More stories

  • in

    Endangered animals and plants are positively or neutrally related to wild boar (Sus scrofa) soil disturbance in urban grasslands

    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    Planchuelo, G., von Der Lippe, M. & Kowarik, I. Untangling the role of urban ecosystems as habitats for endangered plant species. Landsc. Urban Plan. 189, 320–334 (2019).Article 

    Google Scholar 
    Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Environ. 17, 225–231 (2019).Article 

    Google Scholar 
    Ducatez, S., Sayol, F., Sol, D. & Lefebvre, L. Are urban vertebrates city specialists, artificial habitat exploiters, or environmental generalists? Integr. Comp. Biol. 58, 929–938 (2018).PubMed 
    Article 

    Google Scholar 
    Hegglin, D. et al. Baiting red foxes in an urban area: A camera trap study. J. Wildl. Manag. 68, 1010–1017 (2004).Article 

    Google Scholar 
    Møller, A. P. Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia 159, 849–858 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Castillo-Contreras, R. et al. Wild boar in the city: Phenotypic responses to urbanisation. Sci. Total Environ. 773, 145593 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barrios-Garcia, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    Cahill, S., Llimona, F., Cabaneros, L. & Calomardo, F. Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim. Biodivers. Conserv. 35, 221–233 (2012).Article 

    Google Scholar 
    Csokas, A. et al. Space use of wild boar (Sus Scrofa) in Budapest: Are they resident or transient city dwellers? Biol. Futura 71, 39–51 (2020).CAS 
    Article 

    Google Scholar 
    Stillfried, M. et al. Do cities represent sources, sinks or isolated islands for urban wild boar population structure? J. Appl. Ecol. 54, 272–281 (2017).Article 

    Google Scholar 
    Stillfried, M. et al. Secrets of success in a landscape of fear: Urban wild boar adjust risk perception and tolerate disturbance. Front. Ecol. Evol. 5, 440 (2017).Article 

    Google Scholar 
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).Article 

    Google Scholar 
    Herrero, J., Garcia-Serrano, A., Couto, S., Ortuno, V. M. & Garcia-Gonzalez, R. Diet of wild boar Sus scrofa L. and crop damage in an intensive agroecosystem. Eur. J. Wildl. Res. 52, 245–250 (2006).Article 

    Google Scholar 
    Schley, L. & Roper, T. J. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mamm. Rev. 33, 43–56 (2003).Article 

    Google Scholar 
    Horčičková, E., Brůna, J. & Vojta, J. Wild boar (Sus scrofa) increases species diversity of semidry grassland: Field experiment with simulated soil disturbances. Ecol. Evol. 9, 2765–2774 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Massei, G. & Genov, P. V. The environmental impact of wild boar. Galemys Bol. Inf. Soc. Esp. Para Conserv. Estud. Los Mamíferos 16, 135–145 (2004).
    Google Scholar 
    Sandom, C. J., Hughes, J. & Macdonald, D. W. Rewilding the scottish highlands: Do wild boar, Sus scrofa, use a suitable foraging strategy to be effective ecosystem engineers? Restor. Ecol. 21, 336–343 (2013).Article 

    Google Scholar 
    Wirthner, S. et al. Do changes in soil properties after rooting by wild boars (Sus scrofa) affect understory vegetation in Swiss hardwood forests? Can. J. For. Res.-Rev. Can. Rech. For. 42, 585–592 (2012).CAS 
    Article 

    Google Scholar 
    Bankovich, B., Boughton, E., Boughton, R., Avery, M. L. & Wisely, S. M. Plant community shifts caused by feral swine rooting devalue Florida rangeland. Agric. Ecosyst. Environ. 220, 45–54 (2016).Article 

    Google Scholar 
    Felix, R. K., Orzell, S. L., Tillman, E. A., Engeman, R. M. & Avery, M. L. Fine-scale, spatial and temporal assessment methods for feral swine disturbances to sensitive plant communities in south-central Florida. Environ. Sci. Pollut. Res. 21, 10399–10406 (2014).Article 

    Google Scholar 
    Boonman-Berson, S., Driessen, C. & Turnhout, E. Managing wild minds: From control by numbers to a multinatural approach in wild boar management in the Veluwe, the Netherlands. Trans. Inst. Br. Geogr. 44, 2–15 (2019).Article 

    Google Scholar 
    Keuling, O., Strauß, E. & Siebert, U. Regulating wild boar populations is ‘somebody else’s problem’!-Human dimension in wild boar management. Sci. Total Environ. 554–555, 311–319 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    Brunet, J., Hedwall, P. O., Holmstrom, E. & Wahlgren, E. Disturbance of the herbaceous layer after invasion of an eutrophic temperate forest by wild boar. Nord. J. Bot. 34, 120–128 (2016).Article 

    Google Scholar 
    Burrascano, S. et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecol. 16, 244–253 (2015).Article 

    Google Scholar 
    Fagiani, S. et al. Monitoring protocols for the evaluation of the impact of wild boar (Sus scrofa) rooting on plants and animals in forest ecosystems. Hystrix Ital. J. Mamm. 25, 31–38 (2014).
    Google Scholar 
    Bruinderink, G. W. T. A. G. & Hazebroek, E. Wild boar (Sus scrofa scrofa L.) rooting and forest regeneration on podzolic soils in the Netherlands. For. Ecol. Manag. 88, 71–80 (1996).Article 

    Google Scholar 
    Pankova, N. L., Markov, N. I. & Vasina, A. L. Effect of the rooting activity of wild boar Sus scrofa on plant communities in the middle Taiga of Western Siberia. Russ. J. Biol. Invasions 11, 363–371 (2020).Article 

    Google Scholar 
    Carpio, A. J. et al. Effect of wild ungulate density on invertebrates in a Mediterranean ecosystem. Anim. Biodivers. Conserv. 37, 115–125 (2014).Article 

    Google Scholar 
    Cuevas, M. F., Novillo, A., Campos, C., Dacar, M. A. & Ojeda, R. A. Food habits and impact of rooting behaviour of the invasive wild boar, Sus scrofa, in a protected area of the Monte Desert, Argentina. J. Arid Environ. 74, 1582–1585 (2010).ADS 
    Article 

    Google Scholar 
    Kenyeres, Z., Szabo, S. & Bauer, N. Conservation possibilities of the rare grasshopper Stenobothrus eurasius Zubovski, 1898 are hampered by wild game in its fragmented western outposts. J. Insect Conserv. 24, 115–124 (2020).Article 

    Google Scholar 
    Reading, C. J. & Jofre, G. M. Habitat use by grass snakes and three sympatric lizard species on lowland heath managed using ‘conservation grazing’. Herpetol. J. 26, 131–138 (2016).
    Google Scholar 
    de Schaetzen, F., van Langevelde, F. & WallisDeVries, M. F. The influence of wild boar (Sus scrofa) on microhabitat quality for the endangered butterfly Pyrgus malvae in the Netherlands. J. Insect Conserv. 22, 51–59 (2018).Article 

    Google Scholar 
    Albrecht, H. & Haider, S. Species diversity and life history traits in calcareous grasslands vary along an urbanization gradient. Biodivers. Conserv. 22, 2243–2267 (2013).Article 

    Google Scholar 
    Cilliers, S. S., Müller, N. & Drewes, E. Overview on urban nature conservation: Situation in the western-grassland biome of South Africa. Urban For. Urban Green. 3, 49–62 (2004).Article 

    Google Scholar 
    Becker, M. & Buchholz, S. The sand lizard moves downtown-habitat analogues for an endangered species in a metropolitan area. Urban Ecosyst. 19, 361–372 (2016).Article 

    Google Scholar 
    Senate Department for Urban Development and Housing. Impervious Soil Coverage (Sealing of Soil Surface). (2016).Fischer, L. K., von der Lippe, M., Rillig, M. C. & Kowarik, I. Creating novel urban grasslands by reintroducing native species in wasteland vegetation. Biol. Conserv. 159, 119–126 (2013).Article 

    Google Scholar 
    von der Lippe, M., Buchholz, S., Hiller, A., Seitz, B. & Kowarik, I. CityScapeLab Berlin: A research platform for untangling urbanization effects on biodiversity. Sustainability 12, 30 (2020).
    Google Scholar 
    LUA. Brandenburg State Environmental Office. Brandenburg State Environmental Office. Catalogue of Natural Habitats and Species of Appendices I and II of the Habitats Directive in Brandenburg: German Institute for Standardization. (2002).Leuschner, C. & Ellenberg, H. Ecology of central European non-forest vegetation: Coastal to alpine, natural to man-made habitats: vegetation ecology of Central Europe. Volume II. (Springer, 2017).Kotanen, P. M. Responses of vegetation to a changing regime of disturbance-effects of feral pigs in a Californian Coastal Prairie. Ecography 18, 190–199 (1995).Article 

    Google Scholar 
    Dovrat, G., Perevolotsky, A. & Ne’eman, G. The response of mediterranean herbaceous community to soil disturbance by native wild boars. Plant Ecol. 215, 531–541 (2014).Article 

    Google Scholar 
    Haaverstad, O., Hjeljord, O. & Wam, H. K. Wild boar rooting in a northern coniferous forest-minor silviculture impact. Scand. J. For. Res. 29, 90–95 (2014).Article 

    Google Scholar 
    van der Maarel, E. & Franklin, J. (Eds. ). Vegetation Ecology. (2nd edition. Wiley, 2012).Hennekens, S. M. & Schaminee, J. H. J. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12, 589–591 (2001).Article 

    Google Scholar 
    Seitz, B., Ristow, M., Meißner, J., Machatzi, B. & Sukopp, H. Rote Liste und Gesamtartenliste der etablierten Farn- und Blütenpflanzen von Berlin. in Der Landesbeauftragte für Naturschutzt und Landschaftspflege, Senatsverwaltung für Umwelt, Klima und Verkehr (Hrsg): Rote Listen der gefährdeten Pflanzen, Pilze und Tiere von 118 (2018). doi:https://doi.org/10.14279/depositonce-6689.Jäger, E. J. Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband (W. Rothmaler, founder). (Spektrum, 2011).Landeck, I. Kartieranleitung Heuschrecken für das Naturschutzfachliche Monitoring im Naturparadies Grünhaus und im “Revier 55”. (Forschungsinstitut für Bergbaufolgelandschaften, Finsterwalde, 2007).Fischer, J. et al. Die Heuschrecken Deutschlands und Nordtirols-Bestimmen-Beobachten-Schützen. (Quelle & Meyer, 2020).Machatzi, B., Ratsch, A., Prasse, R. & Ristow, M. Rote Liste und Gesamtartenliste der Heuschrecken und Grillen (Saltatoria: Ensifera et Caelifera) von Berlin. (2005).Doerpinghaus, A. et al. Methoden zur Erfassung von Arten der Anhänge IV und V der FFH-Richtlinie. Naturschutz Biol. Vielfalt 20, 454 (2005).
    Google Scholar 
    Beery, S., Morris, D. & Yang, S. Efficient Pipeline for Camera Trap Image Review. ArXiv Prepr. arXiv:190706772 (2019).Greco, I. et al. Guest or pest? Spatio-temporal occurrence and effects on soil and vegetation of the wild boar on Elba island. Mamm. Biol. https://doi.org/10.1007/s42991-020-00083-1 (2020).Article 

    Google Scholar 
    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    De Caceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2020).Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Zhang, D. Coefficients of Determination for Mixed-Effects Models. arXiv:200708675 (2021).Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5-6. Retrieved from https://CRAN.R-project.org/package=vegan (2019).Massei, G., Roy, S. & Bunting, R. Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Human-Wildlife Interact. 5, 5008 (2011).
    Google Scholar 
    Bueno, C. G., Alados, C. L., Gomez-Garcia, D., Barrio, I. C. & Garcia-Gonzalez, R. Understanding the main factors in the extent and distribution of wild boar rooting on alpine grasslands. J. Zool. 279, 195–202 (2009).Article 

    Google Scholar 
    Cuevas, M. F., Mastrantonio, L., Ojeda, R. A. & Jaksic, F. M. Effects of wild boar disturbance on vegetation and soil properties in the Monte Desert. Argentina. Mamm. Biol. 77, 299–306 (2012).Article 

    Google Scholar 
    Cushman, J. H., Tierney, T. A. & Hinds, J. M. Variable effects of feral pig disturbances on native and exotic plants in a California grassland. Ecol. Appl. 14, 1746–1756 (2004).Article 

    Google Scholar 
    Cuevas, M. F., Campos, C. M., Ojeda, R. A. & Jaksic, F. M. Vegetation recovery after 11 years of wild boar exclusion in the Monte Desert, Argentina. Biol. Invasions 22, 1607–1621 (2020).Article 

    Google Scholar 
    Oldfield, C. A. & Evans, J. P. Twelve years of repeated wild hog activity promotes population maintenance of an invasive clonal plant in a coastal dune ecosystem. Ecol. Evol. 6, 2569–2578 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tierney, T. A. & Cushman, J. H. Temporal changes in native and exotic vegetation and soil characteristics following disturbances by feral pigs in a California grassland. Biol. Invasions 8, 1073–1089 (2006).Article 

    Google Scholar 
    Buchholz, S., Seitz, B., Hiller, A., von der Lippe, M. & Kowarik, I. Impacts of dogs on urban grassland ecosystems. Landsc. Urban Plan. 215, 104201 (2021).Article 

    Google Scholar 
    Heinken, T., Schmidt, M., von Oheimb, G., Kriebitzsch, W. U. & Ellenberg, H. Soil seed banks near rubbing trees indicate dispersal of plant species into forests by wild boar. Basic Appl. Ecol. 7, 31–44 (2006).Article 

    Google Scholar 
    Heinken, T. Dispersal of plants by a dog in a deciduous forest. Bot. Jahrb Syst. 122, 449–467 (2000).
    Google Scholar 
    Planchuelo, G., Kowarik, I. & von der Lippe, M. Plant traits, biotopes and urbanization dynamics explain the survival of endangered urban plant populations. J. Appl. Ecol. 57, 1581–1592 (2020).Article 

    Google Scholar 
    Gardiner, T. & Hassall, M. Does microclimate affect grasshopper populations after cutting of hay in improved grassland? J. Insect Conserv. 13, 97–102 (2009).Article 

    Google Scholar 
    Willott, S. J. Thermoregulation in four species of British grasshoppers (Orthoptera: Acrididae). Funct. Ecol. 11, 705–713 (1997).Article 

    Google Scholar 
    Wouters, B. et al. The effects of shifting vegetation mosaics on habitat suitability for coastal dune fauna-a case study on sand lizards (Lacerta agilis). J. Coast. Conserv. 16, 89–99 (2012).Article 

    Google Scholar 
    De Bruyn, GJ. Animal communities in Dutch dunes. in Van der Maarel E (ed) Dry coastal ecosystems: General aspects. (ed. Elsevier, A.) 361–386 (1997).Seidling, W. Recent changes in forest vegetation in an area on the outskirts of Berlin. in H. Sukopp, S. Hejny, & I. Kowarik (Eds.), Plants and plant communities in the urban environment 223 (1990). More

  • in

    Tropicalization of demersal megafauna in the western South Atlantic since 2013

    Catches throughout the study period reached maximum levels in 2006–2012, decreasing sharply thereafter reaching low levels in 2019 (Supplementary Fig. 1). The whitemouth croaker (Micropogonias furnieri) and the argentine croaker (Umbrina canosai) were the dominant species in the catches. Jointly, they represented, on average, over 50% of the total landed biomass in the period. This biomass included other 78 species: 62 teleosts, 3 elasmobranchs, 8 crustaceans and 5 molluscs. Overall, catch composition maintained a 1.5:1 ratio of species with warm- and cold-water affinities from the beginning of the time series until 2012. After that, warm-water species abundance increased in the catches changing the resulting ratio to 4.1:1 in 2019 (Fig. 2).Fig. 2: Annual variation of the proportion of species with cold- and warm-water affinities in the catches of the demersal fisheries in Brazilian Meridional Margin (BMM).Catches were monitored between 2000 and 2019 in the harbours of Santa Catarina State, southern Brazil. Colours represent “warm-” (thermal preferences  > 21.1 °C) and “cold-” (thermal preferences < 21.1 °C) water affinities.Full size imageMean temperature of the catchesAnnual MTC oscillated around 21 °C (SD = 0.63 °C) between 2000 and 2019. Until 2013, the MTC time-series exhibited peaks (2005, 2010) and troughs (2008, 2013), but no particular trend was evidenced. After 2013, MTC increased continuously reaching maximum values in 2019 (Fig. 3). The segmented regression model defined one significant discontinuity in 2012 (95% CI: 2010–2015), which delimited an early period (2000–2012) when MTC oscillated with no significant trend (p-value = 0.789), from a late period (2013–2019) when MTC increased sharply at a 0.41 °C yr−1 (p-value  More

  • in

    Saltwater intrusion indirectly intensifies Phragmites australis invasion via alteration of soil microbes

    Dookes, J. S. & Mooney, H. A. Does global change increase the success of biological invaders?. Trends Ecol. Evol. 14, 135–139 (1999).Article 

    Google Scholar 
    Gallien, L. & Carboni, M. The community ecology of invasive species: Where are we and what’s next?. Ecography 40, 335–352 (2017).Article 

    Google Scholar 
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed 
    Article 

    Google Scholar 
    Adler, P. B., Dalgleish, H. J. & Ellner, S. P. Forecasting plant community impacts of climate variability and change: When do competitive interactions matter?. J. Ecol. 100, 478–487 (2012).Article 

    Google Scholar 
    Cahill, A. E., Aiello-Lammens, M. E., Fisher-Reid, M. C. & Hua, X. How does climate change cause extinction?. Proc. Biol. Sci. 280, 20121890 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: Altered species interactions are more important than direct effects. Glob. Chang. Biol. 20, 2221–2229 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Chu, C. et al. Direct effects dominate responses to climate perturbations in grassland plant communities. Nat. Commun. 7, 11766 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gunderson, A. R., Tsukimura, B. & Stillman, J. H. Indirect effects of global change: From physiological and behavioral mechanisms to ecological consequences. Integr. Comp. Biol. 57, 48–54 (2017).PubMed 
    Article 

    Google Scholar 
    Suttle, K. B., Thomsen, M. A. & Power, M. E. Species interactions reverse grassland responses to changing climate. Science 315, 640–642 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Farrer, E. C. et al. Indirect effects of global change accumulate to alter plant diversity but not ecosystem function in alpine tundra. J. Ecol. 103, 351–360 (2015).CAS 
    Article 

    Google Scholar 
    Sentis, A., Montoya, J. M. & Lurgi, M. Warming indirectly increases invasion success in food webs. Proc. R. Soc. B. 288, 1947 (2021).Article 

    Google Scholar 
    Ohgushi, T. Indirect interaction webs: Herbivore-induced effects through trait change in plants. Annu. Rev. Ecol. Evol. Syst. 36, 81–105 (2005).Article 

    Google Scholar 
    Classen, A. et al. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?. Ecosphere 6, 1–21 (2015).Article 

    Google Scholar 
    Van-der-Putten, W. H., Macel, M. & Visser, M. E. Predicting species distributions and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philos. Trans. R. Soc. B. 365, 2025–2034 (2010).Article 

    Google Scholar 
    Rudgers, J. A. et al. Climate disruption of plant-microbe interactions. Annu. Rev. Ecol. Evol. Syst. 51, 561–586 (2020).Article 

    Google Scholar 
    Deltedesco, E. et al. Soil microbial community structure and function mainly respond to indirect effects in a multifactorial climate manipulation experiment. Soil Biol. Biochem. 142, 1–12 (2020).Article 

    Google Scholar 
    Fahey, C., Koyama, A., Antunes, P. M., Dunfield, K. & Flory, S. L. Plant communities mediate the interactive effects of invasion and drought on soil microbial communities. ISME 14, 1396–1409 (2020).Article 

    Google Scholar 
    Nuccio, E. E. et al. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ. Microbiol. 15, 1870–1881 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bennett, J. A. & Cahill, J. F. Fungal effects on plant–plant interactions contribute to grassland plant abundances: Evidence from the field. J. Ecol. 104, 755–764 (2016).Article 

    Google Scholar 
    Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. New Phytol. 170, 445–457 (2006).PubMed 
    Article 

    Google Scholar 
    Inderjit, C. J. F. Linkages of plant–soil feedbacks and underlying invasion mechanisms. AoB Plants 7, 1–8 (2015).CAS 
    Article 

    Google Scholar 
    Lekberg, Y. et al. Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecol. Lett. 21, 1268–1281 (2018).PubMed 
    Article 

    Google Scholar 
    Teh, S. Y. & Koh, H. L. Climate change and soil salinization: Impact on agriculture, water, and food security. IJAFP 2, 1–9 (2016).
    Google Scholar 
    White, E. Restore or retreat? Saltwater intrusion and coastal management in coastal wetlands. Ecosyst. Health Sustain. https://doi.org/10.1002/ehs2.1258 (2016).Article 

    Google Scholar 
    Donnolly, J. P. & Bertness, M. D. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. PNAS 98, 14218–14223 (2001).ADS 
    Article 

    Google Scholar 
    Sharpe, P. J. & Baldwin, A. H. Tidal marsh plant community response to sea-level rise: A mesocosm study. Aquat. Bot. 101, 34–40 (2012).Article 

    Google Scholar 
    Birnbaum, C., Waryszak, P. & Farrer, E. C. Direct and indirect effects of climate change in coastal wetlands: Will climate change influence wetlands by affecting plant invasion?. Wetlands 59, 1–11 (2021).
    Google Scholar 
    Noto, A. E. & Shurin, J. B. Early stages of sea-level rise lead to decreased salt marsh plant diversity through stronger competition in Mediterranean climate marshes. PLoS ONE 12, 1–11 (2017).Article 

    Google Scholar 
    Stagg, C. L., Baustian, M. M., Perry, C. L., Carruthers, T. J. B. & Hall, C. T. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient. J. Ecol. 106, 655–670 (2017).Article 

    Google Scholar 
    Neubauer, S. C., Piehler, M. F., Smyth, A. R. & Franklin, R. B. Saltwater intrusion modifies microbial community structure and decreases denitrification in tidal freshwater marshes. Ecosystems 22, 912–928 (2019).CAS 
    Article 

    Google Scholar 
    Rath, K. M., Fierer, N., Murphy, D. V. & Rousk, J. Linking bacterial community composition to soil salinity along environmental gradients. ISME. 13, 836–846 (2019).CAS 
    Article 

    Google Scholar 
    Meyerson, L. A., Cronin, J. T. & Pysek, P. Phragmites australis as a model organism for studying plant invasions. Biol. Invasions 18, 2421–2431 (2016).Article 

    Google Scholar 
    Soares, M. A. et al. Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biol. Invasions 18, 2689–2702 (2016).Article 

    Google Scholar 
    Gonzalez, M., Baldwin, A. H., Maul, J. E. & Yarwood, S. A. Dark septate endophyte improves salt tolerance of native and invasive lineages of Phragmites australis. ISME 14, 1943–1954 (2020).Article 

    Google Scholar 
    Farrer, E. C. et al. Plant and microbial impacts of an invasive species vary across an environmental gradient. J. Ecol. 109, 2163–2176 (2021).Article 

    Google Scholar 
    Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, L. M. & Reynolds, H. L. Plant–soil feedbacks shift from negative to positive with decreasing light in forest understory species. Ecology 96, 2523–2532 (2015).PubMed 
    Article 

    Google Scholar 
    Parepa, M., Schaffner, U. & Bossdorf, O. Help from underground: Soil biota facilitate knotweed invasion. Ecosphere 4, 1–11 (2013).Article 

    Google Scholar 
    Larios, L. & Suding, K. N. Competition and soil resource environment alter plant-soil feedbacks for native and exotic grasses. AoB Plants 7, 1–9 (2014).
    Google Scholar 
    Hoeksema, J. D. Ongoing coevolution in mycorrhizal interactions. New Phytol. 187, 286–300 (2010).PubMed 
    Article 

    Google Scholar 
    Van der Heijden, M. G. A., Martin, F. M., Selosse, M. & Sanders, I. R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 205, 1406–1423 (2015).PubMed 
    Article 

    Google Scholar 
    Hoeksema, J. D. et al. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun. Biol. 1(116), 2018. https://doi.org/10.1038/s42003-018-0120-9 (2018).Article 

    Google Scholar 
    Remke, M. J., Johnson, N. C., Wright, J., Williamson, M. & Bowker, M. A. Sympatric pairings of dryland grass populations, mycorrhizal fungi and associated soil biota enhance mutualism and ameliorate drought stress. J. Ecol. 109, 1210–1223 (2020).Article 

    Google Scholar 
    Farrer, E. C. & Suding, K. N. Teasing apart plant community responses to N enrichment: The roles of resource limitation, competition and soil microbes. Ecol. Lett. 19, 1287–1296 (2016).PubMed 
    Article 

    Google Scholar 
    Hawkins, A. P. & Crawford, K. M. Interactions between plants and soil microbes may alter the relative importance of intraspecific and interspecific plant competition in a changing climate. AoB Plants. 10, 39. https://doi.org/10.1093/aobpla/ply039 (2018).Article 

    Google Scholar 
    Wu, Y. et al. Long-term nitrogen and sulfur deposition increased root-associated pathogen diversity and changed mutualistic fungal diversity in a boreal forest. Soil Biol. Biogeochem. 115, 108163. https://doi.org/10.1016/j.soilbio.2021.108163 (2021).CAS 
    Article 

    Google Scholar 
    Allen, W. J., Meyerson, L. A., Flick, A. J. & Cronin, J. T. Intraspecific variation in indirect plant–soil feedbacks influences a wetland plant invasion. Ecology 99, 1430–1440 (2018).PubMed 
    Article 

    Google Scholar 
    Crawford, K. M. & Knight, T. M. Competition overwhelms the positive plant-soil feedback generated by an invasive plant. Oecologia 183, 211–220 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Bertness, M. D. & Shumway, S. W. Competition and facilitation in marsh plants. Am. Nat. 142, 718–724 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Uddin, M. N., Robinson, R. W., Buultjens, A., Al-Harun, M. A. Y. & Shampa, S. H. Role of allelopathy of Phragmites australis in its invasion processes. J. Exp. Mar. Biol. Ecol. 486, 237–244 (2017).Article 

    Google Scholar 
    Howard, R. J. & Rafferty, P. S. Clonal variation in response to salinity and flooding stress in four marsh macrophytes of the northern gulf of Mexico, USA. Environ. Exp. Bot. 56, 301–313 (2006).Article 

    Google Scholar 
    Visser, J. M., Sasser, C. E., Chabreck, R. H. & Linscombe, R. G. Marsh vegetation types of the Mississippi River Deltaic plain. Estuaries 21, 818–828 (1998).Article 

    Google Scholar 
    De Wit, C. T. & van den Bergh, J. P. Competition between herbage plants. NJAS 13, 212–221 (1965).Article 

    Google Scholar 
    R Core Team. In r: A Language and Environment for Statistical Computing; r foundation for statistical computing: Vienna, Austria (2017).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar  More

  • in

    This rare primate will not survive deforestation

    .readcube-buybox { display: none !important;}
    An endangered lemur species that lives in Madagascar’s rainforest could vanish within 25 years if deforestation on the island isn’t reduced1.

    Access options

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueAll prices are NET prices.VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00All prices are NET prices.

    Additional access options:

    doi: https://doi.org/10.1038/d41586-022-03116-6

    References

    Subjects

    Conservation biology More

  • in

    Predicting performance of naïve migratory animals, from many wrongs to self-correction

    Calculation of flight-step headings and movementTerms defining flight-step movement, precision and geophysical orientation cues are listed in Table 1. Since seasonal migration nearly ubiquitously proceeds from higher to lower latitudes, it is convenient to define headings clockwise from geographic South (counter-clockwise from geographic North for migration commencing in the Southern Hemisphere). Assuming a spherical Earth, a sequence of N migratory flight-steps with corresponding headings, αi, i = 0,…, N−1, the latitudes, ∅i+1, and longitudes, λi+1, on completion of each flight-step can be calculated using the Haversine Equation76, which we approximated by stepwise planar movement using Eqs. (1) and (2). For improved computational accuracy and to accommodate within flight-step effects, we updated simulated headings and corresponding locations hourly. A migrant’s flight-step distance ({R}_{{{mathrm {step}}}}=3.6{V}_{{mathrm {a}}}{cdot n}_{{mathrm {H}}}/{R}_{{{mathrm {Earth}}}}) (in radians), depends on its flight speed, Va (m/s) relative to the mean Earth radius REarth (km), and flight-step hours, nH. With a geomagnetic in-flight compass, expected hourly geographic headings are modulated by changes in magnetic declination, i.e., the clockwise difference between geographic and geomagnetic South10,32.Formulation of compass coursesFor simplicity, we consider the case of a single inherited or imprinted heading. This can be extended to include sequences of preferred headings. Expected geographic loxodrome headings remain unchanged en route, i.e.,$${bar{{{{{{rm{alpha }}}}}}}}_{i}={bar{{{{{{rm{alpha }}}}}}}}_{0}$$
    (5)
    Relative to geographic axes, expected geomagnetic loxodrome headings remain unchanged relative to proximate geomagnetic South, i.e., are offset by geomagnetic declination on departure (updated hourly in simulations)$${bar{{{{{{rm{alpha }}}}}}}}_{i}={bar{{{{{{rm{alpha }}}}}}}}_{0}+{delta }_{{mathrm {m}},i}$$
    (6)
    As described and illustrated in detail by Kiepenheuer13, the magnetoclinic compass was hypothesized to explain the prevalence of “curved” migratory bird routes, i.e., for which local geographic headings shift gradually but substantially en route. A migrant with a magnetoclinic compass adjusts its heading at each flight-step to maintain a constant transverse component, γ′, of the experienced inclination angle, γ, so that error-free headings are (see Fig. S5 in ref. 34)$${{bar{{{{{{rm{alpha }}}}}}}}_{i}={{sin }}}^{-1}left(frac{{{tan }}{gamma }_{i}}{{{tan }}{gamma }^{{prime} }}right){={{sin }}}^{-1}left(frac{{{tan }}{gamma }_{i}{{sin }}{bar{{{{{{rm{alpha }}}}}}}}_{0}}{{{tan }}{gamma }_{0}}right).$$
    (7)
    In a geomagnetic dipole field, the horizontal (Bh) and vertical (Bz) field, and therefore also inclination, each depends solely on geomagnetic latitude, ∅m:(gamma ={{{tan }}}^{-1}left({B}_{{mathrm {z}}}/{B}_{{mathrm {h}}}right)={{{tan }}}^{-1}left(2{{sin }}{phi }_{{mathrm {m}}}/{{cos }}{phi }_{{mathrm {m}}}right)={{{tan }}}^{-1}left(2{{tan }}{phi }_{{mathrm {m}}}right).) The projected transverse component, therefore, becomes$${gamma }^{{prime} }={{{tan }}}^{-1}left(frac{{{tan }}{gamma }_{0}}{{{sin }}{bar{{{alpha }}}}_{0}}right)={{{tan }}}^{-1}left(frac{2{{tan }}{{{phi }}}_{{mathrm {m}},0}}{{{sin }}{bar{{{{{{rm{alpha }}}}}}}}_{0}}right),$$which can be substituted into Eq. (7) to produce a closed formula for magnetoclinic headings in a dipole as a function of geomagnetic latitude$${bar{{{{{{rm{alpha }}}}}}}}_{i}left({{{phi }}}_{{mathrm {m}},i}right)={{{sin }}}^{-1}left(frac{{{sin }}{bar{{{{{{rm{alpha }}}}}}}}_{0}}{{{tan }}{{{phi }}}_{{mathrm {m}},0}}cdot {{tan }}{{{phi }}}_{{mathrm {m}},i}right),$$
    (8)
    with the expected initial heading, ({bar{{{{{{rm{alpha }}}}}}}}_{0}), and initial geomagnetic latitude, ∅m,0, being constants. Equations (7) and (8) have no solution when inclination increases en route, which could occur following substantial orientation error or in strongly non-dipolar fields. We followed previous studies in allowing magnetoclinic migrants to head towards magnetic East or West until inclination decreased sufficiently33,34,46, but also included orientation error based on the modelled compass precision.To assess sun-compass sensitivity algebraically, and also to improve computational efficiency, we used a closed-form equation for sunset azimuth, θs (derived in Supplementary Note 3 and see ref. 23),$${theta }_{{mathrm {s}}}={{{cos }}}^{-1}left(frac{-{{sin }}{delta }_{{mathrm {s}}}}{{{cos }}{{phi }}}right),$$
    (9)
    where δs is the solar declination, which varies between −23.4° and 23.4° with season and latitude23. Sunset azimuth is the positive and sunrise azimuth is the negative solution to Eq. (9) (relative to geographic N–S).Fixed sun-compass headings represent a uniform (clockwise) offset, ({bar{{{{{{rm{alpha }}}}}}}}_{{mathrm {s}}}) to sunrise or sunset azimuth, θs,i (calculated using Eq. (9))$${{bar{{{{{{rm{alpha }}}}}}}}_{i}={bar{{{{{{rm{alpha }}}}}}}}_{{mathrm {s}}}+theta }_{{mathrm {s}},i}$$
    (10)
    where the preferred heading on commencement of migration, ({bar{{{{{{rm{alpha }}}}}}}}_{{mathrm {s}}}={bar{{{{{{rm{alpha }}}}}}}}_{0}-{theta }_{{mathrm {s}},0}), is presumed to be imprinted using an inherited geographic or geomagnetic heading2,10,30.With a TCSC, preferred headings relative to sun azimuth are adjusted according to the time of day. In the context of sun-compass use during migration, Alerstam and Pettersson22 related the hourly “clock-shift” induced by crossing bands of longitude (∆h = 12 ∆λ/π), to a migrant’s time-compensated adjustment given the rate of change (i.e., angular speed) of sun azimuth close to sunset$$frac{partial {theta }_{{mathrm {s}}}}{partial h}cong frac{2pi {{sin }}{{phi }}}{24},$$
    (11)
    resulting in a “time-compensated” offset in heading on departure ((varDelta bar{{{{{{rm{alpha }}}}}}}cong varDelta {{{{{rm{lambda }}}}}},sin phi), which Eq.(4)). Equation (4) results in near-great-circle trajectories for small ranges in latitude, ∅, until inner clocks are reset. The feasibility of TCSC courses over longer distances (latitude ranges) relies on two critical but little-explored assumptions: (1) time-compensated orientation adjustments are presumed to follow the angular speed of sun azimuth (Eq. (11)) retained from the most recent clock-reset site, and (2) to negotiate unpredictable migratory schedules, migrants are presumed to retain their preferred geographic heading on arrival at extended stopovers22.Regarding the first assumption, time-compensated adjustments could also be influenced by proximate speeds of sun azimuth even when inner clocks are not fully reset. We, therefore, use distinct indices to keep track of “reference” flight-steps for clock-resets (cref,i) and time-compensated adjustments (sref,i). TCSC flight-step headings can then be written as$${bar{{{{{{rm{alpha }}}}}}}}_{i}=left{begin{array}{cc}{bar{{{{{{rm{alpha }}}}}}}}_{{c}_{{{mathrm {ref}}},i}}+left({theta }_{{mathrm {s}},i}-{theta }_{{mathrm {s}},{c}_{{{mathrm {ref}}},i}}right)+left({{{{{{rm{lambda }}}}}}}_{i}-{{{{{{rm{lambda }}}}}}}_{{c}_{{{mathrm {ref}}},i}}right){{sin }}{phi }_{{s}_{{{mathrm {ref}}},i}}, & {i,ne, c}_{{{mathrm {ref}}},i} ; (12a)\ {{{{{{rm{alpha }}}}}}}_{i-1}, & {i=c}_{{{mathrm {ref}}},i} ; (12b)end{array}right.,$$where θs,i represents the sunset azimuth on departures, cref,i specifies the most recent clock-reset site (during which geographic headings are also retained, i.e., ({bar{{{{{{rm{alpha }}}}}}}}_{i}={{{{{{rm{alpha }}}}}}}_{i-1})), and sref,i specifies the site defining the migrant’s temporal (hourly) rate of “time-compensated” adjustments (Eq. (11)). For TCSC courses as conceived by Alerstam and Pettersson22, reference rates of adjustment to sun azimuth are reset in tandem during stopovers, i.e., ({s}_{{{mathrm {ref}}},i}={c}_{{{mathrm {ref}}},i}), but we also considered a proximately gauged TCSC, where migrants gauge their adjustments to currently experienced speed of sun azimuth, i.e., ({s}_{{{mathrm {ref}}},i}=i).Regarding the second assumption, retaining geographic headings on arrival at stopovers is not consistent with ignoring geographic headings between consecutive nightly flight-steps, and may be difficult to achieve while landing. We, therefore, examined a more parsimonious alternative (Fig. 7d, Supplementary Fig. 3) where migrants retain their (usual) TCSC heading from the first night of stopovers, i.e., as if they would have departed on the first night. This alternative also simplifies Eq. (12) to$${bar{{{{{{rm{alpha }}}}}}}}_{i}={bar{{{{{{rm{alpha }}}}}}}}_{{c}_{{{mathrm {ref}}},i}}+left({theta }_{{mathrm {s}},({t}_{i-1}+1)}-{theta }_{{mathrm {s}},{t}_{i-1}}right)+left({{{{{{rm{lambda }}}}}}}_{i}-{{{{{{rm{lambda }}}}}}}_{{c}_{{{mathrm {ref}}},i}}right){{sin }}{{{phi }}}_{{s}_{{{mathrm {ref}}},i}}$$
    (12c)
    where the index ti−1 here represents the departure date from the previous flight.Sensitivity of compass-course headingsSensitivity was assessed by the marginal change in expected heading from previous (imprecise) headings, (partial {bar{alpha }}_{i}/partial {alpha }_{i-1}). When this is positive, small errors in headings will perpetuate, and therefore expected errors in migratory trajectories will grow iteratively. Conversely, negative sensitivity implies self-correction between successive flight-steps. Geographic and geomagnetic loxodromes are per definition constant relative to their respective axes so have “zero” sensitivity, as long as cue-detection errors are stochastically independent.For magnetoclinic compass courses in a dipole field, sensitivity can be calculated by differentiating Eq. (8) with respect to previous headings:$$frac{{mathrm {d}}{bar{{{{{{rm{alpha }}}}}}}}_{i}}{{mathrm {d}}{{{{{{rm{alpha }}}}}}}_{i-1}}=frac{{sin bar{{{{{{rm{alpha }}}}}}}}_{0}}{tan {phi }_{{mathrm {m}},0}}cdot frac{1}{cos {bar{alpha }}_{i}{cos }^{2}{phi }_{{mathrm {m}},i}}frac{partial {phi }_{{mathrm {m}},i}}{partial {alpha }_{i-1}}=frac{{R}_{{mathrm {step}}},sin {alpha }_{i-1}{sin bar{{{{{{rm{alpha }}}}}}}}_{0}}{cos {bar{alpha }}_{i}{cos }^{2}{phi }_{{mathrm {m}},i},tan {phi }_{{mathrm {m}},0}}$$
    (13)
    All three terms in the denominator indicate, as illustrated in Fig. 3b, that magnetoclinic courses become unstably sensitive at both high and low latitudes, and any heading with a significantly East–West component.Sensitivity of fixed sun compass headings is non-zero due to sun azimuth dependence on location (Eq. (9)):$$frac{{mathrm {d}}{bar{{{{{{rm{alpha }}}}}}}}_{i}}{{mathrm {d}}{{{{{{rm{alpha }}}}}}}_{i-1}} = , frac{sin {delta }_{{mathrm {s}},i}}{sin {theta }_{{mathrm {s}},i}}cdot frac{sin {phi }_{i}}{{cos }^{2}{phi }_{i}}frac{partial {phi }_{i}}{partial {alpha }_{i-1}}=frac{sin {delta }_{{mathrm {s}},i}}{sin {theta }_{{mathrm {s}},i}}cdot frac{{R}_{{mathrm {step}}},sin {phi }_{i},sin {alpha }_{i-1}}{{cos }^{2}{phi }_{i}}\ = , {R}_{{mathrm {step}}}cdot ,sin {alpha }_{i-1}frac{tan {phi }_{i}}{tan {theta }_{{mathrm {s}},i}}$$
    (14)
    The sine factor on the right-hand side in Eq. (14) causes the sign of (partial {bar{alpha }}_{i}/partial {alpha }_{i-1}) to be opposite for East to West or West to East headings, and tan θs also change sign at the fall equinox (due to solar declination changing sign). The azimuth term in the denominator indicates heightened sensitivity closer to the summer or winter equinox and at high latitudes, and, conversely, heightened robustness to errors closer to the spring or autumnal equinox (since ({{tan }}{theta }_{{mathrm {s}},0}to pm infty)). This seasonal and directional asymmetry is illustrated in Fig. 3c, e.TCSC courses (Eq. (12)) involve up to three sensitivity terms, due to dependencies on sun azimuth, longitude and latitude:$$ frac{{mathrm {d}}{bar{{{{{{rm{alpha }}}}}}}}_{i}}{{mathrm {d}}{{{{{{rm{alpha }}}}}}}_{i-1}} = , {R}_{{{mathrm {step}}}}cdot {{sin }}{alpha }_{i-1}frac{{{tan }}{phi }_{i}}{{{tan }}{theta }_{{mathrm {s}},i}}+frac{{mathrm {d}}{lambda }_{i}}{{mathrm {d}}{{{{{{rm{alpha }}}}}}}_{i-1}}{{sin }}{{{phi }}}_{{c}_{{{mathrm {ref}}}},i}+left({{{{{{rm{lambda }}}}}}}_{i}-{{{{{{rm{lambda }}}}}}}_{{c}_{{{mathrm {ref}}}},i}right)frac{{mathrm {d}}{{sin }}{phi }_{{s}_{{{mathrm {ref}}}},i}}{{mathrm {d}}{{{{{{rm{alpha }}}}}}}_{i-1}}\ =, left{begin{array}{cc}{R}_{{{mathrm {step}}}}cdot left[{{sin }}{alpha }_{i-1}frac{{{tan }}{phi }_{i}}{{{tan }}{theta }_{{mathrm {s}},i}}-frac{{{cos }}{{{{{{rm{alpha }}}}}}}_{i-1}{{sin }}{phi }_{{s}_{{{mathrm {ref}}}},i}}{{{cos }}{phi }_{i-1}}right],hfill & {{{{{rm{classic}}}}}} ; (15{{{{{rm{a}}}}}})\ {R}_{{{mathrm {step}}}}left[{{sin }}{alpha }_{i-1}frac{{{tan }}{phi }_{i}}{{{tan }}{theta }_{{mathrm {s}},i}}-frac{{{cos }}{{{{{{rm{alpha }}}}}}}_{i-1}{{sin }}{phi }_{{s}_{{{mathrm {ref}}}},i}}{{{cos }}{phi }_{i-1}}+left({{{{{{rm{lambda }}}}}}}_{i}-{{{{{{rm{lambda }}}}}}}_{{c}_{{{mathrm {ref}}}},i}right){{sin }}{alpha }_{i-1}{{cos }}{phi }_{i}right], & {{{{{rm{proximate}}}}}} ; left(15{{{{{rm{b}}}}}}right).end{array}right.$$The first square-bracketed terms in Eqs. (15a, b) are identical to the fixed sun compass (Eq. (14)), reflecting seasonal and latitudinal dependence in sun-azimuth. For headings with a Southward component (α0  1) and nonexistent for North–South headings (G = 1, reflecting no longitude bands being crossed). We expected this factor to affect compass courses differentially according to their error-accumulating or self-correcting nature.We further modified the effective goal-area breadth to account for a (geographically) circular goal area on the sphere, i.e., effectively modulating the longitudinal component of the goal-area breadth at the arrival latitude, ∅A:$${beta }_{{mathrm {A}}}=beta sqrt{{{{{sin }}}^{2}bar{alpha }+left({{cos }}bar{alpha }/{{cos }}{{{phi }}}_{{mathrm {A}}}right)}^{2}}.$$
    (19)
    To account for differential sensitivity among compass-courses, we generalized the normal many-wrongs relation between performance and number of steps, (1/{hat{N}}^{eta }), from η = 0.5 (Eqs. (3) and (16)) to$$eta left({sigma }_{{step}}|s,bright)=left(0.5+bright){e}^{-s{{sigma }_{{step}}}^{2}},$$
    (20)
    where b  0 self-correction, and s represents a modulating exponential damping factor, consistent with the limiting circular-uniform case (as κ → 0, i.e., ({sigma }_{{{mathrm {step}}}}to infty)), where no (timely) convergence of heading is expected with an increasing number of steps.In assessing performance, we also accounted for seasonal migration constraints via a population-specific maximum number of steps, Nmax (Table 2; this became significant for the longest-distance simulations with large expected errors, i.e., small ({{{{{{rm{kappa }}}}}}}_{{{mathrm {step}}}}=1/{sigma }_{{{mathrm {step}}}}^{2})). The probability of having arrived at the goal latitude can be estimated using the Central Limit Theorem:$${p}_{{{phi }},{N}_{{max }}}cong frac{1}{2}left[1-{erf}left(left(frac{{N}_{0}}{{N}_{{max }}}-frac{{I}_{1}left({{{{{{rm{kappa }}}}}}}_{{{mathrm {step}}}}right)}{{I}_{0}left({{{{{{rm{kappa }}}}}}}_{{{mathrm {step}}}}right)}right)cdot frac{{{cos }}bar{alpha }}{{sigma }_{{mathrm {C}}}sqrt{2}}right)right],$$
    (21)
    where Ij is the modified Bessel function of the first kind and order j53, and σC (the standard deviation in the latitudinal component of flight-step distance) can be calculated using Bessel functions together with known properties of sums of cosines53,77 (Supplementary Note 2).Regression-estimated performanceWe fit the parameters in the spherical-geometry factor (Eq. (18)) and many-wrongs effect (Eq. (20)) according to expected performance, estimated as the product of sufficiently timely migration (Eq. (21)) and sufficiently precise migration, now generalized from Eq. (16), i.e.$${p}_{beta ,hat{N}}cong {erf}left(frac{{beta }_{{mathrm {A}}}}{{G}^{{g}}sqrt{2left({{sigma }_{{{mathrm {ind}}}}}^{2}+{sigma }_{{{mathrm {step}}}}/{hat{N}}^{n}right)}}right),$$
    (22)
    This resulted in up to four fitted parameters for each compass course

    i.

    an exponent, g, to the spherical-geometry factor (Eq. (19)), i.e., Gg, reflecting how growth or self-correction in errors between steps further augments or reduces this factor,

    ii.

    a baseline offset, b0, to the “normal” exponent η = 0.5, which mediates the relation between the number of steps and performance (Eq. (20)),

    iii.

    an exponent s reflecting how decreasing precision among flight-steps dampens the many-wrongs convergence (Eq. (20)),

    iv.

    for TCSC courses, a modulation, ρ, to the offset, b0, quantifying the extent to which self-correction increases with increased flight-step distance Rstep, i.e., ({{b={b}_{0}R}_{{{mathrm {step}}}}^{{prime} }}^{rho }) in Eq. (20), where ({R}_{{{mathrm {step}}}}^{{prime} })is the flight-step distance scaled by its median value among species.

    Parameters were fit using MATLAB routine fitnlm based on compass course performance among species and seven error scenarios (5°, 10°, 20°, 30°, 40°, 50°, and 60° directional precision among flight-steps), for all combinations (including or excluding the four parameters). The most parsimonious combination of parameters was selected using MATLAB routine aicbic, based on the AICc, the Akaike information criterion corrected for small sample size57. Null values for the spherical-geometry parameter were set to g = 1, and for the parameters governing convergence of route-mean headings b0 = 0, s = 0, and, for TCSC courses, ρ = 0 (for loxodrome courses, ρ = 0 by default, i.e., was not fitted).Statistics and reproducibilityOur simulation results, regression fitting and AICc-model selection are reproducible using the MATLAB scripts (see the section “Code availability”).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    A comprehensive database of amphibian heat tolerance

    Arias, P. A. et al. Technical summary. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Chang. 2, 686–690 (2012).ADS 
    Article 

    Google Scholar 
    Fry, F. Effects of the environment on animal activity. Publ. Ontario Fish. Res. Lab. 55, 1–62 (1947).
    Google Scholar 
    Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: history and critique. Can. J. Zool. 75, 1561–1574, https://doi.org/10.1139/z97-783 (2011).Article 

    Google Scholar 
    Rezende, E. L., Castañeda, L. E. & Santos, M. Tolerance landscapes in thermal ecology. Funct. Ecol. 28, 799–809 (2014).Article 

    Google Scholar 
    Bozinovic, F., Calosi, P. & Spicer, J. I. Physiological correlates of geographic range in animals. Annu. Rev. Ecol. Evol. S. 42, 155–179 (2011).Article 

    Google Scholar 
    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl. Acad. Sci. USA 111, 5610–5615 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 105, 6668–6672 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Chang. 7, 718–722 (2017).ADS 
    Article 

    Google Scholar 
    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pottier, P., Burke, S., Drobniak, S. M. & Nakagawa, S. Methodological inconsistencies define thermal bottlenecks in fish life cycle: a comment on Dahlke et al. 2020. Evol. Ecol. 36, 287–292 (2022).Article 

    Google Scholar 
    Dahlke, F., Butzin, M., Wohlrab, S. & Pörtner, H.-O. Reply to: methodological inconsistencies define thermal bottlenecks in fish life cycle. Evol. Ecol. 36, 293–298 (2022).Article 

    Google Scholar 
    Pottier, P. et al. Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions. Ecol. Lett. (2022).Morley, S. A., Peck, L. S., Sunday, J. M., Heiser, S. & Bates, A. E. Physiological acclimation and persistence of ectothermic species under extreme heat events. Glob. Ecol. Biogeogr. 28, 1018–1037 (2019).Article 

    Google Scholar 
    Rohr, J. R. et al. The complex drivers of thermal acclimation and breadth in ectotherms. Ecol. Lett. 21, 1425–1439 (2018).PubMed 
    Article 

    Google Scholar 
    Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B-Biol. Sci. 282, 20150401 (2015).Article 

    Google Scholar 
    Weaving, H., Terblanche, J. S., Pottier, P. & English, S. Meta-analysis reveals weak but pervasive plasticity in insect thermal limits. Nat. Commun. 13, 1–11 (2022).Article 

    Google Scholar 
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).PubMed 
    Article 

    Google Scholar 
    Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoffmann, A. A., Chown, S. L. & Clusella-Trullas, S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct. Ecol. 27, 934–949 (2013).Article 

    Google Scholar 
    Kellermann, V. et al. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl. Acad. Sci. USA 109, 16228–16233 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morgan, R., Finnøen, M. H., Jensen, H., Pélabon, C. & Jutfelt, F. Low potential for evolutionary rescue from climate change in a tropical fish. Proc. Natl. Acad. Sci. USA 117, 33365–33372 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leiva, F. P., Calosi, P. & Verberk, W. C. E. P. Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water- and air-breathers. Philos. Trans. R. Soc. B-Biol. Sci. 374, 20190035 (2019).Article 

    Google Scholar 
    Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).PubMed 
    Article 

    Google Scholar 
    Nakagawa, S. & Freckleton, R. P. Missing inaction: the dangers of ignoring missing data. Trends Ecol. Evol. 23, 592–596 (2008).PubMed 
    Article 

    Google Scholar 
    Johnson, T. F., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. Handling missing values in trait data. Glob. Ecol. Biogeogr. 30, 51–62 (2021).Article 

    Google Scholar 
    Foo, Y. Z., O’Dea, R. E., Koricheva, J., Nakagawa, S. & Lagisz, M. A practical guide to question formation, systematic searching and study screening for literature reviews in ecology and evolution. Methods Ecol. Evol. 12, 1705–1720 (2021).Article 

    Google Scholar 
    Reboredo Segovia, A. L., Romano, D. & Armsworth, P. R. Who studies where? Boosting tropical conservation research where it is most needed. Front. Ecol. Environ. 18, 159–166 (2020).Article 

    Google Scholar 
    White, C. R. et al. Geographical bias in physiological data limits predictions of global change impacts. Funct. Ecol. 35, 1572–1578 (2021).Article 

    Google Scholar 
    Amano, T., González-Varo, J. P. & Sutherland, W. J. Languages are still a major barrier to global Science. PLoS Biol. 14, e2000933 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bennett, S., Duarte, C. M., Marbà, N. & Wernberg, T. Integrating within-species variation in thermal physiology into climate change ecology. Philos. Trans. R. Soc. B-Biol. Sci. 374, 20180550 (2019).Article 

    Google Scholar 
    Noble, D. W. A. et al. Meta-analytic approaches and effect sizes to account for ‘nuisance heterogeneity’ in comparative physiology. J. Exp. Biol. 225, jeb243225 (2022).PubMed 
    Article 

    Google Scholar 
    Peralta-Maraver, I. & Rezende, E. L. Heat tolerance in ectotherms scales predictably with body size. Nat. Clim. Chang. 11, 58–63 (2021).ADS 
    Article 

    Google Scholar 
    McKenzie, D. J. et al. Intraspecific variation in tolerance of warming in fishes. J. Fish Biol. 98, 1536–1555 (2021).PubMed 
    Article 

    Google Scholar 
    Morrissey, M. B. Meta-analysis of magnitudes, differences and variation in evolutionary parameters. J. Evol. Biol. 29, 1882–1904 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Duffy, G. A., Kuyucu, A. C., Hoskins, J. L., Hay, E. M. & Chown, S. L. Adequate sample sizes for improved accuracy of thermal trait estimates. Funct. Ecol. 35, 2647–2662 (2021).CAS 
    Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. https://www.iucnredlist.org (2021).Harfoot, M. B. J. et al. Using the IUCN Red List to map threats to terrestrial vertebrates at global scale. Nat. Ecol. Evol. 5, 1510–1519 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sodhi, N. K. et al. Measuring the meltdown: Drivers of global amphibian extinction and decline. PLoS One 3 (2008).Nowakowski, A. J. et al. Tropical amphibians in shifting thermal landscapes under land-use and climate change. Conserv. Physiol. 31, 96–105 (2017).
    Google Scholar 
    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl. Acad. Sci. USA 110, E2602–E2610 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5, 210 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vera-Baceta, M.-A., Thelwall, M. & Kousha, K. Web of Science and Scopus language coverage. Scientometrics 121, 1803–1813 (2019).Article 

    Google Scholar 
    Giustini, D. & Boulos, M. N. K. Google Scholar is not enough to be used alone for systematic reviews. Online J. Public Health Inform. 5, 214 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haddaway, N. R., Collins, A. M., Coughlin, D. & Kirk, S. The role of Google Scholar in evidence reviews and its applicability to grey literature searching. PLoS One 10, e0138237 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gusenbauer, M. & Haddaway, N. R. Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res. Synth. Methods 11, 181–217 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Harzing, A. Publish or perish. Res. Int. Manag. Softw. Release 27 (2007).Cheng, C.-B. A study of warming tolerance and thermal acclimation capacity of tadpoles in Taiwan. (Tunghai University, 2017).Wu, Q.-H. & Hsieh, C.-H. Thermal tolerance and population genetics of Hynobius fuca. (Chinese Culture University, 2016).Jørgensen, L. B., Malte, H., Ørsted, M., Klahn, N. A. & Overgaard, J. A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Sci. Rep. 11, 1–14 (2021).Article 

    Google Scholar 
    Agudelo-Cantero, G. A. & Navas, C. A. Interactive effects of experimental heating rates, ontogeny and body mass on the upper thermal limits of anuran larvae. J. Therm. Biol. 82, 43–51 (2019).PubMed 
    Article 

    Google Scholar 
    Alveal Riquelme, N. Relaciones entre la fisiología térmica y las características bioclimáticas de Rhinella spinulosa (Anura: Bufonidae) en Chile a través del enlace mecanicista de nicho térmico. (Universidad de Concepción, 2015).Alves, M. Tolerância térmica em espécies de anuros neotropicais do gênero Dendropsophus Fitzinger, 1843 e efeito da temperatura na resposta à predação. (Universidade Estadual de Santa Cruz, 2016).Anderson, R. C. O. & Andrade, D. V. Trading heat and hops for water: Dehydration effects on locomotor performance, thermal limits, and thermoregulatory behavior of a terrestrial toad. Ecol. Evol. 7, 9066–9075 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aponte Gutiérrez, A. Endurecimiento térmico en Pristimantis medemi (Anura: Craugastoridae), en coberturas boscosas del Municipio de Villavicencio (Meta). (Universidad Nacional de Colombia, 2020).Arrigada García, K. Conductas térmica en dos poblaciones de Batrachyla taeniata provenientes de la localidad de Ucúquer en la región de O’Higgins y de la localidad de Hualpén en la región del Bío-Bío (Universidad de Concepción, 2019).Azambuja, G., Martins, I. K., Franco, J. L. & Santos, T. Gdos Effects of mancozeb on heat shock protein 70 (HSP70) and its relationship with the thermal physiology of Physalaemus henselii (Peters, 1872) tadpoles (Anura: Leptodactylidae). J. Therm. Biol. 98, 102911 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bacigalupe, L. D. et al. Natural selection on plasticity of thermal traits in a highly seasonal environment. Evol. Appl. 11, 2004–2013 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barria, A. M. & Bacigalupe, L. D. Intraspecific geographic variation in thermal limits and acclimatory capacity in a wide distributed endemic frog. J. Therm. Biol. 69, 254–260 (2017).PubMed 
    Article 

    Google Scholar 
    Beltrán, I., Ramírez-Castañeda, V., Rodríguez-López, C., Lasso, E. & Amézquita, A. Dealing with hot rocky environments: critical thermal maxima and locomotor performance in Leptodactylus lithonaetes (anura: Leptodactylidae). Herpetol. J. 29, 155–161 (2019).Article 

    Google Scholar 
    Berkhouse, C. & Fries, J. Critical thermal maxima of juvenile and adult San Marcos salamanders (Eurycea nana). Southwest. Nat. 40, 430–434 (1995).
    Google Scholar 
    Blem, C. R., Ragan, C. A. & Scott, L. S. The thermal physiology of two sympatric treefrogs Hyla cinerea and Hyla chrysoscelis (Anura; Hylidae). Comp. Biochem. Physiol. 85, 563–570 (1986).CAS 
    Article 

    Google Scholar 
    Bonino, M. F., Cruz, F. B. & Perotti, M. G. Does temperature at local scale explain thermal biology patterns of temperate tadpoles? J. Therm. Biol. 94 (2020).Bovo, R. P. Fisiologia térmica e balanço hídrico em anfíbios anuros. (Universidad Estadual Paulista, 2015).Brattstrom, B. H. Thermal acclimation in Australian amphibians. Comp. Biochem. Physiol. 35, 69–103 (1970).Article 

    Google Scholar 
    Brattstrom, B. H. & Regal, P. Rate of thermal acclimation in the Mexican salamander. Chiropterotriton. Copeia 1965, 514–515 (1965).Article 

    Google Scholar 
    Brattstrom, B. H. A preliminary review of the thermal requirements of amphibians. Ecology 44, 238–255 (1963).Article 

    Google Scholar 
    Brattstrom, B. H. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24, 93–111 (1968).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brattstrom, B. H. & Lawrence, P. The rate of thermal acclimation in anuran amphibians. Physiol. Zool. 35, 148–156 (1962).Article 

    Google Scholar 
    Brown, H. A. The heat resistance of some anuran tadpoles (Hylidae and Pelobatidae). Copeia 1969, 138 (1969).Article 

    Google Scholar 
    Burke, E. M. & Pough, F. H. The role of fatigue in temperature resistance of salamanders. J. Therm. Biol. 1, 163–167 (1976).Article 

    Google Scholar 
    Burrowes, P. A., Navas, C. A., Jiménez-Robles, O., Delgado, P. & De La Riva, I. Climatic heterogeneity in the Bolivian andes: Are frogs trapped? S. Am. J. Herpetol. 18, 1–12 (2020).Article 

    Google Scholar 
    Bury, R. B. Low thermal tolerances of stream amphibians in the Pacific Northwest: Implications for riparian and forest management. Appl. Herpetol. 5, 63–74 (2008).Article 

    Google Scholar 
    Castellanos García, L. A. Days of futures past: Integrating physiology, microenvironments, and biogeographic history to predict response of frogs in neotropical dry-forest to global warming. (Universidad de los Andes, 2017).Castro, B. Influence of environment on thermal ecology of direct-developing frogs (Anura: Craugastoridae: Pristimantis) in the eastern Andes of Colombia. (Universidad de los Andes, 2019).Catenazzi, A., Lehr, E. & Vredenburg, V. T. Thermal physiology, disease, and amphibian declines on the eastern slopes of the Andes. Conserv. Biol. 28, 509–517 (2014).PubMed 
    Article 

    Google Scholar 
    Chang, L.-W. Heat tolerance and its plasticity in larval Bufo bankorensis from different altitudes. (National Cheng Kung University, 2002).Chavez Landi, P. A. Fisiología térmica de un depredador Dasythemis sp. (Odonata: Libellulidae) y su presa Hypsiboas pellucens (Anura: Hylidae) y sus posibles implicaciones frente al cambio climático. (Pontificia Universidad Católica Del Ecuador, 2017).Chen, T.-C., Kam, Y.-C. & Lin, Y.-S. Thermal physiology and reproductive phenology of Buergeria japonica (Rhacophoridae) breeding in a stream and a geothermal hotspring in Taiwan. Zool. Sci. 18, 591–596 (2001).Article 

    Google Scholar 
    Cheng, Y.-J. Effect of salinity on the critical thermal maximum of tadpoles living in brackish water. (Tunghai University, 2017).Christian, K. A., Nunez, F., Clos, L. & Diaz, L. Thermal relations of some tropical frogs along an altitudinal gradient. Biotropica 20, 236–239 (1988).Article 

    Google Scholar 
    Claussen, D. L. The thermal relations of the tailed frog, Ascaphus truei, and the pacific treefrog, Hyla regilla. Comp. Biochem. Physiol. 44, 137–153 (1973).Article 

    Google Scholar 
    Claussen, D. L. Thermal acclimation in ambystomatid salamanders. Comp. Biochem. Physiol. 58, 333–340 (1977).Article 

    Google Scholar 
    Contreras Cisneros, J. Temperatura crítica máxima, tolerancia al frío y termopreferendum del tritón del Montseny (Calotriton arnoldii). (Universitat de Barcelona, 2019).Contreras Oñate, S. Posible efecto de las temperaturas de aclimatación sobre las respuestas térmicas en temperaturas críticas máximas (TCmás) y mínimas (TCmín) de una población de Batrachyla taeniata (Universidad de Concepción, 2016).Cooper, R. D. & Shaffer, H. B. Allele-specific expression and gene regulation help explain transgressive thermal tolerance in non-native hybrids of the endangered California tiger salamander (Ambystoma californiense). Mol. Ecol. 30, 987–1004 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Crow, J. C., Forstner, M. R. J., Ostr, K. G. & Tomasso, J. R. The role of temperature on survival and growth of the barton springs salamander (Eurycea sosorum). Herpetol. Conserv. Biol. 11, 328–334 (2016).
    Google Scholar 
    Cupp, P. V. Thermal tolerance of five salientian amphibians during development and metamorphosis. Herpetologica 36, 234–244 (1980).
    Google Scholar 
    Dabruzzi, T. F., Wygoda, M. L. & Bennett, W. A. Some like it hot: Heat tolerance of the crab-eating frog, Fejervarya cancrivora. Micronesica 43, 101–106 (2012).
    Google Scholar 
    Dainton, B. H. Heat tolerance and thyroid activity in developing tadpoles and juvenile adults of Xenopus laevis (Daudin). J. Therm. Biol. 16, 273–276 (1991).Article 

    Google Scholar 
    Daniel, N. J. J. Impact of climate change on Singapore amphibians. (National University of Singapore, 2013).Davies, S. J., McGeoch, M. A. & Clusella-Trullas, S. Plasticity of thermal tolerance and metabolism but not water loss in an invasive reed frog. Comp. Biochem. Physiol. 189, 11–20 (2015).CAS 
    Article 

    Google Scholar 
    de Oliviera Anderson, R. C., Bovo, R. P. & Andrade, D. V. Seasonal variation in the thermal biology of a terrestrial toad, Rhinella icterica (Bufonidae), from the Brazilian Atlantic Forest. J. Therm. Biol. 74, 77–83 (2018).Article 

    Google Scholar 
    de Vlaming, V. L. & Bury, R. B. Thermal selection in tadpoles of the tailed-frog. Ascaphus truei. J. Herpetol. 4, 179–189 (1970).Article 

    Google Scholar 
    Delson, J. & Whitford, W. G. Critical thermal maxima in several life history stages in desert and montane populations of Ambystoma tigrinum. Herpetologica 29, 352–355 (1973).
    Google Scholar 
    Duarte, H. et al. Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities. Glob. Chang. Biol. 18, 412–421 (2012).ADS 
    Article 

    Google Scholar 
    Duarte, H. S. A comparative study of the thermal tolerance of tadpoles of Iberian anurans. (Universidade de Lisboa, 2011).Dunlap, D. Evidence for a daily rhythm of heat resistance in cricket frogs, Acris crepitans. Copeia. 4, 852–854 (1969).Article 

    Google Scholar 
    Dunlap, D. G. Critical thermal maximum as a function of temperature of acclimation in two species of hylid frogs. Physiol. Zool. 41, 432–439 (1968).Article 

    Google Scholar 
    Elwood, J. R. L. Variation in hsp70 levels and thermotolerance among terrestrial salamanders of the Plethodon glutinosus complex. (Drexel University, 2003).Enriquez-Urzelai, U. et al. Ontogenetic reduction in thermal tolerance is not alleviated by earlier developmental acclimation in Rana temporaria. Oecologia 189, 385–394 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    Enriquez-Urzelai, U. et al. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients. J. Anim. Ecol. 89, 1722–1734 (2020).PubMed 
    Article 

    Google Scholar 
    Erskine, D. J. & Hutchison, V. H. Reduced thermal tolerance in an amphibian treated with melatonin. J. Therm. Biol. 7, 121–123 (1982).CAS 
    Article 

    Google Scholar 
    Escobar Serrano, D. Acclimation scope of the critical thermal limits in Agalychnis spurrelli (Hylidae) and Gastrotheca pseustes (Hemiphractidae) and their implications under climate change scenarios. (Pontificia Universidad Católica Del Ecuador, 2016).Fan, X., Lei, H. & Lin, Z. Ontogenetic shifts in selected body temperature and thermal tolerance of the tiger frog. Hoplobatrachus chinensis. Acta Ecol. Sin. 32, 5574–5580 (2012).
    Google Scholar 
    Fan, X. L., Lin, Z. H. & Scheffers, B. R. Physiological, developmental, and behavioral plasticity in response to thermal acclimation. J. Therm. Biol. 97 (2021).Fernández-Loras, A. et al. Infection with Batrachochytrium dendrobatidis lowers heat tolerance of tadpole hosts and cannot be cleared by brief exposure to CTmax. PLoS ONE 14 (2019).Floyd, R. B. Ontogenetic change in the temperature tolerance of larval Bufo marinus (Anura: bufonidae). Comp. Biochem. Physiol. 75, 267–271 (1983).Article 

    Google Scholar 
    Floyd, R. B. Effects of photoperiod and starvation on the temperature tolerance of larvae of the giant toad, Bufo marinus. Copeia 1985, 625–631 (1985).MathSciNet 
    Article 

    Google Scholar 
    Fong, S.-T. Thermal tolerance of adult Asiatic painted frog Kaloula pulchra from different populations. (National University of Tainan, 2014).Frishkoff, L. O., Hadly, E. A. & Daily, G. C. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob. Chang. Biol. 21, 3901–3916 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Frost, J. S. & Martin, E. W. A comparison of distribution and high temperature tolerance in Bufo americanus and Bufo woodhousii fowleri. Copeia 1971, 750 (1971).Article 

    Google Scholar 
    Gatz, A. J. Critical thermal maxima of Ambystoma maculatum (Shaw) and Ambystoma jeffersonianum (Green) in relation to time of breeding. Herpetologica 27, 157–160 (1971).
    Google Scholar 
    Gatz, A. J. Intraspecific variations in critical thermal maxima of Ambystoma maculatum. Herpetologica 29, 264–268 (1973).
    Google Scholar 
    Geise, W. & Linsenmair, K. E. Adaptations of the reed frog Hyperolius viridiflavus (Amphibia, Anura, Hyperoliidae) to its arid environment – IV. Ecological significance of water economy with comments on thermoregulation and energy allocation. Oecologia 77, 327–338 (1988).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    González-del-Pliego, P. et al. Thermal tolerance and the importance of microhabitats for Andean frogs in the context of land use and climate change. J. Anim. Ecol. 89, 2451–2460 (2020).PubMed 
    Article 

    Google Scholar 
    Gouveia, S. F. et al. Climatic niche at physiological and macroecological scales: The thermal tolerance-geographical range interface and niche dimensionality. Glob. Ecol. Biogeogr. 23, 446–456 (2014).Article 

    Google Scholar 
    Gray, R. Lack of physiological differentiation in three color morphs of the cricket frog (Acris crepitans) in Illinois. Trans. Ill. State Acad. Sci. 70, 73–79 (1977).ADS 

    Google Scholar 
    Greenspan, S. E. et al. Infection increases vulnerability to climate change via effects on host thermal tolerance. Sci. Rep. 7 (2017).Guevara-Molina, E. C., Gomes, F. R. & Camacho, A. Effects of dehydration on thermoregulatory behavior and thermal tolerance limits of Rana catesbeiana (Shaw, 1802). J. Therm. Biol. 93 (2020).Gutiérrez Pesquera, L. Una valoración macrofisiológica de la vulnerabilidad al calentamiento global. Análisis de los límites de tolerancia térmica en comunidades de anfibios en gradients latitudinales y altitudinales. (Pontificia Universidad Católica Del Ecuador, 2015).Gutiérrez Pesquera, M. Thermal tolerance across latitudinal and altitudinal gradients in tadpoles. (Universidad de Sevilla, 2016).Gutiérrez-Pesquera, L. M. et al. Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. J. Biogeogr. 43, 1166–1178 (2016).Article 

    Google Scholar 
    Gvoždík, L., Puky, M. & Šugerková, M. Acclimation is beneficial at extreme test temperatures in the Danube crested newt, Triturus dobrogicus (Caudata, Salamandridae). Bio. J. Linn. Soc. 90, 627–636 (2007).Article 

    Google Scholar 
    Heatwole, H., De Austin, S. B. & Herrero, R. Heat tolerances of tadpoles of two species of tropical anurans. Comp. Biochem. Physiol. 27, 807–815 (1968).Article 

    Google Scholar 
    Heatwole, H., Mercado, N. & Ortiz, E. Comparison of critical thermal maxima of two species of Puerto Rican frogs of the genus. Eleutherodactylus. Physiol. Zool. 38, 1–8 (1965).Article 

    Google Scholar 
    Holzman, N. & McManus, J. J. Effects of acclimation on metabolic rate and thermal tolerance in the carpenter frog. Rana vergatipes. Comp. Biochem. Physiol. 45, 833–842 (1973).CAS 
    Article 

    Google Scholar 
    Hoppe, D. M. Thermal tolerance in tadpoles of the chorus frog Pseudacris triseriata. Herpetologica 34, 318–321 (1978).
    Google Scholar 
    Hou, P.-C. Thermal tolerance and preference in the adult amphibians from different altitudinal LTER sites. (National Cheng Kung University, 2003).Howard, J. H., Wallace, R. L. & Stauffer, J. R. Jr Critical thermal maxima in populations of Ambystoma macrodactylum from different elevations. J. Herpetol. 17, 400–402 (1983).Article 

    Google Scholar 
    Hutchison, V. H. & Ritchart, J. P. Annual cycle of thermal tolerance in the salamander. Necturus maculosus. J. Herpetol. 23, 73–76 (1989).Article 

    Google Scholar 
    Hutchison, V. H. The distribution and ecology of the cave salamander, Eurycea lucifuga. Ecol. Monogr. 28, 2–20 (1958).Article 

    Google Scholar 
    Hutchison, V. H. Critical thermal maxima in salamanders. Physiol. Zool. 34, 92–125 (1961).Article 

    Google Scholar 
    Hutchison, V. H., Engbretson, G. & Turney, D. Thermal acclimation and tolerance in the hellbender, Cryptobranchus alleganiensis. Copeia 1973, 805–807 (1973).Article 

    Google Scholar 
    Hutchison, V. H. & Rowlan, S. D. Thermal acclimation and tolerance in the mudpuppy. Necturus maculosus. J. Herpetol. 9, 367–368 (1975).Article 

    Google Scholar 
    Jiang, S., Yu, P. & Hu, Q. A study on the critical thermal maxima of five species of salamanders of China. Acta Herpetol. Sin. 6, 56–62 (1987).
    Google Scholar 
    John-Alder, H. B., Morin, P. J. & Lawler, S. Thermal physiology, phenology, and distribution of tree frogs. Am. Nat. 132, 506–520 (1988).Article 

    Google Scholar 
    Johnson, C. R. Daily variation in the thermal tolerance of Litoria caerulea (Anura: Hylidae). Comp. Biochem. Physiol. 40, 1109–1111 (1971).Article 

    Google Scholar 
    Johnson, C. R. Thermal relations and water balance in the day frog, Taudactylus diurnus, from an Australian rain forest. Aust. J. Zool. 19, 35–39 (1971).Article 

    Google Scholar 
    Johnson, C. R. Diel variation in the thermal tolerance of Litoria gracilenta (Anura: Hylidae). Comp. Biochem. Physiol. 41, 727–730 (1972).CAS 
    Article 

    Google Scholar 
    Johnson, C. R. & Prine, J. E. The effects of sublethal concentrations of organophosphorus insecticides and an insect growth regulator on temperature tolerance in hydrated and dehydrated juvenile western toads. Bufo boreas. Comp. Biochem. Physiol. 53, 147–149 (1976).CAS 
    Article 

    Google Scholar 
    Johnson, C. R. Observations on body temperatures, critical thermal maxima and tolerance to water loss in the Australian hylid, Hyla caerulea (White). Proc. R. Soc. Qld. 82, 47–50 (1970).
    Google Scholar 
    Johnson, C. R. Thermal relations and daily variation in the thermal tolerance in. Bufo marinus. J. Herpetol. 6, 35 (1972).Article 

    Google Scholar 
    Johnson, C. Thermal relations in some southern and eastern Australian anurans. Proc. R. Soc. Qld. 82, 87–94 (1971).
    Google Scholar 
    Johnson, C. The effects of five organophosphorus insecticides on thermal stress in tadpoles of the Pacific tree frog. Hyla regilla. Zool. J. Linn. Soc. 69, 143–147 (1980).ADS 
    Article 

    Google Scholar 
    Katzenberger, M., Duarte, H., Relyea, R., Beltrán, J. F. & Tejedo, M. Variation in upper thermal tolerance among 19 species from temperate wetlands. J. Therm. Biol. 96 (2021).Katzenberger, M. et al. Swimming with predators and pesticides: How environmental stressors affect the thermal physiology of tadpoles. PLoS ONE 9 (2014).Katzenberger, M., Hammond, J., Tejedo, M. & Relyea, R. Source of environmental data and warming tolerance estimation in six species of North American larval anurans. J. Therm. Biol. 76, 171–178 (2018).PubMed 
    Article 

    Google Scholar 
    Katzenberger, M. Thermal tolerance and sensitivity of amphibian larvae from Palearctic and Neotropical communities. (Universidade de Lisboa, 2013).Katzenberger, M. Impact of global warming in holarctic and neotropical communities of amphibians. (Universidad de Sevilla, 2014).Kern, P., Cramp, R. L. & Franklin, C. E. Temperature and UV-B-insensitive performance in tadpoles of the ornate burrowing frog: An ephemeral pond specialist. J. Exp. Biol. 217, 1246–1252 (2014).PubMed 

    Google Scholar 
    Kern, P., Cramp, R. L., Seebacher, F., Ghanizadeh Kazerouni, E. & Franklin, C. E. Plasticity of protective mechanisms only partially explains interactive effects of temperature and UVR on upper thermal limits. Comp. Biochem. Physiol. 190, 75–82 (2015).CAS 
    Article 

    Google Scholar 
    Kern, P., Cramp, R. L. & Franklin, C. E. Physiological responses of ectotherms to daily temperature variation. J. Exp. Biol. 218, 3068–3076 (2015).PubMed 

    Google Scholar 
    Komaki, S., Igawa, T., Lin, S.-M. & Sumida, M. Salinity and thermal tolerance of Japanese stream tree frog (Buergeria japonica) tadpoles from island populations. Herpetol. J. 26, 207–211 (2016).
    Google Scholar 
    Komaki, S., Lau, Q. & Igawa, T. Living in a Japanese onsen: Field observations and physiological measurements of hot spring amphibian tadpoles. Buergeria japonica. Amphib. Reptil. 37, 311–314 (2016).Article 

    Google Scholar 
    Krakauer, T. Tolerance limits of the toad, Bufo marinus, in South Florida. Comp. Biochem. Physiol. 33, 15–26 (1970).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kurabayashi, A. et al. Improved transport of the model amphibian, Xenopus tropicalis, and its viable temperature for transport. Curr. Herpetol. 33, 75–87 (2014).Article 

    Google Scholar 
    Lau, E. T. C., Leung, K. M. Y. & Karraker, N. E. Native amphibian larvae exhibit higher upper thermal limits but lower performance than their introduced predator. Gambusia affinis. J. Therm. Biol. 81, 154–161 (2019).PubMed 
    Article 

    Google Scholar 
    Layne, J. R. & Claussen, D. L. Seasonal variation in the thermal acclimation of critical thermal maxima (CTMax) and minima (CTMin) in the salamander. Eurycea bislineata. J. Therm. Biol. 7, 29–33 (1982).Article 

    Google Scholar 
    Layne, J. R. & Claussen, D. L. The time courses of CTMax and CTMin acclimation in the salamander. Desmognathus fuscus. J. Therm. Biol. 7, 139–141 (1982).Article 

    Google Scholar 
    Lee, P.-T. Acidic effect on tadpoles living in container habitats. (Tunghai University, 2019).Longhini, L. S., De Almeida Prado, C. P., Bícego, K. C., Zena, L. A. & Gargaglioni, L. H. Measuring cardiorespiratory variables on small tadpoles using a non-invasive methodology. Rev. Cuba. Investig. Biomed. 38 (2019).López Rosero, A. C. Ontogenetic variation of thermal tolerance in two anuran species of Ecuador: Gastrotheca pseustes (Hemiphractidae) and Smilisca phaeota (Hylidae) and their relative vulnerability to environmental temperature change. (Pontificia Universidad Católica Del Ecuador, 2015).Lotshaw, D. P. Temperature adaptation and effects of thermal acclimation in Rana sylvatica and Rana catesbeiana. Comp. Biochem. Physiol. 56, 287–294 (1977).Article 

    Google Scholar 
    Lu, H.-L., Wu, Q., Geng, J. & Dang, W. Swimming performance and thermal resistance of juvenile and adult newts acclimated to different temperatures. Acta Herpetol. 11, 189–195 (2016).
    Google Scholar 
    Lu, H. L., Geng, J., Xu, W., Ping, J. & Zhang, Y. P. Physiological response and changes in swimming performance after thermal acclimation in juvenile chinese fire-belly newts, Cynops orientalis. Acta Ecol. Sin. 37, 1603–1610 (2017).
    Google Scholar 
    Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: Data to support the onset of spasms as the definitive end point. Can. J. Zool. 75, 1553–1560 (1997).Article 

    Google Scholar 
    Madalozzo, B. Variação latitudinal nos limites de tolerância e plasticidade térmica em anfíbios em um cenário de mudanças climáticas: efeito dos micro-habitats, sazonalidade e filogenia. (Universidade Federal de Santa Maria, 2018).Mahoney, J. J. & Hutchison, V. H. Photoperiod acclimation and 24-hour variations in the critical thermal maxima of a tropical and a temperate frog. Oecologia 2, 143–161 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Maness, J. D. & Hutchison, V. H. Acute adjustment of thermal tolerance in vertebrate ectotherms following exposure to critical thermal maxima. J. Therm. Biol. 5, 225–233 (1980).Article 

    Google Scholar 
    Manis, M. L. & Claussen, D. L. Environmental and genetic influences on the thermal physiology of Rana sylvatica. J. Therm. Biol. 11, 31–36 (1986).Article 

    Google Scholar 
    Markle, T. M. & Kozak, K. H. Low acclimation capacity of narrow-ranging thermal specialists exposes susceptibility to global climate change. Ecol. Evol. 8, 4644–4656 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marshall, E. & Grigg, G. C. Acclimation of CTM, LD50, and rapid loss of acclimation of thermal preferendum in tadpoles of Limnodynastes peronii (Anura, Myobatrachidae). Aust. Zool. 20, 447–456 (1980).
    Google Scholar 
    Mathias, J. H. The Comparative ecologies of two species of Amphibia (B. bufo and B. calamita) on the Ainsdale Sand Dunes National Nature Reserve. (The University of Manchester, 1971).McManus, J. J. & Nellis, D. W. The critical thermal maximum of the marine toad, Bufo marinus. Caribb. J. Sci. 15, 67–70 (1975).
    Google Scholar 
    Menke, M. E. & Claussen, D. L. Thermal acclimation and hardening in tadpoles of the bullfrog, Rana catesbeiana. J. Therm. Biol. 7, 215–219 (1982).Article 

    Google Scholar 
    Merino-Viteri, A. R. The vulnerability of microhylid frogs, Cophixalus spp., to climate change in the Australian Wet Tropics. (James Cook University, 2018).Messerman, A. F. Tales of an ‘invisible’ life stage: Survival and physiology among terrestrial juvenile ambystomatid salamanders. (University of Missouri, 2019).Meza-Parral, Y., García-Robledo, C., Pineda, E., Escobar, F. & Donnelly, M. A. Standardized ethograms and a device for assessing amphibian thermal responses in a warming world. J. Therm. Biol. 89 (2020).Miller, K. & Packard, G. C. Critical thermal maximum: Ecotypic variation between montane and piedmont chorus frogs (Pseudacris triseriata, Hylidae). Experientia 30, 355–356 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miller, K. & Packard, G. C. An altitudinal cline in critical thermal maxima of chorus frogs (Pseudacris triseriata). Am. Nat. 111, 267–277 (1977).Article 

    Google Scholar 
    Mueller, C. A., Bucsky, J., Korito, L. & Manzanares, S. Immediate and persistent effects of temperature on oxygen consumption and thermal tolerance in embryos and larvae of the baja California chorus frog, Pseudacris hypochondriaca. Front. Physiol. 10 (2019).Navas, C. A., Antoniazzi, M. M., Carvalho, J. E., Suzuki, H. & Jared, C. Physiological basis for diurnal activity in dispersing juvenile Bufo granulosus in the Caatinga, a Brazilian semi-arid environment. Comp. Biochem. Physiol. 147, 647–657 (2007).Article 

    Google Scholar 
    Navas, C. A., Úbeda, C. A., Logares, R. & Jara, F. G. Thermal tolerances in tadpoles of three species of Patagonian anurans. S. Am. J. Herpetol. 5, 89–96 (2010).Article 

    Google Scholar 
    Nietfeldt, J. W., Jones, S. M., Droge, D. L. & Ballinger, R. E. Rate of thermal acclimation of larval Ambystoma tigrinum. J. Herpetol. 14, 209–211 (1980).Article 

    Google Scholar 
    Nol, R. & Ultsch, G. R. The roles of temperature and dissolved oxygen in microhabitat selection by the tadpoles of a frog (Rana pipiens) and a toad (Bufo terrestris). Copeia 1981, 645–652 (1981).Article 

    Google Scholar 
    Novarro, A. J. Thermal physiology in a widespread lungless salamander. (University of Maryland, 2018).Nowakowski, A. J. et al. Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol. Lett. 21, 345–355 (2018).PubMed 
    Article 

    Google Scholar 
    Orille, A. C., McWhinnie, R. B., Brady, S. P. & Raffel, T. R. Positive effects of acclimation temperature on the critical thermal maxima of Ambystoma mexicanum and Xenopus laevis. J. Herpetol. 54, 289–292 (2020).Article 

    Google Scholar 
    Oyamaguchi, H. M. et al. Thermal sensitivity of a neotropical amphibian (Engystomops pustulosus) and its vulnerability to climate change. Biotropica 50, 326–337 (2018).Article 

    Google Scholar 
    Paez Vacas, M. I. Mechanisms of population divergence along elevational gradients in the tropics. (Colorado State University, 2016).Paulson, B. K. & Hutchison, V. H. Blood changes in Bufo cognatus following acute heat stress. Comp. Biochem. Physiol. 87, 461–466 (1987).CAS 
    Article 

    Google Scholar 
    Paulson, B. & Hutchison, V. Origin of the stimulus for muscular spasms at the critical thermal maximum in anurans. Copeia 810–813 (1987).Percino-Daniel, R. et al. Environmental heterogeneity shapes physiological traits in tropical direct-developing frogs. Ecol. Evol. (2021).Perotti, M. G., Bonino, M. F., Ferraro, D. & Cruz, F. B. How sensitive are temperate tadpoles to climate change? The use of thermal physiology and niche model tools to assess vulnerability. Zoology 127, 95–105 (2018).PubMed 
    Article 

    Google Scholar 
    Pintanel, P., Tejedo, M., Almeida-Reinoso, F., Merino-Viteri, A. & Gutiérrez-Pesquera, L. M. Critical thermal limits do not vary between wild-caught and captive-bred tadpoles of Agalychnis spurrelli (Anura: Hylidae). Diversity 12, 43 (2020).Article 

    Google Scholar 
    Pintanel, P., Tejedo, M., Ron, S. R., Llorente, G. A. & Merino-Viteri, A. Elevational and microclimatic drivers of thermal tolerance in Andean Pristimantis frogs. J. Biogeogr. 46, 1664–1675 (2019).Article 

    Google Scholar 
    Pintanel, P. Thermal adaptation of amphibians in tropical mountains. Consequences of global warming. (Universitat de Barcelona, 2018).Pintanel, P., Tejedo, M., Salinas-Ivanenko, S., Jervis, P. & Merino-Viteri, A. Predators like it hot: Thermal mismatch in a predator-prey system across an elevational tropical gradient. J. Anim. Ecol. 90, 1985–1995 (2021).PubMed 
    Article 

    Google Scholar 
    Pough, F. H. Natural daily temperature acclimation of eastern red efts, Notophthalmus v. viridescens (Rafinesque) (Amphibia: Caudata). Comp. Biochem. Physiol. 47, 71–78 (1974).CAS 
    Article 

    Google Scholar 
    Pough, F. H., Stewart, M. M. & Thomas, R. G. Physiological basis of habitat partitioning in Jamaican. Eleutherodactylus. Oecologia 27, 285–293 (1977).ADS 
    PubMed 
    Article 

    Google Scholar 
    Quiroga, L. B., Sanabria, E. A., Fornés, M. W., Bustos, D. A. & Tejedo, M. Sublethal concentrations of chlorpyrifos induce changes in the thermal sensitivity and tolerance of anuran tadpoles in the toad Rhinella arenarum? Chemosphere 219, 671–677 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rausch, C. The thermal ecology of the red-spotted toad, Bufo punctatus, across life history. (University of Nevada, 2007).Reichenbach, N. & Brophy, T. R. Natural history of the peaks of otter salamander (Plethodon hubrichti) along an elevational gradient. Herpetol. Bull. 141, 7–15 (2017).
    Google Scholar 
    Reider, K. E., Larson, D. J., Barnes, B. M. & Donnelly, M. A. Thermal adaptations to extreme freeze–thaw cycles in the high tropical Andes. Biotropica 53, 296–306 (2021).Article 

    Google Scholar 
    Richter-Boix, A. et al. Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation. Evolution 69, 2210–2226 (2015).PubMed 
    Article 

    Google Scholar 
    Riquelme, N. A., Díaz-Páez, H. & Ortiz, J. C. Thermal tolerance in the Andean toad Rhinella spinulosa (Anura: Bufonidae) at three sites located along a latitudinal gradient in Chile. J. Therm. Biol. 60, 237–245 (2016).PubMed 
    Article 

    Google Scholar 
    Ritchart, J. P. & Hutchison, V. H. The effects of ATP and cAMP on the thermal tolerance of the mudpuppy. Necturus maculosus. J. Therm. Biol. 11, 47–51 (1986).CAS 
    Article 

    Google Scholar 
    Rivera-Burgos, A. C. Habitat suitability for Eleutherodactylus frogs in Puerto Rico: Indexing occupancy, abundance and reproduction to climatic and habitat characteristics. (North Carolina State University, 2019).Rivera-Ordonez, J. M., Nowakowski, A. J., Manansala, A., Thompson, M. E. & Todd, B. D. Thermal niche variation among individuals of the poison frog, Oophaga pumilio, in forest and converted habitats. Biotropica 51, 747–756 (2019).Article 

    Google Scholar 
    Romero Barreto, P. Requerimientos fisiológicos y microambientales de dos especies de anfibios (Scinax ruber e Hyloxalus yasuni) del bosque tropical de Yasuní y sus implicaciones ante el cambio climático. (Pontificia Universidad Católica Del Ecuador, 2013).Ruiz-Aravena, M. et al. Impact of global warming at the range margins: Phenotypic plasticity and behavioral thermoregulation will buffer an endemic amphibian. Ecol. Evol. 4, 4467–4475 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ruthsatz, K. et al. Thyroid hormone levels and temperature during development alter thermal tolerance and energetics of Xenopus laevis larvae. Conserv. Physiol. 6 (2018).Ruthsatz, K. et al. Post-metamorphic carry-over effects of altered thyroid hormone level and developmental temperature: physiological plasticity and body condition at two life stages in Rana temporaria. J. Comp. Physiol. B: Biochem. Syst. Environ. Physiol. 190, 297–315 (2020).CAS 
    Article 

    Google Scholar 
    Rutledge, P. S., Spotila, J. R. & Easton, D. P. Heat hardening in response to two types of heat shock in the lungless salamanders Eurycea bislineata and Desmognathus ochrophaeus. J. Therm. Biol. 12, 235–241 (1987).Article 

    Google Scholar 
    Sanabria, E. et al. Effect of salinity on locomotor performance and thermal extremes of metamorphic Andean Toads (Rhinella spinulosa) from Monte Desert, Argentina. J. Therm. Biol. 74, 195–200 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanabria, E. A., González, E., Quiroga, L. B. & Tejedo, M. Vulnerability to warming in a desert amphibian tadpole community: the role of interpopulational variation. J. Zool. 313, 283–296 (2021).Article 

    Google Scholar 
    Sanabria, E. A. & Quiroga, L. B. Change in the thermal biology of tadpoles of Odontophrynus occidentalis from the Monte desert, Argentina: Responses to photoperiod. J. Therm. Biol. 36, 288–291 (2011).Article 

    Google Scholar 
    Sanabria, E. A., Quiroga, L. B., González, E., Moreno, D. & Cataldo, A. Thermal parameters and locomotor performance in juvenile of Pleurodema nebulosum (Anura: Leptodactylidae) from the Monte Desert. J. Therm. Biol. 38, 390–395 (2013).Article 

    Google Scholar 
    Sanabria, E. A., Quiroga, L. B. & Martino, A. L. Seasonal changes in the thermal tolerances of the toad Rhinella arenarum (Bufonidae) in the Monte Desert of Argentina. J. Therm. Biol. 37, 409–412 (2012).Article 

    Google Scholar 
    Sanabria, E. A., Quiroga, L. B. & Martino, A. L. Seasonal Changes in the thermal tolerances of Odontophrynus occidentalis (Berg, 1896) (Anura: Cycloramphidae). Belg. J. Zool. 143, 23–29 (2013).
    Google Scholar 
    Sanabria, E. A. et al. Thermal ecology of the post-metamorphic Andean toad (Rhinella spinulosa) at elevation in the monte desert, Argentina. J. Therm. Biol. 52, 52–57 (2015).PubMed 
    Article 

    Google Scholar 
    Sanabria, E. A., Vaira, M., Quiroga, L. B., Akmentins, M. S. & Pereyra, L. C. Variation of thermal parameters in two different color morphs of a diurnal poison toad, Melanophryniscus rubriventris (Anura: Bufonidae). J. Therm. Biol. 41, 1–5 (2014).PubMed 
    Article 

    Google Scholar 
    Sanabria, E. A. & Quiroga, L. B. Thermal parameters changes in males of Rhinella arenarum (Anura: Bufonidae) related to reproductive periods. Rev. Biol. Trop. 59, 347–353 (2011).PubMed 

    Google Scholar 
    Scheffers, B. R. et al. Thermal buffering of microhabitats is a critical factor mediating warming vulnerability of frogs in the Philippine biodiversity hotspot. Biotropica 45, 628–635 (2013).Article 

    Google Scholar 
    Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E. & Evans, T. A. Microhabitats reduce animal’s exposure to climate extremes. Glob. Chang. Biol. 20, 495–503 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Schmid, W. D. High temperature tolerances of Bufo Hemiophrys and Bufo Cognatus. Ecology 46, 559–560 (1965).Article 

    Google Scholar 
    Sealander, J. A. & West, B. W. Critical thermal maxima of some Arkansas salamanders in relation to thermal acclimation. Herpetologica 25, 122–124 (1969).
    Google Scholar 
    Seibel, R. V. Variables affecting the critical thermal maximum of the leopard frog, Rana pipiens Schreber. Herpetologica 26, 208–213 (1970).
    Google Scholar 
    Sherman, E. Ontogenetic change in thermal tolerance of the toad Bufo woodhousii fowleri. Comp. Biochem. Physiol. 65, 227–230 (1980).ADS 
    Article 

    Google Scholar 
    Sherman, E. Thermal biology of newts (Notophthalmus viridescens) chronically infected with a naturally occurring pathogen. J. Therm. Biol. 33, 27–31 (2008).Article 

    Google Scholar 
    Sherman, E., Baldwin, L., Fernandez, G. & Deurell, E. Fever and thermal tolerance in the toad Bufo marinus. J. Therm. Biol. 16, 297–301 (1991).Article 

    Google Scholar 
    Sherman, E. & Levitis, D. Heat hardening as a function of developmental stage in larval and juvenile Bufo americanus and Xenopus laevis. J. Therm. Biol. 28, 373–380 (2003).Article 

    Google Scholar 
    Shi, L., Zhao, L., Ma, X. & Ma, X. Selected body temperature and thermal tolerance of tadpoles of two frog species (Fejervarya limnocharis and Microhyla ornata) acclimated under different thermal conditions. Acta Ecol. Sin. 32, 0465–0471 (2012).Article 

    Google Scholar 
    Simon, M. N., Ribeiro, P. L. & Navas, C. A. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: Implications for warming impact prediction. J. Therm. Biol. 48, 36–44 (2015).PubMed 
    Article 

    Google Scholar 
    Simon, M. Plasticidade fenotípica em relação à temperatura de larvas de Rhinella (Anura: Bufonidae) da caatinga e da floresta Atlântica. (Universidade de Sao Paulo, 2010).Skelly, D. K. & Freidenburg, L. K. Effects of beaver on the thermal biology of an amphibian. Ecol. Lett. 3, 483–486 (2000).Article 

    Google Scholar 
    Sos, T. Thermoconformity even in hot small temporary water bodies: a case study in yellow-bellied toad (Bombina v. variegata). Herpetol. Rom. 1, 1–11 (2007).
    Google Scholar 
    Spotila, J. R. Role of temperature and water in the ecology of lungless salamanders. Ecol. Monogr. 42, 95–125 (1972).Article 

    Google Scholar 
    Tracy, C. R., Christian, K. A., Betts, G. & Tracy, C. R. Body temperature and resistance to evaporative water loss in tropical Australian frogs. Comp. Biochem. Physiol. 150, 102–108 (2008).Article 

    Google Scholar 
    Turriago, J. L., Parra, C. A. & Bernal, M. H. Upper thermal tolerance in anuran embryos and tadpoles at constant and variable peak temperatures. Can. J. Zool. 93, 267–272 (2015).Article 

    Google Scholar 
    Vidal, M. A., Novoa-Muñoz, F., Werner, E., Torres, C. & Nova, R. Modeling warming predicts a physiological threshold for the extinction of the living fossil frog Calyptocephalella gayi. J. Therm. Biol. 69, 110–117 (2017).PubMed 
    Article 

    Google Scholar 
    von May, R. et al. Divergence of thermal physiological traits in terrestrial breeding frogs along a tropical elevational gradient. Ecol. Evol. 7, 3257–3267 (2017).Article 

    Google Scholar 
    von May, R. et al. Thermal physiological traits in tropical lowland amphibians: Vulnerability to climate warming and cooling. PLoS ONE 14 (2019).Wagener, C., Kruger, N. & Measey, J. Progeny of Xenopus laevis from altitudinal extremes display adaptive physiological performance. J. Exp. Biol. 224 (2021).Wang, H. & Wang, L. Thermal adaptation of the common giant toad (Bufo gargarizans) at different earlier developmental stages. J. Agric. Univ. Hebei 31, 79–83 (2008).
    Google Scholar 
    Wang, L. The effects of constant and variable thermal acclimation on thermal tolerance of the common giant toad tadpoles (Bufo gargarizans). Acta Ecol. Sin. 34, 1030–1034 (2014).
    Google Scholar 
    Wang, L.-Z. & Li, X.-C. Effect of temperature on incubation and thermal tolerance of the Chinese forest frog. Chin. J. Zool. (2007).Wang, L. & Li, X.-C. Effects of constant thermal acclimation on thermal tolerance of the Chinese forest frog (Rana chensineniss). Acta Hydrobiol. Sin. 31, 748–750 (2007).CAS 

    Google Scholar 
    Wang, L.-Z., Li, X.-C. & Sun, T. Preferred temperature, avoidance temperature and lethal temperature of tadpoles of the common giant toad (Bufo gargarizans) and the Chinese forest frog (Rana chensinensis). Chin. J. Zool. 40, 23–27 (2005).
    Google Scholar 
    Warburg, M. R. On the water economy of Israel amphibians: The anurans. Comp. Biochem. Physiol. 40, 911–924 (1971).CAS 
    Article 

    Google Scholar 
    Warburg, M. R. The water economy of Israel amphibians: The urodeles Triturus vittatus (Jenyns) and Salamandra salamandra (L.). Comp. Biochem. Physiol. 40, 1055–1056, IN11,1057–1063 (1971).Willhite, C. & Cupp, P. V. Daily rhythms of thermal tolerance in Rana clamitans (Anura: Ranidae) tadpoles. Comp. Biochem. Physiol. 72, 255–257 (1982).Article 

    Google Scholar 
    Wu, C.-S. & Kam, Y.-C. Thermal tolerance and thermoregulation by Taiwanese rhacophorid tadpoles (Buergeria japonica) living in geothermal hot springs and streams. Herpetologica 61, 35–46 (2005).Article 

    Google Scholar 
    Xu, X. The effect of temperature on body temperature and thermoregulation in different geographic populations of Rana dybowskii. (Harbin Normal University, 2017).Yandún Vela, M. C. Capacidad de aclimatación en renacuajos de dos especies de anuros: Rhinella marina (Bufonidae) y Gastrotheca riobambae (Hemiphractidae) y su vulnerabilidad al cambio climático. (Pontificia Universidad Católica Del Ecuador, 2017).Young, V. K. H. & Gifford, M. E. Limited capacity for acclimation of thermal physiology in a salamander. Desmognathus brimleyorum. J. Comp. Physiol. B: Biochem. Syst. Environ. Physiol. 183, 409–418 (2013).CAS 
    Article 

    Google Scholar 
    Yu, Z., Dickstein, R., Magee, W. E. & Spotila, J. R. Heat shock response in the salamanders Plethodon jordani and Plethodon cinereus. J. Therm. Biol. 23, 259–265 (1998).CAS 
    Article 

    Google Scholar 
    Zheng, R.-Q. & Liu, C.-T. Giant spiny-frog (Paa spinosa) from different populations differ in thermal preference but not in thermal tolerance. Aquat. Ecol. 44, 723–729 (2010).Article 

    Google Scholar 
    Zweifel, R. G. Studies on the critical thermal maxima of salamanders. Ecology 38, 64–69 (1957).Article 

    Google Scholar 
    Pick, J. L., Nakagawa, S. & Noble, D. W. A. Reproducible, flexible and high-throughput data extraction from primary literature: The metaDigitise r package. Methods Ecol. Evol. 10, 426–431 (2019).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing.Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).PubMed 
    Article 

    Google Scholar 
    AmphibiaWeb. https://amphibiaweb.org. University of California, Berkeley, California, USA (2022).Schwanz, L. E. et al. Best practices for building and curating databases for comparative analyses. J. Exp. Biol. 225, jeb243295 (2022).PubMed 
    Article 

    Google Scholar 
    Pottier, P. et al. A comprehensive database of amphibian heat tolerance, Zenodo, https://doi.org/10.5281/zenodo.6565454 (2022).Lajeunesse, M. J. Recovering Missing or Partial Data from Studies: A Survey of Conversions and Imputations for Meta-analysis. in Hanbook of Meta-analysis in Ecology and Evolution 195–206 (Princeton University Press, 2013).Nakagawa, S., et al. A robust and readily implementable method for the meta-analysis of response ratios with and without missing standard deviations. EcoEvoRxiv, https://doi.org/10.32942/osf.io/7thx9 (2022)Pottier, P., Burke, S., Drobniak, S. M., Lagisz, M. & Nakagawa, S. Sexual (in)equality? A meta-analysis of sex differences in thermal acclimation capacity across ectotherms. Funct. Ecol. 35, 2663–2678 (2021).Article 

    Google Scholar 
    Sunday, J. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B-Biol. Sci. 374, 20190036 (2019).Article 

    Google Scholar 
    Truebano, M., Fenner, P., Tills, O., Rundle, S. D. & Rezende, E. L. Thermal strategies vary with life history stage. J. Exp. Biol. 221, jeb171629 (2018).PubMed 
    Article 

    Google Scholar 
    Rezende, E. L., Tejedo, M. & Santos, M. Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications. Funct. Ecol. 25, 111–121 (2011).Article 

    Google Scholar 
    Terblanche, J. S., Deere, J. A., Clusella-Trullas, S., Janion, C. & Chown, S. L. Critical thermal limits depend on methodological context. Proc. R. Soc. B-Biol. Sci. 274, 2935–2943 (2007).Article 

    Google Scholar 
    Hangartner, S., Sgrò, C. M., Connallon, T. & Booksmythe, I. Sexual dimorphism in phenotypic plasticity and persistence under environmental change: An extension of theory and meta-analysis of current data. Ecol. Lett. (2022).Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).ADS 
    Article 

    Google Scholar 
    Dunnington, D. & Thorne, B. ggspatial: Spatial Data Framework for ggplot2. R package (2020).Brownrigg, M. R. Package ‘maps’. R package (2013).Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).Article 

    Google Scholar 
    Xu, S. et al. ggtreeExtra: Compact visualization of richly annotated phylogenetic data. Mol. Biol. Evol. 38, 4039–4042 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campitelli, E. ggnewscale: Multiple fill and colour scales in “ggplot2”. R package (2020).Pedersen, T. L. patchwork: The Composer of Plots. R package (2020).Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Ecogenomics reveals viral communities across the Challenger Deep oceanic trench

    Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Angly, F. E. et al. The marine viromes of four oceanic regions. PLOS Biol. 4, 2121–2131 (2006).CAS 
    Article 

    Google Scholar 
    Labonté, J. M. & Suttle, C. A. Previously unknown and highly divergent ssDNA viruses populate the oceans. ISME J. 7, 2169–2177 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).PubMed 
    Article 

    Google Scholar 
    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen, L. Z. et al. The Baltic sea virome: diversity and transcriptional activity of DNA and RNA viruses. mSystems 2, e00125–00116 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hurwitz, B. L., Hallam, S. J. & Sullivan, M. B. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 14, R123 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, J.-G. et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc. Natl Acad. Sci. USA 116, 15645–15650 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Danovaro, R. et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454, 1084–1087 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Danovaro, R. et al. Viriobenthos in freshwater and marine sediments: a review. Freshw. Biol. 53, 1186–1213 (2008).Article 

    Google Scholar 
    Engelhardt, T., Kallmeyer, J., Cypionka, H. & Engelen, B. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments. ISME J. 8, 1503–1509 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Middelboe, M., Glud, R. N. & Filippini, M. Viral abundance and activity in the deep sub-seafloor biosphere. Aquat. Micro. Ecol. 63, 1–8 (2011).Article 

    Google Scholar 
    Li, Z. et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 15, 2366–2378 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zheng, X. et al. Extraordinary diversity of viruses in deep-sea sediments as revealed by metagenomics without prior virion separation. Environ. Microbiol 23, 728–743 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Helton, R. R., Liu, L. & Wommack, K. E. Assessment of factors influencing direct enumeration of viruses within estuarine sediments. Appl Environ. Microbiol 72, 4767–4774 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pan, D., Morono, Y., Inagaki, F. & Takai, K. An improved method for extracting viruses from sediment: detection of far more viruses in the subseafloor than previously reported. Front Microbiol 10, 878 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Armanious, A. et al. Viruses at solid–water interfaces: a systematic assessment of interactions driving adsorption. Environ. Sci. Technol. 50, 732–743 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trubl, G. et al. Optimization of viral resuspension methods for carbon-rich soils along a permafrost thaw gradient. PeerJ 4, e1999 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maat, D. S., Prins, M. A. & Brussaard, C. P. D. Sediments from arctic tide-water glaciers remove coastal marine viruses and delay host infection. Viruses 11, 123 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Loveland, J. P., Ryan, J. N., Amy, G. L. & Harvey, R. W. The reversibility of virus attachment to mineral surfaces. Colloids Surf. A Physicochem. Eng. Asp. 107, 205–221 (1996).CAS 
    Article 

    Google Scholar 
    Fuhs, G. W., Chen, M., Sturman, L. S. & Moore, R. S. Virus adsorption to mineral surfaces is reduced by microbial overgrowth and organic coatings. Microb. Ecol. 11, 25–39 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cai, L. et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J. 13, 1857–1864 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Manea, E. et al. Viral infections boost prokaryotic biomass production and organic C cycling in hadal trench sediments. Front Microbiol 10, 1952 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Danovaro, R. et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci. Adv. 2, e1600492 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoshida, M., Takaki, Y., Eitoku, M., Nunoura, T. & Takai, K. Metagenomic analysis of viral communities in (hado)pelagic sediments. PLoS One 8, e57271 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bäckström, D. et al. Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. mBio 10, e02497–02418 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jian, H. et al. Diversity and distribution of viruses inhabiting the deepest ocean on Earth. ISME J. 15, 3094–3110 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anantharaman, K. et al. Sulfur oxidation genes in diverse deep-sea viruses. Science 344, 757–760 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou, H. et al. Revealing the viral community in the hadal sediment of the New Britain Trench. Genes 12, 990 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dell’Anno, A., Corinaldesi, C. & Danovaro, R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc. Natl Acad. Sci. USA 112, E2014–E2019 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M. & Priede, I. G. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol. Evol. 25, 190–197 (2010).PubMed 
    Article 

    Google Scholar 
    Glud, R. N. et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6, 284–288 (2013).CAS 
    Article 

    Google Scholar 
    Luo, M. et al. Benthic carbon mineralization in hadal trenches: insights from in situ determination of benthic oxygen consumption. Geophys. Res. Lett. 45, 2752–2760 (2018).CAS 
    Article 

    Google Scholar 
    Hiraoka, S. et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 14, 740–756 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cui, G., Li, J., Gao, Z. & Wang, Y. Spatial variations of microbial communities in abyssal and hadal sediments across the Challenger Deep. PeerJ 7, e6961 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, Y.-L., Mara, P., Cui, G.-J., Edgcomb, V. P. & Wang, Y. Microbiomes in the Challenger Deep slope and bottom-axis sediments. Nat. Commun. 13, 1515 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marquet M., et al. What the Phage: a scalable workflow for the identification and analysis of phage sequences. bioRxiv https://www.biorxiv.org/content/10.1101/2020.07.24.219899v1 (2020).Roux, S. et al. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gregory, A. C. et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genomics 17, 930 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bobay, L.-M. & Ochman, H. Biological species are universal across life’s domains. Genome Biol. Evol. 9, 491–501 (2017).PubMed Central 
    Article 

    Google Scholar 
    Nayfach S., et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2020).Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).Article 

    Google Scholar 
    Dalcin Martins, P. et al. Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems. Microbiome 6, 138 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhao, J. et al. Novel viral communities potentially assisting in carbon, nitrogen, and sulfur metabolism in the upper slope sediments of Mariana Trench. mSystems 7, e01358–01321 (2022).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Walker, P. J. et al. Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Arch. Virol. 166, 2633–2648 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740 e728 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nishimura, Y. et al. Environmental viral genomes shed new light on virus-host interactions in the ocean. mSphere 2, e00359–00316 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vik, D. R. et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ 5, e3428 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pachiadaki, M. G. et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358, 1046–1051 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Daly, R. A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. BioScience 49, 781–788 (1999).Article 

    Google Scholar 
    Peoples, L. M. et al. Microbial community diversity within sediments from two geographically separated hadal trenches. Front. Microbiol. 10, 347 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mara, P. et al. Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME J. 14, 3079–3092 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breitbart, M., Thompson, L. R., Suttle, C. A. & Sullivan, M. B. Exploring the vast diversity of marine viruses. Oceanography 20, 135–139 (2007).Article 

    Google Scholar 
    Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rubino, F. M. Toxicity of glutathione-binding metals: a review of targets and mechanisms. Toxics 3, 20–62 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jozefczak, M., Remans, T., Vangronsveld, J. & Cuypers, A. Glutathione is a key player in metal-induced oxidative stress defenses. Int J. Mol. Sci. 13, 3145–3175 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, M. et al. Methylmercury bioaccumulation in deepest ocean fauna: implications for ocean mercury biotransport through food webs. Environ. Sci. Technol. Lett. 7, 469–476 (2020).CAS 
    Article 

    Google Scholar 
    Welty, C. J., Sousa, M. L., Dunnivant, F. M. & Yancey, P. H. High-density element concentrations in fish from subtidal to hadal zones of the Pacific Ocean. Heliyon 4, e00840 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, P. et al. Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep. Genome Biol. 22, 207 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, A. H. & Raetz, C. R. H. Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. Proc. Natl Acad. Sci. USA 104, 13543–13550 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ahmad, S., Raza, S., Abro, A., Liedl, K. R. & Azam, S. S. Toward novel inhibitors against KdsB: a highly specific and selective broad-spectrum bacterial enzyme. J. Biomol. Struct. Dyn. 37, 1326–1345 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gronow, S., Brabetz, W. & Brade, H. Comparative functional characterization in vitro of heptosyltransferase I (WaaC) and II (WaaF) from Escherichia coli. Eur. J. Biochem. 267, 6602–6611 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abeyrathne, P. D., Daniels, C., Poon, K. K. H., Matewish, M. J. & Lam, J. S. Functional characterization of WaaL, a ligase associated with linking O-antigen polysaccharide to the core of Pseudomonas aeruginosa Lipopolysaccharide. J. Bacteriol. 187, 3002–3012 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kneidinger, B. et al. Biosynthesis pathway of ADP-l-glycero-β-manno-heptose in Escherichia coli. J. Bacteriol. 184, 363–369 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sullivan, M. B., Coleman, M. L., Weigele, P., Rohwer, F. & Chisholm, S. W. Three Prochlorococcus cyanophage genomes: Signature features and ecological interpretations. Plos Biol. 3, 790–806 (2005).CAS 
    Article 

    Google Scholar 
    Sullivan, M. B. et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 12, 3035–3056 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Auer, G. K. & Weibel, D. B. Bacterial cell mechanics. Biochemistry 56, 3710–3724 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Castelán-Sánchez, H. G. et al. Extremophile deep-sea viral communities from hydrothermal vents: structural and functional analysis. Mar. Genomics 46, 16–28 (2019).PubMed 
    Article 

    Google Scholar 
    Chothi, M. P. et al. Identification of an L-rhamnose synthetic pathway in two nucleocytoplasmic large DNA viruses. J. Virol. 84, 8829–8838 (2010).CAS 
    Article 

    Google Scholar 
    Bachy C., et al. Viruses infecting a warm water picoeukaryote shed light on spatial co-occurrence dynamics of marine viruses and their hosts. ISME J. 15, 3129–3147 (2021).Zhang, W. et al. Four novel algal virus genomes discovered from Yellowstone Lake metagenomes. Sci. Rep. 5, 15131 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clerissi, C. et al. Prasinovirus distribution in the Northwest Mediterranean Sea is affected by the environment and particularly by phosphate availability. Virology 466–467, 146–157 (2014).PubMed 
    Article 

    Google Scholar 
    Mistou, M. Y., Sutcliffe, I. C. & van Sorge, N. M. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria. FEMS Microbiol. Rev. 40, 464–479 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wendlinger, G., Loessner, M. J. & Scherer, S. Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology 142, 985–992 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Michael, V. et al. Biofilm plasmids with a rhamnose operon are widely distributed determinants of the ‘swim-or-stick’ lifestyle in roseobacters. ISME J. 10, 2498–2513 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, X., Weinbauer, M. G., Jiao, N. & Zhang, R. Revisiting marine lytic and lysogenic virus-host interactions: Kill-the-Winner and Piggyback-the-Winner. Sci. Bull. 66, 871–874 (2021).CAS 
    Article 

    Google Scholar 
    Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao, Z.-M. et al. In situ meta-omic insights into the community compositions and ecological roles of hadal microbes in the Mariana Trench. Environ. Microbiol. 21, 4092–4108 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pratama A. A., et al. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene. PeerJ 9, e11447 (2021).Amgarten, D., Braga, L. P. P., da Silva, A. M. & Setubal, J. C. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front Genet. 9, 304 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5, 69 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fang Z., et al. PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. GigaScience 8, giz066 (2019).Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jurtz, V. I., Villarroel, J., Lund, O., Voldby Larsen, M. & Nielsen, M. MetaPhinder—identifying bacteriophage sequences in metagenomic data sets. PLoS One 11, e0163111 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ren, J. et al. Identifying viruses from metagenomic data using deep learning. Quant. Biol. 8, 64–77 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abdelkareem A. O., Khalil M. I., Elaraby M., Abbas H. & Elbehery A. H. A. VirNet: deep attention model for viral reads identification. In: 2018 13th International Conference on Computer Engineering and Systems (ICCES) (2018).Starikova, E. V. et al. Phigaro: high-throughput prophage sequence annotation. Bioinformatics 36, 3882–3884 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Auslander, N., Gussow, A. B., Benler, S., Wolf, Y. I. & Koonin, E. V. Seeker: alignment-free identification of bacteriophage genomes by deep learning. Nucleic Acids Res. 48, e121–e121 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2018).PubMed Central 
    Article 

    Google Scholar 
    Paez-Espino, D., Pavlopoulos, G. A., Ivanova, N. N. & Kyrpides, N. C. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat. Protoc. 12, 1673–1682 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, S.-M. et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. Microbiome 8, 89 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dudek, N. K., Sun, C., Burstein, D., Kantor, R. & Relman, D. Novel microbial diversity and functional potential in the marine mammal oral microbiome. Curr. Biol. 27, 3752–3762.e3756 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541.e525 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).Article 

    Google Scholar 
    Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Letunic, I., Khedkar, S. & Bork, P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 49, D458–D460 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Skennerton, C. T., Imelfort, M. & Tyson, G. W. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res. 41, e105 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bland, C. et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinform. 8, 209 (2007).Article 

    Google Scholar 
    Lowe, T. M. & Eddy, S. R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Galiez, C., Siebert, M., Enault, F., Vincent, J. & Söding, J. WIsH: who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics 33, 3113–3114 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://ui.adsabs.harvard.edu/abs/2013arXiv1303.3997L (2013).Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wessel, P. et al. The Generic Mapping Tools version 6. Geochem. Geophys. Geosystems 20, 5556–5564 (2019).Article 

    Google Scholar 
    Tozer, B. et al. Global bathymetry and topography at 15 Arc Sec: SRTM15+. Earth Space Sci. 6, 1847–1864 (2019).Article 

    Google Scholar  More

  • in

    Spatial coalescent connectivity through multi-generation dispersal modelling predicts gene flow across marine phyla

    Hellberg, M. E. Gene flow and isolation among populations of marine animals. Annu. Rev. Ecol. Evol. Syst. 40, 291–310 (2009).
    Google Scholar 
    Lenormand, T. Gene flow and the limits to natural selection. Trends Ecol. Evol. 17, 183–189 (2002).
    Google Scholar 
    Lowe, W. H., Kovach, R. P. & Allendorf, F. W. Population genetics and demography unite ecology and evolution. Trends Ecol. Evol. 32, 141–152 (2017).PubMed 

    Google Scholar 
    Slatkin, M. Gene flow and the geographic structure of natural populations. Science 236, 787–792 (1987).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Slatkin, M. Gene flow in natural populations. Annu. Rev. Ecol. Syst. 1, 393–430 (1985).
    Google Scholar 
    Duputié, A. & Massol, F. An empiricist’s guide to theoretical predictions on the evolution of dispersal. Interface Focus 3, 20130028 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Lowe, W. H. & Allendorf, F. W. What can genetics tell us about population connectivity? Mol. Ecol. 19, 3038–3051 (2010).PubMed 

    Google Scholar 
    Selkoe, K. A. et al. A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar. Ecol. Prog. Ser. 554, 1–19 (2016).ADS 

    Google Scholar 
    Weersing, K. & Toonen, R. J. Population genetics, larval dispersal, and connectivity in marine systems. Mar. Ecol. Prog. Ser. 393, 1–12 (2009).ADS 

    Google Scholar 
    Whitlock, M. C. & Mccauley, D. E. Indirect measures of gene flow and migration: FST≠1/(4Nm+1). Heredity 82, 117–125 (1999).PubMed 

    Google Scholar 
    Benestan, L. et al. Restricted dispersal in a sea of gene flow. Proc. R. Soc. B Biol. Sci. 288, 20210458 (2021).CAS 

    Google Scholar 
    Bode, M. et al. Successful validation of a larval dispersal model using genetic parentage data. PLoS Biol. 17, e3000380 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gagnaire, P.-A. Comparative genomics approach to evolutionary process connectivity. Evol. Appl. 13, 1320–1334 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Pinsky, M. L. et al. Marine dispersal scales are congruent over evolutionary and ecological time. Curr. Biol. 27, 149–154 (2017).CAS 
    PubMed 

    Google Scholar 
    Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M. & Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 88, 310–326 (2013).PubMed 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1, 443–466 (2009).ADS 

    Google Scholar 
    Tomback, D. F., Anderies, A. J., Carsey, K. S., Powell, M. L. & Mellmann-Brown, S. Delayed seed germination in whitebark pine and regeneration patterns following the yellowstone fires. Ecology 82, 2587–2600 (2001).
    Google Scholar 
    Viana, D. S., Santamaría, L. & Figuerola, J. Migratory birds as global dispersal vectors. Trends Ecol. Evol. 31, 763–775 (2016).PubMed 

    Google Scholar 
    Nathan, R. et al. Mechanisms of long-distance dispersal of seeds by wind. Nature 418, 409–413 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cowen, R. K., Paris, C. B. & Srinivasan, A. Scaling of connectivity in marine populations. Science 311, 522–527 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).PubMed 

    Google Scholar 
    Hidalgo, M. et al. Accounting for ocean connectivity and hydroclimate in fish recruitment fluctuations within transboundary metapopulations. Ecol. Appl. 29, e01913 (2019).Legrand, T., Di Franco, A., Ser-Giacomi, E., Caló, A. & Rossi, V. A multidisciplinary analytical framework to delineate spawning areas and quantify larval dispersal in coastal fish. Mar. Environ. Res. 151, 104761 (2019).CAS 
    PubMed 

    Google Scholar 
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).CAS 
    PubMed 

    Google Scholar 
    Crandall, E. D., Treml, E. A. & Barber, P. H. Coalescent and biophysical models of stepping-stone gene flow in neritid snails. Mol. Ecol. 21, 5579–5598 (2012).PubMed 

    Google Scholar 
    Smith, T. M. et al. Rare long-distance dispersal of a marine angiosperm across the Pacific Ocean. Glob. Ecol. Biogeogr. 27, 487–496 (2018).
    Google Scholar 
    Saura, S., Bodin, Ö. & Fortin, M.-J. EDITOR’S CHOICE: Stepping stones are crucial for species’ long‐distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).
    Google Scholar 
    Lett, C., Barrier, N. & Bahlali, M. Converging approaches for modeling the dispersal of propagules in air and sea. Ecol. Model. 415, 108858 (2020).
    Google Scholar 
    D’Aloia, C. C. et al. Patterns, causes, and consequences of marine larval dispersal. Proc. Natl Acad. Sci. USA 112, 13940–13945 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kool, J. T., Moilanen, A. & Treml, E. A. Population connectivity: recent advances and new perspectives. Landsc. Ecol. 28, 165–185 (2013).
    Google Scholar 
    Mari, L., Melià, P., Fraschetti, S., Gatto, M. & Casagrandi, R. Spatial patterns and temporal variability of seagrass connectivity in the Mediterranean Sea. Divers. Distrib. 26, 169–182 (2020).
    Google Scholar 
    Nathan, R., Klein, E. K., Robledo-Arnuncio, J. J. & Revilla, E. Dispersal Kernels. vol. 15 (Oxford University Press Oxford, UK, 2012).Boulanger, E., Dalongeville, A., Andrello, M., Mouillot, D. & Manel, S. Spatial graphs highlight how multi-generational dispersal shapes landscape genetic patterns. Ecography 43, 1167–1179 (2020).
    Google Scholar 
    Jahnke, M. et al. Seascape genetics and biophysical connectivity modelling support conservation of the seagrass Zostera marina in the Skagerrak–Kattegat region of the eastern North Sea. Evol. Appl. 11, 645–661 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Jahnke, M. & Jonsson, P. R. Biophysical models of dispersal contribute to seascape genetic analyses. Philos. Trans. R. Soc. B Biol. Sci. 377, 20210024 (2022).
    Google Scholar 
    Buonomo, R. et al. Habitat continuity and stepping-stone oceanographic distances explain population genetic connectivity of the brown alga Cystoseira amentacea. Mol. Ecol. 26, 766–780 (2017).PubMed 

    Google Scholar 
    Assis, J. et al. Ocean currents shape the genetic structure of a kelp in southwestern Africa. J. Biogeogr. 49, 822–835 (2022).
    Google Scholar 
    Ser-Giacomi, E., Vasile, R., Hernández-García, E. & López, C. Most probable paths in temporal weighted networks: An application to ocean transport. Phys. Rev. E 92, 012818 (2015).ADS 

    Google Scholar 
    McRae, B. H. & Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl Acad. Sci. USA 104, 19885–19890 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foster, N. L. et al. Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. Mol. Ecol. 21, 1143–1157 (2012).PubMed 

    Google Scholar 
    Kool, J. T., Paris, C. B., Andréfouët, S. & Cowen, R. K. Complex migration and the development of genetic structure in subdivided populations: an example from Caribbean coral reef ecosystems. Ecography 33, 597–606 (2010).
    Google Scholar 
    White, J. W., Botsford, L. W., Hastings, A. & Largier, J. L. Population persistence in marine reserve networks: incorporating spatial heterogeneities in larval dispersal. Mar. Ecol. Prog. Ser. 398, 49–67 (2010).ADS 

    Google Scholar 
    Ser-Giacomi, E., Legrand, T., Hernández-Carrasco, I. & Rossi, V. Explicit and implicit network connectivity: Analytical formulation and application to transport processes. Phys. Rev. E 103, 042309 (2021).ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 
    Battiston, F. et al. Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mayfield, M. M. & Stouffer, D. B. Higher-order interactions capture unexplained complexity in diverse communities. Nat. Ecol. Evol. 1, 1–7 (2017).
    Google Scholar 
    Rousset, F. Inferences from spatial population genetics. Handb. Stat. Genet. 4, 23 (2001).
    Google Scholar 
    Dubois, M. et al. Linking basin-scale connectivity, oceanography and population dynamics for the conservation and management of marine ecosystems. Glob. Ecol. Biogeogr. 25, 503–515 (2016).
    Google Scholar 
    Monroy, P., Rossi, V., Ser-Giacomi, E., López, C. & Hernández-García, E. Sensitivity and robustness of larval connectivity diagnostics obtained from Lagrangian Flow Networks. ICES J. Mar. Sci. 74, 1763–1779 (2017).
    Google Scholar 
    Rossi, V., Ser-Giacomi, E., López, C. & Hernández-García, E. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. Geophys. Res. Lett. 41, 2883–2891 (2014).ADS 

    Google Scholar 
    Ser-Giacomi, E., Rossi, V., Lopez, C. & Hernandez-Garcia, E. Flow networks: A characterization of geophysical fluid transport. Chaos Interdiscip. J. Nonlinear Sci. 25, 036404 (2015).
    Google Scholar 
    Oddo, P. et al. A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting. Ocean Sci. 5, 461–473 (2009).Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reem, E., Douek, J., Paz, G., Katzir, G. & Rinkevich, B. Phylogenetics, biogeography and population genetics of the ascidian Botryllus schlosseri in the Mediterranean Sea and beyond. Mol. Phylogenet. Evol. 107, 221–231 (2017).PubMed 

    Google Scholar 
    Villamor, A., Costantini, F. & Abbiati, M. Genetic structuring across marine biogeographic boundaries in rocky shore invertebrates. PLoS ONE 9, e101135 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Borrero-Pérez, G. H., González-Wangüemert, M., Marcos, C. & Pérez-Ruzafa, A. Phylogeography of the Atlanto-Mediterranean sea cucumber Holothuria (Holothuria) mammata: the combined effects of historical processes and current oceanographical pattern: PHYLOGEOGRAPHY OF HOLOTHURIA MAMMATA. Mol. Ecol. 20, 1964–1975 (2011).PubMed 

    Google Scholar 
    Carreras, C. et al. East is East and West is West: Population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). Divers. Distrib. 26, 382–398 (2020).
    Google Scholar 
    Aurelle, D. et al. Phylogeography of the red coral (Corallium rubrum): inferences on the evolutionary history of a temperate gorgonian. Genetica 139, 855–869 (2011).CAS 
    PubMed 

    Google Scholar 
    Costantini, F., Carlesi, L. & Abbiati, M. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum. PLoS ONE 8, e61546 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durand, J., Blel, H., Shen, K., Koutrakis, E. & Guinand, B. Population genetic structure of Mugil cephalus in the Mediterranean and Black Seas: a single mitochondrial clade and many nuclear barriers. Mar. Ecol. Prog. Ser. 474, 243–261 (2013).ADS 

    Google Scholar 
    Alberto, F. et al. Genetic differentiation and secondary contact zone in the seagrass Cymodocea nodosa across the Mediterranean–Atlantic transition region. J. Biogeogr. 35, 1279–1294 (2008).
    Google Scholar 
    McRae, B. H. Isolation by resistance. Evolution 60, 1551–1561 (2006).PubMed 

    Google Scholar 
    Dalongeville, A. et al. Geographic isolation and larval dispersal shape seascape genetic patterns differently according to spatial scale. Evol. Appl. 11, 1437–1447 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jenkins, D. G. et al. A meta‐analysis of isolation by distance: relic or reference standard for landscape genetics? Ecography 33, 315–320 (2010).
    Google Scholar 
    Selkoe, K. A. & Toonen, R. J. Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar. Ecol. Prog. Ser. 436, 291–305 (2011).ADS 

    Google Scholar 
    Alberto, F. et al. Isolation by oceanographic distance explains genetic structure for Macrocystis pyrifera in the Santa Barbara Channel. Mol. Ecol. 20, 2543–2554 (2011).PubMed 

    Google Scholar 
    Selkoe, K. A. et al. Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol. Ecol. 19, 3708–3726 (2010).PubMed 

    Google Scholar 
    Xuereb, A. et al. Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate (Parastichopus californicus). Mol. Ecol. 27, 2347–2364 (2018).PubMed 

    Google Scholar 
    Pascual, M., Rives, B., Schunter, C. & Macpherson, E. Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 12, e0176419 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, I. J., Glor, R. E. & Losos, J. B. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol. Lett. 16, 175–182 (2013).PubMed 

    Google Scholar 
    Bierne, N., Welch, J., Loire, E., Bonhomme, F. & David, P. The coupling hypothesis: why genome scans may fail to map local adaptation genes. Mol. Ecol. 20, 2044–2072 (2011).PubMed 

    Google Scholar 
    Sen Gupta, A. et al. Future changes to the upper ocean Western Boundary Currents across two generations of climate models. Sci. Rep. 11, 9538 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ser-Giacomi, E. et al. Impact of climate change on surface stirring and transport in the Mediterranean Sea. Geophys. Res. Lett. 47, e2020GL089941 (2020).ADS 
    CAS 

    Google Scholar 
    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).PubMed 

    Google Scholar 
    Wright, S. Evolution in mendelian populations. Genetics 16, 97–159 (1931).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eldon, B., Riquet, F., Yearsley, J., Jollivet, D. & Broquet, T. Current hypotheses to explain genetic chaos under the sea. Curr. Zool. 62, 551–566 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Schunter, C. et al. A novel integrative approach elucidates fine-scale dispersal patchiness in marine populations. Sci. Rep. 9, 1–10 (2019).ADS 
    CAS 

    Google Scholar 
    Jackson, T. M., Roegner, G. C. & O’Malley, K. G. Evidence for interannual variation in genetic structure of Dungeness crab (Cancer magister) along the California Current System. Mol. Ecol. 27, 352–368 (2018).CAS 
    PubMed 

    Google Scholar 
    Pascual, M. et al. Temporal and spatial genetic differentiation in the crab Liocarcinus depurator across the Atlantic-Mediterranean transition. Sci. Rep. 6, 29892 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Portela, R. et al. Spatio-temporal patterns of genetic variation in Arbacia lixula, a thermophilous sea urchin in expansion in the Mediterranean. Heredity 122, 244–259 (2019).PubMed 

    Google Scholar 
    Carroll, S. P., Hendry, A. P., Reznick, D. N. & Fox, C. W. Evolution on ecological time-scales. Funct. Ecol. 21, 387–393 (2007).
    Google Scholar 
    Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish. Fish. 9, 333–362 (2008).
    Google Scholar 
    Weber, A. A.-T., Mérigot, B., Valière, S. & Chenuil, A. Influence of the larval phase on connectivity: strong differences in the genetic structure of brooders and broadcasters in the Ophioderma longicauda species complex. Mol. Ecol. 24, 6080–6094 (2015).CAS 
    PubMed 

    Google Scholar 
    Marzouk, Z., Aurelle, D., Said, K. & Chenuil, A. Cryptic lineages and high population genetic structure in the exploited marine snail Hexaplex trunculus (Gastropoda: Muricidae). Biol. J. Linn. Soc. 122, 411–428 (2017).
    Google Scholar 
    Cowen, R. K., Lwiza, K. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed? Science 287, 857–859 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pante, E. & Simon-Bouhet, B. marmap: a package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8, e73051 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Susini, M.-L., Thibaut, T., Meinesz, A. & Forcioli, D. A preliminary study of genetic diversity in Cystoseira amentacea (C. Agardh) Bory var. stricta Montagne (Fucales, Phaeophyceae) using random amplified polymorphic DNA. Phycologia 46, 605–611 (2007).
    Google Scholar  More