More stories

  • in

    Towards an absolute light pollution indicator

    DefinitionWe present here a new statistical approach to measure and characterize light pollution. The objective is to define an indicator which is not limited to clear sky measurements and does not require a precise calibration of a photometer. The key attributes of the indicator are the following:

    It requires the automated acquisition of a large number of zenithal NSB measures when the Sun is below (-18^{circ }) and the Moon below (-5^{circ });

    The acquisitions must at least cover a period of 6 months in order to record a wide range of possible weather conditions from perfectly clear to totally overcast skies. The objective is to obtain a significant sample of every type of cloud conditions (e.g. cloud density and ceiling altitude) as well as a good characterization of the average clear sky ;

    It is based on the analysis of the zenithal NSB measure dispersion which is directly linked to the level of light pollution a site experiences.

    As presented above in Fig. 2, the NSB density histograms, which are assembled from a large number of NSB measures, display a higher density zone which denotes a characteristic clear sky level that we name nominal NSB in the scope of the indicator calculation. On both sides of the clear sky level (above and below), NSB measures are distributed in a way that reflect the zenithal night sky luminance in cloudy conditions: NSB measures above the clear sky level mean that the light pollution is amplified by clouds while those below the clear sky level indicate a darker environment where clouds mask light pollution from distant sources as well as natural light sources. The calculation of the indicator is based on the evaluation of the NSB measure dispersion on both sides of the nominal NSB (i.e. characteristic clear sky level). Since there can have strong variations of artificial light emitted into the environment at the beginning and end of the night (decrease then increase of human activity, extinction of public lighting, etc.), the range of NSB measures retained for calculating the indicator is restricted to a portion in the middle of the night, typically 2 h.Figure 8 shows a typical NSB density histogram for a site which is quite severely impacted by light pollution. It covers a 2 h time range between 23:00 UTC and 01:00 UTC and one can easily see that the zone above the nominal NSB is much higher and denser than the one below, i.e. cloud conditions create more often a brighter environment than a darker one and with a greater amplitude.Figure 8NSB density histogram where the nominal NSB that represents the most common clear sky conditions is identified. It delimits two areas, the NSB bright dispersion above the nominal NSB and the NSB dark dispersion below.Full size imageBased on the determination of the nominal NSB, a quantitative indicator, called NDR for NSB Dispersion Ratio, is calculated in the following way:$$begin{aligned} NDR = (N_b cdot MAD_b) / (N_d cdot MAD_d) end{aligned}$$where (N_b) is the number of measures above the nominal NSB (brighter sky), (N_d) is the number of measures below the nominal NSB (darker sky), (MAD_b) is the median absolute deviation of the measures in the bright dispersion zone (above the nominal NSB) and (MAD_d) is the median absolute deviation of the measures in the dark dispersion zone (below the nominal NSB). The median absolute deviation is a statistical tool used to measure the variability of a data set, which is exactly what we try to achieve with the two NSB extensions above and below the nominal NSB. It is formally defined as (MAD = median(|X_i – tilde{{mathbf {X}}}|)) where (X_i) in our case represents an NSB value and (tilde{{mathbf {X}}}) is (median(X_i)). The median absolute deviation is a better choice than the usual standard deviation to measure the spread of NSB measures since the data does not follow a normal distribution.In order to make the determination of the NSB Dispersion Ratio stronger from a statistical standpoint, we use a bootstrapping with replacement resampling method on the set of night portions used to compute the indicator. Assuming we have N night portions at our disposal, we randomly select a sample of N items in this set of night portions knowing that a given item can appear multiple times in the sample (hence the bootstrapping with replacement). The NDR value is then computed for the considered sample. This process is repeated 1000 times and the average NDR value if eventually computed. This average value represents the actual NDR indicator of the considered site.The NDR indicator takes into account both the number of NSB values on each side of the nominal NSB and the dispersion of these values. This is what makes it relevant as an indicator of light pollution which encompasses all kinds of meteorological conditions experienced at a particular site. On that aspect, it is therefore not an astronomical light pollution indicator since it is not focused on clear sky conditions. On the opposite, it requires to have a significant number of NSB measures in all sorts of cloudy conditions so that a valid NDR indicator can be derived.A key aspect of the NDR calculation methodology is to determine the level of the nominal NSB, i.e. the typical clear sky level, since it will be used to differentiate the NSB measures that go in each of the two sets to calculate the bright and dark dispersions. As we have seen earlier in the article, such a determination can be biased by natural light sources that raise or lower clear sky NSB at different times of the night. This can result into a “blurry” high density zone which makes the determination of the nominal NSB difficult or even impossible depending on the observation period. Based on the quantitative estimate of the different natural light sources presented above, the most important bias to address is the contribution of the Galactic plane. This contribution must be eliminated for all the NSB measures which are used to calculate the NDR indicator. In order to do that, Noxi, the Ninox processing software developed by DarkSkyLab, calculates for each NSB measure the corresponding Galactic plane and star fields contribution using the galactic coordinates of the zenith and integrating the combined flux of all stars in the field of view using the UCAC4 astrometry and photometry star catalogue. It is not possible to cancel the contribution of the airglow due to its unpredictable nature, but since it only appears in rare occasions, it is not seen as a problem and is ignored. Regarding the contribution of the zodiacal light, it is considered as minimal at the zenith and it is also ignored.As an example, Fig. 9 shows on the left an NSB density histogram where the Galactic plane bias has not been corrected in the data, and on the right the same data but with the Galactic plane bias corrected. It is easy to see that in the latter the nominal NSB is much easier to determine, providing a more accurate reference level to calculate the NDR indicator. Once the Galactic plane bias has been corrected, the nominal NSB is determined as the highest density zone of the NSB histogram. It must be noted that, as of today, all the NSB measures are corrected from the Galactic plane bias without regards to the presence of clouds or high levels of light pollution. This results into an additional source of inaccuracy that will be addressed in the future through the implementation of two heuristics within the Noxi software:

    1.

    A first heuristic will determine if a night portion is considered as having a clear sky or not so that the Galactic bias correction is applied only if the sky is clear. In order to do that, we have developed an indicator called the NSS (for Night Sky Stability). To determine the NSS for a full night of measures or just a night portion, we fit the NSB curve with a degree 10 polynomial and we then compute the difference between each NSB measure and it polynomial counterpart. As a result, we obtain a set of residuals. The variance of all the residuals defines the NSS for the considered NSB dataset. Below a given value, the sky is considered as clear knowing that the NSS indicator has been calibrated on several NSB data sets for which the corresponding weather conditions are known;

    2.

    A second heuristic will allow us to weight the Galactic bias correction to be applied to NSB measures according to their value. For non-polluted skies with high values of NSB, the full Galactic bias correction will be applied while below a certain NSB threshold (for instance 21 mag(_{mathrm{SQM}})/arcsec(^{2}) which corresponds roughly to the brightest parts of the Milky Way) no correction will be applied.

    Figure 9NSB density histograms of the same data set with no correction of the Galactic plane bias applied on the left and a full correction applied on the right.Full size imageThe NDR indicator is unitless since it is the ratio of two quantities with the same unit (mag(_{mathrm{SQM}})/arcsec(^{2})). For the data set presented in Fig. 9, the NDR value which is obtained is 25 (which is justified by the fact that the bright extension in the density histogram is much higher and denser than the dark extension). This denotes a quite high level of light pollution despite the fact that the nominal NSB is at a level of 21.6 mag(_{mathrm{SQM}})/arcsec(^{2}). This highlights the fact that there is not always a strict correlation between the typical clear sky NSB obtained for a given site and its NDR indicator, i.e. the presence of clouds decreases the NSB more than we could have expected just by knowing the clear sky NSB. On that respect, the NDR ratio brings more information that the clear sky NSB alone.In addition to provide an indicator which is representative of light pollution in all possible atmospheric conditions, the NDR provides a tool to compare locations in a more meaningful way than just using a set of standalone NSB evaluations. First it is not dependent of an inter-calibration between different systems and second its statistical nature makes it more robust when it comes to perform comparisons.NDR into practiceThe NDR indicator has been calculated for several different sites by DarkSkyLab during various projects in France that involved NSB measuring sessions in the field. To demonstrate some of the results that have been obtained, Fig. 10 provides the density histograms of 4 different sites which have quite different light pollution profiles.Figure 10NSB density histograms of 4 different sites used to compute the NDR indicator. The nominal NSB (which corresponds to the most common clear sky conditions) is noted with a white tick mark next to the vertical axis. Relative levels of the bright and dark dispersion terms (((N_b cdot MAD_b)) and ((N_d cdot MAD_d))) are noted respectively with an orange tick mark and a green tick mark. The computed values of the NDR indicator and nominal NSB are provided in the top-left corner of each figure.Full size imageTo build these diagrams, only the measures acquired during a few hours in the middle of the nights have been used to ensure the maximum stability of the NSB curves and avoid lighting extinctions that create large gaps in NSB profiles. The Galactic plane bias is corrected on all plots and the same NSB scale is used in order to perform comparisons between the 4 sites. One can notice that the number of measures and nights for the 4 sites are quite different. However, they are all sufficient to derive a meaningful value of the NDR indicator using the bootstrapping with replacement resampling method described above, but it is clear that the more NSB measures used, the more accurate the NDR indicator.Table 2 summarizes the NDR indicators as well as the nominal NSB for the 4 sites which are sorted in the order of decreasing NDR indicator values.Table 2 Summary of the nominal NSB and NDR indicators of the 4 different sites.Full size tableOne can see that the NDR indicator values are not strictly correlated to the nominal NSB values, e.g. despite the fact that the nominal NSB of site (a) is slightly better than the one of site (b), the NDR indicator value is much larger for site (a) than for site (b). This can be explained if we consider the specificities of each site:

    Cervières (a) is a small village in the Haut-Forez area, France, which is surrounded by large cities (Lyon, Saint-Etienne and Clermont-Ferrand at a distance between 50 to 80 km) and a closer mid-size city (Roanne at 30 km). At the top of that, the town of Noirétable and a large highway rest area are just 2 km away without any nocturnal extinction applied (as opposed to the village of Cervières itself for which public lighting is turned off from 23:00 to 05:00 local time). These conditions are favourable to the presence of a constant light pollution background which has a negative impact on the zenithal NSB measures in most cloudy conditions (distant large cities for high elevation clouds and Noirétable and the highway rest area for lower elevation clouds). Only rare cloud conditions actually protect the site from the effect of mid-distance light sources. In clear sky conditions, however, the fact that there is no close light sources provides reasonably good NSB levels;

    The Copernic Association Observatory (b) is located 6 km from the large town of Gap in the mountain area of Hautes-Alpes in the south of France. There is no significant short distant light sources but in many cloud conditions the contribution of Gap has a very negative impact on the zenithal luminance. However, due to the fact that the observatory is at a higher altitude on the hills surrounding the city of Gap, there are cloud conditions that make the site darker. In clear sky conditions, the proximity of Gap does not permit a quality better than that of a rural sky;

    The Astrièves Observatory (c) is located near the center of the small town of Gresse-en-Vercors in the Parc Naturel Régional du Vercors. There is a full nocturnal extinction of the village for a large part of the night resulting in a good sky quality in clear sky conditions. The large city of Grenoble is at a distance of 30 km in a valley at the north-east, and the two locations are separated by a few mountains which efficiently help masking the light pollution as soon as the cloud ceiling is below a certain altitude, resulting into a dark environment. On the opposite, high elevation clouds reflect the light from Grenoble and increase the zenithal luminance;

    Eourres (d) is a small and isolated village located 20 km west of Sisteron in the department of Hautes-Alpes, France, which is surrounded by mountains. There is no significant light sources closer than those of Sisteron and this results into a very good night sky quality with, most of the times, a very dark environment in cloudy conditions.

    Figure 11 provides a graphical representation of the NDR indicator values for the 4 sites. On the NDR scale, the value 1 indicates that the bright and dark dispersion terms (respectively ((N_b cdot MAD_b)) and ((N_d cdot MAD_d))) are equal, which means there is a balance between dark and bright conditions at the zenith on the considered site with reference to the most common clear sky level.Figure 11Summary of the NDR indicators obtained for the 4 sites. The diagram uses 1 as the pivotal value to delineate sites according to the two bright and dark dispersion terms ((N_b cdot MAD_b)) and ((N_d cdot MAD_d)).Full size imageThe NDR can theoretically vary between 0 (totally dark site) and several hundreds (extremely bright site) but in practice the best sites can reach NDR indicator values down to 0.3 in the best preserved locations and up to 200 for very large and polluted cities.Robustness of the NDR indicatorIt is important to evaluate how the NDR indicator is dependant on the number of measures used to compute it and to figure out what would be the minimum number of night sessions required to obtain a meaningful NDR indicator value at a given site. To achieve that, we have used the data from two of the four sites presented above (the two which have the largest number or recorded nights: Cervières with 424 nights and the Astrièves Observatory with 373 nights). The 1000-step bootstrapping procedure has been repeatedly executed on each data set with a regularly decreasing sample of nights: starting from the full number of nights, a decrement of 10 nights is applied at each step until only 20 nights are remaining. At every bootstrap step, each sample is composed of n nights randomly chosen among the N available ones knowing that any night can be selected several times.Figure 12 shows the NDR indicator values that have been obtained for each of the two sites as a function of the night sample considered. The 95% confidence interval is plotted against each NDR indicator value (it is preferred to the standard deviation since the NSB distribution in the data sets is not normal). In the right plot of Fig. 12, the last confidence interval for the 24 night sample is too wide to fit in the y-axis NDR range (the top value is 195).Figure 12Results of the NDR resampling on the two data sets of Cervières and Astrièves Observatory. The horizontal axis is the number of nights considered into the night sample and the vertical axis provides the NDR indicator obtained for each sampling set through a 1000-iteration bootstrapping with replacement calculation.Full size imageDiscussion on the required number of nightsWe can see in Fig. 12 that the NDR indicator and the confidence interval remain stable down to 200 nights. Below this threshold, the NDR starts to become unstable with growing confidence intervals. Based on this data, we can estimate that the minimum number of nights required to compute a robust NDR indicator is 200 (therefore between 7 and 8 months since there are periods around the full moons where there is no night portions recorded).However, depending on the measuring session objectives, the NDR indicator can be considered as accurate enough even when using a smaller number of nights. If the goal is simply to get a first estimate of the light pollution level at a given site, we can consider that 90 nights (a little more than 3 months of measures) are enough. On the opposite, if we want to perform a comparison between several sites for evaluating the impact of light pollution on a particular species, we might want to perform at least 200 nights of measurement to get a better accuracy for the NDR indicator. The experience from DarkSkyLab through many NSB measuring sessions is that 3 to 4 months of measures are required to get a meaningful density histogram, hence an accurate enough NDR indicator, so that a site can be sufficiently characterized from a light pollution perspective. Such a measuring period usually guarantees that the clear sky nominal NSB is well defined and that various cloud conditions have been observed. This estimate is sustained by the results obtained in Fig. 12.Value of the NDR indicator for ecological researchThe study of the impact of light pollution on biodiversity is currently in full expansion, amplifying a political and citizen demand for the reclamation of the night2,32,33.We identify three main contributions of the NDR indicator for ecological research. First, it overcomes the limits of an old problem of communication in terms of measurement units between disciplines and potentially limits the use of units without real meaning from a biodiversity point of view34,35. Secondly, the use of the NDR indicator limits the common biases linked to a characterization of the effects of anthropogenic light which is too limited in time and space35. Indeed, the life history traits of species are not only shaped by the intensity of light emitted into the nocturnal environment but also by its variation over time34,35,36. Currently, the characterization of light pollution is too often limited in time and space, which can lead to misinterpretation37. Thirdly, the NDR indicator provides ecological researchers with a unit of measurement that integrates a sufficiently long time step to study the impact of light pollution on the evolutionary processes at work in the life of species and particularly on population dynamics and animal behavior36,38,39.Limitations and future improvements of the NDR indicatorThe main limitation of the NDR indicator resides in the possible difficulty to identify a well defined value for the nominal NSB, i.e. the NSB value that represents the most common clear sky conditions of a given site. For the most part, this is due to the contribution of the Galactic plane to the zenithal sky brightness and, to a lower extent, to the contribution of other natural light sources (dense star fields, airglow and zodiacal light). The residual spread of NSB measures is due to changing atmospheric conditions at various time scales, but, for this particular contribution, we can expect a statistical compensation to eliminate a systematic associated bias.At the moment, the contribution of the Galactic plane and star fields is canceled into the NSB measures by calculating in the Noxi software the integrated flux of all the stars that belong to the field of view (using the UCAC4 star catalogue). However, this approach has proven some limitations, especially in the southern hemisphere where the Galactic center goes through the zenith and is particularly bright. A probable explanation for that lack of predictability is the fact that the Galactic plane contains diffuse sources such as nebulae which are not accounted for into the star catalogues and which actually cannot be ignored. To address this issue, DarkSkyLab has the project to create a brightness map of the Galactic plane with a square degree resolution or better so that the contribution of all sources can be correctly accounted for.In addition to better correcting the Galactic plane bias, an improvement must be made with regards to the NSB measures that need to be corrected. At the moment, all NSB measures are corrected from the Galactic plane bias without regards to the presence of clouds or high levels of light pollution. So a first heuristic must be implemented to only apply the bias correction to clear sky NSB measures. An other heuristic must also be developed to reduce the correction applied as a function of the NSB level.A third limitation of the NDR indicator is related to a possible lack of cloudy conditions at some sites (e.g. in the Atacama desert in Chile with more than 320 clear nights per year), the reason simply being that the NDR indicator requires the presence of clouds to differentiate the bright and dark extensions into the NSB density histograms. This means that the NDR indicator can hardly be used for such astronomy-oriented sites which experience rare cloudy conditions. More

  • in

    Pollinator biological traits and ecological interactions mediate the impacts of mosquito-targeting malathion application

    Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14(10), 1062–1072 (2011).PubMed 
    Article 

    Google Scholar 
    Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol. Lett. 10(4), 299–314 (2007).PubMed 
    Article 

    Google Scholar 
    Kluser, S. & Peduzzi, P. Global pollinator decline: A literature review. Preprint at http://archive-ouverte.unige.ch/unige 32258 (2007).Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25(6), 345–353 (2010).PubMed 
    Article 

    Google Scholar 
    Rhodes, C. J. Pollinator decline—an ecological calamity in the making?. Sci. Prog. 101(2), 121–160 (2018).PubMed 
    Article 

    Google Scholar 
    Huang, H. & D’Odorico, P. Critical transitions in plant-pollinator systems induced by positive inbreeding-reward-pollinator feedbacks. Iscience 23(2), 100819 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krishnan, N. et al. Assessing field-scale risks of foliar insecticide applications to monarch butterfly (Danaus plexippus) larvae. Environ. Toxicol. Chem. 39(4), 923–941 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bargar, T. A., Hladik, M. L. & Daniels, J. C. Uptake and toxicity of clothianidin to monarch butterflies from milkweed consumption. PeerJ 8, e8669 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Emmel, T. C. & Tucker, J. C. In Mosquito Control Pesticides: Ecological Impacts and Management Alternatives (eds Emmel, T. C. & Tucker, J. C.) 105 (Scientific Publishers, 1991).Johnson, R. M., Ellis, M. D., Mullin, C. A. & Frazier, M. Pesticides and honey bee toxicity–USA. Apidologie 41(3), 312–331 (2010).CAS 
    Article 

    Google Scholar 
    Olaya-Arenas, P., Scharf, M. E. & Kaplan, I. Do pollinators prefer pesticide-free plants? An experimental test with monarchs and milkweeds. J. Appl. Ecol. 57(10), 2019–2030 (2020).CAS 
    Article 

    Google Scholar 
    Berryman, A. A. What causes population cycles of forest Lepidoptera?. Trends Ecol. Evol. 11(1), 28–32 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elkinton, J. & Boettner, G. Benefits and harm caused by the introduced generalist tachinid, Compsilura concinnata North America. Biol. Control 57(2), 277–288 (2012).
    Google Scholar 
    Beschta, R. L. & Ripple, W. J. Riparian vegetation recovery in Yellowstone: The first two decades after wolf reintroduction. Biol. Conserv. 198, 93–103 (2016).Article 

    Google Scholar 
    Oberhauser, K. et al. Lacewings wasps and fliesoh my insect enemies take a bite out of monarchs. In Monarchs in a Changing World: Biology and Conservation of an iconic insect (eds Oberhauser, K. S. et al.) 71–82 (Cornell University Press, 2015).Chapter 

    Google Scholar 
    Zalucki, M. P., Clarke, A. R. & Malcolm, S. B. Ecology and behavior of first instar larval Lepidoptera. Annu. Rev. Entomol. 47(1), 361–393 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hermann, S. L., Blackledge, C., Haan, N. L., Myers, A. T. & Landis, D. A. Predators of monarch butterfly eggs and neonate larvae are more diverse than previously recognised. Sci. Rep. 9(1), 1–9 (2019).CAS 
    Article 

    Google Scholar 
    McCoshum, S. M., Andreoli, S. L., Stenoien, C. M., Oberhauser, K. S. & Baum, K. A. Species distribution models for natural enemies of monarch butterfly (Danaus plexippus) larvae and pupae: Distribution patterns and implications for conservation. J. Insect Conserv. 20(2), 223–237 (2016).Article 

    Google Scholar 
    Geest, E. A., Wolfenbarger, L. L. & McCarty, J. P. Recruitment, survival and parasitism of monarch butterflies (Danaus plexippus) in milkweed gardens and conservation areas. J. Insect Conserv. 23(2), 211–224 (2019).Article 

    Google Scholar 
    Stenoien, C. et al. Monarchs in decline: A collateral landscape-level effect of modern agriculture. Insect Sci. 25(4), 528–541 (2018).PubMed 
    Article 

    Google Scholar 
    Crone, E. E., Pelton, E. M., Brown, L. M., Thomas, C. C. & Schultz, C. B. Why are monarch butterflies declining in the west? Understanding the importance of multiple correlated drivers. Ecol. Appl. 29(7), e01975 (2019).PubMed 
    Article 

    Google Scholar 
    Brower, L. P. et al. Effect of the 2010–2011 drought on the lipid content of monarchs migrating through Texas to overwintering sites in Mexico. In The Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds Oberhauser, K. S. et al.) 117–129 (Cornell University Press, 2015).
    Google Scholar 
    Thogmartin, W. E. et al. Monarch butterfly population decline in North America: Identifying the threatening processes. R. Soc. Open Sci. 4(9), 170760 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olaya-Arenas, P. & Kaplan, I. Quantifying pesticide exposure risk for monarch caterpillars on milkweeds bordering agricultural land. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00223 (2019).
    Article 

    Google Scholar 
    Olaya-Arenas, P., Hauri, K., Scharf, M. E. & Kaplan, I. Larval pesticide exposure impacts monarch butterfly performance. Sci. Rep. 10(1), 1–12 (2020).Article 

    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. PNAS 108(2), 662–667 (2011).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Epstein, L. Fifty years since silent spring. Annu. Rev. Phytopathol. 52, 377–402 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rayor, L. S. Effects of monarch larval host plant chemistry and body size on Polistes wasp predation. In The Monarch Butterfly Biology and Conservation (eds Oberhauser, K. S. & Solensky, M. J.) 39–46 (Cornell University Press, 2004).
    Google Scholar 
    Baker, A. M. & Potter, D. A. Invasive paper wasp turns urban pollinator gardens into ecological traps for monarch butterfly larvae. Sci. Rep. 10(1), 1–7 (2020).Article 

    Google Scholar 
    Castellanos, I. & Barbosa, P. Dropping from host plants in response to predators by a polyphagous caterpillar. J. Lepid. Soc. 65(4), 270–272 (2011).
    Google Scholar 
    Kessler, S. C. et al. Bees prefer foods containing neonicotinoid pesticides. Nature 521(7550), 74–76 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liao, L.-H., Wu, W.-Y. & Berenbaum, M. R. Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food. Sci. Rep. 7(1), 1–8 (2017).Article 

    Google Scholar 
    Musser, R. O. et al. Caterpillar saliva beats plant defences. Nature 416(6881), 599–600 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schmidt, J. & Smith, J. Host examination walk and oviposition site selection of Trichogramma minutum: Studies on spherical hosts. J. Insect Behav. 2(2), 143–171 (1989).Article 

    Google Scholar 
    Ramos, R. S. et al. Investigation of the lethal and behavioral effects of commercial insecticides on the parasitoid wasp Copidosoma truncatellum. Chemosphere 191, 770–778 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chareonviriyaphap, T. et al. Pesticide avoidance behavior in Anopheles albimanus, a malaria vector in the Americas. J. Am. Mosq. Control Assoc. 13(2), 171–183 (1997).CAS 
    PubMed 

    Google Scholar 
    Nansen, C., Baissac, O., Nansen, M., Powis, K. & Baker, G. Behavioral avoidance-will physiological insecticide resistance level of insect strains affect their oviposition and movement responses?. PLoS ONE 11(3), e0149994 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martini, X., Kincy, N. & Nansen, C. Quantitative impact assessment of spray coverage and pest behavior on contact pesticide performance. Pest Manag. Sci. 68(11), 1471–1477 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bull, D. & Coleman, R. Effects of pesticides on Trichogramma spp. Southwest. Entomol. Suppl. 8, 156–168 (1985).CAS 

    Google Scholar 
    Thubru, D., Firake, D. & Behere, G. Assessing risks of pesticides targeting lepidopteran pests in cruciferous ecosystems to eggs parasitoid, Trichogramma brassicae (Bezdenko). Saudi J. Biol. Sci. 25(4), 680–688 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Selwood, K. & Zimmer, H. Refuges for biodiversity conservation: A review of the evidence. Biol. Conserv. 245, 108502 (2020).Article 

    Google Scholar 
    Chmiel, J. A., Daisley, B. A., Pitek, A. P., Thompson, G. J. & Reid, G. Understanding the effects of sublethal pesticide exposure on honey bees: A role for probiotics as mediators of environmental stress. Front. Ecol. Evol. 8, 22 (2020).Article 

    Google Scholar 
    Chittka, L., Williams, N., Rasmussen, H. & Thomson, J. Navigation without vision: Bumblebee orientation in complete darkness. Proc. R. Soc. B 266(1414), 45–50 (1999).PubMed Central 
    Article 

    Google Scholar 
    Young, M. W. & Kay, S. A. Time zones: A comparative genetics of circadian clocks. Nat. Rev. Genet. 2(9), 702–715 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mallet, J. Gregarious roosting and home range in Heliconius butterflies. Natl. Geogr. Res. 2(2), 198–215 (1986).
    Google Scholar 
    Chang, Y.-M. et al. Roosting site usage, gregarious roosting and behavioral interactions during roost-assembly of two Lycaenidae butterflies. Zool. Stud. 59, e10 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Vulinec, K. Collective security aggregation by insects as a defence. In Insect Defences. Adaptive Mechanisms of Prey and Predators (eds Evans, D. L. & Schmidt, J. O.) 251–288 (State University of New York, 1990).
    Google Scholar 
    Salcedo, C. Environmental elements involved in communal roosting in Heliconius butterflies (Lepidoptera: Nymphalidae). Environ. Entomol. 39(3), 907–911 (2010).PubMed 
    Article 

    Google Scholar 
    Giordano, B. V., McGregor, B. L., Runkel, A. E. IV. & Burkett-Cadena, N. D. Distance diminishes the effect of deltamethrin exposure on the monarch butterfly, Danaus plexippus. J. Am. Mosq. Control Assoc. 36(3), 181–188 (2020).PubMed 
    Article 

    Google Scholar 
    Matzrafi, M. Climate change exacerbates pest damage through reduced pesticide efficacy. Pest Manag. Sci. 75(1), 9–13 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hewitt, A. Spray drift: Impact of requirements to protect the environment. Crop Prot. 19(8–10), 623–627 (2000).Article 

    Google Scholar 
    Nail, K. R., Stenoien, C. & Oberhauser, K. S. Immature monarch survival: Effects of site characteristics, density and time. Ann. Entomol. Soc. 108(5), 680–690 (2015).Article 

    Google Scholar 
    Payne, C. C. & Mertens, P. P. Cytoplasmic polyhedrosis viruses. In The Reoviridae (ed. Joklik, K.) 425–504 (Springer, 1983).Chapter 

    Google Scholar 
    Zalucki, M. P. et al. It’s the first bites that count: Survival of first-instar monarchs on milkweeds. Austral. Ecol. 26(5), 547–555 (2001).Article 

    Google Scholar 
    Salvato, M. Influence of mosquito control chemicals on butterflies (Nymphalidae, Lycaenidae, Hesperiidae) of the lower Florida keys. J. Lepid. Soc. 55(1), 8–14 (2001).
    Google Scholar 
    Frey, D. F. & Leong, K. L. Can microhabitat selection or differences in ‘catchability’ explain male-biased sex ratios in overwintering populations of monarch butterflies?. Anim. Behav. 45(5), 1025 (1993).Article 

    Google Scholar 
    Macgregor, C. J. & Scott-Brown, A. S. Nocturnal pollination: An overlooked ecosystem service vulnerable to environmental change. Emerg. Top. Life Sci. 4(1), 19–32 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Author Correction: Widespread extinction debts and colonization credits in United States breeding bird communities

    In the version of this article initially published, there were errors in equations and notations in the Methods “Model development” subsection which arose during manuscript preparation; the errors affect presentation of the study but not the analysis, results, or code provided with the article. Clarifications to text and equations follow.In Equation (1), “N” replaces “Normal”; in Equations (2), (3), (7) and in text directly below Equations (3), (5) and (7), “ys,i,z” now replaces “Δxs,t1, t2.” In the two paragraphs below Equation (2), “t2 = 2016” and “t1 = 2001” now replace “2016” and “2001” in five instances. Further, Equations (5)–(7) have been revised as follows:$$begin{array}{ll}fleft( {x_{s,t}} right) = {{{mathrm{exp}}}} & left( {beta _0 + mathop {sum }limits_{i = 1}^{I = 5} beta _{1,i} x_{s,i,t} + mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{k = i}^{K = 5} beta _{2,i,k}x_{s,i,t}x_{k,s,t}}right. \ & quad quad left. {+ mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{k = 1, k neq i}^{K = 5} beta _{3,i,k}x_{s,i,t}x_{k,s,t}} right)end{array} {rm{Revised}} {rm{Eq}}. (5)$$$$begin{array}{ll}fleft( {x_{s,t}} right) \ = expleft( {beta _0 + mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{j = 1}^{J = 2} beta _{0,i,j,}x_{i,s,t}^j + mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{k = i + 1}^{K = 6} beta _{1,i,k}x_{i,s,t}x_{k,s,t}} right) {mathrm{Original}} {rm{Eq}}. (5)end{array}$$$$y_{s,i,z} = left{ {begin{array}{*{20}{l}} {y_{s,i,1} = left| {Delta x_{s,i}} right|,} hfill & {y_{s,i,2} = 0,} hfill & {{{{mathrm{if}}}},Delta x_{s,i} < 0} hfill \ {y_{s,i,1} = 0,} hfill & {y_{s,i,2} = Delta x_{s,i}} hfill & {{{{mathrm{otherwise}}}}} hfill end{array}} right. {rm{Revised}} {rm{Eq}}. (6)$$$$x_{i,s,} = left{ {begin{array}{*{20}{l}} {x_{1,i,s} = left| {Delta x_{i,s}} right|,} hfill & {x_{2,i,s} = 0,} hfill & {if,Delta x_{i,s} < 0} hfill \ {x_{1,i,s} = 0,} hfill & {x_{2,i,s} = Delta x_{i,s},} hfill & {otherwise} hfill end{array}} right. {rm{Original}} {rm{Eq}}. (6)$$$$omega left( {y_{s,i,z};gamma } right) = {{{mathrm{exp}}}}left( {mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{z = 1}^{Z = 2} - gamma _{i,z} y_{s,i,z}} right) {rm{Revised}} {rm{Eq}}. (7)$$$$omega left( {Delta x_{s,t_1,t_2};gamma } right) = expleft( {mathop {sum }limits_{i = 1}^{I = 5} - gamma _{i,z}Delta x_{z,s,i}} right) {rm{Original}} {rm{Eq}}. (7)$$All changes have been made in the HTML and PDF versions of the article. More

  • in

    Warming reduces global agricultural production by decreasing cropping frequency and yields

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).CAS 
    Article 

    Google Scholar 
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).CAS 
    Article 

    Google Scholar 
    Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).CAS 
    Article 

    Google Scholar 
    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).Article 

    Google Scholar 
    Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).Article 

    Google Scholar 
    Hodge, I., Hauck, J. & Bonn, A. The alignment of agricultural and nature conservation policies in the European Union. Conserv. Biol. 29, 996–1005 (2015).Article 

    Google Scholar 
    Heilmayr, R., Rausch, L. L., Munger, J. & Gibbs, H. K. Brazil’s Amazon Soy Moratorium reduced deforestation. Nat. Food 1, 801–810 (2020).Article 

    Google Scholar 
    Diffenbaugh, N. S. et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl Acad. Sci. USA 114, 4881–4886 (2017).CAS 
    Article 

    Google Scholar 
    Iizumi, T. & Ramankutty, N. How do weather and climate influence cropping area and intensity? Glob. Food Security 4, 46–50 (2015).Article 

    Google Scholar 
    Davis, K. F., Downs, S. & Gephart, J. A. Towards food supply chain resilience to environmental shocks. Nat. Food 2, 54–65 (2020).Article 

    Google Scholar 
    Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 3, 908–916 (2020).Article 

    Google Scholar 
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).CAS 
    Article 

    Google Scholar 
    Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 1243 (2020).CAS 
    Article 

    Google Scholar 
    Afifi, T., Liwenga, E. & Kwezi, L. Rainfall-induced crop failure, food insecurity and out-migration in Same-Kilimanjaro, Tanzania. Clim. Dev. 6, 53–60 (2014).Article 

    Google Scholar 
    Stigter, K. in Applied Agrometeorology (ed. Stigter, K.) 531–534 (Springer, 2010).Seifert, C. A. & Lobell, D. B. Response of double cropping suitability to climate change in the United States. Environ. Res. Lett. 10, 024002 (2015).Article 

    Google Scholar 
    Kawasaki, K. Two harvests are better than one: double cropping as a strategy for climate change adaptation. Am. J. Agr. Econ. 101, 172–192 (2019).Article 

    Google Scholar 
    Ceglar, A., Zampieri, M., Toreti, A. & Dentener, F. Observed northward migration of agro‐climate zones in Europe will further accelerate under climate change. Earths Future 7, 1088–1101 (2019).Article 

    Google Scholar 
    Cohn, A. S., VanWey, L. K., Spera, S. A. & Mustard, J. F. Cropping frequency and area response to climate variability can exceed yield response. Nat. Clim. Change 6, 601–604 (2016).Article 

    Google Scholar 
    Challinor, A. J., Simelton, E. S., Fraser, E. D. G., Hemming, D. & Collins, M. Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environ. Res. Lett. 5, 034012 (2010).Article 

    Google Scholar 
    Ray, D. K. & Foley, J. A. Increasing global crop harvest frequency: recent trends and future directions. Environ. Res. Lett. 8, 044041 (2013).Article 

    Google Scholar 
    Wu, W. et al. Global cropping intensity gaps: increasing food production without cropland expansion. Land Use Policy 76, 515–525 (2018).Article 

    Google Scholar 
    Pugh, T. A. M. et al. Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nat. Commun. 7, 12608 (2016).CAS 
    Article 

    Google Scholar 
    Scherer, L. A., Verburg, P. H. & Schulp, C. J. E. Opportunities for sustainable intensification in European agriculture. Glob. Environ. Change 48, 43–55 (2018).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article 

    Google Scholar 
    Waha, K. et al. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Change 64, 102131 (2020).Article 

    Google Scholar 
    Raderschall, C. A., Vico, G., Lundin, O., Taylor, A. R. & Bommarco, R. Water stress and insect herbivory interactively reduce crop yield while the insect pollination benefit is conserved. Glob. Chang. Biol. 27, 71–83 (2021).CAS 
    Article 

    Google Scholar 
    Ding, M. et al. Variation in cropping intensity in Northern China from 1982 to 2012 based on GIMMS-NDVI data. Sustainability 8, 1123 (2016).Article 

    Google Scholar 
    Yu, Q., Xiang, M., Sun, Z. & Wu, W. The complexity of measuring cropland use intensity: an empirical study. Agr. Syst. 192, 103180 (2021).Article 

    Google Scholar 
    Moore, F. C. & Lobell, D. B. Adaptation potential of European agriculture in response to climate change. Nat. Clim. Change 4, 610–614 (2014).Article 

    Google Scholar 
    Agnolucci, P. et al. Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nat. Food 1, 562–571 (2020).Article 

    Google Scholar 
    Zhu, P. & Burney, J. Temperature‐driven harvest decisions amplify US winter wheat loss under climate warming. Glob. Change Biol. 27, 550–562 (2021).CAS 
    Article 

    Google Scholar 
    Ortiz-Bobea, A., Knippenberg, E. & Chambers, R. G. Growing climatic sensitivity of U.S. agriculture linked to technological change and regional specialization. Sci. Adv. 4, 4343 (2018).Article 

    Google Scholar 
    Duku, C., Zwart, S. J. & Hein, L. Impacts of climate change on cropping patterns in a tropical, sub-humid watershed. PLoS ONE 13, 0192642 (2018).Article 

    Google Scholar 
    Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 3, 281–289 (2020).Article 

    Google Scholar 
    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).Article 

    Google Scholar 
    Yang, X. et al. Potential benefits of climate change for crop productivity in China. Agric. For. Meteorol. 208, 76–84 (2015).Article 

    Google Scholar 
    Burney, J., Woltering, L. & Burke, M. Solar-powered drip irrigation enhances food security in the Sudano–Sahel. Proc. Natl Acad. Sci. USA 107, 1848–1853 (2010).CAS 
    Article 

    Google Scholar 
    You, L. et al. What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach. Food Policy 36, 770–782 (2011).Article 

    Google Scholar 
    Zheng, B., Chenu, K., Fernanda Dreccer, M. & Chapman, S. C. Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Glob. Change Biol. 18, 2899–2914 (2012).Article 

    Google Scholar 
    Flach, R., Fader, M., Folberth, C., Skalský, R. & Jantke, K. The effects of cropping intensity and cropland expansion of Brazilian soybean production on green water flows. Environ. Res. Commun. 2, 071001 (2020).Article 

    Google Scholar 
    Wood, S. A., Jina, A. S., Jain, M., Kristjanson, P. & DeFries, R. S. Smallholder farmer cropping decisions related to climate variability across multiple regions. Glob. Environ. Change 25, 163–172 (2014).Article 

    Google Scholar 
    Paola, A. D. et al. The expansion of wheat thermal suitability of Russia in response to climate change. Land Use Policy 78, 70–77 (2018).Article 

    Google Scholar 
    Brunelle, T. & Makowski, D. Assessing whether the best land is cultivated first: a quantile analysis. PLoS ONE 15, e0242222 (2020).CAS 
    Article 

    Google Scholar 
    Lark, T. J., Spawn, S. A., Bougie, M. & Gibbs, H. K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 11, 4295 (2020).CAS 
    Article 

    Google Scholar 
    Zabel, F., Putzenlechner, B. & Mauser, W. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9, e107522 (2014).Article 

    Google Scholar 
    Petkeviciene, B. The effects of climate factors on sugar beet early sowing timing. Agron. Res. 7, 436–443 (2009).
    Google Scholar 
    Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).CAS 
    Article 

    Google Scholar 
    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 11 (Cambridge Univ. Press, 2013).Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966 (2017).Article 

    Google Scholar 
    Asadieh, B. & Krakauer, N. Y. Global trends in extreme precipitation: climate models versus observations. Hydrol. Earth Syst. Sci. 19, 877–891 (2015).Article 

    Google Scholar 
    Zhang, Y., You, L., Lee, D. & Block, P. Integrating climate prediction and regionalization into an agro-economic model to guide agricultural planning. Clim. Change 158, 435–451 (2020).Article 

    Google Scholar 
    Turner, S. W. D., Hejazi, M., Yonkofski, C., Kim, S. H. & Kyle, P. Influence of groundwater extraction costs and resource depletion limits on simulated global nonrenewable water withdrawals over the twenty‐first century. Earths Future 7, 123–135 (2019).Article 

    Google Scholar 
    Zhu, W., Jia, S., Devineni, N., Lv, A. & Lall, U. Evaluating China’s water security for food production: the role of rainfall and irrigation. Geophys. Res. Lett. 46, 11155–11166 (2019).Article 

    Google Scholar 
    FAOSTAT (Food and Agriculture Organization of the United Nations, 1997).Egli, L., Schröter, M., Scherber, C., Tscharntke, T. & Seppelt, R. Crop asynchrony stabilizes food production. Nature 588, E7–E12 (2020).CAS 
    Article 

    Google Scholar 
    Hersbach, H. et al. ERA5 Hourly Data on Single Levels from 1979 to Present (Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 1 August 2020); https://doi.org/10.24381/cds.adbb2d47 (2018).Feng, P. et al. Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia. Clim. Change 147, 555–569 (2018).Article 

    Google Scholar 
    Teluguntla, P. et al. in Land Resources Monitoring, Modeling, and Mapping with Remote Sensing (ed. Thenkabail, P. S.) 849 (CRC Press, 2015).Hawkins, E. et al. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Glob. Change Biol. 19, 937–947 (2013).Article 

    Google Scholar 
    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).Article 

    Google Scholar 
    Deryng, D., Sacks, W. J., Barford, C. C. & Ramankutty, N. Simulating the effects of climate and agricultural management practices on global crop yield. Glob. Biogeochem. Cycles 25, GB2006 (2011).New, M., New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).Article 

    Google Scholar 
    Willmott, C. J. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1996) (Center for Climatic Research, 2000); http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.htmlVan Beveren, I. Total factor productivity estimation: a practical review. J. Econ. Surv. 26, 98–128 (2012).Article 

    Google Scholar 
    Xu, J. et al. Double cropping and cropland expansion boost grain production in Brazil. Nat. Food 2, 264–273 (2021).Article 

    Google Scholar 
    Friedl, M. & Gray, J. MCD12Q2 MODIS/Terra+ Aqua Land Cover Dynamics Yearly L3 Global 500 m SIN Grid V006 (NASA EOSDIS, 2019).Sulla-Menashe, D. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product (USGS, 2018).Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).CAS 
    Article 

    Google Scholar 
    Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019).Article 

    Google Scholar 
    Peng Zhu. Climate effects on caloric yield and cropping frequency. Zenodo https://doi.org/10.5281/zenodo.7038556 (2022). More

  • in

    Oceanic vertical migrators in a warming world

    Seibel, B. A. & Birk, M. A. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01491-6 (2022).Article 

    Google Scholar 
    Urban, M. C. et al. Science 353, aad8466 (2016).Article 

    Google Scholar 
    Pörtner, H. O. & Knust, R. Science 315, 95–97 (2007).Article 

    Google Scholar 
    Verberk, W. C. E. P., Bilton, D. T., Calosi, P. & Spicer, J. I. Ecology 92, 1565–1572 (2011).Article 

    Google Scholar 
    Rubalcaba, J. G., Verberk, W. C., Hendriks, A. J., Saris, B. & Woods, H. A. Proc. Natl Acad. Sci. USA 117, 31963–31968 (2020).CAS 
    Article 

    Google Scholar 
    Deutsch, C. et al. Proc. Natl Acad. Sci. USA 119, e2201345119 (2022).CAS 
    Article 

    Google Scholar 
    Stramma, L. et al. Nat. Clim. Change 2, 33–37 (2012).CAS 
    Article 

    Google Scholar 
    Vergés, A. et al. Proc. R. Soc. B 281, 20140846 (2014).Article 

    Google Scholar  More

  • in

    Resolving malaria’s dry-season dilemma

    Seasonal fluctuations in animal population dynamics are among the most fundamental attributes of life on Earth. A long recognized but poorly understood example is the dramatic seasonal fluctuation in the abundance of malaria vectors in the semi-arid savannah and Sahel regions of Africa. In these regions, the vector mosquitoes largely disappear during a prolonged 3- to 8-month dry season, when lack of rain causes the aquatic larval habitats to disappear. As a result, malaria transmission plummets. When the rains return, the mosquito vectors rapidly reappear, leading to a resurgence of malaria transmission. How the vector populations are able to persist through the prolonged dry season and rapidly rebound with the onset of rains is referred to as the ‘dry-season malaria paradox’, and has remained an enduring mystery of malariology for nearly 100 years. Writing in Nature Ecology & Evolution, Faiman et al.1 help to resolve this mystery by using an innovative isotopic labelling strategy: they demonstrate that at least approximately 20% of the local population of the malaria vector Anopheles coluzzi in the West African Sahel survive the dry season locally by undergoing summer dormancy, known as aestivation. More

  • in

    Mito-nuclear selection induces a trade-off between species ecological dominance and evolutionary lifespan

    Hagen, O. et al. gen3sis: a general engine for eco-evolutionary simulations of the processes that shape Earth’s biodiversity. PLoS Biol. 19, e3001340 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Urban, M. C. et al. Evolutionary origins for ecological patterns in space. Proc. Natl Acad. Sci. USA 117, 17482–17490 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton Univ. Press, 2001).Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Neutral theory and relative species abundance in ecology. Nature 424, 1035–1037 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).PubMed 
    Article 

    Google Scholar 
    de Aguiar, M. A. M., Baranger, M., Baptestini, E. M., Kaufman, L. & Bar-Yam, Y. Global patterns of speciation and diversity. Nature 460, 384 (2009).PubMed 
    Article 

    Google Scholar 
    O’Dwyer, J. P. & Green, J. L. Field theory for biogeography: a spatially explicit model for predicting patterns of biodiversity. Ecol. Lett. 13, 87–95 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chisholm, R. A. & Pacala, S. W. Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proc. Natl Acad. Sci. USA 107, 15821–15825 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mutshinda, C. M., O’Hara, R. B. & Woiwod, I. P. What drives community dynamics? Proc. R. Soc. B 276, 2923–2929 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosindell, J., Cornell, S. J., Hubbell, S. P. & Etienne, R. S. Protracted speciation revitalizes the neutral theory of biodiversity. Ecol. Lett. 13, 716–727 (2010).PubMed 
    Article 

    Google Scholar 
    Chisholm, R. A. & O’Dwyer, J. P. Species ages in neutral biodiversity models. Theor. Popul. Biol. 93, 85–94 (2014).PubMed 
    Article 

    Google Scholar 
    Nee, S. The neutral theory of biodiversity: do the numbers add up? Funct. Ecol. 19, 173–176 (2005).Article 

    Google Scholar 
    Ricklefs, R. E. A comment on Hubbell’s zero-sum ecological drift model. Oikos 100, 185–192 (2003).Article 

    Google Scholar 
    Etienne, R. S., Apol, M. E. F., Olff, H. & Weissing, F. J. Modes of speciation and the neutral theory of biodiversity. Oikos 116, 241–258 (2007).Article 

    Google Scholar 
    Davies, T. J., Allen, A. P., Borda-de Água, L., Regetz, J. & Melián, C. J. Neutral biodiversity theory can explain the imbalance of phylogenetic trees but not the tempo of their diversification. Evolution 65, 1841–1850 (2011).PubMed 
    Article 

    Google Scholar 
    Higgs, P. G. & Derrida, B. Stochastic models for species formation in evolving populations. J. Phys. A 24, L985 (1991).Article 

    Google Scholar 
    Gavrilets, S., Li, H. & Vose, M. D. Rapid parapatric speciation on holey adaptive landscapes. Proc. R. Soc. B 265, 1483–1489 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gavrilets, S. & Vose, A. Dynamic patterns of adaptive radiation. Proc. Natl Acad. Sci. USA 102, 18040–18045 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nosil, P. Ecological Speciation (Oxford Univ. Press, 2012).Gavrilets, S., Acton, R. & Gravner, J. Dynamics of speciation and diversification in a metapopulation. Evolution 54, 1493–1501 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costa, C. L. N. et al. Signatures of microevolutionary processes in phylogenetic patterns. Syst. Biol. 68, 131–144 (2018).
    Google Scholar 
    Li, J., Huang, J.-P., Sukumaran, J. & Knowles, L. L. Microevolutionary processes impact macroevolutionary patterns. BMC Evol. Biol. 18, 123 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Melián, C. J., Alonso, D., Allesina, S., Condit, R. S. & Etienne, R. S. Does sex speed up evolutionary rate and increase biodiversity? PLoS Comput. Biol. 8, e1002414 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361, eaar5452 (2018).Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).PubMed 
    Article 

    Google Scholar 
    de Alencar, L. R. V. & Quental, T. B. Linking population-level and microevolutionary processes to understand speciation dynamics at the macroevolutionary scale. Ecol. Evol. 11, 5828–5843 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hurlbert, A. H. & Stegen, J. C. When should species richness be energy limited, and how would we know? Ecol. Lett. 17, 401–413 (2014).PubMed 
    Article 

    Google Scholar 
    Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525 (2014).PubMed 
    Article 

    Google Scholar 
    Rosindell, J., Harmon, L. J. & Etienne, R. S. Unifying ecology and macroevolution with individual-based theory. Ecol. Lett. 18, 472–482 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosindell, J. & Harmon, L. J. A unified model of species immigration, extinction and abundance on islands. J. Biogeogr. 40, 1107–1118 (2013).Article 

    Google Scholar 
    Etienne, R. S. & Rosindell, J. Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification. Syst. Biol. 61, 204–213 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rabosky, D. L. & Matute, D. R. Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in Drosophila and birds. Proc. Natl Acad. Sci. USA 110, 15354–15359 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Princepe, D. & De Aguiar, M. A. M. Modeling mito-nuclear compatibility and its role in species identification. Syst. Biol. 70, 133–144 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bar-Yaacov, D., Blumberg, A. & Mishmar, D. Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. Biochim. Biophys. Acta 1819, 1107–1111 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sunnucks, P., Morales, H. E., Lamb, A. M., Pavlova, A. & Greening, C. Integrative approaches for studying mitochondrial and nuclear genome co-evolution in oxidative phosphorylation. Front. Genet. 8, 25 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hill, G. E. The mitonuclear compatibility species concept. Auk 134, 393–409 (2017).Article 

    Google Scholar 
    Lima, T. G., Burton, R. S. & Willett, C. S. Genomic scans reveal multiple mito-nuclear incompatibilities in population crosses of the copepod Tigriopus californicus. Evolution 73, 609–620 (2019).Barreto, F. S. & Burton, R. S. Elevated oxidative damage is correlated with reduced fitness in interpopulation hybrids of a marine copepod. Proc. R. Soc. B https://doi.org/10.1098/rspb.2013.1521 (2013).Hill, G. E. Mitonuclear compensatory coevolution. Trends Genet. 36, 403–414 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gershoni, M., Templeton, A. R. & Mishmar, D. Mitochondrial bioenergetics as a major motive force of speciation. BioEssays 31, 642–650 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hill, G. E. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap. Ecol. Evol. 6, 5831–5842 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tobler, M., Barts, N. & Greenway, R. Mitochondria and the origin of species: bridging genetic and ecological perspectives on speciation processes. Integr. Comp. Biol. 59, 900–911 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burton, R. S. & Barreto, F. S. A disproportionate role for mtDNA in Dobzhansky–Muller incompatibilities? Mol. Ecol. 21, 4942–4957 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Telschow, A., Gadau, J., Werren, J. H. & Kobayashi, Y. Genetic incompatibilities between mitochondria and nuclear genes: effect on gene flow and speciation. Front. Genet. 10, 62 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lane, N. Biodiversity: on the origin of bar codes. Nature 462, 272–274 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hill, G. E Mitonuclear Ecology (Oxford Univ. Press, 2019).Wolff, J. N., Ladoukakis, E. D., Enríquez, J. A. & Dowling, D. K. Mitonuclear interactions: evolutionary consequences over multiple biological scales. Philos. Trans. R. Soc. B 369, 20130443 (2014).Article 

    Google Scholar 
    Koch, R. E. et al. Integrating mitochondrial aerobic metabolism into ecology and evolution. Trends Ecol. Evol. 36, 321–332 (2021).PubMed 
    Article 

    Google Scholar 
    Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Botero, C. A., Dor, R., McCain, C. M. & Safran, R. J. Environmental harshness is positively correlated with intraspecific divergence in mammals and birds. Mol. Ecol. 23, 259–268 (2014).PubMed 
    Article 

    Google Scholar 
    Weir, J. T. Environmental harshness, latitude and incipient speciation. Mol. Ecol. 23, 251–253 (2014).PubMed 
    Article 

    Google Scholar 
    Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harvey, M. G. et al. The evolution of a tropical biodiversity hotspot. Science 370, 1343–1348 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rabosky, D. L. & Hurlbert, A. H. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185, 572–583 (2015).PubMed 
    Article 

    Google Scholar 
    Sugihara, G. Minimal community structure: an explanation of species abundance patterns. Am. Nat. 116, 770–787 (1980).PubMed 
    Article 

    Google Scholar 
    Zhang, F. & Broughton, R. E. Mitochondrial–nuclear interactions: compensatory evolution or variable functional constraint among vertebrate oxidative phosphorylation genes? Genome Biol. Evol. 5, 1781–1791 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Piccinini, G. et al. Mitonuclear coevolution, but not nuclear compensation, drives evolution of OXPHOS complexes in bivalves. Mol. Biol. Evol. 38, 2597–2614 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barreto, F. S. et al. Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus. Nat. Ecol. Evol. 2, 1250–1257 (2018).PubMed 
    Article 

    Google Scholar 
    Kennedy, J. D. et al. Into and out of the tropics: the generation of the latitudinal gradient among New World passerine birds. J. Biogeogr. 41, 1746–1757 (2014).Article 

    Google Scholar 
    Etienne, R. S. et al. A minimal model for the latitudinal diversity gradient suggests a dominant role for ecological limits. Am. Nat. 194, E122–E133 (2019).PubMed 
    Article 

    Google Scholar 
    Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).PubMed 
    Article 

    Google Scholar 
    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).PubMed 
    Article 

    Google Scholar 
    Evans, K. L. & Gaston, K. J. Can the evolutionary-rates hypothesis explain species–energy relationships? Funct. Ecol. 19, 899–915 (2005).Article 

    Google Scholar 
    Allen, A. P. & Gillooly, J. F. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol. Lett. 9, 947–954 (2006).PubMed 
    Article 

    Google Scholar 
    Cutter, A. D. & Gray, J. C. Ephemeral ecological speciation and the latitudinal biodiversity gradient. Evolution 70, 2171–2185 (2016).PubMed 
    Article 

    Google Scholar 
    Dowling, D. K., Abiega, K. C. & Arnqvist, G. Temperature-specific outcomes of cytoplasmic–nuclear interactions on egg-to-adult development time in seed beetles. Evolution 61, 194–201 (2007).PubMed 
    Article 

    Google Scholar 
    Smith, B. T., Seeholzer, G. F., Harvey, M. G., Cuervo, A. M. & Brumfield, R. T. A latitudinal phylogeographic diversity gradient in birds. PLoS Biol. 15, e2001073 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Freeman, B. G., Weeks, T., Schluter, D. & Tobias, J. A. The latitudinal gradient in rates of evolution for bird beaks, a species interaction trait. Ecol. Lett. 25, 635–646 (2022).PubMed 
    Article 

    Google Scholar 
    Vellend, M. Species diversity and genetic diversity: parallel processes and correlated patterns. Am. Nat. 166, 199–215 (2005).PubMed 
    Article 

    Google Scholar 
    Pontarp, M. & Wiens, J. J. The origin of species richness patterns along environmental gradients: uniting explanations based on time, diversification rate and carrying capacity. J. Biogeogr. 44, 722–735 (2017).Article 

    Google Scholar 
    Harvey, M. G. et al. Positive association between population genetic differentiation and speciation rates in New World birds. Proc. Natl Acad. Sci. USA 114, 6328–6333 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Araújo, M. S. & Costa-Pereira, R. Latitudinal gradients in intraspecific ecological diversity. Biol. Lett. 9, 20130778 (2013).Derrida, B. & Peliti, L. Evolution in a flat fitness landscape. Bull. Math. Biol. 53, 355–382 (1991).Article 

    Google Scholar 
    de Aguiar, M. A. M. Speciation in the Derrida–Higgs model with finite genomes and spatial populations. J. Phys. A 50, 85602 (2017).Article 

    Google Scholar 
    Thibert-Plante, X. & Gavrilets, S. Evolution of mate choice and the so-called magic traits in ecological speciation. Ecol. Lett. 16, 1004–1013 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207 (2004).PubMed 
    Article 

    Google Scholar 
    Kearns, A. M. et al. Genomic evidence of speciation reversal in ravens. Nat. Commun. 9, 906 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gray, J. S., Bjørgesæter, A. & Ugland, K. I. On plotting species abundance distributions. J. Anim. Ecol. 75, 752–756 (2006).PubMed 
    Article 

    Google Scholar  More

  • in

    Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age

    Brett, C. E. Sequence stratigraphy, paleoecology, and evolution: biotic clues and responses to sea-level fluctuations. Palaios 13, 241–262 (1998).Article 

    Google Scholar 
    Brett, C. E., Hendy, A. J. W., Bartholomew, A. J., Bonelli, J. R. & McLaughlin, P. I. Response of shallow marine biotas to sea-level fluctuations: a review of faunal replacement and the process of habitat tracking. Palaios 22, 228–244 (2007).Article 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).PubMed 
    Article 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 

    Google Scholar 
    Rillo, M. C., Woolley, S. & Hillebrand, H. Drivers of global pre‐industrial patterns of species turnover in planktonic foraminifera. Ecography 2022, e05892 (2021).Article 

    Google Scholar 
    Van der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Phil. Trans. R. Soc. B 365, 2025–2034 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Antão, L. H. et al. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat. Ecol. Evol. 4, 927–933 (2020).PubMed 
    Article 

    Google Scholar 
    Chen, I. C. et al. Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Glob. Ecol. Biogeogr. 20, 34–45 (2011).Article 

    Google Scholar 
    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2015).Article 

    Google Scholar 
    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).Article 

    Google Scholar 
    Benedetti, F. et al. Major restructuring of marine plankton assemblages under global warming. Nat. Commun. 12, 5226 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Occhipinti-Ambrogi, A. Global change and marine communities: alien species and climate change. Mar. Pollut. Bull. 55, 342–352 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).Article 

    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jonkers, L. et al. Integrating palaeoclimate time series with rich metadata for uncertainty modelling: strategy and documentation of the PalMod 130k marine palaeoclimate data synthesis. Earth Syst. Sci. Data 12, 1053–1081 (2020).Article 

    Google Scholar 
    Buitenhuis, E. T. et al. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).Article 

    Google Scholar 
    Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol. Rev. 92, 199–215 (2017).PubMed 
    Article 

    Google Scholar 
    Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).PubMed 
    Article 

    Google Scholar 
    Takagi, H. et al. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences 16, 3377–3396 (2019).CAS 
    Article 

    Google Scholar 
    Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean (Springer, 2017).Morey, A. E., Mix, A. C. & Pisias, N. G. Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environment variables. Quat. Sci. Rev. 24, 925–950 (2005).Article 

    Google Scholar 
    Fenton, I. S., Pearson, P. N., Dunkley Jones, T. & Purvis, A. Environmental predictors of diversity in recent planktonic foraminifera as recorded in marine sediments. PLoS ONE 11, e0165522 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rutherford, S., D’Hondt, S. & Prell, W. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400, 749–753 (1999).CAS 
    Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).PubMed 
    Article 

    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hinder, S. L. et al. Changes in marine dinoflagellate and diatom abundance under climate change. Nat. Clim. Change 2, 271–275 (2012).Article 

    Google Scholar 
    Southward, A. J., Hawkins, S. J. & Burrows, M. T. Seventy years’ observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. J. Therm. Biol. 20, 127–155 (1995).Article 

    Google Scholar 
    Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C. & Weinelt, M. Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quat. Sci. Rev. 24, 813–819 (2005).Kucera, M. et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat. Sci. Rev. 24, 951–998 (2005).Article 

    Google Scholar 
    Siccha, M. & Kucera, M. ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Sci. Data 4, 170109 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Phil. Trans. R. Soc. B 371, 20150224 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lowery, C. M. & Fraass, A. J. Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction. Nat. Ecol. Evol. 3, 900–904 (2019).PubMed 
    Article 

    Google Scholar 
    Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142 (2011).Article 

    Google Scholar 
    Antell, G. S., Fenton, I. S., Valdes, P. J. & Saupe, E. E. Thermal niches of planktonic foraminifera are static throughout glacial-interglacial climate change. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2017105118 (2021).Fauth, J. E. et al. Simplifying the jargon of community ecology: a conceptual approach. Am. Nat. 147, 282–286 (1996).Article 

    Google Scholar 
    Jackson, S. T. & Overpeck, J. T. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26, 194–220 (2000).Article 

    Google Scholar 
    Bard, E., Rostek, F., Turon, J.-L. & Gendreau, S. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289, 1321–1324 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Broecker, W. S. Massive iceberg discharges as triggers for global climate change. Nature 372, 421–424 (1994).CAS 
    Article 

    Google Scholar 
    Ruddiman, W. F. Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65°N). Geol. Soc. Am. Bull. 88, 1813–1827 (1977).Article 

    Google Scholar 
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).Liow, L. H., Van Valen, L. & Stenseth, N. C. Red Queen: from populations to taxa and communities. Trends Ecol. Evol. 26, 349–358 (2011).PubMed 
    Article 

    Google Scholar 
    Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article 

    Google Scholar 
    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).PubMed 
    Article 

    Google Scholar 
    Williams, J. W., Ordonez, A. & Svenning, J. C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).PubMed 
    Article 

    Google Scholar 
    Van Meerbeeck, C. J., Renssen, H. & Roche, D. M. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? Perspectives from equilibrium simulations. Clim. Past 5, 33–51 (2009).Article 

    Google Scholar 
    Jonkers, L. & Kučera, M. Global analysis of seasonality in the shell flux of extant planktonic Foraminifera. Biogeosciences 12, 2207–2226 (2015).Article 

    Google Scholar 
    Ofstad, S. et al. Development, productivity, and seasonality of living planktonic foraminiferal faunas and Limacina helicina in an area of intense methane seepage in the Barents Sea. J. Geophys. Res. Biogeosci. 125, e2019JG005387 (2020).CAS 
    Article 

    Google Scholar 
    Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P. & Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548–553 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rillo, M. C. et al. On the mismatch in the strength of competition among fossil and modern species of planktonic Foraminifera. Glob. Ecol. Biogeogr. 28, 1866–1878 (2019).Article 

    Google Scholar 
    Lisiecki, L. E. & Stern, J. V. Regional and global benthic δ18O stacks for the last glacial cycle. Paleoceanography 31, 1368–1394 (2016).Article 

    Google Scholar 
    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).CAS 
    Article 

    Google Scholar 
    Butzin, M., Köhler, P. & Lohmann, G. Marine radiocarbon reservoir age simulations for the past 50,000 years. Geophys. Res. Lett. 44, 8473–8480 (2017).CAS 
    Article 

    Google Scholar 
    Langner, M. & Mulitza, S. Technical Note: PaleoDataView—A software toolbox for the collection, homogenization and visualization of marine proxy data. Clim 15, 2067–2072 (2019).
    Google Scholar 
    Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657 (2001).Article 

    Google Scholar 
    Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Horn, H. S. Measurement of ‘overlap’ in comparative ecological studies. Am. Nat. 100, 419–424 (1966).Article 

    Google Scholar 
    Jost, L., Chao, A. & Chazdon, R. L. in Biological diversity: frontiers in measurement and assessment (eds Anne E. Magurran & Brian J. McGill) 66–84 (Oxford University Press, 2011).Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).Article 

    Google Scholar 
    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 

    Google Scholar 
    Firke, S. janitor: Simple tools for examining and cleaning dirty data. R package version 2.1.0 https://CRAN.R-project.org/package=janitor (2021).Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-7 https://CRAN.R-project.org/package=vegan (2020).Hallett, L. M. et al. codyn: an R package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).Article 

    Google Scholar 
    Juggins, S. rioja: Analysis of quaternary science data. R package version 0.9-26 https://cran.r-project.org/package=rioja (2020).Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 3.4-13 https://CRAN.R-project.org/package=raster (2021).Garnier, S. viridis: Default color maps from ‘matplotlib’. R package version 0.6.1 https://CRAN.R-project.org/package=viridis (2021.)Locarnini, R. A. et al. World Ocean Atlas 2018, Vol. 1: Temperature. NOAA Atlas NESDIS 81 (NOAA, 2019). More