyrosequences. ISME J. 7, 1322–1332. https://doi.org/10.1038/ismej.2013.32 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, J.-G. et al. Distinct temporal dynamics of planktonic archaeal and bacterial assemblages in the bays of the Yellow Sea. PLoS One 14, e0221408. https://doi.org/10.1371/journal.pone.0221408 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bayer, B. et al. Nitrosopumilus adriaticus sp. nov. and Nitrosopumilus piranensis sp. nov., two ammonia-oxidizing archaea from the Adriatic Sea and members of the class Nitrososphaeria. Int. J. Syst. Evol. Microbiol. 69, 1892–1902. https://doi.org/10.1099/ijsem.0.003360 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Analysis vol. 167 (Fisheries Research Board of Canada, 1972).Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W. & Strickland, J. D. H. Fluorometric determination of chlorophyll. ICES J. Mar. Sci. 30, 3–15. https://doi.org/10.1093/icesjms/30.1.3 (1965).CAS 
    Article 

    Google Scholar 
    Porter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948. https://doi.org/10.4319/lo.1980.25.5.0943 (1980).ADS 
    Article 

    Google Scholar 
    Massana, R., Murray, A. E., Preston, C. M. & DeLong, E. F. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl. Environ. Microbiol. 63, 50–56. https://doi.org/10.1128/aem.63.1.50-56.1997 (1997).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korlević, M., Markovski, M., Zhao, Z., Herndl, G. J. & Najdek, M. Selective DNA and protein isolation from marine macrophyte surfaces. Front. Microbiol. 12, 665999. https://doi.org/10.3389/fmicb.2021.665999 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624. https://doi.org/10.1038/ismej.2012.8 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137. https://doi.org/10.3354/ame01753 (2015).Article 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414. https://doi.org/10.1111/1462-2920.13023 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Korlević, M., Markovski, M., Zhao, Z., Herndl, G. J. & Najdek, M. Seasonal dynamics of epiphytic microbial communities on marine macrophyte surfaces. Front. Microbiol. 12, 671342. https://doi.org/10.3389/fmicb.2021.671342 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541. https://doi.org/10.1128/AEM.01541-09 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120. https://doi.org/10.1128/AEM.01043-13 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yilmaz, P. et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648. https://doi.org/10.1093/nar/gkt1209 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schloss, P. D., Jenior, M. L., Koumpouras, C. C., Westcott, S. L. & Highlander, S. K. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system. PeerJ 4, e1869. https://doi.org/10.7717/peerj.1869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2021).Oksanen, J. et al. vegan: Community ecology package (2020).Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686; https://doi.org/10.21105/joss.01686 (2019)McKinnon Edwards, S. lemon: Freshing up your ’ggplot2’ plots (2020).Wilke, C. O. cowplot: Streamlined plot theme and plot annotations for ’ggplot2’ (2020).Neuwirth, E. RColorBrewer: ColorBrewer palettes (2014).Zhu, H. kableExtra: Construct complex table with ’kable’ and pipe syntax (2021).Allaire, J. et al. rmarkdown: Dynamic documents for R (2021).Xie, Y., Allaire, J. J. & Grolemund, G. R Markdown: The Definitive Guide (Chapman and Hall/CRC, New York, 2018).Book 

    Google Scholar 
    Xie, Y., Dervieux, C. & Riederer, E. R Markdown Cookbook (Chapman and Hall/CRC, New York, 2020).Book 

    Google Scholar 
    Xie, Y. knitr: A general-purpose package for dynamic report generation in R (2021).Xie, Y. & knitr, A comprehensive tool for reproducible research in R. In Implementing Reproducible Computational Research (eds Stodden, V. et al.) (Chapman and Hall/CRC, New York, 2014).Xie, Y. Dynamic Documents with R and knitr (Chapman and Hall/CRC, New York, 2015).
    Google Scholar 
    Xie, Y. tinytex: Helper functions to install and maintain TeX Live, and compile LaTeX documents (2021).Xie, Y. TinyTeX: A lightweight, cross-platform, and easy-to-maintain LaTeX distribution based on TeX Live. TUGboat 40, 30–32 (2019).CAS 

    Google Scholar 
    Jost, L. Entropy and diversity. Oikos 113, 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x (2006).Article 

    Google Scholar 
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, New York, 2018). https://doi.org/10.1007/978-3-319-71404-2.Book 
    MATH 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, Amsterdam, 2012).MATH 

    Google Scholar  More

  • in

    Ornaments are equally informative in male and female birds

    Amundsen, T. In Animal Signals: Signalling and Signal Design in Animal Communication (eds. Espmark, Y., Amundsen, T. & Rosenqvist, G.) 133–154 (Tapir Academic Press, 2000).Amundsen, T. Why are female birds ornamented? Trends Ecol. Evol. 15, 149–155 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lande, R. Sexual dimorphism, sexual selection and adaptation in polygenic characters. Evolution 34, 292–305 (1980).PubMed 
    Article 

    Google Scholar 
    Poissant, J., Wilson, A. J. & Coltman, D. W. Sex-specific genetic variance and the evolution of sexual size dimorphism: a systematic review of cross-sex genetic correlations. Evolution 64, 97–107 (2009).PubMed 
    Article 

    Google Scholar 
    Nordeide, J. T., Kekäläinen, J., Janhunen, M. & Kortet, R. Female ornaments revisited—are they correlated with offspring quality? J. Anim. Ecol. 82, 26–38 (2013).PubMed 
    Article 

    Google Scholar 
    Prum, R. O. The Evolution of Beauty: How Darwin’s Forgotten Theory of Mate Choice Shapes the Animal World and Us (Doubleday, 2017).Clark, C. J. & Rankin, D. Subtle, pervasive genetic correlation between the sexes in the evolution of dimorphic hummingbird tail ornaments. Evolution 74, 528–543 (2020).PubMed 
    Article 

    Google Scholar 
    LeBas, N. R. Female finery is not for males. Trends Ecol. Evol. 21, 170–173 (2006).PubMed 
    Article 

    Google Scholar 
    Kraaijeveld, K., Kraaijeveld-Smit, F. J. L. & Komdeur, J. The evolution of mutual ornamentation. Anim. Behav. 74, 657–677 (2007).Article 

    Google Scholar 
    Tobias, J. A., Montgomerie, R. & Lyon, B. E. The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Philos. Trans. R. Soc. B 367, 2274–2293 (2012).Article 

    Google Scholar 
    Hare, R. M. & Simmons, L. W. Sexual selection and its evolutionary consequences in female animals. Biol. Rev. 94, 1464–7931 (2019).Article 

    Google Scholar 
    Hernández, A., Martínez-Gómez, M., Beamonte-Barrientos, R. & Montoya, B. Colourful traits in female birds relate to individual condition, reproductive performance and male-mate preferences: a meta-analytic approach. Biol. Lett. 17, 20210283 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tsuboi, M., Gonzalez-Voyer, A., Höglund, J. & Kolm, N. Ecology and mating competition influence sexual dimorphism in Tanganyikan cichlids. Evol. Ecol. 26, 171–185 (2012).Article 

    Google Scholar 
    Andersson, M. Sexual Selection (Princeton Univ. Press, 1994).Doutrelant, C., Fargevieille, A. & Grégoire, A. Evolution of female coloration: what have we learned from birds in general and blue tits in particular. Adv. Study Behav. 52, 123–202 (2020).Article 

    Google Scholar 
    Dunn, P. O., Armenta, J. K. & Whittingham, L. A. Natural and sexual selection act on different axes of variation in avian plumage color. Sci. Adv. 1, e1400155 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cotton, S., Fowler, K. & Pomiankowski, A. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. Biol. Sci. 271, 771–783 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bonduriansky, R. & Rowe, L. Sexual selection, genetic architecture, and the condition dependence of body shape in the sexually dimorphic fly Prochyliza xanthostoma (Piophilidae). Evolution 59, 138–151 (2005).PubMed 
    Article 

    Google Scholar 
    Johnstone, R. A., Rands, S. A. & Evans, M. R. Sexual selection and condition-dependence. J. Evol. Biol. 22, 2387–2394 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cotton, S., Fowler, K. & Pomiankowski, A. Heightened condition dependence is not a general feature of male eyespan in stalk-eyed flies (Diptera: Diopsidae). J. Evol. Biol. 17, 1310–1316 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    David, P. et al. Male sexual ornament size but not asymmetry reflects condition in stalk-eyed flies. Proc. R. Soc. Lond. B 265, 2211–2216 (1998).Article 

    Google Scholar 
    Bolund, E., Schielzeth, H. & Forstmeier, W. No heightened condition dependence of zebra finch ornaments—a quantitative genetic approach. J. Evol. Biol. 23, 586–597 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zahavi, A. Mate selection-a selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Meunier, J., Figueiredo Pinto, S., Burri, R. & Roulin, A. Eumelanin-based coloration and fitness parameters in birds: a meta-analysis. Behav. Ecol. Sociobiol. 65, 559–567 (2011).Article 

    Google Scholar 
    Weaver, R. J., Santos, E. S. A., Tucker, A. M., Wilson, A. E. & Hill, G. E. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat. Commun. 9, 73 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    White, T. E. Structural colours reflect individual quality: a meta-analysis. Biol. Lett. 16, 20200001 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Taylor & Francis Inc., 1988)Andersson, M. Sexual selection, natural selection and quality advertisement. Biol. J. Linn. Soc. 17, 375–393 (1982).Article 

    Google Scholar 
    Walther, B. A. & Clayton, D. H. Elaborate ornaments are costly to maintain: evidence for high maintenance handicaps. Behav. Ecol. 16, 89–95 (2005).Article 

    Google Scholar 
    Folstad, I. & Karter, A. K. Parasites, bright males and the immunocompetence handicap. Am. Nat. 139, 603–622 (1992).Article 

    Google Scholar 
    Alonso-Alvarez, C., Bertrand, S., Faivre, B., Chastel, O. & Sorci, G. Testosterone and oxidative stress: the oxidation handicap hypothesis. Proc. R. Soc. Lond. B 274, 819–825 (2007).CAS 

    Google Scholar 
    Weaver, R. J., Koch, R. E. & Hill, G. E. What maintains signal honesty in animal colour displays used in mate choice? Philos. Trans. R. Soc. B 372, 20160343 (2017).Article 

    Google Scholar 
    Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337, 860–864 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Huhta, E. Plumage brightness of prey increases predation risk: an among-species comparison. Ecology 84, 1793–1799 (2003).Article 

    Google Scholar 
    Tibbetts, E. A. & Dale, J. A socially enforced signal of quality in a paper wasp. Nature 432, 18–222 (2004).Article 

    Google Scholar 
    Webster, M. S., Ligon, R. A. & Leighton, G. M. Social costs are an underappreciated force for honest signalling in animal aggregations. Anim. Behav. 143, 167–176 (2018).Article 

    Google Scholar 
    Sheldon, B. C. Differential allocation: tests, mechanisms and implications. Trends Ecol. Evol. 15, 397–402 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnstone, R. A., Reynolds, J. D. & Deutsch, J. C. Mutual mate choice and sex differences in choosiness. Evolution 50, 1382–1391 (1996).PubMed 
    Article 

    Google Scholar 
    Promislow, D. E. L., Montgomerie, R. & Martin, T. E. Mortality costs of sexual dimorphism in birds. Proc. R. Soc. Lond. B 250, 143–150 (1992).ADS 
    Article 

    Google Scholar 
    Guindre-Parker, S. & Love, O. P. Revisiting the condition-dependence of melanin-based plumage. J. Avian Biol. 45, 29–33 (2014).Article 

    Google Scholar 
    Roulin, A. & Dijkstra, C. Genetic and environmental components of variation in eumelanin and phaeomelanin sex-traits in the barn owl. Heredity 90, 359–364 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jawor, J. M. & Breitwisch, R. Melanin ornaments, honesty, and sexual selection. Auk 120, 249–265 (2003).Article 

    Google Scholar 
    Gunderson, A. R., Frame, A. M., Swaddle, J. P. & Forsyth, M. H. Resistance of melanized feathers to bacterial degradation: is it really so black and white? J. Avian Biol. 39, 539–545 (2008).Article 

    Google Scholar 
    Ruiz-de-Castañeda, R., Burtt, E. H. Jr., González-Braojos, S. & Moreno, J. Bacterial degradability of an intrafeather unmelanized ornament: a role for feather-degrading bacteria in sexual selection? Biol. J. Linn. Soc. 105, 409–419 (2012).Article 

    Google Scholar 
    Tazzyman, S. J., Iwasa, Y. & Pomiankowski, A. Signaling efficacy drives the evolution of larger sexual ornaments by sexual selection. Evolution 68, 216–229 (2014).PubMed 
    Article 

    Google Scholar 
    Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Guilford, T. & Dawkins, M. S. Receiver psychology and the evolution of animal signals. Anim. Behav. 42, 1–14 (1991).Article 

    Google Scholar 
    Tazzyman, S. J., Iwasa, Y. & Pomiankowski, A. The handicap process favors exaggerated, rather than reduced, sexual ornaments. Evolution 68, 2534–2549 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peters, J. L. et al. Assessing publication bias in meta-analyses in the presence of between-study heterogeneity. J. R. Stat. Soc. Ser. A. 173, 575–591 (2010).MathSciNet 
    Article 

    Google Scholar 
    Dumbacher, J. P. & Fleischer, R. C. Phylogenetic evidence for colour pattern convergence in toxic pitohuis: Müllerian mimicry in birds? Proc. Biol. Sci. 268, 1971–1976 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jønsson, K. A., Delhey, K., Sangster, G., Ericson, P. G. P. & Irestedt, M. The evolution of mimicry of friarbirds by orioles (Aves: Passeriformes) in Australo-Pacific archipelagos. Proc. R. Soc. B Biol. Sci. B 283, 20160409 (2016).Article 

    Google Scholar 
    Ord, T. J. & Stuart-Fox, D. Ornament evolution in dragon lizards: multiple gains and widespread losses reveal a complex history of evolutionary change. J. Evol. Biol. 19, 797–808 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).O’Dea, R. E. et al. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev. 96, 1695–1722 (2021).PubMed 
    Article 

    Google Scholar 
    LeBas, N. R., Hockham, L. R. & Ritchie, M. G. Nonlinear and correlational sexual selection on ‘honest’ female ornamentation. Proc. R. Soc. Lond. B 270, 2159–2165 (2003).Article 

    Google Scholar 
    Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5, 210 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rohatgi, A. WebPlotDigitizer. Software version 4.5. https://automeris.io/WebPlotDigitizer (2000).Sidney, S. Nonparametric Statistics for the Behavioral Sciences (McGraw-Hill,1956).Friedman, H. Simplified determination of statistical power, magnitude of effect and research sample sizes. Educ. Psychol. Meas. 42, 521–526 (1982).Article 

    Google Scholar 
    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).PubMed 
    Article 

    Google Scholar 
    Verhulst, S. & Nilsson, J. A. The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. Lond. B 363, 399–410 (2008).Article 

    Google Scholar 
    Brown, M. E. In Current Ornithology (eds. Nolan, V. & Ketterson, E. D.) 67–135 (Plenum Press, 1996).Labocha, M. K. & Hayes, J. P. Morphometric indices of body condition in birds: a review. J. Ornithol. 153, 1–22 (2012).Article 

    Google Scholar 
    Sánchez, C. A. et al. On the relationship between body condition and parasite infection in wildlife: a review and meta-analysis. Ecol. Lett. 20, 1869–1884 (2018).Article 

    Google Scholar 
    Arnholt, A. T. & Evans, B. BSDA: Basic statistics and data analysis. R package version 1.2.0. https://cran.r-project.org/package=BSDA (2017).Jackson, D., White, I. R., Price, M., Copas, J. & Riley, R. D. Borrowing of strength and study weights in multivariate and network meta-analysis. Stat. Methods Med. Res. 26, 2853–2868 (2017).MathSciNet 
    PubMed 
    Article 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nakagawa, S. & De Villemereuil, P. A general method for simultaneously accounting for phylogenetic and species sampling uncertainty via Rubin’s rules in comparative analysis. Syst. Biol. 68, 632–641 (2019).PubMed 
    Article 

    Google Scholar 
    Cinar, O., Nakagawa, S. & Viechtbauer, W. Phylogenetic multilevel meta-analysis: a simulation study on the importance of modeling the phylogeny. Methods Ecol. Evol. 13, 383–395 (2022).Article 

    Google Scholar 
    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar 
    Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022).Article 

    Google Scholar 
    Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).Article 

    Google Scholar 
    Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. Birds of the World (Cornell Laboratory of Ornithology, 2000). More

  • in

    A real-time rural domestic garbage detection algorithm with an improved YOLOv5s network model

    Attention combination mechanismDue to the difficulty in extracting features from target areas in images, the high computational effort of the model and the low accuracy of detection are addressed. As shown in Fig. 3, we introduce a lightweight feedforward convolutional attention module CBAM after the backbone network Focus module of the YOLOv5s network model. The SE-Net (Squeeze and Excitation Networks) channel attention module is posted at the end of the backbone network. We propose an attention combination mechanism based on the YOLOv5s network model and name the improved network model YOLOv5s-CS. Where the CBAM module has a channel number of 128, a convolutional kernel size of 3 and a step size of 2, the SELayer has a channel number of 1024 and a step size of 4.Figure 3YOLOv5 backbone network structure before and after improvement.Full size imageConvolutional block attention module networkIn 2018, Woo et al.25 proposed the lightweight feedforward convolutional attention module CBAM. The CBAM module focuses on feature information from both channels and space dimensions and combines feature information to some extent to obtain more comprehensive reliable attentional information26. CBAM consists of two submodules, the channel attention module (CAM) and spatial attention module (SAM), and its overall module structure is shown in Fig. 4a.Figure 4Principle of CBAM.Full size imageThe working principle of the CAM is shown in Fig. 4b. First, the feature map F is input at the input entrance. Second, the global maximum pooling operation and the global average pooling operation are applied to the width and height of the feature map respectively to obtain two feature maps of the same size. Third, two feature maps of the same size are input to the shared parameter network MLP at the same time. Finally, the new feature map output from the shared parameter network is subjected to a summation operation and a sigmoid activation function to obtain the channel attention features ({M}_{c}).The channel attention module CAM is calculated as shown in Formula (1):$${text{M}}_{rm{c}}({text{F}}){=sigma}({text{MLP (AvgPool (F))}}+ {text MLP (MaxPool (F)))}{=sigma}({rm{W}}_{1}({text{W}}_{0}({text{F}}_{{{rm{avg}}}^{rm{c}}}))+{rm{W}}_{0}({rm{W}}_{1}({rm{F}}_{{{rm{max}}}^{rm{c}}})))$$
    (1)
    where σ represents the sigmoid function, MLP represents the shared parameter network, ({text{W}}_{0}) and ({text{W}}_{1}) represent the shared weights, ({text{F}}_{text{avg}}^{text{c}}) is the result of feature map F after global average pooling, and ({text{F}}_{text{max}}^{text{c}}) is the result of feature map F after global maximum pooling.The working principle of SAM is shown in Fig. 4c. The feature map F’ is regarded as the input of the SAM. F’ is obtained by multiplying the input of SAM with the output of CAM. First, the global maximum pooling operation and the global average pooling operation are applied to the channels of the feature map to obtain two feature maps of the same size. Second, two feature maps that have completed the pooling operation are stitched at the channels and the feature channels are dimensioned down using the convolution operation to obtain a new feature map. Finally, spatial attention features ({text{M}}_{text{s}}) are generated using the sigmoid activation function.The spatial attention module (SAM) is calculated, as shown in Formula (2):$${text{M}}_{text{s}}left({text{F}}right) {=sigma}left({text{f}}^{7 times 7}left(left[{text{AvgPool}}left({text{F}}right)text{;MaxPool}left({text{F}}right)right]right)right) {=sigma}left({text{f}}^{7 times 7}left(left[{text{F}}_{text{avg}}^{text{s}} ; {text{F}}_{text{max}}^{text{s}}right]right)right)$$
    (2)
    where σ is the sigmoid function, ({text{f}}^{7 times 7}) denotes the convolution operation with a filter size of 7 × 7, ({text{F}}_{text{avg}}^{text{s}}) is the result of the feature map after global average pooling, and ({text{F}}_{text{max}}^{text{s}}) is the result of the feature map after global maximum pooling.Squeeze and excitation networkIn 2018, Hu et al.27 proposed a single-path attention network structure SE-Net. SE-Net uses the idea of an attention mechanism to analyze the relationship feature maps by modeling and adaptively learning to obtain the importance of each feature map28 and then assigns different weights to the original feature map for updating according to the importance. In this way, SE-Net pays more attention to the features that are useful for the target task while suppressing useless feature information and allocates computational resources rationally to different channels to train the model to achieve better results.The SE-Net attention module is mainly composed of two parts: the squeeze operation and excitation operation. The structure of the SE-Net module is shown in Fig. 5.Figure 5The SE-Net module structure.Full size imageThe squeeze operation uses global average pooling to encode all spatial features on the channel as local features. Second, each feature map is compressed into a real number that has global information on the feature maps. Finally, the squeeze results of each feature map are combined into a vector as the weights of each group of feature maps. It is calculated as shown in Eq. (3):$${text{Z}}_{text{c}}={text{F}}_{text{sq}}left({text{u}}_{text{c}}right)=frac{1}{text{H} times {text{W}}}sum_{text{i=1}}^{text{H}}sum_{text{j=1}}^{text{W}}{{text{u}}}_{text{c}}left(text{i,j}right) , , , $$
    (3)
    where H is the height of the feature map, W is the feature map width, u is the result after convolution, z is the global attention information of the corresponding feature map, and the subscript c indicates the number of channels.After completing the squeeze operation to obtain the channel information, the feature vector is subjected to the excitation operation. First, it passes through two fully connected layers. Second, it uses the sigmoid function. Finally, the output weights are assigned to the original features. It is calculated as follows:$$text{s} = {text{F}}_{text{ex}}left(text{z,W}right){=sigma}left({text{g}}left(text{z,W}right)right){=sigma}left({text{W}}_{2}{delta}left({text{W}}_{1}{text{z}}right)right)$$
    (4)
    $$widetilde{{text{x}}_{rm{c}}}={text{F}}_{rm{scale}}left({text{u}}_{rm{c}}, {text{s}}_{rm{c}}right)={text{s}}_{rm{c}}{{text{u}}}_{rm{c}}$$
    (5)
    where σ is the ReLU activation function, δ represents the sigmoid activation function, and ({text{W}}_{1}) and ({text{W}}_{2}) represent two different fully connected layers. The vector s represents the set of feature mapping weights obtained through the fully connected layer and the activation function. (widetilde{{x}_{c}}) is the feature mapping of the x feature channel, ({text{s}}_{text{c}}) is a weight, and ({text{u}}_{text{c}}) is a two-dimensional matrix.Target detection layerThe garbage in rural areas is a smaller target and has fewer pixel characteristics, such as capsule, button butteries. Therefore, we insert a small target detection layer to improve the head network structure based on the original YOLOv5s network model for detecting objects with small targets to optimize the problem of missed detection in the original network model. The YOLOv5s network structure with the addition of the small target detection layer is shown in Fig. 6 and named YOLOv5s-STD.Figure 6The YOLOv5s-STD network structure.Full size imageIn the seventeenth layer of the neck network, operations such as upsampling are performed on the feature maps so that the feature maps continue to expand. Meanwhile, in the twentieth layer, the feature maps obtained from the neck network are fused with the feature maps extracted from the backbone network. We insert a detection layer capable of predicting small targets in the thirty-first layer. To improve the detection accuracy, we use a total of four detection layers for the output feature maps, which are capable of detecting smaller target objects. In addition to the three initial anchor values based on the original model, an additional set of anchor values is added as a way to detect smaller targets. The anchor values of the improved YOLOv5s network model are set to [5, 6, 8, 14, 15, 11], [10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119] and [116, 90, 156, 198, 373, 326].Bounding box regression loss functionThe loss function is an important indicator of the generalization ability of a model. In 2016, Yu et al.29 proposed a new joint intersection loss function IoU for bounding box prediction. IoU stands for intersection over union, which is a frequently used metric in target detection. It is used not only to determine the positive and negative samples, but also to determine the similarity between the predicted bounding box and the ground truth bounding box. It can be described as shown in the Eq. (6):$$text{IoU} = frac{left|text{A} capleft.{text{B}}right|right.}{left|{text{A}} cupleft.{text{B}}right|right.}$$
    (6)
    where the value domain of IoU ranges from [0,1]. A and B are the areas of arbitrary regions. Additionally, when IoU is used as a loss function, it has to scale invariance, as shown in Eq. (7):$$text{IoU_Loss} = 1-frac{left|text{A} cap left.{text{B}}right|right.}{left|{text{A}} cup left.{text{B}}right|right.}$$
    (7)
    However, when the prediction bounding box and the ground truth bounding box do not intersect, namely IoU = 0, the distance between the arbitrary region area of A and B cannot be calculated. The loss function at this point is not derivable and cannot be used to optimize the two disjoint bounding boxes. Alternatively, when there are different intersection positions, where the overlapping parts are the same but in different overlapping directions, the IoU loss function cannot be predicted.To address these issues, the idea of GIoU (Generalized Intersection over Union)30, in which a minimum rectangular Box C of A and B is added, was proposed in 2019 by Rezatofighi et al. Suppose the prediction bounding box is B, the ground truth bounding box is A, the area where A and B intersect is D, and the area containing two bounding boxes is C, as shown in Fig. 7.Figure 7GIoU evaluation chart.Full size imageThen, the GIoU calculation, as shown in Formula (8), is:$$text{GIoU}= text{IoU}-frac{text{|C}-left({text{A}} cup {text{B}}right)text{|}}{text{|C|}}$$
    (8)
    The GIoU_Loss is calculated as (9):$$text{GIoU_Loss=1}-{text{IoU}}-frac{text{|C}-left({text{A}} cup {text{B}}right)text{|}}{text{|C|}}$$
    (9)
    The original YOLOv5 algorithm uses GIoU_Loss as the loss function. Comparing Eqs. (6) and (8), it can be seen that GIoU is a new penalty term (frac{text{|C}-left({text{A}} cup {text{B}}right)text{|}}{text{|C|}}) that is added to IoU and is clearly represented by Fig. 7.Although the GIoU loss function solves the problem that the gradient of the IoU loss function cannot be updated in time and the prediction bounding box, the direction of the ground truth bounding box is not consistent when predicting, but there are still disadvantages, as shown in Fig. 8.Figure 8Comparsion of loss values.Full size imageFigure 8 shows three different position relationships formed when the predicted bounding box and the ground truth bounding box overlap exactly. Among them, the ratio of the length to width of the green grounding truth bounding box is 1:2, and the red predicted bounding box has the same aspect ratio as the ground truth bounding box, but the size is only one-half of the green ground truth bounding box. When the prediction bounding box and the ground truth bounding box completely overlap, the GIoU degenerates to the IoU, and the GIoU value and IoU value for the three different position cases are 0.45 at this time. The GIoU loss function does not directly reflect the distance between the prediction bounding box and the ground truth bounding box. Therefore, we introduce the CIoU (Complete Intersection over Union)31 loss function to replace the original GIoU loss function in the YOLOv5 algorithm and continue to optimize the prediction bounding box.Therefore, the CIoU is calculated as (10):$$text{GIoU_Loss}=1-text{IoU}-frac{text{|C}-left({text{A}} cup {text{B}}right)text{|}}{text{|C|}}$$
    (10)
    where b and ({text{b}}^{text{gt}}) denote the centroids of the prediction bounding box and the ground truth bounding box, respectively, ({rho}) is the Euclidean distance between the two centroids, and c is the diagonal length of the minimum closed area formed by the prediction bounding box and the ground truth bounding box.(alpha) is the parameter used to balance the scale, and v is the scale consistency used to measure the aspect ratio between the prediction bounding box and the ground truth bounding box, as shown in Eqs. (11) and (12).$$alpha =frac{text{v}}{left(1-text{IoU}right)+{text{v}}^{{prime}}}$$
    (11)
    $$text{v} = frac{4}{{pi}^{2}}{left({text{arctan}}frac{{omega}^{text{gt}}}{{text{h}}^{text{gt}}}- text{arctan}frac{{omega}^{text{p}}}{{text{h}}^{text{p}}}right)}^{2}$$
    (12)
    Therefore, the expression of CIoU_Loss can be obtained according to Eqs. (10), (11) and (12).$$text{CIoU_Loss} =1-text{CIoU}=1-text{IoU}+frac{{rho}^{2}left(text{b,}{text{b}}^{text{gt}}right)}{{text{c}}^{2}}{+ alpha v }$$
    (13)
    Optimization algorithmAfter optimizing the loss function of the network model, the next step is to optimize the hyperparameters of the network model. The function of the optimizer is to adjust the hyperparameters to the most appropriate values while making the loss function converge as much as possible32. In the target detection algorithm, the optimizer is mainly used to calculate the gradient of the loss function and to iteratively update the parameters.The optimizer used in YOLOv5 is stochastic gradient descent (SGD). Since a large number of problems in deep learning satisfy the strict saddle function, all the local optimal solutions obtained are almost as ideal. Therefore, SGD algorithm is not trapped in the saddle point and has strong generality. However, the slow convergence speed and the number of iterations of SGD algorithm are still problems that need to be improved. Adam algorithm has both the first-order momentum in the SGD algorithm and combines the second-order momentum in AdaGrad algorithm and AdaDelta algorithm, Adaptive&Momentum. Adam formula can be described as follows:$${m}_{t}={beta }_{1}{m}_{t-1}+left(1-{beta }_{1}right){g}_{t}$$
    (14)
    $${v}_{t}={beta }_{2}{v}_{t-1}+left(1-{beta }_{2}right){g}_{t}^{2}$$
    (15)
    $${widehat{m}}_{t}=frac{{m}_{t}}{1-{beta }_{1}^{t}}$$
    (16)
    $${widehat{v}}_{t}=frac{{v}_{t}}{1-{beta }_{2}^{t}}$$
    (17)
    where ({beta }_{1}) and ({beta }_{2}) parameters are hyperparameters and g is the current gradient value of the error function, ({m}_{t}) is the gradient of the first-order momentum and ({v}_{t}) is the gradient of the second-order momentum.Adam is an adaptive one-step random objective function optimization algorithm based on a low-order moment. It can replace the traditional first-order optimization algorithm for the stochastic gradient descent process. It is able to update the weights of the neural network adaptively based on the data trained during the iterative process. The Adam optimizer occupies fewer memory resources during the training process and is suitable for solving the problems of sparse gradients and large fluctuations in loss values33. Therefore, we use the Adam optimization algorithm instead of the SGD optimization algorithm to train the network model based on the YOLOv5s network model. The calculation is shown in Table 3.Table 3 Computing method of the Adam optimizer.Full size tablewhere ({alpha}) is a factor controlling the learning rate of the network, ({beta}^{{prime}}) is the exponential decay rate of the first-order moment estimate, ({beta}^{{primeprime}}) is the exponential decay rate of the second-order moment estimate, and ({varepsilon}) is a constant that tends to zero infinitely as the denominator. More

  • in

    Size-fractionated microbiome observed during an eight-month long sampling in Jiaozhou Bay and the Yellow Sea

    Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews Microbiology 17, 569–586 (2019).CAS 
    Article 

    Google Scholar 
    Azam, F. et al. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10, 257–263 (1983).ADS 
    Article 

    Google Scholar 
    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nature Reviews Microbiology 8, 593–599 (2010).CAS 
    Article 

    Google Scholar 
    Zhang, C. et al. Evolving paradigms in biological carbon cycling in the ocean. National Science Review 5, 481–499 (2018).CAS 
    Article 

    Google Scholar 
    Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proceedings of the National Academy of Sciences 115, E6799–E6807 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Baumas, C. M. J. et al. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. The ISME Journal 15, 1695–1708 (2021).CAS 
    Article 

    Google Scholar 
    Ortega-Retuerta, E., Joux, F., Jeffrey, W. H. & Ghiglione, J. F. Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the beaufort sea (canadian arctic). Biogeosciences 10, 2747–2759 (2013). BG.ADS 
    Article 

    Google Scholar 
    Ganesh, S., Parris, D. J., DeLong, E. F. & Stewart, F. J. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. The ISME Journal 8, 187–211 (2014).CAS 
    Article 

    Google Scholar 
    Chen, S. et al. Interactions between marine group ii archaea and phytoplankton revealed by population correlations in the northern coast of south china sea. Frontiers in Microbiology 12 (2022).Eloe, E. A. et al. Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environmental Microbiology Reports 3, 449–458 (2011).Article 

    Google Scholar 
    Salazar, G. et al. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Mol Ecol 24, 5692–706 (2015).Article 

    Google Scholar 
    Karner, M. & Herndl, G. J. Extracellular enzymatic activity and secondary production in free-living and marine-snow-associated bacteria. Marine Biology 113, 341–347 (1992).CAS 
    Article 

    Google Scholar 
    Grossart, H.-P., Tang, K. W., Kiørboe, T. & Ploug, H. Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages. FEMS Microbiology Letters 266, 194–200 (2007).CAS 
    Article 

    Google Scholar 
    Fierer, N. et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME Journal 6, 1007–1017 (2012).CAS 
    Article 

    Google Scholar 
    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences 112, 10967–10972 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Chen, Y. et al. Large amounts of easily decomposable carbon stored in subtropical forest subsoil are associated with r-strategy-dominated soil microbes. Soil Biology and Biochemistry 95, 233–242 (2016).CAS 
    Article 

    Google Scholar 
    Hou, S. et al. Benefit from decline: the primary transcriptome of Alteromonas macleodii str. Te101 during Trichodesmium demise. The ISME Journal 12, 981–996 (2018).CAS 
    Article 

    Google Scholar 
    Cleveland, C. C., Nemergut, D. R., Schmidt, S. K. & Townsend, A. R. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82, 229–240 (2007).CAS 
    Article 

    Google Scholar 
    Ho, A., Di Lonardo, D. P. & Bodelier, P. L. E. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiology Ecology 93 (2017).Xing, J. et al. Fluxes, seasonal patterns and sources of various nutrient species (nitrogen, phosphorus and silicon) in atmospheric wet deposition and their ecological effects on Jiaozhou Bay, North China. Sci Total Environ 576, 617–627 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhang, L., Xiong, L., Li, J. & Huang, X. Long-term changes of nutrients and biocenoses indicating the anthropogenic influences on ecosystem in Jiaozhou Bay and Daya Bay, China. Mar Pollut Bull 168, 112406 (2021).CAS 
    Article 

    Google Scholar 
    Zhang, X. et al. Effects of organic nitrogen components from terrestrial input on the phytoplankton community in Jiaozhou Bay. Marine Pollution Bulletin 174, 113316 (2022).CAS 
    Article 

    Google Scholar 
    Sharp, J. et al. Final dissolved organic carbon broad community intercalibration and preliminary use of DOC reference materials. Marine Chemistry 77 (2002).Walters, W. et al. Improved bacterial 16S rrna gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1 (2016).Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37, 852–857 (2019).CAS 
    Article 

    Google Scholar 
    Li, D. et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).CAS 
    Article 

    Google Scholar 
    Mikheenko, A., Saveliev, V. & Gurevich, A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32, 1088–90 (2016).CAS 
    Article 

    Google Scholar 
    Yu, K. et al. Recovery of high-qualitied genomes from a deep-inland salt lake using BASALT. bioRxiv https://doi.org/10.1101/2021.03.05.434042 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).Article 

    Google Scholar 
    Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–7 (2016).CAS 
    Article 

    Google Scholar 
    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat Methods 11, 1144–6 (2014).CAS 
    Article 

    Google Scholar 
    Nayfach, S. et al. New insights from uncultivated genomes of the global human gut microbiome. Nature 568 (2019).Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–55 (2015).CAS 
    Article 

    Google Scholar 
    Olm, M. R, Brown, C. T. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. The ISME Journal 5 (2017).Albanese, D. & Donati, C. Large-scale quality assessment of prokaryotic genomes with metashot/prok-quality. F1000Research 10 (2021).Bowers, R. M. et al. Minimum information about a single amplified genome (misag) and a metagenome-assembled genome (mimag) of bacteria and archaea. Nature Biotechnology 35, 725–731 (2017).CAS 
    Article 

    Google Scholar 
    Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat Biotechnol 38, 1079–1086 (2020).CAS 
    Article 

    Google Scholar 
    Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics (2019).Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–7 (2004).CAS 
    Article 

    Google Scholar 
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–3 (2009).CAS 
    Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PloS one 25, e9490–e9490 (2010).ADS 
    Article 

    Google Scholar 
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP367774 (2022).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP367809 (2022).Tao, J. Jiaozhou bay 16S rDNA & metagenome dataset. figshare https://doi.org/10.6084/m9.figshare.19690459.v6 (2022). More

  • in

    Applying genomic approaches to delineate conservation strategies using the freshwater mussel Margaritifera margaritifera in the Iberian Peninsula as a model

    Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496. https://doi.org/10.1016/j.tree.2012.05.012 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hohenlohe, P. A., Funk, W. C. & Rajora, O. P. Population genomics for wildlife conservation and management. Mol. Ecol. 30, 62–82. https://doi.org/10.1111/mec.15720 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Helyar, S. J. et al. Application of SNPs for population genetics of nonmodel organisms: New opportunities and challenges. Mol. Ecol. Resour. 11, 123–136. https://doi.org/10.1111/j.1755-0998.2010.02943.x (2011).ADS 
    Article 
    PubMed 

    Google Scholar 
    Allendorf, F. W. Genetics and the conservation of natural populations: Allozymes to genomes. Mol. Ecol. 26, 420–430. https://doi.org/10.1111/mec.13948 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zimmerman, S. J., Aldridge, C. L. & Oyler-McCance, S. J. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genomics 21, 38. https://doi.org/10.1186/s12864-020-06783-9 (2020).CAS 
    Article 

    Google Scholar 
    Lemopoulos, A. et al. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness—implications for brown trout conservation. Ecol. Evol. 9, 2106–2120. https://doi.org/10.1002/ece3.4905 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kleinman-Ruiz, D. et al. Novel efficient genome-wide SNP panels for the conservation of the highly endangered Iberian lynx. BMC Genomics 18, 556. https://doi.org/10.1186/s12864-017-3946-5 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Geist, J. Strategies for the conservation of endangered freshwater pearl mussels (Margaritifera margaritifera L.): A synthesis of conservation genetics and ecology. Hydrobiologia 644, 69–88. https://doi.org/10.1007/s10750-010-0190-2 (2010).Lopes-Lima, M. et al. Conservation status of freshwater mussels in Europe: State of the art and future challenges. Biol. Rev. 92, 572–607. https://doi.org/10.1111/brv.12244 (2017).Article 
    PubMed 

    Google Scholar 
    Outeiro, A., Ondina, P., Fernández, C., Amaro, R. & Miguel, E. S. Population density and age structure of the freshwater Pearl mussel, Margaritifera margaritifera, in two Iberian rivers. Freshw. Biol. 53, 485–496. https://doi.org/10.1111/j.1365-2427.2007.01913.x (2008).CAS 
    Article 

    Google Scholar 
    Clements, E. A., Thomas, R. & Adams, C. E. An investigation of salmonid host utilisation by the endangered freshwater pearl mussel (Margaritifera margaritifera) in north-west Scotland. Aquat. Conserv.: Mar. Freshw. Ecosyst. 28, 764–768. https://doi.org/10.1002/aqc.2900 (2018).Taeubert, J-E. & Geist, J. The relationship between the Freshwater Pearl Mussel (Margaritifera margaritifera) and its hosts. Biol. Bull. 44, 67–73. https://doi.org/10.1134/S1062359017010149 (2017).Sousa, R. et al. Conservation status of the freshwater pearl mussel Margaritifera margaritifera in Portugal. Limnologica 50, 4–10. https://doi.org/10.1016/j.limno.2014.07.004 (2015).Article 

    Google Scholar 
    Almodóvar, A., Nicola, G. G., Ayllón, D. & Elvira, B. Global warming threatens the persistence of Mediterranean brown trout. Glob. Change Biol. 18, 1549–1560. https://doi.org/10.1111/j.1365-2486.2011.02608.x (2012).ADS 
    Article 

    Google Scholar 
    Nicola, G. G., Elvira, B., Johnson, B., Ayllón, D. & Almodóvar, A. Local and global climatic drivers of Atlantic salmon decline in southern Europe. Fish. Res. 198, 78–85. https://doi.org/10.1016/j.fishres.2017.10.012 (2018).Article 

    Google Scholar 
    da Silva, J. P. et al. Predicting climatic threats to an endangered freshwater mussel in Europe: The need to account for fish hosts. Freshw. Biol. 00, 1–15. https://doi.org/10.1111/fwb.13885 (2022).Article 

    Google Scholar 
    Strayer, D. L., Geist, J., Haag, W. R., Jackson, J. K. & Newbold, J. D. Essay: Making the most of recent advances in freshwater mussel propagation and restoration. Conserv. Sci. Pract. 43, e53. https://doi.org/10.1111/csp2.53 (2009).Article 

    Google Scholar 
    Geist, J., Bayerl, H., Stoeckle, B. C. & Kuehn, R. Securing genetic integrity in freshwater pearl mussel propagation and captive breeding. Sci. Rep. 11, 16019. https://doi.org/10.1038/s41598-021-95614-2 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gomes dos Santos, A. et al. The Crown Pearl: a draft genome assembly of the European freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758). DNA Res. 28, dsab002. https://doi.org/10.1093/dnares/dsab002 (2021).Bouza, C. et al. Threatened freshwater pearl mussel Margaritifera margaritifera L. in NW Spain: low and very structured genetic variation in southern peripheral assessed using microsatellite markers. Conserv. Genet. 8: 937–948. https://doi.org/10.1007/s10592-006-9248-0 (2007).Stoeckle, B. C. et al. Strong genetic differentiation and low genetic diversity of the freshwater pearl mussel (Margaritifera margaritifera L.) in the southwestern European distribution range. Conserv. Genet. 18, 147–157. https://doi.org/10.1007/s10592-016-0889-3 (2017).Geist, J., Söderberg, H., Karllberg, A. & Kuehn, R. Drainage-independent genetic structure and high genetic diversity of endangered freshwater pearl mussels (Margaritifera margaritifera) in northern Europe. Conserv. Genet. 11, 1339–1350. https://doi.org/10.1007/s10592-009-9963-4 (2010).Article 

    Google Scholar 
    implications for conservation and management. Geist, J. & Kuehn, R. Genetic diversity and differentiation of central European freshwater pearl mussel (Margaritifera margaritifera L.) populations. Mol. Ecol. 14, 239–425. https://doi.org/10.1111/j.1365-294X.2004.02420.x (2005).CAS 
    Article 

    Google Scholar 
    Farrington, S. J., King, R. W., Baker, J. A. & Gibbons, J. G. Population genetics of freshwater pearl mussel (Margaritifera margaritifera) in central Massachusetts and implications for conservation. Aquat. Conserv.: Mar. Freshw. Ecosyst. 30, 1945–1958. https://doi.org/10.1002/aqc.3439 (2020).Zanatta, D. T. et al. High genetic diversity and low differentiation in North American Margaritifera margaritifera (Bivalvia: Unionida: Margaritiferidae). Biol. J. Linn. Soc. Lond., 123, 850–863. https://doi.org/10.1093/biolinnean/bly010. (2018)Garrison, N. L., Johnson, P. D. & Whelan, N. V. Conservation genomics reveals low genetic diversity and multiple parentage in the threatened freshwater mussel Margaritifera hembeli. Conser. Genet. 22, 217–231. https://doi.org/10.1007/s10592-020-01329-8 (2021).Article 

    Google Scholar 
    Roe, K. & Kim, K. S. Genome-wide SNPs redefine species-boundaries and conservation units in the freshwater mussel genus Cyprogenia of North America. Sci. Rep. 11, 10752. https://doi.org/10.1038/s41598-021-90325-0 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res 7, 1338. https://doi.org/10.12688/f1000research.15931.2 (2018).Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048. https://doi.org/10.1093/bioinformatics/btw354 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754. https://doi.org/10.1111/mec.15253 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Paris, R. J., Stevens, J. R. & Catchen, J. M. Lost in parameter space: A road map for STACKS. Methods Ecol. Evol. 8, 1360–1373. https://doi.org/10.1111/2041-210X.12775 (2017).Article 

    Google Scholar 
    Limin, F., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 (2012).CAS 
    Article 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997v2. https://doi.org/10.48550/arXiv.1303.3997 (2013).Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907v2. https://doi.org/10.48550/arXiv.1207.3907 (2012)Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Weir, B. S. & Cockerham, C. Estimating F-statistics for the analysis of population structure. Evol. 38, 1358–1370. https://doi.org/10.2307/2408641 (1984).CAS 
    Article 

    Google Scholar 
    Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929. https://doi.org/10.1111/2041-210X.12382 (2015).Article 

    Google Scholar 
    Alexander, D. H, Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664. https://doi.org/10.1101/gr.094052.109 (2009).Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806. https://doi.org/10.1093/bioinformatics/btm233 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Frankham, R. et al. A practical guide for genetic management of fragmented animal and plant populations. Oxford University Press, New York. 174. https://doi.org/10.1093/oso/9780198783411.001.0001 (2019).Wacker, S., Larson, B., Jakobsen, P. & Karlssona, S. Multiple paternity promotes genetic diversity in captive breeding of a freshwater mussel. Glob. Ecol. Cons. 17, e00564. https://doi.org/10.1016/j.gecco.2019.e00564 (2019).Article 

    Google Scholar 
    Cao, R. et al. Genetic structure and diversity of Australian freshwater crocodiles (Crocodylus johnstoni) from the Kimberley Western Australia. Conserv. Genet. 21, 421–429. https://doi.org/10.1007/s10592-020-01259-5 (2020).Article 

    Google Scholar 
    Escalante, M. A. et al. Genotyping-by-sequencing reveals the effects of riverscape, climate and interspecific introgression on the genetic diversity and local adaptation of the endangered Mexican Golden trout (Oncorhynchus chrysogaster). Conserv. Genet. 21, 907–926. https://doi.org/10.1371/journal.pone.0141775 (2020).CAS 
    Article 

    Google Scholar 
    Bauer, G. Reproductive strategy of the freshwater pearl mussel Margaritifera margaritifera. J. Anim. Ecol. 56, 691–704. https://doi.org/10.2307/5077 (1987).Article 

    Google Scholar 
    Machordom, A., Araujo, R., Erpenbeck, D. & Ramos, M. A. Phylogeography and conservation genetics of endangered European Margaritiferidae (Bibalvia: Unionoidae). Biol. J. Linn. Soc. 78, 235–252. https://doi.org/10.1046/j.1095-8312.2003.00158.x (2003).Article 

    Google Scholar 
    Viveen, W., Schoorl, J. M., Veldkamp, A., van Balen, R. T. & Vidal-Romani, J. R. Fluvial terraces of the northwest Iberian lower Miño River. J. Maps 9, 513–522. https://doi.org/10.1080/17445647.2013.821096 (2013).Article 

    Google Scholar 
    Pérez-Granados, C., López-Iborra, G. & Seoane, J. A multi-scale analysis of habitat selection in peripheral populations of the endangered Dupont’s Lark Chersophilus duponti. Bird Conserv. Intern. 27, 398–413. https://doi.org/10.1017/S0959270916000356 (2017).Article 

    Google Scholar 
    Sanz Ball-Llosera, N., Garcìa-Marìn, J. & Pla, C. Managing fish populations under mosaic relationships. The case of brown trout (Salmo trutta) in peripheral Mediterranean populations. Conserv. Genet. 3, 385–400. https://doi.org/10.1023/A:1020527420654 (2002).Vila, M. et al. Phylogeography and Conservation Genetics of the Ibero-Balearic Three-Spined Stickleback (Gasterosteus aculeatus). PLoS One 12, e0170685. https://doi.org/10.1371/journal.pone.0170685 (2017)Hamed, Y. et al. Climate impacto n Surface and groundwater in North Africa: A global synthesis of findings and recommendations. Euro-Mediterr. J. Environ. Integr. 3, 25. https://doi.org/10.1007/s41207-018-0067-8 (2018).Article 

    Google Scholar 
    Krijgsman, W. et al. The Gibraltar Corridor: Watergate of the Messinian Salinity Crisis. Mar. Geol. 403, 238–246. https://doi.org/10.1016/j.margeo.2018.06.008 (2018).ADS 
    Article 

    Google Scholar 
    Zanatta, D. T. & Wilson, C. C. Testing congruency of geographic and genetic population structure for a freshwater mussel Bivalvia: Unionoida) and its host fish. Biol. J. Linn. Soc. 102, 669–685. https://doi.org/10.1111/j.1095-8312.2010.01596.x (2011).Article 

    Google Scholar 
    Österling, E. M., Ferm, J. & Piccolo, J.J. Parasitic freshwater pearl mussel larvae (Margaritifera margaritifera L.) reduce the drift-feeding rate of juvenile brown trout (Salmo trutta L.). Environ. Biol. Fish. 97, 543–549. https://doi.org/10.1007/s10641-014-0251-x (2014).Geist, J. et al. Genetic structure of Irish freshwater pearl mussels (Margaritifera margaritifera and Margaritifera durrovensis): Validity of subspecies, roles of host fish, and conservation implications. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 923–933. https://doi.org/10.1002/aqc.2913 (2018)Wacker, S., Larsen, B. M., Karlsson, S. & Hindar, K. Host specificity drives genetic structure in a freshwater mussel. Sci. Rep. 9, 10409 (2019).Machordom, A., Suárez, J., Almodóvar, A. & Bautista, J. Mitochondrial haplotype variation and phylogeography of Iberian brown trout populations. Mol. Ecol. 9, 1325–1338. https://doi.org/10.1046/j.1365-294x.2000.01015.x (2000).CAS 
    Article 

    Google Scholar 
    Suárez, J., Bautista, J. M., Almodóvar, A. & Machordom, A. Evolution of the mitocondrial control region in Paleartic brown trout (Salmo trutta) populations: The biogeographical role of the Iberian Peninsula. Heredity 87, 198–206. https://doi.org/10.1046/j.1365-2540.2001.00905.x (2001).Article 
    PubMed 

    Google Scholar 
    Velasco, J. C. et al. Descubiertos algunos ejemplares de Margaritifera margaritifera (L.) (Bivalvia, Unionoida) en el alto Duero (Soria, España). Iberus 32(2), 97–104 (2014).Geist, J. & Kuehn, R. Host-parasite interactions in oligotrophic stream ecosystems: the roles of life history strategy and ecological niche. Mol. Ecol. 17, 997–1008. https://doi.org/10.1111/j.1365-294X.2007.03636.x. (2008)Ledoux, J.-B., et al. Gradients of genetic diversity and differentiation across the distribution range of a Mediterranean coral: Patterns, processes and conservation implications. Divers. Distrib. 27, 2104–2123 https://doi.org/10.1111/ddi.13382 (2021).Hervella F, & Caballero P. Inventario piscícola dos ríos galegos. Consellería de Medio Ambiente. Xunta de Galicia. Santiago de Compostela (1999).Saura, M., Caballero, P. & Morán, P. Are there Atlantic salmon in the River Tambre?. J. Fish Biol. 72, 1223–1229. https://doi.org/10.1111/j.1095-8649.2007.01782.x (2008).Article 

    Google Scholar 
    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 global biodiversity framework must be improved. Biol. Conserv. 248, 108654. https://doi.org/10.1016/j.biocon.2020.108654 (2020).Article 

    Google Scholar 
    Rilov, G. et al. Adaptive marine conservation planning in the face of climate change: What can we learn from physiological, ecological and genetic studies?. Glob. Ecol. Conserv. 17, e00566. https://doi.org/10.1016/j.gecco.2019.e00566 (2019).Article 

    Google Scholar 
    Muniz, F. L. et al. Delimitation of evolutionary units in Cuvier’s dwarf caiman, Paleosuchus palpebrosus (Cuvier, 1807): Insights from conservation of a broadly distributed species. Conserv. Genet. 19, 599–610. https://doi.org/10.1007/s10592-017-1035-6 (2018).Article 

    Google Scholar 
    Gum, B., Lange, M. & Geist, J. A critical reflection on the success of rearing and culturing of juvenile freshwater mussels with a focus on the endangered freshwater pearl mussel (Margaritifera margaritifera L.). Aquat. Conserv. 21, 743–751. https://doi.org/10.1002/aqc.1222 (2011).Thomas, G. R., Taylor, J. & García de Leaniz, C. Captive breeding of the endangered freshwater Pearl mussel Margaritifera margaritifera. Endanger. Species Res. 12, 1–9. https://doi.org/10.3354/esr00286 (2010).Wilson, C. D. et al. The importance of population genetic information in formulating ex situ conservation strategies for the freshwater pearl mussel (Margaritifera margaritifera L.) in Northern Ireland. Anim. Conserv. 15, 595–602. https://doi.org/10.1111/j.1469-1795.2012.00553.x (2012).Pires, D., Reis, J., Benites, L. & Rodrigues, P. Minimizing dams impacts on biodiversity by way of translocations: the case of freshwater mussels. Impact Assess. Proj. Apprais. 39, 110–117. https://doi.org/10.1080/14615517.2020.1836710. (2021) More

  • in

    Nitrogen and carbon stable isotope analysis sheds light on trophic competition between two syntopic land iguana species from Galápagos

    Luiselli, L., Akani, G. & Capizzi, D. Food resource partitioning of a community of snakes in a swamp rainforest of south-eastern Nigeria. J. Zool. 246(2), 125–133. https://doi.org/10.1111/j.1469-7998.1998.tb00141.x (1998).Article 

    Google Scholar 
    Rouag, R., Djilali, H., Gueraiche, H. & Luiselli, L. Resource partitioning patterns between two sympatric lizard species from Algeria. J. Arid Environ. 69, 158–168. https://doi.org/10.1016/j.jaridenv.2006.08.008 (2007).ADS 
    Article 

    Google Scholar 
    Bergeron, R. & Blouin-Demers, G. Niche partitioning between two sympatric lizards in the Chiricahua Mountains of Arizona. Copeia 108(3), 570–577. https://doi.org/10.1643/CH-19-268 (2020).Article 

    Google Scholar 
    Lucek, K., Butlin, R. K. & Patsiou, T. Secondary contact zones of closely-related Erebia butterflies overlap with narrow phenotypic and parasitic clines. J. Evol. Biol. 33(9), 1152–1163. https://doi.org/10.1111/jeb.13669 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Freeman, B. G. Competitive interaction upon secondary contact drive elevational divergence in tropical birds. Am. Nat. 186(4), 470–479. https://doi.org/10.5061/dryad.6qg3g (2015).Article 
    PubMed 

    Google Scholar 
    Schoener, T. W. Resource partitioning in ecological communities. Science 185(4145), 27–39 (1974).ADS 
    CAS 
    Article 

    Google Scholar 
    Rivas, L. R. A Reinterpretation of the concepts “sympatric” and “allopatric” with proposal of the additional terms “syntopic” and “allotopic”. Syst. Zool. 13(1), 42 (1964).Article 

    Google Scholar 
    Macarthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101(921), 377–385 (1967).Article 

    Google Scholar 
    Dayan, T. & Simberloff, D. Ecological and community-wide character displacement: The next generation. Ecol. Lett. 8(8), 875–894. https://doi.org/10.1111/j.1461-0248.2005.00791.x (2005).Article 

    Google Scholar 
    Holomuzki, J. R., Feminella, J. W. & Power, M. E. Biotic interactions in freshwater benthic habitats. J. N. Am. Benthol. Soc. 29(1), 220–244. https://doi.org/10.1899/08-044.1 (2010).Article 

    Google Scholar 
    Ferretti, F. et al. Competition between wild herbivores: Reintroduced red deer and Apennine chamois. Behav. Ecol. 26(2), 550–559. https://doi.org/10.1093/beheco/aru226 (2015).Article 

    Google Scholar 
    Takada, H., Yano, R., Katsumata, A., Takatsuki, S. & Minami, M. Diet compositions of two sympatric ungulates, the Japanese serow (Capricornis crispus) and the sika deer (Cervus nippon), in a montane forest and an alpine grassland of Mt. Asama central, Japan. Mamm. Biol. 101, 681–694. https://doi.org/10.1007/s42991-021-00122-5 (2021).Article 

    Google Scholar 
    Hubbel, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, 2001) (ISBN 9780691021287).
    Google Scholar 
    Bell, G. Neutral macroecology. Science 293, 2413–2418. https://doi.org/10.1126/science.293.5539.2413 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Rosindell, J., Hubbel, S. P. & Etienne, R. S. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26(7), 340–348. https://doi.org/10.1016/j.tree.2011.03.024 (2011).Article 
    PubMed 

    Google Scholar 
    Cowie, R. H. & Holland, B. S. Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. J. Biogeogr. 33, 193–198. https://doi.org/10.1111/j.1365-2699.2005.01383.x (2006).Article 

    Google Scholar 
    Amarasekare, P. & Nisbet, R. M. Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. Am. Nat. 158(6), 572–584. https://doi.org/10.1086/323586 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kumar, K., Gentile, G. & Grant, T. D. Conolophus subcristatus. The IUCN Red List of Threatened Species 2020, e.T5240A3014082 (2020). https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T5240A3014082.enGentile, G. Conolophus marthae. The IUCN Red List of Threatened Species 2012, e. T174472A1414375 (2012). https://doi.org/10.2305/IUCN.UK.2012-1.RLTS.T174472A1414375.enGentile, G., Marquez, C., Snell, H. L., Tapia, W. & Izurieta, A. Conservation of a New Flagship Species: The Galápagos Pink Land Iguana (Conolophus marthae Gentile and Snell, 2009). In Problematic Wildlife: A Cross-Disciplinary Approach (ed. Angelici, F. M.) 315–336 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-22246-2_15.Chapter 

    Google Scholar 
    Gentile, G. & Snell, H. L. Conolophus marthae sp. Nov. (Squamata, iguanidae), a new species of land iguana from the Galápagos Archipelago. Zootaxa 2201, 1–10 (2009).Article 

    Google Scholar 
    Colosimo, G. et al. Chemical signatures of femoral pore secretions in two syntopic but reproductively isolated species of Galápagos land iguanas (Conolophus marthae and C. subcristatus). Sci. Rep. 10(1), 14314. https://doi.org/10.1038/s41598-020-71176-7 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, M. Galápagos: A Natural History, Revised and Expanded (University of Calgary Press, 1994).
    Google Scholar 
    Traveset, A. et al. Galápagos land iguana (Conolophus subcristatus) as a seed disperser. Integr. Zool. 11(3), 207–213. https://doi.org/10.1111/1749-4877.12187 (2016).Article 
    PubMed 

    Google Scholar 
    Di Giambattista, L. et al. Molecular data exclude current hybridization between iguanas Conolophus marthae and C. subcristatus on Wolf volcano (Galápagos islands). Conserv. Genet. 19(6), 1461–1469. https://doi.org/10.1007/s10592-018-1114-3 (2018).Article 

    Google Scholar 
    MacLeod, A. et al. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana. Proc. R. Soc. B 282, 1–9. https://doi.org/10.1098/rspb.2015.0425 (2015).Article 

    Google Scholar 
    Gause, G. F. The Struggle for Existence (Williams and Wilkins Company, 1934).Book 

    Google Scholar 
    Hardin, G. The competitive exclusion principle. Science 131(3409), 1292–1297 (1960).ADS 
    CAS 
    Article 

    Google Scholar 
    Ashrafi, S., Beck, A., Rutishauser, M., Arlettaz, R. & Bontadina, F. Trophic niche partitioning of cryptic species of long-eared bats in Switzerland: Implications for conservation. Eur. J. Wildl. Res. 57, 843–849. https://doi.org/10.1007/s10344-011-0496-z (2011).Article 

    Google Scholar 
    Bleyhl, B. et al. Assessing niche overlap between domestic and threatened wild sheep to identify conservation priority areas. Divers. Distrib. 25(1), 129–141. https://doi.org/10.1111/ddi.12839 (2019).Article 

    Google Scholar 
    Newsome, S. D., del Rio, C. M., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5(8), 429–436. https://doi.org/10.1890/060150.1 (2007).Article 

    Google Scholar 
    Riera, P., Stal, L. J. & Nieuwenhuize, J. δ13C versus δ15N of co-occurring mollusks within a community dominated by Crassostrea gigas and Crepidula ornicate (Oossterschelde, The Netherlands). Mar. Ecol. Prog. Ser. 240, 291–295 (2002).ADS 
    Article 

    Google Scholar 
    Page, B., McKenzie, J. & Goldsworthy, S. D. Dietary resources partitioning among sympatric New Zealand and Australian fur seals. Mar. Ecol. Prog. Ser. 293, 283–302 (2005).ADS 
    Article 

    Google Scholar 
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42(5), 495–506 (1978).ADS 
    CAS 
    Article 

    Google Scholar 
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45(3), 341–351 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83(3), 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).Article 

    Google Scholar 
    Crawford, K., McDonald, R. A. & Bearhop, S. Applications of stable isotope techniques to the ecology of mammals. Mammal. Rev. 38(1), 87–107. https://doi.org/10.1111/j.1365-2907.2008.00120.x (2008).Article 

    Google Scholar 
    Trueman, M. & d’Ozouville, N. Characterizing the Galápagos terrestrial climate in the face of global climate change. Gala Res. 67, 26–37 (2010).
    Google Scholar 
    Paltán, H. A. et al. Climate and sea surface trends in the Galápagos Islands. Sci. Rep. 11(1), 1–13. https://doi.org/10.1038/s41598-021-93870-w (2021).CAS 
    Article 

    Google Scholar 
    Rivas-Torres, G. F., Benítez, F. L., Rueda, D., Sevilla, C. & Mena, C. F. A methodology for mapping native and invasive vegetation coverage in archipelagos: An example from the Galápagos islands. Prog. Phys. Geogr. 42(1), 83–111. https://doi.org/10.1177/0309133317752278 (2018).Article 

    Google Scholar 
    Gentile, G., Ciambotta, M. & Tapia, W. Illegal wildlife trade in Galápagos: Molecular tools help taxonomic identification and guide rapid repatriation of confiscated iguanas. Conserv. Genet. Resour. 5, 867–872. https://doi.org/10.1007/s12686-013-9915-7 (2013).Article 

    Google Scholar 
    Stephens, R. B., Ouimette, A. P., Hobbie, E. A. & Rowe, R. J. Re-evaluating trophic discrimination factors (Δδ13C and Δδ15N) for diet reconstruction. Ecol. Mono 92, e1525. https://doi.org/10.1002/ecm.1525 (2022).CAS 
    Article 

    Google Scholar 
    Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes I: Turnover of 13C in tissues. The Condor 94(1), 181–188. https://doi.org/10.2307/1368807 (1992).Article 

    Google Scholar 
    Li, C.-H., Roth, J. D. & Detwiler, J. T. Isotopic turnover rates and diet-tissue discrimination depend on feeding habits of freshwater snails. PLoS ONE 13(7), e0199713. https://doi.org/10.1371/journal.pone.0199713 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinitz, R., Lemm, J., Pasachnik, S. & Kurle, C. Diet-tissue stable isotope (δ13C and δ15N) discrimination factors for multiple tissues from terrestrial reptiles. Rapid Commun. Mass Spectrom. 30(1), 9–21. https://doi.org/10.1002/rcm.7410 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ethier, D. M., Kyle, C. J., Kyser, T. K. & Nocera, J. J. Variability in the growth patterns of the cornified claw sheath among vertebrates: Implications for using biogeochemistry to study animal movement. Can. J. Zool. 88(11), 1043–1051. https://doi.org/10.1139/Z10-073 (2010).Article 

    Google Scholar 
    Aresco, M. J. & James, F. C. Ecological relationships of turtles in northern Florida lakes: A study of omnivory and the structure of a lake food web. Florida Fish and Wildlife Conservation Commission (2005). https://www.semanticscholar.org/paper/ECOLOGICAL-RELATIONSHIPS-OF-TURTLES-IN-NORTHERN-A-A-Aresco-James/f6d59265eb6494aa19cfde7d2d80bb165e6432acLourenço, P. M., Granadeiro, J. P., Guilherme, J. L. & Catry, T. Turnover rates of stable isotopes in avian blood and toenails: Implications for dietary and migration studies. J. Exp. Mar. Biol. Ecol. 472, 89–96. https://doi.org/10.1016/j.jembe.2015.07.006 (2015).CAS 
    Article 

    Google Scholar 
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable isotope Bayesian ellipses in r. J. Animal Ecol. 80(3), 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).Article 

    Google Scholar 
    Wikelski, M. & Romero, L. M. Body size, performance and fitness in Galápagos marine iguanas. Integr Comp Biol 43(3), 376–386. https://doi.org/10.1093/icb/43.3.376 (2003).Article 
    PubMed 

    Google Scholar 
    Iverson, J., Smith, G. & Pieper, L. Factors Affecting Long-Term Growth of the Allen Cays Rock Iguana in the Bahamas. In Iguanas: Biology and Conservation (eds Alberts, A. et al.) 176–192 (University of California Press, 2004). https://doi.org/10.1525/9780520930117-018.Chapter 

    Google Scholar 
    Smith, G. R. & Iverson, J. B. Effects of tourism on body size, growth, condition, and demography in the Allen Cay Iguana. Herpetol. Conserv. Biol. 11, 214–221 (2016).
    Google Scholar 
    Wikelski, M., Carrillo, V. & Trillmich, F. Energy limits to body size in a grazing reptile, the Galápagos Marine Iguana. Ecology 78(7), 2204–2217. https://doi.org/10.2307/2265956 (1997).Article 

    Google Scholar 
    Bulakhova, N. A. et al. Inter-observer and intra-observer differences in measuring body length: A test in the common lizard, Zootoca vivipara. Amphibia-Reptilia 32(4), 477–484. https://doi.org/10.1163/156853811X601636 (2011).Article 

    Google Scholar 
    R Development Core Team. R: A language and environment for statistical computing (2021). https://cran.r-project.orgGoslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22(7), 1–19. https://doi.org/10.18637/jss.v022.i07 (2007).Article 

    Google Scholar 
    Randin, C. F., Jaccard, H., Vittoz, P., Yoccoz, N. G. & Guisan, A. Land use improves spatial predictions of mountain plant abundance but not presence–absence. J. Veg. Sci. 20, 996–1008. https://doi.org/10.1111/j.1654-1103.2009.01098.x (2009).Article 

    Google Scholar 
    Broennimann, O., Di Cola, V. & Guisan, A. ecospat: Spatial Ecology Miscellaneous Methods. R package version 3.2.1 (2022) https://CRAN.R-project.org/package=ecospatBorcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73(3), 1045–1055. https://doi.org/10.2307/1940179 (1992).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017). https://doi.org/10.1201/9781315370279.Book 
    MATH 

    Google Scholar 
    Van Marken Lichtenbelt, W. D. Optimal foraging of a herbivorous lizard, the green iguana in a seasonal environment. Oecologia 95, 246–256. https://doi.org/10.1007/BF00323497 (1993).ADS 
    Article 
    PubMed 

    Google Scholar 
    Pasachnik, S. A. & Martin-Velez, V. An evaluation of the diet of Cyclura iguanas in the Dominican Republic. Herpetol. Bull. 140, 6–12 (2017).
    Google Scholar 
    Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389(6647), 153–158. https://doi.org/10.1038/38229 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38(5), 328–336. https://doi.org/10.2307/1310735 (1988).Article 

    Google Scholar 
    Snell, H. L. & Tracy, C. R. Behavioral and morphological adaptations by Galapagos land iguanas (Conolophus subcristatus) to water and energy requirements of eggs and neonates. Am. Zool. 25(4), 1009–1018. https://doi.org/10.1093/icb/25.4.1009 (1985).Article 

    Google Scholar 
    Christian, K., Tracy, C. R. & Porter, W. P. Diet, digestion, and food preferences of Galápagos land iguanas. Herpetologica 40(2), 205–212 (1984).
    Google Scholar 
    Mallona, I., Egea-Cortines, M. & Weiss, J. Conserved and divergent rhythms of crassulacean acid metabolism-related and core clock gene expression in the cactus Opuntia ficus-indica. Plant Physiol. 156, 1978–1989. https://doi.org/10.1104/pp.111.179275 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    San Sebastián, O., Navarro, J., Llorente, G. A. & Richter-Boix, Á. Trophic strategies of a non-native and a native amphibian species in shared ponds. PLoS ONE 10(6), 1–17. https://doi.org/10.1371/journal.pone.0130549 (2015).CAS 
    Article 

    Google Scholar 
    Perga, M. E. & Grey, J. Laboratory measures of isotope discrimination factors: Comments on Caut, Angulo & Courchamp (2008, 2009). J. Appl. Ecol. 47(4), 942–947. https://doi.org/10.1111/j.1365-2664.2009.01730.x (2010).CAS 
    Article 

    Google Scholar 
    Freeman, B. Sexual niche partitioning in two species of new Guinean Pachycephala whistlers. J. Field Ornithol. 85(1), 23–30. https://doi.org/10.1111/jofo.12046 (2014).Article 

    Google Scholar 
    Werner, D. I. Social Organization and Ecology of Land Iguanas, Conolophus subcristatus, on Isla Fernandina, Galápagos. In Iguanas of the World: Their Behavior, Ecology, and Conservation (eds Burghardt, G. M. & Rand, A. S.) 342–365 (Noyes Publications, 1982).
    Google Scholar 
    Doi, H., Akamatsu, F. & González, A. L. Starvation effects on nitrogen and carbon stable isotopes of animals: An insight from meta-analysis of fasting experiments. R. Soc. Open Sci. 4(8), 170633. https://doi.org/10.1098/rsos.170633 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Persaud, A., Dillon, P., Molot, L. & Hargan, K. Relationships between body size and trophic position of consumers in temperate freshwater lakes. Aquat. Sci. 74(1), 203–212. https://doi.org/10.1007/s00027-011-0212-9 (2012).Article 

    Google Scholar 
    Keppeler, F. W. et al. Body size, trophic position, and the coupling of different energy pathways across a saltmarsh landscape. Limnol. Oceanogr. Lett. 6(6), 360–368. https://doi.org/10.1002/lol2.10212 (2021).Article 

    Google Scholar 
    Hanson, J. O. et al. Feeding across the food web: The interaction between diet, movement and body size in estuarine crocodiles (Crocodylus porosus). Austral. Ecol. 40(3), 275–286. https://doi.org/10.1111/aec.12212 (2015).Article 

    Google Scholar 
    Gustavino, B., Terrinoni, S., Paglierani, C. & Gentile, G. Conolophus marthae vs. Conolophus subcristatus: Does the skin pigmentation pattern exert a protective role against DNA damaging effect induced by UV light exposure? Analysis of blood smears through the micronucleus test. Paper presented at the Galápagos Land and Marine Iguanas Workshop, IUCN SSC Iguana Specialist Group Meeting, Puerto Ayora, 28–29 October 2014.Di Giacomo, C. et al. 25–Hydroxivitamin D plasma levels in natural populations of pigmented and partially pigmented land iguanas from Galápagos (Conolophus spp.). Hind 2022, 1–9. https://doi.org/10.1155/2022/7741397 (2022).CAS 
    Article 

    Google Scholar 
    Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Experimental considerations of acute heat stress assays to quantify coral thermal tolerance

    Pörtner, H. O. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Cimate (2019).Genevier, L. G. C., Jamil, T., Raitsos, D. E., Krokos, G. & Hoteit, I. Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. Glob. Chang. Biol. 25, 2338–2351 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science (80-.) 359, 80–83 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Suggett, D. J. & Smith, D. J. Coral bleaching patterns are the outcome of complex biological and environmental networking. Glob. Chang. Biol. 26, 68–79 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Baker, A. C., Glynn, P. W. & Riegl, B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80, 435–471 (2008).ADS 
    Article 

    Google Scholar 
    Brown, B. E., Dunne, R. P., Scoffin, T. P. & Le Tissier, M. D. A. Solar damage in intertidal corals. Mar. Ecol. Prog. Ser. 105, 219–230 (1994).ADS 
    Article 

    Google Scholar 
    Suggett, D. J. & Smith, D. J. Interpreting the sign of coral bleaching as friend vs. foe. Glob. Chang. Biol. 17, 45–55 (2011).ADS 
    Article 

    Google Scholar 
    Maynard, J. A., Anthony, K. R. N., Marshall, P. A. & Masiri, I. Major bleaching events can lead to increased thermal tolerance in corals. Mar. Biol. 155, 173–182 (2008).Article 

    Google Scholar 
    Weis, V. M. The susceptibility and resilience of corals to thermal stress: adaptation, acclimatization or both?: NEWS and VIEWS. Mol. Ecol. 19, 1515–1517 (2010).PubMed 
    Article 

    Google Scholar 
    Meyer, E., Aglyamova, G. V. & Matz, M. V. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol. Ecol. 20, 3599–3616 (2011).CAS 
    PubMed 

    Google Scholar 
    Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science (80-.) 348, 1460–1462 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, 1–17 (2021).Article 

    Google Scholar 
    Evensen, N. et al. Empirically derived thermal thresholds of four coral species along the Red Sea using a portable and standardized experimental approach. Coral Reefs 41, 239–252 (2022).Article 

    Google Scholar 
    Song, M. et al. The impact of acute thermal stress on the metabolome of the black rockfish (Sebastes schlegelii). PLoS ONE 14, 1–23 (2019).Article 

    Google Scholar 
    Kim, K. S. et al. Physiological responses to short-term thermal stress in mayfly (Neocloeon triangulifer) larvae in relation to upper thermal limits. J. Exp. Biol. 220, 2598–2605 (2017).PubMed 
    Article 

    Google Scholar 
    Juárez, O. E. et al. Transcriptomic and metabolic response to chronic and acute thermal exposure of juvenile geoduck clams Panopea globosa. Mar. Genomics 42, 1–13 (2018).PubMed 
    Article 

    Google Scholar 
    Pallarés, S., Arribas, P., Céspedes, V., Millán, A. & Velasco, J. Lethal and sublethal behavioural responses of saline water beetles to acute heat and osmotic stress. Ecol. Entomol. 37, 508–520 (2012).Article 

    Google Scholar 
    Qin, G. et al. Temperature-induced physiological stress and reproductive characteristics of the migratory seahorse Hippocampus erectus during a thermal stress simulation. Biol. Open 7, 1–7 (2018).CAS 

    Google Scholar 
    Zanuzzo, F. S., Bailey, J. A., Garber, A. F. & Gamperl, A. K. Comparative Biochemistry and Physiology, Part A The acute and incremental thermal tolerance of Atlantic cod (Gadus morhua) families under normoxia and mild hypoxia ☆. Comp. Biochem. Physiol. Part A 233, 30–38 (2019).CAS 
    Article 

    Google Scholar 
    Cunning, R. et al. Census of heat tolerance among Florida ’ s threatened staghorn corals finds resilient individuals throughout existing nursery populations. (2021).Evensen, N. R., Fine, M., Perna, G., Voolstra, C. R. & Barshis, D. J. Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. Limnol. Oceanogr. https://doi.org/10.1002/lno.11715 (2021).Article 

    Google Scholar 
    Morikawa, M. K. & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Natl. Acad. Sci. U. S. A. 116, 10586–10591 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rose, N. H., Bay, R. A., Morikawa, M. K. & Palumbi, S. R. Polygenic evolution drives species divergence and climate adaptation in corals. Evolution (N. Y.) 72, 82–94 (2018).
    Google Scholar 
    Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: lessons from Ofu, American Samoa. Front. Mar. Sci. 4, 1–14 (2018).CAS 
    Article 

    Google Scholar 
    Voolstra, C. R. et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob. Chang. Biol. 26, 4328–4343 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Klepac, C. N. & Barshis, D. J. High-resolution in situ thermal metrics coupled with acute heat stress experiments reveal differential coral bleaching susceptibility. Coral Reefs https://doi.org/10.1007/s00338-022-02276-1 (2022).Article 

    Google Scholar 
    Gardner, S. G. et al. A multi-trait systems approach reveals a response cascade to bleaching in corals. BMC Biol. 15, 117 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Madin, J. S. et al. A trait-based approach to advance coral reef science. Trends Ecol. Evol. 31, 419–428 (2016).PubMed 
    Article 

    Google Scholar 
    Suggett, D. J. et al. Toward bio-optical phenotyping of reef-forming corals using light-induced fluorescence transient-fast repetition rate fluorometry. Limnol. Oceanogr. Methods https://doi.org/10.1002/lom3.10479 (2022).Article 

    Google Scholar 
    Krueger, T. et al. Differential coral bleaching-contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 190, 15–25 (2015).CAS 
    Article 

    Google Scholar 
    Leggat, W. et al. Differential responses of the coral host and their algal symbiont to thermal stress. PLoS ONE 6, e26687 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nitschke, M. R. et al. Utility of photochemical traits as diagnostics of thermal tolerance amongst great barrier reef corals. Front. Mar. Sci. 5, 1–18 (2018).Article 

    Google Scholar 
    Warner, M. E., Fittt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Natl. Acad. Sci. 96, 8007–8012 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fitt, W. K., Brown, B. E., Warner, M. E. & Dunne, R. P. Coral bleaching: Interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65 (2001).Article 

    Google Scholar 
    Tolosa, I., Treignier, C., Grover, R. & Ferrier-Pagès, C. Impact of feeding and short-term temperature stress on the content and isotopic signature of fatty acids, sterols, and alcohols in the scleractinian coral Turbinaria reniformis. Coral Reefs 30, 763–774 (2011).ADS 
    Article 

    Google Scholar 
    Grottoli, A. G. et al. Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS ONE 13, e0191156 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chow, M. H., Tsang, R. H. L., Lam, E. K. Y. & Ang, P. Quantifying the degree of coral bleaching using digital photographic technique. J. Exp. Mar. Bio. Ecol. 479, 60–68 (2016).Article 

    Google Scholar 
    Nielsen, J. J. V. et al. Physiological effects of heat and cold exposure in the common reef coral Acropora millepora. Coral Reefs 39, 259–269 (2020).Article 

    Google Scholar 
    McLachlan, R. H., Price, J. T., Solomon, S. L. & Grottoli, A. G. Thirty years of coral heat-stress experiments: a review of methods. Coral Reefs 39, 885–902 (2020).Article 

    Google Scholar 
    Edmunds, P. J. & Burgess, S. C. Correction: Size-dependent physiological responses of the branching coral Pocillopora verrucosa to elevated temperature and PCO2 (J. Exp. Biol. (2016) 219 (3896-3906) doi: 10.1242/jeb.146381). J. Exp. Biol. 221, 3896–3906 (2018).Article 

    Google Scholar 
    Madin, J. S., Baird, A. H., Dornelas, M. & Connolly, S. R. Mechanical vulnerability explains size-dependent mortality of reef corals. Ecol. Lett. 17, 1008–1015 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pausch, R. E., Williams, D. E. & Miller, M. W. Impacts of fragment genotype, habitat, and size on outplanted elkhorn coral success under thermal stress. Mar. Ecol. Prog. Ser. 592, 109–117 (2018).ADS 
    Article 

    Google Scholar 
    Shenkar, N., Fine, M. & Loya, Y. Size matters: bleaching dynamics of the coral Oculina patagonica. Mar. Ecol. Prog. Ser. 294, 181–188 (2005).ADS 
    Article 

    Google Scholar 
    Middlebrook, R., Anthony, K. R. N., Hoegh-Guldberg, O. & Dove, S. Heating rate and symbiont productivity are key factors determining thermal stress in the reef-building coral Acropora formosa. J. Exp. Biol. 213, 1026–1034 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoey, A. et al. Recent advances in understanding the effects of climate change on coral reefs. Diversity 8, 12 (2016).Article 

    Google Scholar 
    Marhoefer, S. R. et al. Signatures of adaptation and acclimatization to reef flat and slope habitats in the coral pocillopora damicornis. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.704709 (2021).Article 

    Google Scholar 
    Cornwell, B. et al. Widespread variation in heat tolerance and symbiont load are associated with growth tradeoffs in the coral acropora hyacinthus in palau. Elife 10, 1–15 (2021).Article 

    Google Scholar 
    McClanahan, T. R. et al. Large geographic variability in the resistance of corals to thermal stress. Glob. Ecol. Biogeogr. 29, 2229–2247 (2020).Article 

    Google Scholar 
    Magozzi, S. & Calosi, P. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming. Glob. Chang. Biol. 21, 181–194 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Drury, C., Manzello, D. & Lirman, D. Genotype and local environment dynamically influence growth, disturbance response and survivorship in the threatened coral, Acropora cervicornis. PLoS ONE 12, 1–21 (2017).Article 

    Google Scholar 
    McLachlan, R. H., Dobson, K. L., Schmeltzer, E. R., Thurber, R. V. & Grottoli, A. G. A review of coral bleaching specimen collection, preservation, and laboratory processing methods. PeerJ 9, 1–21 (2021).Article 

    Google Scholar 
    Okubo, N., Motokawa, T. & Omori, M. When fragmented coral spawn? Effect of size and timing on survivorship and fecundity of fragmentation in Acropora formosa. Mar. Biol. 151, 353–363 (2007).Article 

    Google Scholar 
    Bruno, J. F. Fragmentation in Madracis mirabilis (Duchassaing and Michelotti): How common is size-specific fragment survivorship in corals?. J. Exp. Mar. Bio. Ecol. 230, 169–181 (1998).Article 

    Google Scholar 
    Suggett, D. J. et al. Optimizing return-on-effort for coral nursery and outplanting practices to aid restoration of the Great Barrier Reef. Restor. Ecol. 27, 683–693 (2019).Article 

    Google Scholar 
    Howlett, L., Camp, E. F., Edmondson, J., Henderson, N. & Suggett, D. J. Coral growth, survivorship and return-on-effort within nurseries at high-value sites on the Great Barrier Reef. PLoS ONE 16, 1–15 (2021).Article 

    Google Scholar 
    Veal, C. J., Carmi, M., Fine, M. & Hoegh-Guldberg, O. Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29, 893–897 (2010).ADS 
    Article 

    Google Scholar 
    Voolstra, C. R. et al. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. Mol. Ecol. 30, 4466–4480 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dove, S. et al. Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnol. Oceanogr. 51, 1149–1158 (2006).ADS 
    Article 

    Google Scholar 
    Traylor-Knowles, N., Rose, N. H., Sheets, E. A. & Palumb, S. Early tracriptional responses during heat stress in the coral Acropora hyacinthus. Biol. Bull. 232, 91–100 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schuback, N. et al. Single-turnover variable chlorophyll fluorescence as a tool for assessing phytoplankton photosynthesis and primary productivity: opportunities, caveats and recommendations. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.690607 (2021).Article 

    Google Scholar 
    Macadam, A., Nowell, C. J. & Quigley, K. Machine learning for the fast and accurate assessment of fitness in coral early life history. Remote Sens. 13, 1–17 (2021).Article 

    Google Scholar 
    Teague, J., Willans, J., Allen, M. J., Scott, T. B. & Day, J. C. C. Applied marine hyperspectral imaging; coral bleaching from a spectral viewpoint. Spectrosc. Eur. 31, 13–17 (2019).CAS 

    Google Scholar 
    Davies, S. W., Ries, J. B., Marchetti, A. & Castillo, K. D. Symbiodinium functional diversity in the Coral Siderastrea siderea Is influenced by thermal stress and reef environment, but not ocean acidification. Front. Mar. Sci. 5, 1–14 (2018).Article 

    Google Scholar 
    Tang, J. et al. Increased ammonium assimilation activity in the scleractinian coral pocillopora damicornis but not its symbiont after acute heat stress. Front. Mar. Sci. 7, 1–10 (2020).ADS 
    Article 

    Google Scholar 
    Sweet, M. et al. Species-specific variations in the metabolomic profiles of Acropora hyacinthus and Acropora millepora mask acute temperature stress effects in adult coral colonies. Front. Mar. Sci. 8, 1–15 (2021).Article 

    Google Scholar 
    Newton, J. R., Smith-Keune, C. & Jerry, D. R. Thermal tolerance varies in tropical and sub-tropical populations of barramundi (Lates calcarifer) consistent with local adaptation. Aquaculture 308, S128–S132 (2010).Article 

    Google Scholar 
    Waltham, N. J. & Sheaves, M. Acute thermal tolerance of tropical estuarine fish occupying a man-made tidal lake, and increased exposure risk with climate change. Estuar. Coast. Shelf Sci. 196, 173–181 (2017).ADS 
    Article 

    Google Scholar 
    Iwabuchi, B. L. & Gosselin, L. A. Implications of acute temperature and salinity tolerance thresholds for the persistence of intertidal invertebrate populations experiencing climate change. Ecol. Evol. 10, 7739–7754 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cox, J., Schubert, A. M., Travisano, M. & Putonti, C. Adaptive evolution and inherent tolerance to extreme thermal environments. BMC Evol. Biol. https://doi.org/10.1186/1471-2148-10-75 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quigley, K. M., Bay, L. K. & Willis, B. L. Temperature and water quality-related patterns in sediment-associated Symbiodinium communities impact symbiont uptake and fitness of juveniles in the genus Acropora. Front. Mar. Sci. 4, 1–17 (2017).Article 

    Google Scholar 
    Voolstra, C. R. et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00214-3 (2021).Article 

    Google Scholar 
    Cocciardi, J. M. et al. Adjustable temperature array for characterizing ecological and evolutionary effects on thermal physiology. Methods Ecol. Evol. 2019, 1339–1346 (2019).Article 

    Google Scholar 
    Smith, G. & Spillman, C. New high-resolution sea surface temperature forecasts for coral reef management on the Great Barrier Reef. Coral Reefs 38, 1039–1056 (2019).ADS 
    Article 

    Google Scholar 
    Bainbridge, S. J. Temperature and light patterns at four reefs along the Great Barrier Reef during the 2015–2016 austral summer: understanding patterns of observed coral bleaching. J. Oper. Oceanogr. 10, 16–29 (2017).
    Google Scholar 
    Siebeck, U. E., Marshall, N. J., Klüter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).ADS 
    Article 

    Google Scholar 
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science (80-.) 344, 895–899 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Saxby, T., Dennison, W. C. & Hoegh-Guldberg, O. Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Mar. Ecol. Prog. Ser. 248, 85–97 (2003).ADS 
    Article 

    Google Scholar 
    Deschaseaux, E. S. M., Deseo, M. A., Shepherd, K. M., Jones, G. B. & Harrison, P. L. Air blasting as the optimal approach for the extraction of antioxidants in coral tissue. J. Exp. Mar. Bio. Ecol. 448, 146–148 (2013).CAS 
    Article 

    Google Scholar 
    Holmes, G., Ortiz, J., Kaniewska, P. & Johnstone, R. Using three-dimensional surface area to compare the growth of two Pocilloporid coral species. Mar. Biol. 155, 421–427 (2008).Article 

    Google Scholar 
    Naumann, M. S., Niggl, W., Laforsch, C., Glaser, C. & Wild, C. Coral surface area quantification-evaluation of established techniques by comparison with computer tomography. Coral Reefs 28, 109–117 (2009).ADS 
    Article 

    Google Scholar 
    Ritchie, R. J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89, 27–41 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Licthenthaler, H. K. Chlorophylls and carotenoids – pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382 (1987).Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. (2020).Hartig, F. & Lohse, L. Package ‘DHARMa’ residual diangonstics for hierarchical (multi-level/mixed) regression models (2021).Brooks, M. E. et al. glmmTMB balances speed and flexibility among packaages for zero-inflated generalized linear mixed modelling. R Journal 9, 378–400 (2017).Article 

    Google Scholar 
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 1–32 (2018).
    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    Oksanen, J. et al. Vegan (2020).Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, 2008).MATH 
    Book 

    Google Scholar  More