More stories

  • in

    Warming and predation risk only weakly shape size-mediated priority effects in a cannibalistic damselfly

    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Angert, A. L., LaDeau, S. L. & Ostfeld, R. S. Climate change and species interactions: ways forward. Ann. N. Y. Acad. Sci. 1297, 1–7 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Yang, L. H. & Rudolf, V. H. W. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol. Lett. 13, 1–10 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kersting, D. K. et al. Experimental evidence of the synergistic effects of warming and invasive algae on a temperate reef-builder coral. Sci. Rep. 5, 18635 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, Y. et al. Warming reshaped the microbial hierarchical interactions. Glob. Chang. Biol. 27, 6331–6347 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grainger, T. N., Rego, A. I. & Gilbert, B. Temperature-dependent species interactions shape priority effects and the persistence of unequal competitors. Am. Nat. 191, 197–209 (2018).PubMed 
    Article 

    Google Scholar 
    Ørsted, M., Schou, M. F. & Kristensen, T. N. Biotic and abiotic factors investigated in two Drosophila species: evidence of both negative and positive effects of interactions on performance. Sci. Rep. 7, 40132 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sniegula, S., Golab, M. J. & Johansson, F. Size-mediated priority and temperature effects on intra-cohort competition and cannibalism in a damselfly. J. Anim. Ecol. 88, 637–648 (2019).PubMed 
    Article 

    Google Scholar 
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Chang. Biol. 13, 1860–1872 (2007).ADS 
    Article 

    Google Scholar 
    Carter, S. K. & Rudolf, V. H. W. Shifts in phenological mean and synchrony interact to shape competitive outcomes. Ecology 100, e02826 (2019).PubMed 
    Article 

    Google Scholar 
    Rudolf, V. H. W. Nonlinear effects of phenological shifts link interannual variation to species interactions. J. Anim. Ecol. 87, 1395–1406 (2018).PubMed 
    Article 

    Google Scholar 
    Rasmussen, N. L., Allen, B. G. V. & Rudolf, V. H. W. Linking phenological shifts to species interactions through size-mediated priority effects. J. Anim. Ecol. 83, 1206–1215 (2014).PubMed 
    Article 

    Google Scholar 
    Bailey, L. D. & Pol, M. van de. Tackling extremes: challenges for ecological and evolutionary research on extreme climatic events. J. Anim. Ecol. 85, 85–96 (2016).Walker, R., Wilder, S. M. & González, A. L. Temperature dependency of predation: increased killing rates and prey mass consumption by predators with warming. Ecol. Evol. 10, 9696–9706 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).PubMed 
    Article 

    Google Scholar 
    Anholt, B. R. Cannibalism and early instar survival in a larval damselfly. Oecologia 99, 60–65 (1994).ADS 
    PubMed 
    Article 

    Google Scholar 
    Johansson, F. & Crowley, P. H. Larval cannibalism and population dynamics of dragonflies. in Aquatic insects: challenges to populations (eds. Lancaster, J. & Briers, R. A.) 36–54 (CABI, 2008). doi:https://doi.org/10.1079/9781845933968.0036.Takashina, N. & Fiksen, Ø. Optimal reproductive phenology under size-dependent cannibalism. Ecol. Evol. 10, 4241–4250 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crumrine, P. W. Body size, temperature, and seasonal differences in size structure influence the occurrence of cannibalism in larvae of the migratory dragonfly, Anax junius. Aquat. Ecol. 44, 761–770 (2010).Article 

    Google Scholar 
    Op de Beeck, L., Verheyen, J. & Stoks, R. Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy. Environ. Pollut. 233, 226–234 (2018).Enriquez-Urzelai, U., Nicieza, A. G., Montori, A., Llorente, G. A. & Urrutia, M. B. Physiology and acclimation potential are tuned with phenology in larvae of a prolonged breeder amphibian. Oikos 2022, e08566 (2022).Article 

    Google Scholar 
    Knight, C. M., Parris, M. J. & Gutzke, W. H. N. Influence of priority effects and pond location on invaded larval amphibian communities. Biol. Invasions 11, 1033–1044 (2009).Article 

    Google Scholar 
    Raczyński, M., Stoks, R., Johansson, F., Bartoń, K. & Sniegula, S. Phenological shifts in a warming world affect physiology and life history in a damselfly. Insects 13, 622 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murillo-Rincón, A. P., Kolter, N. A., Laurila, A. & Orizaola, G. Intraspecific priority effects modify compensatory responses to changes in hatching phenology in an amphibian. J. Anim. Ecol. 86, 128–135 (2017).PubMed 
    Article 

    Google Scholar 
    Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).Article 

    Google Scholar 
    Jermacz, Ł. et al. Continuity of chronic predation risk determines changes in prey physiology. Sci. Rep. 10, 6972 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raczyński, M., Stoks, R., Johansson, F. & Sniegula, S. Size-mediated priority effects are trait-dependent and consistent across latitudes in a damselfly. Oikos 130, 1535–1547 (2021).Article 

    Google Scholar 
    Peacor, S. D. & Werner, E. E. Predator effects on an assemblage of consumers through induced changes in consumer foraging behavior. Ecology 81, 1998–2010 (2000).Article 

    Google Scholar 
    Stoks, R., Block, M. D., Meutter, F. V. D. & Johansson, F. Predation cost of rapid growth: behavioural coupling and physiological decoupling. J. Anim. Ecol. 74, 708–715 (2005).Article 

    Google Scholar 
    Hermann, S. L. & Landis, D. A. Scaling up our understanding of non-consumptive effects in insect systems. Curr. Opin. Insect. Sci. 20, 54–60 (2017).PubMed 
    Article 

    Google Scholar 
    Sniegula, S., Nsanzimana, J. d’Amour & Johansson, F. Predation risk affects egg mortality and carry over effects in the larval stages in damselflies. Freshw. Biol. 64, 778–786 (2019).Preisser, E. L. & Orrock, J. L. The allometry of fear: interspecific relationships between body size and response to predation risk. Ecosphere 3, art77 (2012).Gehr, B. et al. Evidence for nonconsumptive effects from a large predator in an ungulate prey?. Behav. Ecol. 29, 724–735 (2018).Article 

    Google Scholar 
    Jiménez-Cortés, J. G., Serrano-Meneses, M. A. & Córdoba-Aguilar, A. The effects of food shortage during larval development on adult body size, body mass, physiology and developmental time in a tropical damselfly. J. Insect Physiol. 58, 318–326 (2012).PubMed 
    Article 

    Google Scholar 
    Weissburg, M., Smee, D. L., Ferner, M. C., Schmitz, A. E. O. J. & Bronstein, E. J. L. The sensory ecology of nonconsumptive predator effects. Am. Nat. 184, 141–157 (2014).PubMed 
    Article 

    Google Scholar 
    Zhang, D.-W., Xiao, Z.-J., Zeng, B.-P., Li, K. & Tang, Y.-L. Insect behavior and physiological adaptation mechanisms under starvation stress. Front. Physiol. 10, 163 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arnett, H. A. & Kinnison, M. T. Predator-induced phenotypic plasticity of shape and behavior: parallel and unique patterns across sexes and species. Curr. Zool. 63, 369–378 (2017).PubMed 

    Google Scholar 
    Bell, A. M., Dingemanse, N. J., Hankison, S. J., Langenhof, M. B. W. & Rollins, K. Early exposure to nonlethal predation risk by size-selective predators increases somatic growth and decreases size at adulthood in threespined sticklebacks. J. Evol. Biol. 24, 943–953 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    De Block, M. & Stoks, R. Compensatory growth and oxidative stress in a damselfly. Proc. Royal Soc. B 275, 781–785 (2008).Article 

    Google Scholar 
    Lee, W.-S., Monaghan, P. & Metcalfe, N. B. The trade-off between growth rate and locomotor performance varies with perceived time until breeding. J. Exp. Biol. 213, 3289–3298 (2010).PubMed 
    Article 

    Google Scholar 
    Catalán, A. M. et al. Community-wide consequences of nonconsumptive predator effects on a foundation species. J. Anim. Ecol. 90, 1307–1316 (2021).PubMed 
    Article 

    Google Scholar 
    Preisser, E. L., Bolnick, D. I. & Benard, M. F. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86, 501–509 (2005).Article 

    Google Scholar 
    Gjoni, V., Basset, A. & Glazier, D. S. Temperature and predator cues interactively affect ontogenetic metabolic scaling of aquatic amphipods. Biol. Lett. 16, 20200267 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Miller, L. P., Matassa, C. M. & Trussell, G. C. Climate change enhances the negative effects of predation risk on an intermediate consumer. Glob. Chang. Biol. 20, 3834–3844 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Beckerman, A. P., Rodgers, G. M. & Dennis, S. R. The reaction norm of size and age at maturity under multiple predator risk. J. Anim. Ecol. 79, 1069–1076 (2010).PubMed 
    Article 

    Google Scholar 
    Lancaster, L. T., Morrison, G. & Fitt, R. N. Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372, 20160046 (2017).Sniegula, S., Janssens, L. & Stoks, R. Integrating multiple stressors across life stages and latitudes: combined and delayed effects of an egg heat wave and larval pesticide exposure in a damselfly. Aquat. Toxicol. 186, 113–122 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stoks, R., Block, M. D., Slos, S., Doorslaer, W. V. & Rolff, J. Time constraints mediate predator-induced plasticity in immune function, condition, and life history. Ecology 87, 809–815 (2006).PubMed 
    Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Pintanel, P., Tejedo, M., Salinas-Ivanenko, S., Jervis, P. & Merino-Viteri, A. Predators like it hot: thermal mismatch in a predator-prey system across an elevational tropical gradient. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13516 (2021).Article 
    PubMed 

    Google Scholar 
    Stoks, R., Swillen, I. & Block, M. D. Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae. J. Anim. Ecol. 81, 1034–1040 (2012).PubMed 
    Article 

    Google Scholar 
    Wang, Y.-J., Sentis, A., Tüzün, N. & Stoks, R. Thermal evolution ameliorates the long-term plastic effects of warming, temperature fluctuations and heat waves on predator–prey interaction strength. Funct. Ecol. 35, 1538–1549 (2021).Article 

    Google Scholar 
    Sniegula, S., Golab, M. J. & Johansson, F. Cannibalism and activity rate in larval damselflies increase along a latitudinal gradient as a consequence of time constraints. BMC Evol. Biol. 17, 167 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gyssels, F. & Stoks, R. Behavioral responses to fish kairomones and autotomy in a damselfly. J. Ethol. 24, 79–83 (2006).Article 

    Google Scholar 
    McPeek, M. A., Grace, M. & Richardson, J. M. L. Physiological and behavioral responses to predators shape the growth/predation risk trade-off in damselflies. Ecology 82, 1535–1545 (2001).Article 

    Google Scholar 
    Beermann, J., Boos, K., Gutow, L., Boersma, M. & Peralta, A. C. Combined effects of predator cues and competition define habitat choice and food consumption of amphipod mesograzers. Oecologia 186, 645–654 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Evol. Syst. 2, 369–404 (1971).Article 

    Google Scholar 
    Dijkstra, K., Schröter, A. & Lewington, R. Field Guide to the Dragonflies of Britain and Europe. Second edition. (Bloomsbury Publishing, 2020).Corbet, P. S., Suhling, F. & Soendgerath, D. Voltinism of Odonata: a review. Int. J. Odonatol. 9, 1–44 (2006).Article 

    Google Scholar 
    Zwick, P. & Corbet, P. S. Dragonflies: behaviour and ecology of Odonata. (Comstock Publishing Associates, 1999).Fontana-Bria, L., Selfa, J., Tur, C. & Frago, E. Early exposure to predation risk carries over metamorphosis in two distantly related freshwater insects. Ecol. Entomol. 42, 255–262 (2017).Article 

    Google Scholar 
    Sniegula, S., Raczyński, M., Golab, M. J. & Johansson, F. Effects of predator cues carry over from egg and larval stage to adult life-history traits in a damselfly. Freshw. Sci. 39, 804–811 (2020).Article 

    Google Scholar 
    Chivers, D. P., Wisenden, B. D. & Smith, R. J. F. Damselfly larvae learn to recognize predators from chemical cues in the predator’s diet. Anim. Behav. 52, 315–320 (1996).Article 

    Google Scholar 
    Mikolajczuk, P. Stwierdzenie wylotu drugiej generacji tężnicy małej Ischnura pumilio (Charpentier, 1825) i tężnicy wytwornej Ischnura elegans (Vander Linden, 1820) (Odonata: Coenagrionidae) w Polsce środkowo-wschodniej. Odonatrix 1, (2014).De Block, M., Pauwels, K., Van Den Broeck, M., De Meester, L. & Stoks, R. Local genetic adaptation generates latitude-specific effects of warming on predator-prey interactions. Glob. Chang. Biol. 19, 689–696 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2021).Buskirk, J. V., Krügel, A., Kunz, J., Miss, F. & Stamm, A. The rate of degradation of chemical cues indicating predation risk: an experiment and review. Ethology 120, 942–949 (2014).Article 

    Google Scholar 
    Hagler, J. R. & Jackson, C. G. Methods for marking insects: current techniques and future prospects. Annu. Rev. Entomol. 46, 511–543 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Crumrine, P. W. Size structure and substitutability in an odonate intraguild predation system. Oecologia 145, 132–139 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    Strobbe, F. & Stoks, R. Life history reaction norms to time constraints in a damselfly: differential effects on size and mass. Biol. J. Linn. Soc. 83, 187–196 (2004).Article 

    Google Scholar 
    De Block, M., McPeek, M. A. & Stoks, R. Stronger compensatory growth in a permanent-pond Lestes damselfly relative to temporary-pond Lestes. Oikos 117, 245–254 (2008).Article 

    Google Scholar 
    Marsh, J. B. & Weinstein, D. B. Simple charring method for determination of lipids. J. Lipid Res. 7, 574–576 (1966).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stoks, R., Block, M. D. & McPeek, M. A. Physiological costs of compensatory growth in a damselfly. Ecology 87, 1566–1574 (2006).PubMed 
    Article 

    Google Scholar 
    R Development Core Team. R: The R Project for Statistical Computing. Vienna, Austria https://www.r-project.org/ (2019).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Cyrus, A. Z., Swiggs, J., Santidrian Tomillo, P., Paladino, F. V. & Peters, W. S. Cannibalism causes size-dependent intraspecific predation pressure but does not trigger autotomy in the intertidal gastropod Agaronia propatula. J. Molluscan Stud. 81, 388–396 (2015).Jara, F. G. Trophic ontogenetic shifts of the dragonfly Rhionaeschna variegata: the role of larvae as predators and prey in Andean wetland communities. Ann. Limnol. 50, 173–184 (2014).Article 

    Google Scholar 
    Fréchette, M. & Lefaivre, D. On self-thinning in animals. Oikos 73, 425–428 (1995).Article 

    Google Scholar 
    Johansson, F., Stoks, R., Rowe, L. & De Block, M. Life history plasticity in a damselfly: effects of combined time and biotic constraints. Ecology 82, 1857–1869 (2001).Article 

    Google Scholar 
    Mikolajewski, D. J., Conrad, A. & Joop, G. Behaviour and body size: plasticity and genotypic diversity in larval Ischnura elegans as a response to predators (Odonata: Coenagrionidae). Int. J. Odonatol. 18, 31–44 (2015).Article 

    Google Scholar 
    Antoł, A. & Sniegula, S. Damselfly eggs alter their development rate in the presence of an invasive alien cue but not a native predator cue. Ecol. Evol. 11, 9361–9369 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hassall, C. & Thompson, D. J. The effects of environmental warming on Odonata: a review. Int. J. Odonatol. 11, 131–153 (2008).Article 

    Google Scholar 
    Debecker, S. & Stoks, R. Pace of life syndrome under warming and pollution: integrating life history, behavior, and physiology across latitudes. Ecol. Monogr. 89, e01332 (2019).Article 

    Google Scholar 
    Anderson, T. L. & Semlitsch, R. D. Top predators and habitat complexity alter an intraguild predation module in pond communities. J. Anim. Ecol. 85, 548–558 (2016).PubMed 
    Article 

    Google Scholar 
    Norling, U. Growth, winter preparations and timing of emergence in temperate zone odonata: control by a succession of larval response patterns. Int. J. Odonatol. 24, 1–36 (2021).Article 

    Google Scholar 
    Abrams, P. A., Leimar, O., Nylin, S. & Wiklund, C. The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. Am. Nat. 147, 381–395 (1996).Article 

    Google Scholar 
    Arendt, J. D. Adaptive intrinsic growth rates: an integration across taxa. Q. Rev. Biol. 72, 149–177 (1997).Article 

    Google Scholar 
    Bobrek, R. Odonate phenology recorded in a Central European location in an extremely warm season. Biologia 76, 2957–2964 (2021).Article 

    Google Scholar 
    Dmitriew, C. M. The evolution of growth trajectories: what limits growth rate?. Biol. Rev. 86, 97–116 (2011).PubMed 
    Article 

    Google Scholar 
    Śniegula, S., Johansson, F. & Nilsson-Örtman, V. Differentiation in developmental rate across geographic regions: a photoperiod driven latitude compensating mechanism?. Oikos 121, 1073–1082 (2012).Article 

    Google Scholar 
    Angell, C. S. et al. Development time mediates the effect of larval diet on ageing and mating success of male antler flies in the wild. Proc. R. Soc. B 287, 20201876 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johansson, F., Watts, P. C., Sniegula, S. & Berger, D. Natural selection mediated by seasonal time constraints increases the alignment between evolvability and developmental plasticity. Evolution 75, 464–475 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nilsson-Örtman, V. & Rowe, L. The evolution of developmental thresholds and reaction norms for age and size at maturity. PNAS 118, (2021).Rohner, P. T. & Moczek, A. P. Evolutionary and plastic variation in larval growth and digestion reveal the complex underpinnings of size and age at maturation in dung beetles. Ecol. Evol. 11, 15098–15110 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rolff, J., Fellowes, M & Holloway, G. Insect Evolutionary Ecology: Proceedings of the Royal Entomological Society’s 22nd Symposium. (CABI Oxford University Press, 2006).Beukeboom, L. W. Size matters in insects: an introduction. Entomol. Exp. Appl. 166, 2–3 (2018).Article 

    Google Scholar 
    Honěk, A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483–492 (1993).Article 

    Google Scholar 
    Lee, W.-S., Monaghan, P. & Metcalfe, N. B. Experimental demonstration of the growth rate–lifespan trade-off. Proc. R. Soc. B 280, 20122370 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burraco, P., Díaz-Paniagua, C. & Gomez-Mestre, I. Different effects of accelerated development and enhanced growth on oxidative stress and telomere shortening in amphibian larvae. Sci. Rep. 7, 7494 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dańko, M. J., Dańko, A., Golab, M. J., Stoks, R. & Sniegula, S. Latitudinal and age-specific patterns of larval mortality in the damselfly Lestes sponsa: Senescence before maturity?. Exp. Gerontol. 95, 107–115 (2017).PubMed 
    Article 

    Google Scholar 
    Kong, J. D., Hoffmann, A. A. & Kearney, M. R. Linking thermal adaptation and life-history theory explains latitudinal patterns of voltinism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180547 (2019).Śniegula, S., Gołąb, M. J. & Johansson, F. Time constraint effects on phenology and life history synchrony in a damselfly along a latitudinal gradient. Oikos 125, 414–423 (2016).Article 

    Google Scholar 
    Popova, O. N. & Haritonov, AYu. Disclosure of biotopical groups in the population of the dragonfly Coenagrion armatum (Charpentier, 1840). Contemp. Probl. Ecol. 7, 175–181 (2014).Article 

    Google Scholar 
    Mikolajewski, D. J., De Block, M. & Stoks, R. The interplay of adult and larval time constraints shapes species differences in larval life history. Ecology 96, 1128–1138 (2015).PubMed 
    Article 

    Google Scholar 
    Wolf, J. B. & Wade, M. J. What are maternal effects (and what are they not)? Philos. Trans. R Soc. Lond. B Biol. Sci. 364, 1107–1115 (2009).Zehnder, C. B., Parris, M. A. & Hunter, M. D. Effects of maternal age and environment on offspring vital rates in the Oleander Aphid (Hemiptera: Aphididae). Environ. Entomol. 36, 910–917 (2007).PubMed 
    Article 

    Google Scholar 
    Hernández, C. M., van Daalen, S. F., Caswell, H., Neubert, M. G. & Gribble, K. E. A demographic and evolutionary analysis of maternal effect senescence. PNAS 117, 16431–16437 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shama, L. N. S., Campero-Paz, M., Wegner, K. M., De Block, M. & Stoks, R. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate. Mol. Ecol. 20, 2929–2941 (2011).PubMed 
    Article 

    Google Scholar 
    Sniegula, S., Golab, M. J., Drobniak, S. M. & Johansson, F. Seasonal time constraints reduce genetic variation in life-history traits along a latitudinal gradient. J. Anim. Ecol. 85, 187–198 (2016).PubMed 
    Article 

    Google Scholar 
    De Block, M. & Stoks, R. Adaptive sex-specific life history plasticity to temperature and photoperiod in a damselfly. J. Evol. Biol. 16, 986–995 (2003).PubMed 
    Article 

    Google Scholar 
    Verberk, W. C. E. P. et al. Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biol. Rev. 96, 247–268 (2021).PubMed 
    Article 

    Google Scholar 
    Sheriff, M. J., Peacor, S. D., Hawlena, D. & Thaker, M. Non-consumptive predator effects on prey population size: a dearth of evidence. J. Anim. Ecol. 89, 1302–1316 (2020).PubMed 
    Article 

    Google Scholar 
    Wirsing, A. J., Heithaus, M. R., Brown, J. S., Kotler, B. P. & Schmitz, O. J. The context dependence of non-consumptive predator effects. Ecol. Lett 24, 113–129 (2021).PubMed 
    Article 

    Google Scholar 
    McCauley, S. J., Rowe, L. & Fortin, M.-J. The deadly effects of ‘nonlethal’ predators. Ecology 92, 2043–2048 (2011).PubMed 
    Article 

    Google Scholar 
    Palacios, M. del M. & McCormick, M. I. Positive indirect effects of top-predators on the behaviour and survival of juvenile fishes. Oikos 130, 219–230 (2021).Thaler, J. S., McArt, S. H. & Kaplan, I. Compensatory mechanisms for ameliorating the fundamental trade-off between predator avoidance and foraging. PNAS 109, 12075–12080 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Janssens, L., Van Dievel, M. & Stoks, R. Warming reinforces nonconsumptive predator effects on prey growth, physiology, and body stoichiometry. Ecology 96, 3270–3280 (2015).PubMed 
    Article 

    Google Scholar 
    Hawlena, D. & Schmitz, O. J. Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am. Nat. 176, 537–556 (2010).PubMed 
    Article 

    Google Scholar 
    Nation, J. L. Insect Physiology and Biochemistry. (CRC Press, 2011). doi:https://doi.org/10.1201/9781420061789.Rudolf, V. H. W. & Singh, M. Disentangling climate change effects on species interactions: effects of temperature, phenological shifts, and body size. Oecologia 173, 1043–1052 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Pfennig, D. W. Effect of predator-prey phylogenetic similarity on the fitness consequences of predation: a trade-off between nutrition and disease?. Am. Nat. 155, 335–345 (2000).PubMed 
    Article 

    Google Scholar 
    Lee, K. P., Simpson, S. J. & Wilson, K. Dietary protein-quality influences melanization and immune function in an insect. Funct. Ecol. 22, 1052–1061 (2008).Article 

    Google Scholar 
    Wu, Q., Patočka, J. & Kuča, K. Insect Antimicrobial Peptides, a Mini Review. Toxins (Basel) 10, 461 (2018).Bullard, B. et al. The molecular elasticity of the insect flight muscle proteins projectin and kettin. PNAS 103, 4451–4456 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mamat-Noorhidayah, Yazawa, K., Numata, K. & Norma-Rashid, Y. Morphological and mechanical properties of flexible resilin joints on damselfly wings (Rhinocypha spp.). PLoS One 13, e0193147 (2018).Muthukrishnan, S., Merzendorfer, H., Arakane, Y. & Kramer, K. J. 7 – Chitin Metabolism in Insects. in Insect Molecular Biology and Biochemistry (ed. Gilbert, L. I.) 193–235 (Academic Press, 2012). doi:https://doi.org/10.1016/B978-0-12-384747-8.10007-8.Van Dievel, M., Stoks, R. & Janssens, L. Beneficial effects of a heat wave: higher growth and immune components driven by a higher food intake. J. Exp. Biol. 220, 3908–3915 (2017).PubMed 

    Google Scholar  More

  • in

    Intra-specific variation in sensitivity of Bombus terrestris and Osmia bicornis to three pesticides

    Model substancesWe used the sulfoximine insecticide sulfoxaflor, the methoxy-acrylate fungicide Amistar (azoxystrobin 250 g/l, Suspension Concentrate, see supplementary methods, S1) and the glycine herbicide glyphosate (as active substance, RoundUp ProActive or RoundUp FL, see supplementary methods, S1) as model substances. Our choice was justified by their widespread use, regulatory status and systemic uptake in plants. Because of these characteristics, the likelihood of bees being exposed in the field was considered similarly plausible across model substances. Additionally, we are not aware of published evidence of the acute toxicity of these substances across castes and sexes of B. terrestris and O. bicornis.Sulfoxaflor is a relatively novel insecticide55,56,57, developed to replace or complement the use of older chemical classes against which insect pest populations had developed resistance57. However, because of its risks to bees58, its uses have been recently restricted in the EU to indoor growing conditions. As a nicotinic acetylcholine receptor (nAChR) competitive modulator, sulfoxaflor targets the same neural receptor as the bee-harming neonicotinoid insecticides55,56,57. Despite evidence that sulfoxaflor may target the nAChR in a distinct way compared to recently banned neonicotinoids55,56,57, these substances were shown to be similarly lethal in acute exposure laboratory settings for individuals of Apis mellifera, B. terrestris and O. bicornis38. Additionally, sulfoxaflor was shown to reduce reproduction59,60,61 (but not learning62,63) in bumble bees under field-realistic laboratory settings. When applied pre-flowering in a semi-field study design, sulfoxaflor impacted colony growth, colony size and foraging in bumble bees64 but not honey bees65. Azoxystrobin is a broad-spectrum, systemic fungicide, which has been widely used in agriculture since its first marketing authorisation in 199666. Azoxystrobin shows low acute toxicity to honey bees67. Azoxystrobin residues were found in nectar and pollen from treated crops68,69 and subsequently in the bodies of wild bees70. In a semi-field experimental setting, foraging, but not colony growth, was significantly impaired in B. terrestris exposed to Amistar (azoxystrobin 250 g/L SC)64, while no lethal or sublethal effects could be observed in honey bees65 or in O. bicornis71. However, a recent study showed that, when formulated as Amistar this pesticide induced acute mortality in bumble bees at high doses, which was attributed to the dietary toxicity of the co-formulant C16-18 alcohol ethoxylates50.Glyphosate is a broad-spectrum systemic herbicide and the most widely used pesticide in the world72. Products containing glyphosate may be applied to flowering weeds73 and contaminate their pollen and nectar54, thus driving bee contact and oral exposure. Glyphosate showed low lethal hazards in regulatory-ready laboratory74 and semi-field designs when dosed as pure active substance or as MON 52276 (SL formulation containing 360 g glyphosate/L)75. A recent study found ready-to-use consumer products containing glyphosate to be lethally hazardous to bumble bees73. However, this toxicity was attributed to co-formulants, rather than the active substance itself.We characterised the acute oral and contact toxicity to B. terrestris and O. bicornis of sulfoxaflor, azoxystrobin and glyphosate as either pure active substances or formulation (see supplementary material S2 Table S1). Each test was repeated across castes and sexes of these two species. For bumble bees we used workers, males and gynes (i.e., unmated queens), hereby referred to as queens, whereas for O. bicornis we used males and females. Bumble bee experiments were designed following OECD protocols30,31, while O. bicornis was tested following published76 and ring-tested protocols32, as an OECD protocol for this latter species is not yet available.We used a dose response design whenever the test item was found to drive significant mortality in the tested species. In all other cases, a limit test design using a single, high pesticide dose was used. Details on the methods and results of the limit tests are reported in the supplementary materials (S2 and S4).Pesticide treatmentsAll dose response tests were performed with pure sulfoxaflor, while azoxystrobin was tested as a plant protection product (Amistar 250 g a.s./l, SC, Syngenta, UK) in all oral tests, as its solubility in water was insufficient (6.7 mg a.s./L, see EFSA, 2010) to achieve the desired concentrations. Amistar contains co-formulants with hazard classification (54 C16-18 alcohols, ethoxylated  More

  • in

    Ecological factors are likely drivers of eye shape and colour pattern variations across anthropoid primates

    Kobayashi, H. & Kohshima, S. Unique morphology of the human eye. Nature 387(6635), 767–768 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kobayashi, H. & Kohshima, S. Unique morphology of the human eye and its adaptive meaning: Comparative studies on external morphology of the primate eye. J. Hum. Evol. 40(5), 419–435 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mayhew, J. A. & Gómez, J. C. Gorillas with white sclera: A naturally occurring variation in a morphological trait linked to social cognitive functions. Am. J. Primatol. 77, 869–877 (2015).PubMed 
    Article 

    Google Scholar 
    Perea-García, J. O. Quantifying ocular morphologies in extant primates for reliable interspecific comparisons. J. Lang. Evol. 1(2), 151–158 (2016).Article 

    Google Scholar 
    Perea-García, J. O., Kret, M. E., Monteiro, A. & Hobaiter, C. Scleral pigmentation leads to conspicuous, not cryptic, eye morphology in chimpanzees. Proc. Natl. Acad. Sci. 116(39), 19248–19250 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caspar, K., Biggemann, M., Geissmann, T. & Begall, S. Ocular pigmentation in humans, great apes, and gibbons is not suggestive of communicative functions. Sci. Rep. 11, 1–14 (2021).Article 

    Google Scholar 
    Mearing, A. S. & Koops, K. Quantifying gaze conspicuousness: Are humans distinct from chimpanzees and bonobos?. J. Hum. Evol. 157, 103043. https://doi.org/10.1016/J.JHEVOL.2021.103043 (2021).Article 
    PubMed 

    Google Scholar 
    Perea-García, J. O., Danel, D. P. & Monteiro, A. Diversity in primate external eye morphology: Previously undescribed traits and their potential adaptive value. Symmetry 13, 1270 (2021).ADS 
    Article 

    Google Scholar 
    Banks, M. S., Sprague, W. W., Schmoll, J., Parnell, J. A. & Love, G. D. Why do animal eyes have pupils of different shapes?. Sci. Adv. 1(7), e1500391 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Corfield, J. R. et al. Anatomical specializations for nocturnality in a critically endangered parrot, the kakapo (Strigops habroptilus). PLoS ONE 6(8), e22945 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lisney, T. J. et al. Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes. J. Comp. Physiol. A. 199(5), 385–402 (2013).Article 

    Google Scholar 
    Lisney, T. J., Iwaniuk, A. N., Bandet, M. V. & Wylie, D. R. Eye shape and retinal topography in owls (Aves: Strigiformes). Brain Behav. Evol. 79(4), 218–236 (2012).PubMed 
    Article 

    Google Scholar 
    Duke-Elder, S. S. The eye in evolution. In System of Ophthalmology (ed. Duke-Elder, S. S.) 453 (Henry Kimpton, 1985).
    Google Scholar 
    -Miller, D., & Sanghvi, S. (1990). Contrast sensitivity and glare testing in corneal disease. In Glare and Contrast Sensitivity for Clinicians (pp. 45–52). Springer.De Broff, B. M. & Pahk, P. J. The ability of periorbitally applied antiglare products to improve contrast sensitivity in conditions of sunlight exposure. Arch. Ophthalmol. 121(7), 997–1001 (2003).Article 

    Google Scholar 
    Caspar, K. R., Mader, L., Pallasdies, F., Lindenmeier, M. & Begall, S. Captive gibbons (Hylobatidae) use different referential cues in an object-choice task: Insights into lesser ape cognition and manual laterality. PeerJ 6, e5348 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kaplan, G. & Rogers, L. J. Patterns of gazing in orangutans (Pongo pygmaeus). Int. J. Primatol. 23(3), 501–526 (2002).Article 

    Google Scholar 
    Kamilar, J. M. & Bradley, B. J. Interspecific variation in primate coat colour supports Gloger’s rule. J. Biogeogr. 38(12), 2270–2277 (2011).Article 

    Google Scholar 
    Santana, S. E., Lynch Alfaro, J. & Alfaro, M. E. Adaptive evolution of facial colour patterns in Neotropical primates. Proc. R. Soc. B Biol. Sci. 279(1736), 2204–2211 (2012).Article 

    Google Scholar 
    Santana, S. E., Alfaro, J. L., Noonan, A. & Alfaro, M. E. Adaptive response to sociality and ecology drives the diversification of facial colour patterns in catarrhines. Nat. Commun. 4(1), 1–7 (2013).Article 

    Google Scholar 
    Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: Definitions, interpretations and evidence. Biol. Rev. 94(4), 1294–1316 (2019).PubMed 

    Google Scholar 
    Zhang, P. & Watanabe, K. Preliminary study on eye colour in Japanese macaques (Macaca fuscata) in their natural habitat. Primates 48(2), 122–129 (2007).PubMed 
    Article 

    Google Scholar 
    Bradley, B. J., Pedersen, A. & Mundy, N. I. Brief communication: blue eyes in lemurs and humans: Same phenotype, different genetic mechanism. Am. J. Phys. Anthropol. 139(2), 269–273 (2009).PubMed 
    Article 

    Google Scholar 
    Meyer, W. K., Zhang, S., Hayakawa, S., Imai, H. & Przeworski, M. The convergent evolution of blue iris pigmentation in primates took distinct molecular paths. Am. J. Phys. Anthropol. 151(3), 398–407 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Negro, J. J., Blázquez, M. C. & Galván, I. Intraspecific eye color variability in birds and mammals: A recent evolutionary event exclusive to humans and domestic animals. Front. Zool. 14(1), 1–6 (2017).Article 

    Google Scholar 
    van den Berg, T. J. T. P., IJspeert, J. K. & De Waard, P. W. T. Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall. Vis. Res. 31(7–8), 1361–1367 (1991).PubMed 
    Article 

    Google Scholar 
    Mure, L. S. Intrinsically photosensitive retinal ganglion cells of the human retina. Front. Neurol. 12, 636330 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wald, L. (2018). Basics in solar radiation at earth surface. ffhal-01676634ff.Workman, L. Blue eyes keep away the winter blues: Is blue eye pigmentation an evolved feature to provide resilience to seasonal affective disorder. OA J. Behav. Sci. Psychol. 1(1), 180002 (2018).MathSciNet 

    Google Scholar 
    Smith, A. R. Color gamut transform pairs. ACM Siggraph Comput. Graph. 12(3), 12–19 (1978).CAS 
    Article 

    Google Scholar 
    Kamilar, J. M. & Cooper, N. Phylogenetic signal in primate behaviour, ecology and life history. Philos. Trans. R. Soc. B: Biol. Sci. 368(1618), 20120341 (2013).Article 

    Google Scholar 
    Leutenegger, W. & Kelly, J. T. Relationship of sexual dimorphism in canine size and body size to social, behavioral, and ecological correlates in anthropoid primates. Primates 18(1), 117–136. https://doi.org/10.1007/bf02382954 (1977).Article 

    Google Scholar 
    Gómez, J. C. (1996). Ostensive behavior in great apes: The role of eye contact. Reaching into thought: The minds of the great apes, 131–151.Dovidio, J. F., & Ellyson, S. L. (1985). Pattern of visual dominance behavior in humans. In Power, Dominance, and Nonverbal Behavior (pp. 129–149). Springer.Nakatsukasa, M. Locomotor differentiation and different skeletal morphologies in mangabeys (Lophocebus and Cercocebus). Folia Primatol. 66(1–4), 15–24 (1996).CAS 
    Article 

    Google Scholar 
    Smith, R. J. & Jungers, W. L. Body mass in comparative primatology. J. Hum. Evol. 32(6), 523–559 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fioletov, V., Kerr, J. B. & Fergusson, A. The UV index: Definition, distribution and factors affecting it. Can. J. Public Health 101(4), I5–I9 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jablonski, N. G. & Chaplin, G. Human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. 107(Supplement 2), 8962–8968 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Do, M. T. H. & Yau, K. W. Intrinsically photosensitive retinal ganglion cells. Physiol. Rev. (2010).Pickard, G. E. & Sollars, P. J. Intrinsically photosensitive retinal ganglion cells. Rev. Physiol. Bioch. Pharmacol. 162, 59–90 (2012).Goel, N., Terman, M. & Terman, J. S. Depressive symptomatology differentiates subgroups of patients with seasonal affective disorder. Depress. Anxiety 15(1), 34–41 (2002).PubMed 
    Article 

    Google Scholar 
    Münch, M. et al. Blue-enriched morning light as a countermeasure to light at the wrong time: Effects on cognition, sleepiness, sleep, and circadian phase. Neuropsychobiology 74(4), 207–218 (2016).PubMed 
    Article 

    Google Scholar 
    Davidson, G. L., Thornton, A. & Clayton, N. S. Evolution of iris colour in relation to cavity nesting and parental care in passerine birds. Biol. Let. 13(1), 20160783 (2017).Article 

    Google Scholar 
    Volpato, G. L., Luchiari, A. C., Duarte, C. R. A., Barreto, R. E. & Ramanzini, G. C. Eye color as an indicator of social rank in the fish Nile tilapia. Braz. J. Med. Biol. Res. 36, 1659–1663 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fosbury, R. A. & Jeffery, G. Reindeer eyes seasonally adapt to ozone-blue Arctic twilight by tuning a photonic tapetum lucidum. Proc. R. Soc. B 289(1977), 20221002 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allen, W. L., Stevens, M. & Higham, J. P. Character displacement of Cercopithecini primate visual signals. Nat. Commun. 5(1), 1–10 (2014).Article 

    Google Scholar 
    Frost, P. European hair and eye color: A case of frequency-dependent sexual selection?. Evol. Hum. Behav. 27(2), 85–103 (2006).Article 

    Google Scholar 
    Hart, D. (2000). Primates as prey: Ecological, morphological and behavioral relationships between primate species and their predators.Liebal, K., Waller, B. M., Slocombe, K. E. & Burrows, A. M. Primate communication: a multimodal approach. (Cambridge University Press, 2014).
    Google Scholar 
    Whitham, W., Schapiro, S. J., Troscianko, J. & Yorzinski, J. L. Chimpanzee (Pan troglodytes) gaze is conspicuous at ecologically-relevant distances. Sci. Rep. 12(1), 1–7 (2022).Article 

    Google Scholar 
    Kano, F., Kawaguchi, Y. & Hanling, Y. Experimental evidence that uniformly white sclera enhances the visibility of eye-gaze direction in humans and chimpanzees. Elife 11, e74086 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Emery, N. J. The eyes have it: The neuroethology, function and evolution of social gaze. Neurosci. Biobehav. Rev. 24, 581–604 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    -Bourjade, M. (2016). Social attention. Int. Encycl. Primatol. 1–2.Petersen, R. M., Dubuc, C. & Higham, J. P. Facial displays of dominance in non-human primates. In The facial displays of leaders (pp. 123–143) (Palgrave Macmillan, Cham, 2018).Laitly, A., Callaghan, C. T., Delhey, K. & Cornwell, W. K. Is color data from citizen science photographs reliable for biodiversity research?. Ecol. Evol. 11(9), 4071–4083 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chan, I. Z., Stevens, M. & Todd, P. A. PAT-GEOM: A software package for the analysis of animal patterns. Methods Ecol. Evol. 10(4), 591–600 (2019).Article 

    Google Scholar 
    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125(1), 1–15 (1985).Article 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3(2), 217–223 (2012).Article 

    Google Scholar 
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Orme, D. et al. The caper package: Comparative analysis of phylogenetics and evolution in R. R Pack. Vers. 5(2), 1–36 (2013).
    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    -Williamson, E. A., Maisels, F. G., Groves, C. P., Fruth, B. I., Humle, T., & Morton, F. B. (2013). Handbook of the Mammals of the World Volume 3: Primates. More

  • in

    Canopy arthropod declines along a gradient of olive farming intensification

    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).ADS 
    PubMed 

    Google Scholar 
    Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS 
    PubMed 

    Google Scholar 
    Wilson, E. O. The little things that run the world (the importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).
    Google Scholar 
    Isaacs, R., Tuell, J., Fiedler, A., Gardiner, M. & Landis, D. Maximizing arthropod-mediated ecosystem services in agricultural landscapes: The role of native plants. Front. Ecol. Environ. 7, 196–203 (2009).
    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. U.S.A. 118, e2002548117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neves, B. & Pires, I. M. The Mediterranean diet and the increasing demand of the olive oil sector: Shifts and environmental consequences. Region. 5, 101–112 (2018).
    Google Scholar 
    Silveira, A. et al. The sustainability of agricultural intensification in the early 21st century: Insights from the olive oil production in Alentejo (Southern Portugal). In Changing Societies: Legacies and Challenges. The Diverse Worlds of Sustainability, 247–275 (2018).Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Salomone, R. & Ioppolo, G. Environmental impacts of olive oil production: A Life Cycle Assessment case study in the province of Messina (Sicily). J. Clean. Prod. 28, 88–100 (2012).
    Google Scholar 
    Rallo, L. et al. High-density olive plantations. Hortic. Rev. Am. Soc. Hortic. Sci. 41, 303–383 (2013).
    Google Scholar 
    Santos, S. A. P., Pereira, J. A., Torres, L. M. & Nogueira, A. J. A. Evaluation of the effects, on canopy arthropods, of two agricultural management systems to control pests in olive groves from north-east of Portugal. Chemosphere 67, 131–139 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gkisakis, V., Volakakis, N., Kollaros, D., Bàrberi, P. & Kabourakis, E. M. Soil arthropod community in the olive agroecosystem: Determined by environment and farming practices in different management systems and agroecological zones. Agric. Ecosyst. Environ. 218, 178–189 (2016).
    Google Scholar 
    Beaufoy, G. EU Policies for Olive Farming. Unsustainable on all counts (WWF and Birdlife International, Brussels, 2001).
    Google Scholar 
    EFNCP. The environmental impact of olive oil production in the EU: Practical options for improving the environmental impact. European Forum on Nature Conservation and Pastoralism & Asociación para el Análisis y Reforma de la Política Agro-rural, Brussels. https://ec.europa.eu/environment/agriculture/pdf/oliveoil.pdf (2000).Vanwalleghem, T. Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agric. Ecosyst. Environ. 142, 341–351 (2011).
    Google Scholar 
    Simões, M. P., Belo, A. F., Pinto-Cruz, C. & Pinheiro, A. C. Natural vegetation management to conserve biodiversity and soil water in olive orchards. Span. J. Agric. Res. 12, 633–643 (2014).
    Google Scholar 
    Milgroom, J., Soriano, M. A., Garrido, J. M., Gómez, J. A. & Fereres, E. The influence of a shift from conventional to organic olive farming on soil management and erosion risk in southern Spain. Renew. Agric. Food Syst. 22, 1–10 (2007).
    Google Scholar 
    Lodolini, E. M. & Neri, D. Organic olive farming. African J. Agric. Res. 8, 6426–6434 (2013).
    Google Scholar 
    Rallo, L. Iberian olive growing in a time of change. Chron. Horticult. 49, 27–30 (2010).
    Google Scholar 
    Diez, C. M. et al. Cultivar and tree density as key factors in the long-term performance of super high-density olive orchards. Front. Plant Sci. 7, 1–13 (2016).
    Google Scholar 
    Allen, H. D., Randall, R. E., Amable, G. S. & Devereux, B. J. The impact of changing olive cultivation practices on the ground flora of olive groves in the Messara and Psiloritis regions, Crete, Greece. L. Degrad. Dev. 17, 249–327 (2006).
    Google Scholar 
    Herrera, J. M., Costa, P., Medinas, D., Marques, J. T. & Mira, A. Community composition and activity of insectivorous bats in Mediterranean olive farms. Anim. Conserv. 18, 557–566 (2015).
    Google Scholar 
    Costa, A. et al. Structural simplification compromises the potential of common insectivorous bats to provide biocontrol services against the major olive pest Prays oleae. Agric. Ecosyst. Environ. 287, 106708 (2020).
    Google Scholar 
    Morgado, R. et al. A Mediterranean silent spring? The effects of olive farming intensification on breeding bird communities. Agric. Ecosyst. Environ. 288, 106694 (2020).
    Google Scholar 
    Ruano, F. et al. Use of arthropods for the evaluation of the olive-orchard management regimes. Agric. For. Entomol. 6, 111–120 (2004).
    Google Scholar 
    Jerez-Valle, C., García, P. A., Campos, M. & Pascual, F. A simple bioindication method to discriminate olive orchard management types using the soil arthropod fauna. Appl. Soil Ecol. 76, 42–51 (2014).
    Google Scholar 
    Carpio, A. J., Castro, J. & Tortosa, F. S. Arthropod biodiversity in olive groves under two soil management systems: Presence versus absence of herbaceous cover crop. Agric. For. Entomol. 21, 58–68 (2018).
    Google Scholar 
    Rey, P. J. et al. Landscape-moderated biodiversity effects of ground herb cover in olive groves: Implications for regional biodiversity conservation. Agric. Ecosyst. Environ. 277, 61–73 (2019).
    Google Scholar 
    Mccomb, W. C. & Noble, R. E. Invertebrate use of natural tree cavities and vertebrate nest boxes. Am. Midl. Nat. 107, 163–172 (1982).
    Google Scholar 
    Bovyn, R. A., Lordon, M. C., Grecco, A. E., Leeper, A. C. & LaMontagne, J. M. Tree cavity availability in urban cemeteries and city parks. J. Urban Ecol. 5, 1–9 (2019).
    Google Scholar 
    Ribera, I., Dolédec, S., Downie, I. & Foster, G. Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82, 1112–1129 (2001).
    Google Scholar 
    Barbaro, L. & van Halder, I. Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography 32, 321–333 (2009).
    Google Scholar 
    Steffan-Dewenter, I. & Tscharntke, T. Butterfly community structure in fragmented habitats. Ecol. Lett. 3, 449–456 (2000).
    Google Scholar 
    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).ADS 
    PubMed 

    Google Scholar 
    Medinas, D. et al. Road effects on bat activity depend on surrounding habitat type. Sci. Total Environ. 660, 340–347 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    INE. Estatísticas Agrícolas – 2018. Lisboa. Instituto Nacional de Estatística. https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_publicacoes&PUBLICACOESpub_boui=358629204&PUBLICACOESmodo=2 (2019).Rodríguez-Cohard, J. C., Sánchez-Martínez, J. D. & Garrido-Almonacid, A. Strategic responses of the European olive-growing territories to the challenge of globalization. Eur. Plan. Stud. 28, 2261–2283 (2020).
    Google Scholar 
    Reis, P. O olival em Portugal. Dinâmicas, tecnologias e relação com o desenvolvimento rural. Instituto Nacional de Investigação Agrária e Veterinária. http://www.iniav.pt/fotos/editor2/caderno_olivalemportugal.pdf (2014).Yi, Z., Jinchao, F., Dayuan, X., Weiguo, S. & Axmacher, J. C. A comparison of terrestrial arthropod sampling methods. J. Resour. Ecol. 3, 174–182 (2012).
    Google Scholar 
    Leather, S. R. Insect Sampling in Forest Ecosystems (Wiley-Blackwell, New Jersey, 2008).
    Google Scholar 
    Paredes, D., Cayuela, L. & Campos, M. Synergistic effects of ground cover and adjacent vegetation on natural enemies of olive insect pests. Agric. Ecosyst. Environ. 173, 72–80 (2013).
    Google Scholar 
    Porcel, M., Cotes, B., Castro, J. & Campos, M. The effect of resident vegetation cover on abundance and diversity of green lacewings (Neuroptera: Chrysopidae) on olive trees. J. Pest Sci. 90, 195–206 (2017).
    Google Scholar 

    Álvarez, H. A. et al. Semi-natural habitat complexity affects abundance and movement of natural enemies in organic olive orchards. Agric. Ecosyst. Environ. 285, 106618 (2019).
    Google Scholar 
    Paredes, D., Cayuela, L., Gurr, G. M. & Campos, M. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?. PLoS ONE 10, e0117265 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gkisakis, V. D. et al. Olive canopy arthropods under organic, integrated, and conventional management. The effect of farming practices, climate and landscape. Agroecol. Sustain. Food Syst. 42, 843–858 (2018).
    Google Scholar 
    Sanz-Cortés, F. et al. Phenological growth stages of olive trees (Olea europaea). Ann. Appl. Biol. 140, 151–157 (2002).
    Google Scholar 
    Rodríguez, E., González, B. & Campos, M. Natural enemies associated with cereal cover crops in olive groves. Bullet. Insectol. 65, 43–49 (2012).
    Google Scholar 
    Morente, M., Campos, M. & Ruano, F. Evaluation of two different methods to measure the effects of the management regime on the olive-canopy arthropod community. Agric. Ecosyst. Environ. 259, 111–118 (2018).
    Google Scholar 
    Cardenas, M., Pascual, F., Campos, M. & Pekar, S. The spider assemblage of olive groves under three management systems. Environ. Entomol. 44, 509–518 (2015).PubMed 

    Google Scholar 
    Hegazi, E. M. et al. Seasonality in the occurrence of two lepidopterous olive pests in Egypt. Insect Sci. 18, 565–574 (2011).
    Google Scholar 
    Markó, V., Keresztes, B., Fountain, M. T. & Cross, J. V. Prey availability, pesticides and the abundance of orchard spider communities. Biol. Control 48, 115–124 (2009).
    Google Scholar 
    Picchi, M. S., Marchi, S., Albertini, A. & Petacchi, R. Organic management of olive orchards increases the predation rate of overwintering pupae of Bactrocera oleae (Diptera: Tephritidae). Biol. Control 108, 9–15 (2017).
    Google Scholar 
    Caruso, T. & Migliorini, M. Micro-arthropod communities under human disturbance: Is taxonomic aggregation a valuable tool for detecting multivariate change? Evidence from Mediterranean soil oribatid coenoses. Acta Oecol. 30, 46–53 (2006).ADS 

    Google Scholar 
    Schipper, A. M., Lotterman, K., Geertsma, M., Leuven, R. S. E. W. & Hendriks, A. J. Using datasets of different taxonomic detail to assess the influence of floodplain characteristics on terrestrial arthropod assemblages. Biodivers. Conserv. 19, 2087–2110 (2010).
    Google Scholar 
    Timms, L. L., Bowden, J. J., Summerville, K. S. & Buddle, C. M. Does species-level resolution matter? Taxonomic sufficiency in terrestrial arthropod biodiversity studies. Insect Conserv. Divers. 6, 453–462 (2013).
    Google Scholar 
    Unwin, D. M. A Key to the Families of British Beetles (Field Studies Council, 1984).Goulet, H. & Huber, J. Hymenoptera of the World: An identification Guide to Families. (Agriculture Canada publication, 1993).Johnson, N. F. & Triplehorn, C. A. Borror and DeLong’s Introduction to the Study of Insects 7th edn. (Thomson Brooks/Cole, Belmont, 2005).
    Google Scholar 
    Fletcher, M. J., and updates. Identification keys and checklists for the leafhoppers, planthoppers and their relatives occurring in Australia and neighbouring areas (Hemiptera: Auchenorrhyncha). https://idtools.dpi.nsw.gov.au/keys/auch/index.html (2009).Mata, L. & Goula, M. Clave de familias de Heterópteros de la Península Ibérica (Insecta, Hemiptera, Heteroptera). Versión 1. Publicaciones del Centre de Recursos de Biodiversitat Animal, Universitat de Barcelona. http://www.ub.edu/crba/publicacions/Clau%20heteropters/Volum4_Clave_de_Familias_de_Heteropteros_de_la_P.Iberica.pdf (2011).Oosterbroek, P. The European families of the Diptera. Identification, diagnosis, biology. (Royal Dutch Society for Natural History (KNNV) Publishing, Utrecht, 2015).World Spider Catalog. Version 19. Natural History Museum Bern. http://wsc.nmbe.ch (2018).Campos, M. Lacewing in Andalusian olive orchards. In Lacewing in the Crop Environment (eds McEwen, P. et al.) 492–497 (Cambridge University Press, Cambridge, 2001).
    Google Scholar 
    Wilson, E. O. & Hölldobler, B. The rise of the ants: A phylogenetic and ecological explanation. Proc. Natl. Acad. Sci. U. S. A. 102, 7411–7414 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martínez-Núñez, C. et al. Ant community potential for pest control in olive groves: Management and landscape effects. Agric. Ecosyst. Environ 305, 107185 (2021).
    Google Scholar 
    Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B. 273, 1715–1727 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Holland, J. M. et al. Semi-natural habitats support biological control, pollination and soil conservation in Europe. A review. Agron. Sustain. Dev. 37, 31 (2017).
    Google Scholar 

    Paredes, D. et al. Landscape simplification increases Bactrocera oleae abundance in olive groves: Adult population dynamics in different land uses. J. Pest Sci. https://doi.org/10.1007/s10340-022-01489-1 (2022).Article 

    Google Scholar 
    Thies, C., Roschewitz, I. & Tscharntke, T. The landscape context of cereal aphid–parasitoid interactions. Proc. R. Soc. B. 285, 203–210 (2005).
    Google Scholar 
    Pinto-Correia, T., Ribeiro, N. & Sá-Sousa, P. Introducing the montado, the cork and holm oak agroforestry system of Southern Portugal. Agrofor. Syst. 82, 99–104 (2011).
    Google Scholar 
    Morgado, R. et al. Drivers of irrigated olive grove expansion in Mediterranean landscapes and associated biodiversity impacts. Landsc. Urban Plan. 225, 104429 (2022).
    Google Scholar 
    Direção-Geral do Território. Carta de Uso e Ocupação do Solo de Portugal Continental para 2015 (COS2015). http://www.dgterritorio.pt/dados_abertos/cos/ (2015).Roswell, M., Dushoff, J. & Winfree, R. A conceptual guide to measuring species diversity. Oikos 130, 321–338 (2021).
    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 
    Penado, A. et al. From pastures to forests: Changes in Mediterranean wild bee communities after rural land abandonment. Insect Conserv. Divers. 15, 325–336 (2022).
    Google Scholar 
    Ovaskainen, O. & Abrego, N. Joint Species Distribution Modelling. With Applications in R. (Cambridge University Press, 2020).Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Google Scholar 
    Macgregor-Fors, I. & Payton, M. E. Contrasting diversity values: Statistical inferences based on overlapping confidence intervals. PLoS ONE 8, e56794 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tikhonov, G. et al. Joint species distribution modelling with the r-package Hmsc. Methods Ecol. Evol. 11, 442–447 (2019).
    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).
    Google Scholar 
    Wickramasinghe, L. P., Harris, S. H., Jones, G. & Jennings, N. V. Abundance and species richness of nocturnal insects on organic and conventional farms: Effects of agricultural intensification on bat foraging. Conserv. Biol. 8, 1283–1292 (2004).
    Google Scholar 
    Galloway, A. D., Seymour, C. L., Gaigher, R. & Pryke, J. S. Organic farming promotes arthropod predators, but this depends on neighbouring patches of natural vegetation. Agric. Ecosyst. Environ. 310, 107295 (2021).
    Google Scholar 
    Hevia, V., Ortega, J., Azcárate, F. M., López, C. A. & González, J. A. Exploring the effect of soil management intensity on taxonomic and functional diversity of ants in Mediterranean olive groves. Agric. For. Entomol. 21, 109–118 (2019).
    Google Scholar 
    Vitanović, E. et al. Arthropod communities within the olive canopy as bioindicators of different management systems. Span. J. Agric. Res. 16, e0301 (2018).
    Google Scholar 
    Vasconcelos, S. et al. Long-term consequences of agricultural policy decisions: How are forests planted under EEC regulation 2080/92 affecting biodiversity 20 years later?. Biol. Conserv. 236, 393–403 (2019).
    Google Scholar 
    Tscharntke, T. et al. When natural habitat fails to enhance biological pest control—five hypotheses. Biol. Conserv. 204, 449–458 (2016).
    Google Scholar 
    Ortega, M., Pascual, S. & Rescia, A. J. Spatial structure of olive groves and scrublands affects Bactrocera oleae abundance: A multi-scale analysis. Basic Appl. Ecol. 17, 696–705 (2016).
    Google Scholar 
    Martínez-Núñez, C. et al. Direct and indirect effects of agricultural practices, landscape complexity and climate on insectivorous birds, pest abundance and damage in olive groves. Agric. Ecosyst. Environ. 304, 107145 (2020).
    Google Scholar 
    Paredes, D., Karp, D. S., Chaplin-Kramer, R., Benítez, E. & Campos, M. Natural habitat increases natural pest control in olive groves: Economic implications. J. Pest Sci. 92, 1111–1121 (2019).
    Google Scholar 
    Attwood, S. J., Maron, M., House, P. N. & Zammit, C. Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management?. Glob. Ecol. Biogeogr. 17, 585–599 (2008).
    Google Scholar 
    Miranda, M. A., Miquel, M., Terrassa, J., Melis, N. & Monerris, M. Parasitism of Bactrocera oleae (Diptera; Tephritidae) by Psyttalia concolor (Hymenoptera; Braconidae) in the Balearic Islands (Spain). J. Appl. Entomol. 132, 798–805 (2008).
    Google Scholar 
    Álvarez, H. A., Morente, M., Campos, M. & Ruano, F. L. madurez de las cubiertas vegetales aumenta la presencia de enemigos naturales y la resiliencia de la red trófica de la copa del olivo. Ecosistemas 28, 92–106 (2019).
    Google Scholar 
    Rusch, A., Valantin-Morison, M., Sarthou, J. P. & Roger-Estrade, J. Biological control of insect pests in agroecosystems. Effects of crop management, farming systems, and seminatural habitats at the landscape scale: A review. Adv. Agron. 109, 219–259 (2010).
    Google Scholar 
    Greenop, A., Cook, S. M., Wilby, A., Pywell, R. F. & Woodcock, B. A. Invertebrate community structure predicts natural pest control resilience to insecticide exposure. J. Appl. Ecol. 57, 2441–2453 (2020).CAS 

    Google Scholar 
    Porcel, M., Ruano, F., Cotes, B., Peña, A. & Campos, M. Agricultural management systems affect the green lacewing community (Neuroptera: Chrysopidae) in olive orchards in southern Spain. Environ. Entomol. 42, 97–106 (2013).CAS 
    PubMed 

    Google Scholar 
    Stamou, G. P. Arthropods of Mediterranean-Type Ecosystems (Springer, 2012).Santos, J. L. et al. A farming systems approach to linking agricultural policies with biodiversity and ecosystem services. Front. Ecol. Environ. 19, 168–175 (2021).
    Google Scholar 
    Ribeiro, P. F. et al. An applied farming systems approach to infer conservation-relevant agricultural practices for agri-environment policy design. Land Use Policy 58, 165–172 (2016).
    Google Scholar 
    Herrera, J. M. et al. A food web approach reveals the vulnerability of biocontrol services by birds and bats to landscape modification at regional scale. Sci. Rep. 11, 1–10 (2021).
    Google Scholar 
    Solomou, A. D. & Sfougaris, A. I. Bird community characteristics as indicators of sustainable management in olive grove ecosystems of Central Greece. J. Nat. Hist. 49, 301–325 (2015).
    Google Scholar 
    Piñeiro, V. et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat Sustain. 3, 809–820 (2020).
    Google Scholar  More

  • in

    Cross-cutting research themes for future mangrove forest research

    Sievers, M. et al. Trends Ecol. Evol. 34, 807–817 (2019).Article 

    Google Scholar 
    Barbier, E. B. et al. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    zu Ermgassen, P. S. E. et al. Estuar. Coast. Shelf Sci. 248, 107159 (2021).Article 

    Google Scholar 
    Spalding, M. & Parrett, C. L. Mar. Policy 110, 103540 (2019).Article 

    Google Scholar 
    Dahdouh-Guebas, F. et al. Estuar. Coast. Shelf Sci. 248, 106942 (2021).Article 

    Google Scholar 
    Dahdouh-Guebas, F. et al. Front. Mar. Sci. 7, 603651 (2020).Article 

    Google Scholar 
    Friess, D. A. & McKee, K. L. in Dynamic Sedimentary Environments of Mangrove Coasts (eds Sidik, F. & Friess, D.A.) Ch. 7 (Elsevier, 2021).Lee, S. Y. et al. Glob. Ecol. Biogeogr. 23, 726–743 (2014).Article 

    Google Scholar 
    Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Glob. Change Biol. 26, 5844–5855 (2020).Article 

    Google Scholar 
    Cannicci, S. et al. Proc. Natl Acad. Sci. USA 118, e2016913118 (2021).CAS 
    Article 

    Google Scholar 
    Bouillon, S., Koedam, N., Raman, A. & Dehairs, F. Oecologia 130, 441–448 (2002).CAS 
    Article 

    Google Scholar 
    Adame, M. F. et al. Glob. Chang. Biol. 27, 2856–2866 (2021).CAS 
    Article 

    Google Scholar 
    Pittman, S. et al. Mar. Ecol. Prog. Ser. 663, 1–29 (2021).Article 

    Google Scholar 
    Nagelkerken, I., Sheaves, M. T., Baker, R. & Connolly, R. M. Fish Fish. 16, 362–371 (2015).Article 

    Google Scholar 
    Huxham, M., Whitlock, D., Githaiga, M. & Dencer-Brown, A. Curr. For. Rep. 4, 101–110 (2018).
    Google Scholar 
    Bryan-Brown, D. N. et al. Sci. Rep. 10, 7117 (2020).CAS 
    Article 

    Google Scholar 
    Curnick, D. J. et al. Science 363, 239–239 (2019).Article 

    Google Scholar 
    Dahdouh-Guebas, F. & Cannicci, S. Front. Mar. Sci. 8, 799543 (2021).Article 

    Google Scholar 
    Bruelheide, H. et al. Nat. Ecol. Evol. 2, 1906–1917 (2018).Article 

    Google Scholar 
    Harvey, B. P., Marshall, K. E., Harley, C. D. G. & Russell, B. D. Trends Ecol. Evol. 37, 20–29 (2021).Article 

    Google Scholar 
    Rahman, M. M. et al. Nat. Commun. 12, 3875 (2021).CAS 
    Article 

    Google Scholar 
    Yando, E. S. et al. Biol. Conserv. 263, 109355 (2021).Article 

    Google Scholar 
    Krauss, K. W. & Osland, M. J. Ann. Bot. 125, 213–234 (2020).PubMed 

    Google Scholar 
    Asbridge, E. F. et al. Estuar. Coast. Shelf Sci. 228, 106353 (2019).Article 

    Google Scholar 
    Sippo, J. Z., Lovelock, C. E., Santos, I. R., Sanders, C. J. & Maher, D. T. Estuar. Coast. Shelf Sci. 215, 241–249 (2018).Article 

    Google Scholar 
    Erftemeijer, P. L. A. & Hamerlynck, O. J. Coast. Res. 42, 228–235 (2005).
    Google Scholar 
    Abhik, S. et al. Sci. Rep. 11, 20411 (2021).CAS 
    Article 

    Google Scholar 
    Osland, M. J., Day, R. H. & Michot, T. C. Divers. Distrib. 26, 1366–1382 (2020).Article 

    Google Scholar 
    Dahdouh-Guebas, F. et al. Curr. Biol. 15, 579–586 (2005).CAS 
    Article 

    Google Scholar 
    Turschwell, M. P. et al. Biol. Conserv. 247, 108637 (2020).Article 

    Google Scholar 
    Saintilan, N. et al. Science 368, 1118–1121 (2020).CAS 
    Article 

    Google Scholar 
    Xie, D. et al. Environ. Res. Lett. 15, 114033 (2020).Article 

    Google Scholar 
    Ewel, K. C., Twilley, R. R. & Ong, J. E. Glob. Ecol. Biogeogr. Lett. 7, 83–94 (1998).Article 

    Google Scholar 
    Dahdouh-Guebas, F. in Vers une Nouvelle Synthèse Ecologique: de L’écologie Scientifique au Développement Durable. (ed. Meerts, P.) 182–193 (Centre Paul Duvigneaud de Documentation Ecologique, 2013).Gallup, L., Sonnenfeld, D. A. & Dahdouh-Guebas, F. Ocean Coast. Manage. 185, 105001 (2020).Article 

    Google Scholar 
    Rist, S. & Dahdouh-Guebas, F. Environ. Dev. Sustain. 8, 467–493 (2006).Article 

    Google Scholar 
    Foell, J., Harrison, E. & Stirrat, R. L. Participatory Approaches to Natural Resource Management: The Case of Coastal Zone Management in the Puttalam District, Sri Lanka. Project R6977 (School of African and Asian Studies, University of Sussex, 2000).Beymer-Farris, B. A. & Bassett, T. J. Glob. Environ. Change 22, 332–341 (2012).Article 

    Google Scholar 
    Lovelock, C. E. & Brown, B. M. Nat. Ecol. Evol. 3, 1135 (2019).Article 

    Google Scholar 
    Dahdouh-Guebas, F. et al. J. Ethnobiol. Ethnomed. 2, 24 (2006).CAS 
    Article 

    Google Scholar  More

  • in

    High deforestation trajectories in Cambodia slowly transformed through economic land concession restrictions and strategic execution of REDD+ protected areas

    Deforestation trajectories and economic driversCambodia has undergone significant forest loss in recent decades—with 2.6 million hectares of forest cover loss occurring since 2001, equating to 29.5% of forest cover7 and 1.45 billion tonnes of CO2 emissions8. The deforestation rates have increased by 76% in the last decade (2011–2021) compared to the previous (2001–2010; Fig. 1b)7. We find forest loss has occurred within three distinct Phases demonstrated by changepoint analysis: (1) Phase 1: steady rise from 2000 to 2009 (average = 0.82%/year), (2) Phase 2: peak years from 2010 to 2013 (average = 2.3%/year), (3) Phase 3: moderate phase from 2014 to 2021 (average = 1.6%/year). Whilst the annual rate of deforestation has declined since the Phase 2, Cambodia currently has the highest country-level annual rate of forest loss globally7, illustrating the relentless deforestation spreading across the landscape. Critically, much of this forest loss and degradation is occurring in mature primary forests (Fig. 1b), which hold significant carbon and are home to rich biodiversity and keystone species17,18,19.
    This deforestation in Cambodia has been attributed to the widespread development of Economic Land Concessions (ELCs), the expansion of numerous agricultural frontiers and relentless illegal logging20,21,22. These drivers have been abetted by the establishment of an extensive national road network (Fig. 1a)20—developed to promote economic growth and urban–rural connectivity23. The majority (88.4%) of these roads have been funded by foreign governments (the People’s Republic of China: 38.5%, Japan: 37.9%, and Republic of Korea: 12.0%)18—all of whom have established land concessions within Cambodia’s borders24 through the allocation of state land into private land for long-term industrial plantations22,25. The expansion of ELCs across Cambodia (average addition of 105,000 ha/year of ELC land since 1998) has been directly attributed to up to 40% of the country’s deforestation21, with further indirect impacts due to encroachment into rural community lands (indigenous areas, community forests, subsistence agricultural fields). This results in landlessness, poverty, and land conflicts, forcing communities to migrate in search of arable land, further contributing to the growing degradation and destruction of forests22,26,27,28,29.Strategic government interventionProtected areas expanded across Cambodia in 1993 following a royal decree26; the legal details of which were delineated in the 2008 Protected Areas Law, introducing protected categories, wildlife corridors and strict laws prohibiting development9. While over 80 protected areas currently exist covering 35% of Cambodian land10, they are still under substantial threat30. In further efforts to curb deforestation, the Royal Government of Cambodia ordered the suspension of new ELCs and revocation of a subset of existing ELCs in 2012 (Order 01BB)31. This resulted in a reduction of ELCs from a peak of ~ 2.1 million ha in 2012 to ~ 1.6 million ha from 2014 onward (Fig. 1b), with a significant positive correlation between the quantity of land classified as ELCs and the country-level deforestation rate (R = 0.87, p  More

  • in

    Genomic basis for early-life mortality in sharpsnout seabream

    Sale, P. F. & Steneck, R. S. Critical Science Gaps Impede Use of No-take Fishery Reserves (University of Maine/University of New Hampshire Sea Grant College Program, 2005).Book 

    Google Scholar 
    Hilborn, R. & Walters, C. J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty (Springer, 2013).
    Google Scholar 
    Hamilton, S. L., Regetz, J. & Warner, R. R. Postsettlement survival linked to larval life in a marine fish. Proc. Natl. Acad. Sci. 105, 1561–1566 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raventos, N. & Macpherson, E. Effect of pelagic larval growth and size-at-hatching on post-settlement survivorship in two temperate labrid fish of the genus Symphodus. Mar. Ecol. Prog. Ser. 285, 205–211 (2005).ADS 
    Article 

    Google Scholar 
    Johnson, D. W., Christie, M. R., Stallings, C. D., Pusack, T. J. & Hixon, M. A. Using post-settlement demography to estimate larval survivorship: A coral reef fish example. Oecologia 179, 729–739 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Garrido, S. et al. Born small, die young: Intrinsic, size-selective mortality in marine larval fish. Sci. Rep. 5, 17065 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shima, J. S. et al. Reproductive phenology across the lunar cycle: Parental decisions, offspring responses, and consequences for reef fish. Ecology 101, e03086 (2020).PubMed 
    Article 

    Google Scholar 
    Pini, J., Planes, S., Rochel, E., Lecchini, D. & Fauvelot, C. Genetic diversity loss associated to high mortality and environmental stress during the recruitment stage of a coral reef fish. Coral Reefs 30, 399–404 (2011).ADS 
    Article 

    Google Scholar 
    Bourret, V., Dionne, M. & Bernatchez, L. Detecting genotypic changes associated with selective mortality at sea in Atlantic salmon: Polygenic multilocus analysis surpasses genome scan. Mol. Ecol. 23, 4444–4457 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Planes, S. & Lenfant, P. Temporal change in the genetic structure between and within cohorts of a marine fish, Diplodus sargus, induced by a large variance in individual reproductive success. Mol. Ecol. 11, 1515–1524 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Planes, S. & Romans, P. Evidence of genetic selection for growth in new recruits of a marine fish. Mol. Ecol. 13, 2049–2060 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davidson, W. S. Adaptation genomics: Next generation sequencing reveals a shared haplotype for rapid early development in geographically and genetically distant populations of rainbow trout. Mol. Ecol. 21, 219–222 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carreras, C. et al. East is east and west is west: Population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). Divers. Distrib. 26, 382–398 (2020).Article 

    Google Scholar 
    Carreras, C. et al. Population genomics of an endemic Mediterranean fish: Differentiation by fine scale dispersal and adaptation. Sci. Rep. 7, 43417 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Babbucci, M. et al. An integrated genomic approach for the study of mandibular prognathism in the European seabass (Dicentrarchus labrax). Sci. Rep. 6, 38673 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barbanti, A. et al. Helping decision making for reliable and cost-effective 2b-RAD sequencing and genotyping analyses in non-model species. Mol. Ecol. Resour. 20, 795–806 (2020).CAS 
    Article 

    Google Scholar 
    Torrado, H., Carreras, C., Raventos, N., Macpherson, E. & Pascual, M. Individual-based population genomics reveal different drivers of adaptation in sympatric fish. Sci. Rep. 10, 12683 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xuereb, A. et al. Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate (Parastichopus californicus). Mol. Ecol. 27, 2347–2364 (2018).PubMed 
    Article 

    Google Scholar 
    Benestan, L. et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 25, 5073–5092 (2016).PubMed 
    Article 

    Google Scholar 
    Lu, F. et al. Switchgrass genomic diversity, ploidy, and evolution: Novel insights from a network-based SNP discovery protocol. PLoS Genet. 9, e1003215 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, S., Meyer, E., McKay, J. K. & Matz, M. V. 2b-RAD: A simple and flexible method for genome-wide genotyping. Nat. Methods 9, 808–810 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raventos, N. & Macpherson, E. Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar. Biol. 138, 1115–1120 (2001).Article 

    Google Scholar 
    Torrado, H. et al. Impact of individual early life traits in larval dispersal: A multispecies approach using backtracking models. Prog. Oceanogr. 192, 102518 (2021).Article 

    Google Scholar 
    Schunter, C. et al. A novel integrative approach elucidates fine-scale dispersal patchiness in marine populations. Sci. Rep. 9, 10796 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hixon, M. A. & Carr, M. H. Synergistic predation, density dependence, and population regulation in marine fish. Science 277, 946–949 (1997).CAS 
    Article 

    Google Scholar 
    Macpherson, E. et al. Mortality of juvenile fishes of the genus Diplodus in protected and unprotected areas in the western Mediterranean Sea. Mar. Ecol. Prog. Ser. 160, 135–147 (1997).ADS 
    Article 

    Google Scholar 
    Macpherson, E. Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. J. Exp. Mar. Biol. Ecol. 220, 127–150 (1998).Article 

    Google Scholar 
    Eckert, G. J. Estimates of adult and juvenile mortality for labrid fishes at One Tree Reef, Great Barrier Reef. Mar. Biol. 95, 167–171 (1987).Article 

    Google Scholar 
    Pascual, M., Rives, B., Schunter, C. & Macpherson, E. Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 12, e0176419 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schunter, C. et al. Matching genetics with oceanography: Directional gene flow in a Mediterranean fish species. Mol. Ecol. 20, 5167–5181 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ciotti, B. J. & Planes, S. Within-generation consequences of postsettlement mortality for trait composition in wild populations: An experimental test. Ecol. Evol. 9, 2550–2561 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoklavich, M. M. & Bailey, K. M. Hatching period, growth and survival of young walleye pollock Theragra chalcogramma as determined from otolith analysis. Mar. Ecol. Prog. Ser. 64, 13–23 (1990).ADS 
    Article 

    Google Scholar 
    Cargnelli, L. M. & Gross, M. R. The temporal dimension in fish recruitment: Birth date, body size, and size-dependent survival in a sunfish (bluegill: Lepomis macrochirus). Can. J. Fish. Aquat. Sci. 53, 360–367 (1996).Article 

    Google Scholar 
    Moginie, B. F. & Shima, J. S. Hatch date and growth rate drives reproductive success in nest-guarding males of a temperate reef fish. Mar. Ecol. Prog. Ser. 592, 197–206 (2018).ADS 
    Article 

    Google Scholar 
    Sponaugle, S., Boulay, J. N. & Rankin, T. L. Growth- and size-selective mortality in pelagic­larvae of a common reef fish. Aquat. Biol. 13, 263–273 (2011).Article 

    Google Scholar 
    Biro, P. A., Abrahams, M. V., Post, J. R. & Parkinson, E. A. Behavioural trade-offs between growth and mortality explain evolution of submaximal growth rates. J. Anim. Ecol. 75, 1165–1171 (2006).PubMed 
    Article 

    Google Scholar 
    Litvak, M. K. & Leggett, W. C. Age and size-selective predation on larval fishes: the bigger-is-better hypothesis revisited. Mar. Ecol. Prog. Ser. 81, 13–24 (1992).ADS 
    Article 

    Google Scholar 
    D’Alessandro, E. K., Sponaugle, S. & Cowen, R. K. Selective mortality during the larval and juvenile stages of snappers (Lutjanidae) and great barracuda Sphyraena barracuda. Mar. Ecol. Prog. Ser. 474, 227–242 (2013).ADS 
    Article 

    Google Scholar 
    Meekan, M. G. et al. Bigger is better: Size-selective mortality throughout the life history of a fast-growing clupeid, Spratelloides gracilis. Mar. Ecol. Progress Ser. 317, 237–244 (2006).ADS 
    Article 

    Google Scholar 
    Takasuka, A., Aoki, I. & Mitani, I. Evidence of growth-selective predation on larval Japanese anchovy Engraulis japonicus in Sagami Bay. Mar. Ecol. Prog. Ser. 252, 223–238 (2003).ADS 
    Article 

    Google Scholar 
    Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 3, 509–535 (2011).PubMed 
    Article 

    Google Scholar 
    Raventos, N., Torrado, H., Arthur, R., Alcoverro, T. & Macpherson, E. Temperature reduces fish dispersal as larvae grow faster to their settlement size. J. Anim. Ecol. 90, 1419–1432 (2021).PubMed 
    Article 

    Google Scholar 
    Logsdon, N. J., Deshpande, A., Harris, B. D., Rajashankar, K. R. & Walter, M. R. Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proc. Natl. Acad. Sci. 109, 12704–12709 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eldon, B., Riquet, F., Yearsley, J., Jollivet, D. & Broquet, T. Current hypotheses to explain genetic chaos under the sea. Curr. Zool. 62, 551–566 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Macpherson, E., Gordoa, A. & Garcia-Rubies, A. Biomass size spectra in littoral fishes in protected and unprotected areas in the NW Mediterranean. Estuarine Coast. Shelf Sci. 55, 777–788 (2002).ADS 
    Article 

    Google Scholar 
    Garcia-Rubies, A. & Zabala I Limousin, M. Effects of total fishing prohibition on the rocky fish assemblages of Medes Islands marine reserve (NW Mediterranean). Sci. Mar. 54(4), 317–328 (1990).
    Google Scholar 
    Vigliola, L. et al. Spatial and temporal patterns of settlement among sparid fishes of the genus Diplodus in the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 168, 45–56 (1998).ADS 
    Article 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goudet, J. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).Article 

    Google Scholar 
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wickham, H. ggplot2. (2009). https://doi.org/10.1007/978-0-387-98141-3.Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol. Ecol. 27, 2215–2233 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Natsidis, P., Tsakogiannis, A., Pavlidis, P., Tsigenopoulos, C. S. & Manousaki, T. Phylogenomics investigation of sparids (Teleostei: Spariformes) using high-quality proteomes highlights the importance of taxon sampling. Commun. Biol. 2, 400 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Al-Shahrour, F. et al. FatiGO: A functional profiling tool for genomic data: Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Res. 35, W91–W96 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, M., Zhao, Y. & Zhang, B. Efficient test and visualization of multi-set intersections. Sci. Rep. 5, 16923 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    The impact of 1.5 °C and 2.0 °C global warming on global maize production and trade

    Angélil, O. et al. An independent assessment of anthropogenic attribution statements for recent extreme temperature and rainfall events. J. Clim. 30(1), 5–16 (2017).ADS 

    Google Scholar 
    Rosenzweig, C. et al. Coordinating AgMIP data and models across global and regional scales for 1.5°C and 2.0°C assessments. Philos. Trans. R. Soc. A. 376, 20160455 (2018).ADS 

    Google Scholar 
    Mitchell, D. et al. Half a degree additional warming, prognosis and projected impacts (HAPPI): Background and experimental design. Geosci. Model Dev. 10, 571–583 (2017).ADS 
    CAS 

    Google Scholar 
    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).ADS 

    Google Scholar 
    IPCC: Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 4–6 (Cambridge University Press, 2013).Diffenbaugh, N. S. et al. Quantifying the influence of global warming on unprecedented extreme climate events. PNAS 114(19), 4881–4886 (2016).ADS 

    Google Scholar 
    Tai, A. P. K., Martin, M. V. & Heald, C. L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Change 4, 817–821 (2014).ADS 
    CAS 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. PNAS 117(8), 4211–4217 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dong, W. H., Liu, Z., Liao, H., Tang, Q. H. & Li, X. E. New climate and socio-economic scenarios for assessing global human health challenges due to heat risk. Clim. Change 130(4), 505–518 (2015).ADS 

    Google Scholar 
    Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat. Clim. Change 10, 244–248 (2020).ADS 

    Google Scholar 
    Fischer, H., Amelung, D. & Said, N. The accuracy of German citizens’ confidence in their climate change knowledge. Nat. Clim. Change 9, 776–780 (2020).ADS 

    Google Scholar 
    Hasegawa, T. et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Change 8, 699–703 (2018).ADS 

    Google Scholar 
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    UNFCCC. The Paris Agreement. 2015, https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement.Roche, K. R., Müller-Itten, M., Dralle, D. N., Bolster, D. & Müller, M. F. Climate change and the opportunity cost of conflict. PNAS 117(4), 1935–1940 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).ADS 

    Google Scholar 
    Lobell, D. B. et al. Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607–610 (2017).
    Google Scholar 
    Lv, S. et al. Yield gap simulations using ten maize cultivars commonly planted in Northeast China during the past five decades. Agric. For. Meteorol. 205, 1–10 (2015).ADS 

    Google Scholar 
    Chao, W., Kehui, C. & Shah, F. Heat stress decreases rice grain weight: Evidence and physiological mechanisms of heat effects prior to flowering. Int. J. Mol. Sci. 23(18), 10922 (2022).
    Google Scholar 
    Chao, W. et al. Estimating the yield stability of heat-tolerant rice genotypes under various heat conditions across reproductive stages: A 5-year case study. Sci. Rep. 11, 13604 (2021).ADS 

    Google Scholar 
    IPCC. Food security and food production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change 485–533 (Cambridge University Press, 2014).Tigchelaar, M., Battisti, D. S., Naylor, R. L. & Ray, D. K. Future warming increases probability of globally synchronized maize production shocks. PNAS 115(26), 6644–6649 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. PNAS 114, 9326–9331 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diffenbaugh, N. S., Hertel, T. W., Scherer, M. & Verma, M. Response of corn markets to climate volatility under alternative energy futures. Nat. Clim. Change 2, 514–518 (2012).ADS 

    Google Scholar 
    Jensen, H. G. & Anderson, K. Grain price spikes and beggar-thy-neighbor policy responses: A global economywide analysis. World Bank Econ. Rev. 31, 158–175 (2017).
    Google Scholar 
    Fraser, E. D. G., Simelton, E., Termansen, M., Gosling, S. N. & South, A. “Vulnerability hotspots”: Integrating socio-economic and hydrological models to identify where cereal production may decline in the future due to climate change induced drought. Agric. For. Meteorol. 170, 195–205 (2013).ADS 

    Google Scholar 
    Puma, M. J., Bose, S., Chon, S. Y. & Cook, B. I. Assessing the evolving fragility of the global food system. Environ. Res. Lett. 10, 024007 (2015).ADS 

    Google Scholar 
    Wheeler, T. & Braun, J. V. Climate change impacts on global food security. Science 341(6145), 508–513 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lunt, T., Jones, A. W., Mulhern, W. S., Lezaks, D. P. M. & Jahn, M. M. Vulnerabilities to agricultural production shocks: An extreme, plausible scenario for assessment of risk for the insurance sector. Clim. Risk Manag. 13, 1–9 (2016).
    Google Scholar 
    Jägermeyr, J. & Frieler, K. Spatial variations in crop growing seasons pivotal to reproduce global fluctuations in maize and wheat yields. Sci. Adv. 4(11), eaat4517 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elliott, J. et al. Characterizing agricultural impacts of recent large-scale US droughts and changing technology and management. Agric. Syst. 159, 275–281 (2017).
    Google Scholar 
    Tack, J., Barkley, A. & Nalley, L. L. Effect of warming temperatures on US wheat yields. Proc. Natl. Acad. Sci. 112, 6931–6936 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tao, F., Zhang, Z., Liu, J. & Yokozawa, M. Modelling the impacts of weather and climate variability on crop productivity over a large area: A new super-ensemblebased probabilistic projection. Agric. For. Meteorol. 149, 1266–1278 (2009).ADS 

    Google Scholar 
    Parent, B. et al. Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. PNAS 115(42), 10642–10647 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, C. Y., Fraga, H., Ieperen, W. V. & Santos, J. A. Assessment of irrigated maize yield response to climate change scenarios in Portugal. Agric. Water Manag. 184, 178–190 (2017).
    Google Scholar 
    Miller, S. A. & Moore, F. C. Climate and health damages from global concrete production. Nat. Clim. Change https://doi.org/10.1038/s41558-020-0733-0 (2020).Article 

    Google Scholar 
    Kassie, B. T. et al. Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models. Clim. Change 129, 145–158 (2015).ADS 

    Google Scholar 
    Tao, F. & Zhang, Z. Climate change, high-temperature stress, rice productivity, and water use in Eastern China: A new superensemble-based probabilistic projection. J. Appl. Meteorol. Climatol. 52, 531–551 (2013).ADS 

    Google Scholar 
    Glotter, M. & Elliott, J. Simulating US agriculture in a modern Dust Bowl drought. Nat. Plants 3, 16193 (2016).PubMed 

    Google Scholar 
    Challinor, A. J., Koehler, A. K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).ADS 

    Google Scholar 
    Cammarano, D. et al. Using historical climate observations to understand future climate change crop yield impacts in the Southeastern US. Clim. Change 134, 311–326 (2016).ADS 

    Google Scholar 
    Etten, J. V. et al. Crop variety management for climate adaptation supported by citizen science. PNAS 116(10), 4194–4199 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urban, D. W., Sheffield, J. & Lobell, D. B. The impacts of future climate and carbon dioxide changes on the average and variability of US maize yields under two emission scenarios. Environ. Res. Lett. 10, 045003 (2015).ADS 

    Google Scholar 
    IPCC. Summary for policymakers. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty 32 (World Meteorological Organization, 2018).Ruane, A. C., Goldberg, R. & Chryssanthacopoulos, J. Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agr. For. Meteorol. 200, 233–248 (2015).
    Google Scholar 
    Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trendpreserving bias correction-the ISI-MIP approach. Earth Syst. Dyn. 4, 219–236 (2013).ADS 

    Google Scholar 
    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, 1022 (2008).ADS 

    Google Scholar 
    You, L.Z., et al. Spatial Production Allocation Model (SPAM) 2000 Version 3.2. http://mapspam.info (2015).Hoogenboom, G., et al. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.6 (DSSAT Foundation, 2015). http://dssat.net (2015).Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: An analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).
    Google Scholar 
    Batjes, H.N. A Homogenized Soil Data File for Global Environmental Research: A Subset of FAO. ISRIC and NRCS Profiles (Version 1.0). Working Paper and Preprint 95/10b (International Soil Reference and Information Centre, 1995).Xiong, W. et al. Can climate-smart agriculture reverse the recent slowing of rice yield growth in China?. Agric. Ecosyst. Environ. 196, 125–136 (2014).
    Google Scholar 
    Hertel, T. W. Global Trade Analysis: Modeling and Applications 5–30 (Cambridge University Press, 1997).
    Google Scholar 
    Corong, E. L., Hertel, T. W., McDougall, R., Tsigas, M. E. & Mensbrugghe, D. V. The standard GTAP model, version 7. J. Glob. Econ. Anal. 2(1), 1–119 (2017).
    Google Scholar 
    Ciscar, J. C. et al. Physical and economic consequences of climate change in Europe. PNAS 108, 2678–2683 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hsiang, S. et al. Estimating economic damage from climate change in the United States. Science 356(6345), 1362–1369 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Taheripour, F., Hertel, T. W. & Liu, J. The role of irrigation in determining the global land use impacts of biofuels. Energy Sustain. Soc. 3(1), 4 (2013).
    Google Scholar 
    Ali, T., Huang, J. K. & Yang, J. Impact assessment of global and national biofuels developments on agriculture in Pakistan. Appl. Energy 104, 466–474 (2013).
    Google Scholar 
    Yang, J., Huang, J. K., Qiu, H. G., Rozelle, S. & Sombilla, M. A. Biofuels and the greater Mekong Subregion: Assessing the impact on prices, production and trade. Appl. Energy 86, S37–S46 (2009).
    Google Scholar 
    Horridge, M. SplitCom, programs to disaggregate a GTAP sector (Centre of Policy Studies, Vitorial University). https://www.copsmodels.com/splitcom.htm (2005).Taylor, K. E., Stouffer, B. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).ADS 

    Google Scholar 
    Zhou, B. T., Wen, H. Q. Z., Xu, Y., Song, L. C. & Zhang, X. B. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J. Clim. 27, 6591–6611 (2014).ADS 

    Google Scholar 
    Knutti, R., Rogelj, J., Sedláček, J. & Ficher, E. M. A scientific critique of the two-degree climate change target. Nat. Geosci. 9(1), 1–6 (2015).
    Google Scholar 
    Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5°C. Nat. Clim. Change 5(6), 519–527 (2015).ADS 

    Google Scholar 
    Friedlingstein, P. et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 7(10), 709–715 (2014).ADS 
    CAS 

    Google Scholar 
    Azar, C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targets the role of bioenergy with carbon capture and storage. Environ. Res. Lett. 8(3), 1345–1346 (2013).
    Google Scholar 
    Liu, B. et al. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Glob. Change Biol. 22, 1890–1903 (2016).ADS 

    Google Scholar 
    Elad, Y. & Pertot, I. Climate change impacts on plant pathogens and plant diseases. J. Crop Improv. 28, 99–139 (2014).CAS 

    Google Scholar 
    Challinora, A. J. et al. Improving the use of crop models for risk assessment and climate change adaptation. Agric. Syst. 159, 296–306 (2018).
    Google Scholar 
    Bassu, S. et al. How do various maize crop models vary in their responses to climate change factors?. Glob. Change Biol. 20, 2301–2320 (2014).ADS 

    Google Scholar 
    Wang, N. et al. Increased uncertainty in simulated maize phenology with more frequent supra-optimal temperature under climate warming. Eur. J. Agron. 71, 19–33 (2015).
    Google Scholar 
    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the twenty-first century in a global gridded crop model intercomparison. PNAS 111, 3268–3273 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar  More