More stories

  • in

    Taxonomic response of bacterial and fungal populations to biofertilizers applied to soil or substrate in greenhouse-grown cucumber

    All the results were reported relative to the control, unless specifically stated to the contrary or for clarity.Growth of cucumber plants in response to different biofertilizersSoilThere was no significant difference in cucumber growth before microbial fertilizer was applied. However, some microbial fertilizers significantly increased cucumber height and stem diameter when they were applied within 4 weeks from when the seedlings were planted (Fig. 1a,b,e,f). In the second week, SHZ and SMF increased plant height by 11.2 and 9.5%, respectively. In the third week, S267, SBS, SBH, SM and SHZ increased plant height by 12.0, 13.8, 15.0, 20.5 and 26.9%, respectively (Fig. 1a). In the fourth and fifth weeks, some treatments significantly increased cucumber height. In the second and third weeks, S267 significantly increased stem diameter by 21.2 and 16.8% (Fig. 1b).Figure 1Effect of different biofertilizer treatments on the growth of cucumber seedlings produced in soil or substrate in a greenhouse. S267 = Trichoderma Strain 267 added to soil; SBH = Bacillus subtilis and T. harzianum biofertilizers added to soil; SBS = B. subtilis biofertilizer added to the soil; SM = Compound biofertilizer added to soil; SHZ = T. harzianum biofertilizer added to soil; SCK = Untreated soil. US267 = T.267 biofertilizer added to substrate; USBH = B. subtilis and T. harzianum biofertilizers added to substrate; USBS = B. subtilis biofertilizer added to substrate; USM = Compound biofertilizer added to substrate; USHZ = T. harzianum biofertilizer added to substrate; USCK = Untreated substrate.Full size imageOver the subsequent 5 weeks, some microbial fertilizer treatments decreased cucumber height and stem diameter (Fig. 1g,h).SubstrateThere were no significant differences in cucumber growth before microbial fertilizer microbial fertilizer was applied (Fig. 1c,d,g,h). However, within 4 weeks of applying the microbial fertilizer, each biofertilizer treatment applied significantly increased cucumber height (Fig. 1c). US267 and USHZ significantly increased cucumber height by 39.8–75.4% and 56.1–86.1%, respectively. US267, USM and USHZ significantly increased the stem diameter by 76.8–108.9%, 71.1–97.6% and 80.4–122.4%, respectively (Fig. 1d).Over the subsequent 5 weeks, US267, USM and USHZ treatments continued to significantly increase cucumber height and stem diameter (Fig. 1g,h).Changes in the taxonomic composition of soil-borne fungal pathogensSoilBiofertilizers application significantly reduced the taxonomic composition of soil-borne fungal pathogens at different times during the cucumber growth period (Tables 1 and 2). Fusarium spp. were significantly reduced (T, 63.8% reduction, P  More

  • in

    Shedding light on declines in diversity of grassland plants

    Bobbink, R. et al. Ecol. Appl. 20, 30–59 (2010).Article 
    PubMed 

    Google Scholar 
    Olff, H. & Ritchie, M. E. Trends Ecol. Evol. 13, 261–265 (1998).Article 
    PubMed 

    Google Scholar 
    DeMalach, N., Zaady, E. & Kadmon, R. Ecol. Lett. 20, 60–69 (2017).Article 
    PubMed 

    Google Scholar 
    Borer, E. T. et al. Nature 508, 517–520 (2014).Article 
    PubMed 

    Google Scholar 
    Harpole, W. S. et al. Nature 537, 93–96 (2016).Article 
    PubMed 

    Google Scholar 
    Eskelinen, A., Harpole, W. S., Jessen, M.-T., Virtanen, R. & Hautier, Y. Nature https://doi.org/10.1038/s41586-022-05383-9 (2022).Article 

    Google Scholar 
    Koerner, S. E. et al. Nature Ecol. Evol. 2, 1925–1932 (2018).Article 
    PubMed 

    Google Scholar 
    Chesson, P. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Coley, P. D., Bryant, J. P. & Chapin, F. S. Science 230, 895–899 (1985).Article 
    PubMed 

    Google Scholar 
    Hautier, Y., Niklaus, P. A. & Hector, A. Science 324, 636–638 (2009).Article 
    PubMed 

    Google Scholar 
    Allan, E. & Crawley, M. J. Ecol. Lett. 14, 1246–1253 (2011).Article 
    PubMed 

    Google Scholar  More

  • in

    Light competition drives herbivore and nutrient effects on plant diversity

    Study site and future climate treatmentOur study site is located at the Bad Lauchstädt Field Research Station, Bad Lauchstädt, Germany (51° 22060 N, 11° 50060 E), which belongs to the Helmholtz Centre for Environmental Research–UFZ. Long-term mean annual precipitation in the area is 489 mm and the mean annual temperature is 8.9 °C (ref. 32). During 2018 and 2019, Europe experienced a record-setting drought that was especially severe in 2018 (refs. 33,34); the mean annual precipitation at our study site in 2018 and 2019 was 254 mm and 353 mm, respectively, whereas 2017 was a more normal year, with a mean annual precipitation of 403 mm. Mean annual temperatures were above average: 2017, 10.5 °C; 2018, 10.8 °C; 2019, 11.2 °C (data from the weather station at the Bad Lauchstädt field station). The soils in the study area are fertile Haplic Chernozem type32,35.Our eDiValo experiment was conducted in the GCEF, which was designed to investigate climate change effects under different land-use scenarios32. We used 10 ‘extensively’ used pastures of the GCEF in our experiment; that is, 384-m2 (16 × 24 m) areas of grassland (hereafter called ‘pastures’) that were grazed by a flock of 20 sheep 2–3 times each year. Grazing was implemented as short-time high-intensity grazing events, each lasting 24 h (ref. 32). This type of high-intensity but short-term grazing is considered better in maintaining species richness as it gives plants more time to recover between grazing events36. It is also a recommended management type for nature conservation areas in Germany37. Vegetation in the pastures was species-rich grassland vegetation that is typical of drier regions of central Germany32,38. The whole GCEF was fenced to exclude native large mammalian herbivores (for example, deer); however, European hare (Lepus europaeus), wood mice (Apodemus sylvaticus) and voles (Microtus arvalis) are common at the site.Our experimental design was originally intended to test the dependence of light competition on nutrient and herbivory under current and future climatic scenarios. Although we included both climate treatments in our data, climate was never significant for richness and Shannon diversity, either alone or in interaction with other factors, and our focus was therefore on the other treatments. Five of the above random pastures received future climatic treatment which was based on different dynamic regional climate models for Germany, all predicting an increased mean temperature by approximately 2 °C year-round, strongly decreased summer precipitation and slightly increased spring and autumn precipitation (https://www.regionaler-klimaatlas.de/) (ref. 32). Passive night-time (after sunset and before sunrise) warming through the use of roller blinds attached to the GCEF roof and eastern and western wall structures was used to increase the air temperature. In each spring (1 March–31 May) and autumn (1 September–30 November), future climate plots received 110% of the ambient rainfall and in the summer (1 June–31 August), they received 80% of the ambient rainfall. The precipitation treatment was adjusted weekly and compensated for a possible night-time reduction in rainfall due to temperature treatment. A detailed description of the future climate treatment is provided in a previous report32.Fertilization, herbivore exclusion and light additionWe first tested whether adding light can offset the negative effect of fertilization on plant diversity. In May 2017, we established a full-factorial experiment of fertilization and light addition. Within each 10 pastures (5 in ambient climatic conditions, 5 in future climatic conditions), we established 4 plots of 1.4 × 1.4 m, separated by a 1-m buffer zone (hereafter called ‘blocks’), in total 40 plots and 10 blocks. At the time the experiment was established, vegetation in the whole experimental area (that is, in a block of 4 plots and the surrounding 1-m area) was trimmed to a height of 5 cm to make conditions uniform and the whole area was temporarily fenced to let the experiment establish and fertilization effects develop. The temporary fence was removed in August when the herbivore exclusion treatment was started. Therefore, there was no grazing by sheep in the experimental plots in the summer of 2017. Two randomly chosen plots received fertilizer treatment and two were controls. For the former (fertilizer-treatment plots), slow-release granular NPK fertilizer (a mixture of Haifa Multicote 2 M 40-0-0 40% N; Triple Super Phosphate (TSP) 45% P205; and potassium sulfate fertilizer 50% K2O, 45% SO3) was added twice per growing season, in a total of 10 g N, 10 g P and 10 g K per m² (see ref. 3 for a similar protocol that is used in grasslands worldwide). In 2017, the first fertilization was done at the beginning of June right after establishing the experiment and the second fertilization was done at the beginning of July. In the subsequent years, the first fertilization was done at the beginning of the growing season (late March–April) and the second fertilization was done in June. In 2019, two previously unfertilized plots were accidentally fertilized and were thereafter treated as fertilized plots. To manipulate light, 1.4 × 1.4-m plots were further divided into two subplots, 0.7 m × 1.4 m each, and one of these was randomly assigned to the light-addition treatment, resulting in 80 subplots (Fig. 1). We installed two 120-cm-long and 3.5-cm-wide recently developed LED lamps (C65, Valoya) parallel to each other and at a 28-cm distance from each other to each light-addition subplot. To increase light for the small understory plants that are the most likely to suffer from competition for light, we installed the lamps 10 cm above the smallest plants. The lamps were gradually uplifted over the course of the growing season to follow the growth of the smallest plants. As our light-addition treatment was intended to mimic natural sunlight (that is, making a gap in a dense vegetation and allowing the sunshine in), we chose the spectrum of the lamps to include all wavelengths of sunlight, including small amounts of ultraviolet and infrared. Each lamp added roughly 350–400 µmol and did not alter the air or aboveground soil surface temperature (Fig. 1b), which is an improvement on previous studies12. Each year, we added light during the active growing season: the lamps were switched on early in the spring (March–April), when temperatures were clearly above zero, and switched off and removed when temperatures dropped close to zero in November–December and aboveground plant parts had died and formed litter. Each day, the lamps were set to switch on two hours after sunrise, and to switch off two hours before sunset, and when the temperature exceeded 28 °C to prevent overheating. We did not install unpowered lamps to unlighted plots because our modern, narrow LED lamps caused minimal disturbance (see below) and no heating (Fig. 1b), and because unpowered lamps would have added an artefact in that they create shade that does not occur when the lamps are on in lighted plots.At the end of August 2017, after running the fertilization–light-addition experiment for one growing season, we expanded the experiment by implementing the herbivore exclusion treatment in a full-factorial combination with the other treatments. Two of the previously established 1.4 m × 1.4-m plots, one with and one without the fertilization treatment, were randomly allotted to the herbivore (sheep) exclusion treatment and fenced with rectangular metal fences of 1.8 m × 1.8 m, 82 cm height and 10 cm mesh size. At the same time, the temporary fence established in May 2017 was removed from around the whole experimental area, allowing the grazing of sheep in unfenced plots. The fences did not exclude mice, voles and hares. For the time of each grazing event, lamps in grazed subplots were removed and switched off in the ungrazed subplots. Uplifting the lamps from grazed plots did not cause disturbance because vegetation in grazed plots was always short and did not reach above the lamps. Inside exclosures, lamps were always kept in place during the growing season, and plants could freely grow around and above them.Plant community and trait samplingIn July 2017, we established 50 cm × 50-cm permanent quadrats in every subplot for plant community sampling. We visually estimated the per cent areal cover for all species occurring in the quadrats, and litter cover, from the beginning of June to mid-June 2019, when the vegetation was at its peak biomass. The 2017 sampling happened later, in mid-July, because vegetation in all plots and surrounding areas was trimmed to a height of 5 cm at the time of the establishment of the experiment at the end of May, and it took later for vegetation to reach its peak biomass. In 2018, the effects of drought were devastating, and most plants had senesced or died before the planned sampling date; we therefore omitted the year 2018. At the beginning of each growing season—that is, when the lamps were installed and switched on—there was very little live biomass in the plots, and the maximum height of existing plants was approximately 5 cm (in all plots). During the peak biomass the maximum plant height was up to approximately 1 m; however, it varied greatly between the treatments and was especially low in grazed plots. All vegetation surveys were done by the same trained and experienced person with a minimum estimate threshold of 0.1%. We used plant cover data to calculate species richness and Shannon diversity.In May–June 2020, we measured plant height (centimetres), SLA (leaf area in square millimetres per milligram of dry mass), foliar C:N (based on the per cent C and N in plant leaves) and LWC (leaf water content as 1,000 − LDMC (the ratio of leaf dry mass to saturated fresh mass), expressed as milligrams per gram39) for most species occurring in the experimental plots, and complemented the trait data from the TRY Plant Trait Database40,41,42 (v.5.0; https://www.try-db.org/TryWeb/Home.php) and for one species one trait value from another source9. The trait data were collected from seven to ten individuals per species from the study site or close areas; the collection and handling followed standard protocols39. We chose these traits because they are widely documented to be associated with responsiveness to soil nutrients, herbivory and light9,26,27,43,44,45,46. We used all traits as, although they partially reflect similar ecological adaptations (for example, leaf economics spectrum43), they could also potentially reflect independent and distinctive processes, and differently mediate the responses of species to our treatments. For example, SLA and LWC in our dataset correlated weakly (r2 = 0.16), but were to a greater extent uncorrelated (Extended Data Table 6), and could function differently, for example, in light capture and drought tolerance26,39. In 2017, our trait data covered on average 97.7–98.6% of the total cover in the plots, the value slightly differing depending on the trait as we did not have all traits for all species. Our own trait collections covered on average 96.6–97.6% and TRY data covered on average 0.9–2% of the total cover. In 2019, the whole trait data covered on average 99.5% of the total cover in the plots, again slightly depending on the trait. Our own trait collections covered on average 94.2–96.5% and TRY data covered on average 2.7–5.3% of the total cover.Abiotic environmental measurementsWe measured several soil and other environmental properties from the experimental plots. Light availability (photosynthetically active radiation; PAR) in unlighted and lighted (under lamps) subplots was measured using LI-190R and LI-250A meters (LI-COR), approximately 7–10 cm under the lamps and 15–20 cm above ground level. We measured light availability from the same distance to the ground in unlighted plots. Measurements of light availability were done in mid-July 2020 on three consecutive cloudless days around noon. Note that in grazed plots, light levels between lighted and unlighted plots are more similar than inside exclosures (Fig. 1), because herbivores keep the vegetation short, and natural sunlight can therefore reach under the lamps where the light measurements were taken. Air temperature and humidity were recorded from unlighted and lighted (under lamps) subplots using loggers (HOBO MX2301A, Onset Computer Cooperation) that were installed approximately 7 cm under the lamps and to the same height from the ground in unlighted plots, and were replicated under different combinations of fertilization, herbivore exclusion and light addition in ambient climatic conditions three times (n = 3). The logger data were collected in May 2019 before the effects of drought were visible.Statistical analysisWe analysed our data in two steps. First, to test whether competition for light mediates the effect of fertilization on diversity, we analysed the effects of fertilization and light and their interaction on species richness and Shannon diversity using data from 2017, when the herbivore exclusion treatment had not yet been implemented. We also analysed the effects of treatment on total vegetation cover and litter cover. We fit LME models in which diversity (species richness and Shannon diversity), total cover and litter cover, each in their own model, were explained by fertilization, light addition and their interaction (fixed variables). All treatments were categorical variables with two levels (treated and untreated). In each model, subplot was nested within plot, which was nested within block (nested random variable). We simplified the models using the anova() function for model comparison in the nlme and lme4 packages in R (ref. 47) (on the basis of log likelihood ratio tests; P ≥ 0.05; Extended Data Table 2). This was done to uncover the significance of the main effects and interaction terms, to avoid overparametrization47,48 and to provide model-derived parameter estimates for the figures (Extended Data Table 5). However, we also provide full model results that are qualitatively similar to the results of simplified models (Extended Data Tables 3 and 4); therefore, model choice did not affect our conclusions. Climate treatment was included in all original models but was never significant for richness and diversity, and was not considered further. Total cover and litter results for 2017 are reported in Extended Data Figs. 1a,b and 3a). As there was heterogeneity in the variance structure between treatments, we used the varIdent() function in the nlme package in R to allow each treatment combination to have a different variance. Model fit was inspected using model diagnostic plots in the package nlme. In the full design with climate included, the number of replicates per treatment combination was ten.Second, to include herbivore exclusion to the experimental design and to test whether competition for light mediates the effect of herbivore exclusion on diversity, and whether competition for light, herbivory and fertilization interact, we analysed the effects of herbivore exclusion, fertilization, light and their interactions on species richness and Shannon diversity using data from 2019. All treatments were categorical variables with two levels (treated and untreated). We also analysed the effects of treatment on total vegetation cover and litter cover. We fit similar models to those described above, except that herbivore exclusion was an additional fixed factor in the models. We simplified the models, used the varIdent() function to account for heteroscedasticity and checked the model fit using model diagnostic plots, as above. Climate treatment was included in all original models but was significant for litter cover only, and was not considered further. In the full design with climate included, the number of replicates per treatment combination was five.To further assess which plant traits increased the probability of species benefiting from the addition of light, we first created a binary response variable: those species that increased from unlighted to lighted plots (that is, had a higher value in a lighted than an unlighted plot) were given a value of 1 and those that did not were given a value of 0. This response variable takes into account rare species that emerged or persisted in the lighted plots but were absent in the unlighted plots (that is, species gains and losses) and changes in small, subordinate species (those that are likely to benefit from light addition) with small but consistently trait-dependent changes in response to light. It is also in line with our species richness analyses, as species gains and losses ultimately determine richness responses. We did not use different indexes (for example, lnRR or RII) because these could not handle multiple zero values and species losses or gains (that is, species having zero cover in either unlighted or lighted subplots). Second, we fit GLME models with a binomial error structure (family = “binomial”, link = “logit”) in which a probability of a species increasing from unlighted to lighted plots was explained by categorical experimental treatments (fertilization, herbivore exclusion and their interactions), traits (SLA, height, LWC, foliar C:N), and interactions between the treatments and traits. Each trait was analysed in its own model as some of the traits were correlated (Extended Data Table 6), and to avoid overly complex models and overparametrization47,48. We included all species for which we had traits in the models. As we calculated the increase in cover from unlighted to lighted plots, our smallest experimental unit in trait analyses was a plot (not a subplot, unlike in other analyses). As there were several species in the same plots, we nested species within plots, and plots within blocks. We similarly simplified the models to include only significant variables (on the basis of χ2 tests; P ≥ 0.05). We did not include a crossed random effect for species in the models because the full models with a more complex random structure did not converge; however, when we refitted the simplified models with a crossed random effect for species, we found that the models converged (with scaled data) and that the significance of the effects remained qualitatively the same. Climate was included in all original models but was never significant. In addition, C:N and height did not predict the responsiveness of species to light in either year (P ≥ 0.13 for both); results are therefore not shown. In the full design with climate included, the number of replicates per treatment combination was five; however, the number of observations was greater (see Fig. 4 and Extended Data Fig. 4). To make sure that our results for SLA and LWC were not influenced by whether they were analysed in separate models or in the same model, or by the order in which they were in the models, we also performed analyses in which both SLA and LWC were included (in both orders). Results remained qualitatively similar and are not discussed further.Furthermore, to check whether our trait results were driven primarily by species gains and losses or changes in abundance, we ran additional trait analyses for which we calculated the change in cover between lighted and unlighted subplots (cover in lighted subplot − cover in unlighted subplot), and analysed the ‘change’ with otherwise similar trait models to those described above, except that we used Gaussian error structure. With this index, which gives a disproportionate importance to the abundant species, we found that traits were poor predictors of changes in cover between lighted and unlighted plots (all interactions were non-significant, P  > 0.05, except for a marginally significant C:N × fertilization interaction in 2017 that was no longer visible in 2019; results not shown; codes and data available in the Dryad repository). We also analysed presence–absence-based species losses and gains. In these models, each species was given a value of 1 when it was present in the lighted subplot but absent from the unlighted subplot; otherwise, these models were similar to the binomial trait models described above. These models produced, to a large extent, similar results to our models using the probability of increase in response to light as a response variable (results not shown; codes and data available in the Dryad repository). These additional analyses and results support using the probability of increase in response to light as our response variable, rather than abundance-based metrics, as it includes both gains and losses and abundance aspects, and is therefore a general test that is well suited to assessing species gains and extinctions and changes in subordinate species.All statistical analyses were performed using R v. 4.0.0 (ref. 49). We used the nlme package (v.3.1.147) for LME models50, the lme4 package (v.1.1.23) for GLME models51, and the car package52 for P values (v.3.07).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    The role of neighbouring species in survival as the climate changes

    NEWS AND VIEWS
    02 November 2022

    Predicting the risk of extinction from climate change requires an understanding of the interactions between species. An analysis of how changes in rainfall affect competition between plant species offers a way of tackling this challenge. More

  • in

    Symbiont genotype influences holobiont response to increased temperature

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).Article 
    ADS 
    PubMed 

    Google Scholar 
    Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306 (2003).Article 
    ADS 
    PubMed 

    Google Scholar 
    terHorst, C. P., Miller, T. E. & Levitan, D. R. Evolution of prey in ecological time reduces the effect size of predators in experimental microcosms. Ecology 91, 629–636 (2010).Article 
    PubMed 

    Google Scholar 
    Duffy, M. A. & Sivars-Becker, L. Rapid evolution and ecological host-parasite dynamics. Ecol. Lett. 10, 44–53 (2007).Article 
    PubMed 

    Google Scholar 
    Diamond, S. E., Chick, L. D., Perez, A., Strickler, S. A. & Martin, R. A. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities. Proc. Biol. Sci. 285, 20180036 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl. Acad. Sci. USA 104, 1278–1282 (2007).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    terHorst, C. P., Lennon, J. T. & Lau, J. A. The relative importance of rapid evolution for plant-microbe interactions depends on ecological context. Proc. R. Soc. B Biol. Sci. 281, 20140028 (2014).Article 

    Google Scholar 
    Bradshaw, W. E. & Holzapfel, C. M. Evolutionary response to rapid climate change. Science https://doi.org/10.1126/science.1127000 (2006).Article 
    PubMed 

    Google Scholar 
    Gonzalez, A., Ronce, O., Ferriere, R. & Hochberg, M. E. Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120404 (2013).Article 

    Google Scholar 
    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).Article 
    PubMed 

    Google Scholar 
    Lau, J. A. & terHorst, C. P. Evolutionary responses to global change in species-rich communities. Ann. N. Y. Acad. Sci. 1476, 43–58 (2020).Article 
    ADS 
    PubMed 

    Google Scholar 
    Lau, J. A., Shaw, R. G., Reich, P. B. & Tiffin, P. Indirect effects drive evolutionary responses to global change. New Phytol. 201, 335–343 (2014).Article 
    PubMed 

    Google Scholar 
    Tseng, M. & O’Connor, M. I. Predators modify the evolutionary response of prey to temperature change. Biol. Lett. 11, 20150798 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    terHorst, C. P. et al. Evolution in a community context: Trait responses to multiple species interactions. Am. Nat. 191, 368–380 (2018).Article 

    Google Scholar 
    Hussa, E. A. & Goodrich-Blair, H. It takes a village: Ecological and fitness impacts of multipartite mutualism. Annu. Rev. Microbiol. 67, 161–178 (2013).Article 
    PubMed 

    Google Scholar 
    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
    Google Scholar 
    Death, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. PNAS 109, 17995–17999 (2012).Article 
    ADS 

    Google Scholar 
    Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, C. M. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci. Rep. 6, 38402 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci Rep 6, 39666 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, J. K., Berkelmans, R. & Eakin, C. M. Coral bleaching in space and time. In Coral Bleaching: Patterns, Processes, Causes and Consequences (eds. van Oppen, M. J. H. & Lough, J. M.) 27–49 (Springer, 2018). https://doi.org/10.1007/978-3-540-69775-6_3.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).Article 
    ADS 
    PubMed 

    Google Scholar 
    Impacts of 1.5°C global warming on natural and human systems. In Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (ed. IPCC) 175–312 (Cambridge University Press, 2022). https://doi.org/10.1017/9781009157940.005.Glynn, P. W. & D’Croz, L. Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8, 181–191 (1990).Article 
    ADS 

    Google Scholar 
    Eakin, C. M. et al. Caribbean corals in crisis: Record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5, e13969 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38, 539–545 (2019).Article 
    ADS 

    Google Scholar 
    Baker, A. C., Starger, C. J., McClanahan, T. R. & Glynn, P. W. Corals’ adaptive response to climate change. Nature 430, 741–741 (2004).Article 
    ADS 
    PubMed 

    Google Scholar 
    Mieog, J. C., Van Oppen, M. J. H., Berkelmans, R., Stam, W. T. & Olsen, J. L. Quantification of algal endosymbionts (Symbiodinium) in coral tissue using real-time PCR. Mol. Ecol. Resour. 9, 74–82 (2009).Article 
    PubMed 

    Google Scholar 
    Silverstein, R. N., Correa, A. M. S. & Baker, A. C. Specificity is rarely absolute in coral–algal symbiosis: Implications for coral response to climate change. Proc. R. Soc. B Biol. Sci. 279, 2609–2618 (2012).Article 

    Google Scholar 
    Hoadley, K. D. et al. Host–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci. Rep. 9, 9985 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parkinson, J. E. & Baums, I. B. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral-algal associations. Front. Microbiol. 5, 445 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karim, W., Nakaema, S. & Hidaka, M. Temperature effects on the growth rates and photosynthetic activities of symbiodinium cells. J. Mar. Sci. Eng. 3, 368–381 (2015).Article 

    Google Scholar 
    Grégoire, V., Schmacka, F., Coffroth, M. A. & Karsten, U. Photophysiological and thermal tolerance of various genotypes of the coral endosymbiont Symbiodinium sp. (Dinophyceae). J. Appl. Phycol. 29, 1893 (2017).Article 

    Google Scholar 
    Díaz-Almeyda, E. M. et al. Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates. Proc. R. Soc. B Biol. Sci. 284, 20171767 (2017).Article 

    Google Scholar 
    Bayliss, S. L. J., Scott, Z. R., Coffroth, M. A. & terHorst, C. P. Genetic variation in Breviolum antillogorgium, a coral reef symbiont, in response to temperature and nutrients. Ecol. Evol. 9, 2803–2813 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pelosi, J., Eaton, K. M., Mychajliw, S., terHorst, C. P. & Coffroth, M. A. Thermally tolerant symbionts may explain Caribbean octocoral resilience to heat stress. Coral Reefs 40, 1113–1125 (2021).Article 

    Google Scholar 
    Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. Fems Microbiol. Rev. 32, 723–735 (2008).Article 
    PubMed 

    Google Scholar 
    Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Chang. 2, 116–120 (2012).Article 
    ADS 

    Google Scholar 
    Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. H. Rapid thermal adaptation in photosymbionts of reef-building corals. Glob. Chang. Biol. 23, 4675–4688 (2017).Article 
    ADS 
    PubMed 

    Google Scholar 
    Chakravarti, L. J. & van Oppen, M. J. H. Experimental evolution in coral photosymbionts as a tool to increase thermal tolerance. Front. Mar. Sci. 5, 227 (2018).Article 

    Google Scholar 
    Buerger, P. et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci. Adv. https://doi.org/10.1126/sciadv.aba2498 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hofmann, D. K. & Kremer, B. P. Carbon metabolism and strobilation in Cassiopea andromedea (Cnidaria: Scyphozoa): Significance of endosymbiotic dinoflagellates. Mar. Boil. 65, 25 (1981).Article 

    Google Scholar 
    Welsh, D., Dunn, R. & Meziane, T. Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia 635, 351 (2009).Article 

    Google Scholar 
    Freeman, C. J., Stoner, E. W., Easson, C. G., Matterson, K. O. & Baker, D. M. Symbiont carbon and nitrogen assimilation in the Cassiopea-Symbiodinium mutualism. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps11605 (2016).Article 

    Google Scholar 
    Bigelow, R. P. The Anatomy and Development of Cassiopea xamachana. 1–72 (Pub. by the Boston Society of Natural History, 1900). https://doi.org/10.5962/bhl.title.31420.Colley, N. J. & Trench, R. K. Selectivity in phagocytosis and persistence of symbiotic algae in the scyphistoma stage of the jellyfish Cassiopeia xamachana. Proc. R. Soc. Lond. B Biol. Sci. 219, 61–82 (1983).Article 
    ADS 
    PubMed 

    Google Scholar 
    Hofmann, D. K., Fitt, W. K. & Fleck, J. Checkpoints in the life-cycle of Cassiopea spp.: Control of metagenesis and metamorphosis in a tropical jellyfish. Int. J. Dev. Biol. 40, 331–338 (1996).PubMed 

    Google Scholar 
    Stat, M. & Gates, R. D. Clade D symbiodinium in scleractinian corals: A “Nugget” of hope, a selfish opportunist, an ominous sign, or all of the above?. J. Mar. Biol. 2011, e730715 (2010).
    Google Scholar 
    Correa, A. M. S. & Baker, A. C. Disaster taxa in microbially mediated metazoans: how endosymbionts and environmental catastrophes influence the adaptive capacity of reef corals. Glob. Change Biol. 17, 68–75 (2011).Article 
    ADS 

    Google Scholar 
    Silverstein, R. N., Cunning, R. & Baker, A. C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Chang. Biol. 21, 236–249 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Leal, M. C. et al. Symbiont type influences trophic plasticity of a model cnidarian-dinoflagellate symbiosis. J. Exp. Biol. 218, 858–863 (2015).Article 
    PubMed 

    Google Scholar 
    Klein, S. G. et al. Symbiodinium mitigate the combined effects of hypoxia and acidification on a noncalcifying cnidarian. Glob. Chang. Biol. 23, 3690–3703 (2017).Article 
    ADS 
    PubMed 

    Google Scholar 
    Cziesielski, M. J. et al. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc. R. Soc. B. 285, 20172654 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cunning, R. & Baker, A. C. Thermotolerant coral symbionts modulate heat stress-responsive genes in their hosts. Mol. Ecol. 29, 2940–2950 (2020).Article 
    PubMed 

    Google Scholar 
    Newkirk, C. R., Frazer, T. K., Martindale, M. Q. & Schnitzler, C. E. Adaptation to bleaching: Are thermotolerant symbiodiniaceae strains more successful than other strains under elevated temperatures in a model symbiotic cnidarian?. Front. Microbiol. 11, 822 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trench, R. K. MICROALGAL-INVERTEBRATESYMBIOSES: A REVIEW. Cell Res. 41 (1993).Yellowlees, D., Rees, T. A. V. & Leggat, W. Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ. 31, 679–694 (2008).Article 
    PubMed 

    Google Scholar 
    Swain, T. D., Chandler, J., Backman, V. & Marcelino, L. Consensus thermotolerance ranking for 110 Symbiodinium phylotypes: an exemplar utilization of a novel iterative partial-rank aggregation tool with broad application potential. Funct. Ecol. 31, 172–183 (2017).Article 

    Google Scholar 
    Klueter, A., Trapani, J., Archer, F. I., McIlroy, S. E. & Coffroth, M. A. Comparative growth rates of cultured marine dinoflagellates in the genus Symbiodinium and the effects of temperature and light. PLoS ONE 12, e0187707 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, B. et al. Dispersal, genetic variation, and symbiont interaction network of heat-tolerant endosymbiont Durusdinium trenchii: Insights into the adaptive potential of coral to climate change. Sci. Total Environ. 723, 138026 (2020).Article 
    ADS 
    PubMed 

    Google Scholar 
    van Oppen, M. J. H., Souter, P., Howells, E. J., Heyward, A. & Berkelmans, R. Novel genetic diversity through somatic mutations: Fuel for adaptation of reef corals?. Diversity 3, 405–423 (2011).Article 

    Google Scholar 
    van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl. Acad. Sci. USA 112, 2307–2313 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ohdera, A. H. et al. Upside-down but headed in the right direction: Review of the highly versatile Cassiopea xamachana system. Front. Ecol. Evol. 6, 35 (2018).Article 

    Google Scholar 
    Fitt, W. K. & Costley, K. The role of temperature in survival of the polyp stage of the tropical rhizostome jellyfish Cassiopea xamachana. J. Exp. Mar. Biol. Ecol. 222, 79–91 (1998).Article 

    Google Scholar 
    Aljbour, S. M., Zimmer, M. & Kunzmann, A. Cellular respiration, oxygen consumption, and trade-offs of the jellyfish Cassiopea sp. in response to temperature change. Journal of Sea Research 128, 92–97 (2017).Rahat, M. & Adar, O. Effect of symbiotic zooxanthellae and temperature on budding and strobiliation in Cassiopeia andromeda (Eschscholz). Biol. Bull. 159, 394–401 (1980).Article 

    Google Scholar 
    Cole, L. C. The population consequences of life history phenomena. Q. Rev. Biol. 29, 103–137 (1954).Article 
    PubMed 

    Google Scholar 
    Brommer, J. E., Merilä, J. & Kokko, H. Reproductive timing and individual fitness. Ecol. Lett. 5, 802–810 (2002).Article 

    Google Scholar 
    Hofmann, D. K., Neumann, R. & Henne, K. Strobilation, budding and initiation of scyphistoma morphogenesis in the rhizostome Cassiopea andromeda (Cnidaria: Scyphozoa). Mar. Biol. 47, 161–176 (1978).Article 

    Google Scholar 
    Thornhill, D. J., LaJeunesse, T. C., Kemp, D. W., Fitt, W. K. & Schmidt, G. W. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar. Biol. 148, 711–722 (2006).Article 

    Google Scholar 
    Mellas, R. E., McIlroy, S. E., Fitt, W. K. & Coffroth, M. A. Variation in symbiont uptake in the early ontogeny of the upside-down jellyfish, Cassiopea spp.. J. Exp. Mar. Biol. Ecol. 459, 38–44 (2014).Article 

    Google Scholar 
    Fransolet, D., Roberty, S. & Plumier, J.-C. Establishment of endosymbiosis: The case of cnidarians and Symbiodinium. J. Exp. Mar. Biol. Ecol. 420–421, 1–7 (2012).Article 

    Google Scholar 
    Jones, A. M., Berkelmans, R., van Oppen, M. J. H., Mieog, J. C. & Sinclair, W. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc. R. Soc. B Biol. Sci. 275, 1359–1365 (2008).Article 

    Google Scholar 
    Baskett, M. L., Gaines, S. D. & Nisbet, R. M. Symbiont diversity may help coral reefs survive moderate climate change. Ecol. Appl. 19, 3–17 (2009).Article 
    PubMed 

    Google Scholar 
    Baker, A. C. Reef corals bleach to survive change. Nature 411, 765–766 (2001).Article 
    ADS 
    PubMed 

    Google Scholar 
    Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc. R. Soc. B Biol. Sci. 273, 2305–2312 (2006).Article 

    Google Scholar 
    Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wolfowicz, I. et al. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci. Rep. 6, 32366 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Little, A. F., van Oppen, M. J. H. & Willis, B. L. Flexibility in algal endosymbioses shapes growth in reef corals. Science https://doi.org/10.1126/science.1095733 (2004).Article 
    PubMed 

    Google Scholar 
    Jones, A. & Berkelmans, R. Potential costs of acclimatization to a warmer climate: Growth of a reef coral with heat tolerant vs sensitive symbiont types. PLOS ONE 5, e10437 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ortiz, J. C., González-Rivero, M. & Mumby, P. J. Can a thermally tolerant symbiont improve the future of Caribbean coral reefs?. Glob. Change Biol. 19, 273–281 (2013).Article 
    ADS 

    Google Scholar 
    Sprouffske, K. & Wagner, A. Growthcurver: An R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 17, 172 (2016).Article 

    Google Scholar  More

  • in

    Genomic insights into phage-host interaction in the deep-sea chemolithoautotrophic Campylobacterota, Nitratiruptor

    Jeanthon C. Molecular ecology of hydrothermal vent microbial communities. Antonie Van Leeuwenhoek. 2000;77:117–33.Article 
    CAS 
    PubMed 

    Google Scholar 
    Nercessian O, Reysenbach A-L, Prieur D, Jeanthon C. Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13oN). Environ Microbiol. 2003;5:492–502.Article 
    PubMed 

    Google Scholar 
    Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, et al. Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol. 2005;7:1619–32.Article 
    CAS 
    PubMed 

    Google Scholar 
    Brazelton WJ, Schrenk MO, Kelley DS, Baross JA. Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl Environ Microbiol. 2006;72:6257–70.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takai K, Nakagawa S, Reysenbach A-L, Hoek J. Microbial ecology of mid-ocean ridges and back-arc basins. In: Christie DM, Fisher CR, Lee S-M, Givens S, editors. Geophysical Monograph Series. 2006. Washington, D. C.: American Geophysical Union; 2006. pp. 185–213.Nakagawa S, Takai K. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol. 2008;65:1–14.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jørgensen BB, Boetius A. Feast and famine—microbial life in the deep-sea bed. Nat Rev Microbiol. 2007;5:770–81.Article 
    PubMed 

    Google Scholar 
    Campbell BJ, Engel AS, Porter ML, Takai K. The versatile ε-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol. 2006;4:458–68.Article 
    CAS 
    PubMed 

    Google Scholar 
    Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol. 2021;71:005056.Article 

    Google Scholar 
    Nakagawa S, Takaki Y. Nonpathogenic Epsilonproteobacteria. Encyclopedia of Life Sciences (eLS). Chichester, UK: John Wiley & Sons, Ltd; 2009.Nakagawa S, Takaki Y, Shimamura S, Reysenbach A-L, Takai K, Horikoshi K. Deep-sea vent ε-proteobacterial genomes provide insights into emergence of pathogens. Proc Natl Acad Sci USA. 2007;104:12146–50.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Porcelli I, Reuter M, Pearson BM, Wilhelm T, van Vliet AH. Parallel evolution of genome structure and transcriptional landscape in the Epsilonproteobacteria. BMC Genom. 2013;14:616.Article 
    CAS 

    Google Scholar 
    Zhang Y, Sievert SM. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Front Microbiol. 2014;5:110.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vorwerk H, Huber C, Mohr J, Bunk B, Bhuju S, Wensel O, et al. A transferable plasticity region in Campylobacter coli allows isolates of an otherwise non-glycolytic food-borne pathogen to catabolize glucose. Mol Microbiol. 2015;98:809–30.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jiang SC, Kellogg CA, Paul JH. Characterization of marine temperate phage-host systems isolated from Mamala Bay, Oahu, Hawaii. Appl Environ Microbiol. 1998;64:535–42.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paul JH. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2008;2:579–89.Article 
    CAS 
    PubMed 

    Google Scholar 
    Harrison E, Brockhurst MA. Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. BioEssays. 2017;39:1700112.Article 

    Google Scholar 
    Fouts DE, Mongodin EF, Mandrell RE, Miller WG, Rasko DA, Ravel J, et al. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol. 2005;3:e15.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang M, He L, Li Q, Sun H, Gu Y, You Y, et al. Genomic characterization of the Guillain-Barre syndrome-associated Campylobacter jejuni ICDCCJ07001 isolate. PLoS ONE. 2010;5:e15060.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller WG, Yee E, Chapman MH, Smith TPL, Bono JL, Huynh S, et al. Comparative genomics of the Campylobacter lari group. Genome Biol Evol. 2014;6:3252–66.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parker CT, Quiñones B, Miller WG, Horn ST, Mandrell RE. Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221. J Clin Microbiol. 2006;44:4125–35.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CG, Ng L-K. Sequence variability of Campylobacter temperate bacteriophages. BMC Microbiol. 2008;8:49.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quiñones B, Guilhabert MR, Miller WG, Mandrell RE, Lastovica AJ, Parker CT. Comparative genomic analysis of clinical strains of Campylobacter jejuni from South Africa. PLoS ONE. 2008;3:e2015.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CG, Chen C, Berry C, Walker M, McCorrister SJ, Chong PM, et al. Comparison of genomes and proteomes of four whole genome-sequenced Campylobacter jejuni from different phylogenetic backgrounds. PLoS ONE. 2018;13:e0190836.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CG, Grant CC, Pollari F, Marshall B, Moses J, Tracz DM, et al. Effects of the Campylobacter jejuni CJIE1 prophage homologs on adherence and invasion in culture, patient symptoms, and source of infection. BMC Microbiol. 2012;12:269.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaasbeek EJ, Wagenaar JA, Guilhabert MR, Wösten MMSM, van Putten JPM, van der Graaf-van Bloois L, et al. A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni. J Bacteriol. 2009;191:2296–306.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaasbeek EJ, Wagenaar JA, Guilhabert MR, van Putten JPM, Parker CT, van der Wal FJ. Nucleases encoded by the integrated elements CJIE2 and CJIE4 inhibit natural transformation of Campylobacter jejuni. J Bacteriol. 2010;192:936–41.Article 
    CAS 
    PubMed 

    Google Scholar 
    Yoshida-Takashima Y, Takaki Y, Shimamura S, Nunoura T, Takai K. Genome sequence of a novel deep-sea vent epsilonproteobacterial phage provides new insight into the co-evolution of Epsilonproteobacteria and their phages. Extremophiles. 2013;17:405–19.Article 
    PubMed 

    Google Scholar 
    Glasby GP, Notsu K. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview. Ore Geol Rev. 2003;23:299–339.Article 

    Google Scholar 
    Yoshida-Takashima Y, Nunoura T, Kazama H, Noguchi T, Inoue K, Akashi H, et al. Spatial distribution of viruses associated with planktonic and attached microbial communities in hydrothermal environments. Appl Environ Microbiol. 2012;78:1311–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T, Sako Y, et al. Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett. 2003;217:167–74.
    Google Scholar 
    Sako Y, Takai K, Ishida Y, Uchida A, Katayama Y. Rhodothemus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol. 1996;46:1099–104.Article 
    CAS 
    PubMed 

    Google Scholar 
    Yoshida M, Yoshida-Takashima Y, Nunoura T, Takai K. Genomic characterization of a temperate phage of the psychrotolerant deep-sea bacterium Aurantimonas sp. Extremophiles. 2015;19:49–58.Article 
    CAS 
    PubMed 

    Google Scholar 
    Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, et al. Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol. 2006;72:1239–47.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leggett RM, Clavijo BJ, Clissold L, Clark MD, Caccamo M. NextClip: an analysis and read preparation tool for Nextera long mate pair libraries. Bioinformatics. 2014;30:566–8.Article 
    CAS 
    PubMed 

    Google Scholar 
    Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27:578–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Corkill JE, Graham R, Hart CA, Stubbs S. Pulsed-field gel electrophoresis of degradation-sensitive DNAs from Clostridium difficile PCR ribotype 1 strains. J Clin Microbiol. 2000;38:2791–2.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Besemer J. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–18.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delcher A. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999;27:4636–41.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40:D290–301.Article 
    CAS 
    PubMed 

    Google Scholar 
    Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33:W116–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 2011;39:D225–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.Article 
    CAS 
    PubMed 

    Google Scholar 
    Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3.Article 
    CAS 
    PubMed 

    Google Scholar 
    Huang S, Wang K, Jiao N, Chen F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol. 2012;14:540–58.Article 
    CAS 
    PubMed 

    Google Scholar 
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics. 2008;9:75.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929–31.Article 
    CAS 
    PubMed 

    Google Scholar 
    Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 2015;43:D298–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46:W246–51.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–7.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meier-Kolthoff JP, Göker M. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics. 2017;33:3396–404.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakagawa S, Takai K, Inagaki F, Horikoshi K, Sako Y. Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the ε-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. Int J Syst Evol Microbiol. 2005;55:925–33.Article 
    CAS 
    PubMed 

    Google Scholar 
    Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA. 2009;106:19126–31.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, et al. Origins of highly mosaic mycobacteriophage genomes. Cell. 2003;113:171–82.Article 
    CAS 
    PubMed 

    Google Scholar 
    Mercier C, Lossouarn J, Nesbø CL, Haverkamp THA, Baudoux AC, Jebbar M, et al. Two viruses, MCV1 and MCV2, which infect Marinitoga bacteria isolated from deep-sea hydrothermal vents: functional and genomic analysis. Environ Microbiol. 2018;20:577–87.Article 
    CAS 
    PubMed 

    Google Scholar 
    Samson JE, Magadán AH, Sabri M, Moineau S. Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol. 2013;11:675–87.Article 
    CAS 
    PubMed 

    Google Scholar 
    Meyer JL, Huber JA. Strain-level genomic variation in natural populations of Lebetimonas from an erupting deep-sea volcano. ISME J. 2014;8:867–80.Article 
    CAS 
    PubMed 

    Google Scholar 
    Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol. 2005;3:722–32.Article 
    CAS 
    PubMed 

    Google Scholar 
    Ramisetty BCM, Sudhakari PA. Bacterial ‘grounded’ prophages: hotspots for genetic renovation and innovation. Front Genet. 2019;10:65.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8:317–27.Article 
    CAS 
    PubMed 

    Google Scholar 
    Piel D, Bruto M, Labreuche Y, Blanquart F, Goudenège D, Barcia-Cruz R, et al. Phage–host coevolution in natural populations. Nat Microbiol. 2022;7:1075–86.Article 
    CAS 
    PubMed 

    Google Scholar 
    Lynch KH, Stothard P, Dennis JJ. Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex. BMC Genomics. 2010;11:599.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Godde JS, Bickerton A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J Mol Evol. 2006;62:718–29.Article 
    CAS 
    PubMed 

    Google Scholar 
    Nobrega FL, Walinga H, Dutilh BE, Brouns SJJ. Prophages are associated with extensive CRISPR–Cas auto-immunity. Nucleic Acids Res. 2020;48:12074–84.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yi H, Huang L, Yang B, Gomez J, Zhang H, Yin Y. AcrFinder: genome mining anti-CRISPR operons in prokaryotes and their viruses. Nucleic Acids Res. 2020;48:W358–65.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maier L-K, Lange SJ, Stoll B, Haas KA, Fischer SM, Fischer E, et al. Essential requirements for the detection and degradation of invaders by the Haloferax volcanii CRISPR/Cas system I-B. RNA Biol. 2013;10:865–74.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boudry P, Semenova E, Monot M, Datsenko KA, Lopatina A, Sekulovic O, et al. Function of the CRISPR-Cas system of the human pathogen Clostridium difficile. mBio. 2015;6:e01112–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12.Article 
    CAS 
    PubMed 

    Google Scholar 
    Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2008;190:1390–400.Article 
    CAS 
    PubMed 

    Google Scholar 
    Nozawa T, Furukawa N, Aikawa C, Watanabe T, Haobam B, Kurokawa K, et al. CRISPR inhibition of prophage acquisition in Streptococcus pyogenes. PLoS ONE. 2011;6:e19543.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18:67–83.Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    COVID variants to watch, and more — this week’s best science graphics

    COVID variant family expandsSince the Omicron variant of SARS-CoV-2 emerged in late 2021, it has spawned a series of subvariants that have sparked global waves of infection. In the past few months, scientists have identified more than a dozen extra subvariants to watch. There are so many that they’re being called a swarm, or ‘variant soup’. BQ.1.1 (a descendant of BQ.1) and XBB seem to be rising to the top, possibly because they have many mutations in a key region of the viral spike protein called the receptor binding domain, which is required to infect cells.

    Source: NextStrain

    The variants near youIn Europe and North America, SARS-CoV-2 variants in the BQ.1 family are rising quickly and are likely to drive infection waves as these regions enter winter. They are also a common ingredient of the variant soup in South Africa, Nigeria and elsewhere in Africa. XBB, by contrast, looks likely to dominate infections in Asia; it recently drove a wave of infections in Singapore.

    Source: Moritz Gerstung, Cov-Spectrum.org and GISAID

    Money worries for science studentsEighty-five per cent of graduate students who responded to a Nature survey are worried about the increasing cost of living, and 25% are concerned about their growing student debt. Forty-five per cent said that rising inflation could cause them to reconsider whether to continue their science studies. The survey involved more than 3,200 self-selected PhD and master’s students from around the world.

    How species suffer in heatwavesEven a small temperature rise has a severe effect on animal mortality, and understanding this relationship is important for predicting the effects of heatwaves caused by climate change. A paper in Nature used published data to examine how changes in temperature affect the rate of biological processes, such as movement or metabolism, at permissive temperatures — those at which species function normally. They also looked at how higher, stressful temperatures affect the rate of heat failure (irreversible heat injuries that result in death). This graph shows that rising temperatures drive a very rapid increase in heat-failure rates in frogs and molluscs. These high sensitivities suggest that when there is no way to escape hot conditions, species can quickly succumb. More

  • in

    Exploring Natura 2000 habitats by satellite image segmentation combined with phytosociological data: a case study from the Čierny Balog area (Central Slovakia)

    Rocchini, D. et al. Measuring β-diversity by remote sensing: A challenge for biodiversity monitoring. Methods Ecol. Evol. 9(8), 1787–1798 (2018).Article 

    Google Scholar 
    Pettorelli, N. et al. Satellite remote sensing of ecosystem functions: Opportunities, challenges and way forward. Remote Sensing in Ecology and Conservation 4(2), 71–93 (2018).Article 

    Google Scholar 
    Corbane, C. et al. Remote sensing for mapping natural habitats and their conservation status–New opportunities and challenges. Int. J. Appl. Earth Obs. Geoinf. 37, 7–16 (2015).ADS 

    Google Scholar 
    Miu, I. V. et al. Identification of areas of very high biodiversity value to achieve the EU Biodiversity Strategy for 2030 key commitments. PeerJ 8, e10067 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Klerk, H., Burgess, N. & Visser, V. Probabilistic description of vegetation ecotones using remote sensing. Eco. Inform. 46, 125–132 (2018).Article 

    Google Scholar 
    Minasny, B. et al. Digital mapping of peatlands–A critical review. Earth Sci. Rev. 196, 102870 (2019).Article 

    Google Scholar 
    Zellweger, F. et al. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34(4), 327–341 (2019).Article 
    PubMed 

    Google Scholar 
    Zhang, X. et al. New research methods for vegetation information extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV). Int. J. Appl. Earth Obs. Geoinf. 78, 215–226 (2019).ADS 

    Google Scholar 
    Ullerud, H. A. et al. Consistency in land-cover mapping: Influence of field workers, spatial scale and classification system. Appl. Veg. Sci. 21(2), 278–288 (2018).Article 

    Google Scholar 
    Zhu, Y. et al. Effects of data temporal resolution on phenology extractions from the alpine grasslands of the Tibetan Plateau. Ecol. Ind. 104, 365–377 (2019).Article 

    Google Scholar 
    Huylenbroeck, L. et al. Using remote sensing to characterize riparian vegetation: A review of available tools and perspectives for managers. J. Environ. Manage. 267, 110652 (2020).Article 
    PubMed 

    Google Scholar 
    Fagan, M. E. et al. Mapping species composition of forests and tree plantations in Northeastern Costa Rica with an integration of hyperspectral and multitemporal Landsat imagery. Remote Sensing 7(5), 5660–5696 (2015).Article 
    ADS 

    Google Scholar 
    Waśniewski, A. et al. Assessment of Sentinel-2 satellite images and random forest classifier for rainforest mapping in Gabon. Forests 11(9), 941 (2020).Article 

    Google Scholar 
    Drusch, M. et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36 (2012).Article 
    ADS 

    Google Scholar 
    Chytrý, M. et al. European Vegetation Archive (EVA): An integrated database of European vegetation plots. Appl. Veg. Sci. 19(1), 173–180 (2016).Article 

    Google Scholar 
    Chytrý, M. et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 23(4), 648–675 (2020).Article 

    Google Scholar 
    Šibík, J. Slovak vegetation database. In Dengler J., Oldeland, J., Jansen, F., Chytrý, M., Ewald, J., Finckh, M., Glöckle, RF, Lopez-Gonzalez, G., Peet, R. K. & Schaminée, J. H. J. (eds), Vegetation databases for the 21st century. Biodiversity & Ecology, 2012: p. 429–429.Jarolímek, I., et al. A list of vegetation units of Slovakia. Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. Veda, Bratislava, 2008: p. 295–329.Stanová, V. & Valachovič, M. Katalóg biotopov Slovenska [A catalogue of biotopes of Slovakia] (DAPHNE-Institút aplikovanej ekológie, 2002).
    Google Scholar 
    Viceníková, A. & Polák, P. Európsky významné biotopy na Slovensku (Štátna ochrana prírody SR v spolupráci s DAPHNE-Inštitút aplikovanej ekológie, 2003).
    Google Scholar 
    Dymond, C. C., Mladenoff, D. J. & Radeloff, V. C. Phenological differences in Tasseled Cap indices improve deciduous forest classification. Remote Sens. Environ. 80(3), 460–472 (2002).Article 
    ADS 

    Google Scholar 
    Mickelson, J. G., Civco, D. L. & Silander, J. Delineating forest canopy species in the northeastern United States using multi-temporal TM imagery. Photogramm. Eng. Remote. Sens. 64, 891–904 (1998).
    Google Scholar 
    Nitze, I., Barrett, B. & Cawkwell, F. Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series. Int. J. Appl. Earth Obs. Geoinf. 34, 136–146 (2015).ADS 

    Google Scholar 
    Prishchepov, A. V. et al. The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 126, 195–209 (2012).Article 
    ADS 

    Google Scholar 
    Saini, M. et al. Hyperspectral data dimensionality reduction and the impact of multi-seasonal Hyperion EO-1 imagery on classification accuracies of tropical forest species. Photogramm. Eng. Remote. Sens. 80(8), 773–784 (2014).Article 

    Google Scholar 
    Wang, L., Silván-Cárdenas, J. L. & Sousa, W. P. Neural network classification of mangrove species from multi-seasonal Ikonos imagery. Photogramm. Eng. Remote. Sens. 74(7), 921–927 (2008).Article 

    Google Scholar 
    Dong, J. et al. Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery. ISPRS J. Photogramm. Remote. Sens. 74, 20–33 (2012).Article 

    Google Scholar 
    Fan, H. et al. Phenology-based vegetation index differencing for mapping of rubber plantations using Landsat OLI data. Remote Sens. 7(5), 6041–6058 (2015).Article 
    ADS 

    Google Scholar 
    Li, Z. & Fox, J. M. Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data. Appl. Geogr. 32(2), 420–432 (2012).Article 

    Google Scholar 
    Senf, C. et al. Mapping rubber plantations and natural forests in Xishuangbanna (Southwest China) using multi-spectral phenological metrics from MODIS time series. Remote Sens. 5(6), 2795–2812 (2013).Article 
    ADS 

    Google Scholar 
    Mikula, K. et al. NaturaSat—A software tool for identification, monitoring and evaluation of habitats by remote sensing techniques. Remote Sens. 13(17), 3381 (2021).Article 
    ADS 

    Google Scholar 
    Mikula, K. et al. Semi-automatic segmentation of NATURA 2000 habitats in Sentinel-2 satellite images by evolving open curves. Discrete Contin. Dyn. Syst. S 14(3), 1033 (2021).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Mikula, K. et al. An automated segmentation of NATURA 2000 habitats from Sentinel-2 optical data. Discrete Contin. Dyn. Syst. S 14(3), 1017 (2021).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Klinec, A., Geologická mapa Slovenského rudohoria a Nízkych Tatier (1: 50 000). GÚDŠ, Bratislava, 1976.Lapin, M., et al., Klimatické oblasti [Climatic regions]. Atlas krajiny Slovenskej republiky, 2002. 95.Slamova, M. et al. Historical terraces—Current situation and future perspectives for optimal land use management: The case study of Čierny Balog. Annales 29(1), 85–100 (2019).
    Google Scholar 
    Geoportal, 2021. https://www.geoportal.sk/sk/geoportal.html. Accessed 22 Feb 2021.Directive, H. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Union 206, 7–50 (1992).
    Google Scholar 
    Barkman, J. J., Doing, H. & Segal, S. Kritische bemerkungen und vorschläge zur quantitativen vegetationsanalyse. Acta Bot. Neerland. 13(3), 394–419 (1964).Article 

    Google Scholar 
    Braun-Blanquet, J. & Pflanzensoziologie, G.d.V. (Springer, Wien, New York, 1964).Westhoff, V. & van der Maarel, E. The Braun-Blanquet approach. In Classification of Plant Communities (ed. Whittaker, R. H.) (Springer, 1973).
    Google Scholar 
    Hennekens, S. M. & Schaminée, J. H. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12(4), 589–591 (2001).Article 

    Google Scholar 
    Tichý, L. JUICE, software for vegetation classification. J. Veg. Sci. 13(3), 451–453 (2002).Article 

    Google Scholar 
    Marhold, K., et al., A list of lower and higher plants of Slovakia. Vydavateľstvo akadémie vied, Bratislava, 1998.Ambroz, M., Kollár, M., & Mikula, K. Semi-implicit scheme for semi-automatic segmentation in Naturasat software. In Proceedings of ALGORITMY (2020).LGIS, 2020. LGIS Lesnícky geografický informačný system (2020). http://gis.nlcsk.org/lgis/. Accessed 1 Sept 2020.Hill, M. TWINSPAN-a FORTRAN program for multivariate data in an ordered two-way table by classification of the individuals and attributes. Ecol. System. (1979).Team, R.C., A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2014. www.r-project.org. Accessed 14 Feb 2019, 2020.Hausdorff, F., Grundzüge der mengenlehre. Vol. 7. 1914: von Veit.Waghmare, B. & Suryawanshi, M. A review-remote sensing. Int. J. Eng. Res. Appl 7(06), 52–54 (2017).
    Google Scholar 
    Wagner, M. P. & Oppelt, N. Extracting agricultural fields from remote sensing imagery using graph-based growing contours. Remote Sens. 12(7), 1205 (2020).Article 
    ADS 

    Google Scholar 
    Reinermann, S., Asam, S. & Kuenzer, C. Remote sensing of grassland production and management—A review. Remote Sens. 12(12), 1949 (2020).Article 
    ADS 

    Google Scholar 
    Lu, M. et al. Forest types classification based on multi-source data fusion. Remote Sens. 9(11), 1153 (2017).Article 
    ADS 

    Google Scholar 
    Zwiggelaar, R. A review of spectral properties of plants and their potential use for crop/weed discrimination in row-crops. Crop Prot. 17(3), 189–206 (1998).Article 

    Google Scholar 
    Lamb, D. & Brown, R. B. Pa—precision agriculture: Remote-sensing and mapping of weeds in crops. J. Agric. Eng. Res. 78(2), 117–125 (2001).Article 

    Google Scholar 
    Moran, M. S., Inoue, Y. & Barnes, E. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 61(3), 319–346 (1997).Article 
    ADS 

    Google Scholar 
    Senf, C., Seidl, R. & Hostert, P. Remote sensing of forest insect disturbances: Current state and future directions. Int. J. Appl. Earth Obs. Geoinf. 60, 49–60 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avtar, R. et al. Assessing sustainable development prospects through remote sensing: A review. Remote Sens. Appl. Soc. Environ. 20, 100402 (2020).
    Google Scholar 
    Borre, J. V. et al. Integrating remote sensing in Natura 2000 habitat monitoring: Prospects on the way forward. J. Nat. Conserv. 19(2), 116–125 (2011).Article 

    Google Scholar 
    Woodcock, C. E. et al. Transitioning from change detection to monitoring with remote sensing: A paradigm shift. Remote Sens. Environ. 238, 111558 (2020).Article 
    ADS 

    Google Scholar 
    Foody, G. Fuzzy modelling of vegetation from remotely sensed imagery. Ecol. Model. 85(1), 3–12 (1996).Article 

    Google Scholar 
    Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens. 22(12), 2377–2400 (2001).Article 

    Google Scholar 
    Zlinszky, A. et al. Mapping Natura 2000 habitat conservation status in a pannonic salt steppe with airborne laser scanning. Remote Sens. 7(3), 2991–3019 (2015).Article 
    ADS 

    Google Scholar 
    Feilhauer, H. et al. Mapping the local variability of Natura 2000 habitats with remote sensing. Appl. Veg. Sci. 17(4), 765–779 (2014).Article 

    Google Scholar 
    Thanh Noi, P. & Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 18(1), 18 (2017).Article 
    ADS 
    PubMed Central 

    Google Scholar 
    Da Ponte, E. et al. Assessing forest cover dynamics and forest perception in the Atlantic Forest of Paraguay, combining remote sensing and household level data. Forests 8(10), 389 (2017).Article 

    Google Scholar 
    Cheng, K. & Wang, J. Forest type classification based on integrated spectral-spatial-temporal features and random forest algorithm—A case study in the qinling mountains. Forests 10(7), 559 (2019).Article 

    Google Scholar 
    Laurin, G. V. et al. Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sens. Environ. 176, 163–176 (2016).Article 
    ADS 

    Google Scholar 
    Erinjery, J. J., Singh, M. & Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 216, 345–354 (2018).Article 
    ADS 

    Google Scholar 
    Navarro, J. A. et al. Integration of UAV, Sentinel-1, and Sentinel-2 data for mangrove plantation aboveground biomass monitoring in Senegal. Remote Sens. 11(1), 77 (2019).Article 
    ADS 

    Google Scholar 
    Sothe, C. et al. Evaluating Sentinel-2 and Landsat-8 data to map sucessional forest stages in a subtropical forest in Southern Brazil. Remote Sens. 9(8), 838 (2017).Article 
    ADS 

    Google Scholar 
    Mikula, K., et al., Natural Numerical Networks for Natura 2000 habitats classification by satellite images. arXiv preprint arXiv:2108.04327, 2021.Bruelheide, H. et al. sPlot—A new tool for global vegetation analyses. J. Veg. Sci. 30(2), 161–186 (2019).Article 

    Google Scholar  More