More stories

  • in

    Continuous exchange of nectar nutrients in an Oriental hornet colony

    Anderson, M. The evolution of eusociality. Annu. Rev. Ecol. Syst. 15, 165–189 (1984).Article 

    Google Scholar 
    Wilkinson, G. S. Reciprocal food sharing in the vampire bat. Nature 308, 181–184 (1984).Article 

    Google Scholar 
    Feistner, A. & Mcgrew, W. Food-sharing in primates: a critical review. Perspect. Primate Biol 3, (1989).Hoelzel, A. R. Killer whale predation on marine mammals at Punta Norte, Argentina; food sharing, provisioning and foraging strategy. Behav. Ecol. Sociobiol. 29, 197–204 (1991).Article 

    Google Scholar 
    Behmer, S. T. Animal behaviour: feeding the superorganism. Curr. Biol. 19, R366–R368 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. Information flow during social feeding in ant societies. in Information Processing in Social Insects (eds. Detrain, C., Deneubourg, J. L. & Pasteels, J. M.) 69–81 (Birkhäuser, 1999). https://doi.org/10.1007/978-3-0348-8739-7_4.Hunt, J. H. Trophallaxis and the evolution of eusocial Hymenoptera. in The Biology of Social Insects (CRC Press, 1982).Sorensen, A. A., Busch, T. M. & Vinson, S. B. Trophallaxis by temporal subcastes in the fire ant, Solenopsis invicta, in response to honey. Physiol. Entomol. 10, 105–111 (1985).Article 

    Google Scholar 
    Meurville, M.-P. & LeBoeuf, A. C. Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecol. News 31, 1–30 (2021).Bodner, L. et al. Nutrient utilization during male maturation and protein digestion in the Oriental hornet. Biology 11, 241 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sorensen, A. A., Kamas, R. S. & Vinson, S. B. The influence of oral secretions from larvae on levels of proteinases in colony members of Solenopsis invicta Buren (Hymenoptera: Formicidae). J. Insect Physiol. 29, 163–168 (1983).Article 
    CAS 

    Google Scholar 
    Erthal, M., Peres Silva, C. & Ian Samuels, R. Digestive enzymes in larvae of the leaf cutting ant, Acromyrmex subterraneus (Hymenoptera: Formicidae: Attini). J. Insect Physiol. 53, 1101–1111 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Went, F. W., Wheeler, J. & Wheeler, G. C. Feeding and digestion in some ants (Veromessor and Manica). BioScience 22, 82–88 (1972).Article 

    Google Scholar 
    Ishay, J. & Ikan, R. Food exchange between adults and larvae in Vespa orientalis F. Anim. Behav. 16, 298–303 (1968).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, J. H. The evolution of social wasps. (Oxford University Press, USA, 2007).Abe, T., Yoshiya, T., Hiromitsu, M. & Kawasaki, Y. Y. Comparative study of the composition of hornet larval saliva, its effect on behaviour and role of trophallaxis. Comp. Biochem. Physiol. Part C: Comp. Pharmacol. 99, 79–84 (1991).Article 

    Google Scholar 
    Ishay, J. & Ikan, R. Gluconeogenesis in the Oriental hornet Vespa orientalis F. Ecology 49, 169–171 (1968).Article 

    Google Scholar 
    Brock, R. E., Cini, A. & Sumner, S. Ecosystem services provided by aculeate wasps. Biol. Rev. 96, 1645–1675 (2021).Article 
    PubMed 

    Google Scholar 
    Ueno, T. Flower-visiting by the invasive hornet Vespa velutina nigrithorax (Hymenoptera: Vespidae). Int. J. Chem., Environ. Biol. Sci. 3, 444–448 (2015).
    Google Scholar 
    Käfer, H., Kovac, H. & Stabentheiner, A. Respiration patterns of resting wasps (Vespula sp.). J. Insect Physiol. 59, 475–486 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bodner, L., Bouchebti, S. & Levin, E. Allocation and metabolism of naturally occurring dietary amino acids in the Oriental hornet. Insect Biochem. Mol. Biol. 139, 103675 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Levin, E., Lopez-Martinez, G., Fane, B. & Davidowitz, G. Hawkmoths use nectar sugar to reduce oxidative damage from flight. Science 355, 733–735 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, J. H., Baker, I. & Baker, H. G. Similarity of amino acids in nectar and larval saliva: the nutritional basis for trophallaxis in social wasps. Evolution 36, 1318–1322 (1982).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, J. H., Jeanne, R. L., Baker, I. & Grogan, D. E. Nutrient dynamics of a swarm-founding social wasp species, Polybia occidentalis (Hymenoptera: Vespidae). Ethology 75, 291–305 (1987).Article 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. Allocation of liquid food to larvae via trophallaxis in colonies of the fire ant, Solenopsis invicta. Anim. Behav. 50, 801–813 (1995).Article 

    Google Scholar 
    Buffin, A., Denis, D., Simaeys, G. V., Goldman, S. & Deneubourg, J.-L. Feeding and stocking up: radio-labelled food reveals exchange patterns in ants. PLOS ONE 4, e5919 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quque, M. et al. Hierarchical networks of food exchange in the black garden ant Lasius niger. Insect Sci. 28, 825–838 (2021).Article 
    PubMed 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. A duration constant for worker-to-larva trophallaxis in fire ants. Ins. Soc. 43, 149–166 (1996).Article 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. Regulation of diet in the fire ant, Solenopsis invicta. J. Insect Behav. 12, 307–328 (1999).Article 

    Google Scholar 
    Wilson, E. O. & Eisner, T. Quantitative studies of liquid food transmission in ants. Ins. Soc. 4, 157–166 (1957).Article 

    Google Scholar 
    Markin, G. P. Food distribution within laboratory colonies of the argentine ant, Tridomyrmex humilis (Mayr). Ins. Soc. 17, 127–157 (1970).Article 

    Google Scholar 
    Howard, D. F. & Tschinkel, W. R. The flow of food in colonies of the fire ant, Solenopsis invicta: a multifactorial study. Physiol. Entomol. 6, 297–306 (1981).Article 

    Google Scholar 
    Suryanarayanan, S. & Jeanne, R. L. Antennal drumming, trophallaxis, and colony development in the social wasp Polistes fuscatus (Hymenoptera: Vespidae). Ethology 114, 1201–1209 (2008).Article 

    Google Scholar 
    Greenwald, E., Segre, E. & Feinerman, O. Ant trophallactic networks: simultaneous measurement of interaction patterns and food dissemination. Sci. Rep. 5, 12496 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baltiansky, L., Sarafian-Tamam, E., Greenwald, E. & Feinerman, O. Dual-fluorescence imaging and automated trophallaxis detection for studying multi-nutrient regulation in superorganisms. Methods Ecol. Evol. 12, 1441–1457 (2021).Article 

    Google Scholar 
    Feldhaar, H. et al. Stable isotopes: past and future in exposing secrets of ant nutrition (Hymenoptera: Formicidae). Myrmecol. N. 13, 3–13 (2010).
    Google Scholar 
    Bouchebti, S., Bodner, L., Bergman, M., Magory Cohen, T. & Levin, E. The effects of dietary proline, β-alanine, and γ-aminobutyric acid (GABA) on the nest construction behavior in the Oriental hornet (Vespa orientalis). Sci. Rep. 12, 7449 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Motro, M., Motro, U., Ishay, J. S. & Kugler, J. Some social and dietary prerequisites of oocyte development in Vespa orientalis L. workers. Ins. Soc. 26, 155–164 (1979).Article 

    Google Scholar 
    Levin, E., McCue, M. D. & Davidowitz, G. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. Proc. R. Soc. B: Biol. Sci. 284, 20162126 (2017).Article 

    Google Scholar 
    Wright, G. A., Nicolson, S. W. & Shafir, S. Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol. 63, 327–344 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Helm, B. R. et al. The geometric framework for nutrition reveals interactions between protein and carbohydrate during larval growth in honey bees. Biol. Open 6, 872–880 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paoli, P. P. et al. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids 46, 1449–1458 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stabler, D., Paoli, P. P., Nicolson, S. W. & Wright, G. A. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. 218, 793–802 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arganda, S. et al. Parsing the life-shortening effects of dietary protein: effects of individual amino acids. Proc. R. Soc. B 284, 20162052 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Csata, E. & Dussutour, A. Nutrient regulation in ants (Hymenoptera: Formicidae): a review. Myrmecol. N. 29, 111–124 (2019).
    Google Scholar 
    Gottsberger, G., Schrauwen, J. & Linskens, H. F. Amino acids and sugars in nectar, and their putative evolutionary significance. Pl. Syst. Evol. 145, 55–77 (1984).Article 
    CAS 

    Google Scholar 
    Ozimek, L. et al. Nutritive value of protein extracted from honey bees. J. Food Sci. 50, 1327–1329 (1985).Article 
    CAS 

    Google Scholar 
    Nicolson, S. W. & Thornburg, R. W. Nectar chemistry. in Nectaries and Nectar (eds. Nicolson, S. W., Nepi, M. & Pacini, E.) 215–264 (Springer Netherlands, 2007). https://doi.org/10.1007/978-1-4020-5937-7_5.Contrera, F. A. L., Imperatriz-Fonseca, V. L. & Koedam, D. Trophallaxis and reproductive conflicts in social bees. Insect Soc. 57, 125–132 (2010).Article 

    Google Scholar 
    Carter, G. G. & Wilkinson, G. S. Food sharing in vampire bats: reciprocal help predicts donations more than relatedness or harassment. Proc. R. Soc. B: Biol. Sci. 280, 20122573 (2013).Article 

    Google Scholar 
    Nalepa, C. A. Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40, 323–335 (2015).Article 

    Google Scholar 
    Werenkraut, V., Arbetman, M. P. & Fergnani, P. N. The Oriental hornet (Vespa orientalis L.): a threat to the Americas? Neotrop. Entomol. 51, 330–338 (2022).Article 
    PubMed 

    Google Scholar 
    Darchen, R. Biologie de Vespa orientalis. Les premiers stades de développement. Ins. Soc. 11, 141–157 (1964).Article 

    Google Scholar 
    Van Itterbeeck, J. et al. Rearing techniques for hornets with emphasis on Vespa velutina (Hymenoptera: Vespidae): A review. J. Asia-Pac. Entomol. 24, 103–117 (2021).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2020).Bouchebti, S., Bodner,L. & Levin, E. Continuous exchange of nectar nutrients in an Oriental hornet colony- Dataset [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7135100 (2022). More

  • in

    Assessing Müllerian mimicry in North American bumble bees using human perception

    Bates, H. W. XXXII. Contributions to an insect fauna of the Amazon Valley. Lepidoptera: Heliconidæ. Trans. Linn. Soc. Lond 23, 495–566 (1862).Article 

    Google Scholar 
    Müller, F. Ituna and thyridia: A remarkable case of mimicry in butterflies. Trans. Entomol. Soc. Lond. 1879, 20–29 (1879).
    Google Scholar 
    Baxter, S. W. et al. Convergent evolution in the genetic basis of Müllerian mimicry in Heliconius butterflies. Genetics 180, 1567–1577 (2008).Article 
    CAS 

    Google Scholar 
    Sheppard, P. M., Turner, J. R. G., Brown, K., Benson, W. & Singer, M. Genetics and the evolution of Muellerian mimicry in Heliconius butterflies. Philos. Trans R. Soc. Lond. B, Biol. Sci. 308, 433–610 (1985).Article 
    ADS 

    Google Scholar 
    Mallet, J. & Gilbert, L. E. Jr. Why are there so many mimicry rings? Correlations between habitat, behaviour and mimicry in Heliconius butterflies. Biol. J. Lin. Soc. 55, 159–180 (1995).
    Google Scholar 
    Brower, A. V. Parallel race formation and the evolution of mimicry in Heliconius butterflies: A phylogenetic hypothesis from mitochondrial DNA sequences. Evolution 50, 195–221 (1996).Article 
    CAS 

    Google Scholar 
    Wilson, J. S. et al. North American velvet ants form one of the world’s largest known Müllerian mimicry complexes. Curr. Biol. 25, R704–R706. https://doi.org/10.1016/j.cub.2015.06.053 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wilson, J. S., Williams, K. A., Forister, M. L., Von Dohlen, C. D. & Pitts, J. P. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 3, 1272 (2012).Article 
    ADS 

    Google Scholar 
    Wilson, J. S., Pan, A. D., Limb, E. S. & Williams, K. A. Comparison of African and North American velvet ant mimicry complexes: Another example of Africa as the ‘odd man out’. PLoS ONE 13, e0189482. https://doi.org/10.1371/journal.pone.0189482 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Plowright, R. & Owen, R. E. The evolutionary significance of bumble bee color patterns: A mimetic interpretation. Evolution 34, 622–637 (1980).Article 
    CAS 

    Google Scholar 
    Williams, P. The distribution of bumblebee colour patterns worldwide: Possible significance for thermoregulation, crypsis, and warning mimicry. Biol. J. Lin. Soc. 92, 97–118 (2007).Article 

    Google Scholar 
    Hines, H. M. & Williams, P. H. Mimetic colour pattern evolution in the highly polymorphic Bombus trifasciatus (Hymenoptera: Apidae) species complex and its comimics. Zool. J. Linn. Soc. 166, 805–826 (2012).Article 

    Google Scholar 
    Koch, J. B., Rodriguez, J., Pitts, J. P. & Strange, J. P. Phylogeny and population genetic analyses reveals cryptic speciation in the Bombus fervidus species complex (Hymenoptera: Apidae). PLoS ONE 13, e0207080 (2018).Article 

    Google Scholar 
    Ezray, B. D., Wham, D. C., Hill, C. E. & Hines, H. M. Unsupervised machine learning reveals mimicry complexes in bumblebees occur along a perceptual continuum. Proc. R. Soc. B 286, 20191501 (2019).Article 

    Google Scholar 
    Bateson, W. The alleged “Aggressive Mimicry” of volucellæ. Nature 46, 585 (1892).Article 
    ADS 

    Google Scholar 
    Poulton, E. B. The volucellœ as alleged examples of variation “almost unique among animals”. Nature 47, 126 (1892).Article 
    ADS 

    Google Scholar 
    Cockerell, T. D. New social bees. Psyche A J. Entomol. 24, 120–128 (1917).Article 

    Google Scholar 
    Koch, J., Strange, J. & Williams, P. In: Bumble bees of the western United States (US Forest Service, San Francisco California, 2012).
    Google Scholar 
    Williams, P. H., Thorp, R. W., Richardson, L. L. & Colla, S. R. In: Bumble bees of North America: An identification guide Vol. 87 (Princeton University Press, Princeton, 2014).
    Google Scholar 
    Ruxton, G. D., Franks, D. W., Balogh, A. C. & Leimar, O. Evolutionary implications of the form of predator generalization for aposematic signals and mimicry in prey. Evol Int. J. Org. Evol. 62, 2913–2921 (2008).Article 

    Google Scholar 
    Rowe, C., Lindström, L. & Lyytinen, A. The importance of pattern similarity between Müllerian mimics in predator avoidance learning. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 407–413 (2004).Article 

    Google Scholar 
    Beatty, C. D., Beirinckx, K. & Sherratt, T. N. The evolution of Müllerian mimicry in multispecies communities. Nature 431, 63 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Chittka, L. & Osorio, D. Cognitive dimensions of predator responses to imperfect mimicry. PLoS Biol. 5, e339 (2007).Article 

    Google Scholar 
    Dittrigh, W., Gilbert, F., Green, P., McGregor, P. & Grewcock, D. Imperfect mimicry: A pigeon’s perspective. Proc. R. Soc. Lond. Ser. B Biol. Sci. 251, 195–200 (1993).Article 
    ADS 

    Google Scholar 
    Sherratt, T. N., Whissell, E., Webster, R. & Kikuchi, D. W. Hierarchical overshadowing of stimuli and its role in mimicry evolution. Anim. Behav. 108, 73–79 (2015).Article 

    Google Scholar 
    Beatty, C. D., Bain, R. S. & Sherratt, T. N. The evolution of aggregation in profitable and unprofitable prey. Anim. Behav. 70, 199–208 (2005).Article 

    Google Scholar 
    Kazemi, B., Gamberale-Stille, G., Tullberg, B. S. & Leimar, O. Stimulus salience as an explanation for imperfect mimicry. Curr. Biol. 24, 965–969 (2014).Article 
    CAS 

    Google Scholar 
    Kikuchi, D. W., Dornhaus, A., Gopeechund, V. & Sherratt, T. N. Signal categorization by foraging animals depends on ecological diversity. Elife. 8, e43965 (2019).Article 

    Google Scholar 
    Rapti, Z., Duennes, M. A. & Cameron, S. A. Defining the colour pattern phenotype in bumble bees (Bombus): A new model for evo devo. Biol. J. Lin. Soc. 113, 384–404 (2014).Article 

    Google Scholar 
    Wilson, J. S., Sidwell, J. S., Forister, M. L., Williams, K. A. & Pitts, J. P. Thistledown velvet ants in the desert mimicry ring and the evolution of white coloration: Müllerian mimicry, camouflage and thermal ecology. Biol. Lett. 16, 20200242 (2020).Article 

    Google Scholar 
    Ascher, J. & Pickering, J. Discover Life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila) (2019).iNaturalist. Available from https://www.inaturalist.org. Accessed [2022].Bombus Latreille, 1802 in GBIF Secretariat (2021). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2021-12-03. More

  • in

    Chemical forms of cadmium in soil and its distribution in French marigold sub-cells in response to chelator GLDA

    Sarwar, N. et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 171, 710–721 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lin, H. M. et al. Cadmium-stress mitigation through gene expression of rice and silicon addition. Plant Growth Regul.: Int. J. Nat. Synthetic Regul. 81(1), 91–101 (2017).Article 
    CAS 

    Google Scholar 
    Pan, F. S. et al. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. Int. J. Phytorem. 19(1/6), 281–289 (2017).Article 
    CAS 

    Google Scholar 
    Puangprasert, S. & Prueksasit, T. Health risk assessment of airborne Cd, Cu, Ni and Pb for electronic waste dismantling workers in Buriram Province, Thailand. J. Environ. Manag. 252, 109601 (2019).Article 
    CAS 

    Google Scholar 
    Tipu, M. I. et al. Growth and physiology of maize (Zea mays L.) in a nickel-contaminated soil and phytoremediation efficiency using EDTA. J. Plant Growth Regul. 40(2), 774–786 (2021).Article 
    CAS 

    Google Scholar 
    Chaturvedi, N., Dhal, N. K. & Patra, H. K. EDTA and citric acid-mediated phytoextraction of heavy metals from iron ore tailings using Andrographis paniculata: A comparative study. Int. J. Min. Reclam. Environ. 29(1), 33–46 (2015).Article 
    CAS 

    Google Scholar 
    Wang, G. Y. et al. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility. Sci. Total Environ. 569–570, 557–568 (2016).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kołodyńska, D. Cu(II), Zn(II), Co(II) and Pb(II) removal in the presence of the complexing agent of a new generation. Desalination 267(2–3), 175–183 (2011).Article 

    Google Scholar 
    Guo, X. F. et al. Mixed chelators of EDTA, GLDA, and citric acid as washing agent effectively remove Cd, Zn, Pb, and Cu from soils. J. Soils Sediments 18(2), 835–844 (2017).
    Google Scholar 
    Wang, X. et al. Subcellular distribution and chemical forms of cadmiun in Bechmeria nivea L. Gaud. Environ. Exp. Bot. 62(3), 389–395 (2008).Article 
    CAS 

    Google Scholar 
    Gallego, S. M. et al. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot. 83, 33–46 (2012).Article 
    CAS 

    Google Scholar 
    Clemens, S., Aarts, M. G. M., Thomine, S. & Verbruggen, N. Plant science: The key to preventing slow cadmium poisoning. Trends Plant Sci. 18(2), 92–99 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhou, J. T. et al. Integration of cadmium accumulation, subcellular distribution, and physiological responses to understand cadmium tolerance in apple rootstocks. Front. Plant Sci. 8, 966 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, L. P., Zhu, J., Wang, P., Lyu, D. G. & Li, H. F. Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata. Ecotoxicol. Environ. Saf. 160, 10–18 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wang, W. J., Zhang, M. Z. & Liu, J. N. Subcellular distribution and chemical forms of Cd in Bougainvillea spectabilis Willd. as an ornamental phytostabilizer: An integrated consideration. Int. J. Phytorem. 20(11), 1087–1095 (2017).Article 

    Google Scholar 
    Weigel, H. J. & Jäger, H. J. Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol. 65(3), 480–482 (1980).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khanna, K., Kohli, S. K., Ohri, P., Bhardwaj, R. & Ahmad, P. Agroecotoxicological aspect of Cd in soil–plant system: Uptake, translocation and amelioration strategies. Environ. Sci. Pollut. Res. 29, 30908–30934 (2022).Article 
    CAS 

    Google Scholar 
    Wei, Z. B., Chen, X. H., Wu, Q. T. & Tan, M. Biodegradable chelator GLDA induced remediation of heavy metal contaminated soil in Southeast Jingtian. Environ. Sci. 36(5), 1864–1869 (2015).CAS 

    Google Scholar 
    Wang, K., Liu, Y. H., Song, Z. G., Wang, D. & Qiu, W. W. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Chemosphere 237, 124480 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Meng, N., Wang, M., Chen, L., Zheng, H. & Chen, S. B. Remediation effects of different herbaceous plants intercropping on Cd-contaminated soil. China Environ. Sci. 38(7), 2618–2624 (2018).CAS 

    Google Scholar 
    Jones, D. & Willett, V. Experimental evaluation of methods to quantify dissolved organic nitrogen (don) and dissolved organic carbon (doc) in soil. Soil Biol. Biochem. 38(5), 991–999 (2006).Article 
    CAS 

    Google Scholar 
    Su, F. L. et al. The distribution and enrichment characteristics of copper in soil and Phragmites australis of Liao River estuary wetland. Environ. Monit. Assess.: Int. J. 190(6), 1–9 (2018).Article 
    CAS 

    Google Scholar 
    Shahid, M., Dumat, C. & Khalid, S. Reviews of Environmental Contamination and Toxicology Vol. 241, 3–137 (Springer, 2016).
    Google Scholar 
    Yuliya, V. et al. Comparison of soil-to-root transfer and translocation coefficients of trace elements in vines of Chardonnay and Muscat white grown in the same vineyard. Sci. Hortic. 192, 89–96 (2015).Article 

    Google Scholar 
    Liu, Q. Q., Chen, Y. H., Shen, Z. G. & Zheng, L. Q. Roles of cell wall in plant heavy metal tolerance. Plant Physiol. J. 50(5), 605–611 (2014).
    Google Scholar 
    Zhen, S. et al. Foliar application of Zn reduces Cd accumulation in grains of late rice by regulating the antioxidant system, enhancing Cd chelation onto cell wall of leaves, and inhibiting Cd translocation in rice. Sci. Total Environ. 770, 145302 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Shi, Y. X. et al. Simulation of the absorption, migration and accumulation process of heavy metal elements in soil-crop system. Environ. Sci. 37(10), 3996–4003 (2016).
    Google Scholar 
    Yan, X. X. et al. Effect of foliar application of different manganese fertilizers on cadmium accumulation and subcellular distribution in pak choi. J. Agro Environ. Sci. 38(8), 1872–1881 (2019).
    Google Scholar 
    He, S., Wu, Q. & He, Z. Effect of DA-6 and EDTA alone or in combination on uptake, subcellular distribution and chemical form of Pb in Lolium perenne. Chemosphere 93(11), 2782–2788 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, C. C. et al. Integration of metal chemical forms and subcellular partitioning to understand metal toxicity in two lettuce (Lactuca sativa L.) cultivars. Plant Soil 384(1/2), 201–212 (2014).Article 
    CAS 

    Google Scholar 
    Li, D., He, T., Saleem, M. & He, G. Metalloprotein-specific or critical amino acid residues: Perspectives on plant-precise detoxification and recognition mechanisms under cadmium stress. Int. J. Mol. Sci. 23(3), 1734 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perriguey, J., Sterckeman, T. & Morel, J. L. Effect of rhizosphere and plantrelated factors on the cadmium uptake by maize(Zea mays L.). Environ. Exp. Bot. 63(1/3), 333–341 (2008).Article 
    CAS 

    Google Scholar 
    Dai, S. et al. Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil. Hum. Ecol. Risk Assess. Int. J. 24(7), 1887–1900 (2018).Article 
    CAS 

    Google Scholar 
    Hou, S., Zheng, N., Tang, L., Ji, X. F. & Li, Y. Y. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environ. Monit. Assess. 191(10), 634 (2019).Article 
    PubMed 

    Google Scholar 
    Wu, H. J. et al. Effects of Astragalus smicuson cadmium effectiveness in paddy soil and cadmium accumulation in rice plant. Chin. Agric. Sci. Bull. 33(16), 105–111 (2017).ADS 

    Google Scholar 
    Jin, P. K., Liu, K. J. & Wang, X. B. Conversion and utilization of slowly biodegradable organic matter. Chin. J. Environ. Eng. 10(5), 2168–2174 (2016).CAS 

    Google Scholar 
    Kopáček, J. et al. Factors affecting the leaching of dissolved organic carbon after tree dieback in an unmanaged European mountain forest. Environ. Sci. Technol. 52(11), 6291–6299 (2018).Article 
    ADS 
    PubMed 

    Google Scholar 
    Anwar, S. et al. Impact of chelator-induced phytoextraction of cadmium on yield and ionic uptake of maize. Int. J. Phytorem. 19(6), 505–513 (2017).Article 
    CAS 

    Google Scholar 
    Wu, J. M., Xi, M. & Kong, F. L. Review of researches on the factors influencing the dynamics of dissolved organic carbon in soils. Geol. Rev. 59(5), 953–961 (2013).CAS 

    Google Scholar 
    AkzoNobel. Dissolvine GL® Technichal Brochure 1–5 (AkzoNobel Amsterdam, 2010).
    Google Scholar 
    Beygi, M. & Jalali, M. Assessment of trace elements (Cd, Cu, Ni, Zn) fractionation and bioavailability in vineyard soils from the Hamedan, Iran. Geoderma 337, 1009–1020 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Gul, I. et al. Comparative effectiveness of organic and inorganic amendments on cadmium bioavailability and uptake by Pelargonium hortorum. J. Soils Sediments 19(5), 2346–2356 (2019).Article 
    CAS 

    Google Scholar 
    Wang, H., Sun, L. N., Li, H. B. & Sun, T. Y. Effect of different chelators application on Cd accumulation in metal polluted soils by Beta vulgaris var. cicla L. Ecol. Environ. 17(6), 2249–2252 (2008).
    Google Scholar 
    Zhang, G. X. et al. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environ. Pollut. 218, 513–522 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gu, M. H. et al. Effects of manganese application on the formation of manganese oxides and cadmium fixation in soil. Ecol. Environ. Sci. 229(2), 360–368 (2020).
    Google Scholar 
    Bradl, H. B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 277(1), 1–18 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Epigenetic divergence during early stages of speciation in an African crater lake cichlid fish

    Field samplingLake Masoko fish were chased into fixed gill nets and SCUBA by a team of professional divers at different target depths determined by diver depth gauge (12× male benthic, 12× male littoral). Riverine fish (11× Mbaka River and 1× Itupi river) were collected by local fishermen. On collection, all fish were euthanized using clove oil. Collection of wild fish was done in accordance with local regulations and permits in 2015, 2016, 2018 and 2019. On collection, fish were immediately photographed with color and metric scales, and tissues were dissected and stored in RNAlater (Sigma-Aldrich); some samples were first stored in ethanol. Only male specimens (showing bright nuptial coloration) were used in this study for the practical reason of avoiding any misassignment of individuals to the wrong population (only male individuals show clear differences in phenotypes and could therefore be reliably assigned to a population). Furthermore, we assumed that any epigenetic divergence relevant to speciation should be contributing to between-population differences in traits possessed by both sexes (habitat occupancy, diet). To investigate the role of epigenetics in phenotypic diversification and adaptation to different diets, homogenized liver tissue – a largely homogenous and key organ involved in dietary metabolism, hormone production and hematopoiesis – was used for all RNA-seq and WGBS experiments.Common-garden experimentCommon-garden fish were bred from wild-caught fish specimens, collected and imported at the same time by a team of professional aquarium fish collectors according to approved veterinary regulations of the University of Bangor, UK. Wild-caught fish were acclimatized to laboratory tanks and reared to produce first-generation (G1) common-garden fish, which were reared under the same controlled laboratory conditions in separate tanks (light–dark cycles, diet: algae flakes daily, 2–3 times weekly frozen diet) for approximately 6 months (post hatching). G1 adult males showing bright nuptial colors were culled at the same biological stages (6 months post hatching) using MS222 in accordance with the veterinary regulations of the University of Bangor, UK. Immediately on culling, fish were photographed and tissues collected and snap-frozen in tubes.Stable isotopesTo assess dietary/nutritional profiles in the three ecomorph populations, carbon (δ13C) and nitrogen (δ15N) isotope analysis of muscle samples (for the same individuals as RRBS; 12, 12 and 9 samples for benthic, littoral and riverine populations, respectively) was undertaken by elemental analyzer isotope ratio mass spectrometry by Iso-Analytical Limited. It is important to note that stable isotope analysis does not depend on the use of the same tissue as the ones used for the RRBS/WGBS samples45. Normality tests (Shapiro–Wilk, using the R package rstatix v.0.7.0), robust for small sample sizes, were performed to assess sample deviation from a Gaussian distribution. Levene’s test for homogeneity of variance was then performed (R package carData v.3.0-5) to test for homogeneity of variance across groups. Finally, Welch’s ANOVA was performed followed by Games–Howell all-pairs comparison tests with adjusted P value using Tukey’s method (rstatix v.0.7.0). Mean differences in isotope measurements and 95% CI mean differences were calculated using Dabestr v.0.3.0 with 5,000 bootstrapped resampling.Throughout this manuscript, all box plots are defined as follows: centre line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers.RNA-seqNext-generation sequencing library preparationTotal RNA from liver tissues stored in RNAlater was extracted using a phenol/chloroform approach (TRIzol reagent; Sigma-Aldrich). Of note, when tissues for bisulphite sequencing samples were not available, additional wild-caught samples were used (Supplementary Table 3). The quality and quantity of RNA extraction were assessed using TapeStation (Agilent Technologies), Qubit and NanoDrop (Thermo Fisher Scientific). Next-generation sequencing (NGS) libraries were prepared using poly(A) tail-isolated RNA fraction and sequenced on a NovaSeq system (S4; paired-end 100/150 bp; Supplementary Table 3), yielding on average 32.9 ± 3.9 Mio reads.Read alignment and differential gene expression analysisAdaptor sequence in reads, low-quality bases (Phred score  More

  • in

    Protected area personnel and ranger numbers are insufficient to deliver global expectations

    Data collectionIn phase 1 (2017), we first circulated a comprehensive multi-language questionnaire and associated guidelines on protected area personnel numbers to major national protected area agencies, focusing on the 50 countries listed in the WDPA as having the most protected areas. The questionnaire requested information on personnel numbers, type of employers and management levels (from executive to skilled practical workers). Protected area personnel were defined as those spending at least 50% of their work time on protected area-related tasks. The questionnaire also requested information about job titles used for personnel equivalent to rangers. This phase produced usable data for 28 countries/territories.In phase 2 (2018 onwards), we conducted online searches for published data on protected area personnel numbers in the countries/territories not included in the questionnaire survey or where questionnaire responses were incomplete or unclear. The resulting information came from official organizational reports (10 countries/territories), published external studies, project documents and journal papers (35 countries/territories) and websites of protected area organizations or individual sites (9 countries/territories).In phase 3 (2018–2021), we directly requested personal contacts to locate or supply information from official sources both for the remaining countries/territories and to improve or verify data from phases 1 and 2. The minimum data requested were the overall number of protected area personnel, the number of those personnel that could be categorized as rangers, the terrestrial area of protected areas managed by the listed personnel and the source of the information. This phase contributed usable data for 68 countries and territories. Data for a further 17 countries/territories were assembled from multiple sources.The final dataset covered 176 countries/territories: 167 surveyed countries/territories and a further 9 countries/territories that have no WDPA-listed protected areas (Supplementary Table 1), with contributions from more than 150 individuals.Initial data processingTo assess and, where necessary, improve the reliability of data obtained in a wide range of formats and levels of detail and from multiple sources, we scored the data for each country/territory from 0 to 5 for each of four criteria—detail, accuracy, source and age of the data—with a maximum score of 20 (Supplementary Table 1 and Supplementary Fig. 1). For all low-scoring records (a score of less than 15), we sought more-reliable sources in later phases of the study, rejecting any final scores of less than 10.On reviewing the data, we excluded from the analysis protected areas identified in the WDPA as predominantly or entirely marine, Antarctica and countries/territories categorized in the WDPA as polar (Greenland, French Southern Territories, Bouvet Island, Heard Island and McDonald Islands, South Georgia and the South Sandwich Islands). These large, remote and/or largely uninhabited areas are likely to have quite different management models and scales of staffing from terrestrial protected areas (although marine protected areas are also widely understaffed11). For example, in 2012 the 972,000 km2 of Northeast Greenland Protected Area (categorized by the WDPA as polar) was only periodically visited by six two-person teams of naval personnel47, and the 2008 management plan of the 1.51 million km2 Papahānaumokuākea Marine National Monument (Hawai’i, USA) specifies just nine personnel, working in conjunction with several other agencies48. Data for one country were supplied by officials on the agreement that the country was not specifically identified in publications (the country is given the three-letter code ZZZ in relevant tables and figures).Because the format, completeness and level of detail of the data varied widely, from comprehensive personnel lists to single figures, we restricted our raw dataset to six variables that could be consistently extracted from data obtained for each country/territory:

    1.

    Total number of non-ranger personnel (if known)

    2.

    Total number of rangers (if known)

    3.

    Total number of protected area personnel (either the sum of 1 and 2 or provided as an undifferentiated total)

    4.

    Terrestrial area of protected areas covered by surveyed personnel (km2)

    5.

    Total terrestrial area of protected areas of the country/territory (km2)

    6.

    Year of the data

    We used the WDPA, official publications and websites to determine (or verify) the area of terrestrial protected areas covered by the personnel listed for each country/territory, using WDPA data if there were discrepancies. Total national terrestrial protected area coverage was taken from the WDPA, with the exception of Turkey, where the area officially reported to the WDPA is significantly less than the nationally published area.The raw data from the survey are shown in Supplementary Table 1.Candidate predictorsTo predict the number of rangers and non-rangers in countries and territories for which we had no data (Statistical analysis), we collected information on the following set of variables, hereafter referred to as candidate predictors:Location dataThe WGS84 latitude and longitude of the centroid of the largest land mass associated with each country/ territory (to obtain the polygons defining the land masses, we used the R package rnaturalearth version 0.1.0; https://github.com/ropensci/rnaturalearth)2020 data from the World Bank (https://data.worldbank.org/indicator)

    Area of the country/territory

    Population density: the mid-year population divided by land area

    Gross domestic product (GDP) in US dollars

    GDP per capita in US dollars (GDP divided by mid-year population)

    Growth rate of GDP

    The proportion of rural inhabitants

    The proportion of unemployed inhabitants

    The forested proportion of the country/territory

    2020 data for each country/territory from the WDPA (https://www.protectedplanet.net/)

    The total terrestrial area of WDPA-listed protected areas

    The proportion of the terrestrial area of all IUCN-categorized protected areas (Categories I–VI) that falls within protected areas in Category I or II

    The proportion of the terrestrial area of all IUCN-categorized protected areas (Categories I–VI) that falls within protected areas in Categories I–IV

    2020 data from the Yale Center for Environmental Law and Policy Environmental Performance Index (https://epi.yale.edu/)

    Environmental Performance Index (EPI): a composite index using 32 performance indicators across 11 categories

    Ecosystem Vitality Index (EVI): an indicator of how well countries preserve, protect and enhance ecosystems and the services they provide

    Species Protection Index (SPI): an indicator of the species-level ecological representativeness of each country’s/territory’s protected area network

    Not all this information was available for all countries/territories. Most of the missing data were for small territories that account for only a very small proportion of the total area of protected areas worldwide (Supplementary Table 2c).Statistical analysisOur primary objective was to estimate the total number of all personnel engaged in managing all the world’s WDPA-listed terrestrial protected areas and the number categorized as rangers. Our raw data collection yielded full, partial or no information on total personnel and ranger numbers for each country/territory (Supplementary Table 1 shows the completeness of all the data collected). Our first task, therefore, was (1) to impute the information for unsurveyed protected areas on the basis of information from surveyed protected areas within the same countries/territories and (2) to predict those numbers for countries/territories where no information was available on overall personnel numbers and/or ranger numbers on the basis of relationships we could establish between available information and candidate predictors in other countries/territories (Supplementary Table 7). A brief description of these two approaches follows, and full details on the analysis are provided in Supplementary Information.Data imputationFor countries/territories where we had obtained information about numbers of personnel and/or rangers for only some protected areas, our strategy was to populate the unsurveyed protected areas in proportion to the densities of personnel or rangers from the surveyed protected areas of the same countries/territories. For example, for Spain we obtained evidence that there are 619 rangers responsible for protected areas covering 44,328 km2, out of a national total protected area system covering 142,573 km2. To impute the number of rangers for the remaining 98,245 km2, we used the density of rangers in the surveyed area (one ranger per 44,328/619 = 71.6 km2) and applied that to the unsurveyed area, giving a total of 1,991 rangers (619 + (98,245/71.6)). This imputation assumes that unsurveyed areas are staffed at the same density as surveyed areas, whereas in reality the relative densities are likely to vary in unknown ways within different countries/territories. To study the sensitivity of our results to the assumed proportion, we repeated our analysis using the following proportions of the observed densities: 0, 0.25, 0.50, 0.75 and 1.00. This provided a range of personnel numbers from a minimum (based on a proportion of 0) to a presumed maximum (based on a proportion of 1.00). From the data obtained, it was not possible to calculate the actual proportions, but based on the experience of the practitioners in the author team, the unsurveyed areas are highly unlikely to be staffed at higher densities than surveyed areas and, on average, are very likely to be staffed at lower densities. After all, most survey respondents were national or subnational agencies responsible for protected areas subject to stronger formal requirements for protection and management and therefore likely to have larger workforces. Unsurveyed protected areas are more likely to be managed by local entities, with fewer resources, less-stringent management obligations and therefore fewer personnel. The range of proportions we considered to populate unsurveyed areas should therefore yield predictions encompassing the actual (unknown) numbers of rangers and non-rangers with a conservative margin of error. In the main text, we have reported the results of imputation assuming a proportion of 1, which is probably the most optimistic assessment of the current workforce in protected areas within the proportions of the observed densities considered. Results using lower proportions are shown in Extended Data Fig. 2 and Supplementary Tables 4 and 5.Data predictionOur imputation approach was not possible for countries/territories where (1) zero ranger or personnel data had been obtained and (2) specific data had not been obtained that allowed imputation either for rangers or for total personnel (where only total personnel numbers or only ranger numbers had been obtained). To predict the missing information, we used two different statistical approaches: linear mixed models (LMMs)49 and a general implementation of random forests, which we term RF/ETs because it encompasses both random forests sensu stricto (RFs)50 and a variant called extremely randomized trees (ETs)51. LMMs and RFs have been extensively discussed and reviewed in the literature49,52,53. We adopted these approaches because both have proved successful in producing accurate predictions for a wide range of applications and because both are well suited to our data since they both produce predictions from a set of predictors and allow for the consideration of spatial effects54,55. Furthermore, comparing predictions generated through very different methods informs us about the robustness of our results with respect to key statistical assumptions. LMMs come from the ‘data modelling culture’56 and belong to parametric statistics; RF/ETs come from the ‘algorithmic modelling culture’ and belong to non-parametric statistics.We followed the same workflow for both statistical approaches, comprising eight steps: (1) general data preparation; (2) preparation of initial training datasets; (3) selection of predictor variables and of the method used for handling spatial autocorrelation; (4) preparation of final training datasets; (5) fine tuning; (6) final training; (7) preparation of datasets for predictions and simulations; and (8) predictions and simulations (see Supplementary Information for details).Both approaches yielded very similar results with our data. We chose to present the LMM results in the main text, but we provide and compare the results obtained by both approaches in Supplementary Information.SoftwareWe performed all the data analyses using the free open-source statistical software R version 4.157. We used the R package spaMM version 3.9.13 to implement LMMs58 and the R package ranger version 0.13.1 to implement RF/ETs59. To reformat and plot the data, we used the Tidyverse suite of packages60. Details are provided in an R package we specifically developed so that findings presented in this paper can readily be reproduced (see Code availability). Using a workstation with an AMD Ryzen Threadripper 3990 × 64-core processor and 256 GB of RAM, our complete workflow ran in ~3,000 CPU hours.Estimation of required numbers and densities of personnelTo estimate the numbers of personnel and rangers required for effective management of existing protected areas, we referred to ref. 25. This estimates that the minimum budget needed to adequately manage the existing protected area system is US$67.6 billion per year and that current annual expenditure is US$24.3 billion. From these figures, we can calculate that resources invested in the current global system of protected areas are approximately 36% of what is required. We consulted data from https://ourworldindata.org to determine that the proportion of global public expenditure on employee compensation has remained between 21.01% and 23.33% in the years from 2006 to 2019. We obtained these figures from the ‘Government Spending’ section of the site, consulting the chart ‘Share of employee compensation in public spending, 2002 to 2019’ and selecting data for ‘World’. On the basis of this broadly constant proportion and the assumption that total employee compensation is an indicator of total employee numbers, we inferred that current numbers of protected area employees are also around 36% of what is required. We therefore multiplied our estimations of personnel and ranger numbers by 1/0.36 and recalculated the densities on this basis (current requirement = 1/0.36 × current estimate).To estimate staffing requirements for 30% global coverage of protected areas—the global target intended to be reached by 2030—we used the mean personnel and ranger densities calculated as being required at present to ‘populate’ a global area of terrestrial protected areas if increased from the percentage at the time of our study (15.7%) to 30% (current requirement × (0.300/0.157)).Economic calculationsWe based our calculations on published data from 202025, which estimate that expanding the protected areas to 30% would generate higher overall output (revenues) than non-expansion (an extra US$64–454 billion per year by 2050). This figure is only an indicative, partial estimate, generated for the purposes of comparison and to illustrate the substantial return on investment that protected area staff investments imply. Using these figures and our estimates of personnel requirements to ensure effective management of 30% coverage, we calculated the range of sums that each additional protected area staff member has the potential to generate (Supplementary Table 8). For clarity, we rounded these figures to the nearest hundred US dollars in the main text.Our estimates of the gross value added per worker in forestry and agriculture (sectors responsible for similar proportions of the world as protected areas) are included to provide a point of comparison for the figures showing the economic benefit generated per protected area personnel member (see the preceding). The data for the gross annual value of world agricultural production (US$3,550,231,736,000) and the number of workers employed in agriculture (343,527,711) come from the Food and Agriculture Organization of the United Nations30, providing an average gross value of annual agricultural production per worker of US$10,335. We adjusted these 2018 data to 2020 price levels using a deflator based on the US consumer price index (CPI) from the World Economic Outlook database61 (Supplementary Table 9). This ensures that all the economic value data we present are directly comparable for protected area, agricultural and forestry workers. We calculated the gross value of forest production per worker on the basis of direct contribution of forestry of more than US$539 billion to world GDP in 201162 and total forest-sector employment of 11.881 million full-time-equivalent jobs in 201032. These were the most up-to-date global estimates we could locate from credible sources that presented comparable estimates of forest-sector employment and contribution to GDP. This gives an average gross value of forest production per worker of US$45,367 per year. We used the same method as for agriculture to bring these figures to 2020 price levels (Supplementary Table 9). These figures are rounded to the nearest hundred US dollars in the main text. More

  • in

    Chill coma recovery of Ceratitis capitata adults across the Northern Hemisphere

    De Meyer, M., Robertson, M., Peterson, A. & Mansell, M. Ecological niches and potential geographical distributions of Mediterranean fruit fly (Ceratitis capitata) and Natal fruit fly (Ceratitis rosa). J. Biogeogr. 35, 270–281 (2008).
    Google Scholar 
    Nguyen, A. D. et al. Trade-offs in cold resistance at the northern range edge of the common woodland ant Aphaenogaster picea (Formicidae). Am. Nat. 194, E151–E163 (2019).Article 
    PubMed 

    Google Scholar 
    Gilioli, G. et al. Non-linear physiological responses to climate change: the case of Ceratitis capitata distribution and abundance in Europe. Biol. Invasions 24, 261–279 (2022).Article 

    Google Scholar 
    Lancaster, L. T., Dudaniec, R. Y., Hansson, B. & Svensson, E. I. Latitudinal shift in thermal niche breadth results from thermal release during a climate-mediated range expansion. J. Biogeogr. 42, 1953–1963 (2015).Article 

    Google Scholar 
    Hallas, R., Schiffer, M. & Hoffmann, A. A. Clinal variation in Drosophila serrata for stress resistance and body size. Genet. Res. 79, 141–148 (2002).Article 
    PubMed 

    Google Scholar 
    Hoffmann, A. A., Anderson, A. & Hallas, R. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol. Lett. 5, 614–618 (2002).Article 

    Google Scholar 
    Ragland, G. & Kingsolver, J. Influence of seasonal timing on thermal ecology and thermal reaction norm evolution in Wyeomyia smithii. J. Evol. Biol. 20, 2144–2153 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    MacMillan, H. A. & Sinclair, B. J. Mechanisms underlying insect chill-coma. J. Insect Physiol. 57, 12–20 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Neilson, E. W. et al. There’sa storm a-coming: Ecological resilience and resistance to extreme weather events. Ecol. Evol. 10, 12147–12156 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Overgaard, J., Hoffmann, A. A. & Kristensen, T. N. Assessing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. J. Therm. Biol. 36, 409–416 (2011).Article 

    Google Scholar 
    Maysov, A. Chill coma temperatures appear similar along a latitudinal gradient, in contrast to divergent chill coma recovery times, in two widespread ant species. J. Exp. Biol. 217, 2650–2658 (2014).Article 
    PubMed 

    Google Scholar 
    David, R. J. et al. Cold stress tolerance in Drosophila: analysis of chill coma recovery in D. melanogaster. J. therm. biol. 23, 291–299 (1998).Article 

    Google Scholar 
    Overgaard, J. & MacMillan, H. A. The integrative physiology of insect chill tolerance. Annu. Rev. Physiol. 79, 187–208 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Andersen, M. K. & Overgaard, J. The central nervous system and muscular system play different roles for chill coma onset and recovery in insects. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 233, 10–16 (2019).Article 
    CAS 

    Google Scholar 
    Macdonald, S., Rako, L., Batterham, P. & Hoffmann, A. Dissecting chill coma recovery as a measure of cold resistance: evidence for a biphasic response in Drosophila melanogaster. J. Insect Physiol. 50, 695–700 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gibert, P., Moreteau, B., Pétavy, G., Karan, D. & David, J. R. Chill-coma tolerance, a major climatic adaptation among Drosophila species. Evolution 55, 1063–1068 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ayrinhac, A. et al. Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability. Funct. Ecol. 18, 700–706 (2004).Article 

    Google Scholar 
    Castañeda, L. E., Lardies, M. A. & Bozinovic, F. Interpopulational variation in recovery time from chill coma along a geographic gradient: a study in the common woodlouse, Porcellio laevis. J. Insect Physiol. 51, 1346–1351 (2005).Article 
    PubMed 

    Google Scholar 
    Tonione, M. A., Cho, S. M., Richmond, G., Irian, C. & Tsutsui, N. D. Intraspecific variation in thermal acclimation and tolerance between populations of the winter ant Prenolepis imparis. Ecol. Evol. 10, 4749–4761 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karl, I., Janowitz, S. A. & Fischer, K. Altitudinal life-history variation and thermal adaptation in the copper butterfly Lycaena tityrus. Oikos 117, 778–788 (2008).Article 

    Google Scholar 
    Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).Article 
    PubMed 

    Google Scholar 
    Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. In Proceedings of the Royal Society of London. Series B: Biological Sciences 267, 739–745 (2000).Poikela, N., Tyukmaeva, V., Hoikkala, A. & Kankare, M. Multiple paths to cold tolerance: the role of environmental cues, morphological traits and the circadian clock gene vrille. BMC ecol. Evol. 21, 1–20 (2021).
    Google Scholar 
    Andersen, J. L. et al. How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct. Ecol. 29, 55–65 (2015).Article 

    Google Scholar 
    Papadopoulos, N., Katsoyannos, B., Carey, J. & Kouloussis, N. Seasonal and annual occurrence of the Mediterranean fruit fly (Diptera: Tephritidae) in northern Greece. Ann. Entomol. Soc. Am. 94, 41–50 (2001).Article 

    Google Scholar 
    Malacrida, A. et al. Globalization and fruitfly invasion and expansion: the medfly paradigm. Genetica 131, 1–9 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Egartner, A., Lethmayer, C., Gottsberger, R. A. & Blümel, S. In Joint Meeting of the IOBC-WPRS Working Groups “Pheromones and other semiochemicals in integrated production” & “Integrated Protection of Fruit Crops” at. 143–152.Nyamukondiwa, C., Kleynhans, E. & Terblanche, J. S. Phenotypic plasticity of thermal tolerance contributes to the invasion potential of mediterranean fruit flies (Ceratitis capitata). Ecol. Entomol. 35, 565–575 (2010).Article 

    Google Scholar 
    Weldon, C. W., Terblanche, J. S. & Chown, S. L. Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J. Therm. Biol. 36, 479–485 (2011).Article 

    Google Scholar 
    Pujol-Lereis, L. M., Rabossi, A. & Quesada-Allué, L. A. Analysis of survival, gene expression and behavior following chill-coma in the medfly Ceratitis capitata: effects of population heterogeneity and age. J. Insect Physiol. 71, 156–163 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pujol-Lereis, L. M., Fagali, N. S., Rabossi, A., Catalá, Á. & Quesada-Allué, L. A. Chill-coma recovery time, age and sex determine lipid profiles in Ceratitis capitata tissues. J. Insect Physiol. 87, 53–62 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Weldon, C. W., Nyamukondiwa, C., Karsten, M., Chown, S. L. & Terblanche, J. S. Geographic variation and plasticity in climate stress resistance among southern African populations of Ceratitis capitata (Wiedemann)(Diptera: Tephritidae). Sci. Rep. 8, 1–13 (2018).Article 
    CAS 

    Google Scholar 
    Nyamukondiwa, C., Weldon, C. W., Chown, S. L., le Roux, P. C. & Terblanche, J. S. Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests. J. Insect Physiol. 59, 1199–1211 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mitchell, K. A., Boardman, L., Clusella-Trullas, S. & Terblanche, J. S. Effects of nutrient and water restriction on thermal tolerance: A test of mechanisms and hypotheses. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 212, 15–23 (2017).Article 
    CAS 

    Google Scholar 
    Hoffmann, A. A. & Ross, P. A. Rates and patterns of laboratory adaptation in (mostly) insects. J. Econ. Entomol. 111, 501–509 (2018).Article 
    PubMed 

    Google Scholar 
    Popa-Báez, Á. -D. et al. Climate stress resistance in male Queensland fruit fly varies among populations of diverse geographic origins and changes during domestication. BMC Genet. 21, 1–19 (2020).Article 

    Google Scholar 
    Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 1–12 (2018).Article 

    Google Scholar 
    Kozak, K. H., Graham, C. H. & Wiens, J. J. Integrating GIS-based environmental data into evolutionary biology. Trends Ecol. Evol. 23, 141–148 (2008).Article 
    PubMed 

    Google Scholar 
    Oyen, K. J. et al. Body mass and sex, not local climate, drive differences in chill coma recovery times in common garden reared bumble bees. J. Comp. Physiol. B. 191, 843–854 (2021).Article 
    PubMed 

    Google Scholar 
    Angert, A. L., Bontrager, M. G. & Ågren, J. What do we really know about adaptation at range edges?. Annu. Rev. Ecol. Evol. Syst. 51, 341–361 (2020).Article 

    Google Scholar 
    Terblanche, J. S. & Hoffmann, A. A. Validating measurements of acclimation for climate change adaptation. Curr. Opin. insect sci. 41, 7–16 (2020).Article 
    PubMed 

    Google Scholar 
    Kourti, A. Patterns of variation within and between Greek populations of Ceratitis capitata suggest extensive gene flow and latitudinal clines. J. Econ. Entomol. 97, 1186–1190 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hangartner, S., Lasne, C., Sgrò, C. M., Connallon, T. & Monro, K. Genetic covariances promote climatic adaptation in Australian Drosophila. Evolution 74, 326–337 (2020).Article 
    PubMed 

    Google Scholar 
    Bontrager, M. & Angert, A. L. Gene flow improves fitness at a range edge under climate change. Evol. Let. 3, 55–68 (2019).Article 

    Google Scholar 
    Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 1–8 (2018).
    Google Scholar 
    Schwartz, M. D., Ahas, R. & Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 12, 343–351 (2006).Article 

    Google Scholar 
    Ma, Q., Huang, J. G., Hänninen, H. & Berninger, F. Divergent trends in the risk of spring frost damage to trees in Europe with recent warming. Glob. Change Biol. 25, 351–360 (2019).Article 

    Google Scholar 
    Unterberger, C. et al. Spring frost risk for regional apple production under a warmer climate. PLoS ONE 13, e0200201 (2018).Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 
    Manrakhan, A., Daneel, J.-H., Stephen, P. R. & Hattingh, V. Cold Tolerance of Immature Stages of Ceratitis capitata and Bactrocera dorsalis (Diptera: Tephritidae). J. Econ. Entomol. 115(2), 482–492 (2022).Article 
    PubMed 

    Google Scholar 
    Papadopoulos, N. T., Carey, J. R., Katsoyannos, B. I. & Kouloussis, N. A. Overwintering of the mediterranean fruit fly (Diptera: Tephritidae) in Northern Greece. Ann. Entomol. Soc. Am. 89, 526–534 (1996).Article 

    Google Scholar 
    Papadopoulos, N. T., Katsoyannos, B. I. & Carey, J. R. Temporal changes in the composition of the overwintering larval population of the Mediterranean fruit fly (Diptera: Tephritidae) in Northern Greece. Ann. Entomol. Soc. Am. 91, 430–434 (1998).Article 

    Google Scholar 
    Katsoyannos, B. I., Kouloussis, N. A. & Carey, J. R. Seasonal and annual occurrence of Mediterranean fruit flies (Diptera: Tephritidae) on Chios Island, Greece: Differences between two neighboring citrus orchards. Ann. Entomol. Soc. Am. 91, 43–51 (1998).Article 

    Google Scholar 
    Mavrikakis, P. G., Economopoulos, A. P. & Carey, J. R. Continuous winter reproduction and growth of the mediterranean fruit fly (Diptera: Tephritidae) in Heraklion, crete Southern Greece. Environ. Entomol. 29, 1180–1187 (2000).Article 

    Google Scholar 
    Israely, N., Ziv, Y. & Oman, S. D. Spatiotemporal distribution patterns of Mediterranean fruit fly (Diptera: Tephritidae) in the central region of Israel. Ann. Entomol. Soc. Am. 98, 77–84 (2005).Article 

    Google Scholar 
    Bahrndorff, S., Lauritzen, J. M., Sørensen, M. H., Noer, N. K. & Kristensen, T. N. Responses of terrestrial polar arthropods to high and increasing temperatures. J. Exp. Biol. 224, jeb230797 (2021).Article 
    PubMed 

    Google Scholar 
    Sinclair, B. J. & Roberts, S. P. Acclimation, shock and hardening in the cold. J. Therm. Biol. 30, 557–562 (2005).Article 

    Google Scholar 
    Bahrndorff, S., Gertsen, S., Pertoldi, C. & Kristensen, T. N. Investigating thermal acclimation effects before and after a cold shock in Drosophila melanogaster using behavioural assays. Biol. J. Lin. Soc. 117, 241–251 (2016).Article 

    Google Scholar 
    Sarmad, M., Ishfaq, A., Arif, H. & Zaka, S. M. Effect of short-term cold temperature stress on development, survival and reproduction of Dysdercus koenigii (Hemiptera: Pyrrhocoridae). Cryobiology 92, 47–52 (2020).Article 
    PubMed 

    Google Scholar 
    Steyn, V. M., Mitchell, K. A., Nyamukondiwa, C. & Terblanche, J. S. Understanding costs and benefits of thermal plasticity for pest management: Insights from the integration of laboratory, semi-field and field assessments of Ceratitis capitata (Diptera: Tephritidae). Bull. Entomol. Res., 1–11 (2022).Davis, H. E., Cheslock, A. & MacMillan, H. A. Chill coma onset and recovery fail to reveal true variation in thermal performance among populations of Drosophila melanogaster. Sci. Rep. 11, 1–10 (2021).Article 

    Google Scholar 
    Noh, S., Everman, E. R., Berger, C. M. & Morgan, T. J. Seasonal variation in basal and plastic cold tolerance: Adaptation is influenced by both long-and short-term phenotypic plasticity. Ecol. Evol. 7, 5248–5257 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bruins, H. J. Ancient desert agriculture in the Negev and climate-zone boundary changes during average, wet and drought years. J. Arid Environ. 86, 28–42 (2012).Article 

    Google Scholar 
    Hoffmann, A. A., Sørensen, J. G. & Loeschcke, V. Adaptation of Drosophila to temperature extremes: Bringing together quantitative and molecular approaches. J. Therm. Biol. 28, 175–216 (2003).Article 

    Google Scholar 
    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).Article 

    Google Scholar 
    Nyamukondiwa, C. & Terblanche, J. S. Thermal tolerance in adult mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): Effects of age, gender and feeding status. J. Therm. Biol. 34, 406–414 (2009).Article 

    Google Scholar 
    Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Mazerolle, M. J. Model selection and multimodel inference using the AICcmodavg package (2020).Therneau, T. A Package for Survival Analysis in R. R Package Version 3.2-13.(2021. (2021).Kassambara, A., Kosinski, M., Biecek, P. & Fabian, S. Survminer: Drawing Survival Curves using’ggplot2′. R package version 0.4. 9. 2021. (2021).Lenth, R. V. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.2. (2022). More

  • in

    Citizen science plant observations encode global trait patterns

    Sakschewski, B. et al. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob. Change Biol. 21, 2711–2725 (2015).Article 

    Google Scholar 
    Berzaghi, F. et al. Towards a new generation of trait-flexible vegetation models. Trends Ecol. Evol. 35, 191–205 (2020).Article 
    PubMed 

    Google Scholar 
    Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).Article 
    PubMed 

    Google Scholar 
    Joswig, J. S. et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 6, 36–50 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).PubMed Central 

    Google Scholar 
    Moreno Martínez, A. et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens. Environ. 218, 69–88 (2018).Article 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. New handbook for standardized measurment of plant functional traits worldwide. Aust. J. Bot. 23, 167–234 (2013).Article 

    Google Scholar 
    Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).Article 

    Google Scholar 
    Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).Article 
    PubMed 

    Google Scholar 
    Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boonman, C. C. et al. Assessing the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. Biogeogr. 29, 1034–1051 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Madani, N. et al. Future global productivity will be affected by plant trait response to climate. Sci. Rep. 8, 2870 (2018).Vallicrosa, H. et al. Global distribution and drivers of forest biome foliar nitrogen to phosphorus ratios (N:P). Glob. Ecol. Biogeogr. 31, 861–871 (2022).Article 

    Google Scholar 
    Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633 (2021).Article 

    Google Scholar 
    Schiller, C. et al. Deep learning and citizen science enable automated plant trait predictions from photographs. Sci. Rep. 11, 16395 (2021).Aguirre-Gutiérrez, J. et al. Pantropical modelling of canopy functional traits using sentinel-2 remote sensing data. Remote Sens. Environ. 252, 112–122 (2021).Article 

    Google Scholar 
    Homolova, L. et al. Review of optical-based remote sensing for plant trait mapping. Ecol. Complex. 15, 1–16 (2013).Article 

    Google Scholar 
    Van Cleemput, E. et al. The functional characterization of grass-and-shrubland ecosystems using hyperspectral remote sensing: trends, accuracy and moderating variables. Remote Sens. Environ. 209, 747–763 (2018).Article 

    Google Scholar 
    Kattenborn, T., Fassnacht, F. E. & Schmidtlein, S. Differentiating plant functional types using reflectance: which traits make the difference? Remote Sens. Ecol. Conserv. 5, 5–19 (2019).Article 

    Google Scholar 
    Hauser, L. T. et al. Explaining discrepancies between spectral and in-situ plant diversity in multispectral satellite earth observation. Remote Sens. Environ. 265, 112684 (2021).Article 

    Google Scholar 
    Wäldchen, J. & Mäder, P. Plant species identification using computer vision techniques: a systematic literature review. Arch. Comput. Methods Eng. 25, 507–543 (2018).Article 
    PubMed 

    Google Scholar 
    Jones, H. G. What plant is that? Tests of automated image recognition apps for plant identification on plants from the British flora. AoB Plants 12, plaa052 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hampton, S. E. et al. Big data and the future of ecology. Front. Ecol. Environ. 11, 156–162 (2013).Article 

    Google Scholar 
    WÜest, R. O. et al. Macroecology in the age of big data—where to go from here? J. Biogeogr. 47, 1–12 (2020).Article 

    Google Scholar 
    Mäder, P. et al. The Flora Incognita app—interactive plant species identification. Methods Ecol. Evol. 12, 1335–1342 (2021).Article 

    Google Scholar 
    Di Cecco, G. J. et al. Observing the observers: how participants contribute data to iNaturalist and implications for biodiversity science. BioScience 71, 1179–1188 (2021).Article 

    Google Scholar 
    Mahecha, M. D. et al. Crowd-sourced plant occurrence data provide a reliable description of macroecological gradients. Ecography 44, 1131–1142 (2021).Article 

    Google Scholar 
    Botella, C. et al. Jointly estimating spatial sampling effort and habitat suitability for multiple species from opportunistic presence-only data. Methods Ecol. Evol. 12, 933–945 (2021).Article 

    Google Scholar 
    iNaturalist Research-Grade Observations (GBIF, accessed 5 January 2022); https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7Callaghan, C. T. et al. Three frontiers for the future of biodiversity research using citizen science data. BioScience 71, 55–63 (2020).
    Google Scholar 
    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: challenges and benefits. Ann. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).Article 

    Google Scholar 
    Kosmala, M. et al. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560 (2016).Article 

    Google Scholar 
    Boakes, E. H. et al. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour. Sci. Rep. 6, 33051 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bowler, D.E. et al. Temporal trends in the spatial bias of species occurrence records. Ecography 2022, e06219 (2022). https://doi.org/10.1111/ecog.06219GBIF Occurrence Download (GBIF, 4 January 2022); https://doi.org/10.15468/dl.34tjreBruelheide, H. et al. sPlot—a new tool for global vegetation analyses. journal of vegetation science. J. Veg. Sci. 30, 161–186 (2019).Article 

    Google Scholar 
    Sabatini, F. et al. sPlotOpen—an environmentally balanced, open access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).Article 

    Google Scholar 
    Whittaker, R.H. et al. Communities and Ecosystems (Macmillan/Collier Macmillan, 1970).Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    Joswig, J., Wirth, C. & Schuman, M. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 6, 36–50 (2022).Article 
    PubMed 

    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).Article 
    PubMed 

    Google Scholar 
    Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, H. & Pebesma, E. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Methods Ecol. Evol. 12, 1620–1633 (2021).Article 

    Google Scholar 
    Schrodt, F. et al. Bhpmf—a hierarchical Bayesian approach to gap filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).Article 

    Google Scholar 
    Kuppler, J. et al. Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness. Glob. Ecol. Biogeogr. 29, 992–1007 (2020).Article 

    Google Scholar 
    Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).Article 
    PubMed 

    Google Scholar 
    Taubert, F. et al. Confronting an individual-based simulation model with empirical community patterns of grasslands. PLoS ONE 15, e0236546 (2020).Roger, E. & Klistorner, S. (2016) Bioblitzes help science communicators engage local communities in environmental research. J. Sci. Commun. https://doi.org/10.22323/2.15030206 (2016).Legendre, P. & Legendre, L. Numerical Ecology 3rd edn (Elsevier, 2012).Warton, D. I. et al. Smatr 3—an R package for estimation and inference about allometric lines. Methods Ecol Evol 3, 257–259 (2012).Article 

    Google Scholar 
    Wolf, S. et al. iNaturalist_traits: iNaturalist trait maps version 1 (January 5, 2022) Zenodo https://doi.org/10.5281/zenodo.6671891 (2022). More

  • in

    Statistical power from the people

    Wolf, S. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01904-x (2022).Article 

    Google Scholar 
    Kattge, J. et al. Glob. Change Biol. 26, 119–188 (2020).Article 

    Google Scholar 
    Sabatini, F. M. et al. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).Article 

    Google Scholar 
    Łopucki, R., Kiersztyn, A., Pitucha, G. & Kitowski, I. Ecol. Modell. 468, 109964 (2022).Article 

    Google Scholar 
    Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Front. Ecol. Environ. 14, 551–560 (2016).Article 

    Google Scholar 
    White, C. R. et al. Funct. Ecol. 35, 1572–1578 (2021).Article 

    Google Scholar 
    Xirocostas, Z. A., Debono, S. A., Slavich, E. & Moles, A. T. Methods Ecol. Evol. 13, 596–602 (2022).Article 

    Google Scholar 
    Callaghan, C. T. et al. Bioscience 71, 55–63 (2020).
    Google Scholar  More