More stories

  • in

    Safeguarding nutrients from coral reefs under climate change

    Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (World Resource Institute, 2011).Bell, J. D. et al. Planning the use of fish for food security in the Pacific. Mar. Policy 33, 64–76 (2009).Article 

    Google Scholar 
    Gillett, R. Fisheries in the Economies of the Pacific Island Countries and Territories (Asian Development Bank, 2016).The Regional State of the Coast Report: Western Indian Ocean (UNEP, Nairobi Convention & WIOMSA, 2015).Wabnitz, C. C. C., Cisneros-Montemayor, A. M., Hanich, Q. & Ota, Y. Ecotourism, climate change and reef fish consumption in Palau: benefits, trade-offs and adaptation strategies. Mar. Policy 88, 323–332 (2018).Article 

    Google Scholar 
    Cinner, J. E. et al. Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change 8, 117–123 (2018).Article 

    Google Scholar 
    Thilsted, S. H. et al. Sustaining healthy diets: the role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 61, 126–131 (2016).Article 

    Google Scholar 
    Beal, T., Massiot, E., Arsenault, J. E., Smith, M. R. & Hijmans, R. J. Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLoS ONE 12, e0175554 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calder, P. C. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim. Biophys. Acta 1851, 469–484 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haddad, L. et al. A new global research agenda for food. Nature 540, 30–32 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Golden, C. D. et al. Aquatic foods to nourish nations. Nature 598, 315–320 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    MacNeil, M. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Crona, B. I., Van Holt, T., Petersson, M., Daw, T. M. & Buchary, E. Using social–ecological syndromes to understand impacts of international seafood trade on small-scale fisheries. Glob. Environ. Change 35, 162–175 (2015).Article 

    Google Scholar 
    Okemwa, G. M., Kaunda-Arara, B., Kimani, E. N. & Ogutu, B. Catch composition and sustainability of the marine aquarium fishery in Kenya. Fish. Res. 183, 19–31 (2016).Article 

    Google Scholar 
    Cinner, J. E., Folke, C., Daw, T. & Hicks, C. C. Responding to change: using scenarios to understand how socioeconomic factors may influence amplifying or dampening exploitation feedbacks among Tanzanian fishers. Glob. Environ. Change 21, 7–12 (2011).Article 

    Google Scholar 
    Hicks, C. C., Graham, N. A. J., Maire, E. & Robinson, J. P. W. Secure local aquatic food systems in the face of declining coral reefs. One Earth 4, 1214–1216 (2021).Article 

    Google Scholar 
    Albert, J. et al. Malnutrition in rural Solomon Islands: an analysis of the problem and its drivers. Matern. Child Nutr. 16, e12921 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Golden, C. D. et al. Social–ecological traps link food systems to nutritional outcomes. Glob. Food Security 30, 100561 (2021).Article 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).Article 

    Google Scholar 
    Robinson, J. P. W., Wilson, S. K., Jennings, S. & Graham, N. A. J. Thermal stress induces persistently altered coral reef fish assemblages. Glob. Change Biol. 25, 2739–2750 (2019).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).PubMed 
    Article 

    Google Scholar 
    Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morais, R. et al. Severe coral loss shifts energetic dynamics on a coral reef. Funct. Ecol. 34, 1507–1518 (2020).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Habitat and fishing control grazing potential on coral reefs. Funct. Ecol. 34, 240–251 (2020).Article 

    Google Scholar 
    Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567 (2020).Article 

    Google Scholar 
    Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 55, 1041–1049 (2018).Article 

    Google Scholar 
    Bates, A. E. et al. Climate resilience in marine protected areas and the ‘protection paradox’. Biol. Conserv. 236, 305–314 (2019).Article 

    Google Scholar 
    Darling, E. S. et al. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat. Ecol. Evol. 3, 1341–1350 (2019).PubMed 
    Article 

    Google Scholar 
    Soliño, L. & Costa, P. R. Global impact of ciguatoxins and ciguatera fish poisoning on fish, fisheries and consumers. Environ. Res. 182, 109111 (2020).PubMed 
    Article 

    Google Scholar 
    Rogers, A. et al. Anticipative management for coral reef ecosystem services in the 21st century. Glob. Change Biol. 21, 504–514 (2015).Article 

    Google Scholar 
    Thiault, L. et al. Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries. Sci. Adv. 5, eaaw9976 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Souter, D. et al. Status of Coral Reefs of the World: 2020 (Global Coral Reef Monitoring Network & International Coral Reef Initiative, 2021).Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bierwagen, S. L., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Trophodynamics as a tool for understanding coral reef ecosystems. Front. Mar. Sci. 5, 24 (2018).Article 

    Google Scholar 
    Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lehane, L. & Lewis, R. J. Ciguatera: recent advances but the risk remains. Int. J. Food Microbiol. 61, 91–125 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fraser, K. M. et al. Production of mobile invertebrate communities on shallow reefs from temperate to tropical seas. Proc. R. Soc. B Biol. Sci. 287, 20201798 (2020).CAS 
    Article 

    Google Scholar 
    Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kang, J. X. Omega-3: a link between global climate change and human health. Biotechnol. Adv. 29, 388–390 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hixson, S. M. & Arts, M. T. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Glob. Change Biol. 22, 2744–2755 (2016).Article 

    Google Scholar 
    Tan, K., Zhang, H. & Zheng, H. Climate change and n-3 LC-PUFA availability. Prog. Lipid Res. 86, 101161 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pethybridge, H. R. et al. Spatial patterns and temperature predictions of tuna fatty acids: tracing essential nutrients and changes in primary producers. PLoS ONE 10, e0131598 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hempson, T. N., Graham, N. A. J., MacNeil, M. A., Bodin, N. & Wilson, S. K. Regime shifts shorten food chains for mesopredators with potential sublethal effects. Funct. Ecol. 32, 820–830 (2018).Article 

    Google Scholar 
    Bellwood, D. R., Hughes, T. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).PubMed 
    Article 

    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stuart-Smith, R. D., Mellin, C., Bates, A. E. & Edgar, G. Habitat loss and range shifts contribute to ecological generalization amongst reef fishes. Nat. Ecol. Evol. 5, 656–662 (2021).PubMed 
    Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Du Pontavice, H., Gascuel, D., Reygondeau, G., Maureaud, A. & Cheung, W. W. L. Climate change undermines the global functioning of marine food webs. Glob. Change Biol. 26, 1306–1318 (2020).Article 

    Google Scholar 
    Jones, J. et al. The microbiome of the gastrointestinal tract of a range-shifting marine herbivorous fish. Front. Microbiol. 9, 2000 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Littman, R., Willis, B. L. & Bourne, D. G. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environ. Microbiol. Rep. 3, 651–660 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robinson, J. P. W. et al. Climate-induced increases in micronutrient availability for coral reef fisheries. One Earth 5, 98–108 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase (FishBase, 2021); www.fishbase.orgMacNeil, M. A. NutrientFishbase dataset. GitHub https://github.com/mamacneil/NutrientFishbase (2021).Waldock, C., Stuart-Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).PubMed 
    Article 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheung, W. W. L., Reygondeau, G. & Frölicher, T. L. Large benefits to marine fisheries of meeting the 1.5°C global warming target. Science 354, 1591–1594 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Golden, C. et al. Nutrition: fall in fish catch threatens human health. Nature 534, 317–320 (2016).PubMed 
    Article 

    Google Scholar 
    Nash, K. L. & Graham, N. A. J. Ecological indicators for coral reef fisheries management. Fish Fish. 17, 1029–1054 (2016).Article 

    Google Scholar 
    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).Article 

    Google Scholar 
    Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 31, 4132–4138 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24, 2416–2433 (2018).Article 

    Google Scholar 
    Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).Article 

    Google Scholar 
    Nash, K. L., Graham, N. A. J., Wilson, S. K. & Bellwood, D. R. Cross-scale habitat structure drives fish body size distributions on coral reefs. Ecosystems 16, 478–490 (2013).Article 

    Google Scholar 
    Pratchett, M. S. et al. in Oceanography and Marine Biology: An Annual Review Vol. 46 (eds Gibson, R. N. et al.) 251–296 (CRC Press, 2008).Graham, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl Acad. Sci. USA 103, 8425–8429 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).Article 

    Google Scholar 
    Graham, N. A. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300 (2007).PubMed 
    Article 

    Google Scholar 
    Hempson, T., Graham, N., Macneil, A., Hoey, A. & Wilson, S. Ecosystem regime shifts disrupt trophic structure. Ecol. Appl. 28, 191–200 (2018).PubMed 
    Article 

    Google Scholar 
    Jouffray, J.-B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Phil. Trans. R. Soc. B Biol. Sci. 370, 20130268 (2015).Article 

    Google Scholar 
    McLean, M. et al. Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Glob. Change Biol. 25, 3424–3437 (2019).Article 

    Google Scholar 
    Nash, K. L., Graham, N. A. J., Jennings, S., Wilson, S. K. & Bellwood, D. R. Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J. Appl. Ecol. 53, 646–655 (2016).Article 

    Google Scholar 
    Vaitla, B. et al. Predicting nutrient content of ray-finned fishes using phylogenetic information. Nat. Commun. 9, 3742 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).PubMed 
    Article 

    Google Scholar 
    Edgar, G. J. et al. Reef Life Survey: establishing the ecological basis for conservation of shallow marine life. Biol. Conserv. 252, 108855 (2020).Article 

    Google Scholar 
    Pauly, D. & Zeller, D. Accurate catches and the sustainability of coral reef fisheries. Curr. Opin. Environ. Sustain. 7, 44–51 (2014).Article 

    Google Scholar 
    Worm, B. & Branch, T. A. The future of fish. Trends Ecol. Evol. 27, 594–599 (2012).PubMed 
    Article 

    Google Scholar 
    McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robinson, J. P. W. et al. Managing fisheries for maximum nutrient yield. Fish Fish. 23, 800–811 (2022).Article 

    Google Scholar 
    Graham, N. A. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schartup, A. T. et al. Climate change and overfishing increase neurotoxicant in marine predators. Nature 572, 648–650 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinsky Malin, L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thorson, J. T. Predicting recruitment density dependence and intrinsic growth rate for all fishes worldwide using a data-integrated life-history model. Fish Fish. 21, 237–251 (2020).Article 

    Google Scholar 
    Ahern, M. B. et al. Locally-procured fish is essential in school feeding programmes in sub-Saharan Africa. Foods 10, 2080 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    UNEP-WCMC, WorldFish Centre, WRI & TNC. Global Distribution of Coral Reefs. Version 4.1. Ocean Data Viewer https://doi.org/10.34892/t2wk-5t34 (UN Environment World Conservation Monitoring Centre, 2021).Morillo-Velarde, P. S. et al. Habitat degradation alters trophic pathways but not food chain length on shallow Caribbean coral reefs. Sci. Rep. 8, 4109 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kumar, M. et al. Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J. Appl. Phycol. 23, 797–810 (2011).CAS 
    Article 

    Google Scholar 
    Coleman, M. A. et al. Climate change does not affect the seafood quality of a commonly targeted fish. Glob. Change Biol. 25, 699–707 (2019).Article 

    Google Scholar 
    Sissener, N. H. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. J. Exp. Biol. 221, jeb161521 (2018).PubMed 
    Article 

    Google Scholar 
    Hadj-Hammou, J., Mouillot, D. & Graham, N. A. J. Response and effect traits of coral reef fish. Front. Mar. Sci. 8, 640619 (2021).Article 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).PubMed 
    Article 

    Google Scholar 
    McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821 (2016).PubMed 
    Article 

    Google Scholar 
    McMahon, K., Hamady, L. L. & Thorrold, S. Ocean ecogeochemistry—a review. Oceanogr. Mar. Biol. 51, 327–374 (2013).
    Google Scholar 
    Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750 (2009).CAS 
    Article 

    Google Scholar 
    Bowes, R. E. & Thorp, J. H. Consequences of employing amino acid vs. bulk-tissue, stable isotope analysis: a laboratory trophic position experiment. Ecosphere 6, 14 (2015).Article 

    Google Scholar 
    Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).PubMed 
    Article 

    Google Scholar 
    Kleiber, D., Harris, L. M. & Vincent, A. C. J. Gender and small-scale fisheries: a case for counting women and beyond. Fish Fish. 16, 547–562 (2015).Article 

    Google Scholar  More

  • in

    Fish community structure and dynamics are insufficient to mediate coral resilience

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hatcher, B. G. Coral reef primary productivity: a beggar’s banquet. Trends Ecol. Evol. 3, 106–111 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hatcher, B. G. Coral reef primary productivity. A hierarchy of pattern and process. Trends Ecol. Evol. 5, 149–155 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lewis, S. M. The role of herbivorous fishes in the organization of a Caribbean reef community. Ecol. Monogr. 56, 183–200 (1986).Article 

    Google Scholar 
    Carpenter, R. C. Partitioning herbivory and its effects on coral reef algal communities. Ecol. Monogr. 56, 345–364 (1986).Article 

    Google Scholar 
    McCook, L. J. Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18, 357–367 (1999).Article 

    Google Scholar 
    Meyer, J. L., Schultz, E. T. & Helfman, G. S. Fish schools: an asset to corals. Science 220, 1047–1049 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Glob. Change Biol. 20, 2459–2472 (2014).Article 

    Google Scholar 
    Shantz, A. A., Ladd, M. C., Schrack, E. & Burkepile, D. E. Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol. Appl. 25, 2142–2152 (2015).PubMed 
    Article 

    Google Scholar 
    Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).Article 

    Google Scholar 
    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Graham, N. A. J. et al. Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ. 11, 541–548 (2013).Article 

    Google Scholar 
    Holbrook, S. J., Schmitt, R. J., Adam, T. C. & Brooks, A. J. Coral reef resilience, tipping points and the strength of herbivory. Sci. Rep. 6, 35817 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).Article 

    Google Scholar 
    Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311, 98–101 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Green, A. L. & Bellwood, D. R. Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience. A Practical Guide for Coral reef Managers in the Asia Pacific Region (IUCN, 2009).Bozec, Y. M., O’Farrell, S., Bruggemann, J. H., Luckhurst, B. E. & Mumby, P. J. Tradeoffs between fisheries harvest and the resilience of coral reefs. Proc. Natl Acad. Sci. USA 113, 4536–4541 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bruno, J. F., Cote, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: why don’t marine protected sreas improve reef resilience? Ann. Rev. Mar. Sci. 11, 307–334 (2019).PubMed 
    Article 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).Article 

    Google Scholar 
    Mora, C. A clear human footprint in the coral reefs of the Caribbean. Proc. Biol. Sci. 275, 767–773 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Biogeochemical implications of biodiversity and community structure across multiple coastal ecosystems. Ecol. Monogr. 85, 117–132 (2015).Article 

    Google Scholar 
    Mellin, C., Bradshaw, C. J., Fordham, D. A. & Caley, M. J. Strong but opposing beta-diversity–stability relationships in coral reef fish communities. Proc. Biol. Sci. 281, 20131993 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nash, K. L. et al. Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J. Appl. Ecol. 53, 646–655 (2016).Article 

    Google Scholar 
    Thibaut, L. M., Connolly, S. R. & Sweatman, H. P. Diversity and stability of herbivorous fishes on coral reefs. Ecology 93, 891–901 (2012).PubMed 
    Article 

    Google Scholar 
    Zhang, S. Y. et al. Is coral richness related to community resistance to and recovery from disturbance? PeerJ 2, e308 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clements, C. S. & Hay, M. E. Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae. Nat. Ecol. Evol. 3, 178–182 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bellwood, D. R., Hoey, A. S., Ackerman, J. L. & Depczynski, M. Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob. Change Biol. 12, 1587–1594 (2006).Article 

    Google Scholar 
    Burkepile, D. E. & Hay, M. E. Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc. Natl Acad. Sci. USA 105, 16201–16206 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mumby, P. J. Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28, 761–773 (2009).Article 

    Google Scholar 
    Cheal, A. J., Emslie, M., MacNeil, M. A., Miller, I. & Sweatman, H. Spatial variation in the functional characteristics of herbivorous fish communities and the resilience of coral reefs. Ecol. Appl. 23, 174–188 (2013).PubMed 
    Article 

    Google Scholar 
    Cheal, A. J. et al. Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29, 1005–1015 (2010).Article 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graham, N. A., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Steneck, R. S., Mumby, P. J., Macdonald, C., Rasher, D. B. & Stoyle, G. Attenuating effects of ecosystem management on coral reefs. Sci. Adv. 4, eaao5493 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, I. D., Polunin, N. V. C. & Hendrick, V. J. Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. Mar. Ecol. Prog. Ser. 222, 187–196 (2001).Article 

    Google Scholar 
    Harvey, C. J. et al. The importance of long-term ecological time series for integrated ecosystem assessment and ecosystem-based management. Prog. Oceanogr. 188, 102418 (2020).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).PubMed 
    Article 

    Google Scholar 
    MacNeil, M. A. et al. Water quality mediates resilience on the Great Barrier Reef. Nat. Ecol. Evol. 3, 620–627 (2019).PubMed 
    Article 

    Google Scholar 
    Kayal, M. et al. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS ONE 7, e47363 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adjeroud, M. et al. Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28, 775–780 (2009).Article 

    Google Scholar 
    Adam, T. C. et al. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations. Oecologia 176, 285–296 (2014).PubMed 
    Article 

    Google Scholar 
    Munsterman, K. S., Allgeier, J. E., Peters, J. R. & Burkepile, D. E. A view from both ends: shifts in herbivore assemblages impact top-down and bottom-up processes on coral reefs. Ecosystems 24, 1702–1715 (2021).Article 

    Google Scholar 
    Newman, M. J., Paredes, G. A., Sala, E. & Jackson, J. B. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol. Lett. 9, 1216–1227 (2006).PubMed 
    Article 

    Google Scholar 
    McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suchley, A., McField, M. D. & Alvarez-Filip, L. Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs. PeerJ 4, e2084 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rogers, A., Blanchard, J. L. & Mumby, P. J. Vulnerability of coral reef fisheries to a loss of structural complexity. Curr. Biol. 24, 1000–1005 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hempson, T. N., Graham, N. A. J., MacNeil, M. A., Hoey, A. S. & Wilson, S. K. Ecosystem regime shifts disrupt trophic structure. Ecol. Appl 28, 191–200 (2018).PubMed 
    Article 

    Google Scholar 
    Mouillot, D. et al. Global marine protected areas do not secure the evolutionary history of tropical corals and fishes. Nat. Commun. 7, 10359 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Han, X., Adam, T. C., Schmitt, R. J., Brooks, A. J. & Holbrook, S. J. Response of herbivore functional groups to sequential perturbations in Moorea, French Polynesia. Coral Reefs 35, 999–1009 (2016).Article 

    Google Scholar 
    Donovan, M. K. et al. Nitrogen pollution interacts with heat stress to increase coral bleaching across the seascape. Proc. Natl Acad. Sci. USA 117, 5351–5357 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holbrook, S. J. et al. Recruitment drives spatial variation in recovery rates of resilient coral reefs. Sci. Rep. 8, 7338 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Doropoulos, C. et al. Characterising the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol. Monogr. 86, 20–44 (2016).Article 

    Google Scholar 
    Russ, G. R., Questel, S. A., Rizzari, J. R. & Alcala, A. C. The parrotfish–coral relationship: refuting the ubiquity of a prevailing paradigm. Mar. Biol. 162, 2029–2045 (2015).Article 

    Google Scholar 
    Chung, A. E. et al. Building coral reef resilience through spatial herbivore management. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00098 (2019).Kelly, E. L. A. et al. A budget of algal production and consumption by herbivorous fish in an herbivore fisheries management area, Maui, Hawaii. Ecosphere 8, e01899 (2017).Article 

    Google Scholar 
    Edwards, A. J. Reef Rehabilitation Manual (Coral Reef Targeted Research & Capacity Building for Management Program, 2010).Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sale, P. F. et al. Transforming management of tropical coastal seas to cope with challenges of the 21st century. Mar. Pollut. Bull. 85, 8–23 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schindler, D. E. & Hilborn, R. Sustainability. Prediction, precaution, and policy under global change. Science 347, 953–954 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mumby, P. J. et al. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427, 533–536 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walsworth, T. E. et al. Management for network diversity speeds evolutionary adaptation to climate change. Nat. Clim. Change 9, 632–636 (2019).Article 

    Google Scholar 
    Cote, I. M. & Darling, E. S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 8, e1000438 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darling, E. S. & Cote, I. M. Seeking resilience in marine ecosystems. Science 359, 986–987 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rassweiler, A. et al. Perceptions and responses of Pacific Island fishers to changing coral reefs. Ambio 49, 130–143 (2020).PubMed 
    Article 

    Google Scholar 
    Moorea Coral Reef LTER & Carpenter, R. MCR LTER: Coral Reef: Long-term Population and Community Dynamics: Benthic Algae and Other Community Components (Environmental Data Initiative, accessed 2019); https://doi.org/10.6073/pasta/37d9c451a908e4a6f8e7ab914b93f44fBrooks, A. MCR LTER: Coral Reef: Long-term Population and Community Dynamics: Fishes (MCR, 2018).de Loma, T. L. et al. A framework for assessing impacts of marine protected areas in Moorea (French Polynesia). Pac. Sci. 62, 431–441 (2008).Article 

    Google Scholar 
    Nicholson, M. D. & Jennings, S. Testing candidate indicators to support ecosystem-based management: the power of monitoring surveys to detect temporal trends in fish community metrics. ICES J. Mar. Sci. 61, 35–42 (2004).Article 

    Google Scholar 
    Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn (Springer, 2002).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019). More

  • in

    Temperature and salinity preferences of endangered Delta Smelt (Hypomesus transpacificus, Actinopterygii, Osmeridae)

    Moyle, P. B. Inland fishes of California (University of California Press, 2002).
    Google Scholar 
    Moyle, P. B., Brown, L. R., Durand, J. R. & Hobbs, J. A. Delta smelt: Life history and decline of a once-abundant species in the San Francisco Estuary. San Franc. Estuary Watershed Sci. 14, 1–28 (2016).
    Google Scholar 
    U. S. Fish and Wildlife Service. Endangered and threatened wildlife and plants: Determination of threatened status of the Delta Smelt. Federal Regist. 58, 12854–12864 (1993).
    Google Scholar 
    California Department of Fish and Wildlife. State and federally listed endangered and threatened animals of California. California Department of Fish and Wildlife, (The Natural Resources Agency, North Highlands, 2017).Moyle, P. B. & Bennett, W. A. The future of the Delta ecosystem and its fish, Technical Appendix D. Comparing Futures for the Sacramento-San Joaquin Delta. San Francisco (CA): Public Policy Institute of California (2008).Lund, J. R. et al. Comparing futures for the Sacramento-San Joaquin Delta (Public Policy Institute of California, 2010).Book 

    Google Scholar 
    Moyle, P. B., Bennett, W. A., Fleenor, W. E. & Lund, J. R. Habitat variability and complexity in the upper San Francisco Estuary. San Franc. Estuary Watershed Sci. 8, 1–24 (2010).
    Google Scholar 
    Feyrer, F., Newman, K., Nobriga, M. & Sommer, T. Modeling the effects of future outflow on the abiotic habitat of an imperiled estuarine fish. Estuaries Coast. 34, 120–128 (2011).Article 

    Google Scholar 
    Cloern, J. E. & Jassby, A. D. Drivers of change in estuarine-coastal ecosystems: Discoveries from four decades of study in San Francisco bay. Rev. Geophys. 50, RG4001 (2012).ADS 
    Article 

    Google Scholar 
    Moyle, P. B., Hobbs, J. A. & Durand, J. R. Delta Smelt and water politics in California. Fisheries 43, 42–60 (2018).Article 

    Google Scholar 
    Mahardja, B. et al. Resistance and resilience of pelagic and littoral fishes to drought in the San Francisco estuary. Ecol. Appl. 31, e02243 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Börk, K., Moyle, P., Durand, J., Hung, T.-C. & Rypel, A. L. Small populations in jeopardy: Delta smelt case study. Environ. Law Reporter 50, 10714–10722 (2020).
    Google Scholar 
    Moyle, P. B. 2021. Experimental habitats for hatchery Delta Smelt. California WaterBlog https://californiawaterblog.com/2021/07/25/experimental-habitats-for-hatchery-delta-smelt/ (2021).Jeffries, K. M. et al. Effects of high temperatures on threatened estuarine fishes during periods of extreme drought. J. Exp. Biol. 219, 1705–1716 (2016).PubMed 
    Article 

    Google Scholar 
    Bashevkin, S. M. & Mahardja, B. Seasonally variable relationships between surface water temperature and inflow in the upper San Francisco Estuary. Limnol. Oceanogr. 67, 684–702 (2022).ADS 
    Article 

    Google Scholar 
    Brown, L. R. et al. Coupled downscaled climate models and ecophysiological metrics forecast habitat compression for an endangered estuarine fish. PLoS ONE 11, e0146724 (2015).Article 

    Google Scholar 
    Kurobe, T. et al. Reproductive strategy of Delta Smelt Hypomesus transpacificus and impacts of drought on reproductive performance. PLoS ONE 17, e0264731 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lewis, L. S. et al. Otolith-based approaches indicate strong effects of environmental variation on growth of a critically endangered estuarine fish. Mar. Ecol. Prog. 676, 37–56 (2021).Article 

    Google Scholar 
    Hammock, B. G. et al. Patterns and predictors of condition indices in a critically endangered fish. Hydrobiologia 849, 675–695 (2021).Article 

    Google Scholar 
    Bennett, W. A. Critical assessment of the delta smelt population in the San Francisco Estuary, California. San Franc. Estuary Watershed Sci. 3(1), (2005).Komoroske, L. M. et al. Ontogeny influences sensitivity to climate change stressors in an endangered fish. Conserv. Physiol. 2, cou008 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moyle, P. B., Herbold, B., Stevens, D. E. & Miller, L. W. Life history of delta smelt in the Sacramento-San Joaquin Estuary California. Trans. Am. Fish. Soc. 121, 67–77 (1992).Article 

    Google Scholar 
    Kimmerer, W. J., MacWilliams, M. L. & Gross, E. S. Variation of fish habitat and extent of the low-salinity zone with freshwater flow in the San Francisco Estuary. San Franc. Estuary Watershed Sci. 11 (2013).Sommer, T. & Meija, F. A place to call home: A synthesis of delta smelt habitats in the upper San Francisco Estuary. San Franc. Estuary Watershed Sci. 9 (2013).Hammock, B. G. et al. Foraging and metabolic consequences of semi-anadromy for an endangered estuarine fish. PLoS ONE 12, e0173497 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cox, D. Effects of three heating rates on the critical thermal maximum of Bluegill. In W Gibbons, R Sharitz, eds, Thermal Ecology. National Technical Information Service, 158–163 (Springfield, IL, 1974).Beitinger, T. L., Bennett, W. A. & McCauley, R. W. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ. Biol. Fishes 58, 237–275 (2000).Article 

    Google Scholar 
    Davis, B. E. et al. Sensitivities of an endemic, endangered California smelt and two non-native fishes to serial increases in temperature and salinity: Implications for shifting community structure with climate change. Conserv. Physiol. 7, coy076 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Swanson, C., Reid, T., Young, P. S. & Cech, J. J. Jr. Comparative environmental tolerances of threatened delta smelt (Hypomesus transpacificus) and introduced wakasagi (H. nipponensis) in an altered California estuary. Oecologia 123, 384–390 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hammock, B. G., Hobbs, J. A., Slater, S. B., Acuña, S. & Teh, S. J. Contaminant and food limitation stress in an endangered estuarine fish. Sci. Total Environ. 532, 316–326 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamilton, S. A. & Murphy, D. D. Analysis of limiting factors across the life cycle of delta smelt (Hypomesus transpacificus). Environ. Manage. 62, 365–382 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Feyrer, F., Nobriga, M. L. & Sommer, T. R. Multidecadal trends for three declining fish species: Habitat patterns and mechanisms in the San Francisco Estuary, California USA. Can. J. Fish. Aquat. Sci. 64, 723–734 (2007).Article 

    Google Scholar 
    Nobriga, M. L., Sommer, T. R., Feyrer, F. & Fleming, K. Long-term trends in summertime habitat suitability for delta smelt (Hypomesus transpacificus). San Franc. Estuary Watershed Sci. 6(1), (2008).Brown, L. R. et al. Implications for future survival of delta smelt from four climate change scenarios for the Sacramento-San Joaquin Delta California. Estuaries Coast. 36, 754–774 (2013).CAS 
    Article 

    Google Scholar 
    Moyle, P., Kiernan, J. D., Crain, P. K. & Quiñones, R. M. Climate change vulnerability of native and alien freshwater fishes of California: A systematic assessment approach. PLoS ONE 8, e63883 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hobbs, J. A., Lewis, L. S., Willmes, M., Denney, C. & Bush, E. Complex life histories discovered in a critically endangered fish. Sci. Rep. 9, 16772 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bennett, W. A. & Burau, J. R. Riders on the storm: Selective tidal movements facilitate the spawning migration of threatened Delta Smelt in the San Francisco Estuary. Estuaries Coast. 38, 826–835 (2015).Article 

    Google Scholar 
    Hirvonen, H., Ranta, E., Piironen, J., Laurila, A. & Peuhkuri, N. Behavioral responses of naive Arctic charr to chemical cues from salmonid and non-salmonid fish. Oikos 88, 191–199 (2000).Article 

    Google Scholar 
    Correia, A. M., Bandeira, N. & Anastacio, P. M. Influence of chemical and visual stimuli in food-search behaviour of Procambarus clarkii under clear conditions. Mar. Freshw. Behav. Physiol. 40, 189–194 (2007).CAS 
    Article 

    Google Scholar 
    Nay, T. J. et al. Habitat complexity influences selection of thermal environment in a common coral reef fish. Conserv. Physiol. 8, coaa070 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Horning, W. B. & Weber, C. I. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. EPA/600/4-85/014, 58–75 (1985).Lindberg, J. et al. Aquaculture methods for a genetically managed population of endangered delta smelt. N. Am. J. Aquac. 75, 186–196 (2013).Article 

    Google Scholar 
    Ferrari, M. C. O. et al. Effects of turbidity and an invasive waterweed on predation by introduced largemouth bass. Environ. Biol. Fishes 97, 79–90 (2014).Article 

    Google Scholar 
    Petersen, M. F. & Steffensen, T. F. Preferred temperature of juvenile Atlantic cod Gadus morhua with different haemoglobin genotypes at normoxia and moderate hypoxia. J. Exp. Biol. 206, 359–364 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meager, J. J. & Utne-Palm, A. C. Effect of turbidity on habitat preference of juvenile Atlantic cod Gadus morhua. Environ. Biol. Fishes 81, 149–155 (2008).Article 

    Google Scholar 
    Serrano, X., Grosell, M. & Serafy, J. E. Salinity selection and preference of the grey snapper Lutjanus griseus: Field and laboratory observations. J. Fish Biol. 76, 1592–1608 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stol, J. A., Svendsen, J. C. & Enders, E. C. Determining the thermal preferences of Carmine Shiner (Notropis percobromus) and Lake Sturgeon (Acipenser fulvescens) using an automated shuttlebox. Can. Tech. Rep. Fish. Aquat. Sci. 3038 (2013).Hammock, B. G. et al. The health and condition responses of delta smelt to fasting: A time series experiment. PLoS ONE 15, e0239358 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McElreath, R. Statistical rethinking: A Bayesian course with examples in R and Stan. (CRC Press, 2016.R Core Team. R: A language and environment for statistical computing (2021).Bates, D., Maechler, M. & Bolker, B. lme4: Linear mixed-effects models using S4 classes (2012).Korner-Nievergelt, F. et al. Bayesian data analysis in ecology using linear models with R (Elsevier, 2015).
    Google Scholar 
    Gilliam, J. F. & Fraser, D. F. Habitat selection under predation hazard: Test of a model with foraging minnows. Ecology 68, 1856–1862 (1987).PubMed 
    Article 

    Google Scholar 
    Metcalfe, N. B., Fraser, N. H. & Burns, M. D. Food availability and the nocturnal vs. diurnal foraging trade-off in juvenile salmon. J. Anim. Ecol. 68, 371–381 (1999).Article 

    Google Scholar 
    Walters, C. J. & Juanes, F. Recruitment limitation as a consequence of natural selection for use of restricted feeding habitats and predation risk taking by juvenile fishes. Can. J. Fish. Aquat. Sci. 50, 2058–2070 (1993).Article 

    Google Scholar 
    Bull, H. O. Studies on conditioned responses in fishes. Part VII. Temperature perception in teleosts. J. Mar. Biol. Assoc. U. K. 21, 1–27 (1936).Article 

    Google Scholar 
    Steffel, S., Magnuson, J. J., Dizon, A. E. & Neill, W. H. Temperature discrimination by captive free-swimming tuna Euthynnus affinis. Trans. Am. Fish. Soc. 105, 588–591 (1976).Article 

    Google Scholar 
    Dülger, N. et al. Thermal tolerance of European Sea bass (Dicentrarchus labrax) juveniles acclimated to three temperature levels. J. Therm. Biol. 37, 79–82 (2012).Article 

    Google Scholar 
    Hung, T.-C. et al. A pilot study of the performance of captive-reared delta smelt Hypomesus transpacificus in a semi-natural environment. J. Fish Biol. 95, 1517–1522 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Navarro, I. & Gutiérrez, J. Fasting and starvation. Biochemistry and molecular biology of fishes. 4: Elsevier. p. 393–434 (1995).Finger, A. J. et al. A conservation hatchery population of Delta Smelt shows evidence of genetic adaptation to captivity after 9 generations. J. Hered. 109, 689–699 (2018).PubMed 
    Article 

    Google Scholar 
    Middaugh, D. P., Davis, W. R. & Yokum, R. L. The response of larval fish, Leiostomus xanthurus, to environmental stress following sublethal cadmium exposure. Contrib. Mar. Sci. 19, 13–19 (1975).CAS 

    Google Scholar 
    Stevens, E. D. & Sutterlin, A. M. Heat transfer between fish and ambient water. J. Exp. Biol. 65, 131–145 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beitinger, T. L., Thommes, M. M. & Spigarelli, S. A. Relative roles of conduction and convection in the body temperature change of gizzard shad Dorosoma cepedianum. Comp. Biochem. Physiol. 57A, 275–279 (1977).Article 

    Google Scholar 
    Neill, W. H. & Magnuson, J. J. Distributional ecology and behavioral thermoregulation of fishes in relation to heated effluents from a power plant at Lake Monona Wisconsin. Trans. Am. Fish. Soc. 103, 663–710 (1974).Article 

    Google Scholar 
    Coutant, C. C. Temperature selection by fish–a factor in power plant impact assessments. pp. 575–597. In: Environmental Effects of Cooling Systems at Nuclear Power Plants, Internat. Atomic Energy Agency, Vienna (1975).Richards, F. P., Reynolds, W. W. & McCauley, R. W. Temperature preference studies in environmental impact assessment: An overview with procedural recommendations. J. Fish. Res. Board Can. 34, 728–761 (1977).Article 

    Google Scholar 
    Swanson, C., Mager, R. C., Doroshov, S. I. & Cech, J. J. Jr. Use of salts, anesthetics, and polymers to minimize handling and transport mortality in delta smelt. Trans. Am. Fish. Soc. 125, 326–329 (1996).CAS 
    Article 

    Google Scholar 
    Komoroske, L. M. et al. Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish. Evol. Appl. 9, 963–981 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Feyrer, F., Sommer, T. & Harrell, W. Importance of flood dynamics versus intrinsic physical habitat in structuring fish communities: Evidence from two adjacent engineered floodplains on the Sacramento river California. N. Am. J. Aquac. 26, 408–417 (2006).
    Google Scholar  More

  • in

    Detection parameters for managing invasive rats in urban environments

    Study areaWe conducted our study in two suburbs in Wellington, New Zealand (Fig. 1). The 4.7-hectare site in the suburb of Kelburn (-41.285°S, 174.770°E) was situated on the grounds of student accommodation for Victoria University of Wellington. The site comprised bungalow houses, two accommodation halls, and access roads and paths. About half of the vegetation at the Kelburn site was a mix of tended grass lawns and gardens containing a variety of native New Zealand plant species, e.g., flax (Phormium spp.), longwood tussock (Carex comans), and cabbage tree (Cordyline australis). The other half was a mix of dense ground cover dominated by invasive weed species and native and exotic trees and shrubs, e.g., pōhutukawa (Metrosideros excelsa), common oak (Quercus robur), kawakawa (Piper excelsum), and taupata (Coprosma repens). The second suburb was Roseneath (−41.292°S, 174.801°E) on a small peninsula on the north-eastern side of Mount Victoria. The site was 8.5 hectares comprising 76 residential properties, public thoroughfares, and footpaths. We conducted fieldwork in the gardens of 25 of these properties. The vegetation varied considerably between gardens, comprising native and introduced garden plants and invasive weeds, especially blackberry (Rubus fruticosus).Figure 1(A) The study was conducted in the suburbs of Kelburn (left yellow dot) and Roseneath (right yellow dot) in the city of Wellington, New Zealand. The black polygon represents the 1475 ha area that will be targeted for ship rat (Rattus rattus) eradication in Wellington city, New Zealand. In each suburb, we radio-collared ship rats and deployed three types of devices (bait stations, chew cards, and WaxTags) to estimate home range and detection parameters. (B) In Kelburn, we radio-collared 14 rats and deployed eight devices. (C) In Roseneath, we radio-collared 16 rats and deployed 30 devices. The yellow circles indicate home range centers of individual rats, the red triangles indicate the location of bait stations and detection devices, and the small black dots indicate the telemetry locations of rats.Full size imageRat capture, radio-collaring, and field methodologyWe set 100 live-capture cage traps (custom-made, spring-loaded traps) in Kelburn from 12 July to 15 August 2020, and another 100 in Roseneath from 20 August to 20 October 2020. We baited cage traps with apple coated in chocolate spread and checked them at least once every 24 h. We set cage traps in areas with complex vegetative groundcover and understorey to maximize capture rates of ship rats (see35), and to provide shelter from inclement weather. We provided additional shelter by inserting bedding inside a tin can placed in the cage traps, along with a plastic cover over the traps to limit exposure to wind and rain. Cage traps were active for 5 days per week on average. We released all non-target species (house mice Mus musculus, European hedgehogs Erinaceus europaeus, and Eurasian blackbirds Turdus merula).We transferred any trap containing a captured rat into a sealed plastic container. Depending on the estimated size of the captured rat, we placed between one and three cotton balls soaked in isoflurane (99.9%, Attane, Piramal Critical Care Inc., Bethlehem, Pennsylvania, USA) inside the plastic container. A rat was anesthetized when it lost balance and was unable to regain balance when we gently rotated the container. We then removed the rat from the cage trap and placed it next to a heat pad with its head close to the cotton balls soaked in isoflurane to maintain anaesthesia while handling them. We fitted all rats weighing  > 110 g with a V1C 118B VHF radio-collar (Lotek, Havelock North, New Zealand). We marked each collared rat with a unique pelage code using a permanent blonde hair dye60. We also recorded biometrics, including sex, weight, and length. When processing was finished, we placed the rat into another container to recover. This container had a heating pad for warmth and an apple for food to avoid a drop in body temperature and hypoglycemia, which are common problems with anaesthesia62. When the rat appeared mobile, energetic, and behaving normally, we released it at the point of capture.We monitored radio-collared rats using a Yagi antenna (Lotek, Havelock North, New Zealand) and a Telonics R-1000 receiver (Telonics Inc., Mesa, Arizona, USA). We conducted radio-telemetry work during August–November 2020, with fixes taken during the day and night. We recorded a total of three fixes per rat per night, taken at two-hour intervals between the hours of sunset (2200 h) and sunrise (0500 h). We mostly attempted one day-time fix (1200 h); however, if a tracked rat was active (determined by a VHF signal that was moving or changing amplitude), we attempted a second fix in the afternoon. To minimize location error, we used the close approach radio-tracking method described by63. Once a successful fix was made, we used a handheld GPS unit to record the location, date, and time. Telemetry fixes were collected for each radio-collared rat for 18–97 days.After approximately one week of radiotracking an animal, we obtained an initial crude estimate of the center of each rat’s home range as the mean of all eastings and northings (based on a minimum of 15 telemetry points per rat). A bait station baited with non-toxic pellets (Protecta Sidekick bait stations, Bell Laboratories Inc., Windsor, Wisconsin, USA), a WaxTag with a peanut butter odor incorporated into the wax (PCR WaxTags, Traps.co.nz, Rolleston, New Zealand), and a chew card (a corflute card baited with peanut butter) were deployed at varying distances (max. 50 m) and cardinal directions from the estimated home range center of each individual rat. This layout maximized the likelihood of encounters with devices, compared with a regular grid-type deployment where some of the devices could fall outside a collared rat’s home range and thus never be encountered. Note that the crude estimate of the location of the home range center for each rat was only used to guide device placement, i.e., it was not used in any statistical analyses, or to describe rat home range sizes. Further, to avoid a choice-type experiment (i.e., all three devices set immediately next to each other), we randomly assigned a distance and cardinal direction to each device type within each rat’s home range but ensured all devices were deployed  > 15 m apart. The three device types were chosen because they are used by Predator Free Wellington to conduct their eradication operations.Every deployed device had a trail camera (Browning Strike Force HD Pro Micro Series, Morgan, Utah, USA) taking video of rats encountering and interacting with the device. We set cameras to take 20 s of video footage when triggered, followed by a 1 s re-trigger interval. We fixed trail cameras to trees at a height of 50 cm above ground level and placed the devices 1.5 m in front of the camera (after64). This strategy allowed accurate identification of pelage codes on marked rats. We cleared vegetation in front of and immediately behind the trail cameras to avoid accidental triggers. We used pegs to mark a 30-cm-radius circle around each device and considered a rat–device encounter when a rat entered that circle. We serviced trail camera–device pairs at least once every three days. This included adding more non-lethal bait to bait stations and peanut butter to monitoring devices, installing new WaxTags or chew cards if they had been destroyed, and replacing batteries and SD cards in trail cameras. We set up 54 trail camera–device pairs. However, due to trail camera malfunctions, we were able to retrieve footage from only 38 cameras, 8 in Kelburn and 30 in Roseneath. Trail camera–device pairs were active for 20–70 days, but we retained data from only the first 20 days for the analyses.Video processingAll video footage was viewed and interpreted by the same individual (HRM) for consistency. We extracted the following information: date and time of rat sightings, rat ID (according to the pelage code, or designated as ‘R’ for unmarked rats), the duration of the visit to a device, whether or not an encounter occurred (as defined above), and whether or not an interaction occurred. We defined an interaction as a rat either gnawing on a chew card or WaxTag or entering a bait station.Data analysisWe combined all ship rat telemetry data with the device encounter and interaction data, and developed a hierarchical Bayesian model to infer factors influencing the key parameters σ, ε0, and θ. The analytical approach builds on that described in65. For the purpose of estimating ε0 and θ, multiple encounters or interactions by the same individual with the same device on the same night were counted as a single encounter or interaction.The VHF telemetry data Zij were composed of xij (eastings) and yij (northings) locations for each individual rat i at site j (either Kelburn or Roseneath). To simplify the notation, we drop the j subscript from all subsequent equations. We modelled the probability of observing Zi as a symmetric bivariate normal variable$$P({Z}_{i})= prod_{i=1}^{{L}_{i}}Normal(Delta {x}_{i}|0,{sigma }_{i}^{2})Normal(Delta {y}_{i}|0,{sigma }_{i}^{2})$$
    (1)
    where σi is the standard deviation of a normal distribution with zero mean, Li is the number of location fixes for individual i, and Δxi and Δyi are the straight-line distances from the home range center of individual i to xi and yi, respectively.Home range centers can be estimated using various methods, all of which have underlying assumptions (e.g.,66,67). We calculated the home range center for each individual as the mean of all xi and yi, i.e., the centroid of all locations that we recorded for each individual ( > 30 VHF fixes in all instances). Under this formulation, the home range center is assumed to be perfectly observed, an assumption that is supported by the sample size of telemetry locations that we obtained for each individual (see Supplementary Table 266).We modelled σi as a log-normal variable with mean ln(μi), which was a function of the sex of the individual:$$lnleft({sigma }_{i}right)sim Normal(mathit{ln}left({mu }_{i}right), V)$$
    (2)
    $$lnleft({mu }_{i}right)= {beta }_{0}+ {beta }_{1}{sex}_{i}$$
    (3)
    where V is the variance of ln(σi), and ln(μi) is a linear function of a categorical variable indicating whether rat i is a male (0) or a female (1). The priors on the β coefficients and V were Normal(0, 10) and InverseGamma(0.01, 0.01), respectively.The encounter data (Eimt) across all devices m and nights t was modelled as a Bernoulli process:$${E}_{imt}sim Bernoulli({gamma }_{imt})$$
    (4)
    $$logitleft({gamma }_{imt}right)sim MultivariateNormal(logitleft({P}_{imt}right), varSigma )$$
    (5)
    where γimt is a latent variable representing the degree to which the nightly probability of rat i encountering a given device is not independent of the encounter outcomes of nearby devices, i.e., we assumed there is spatial autocorrelation in the nightly probability of encountering a device. To account for the spatial autocorrelation not explained by the covariates explicitly modelled (i.e., σ and device type, see below), we included an exponential spatial covariance error structure (Σ) as follows:$$varSigma = {nu }^{2}{e}^{-varphi r}$$
    (6)
    where ν2 is the variance, φ is a correlation distance parameter, and r is the distance (in m) between pairs of devices68,69. Further, because not all devices were available on all nights, Σ was calculated iteratively for each night considering only those devices that were available. We used moderately informative log-normal priors for the covariance parameters to obtain proper posteriors69: ν2 ~ logN(3,1) and φ ~ logN(1,1).The nightly probability of encounter of device m by individual i on night t (Pimt) was calculated using a half-normal detection function70:$${P}_{imt}= {{left({varepsilon }_{0, im}{e}^{left(-frac{{d}_{im}^{2}}{2{sigma }_{i}^{2}}right)}right)}^{{tau E}_{it}^{*}}}times {{left({varepsilon }_{0,im}{e}^{left(-frac{{d}_{im}^{2}}{2{sigma }_{i}^{2}}right)}right)}^{1-{E}_{it}^{*}}}$$
    (7)
    where ε0,im is the maximum nightly probability of encounter for device m, or the probability if device m was placed at the center of the home range of rat i. The variable σi is the standard deviation from Eq. (1) (i.e., σi is estimated jointly from the telemetry and encounter data) and dim is the distance (in m) between the home range center of rat i and device m; only devices within a distance of 3.72σi from the home range center were considered in the calculation in Eq. (7)70. Finally, τ is a strictly positive parameter (i.e., τ  > 0), measuring the degree of device-shyness, which is multiplied by an indicator variable (left({E}_{it}^{*}right)) which takes a value of 0 when individual i has not encountered a device (of any type) on nights prior to night t, or a value of 1 if it had previously encountered one, regardless of the type of device it encountered. If τ  1 then rats are ‘device-shy’ and thus more likely to avoid devices on nights following an initial encounter. ({E}_{it}^{*}) was reset to 0 after 20 days of no encounters with a device. Following65 we set the prior on τ as Gamma(0.933, 8.33) (shape and rate parameters, respectively).Values of ε0,im were predicted as a function of σi, device type, and individual effects using the following equation:$$logitleft({varepsilon }_{0, im}right)={alpha }_{0}+ {alpha }_{1}mathrm{ln}left({sigma }_{i}right)+ {alpha }_{2}{chewcard}_{m}+{alpha }_{3}{waxtag}_{m}+{delta }_{i}$$
    (8)
    where α2 and α3 quantify the increase or decrease in the maximal probability of encountering a chew card or a WaxTag relative to a bait station (which is the reference category). The δi parameters account for individual differences in ε0. Finally, we allowed ε0 to be a function of ln(σi) because we assumed encounter probability at home range center will decrease with increasing home range size (as suggested by71 and shown by65). The priors on the α coefficients and δ were Normal(0, 10) and Normal(0, 1), respectively.The interaction data (Iimn) across all devices m and nights n when encounters occurred was modelled as a Bernoulli process with probability θ, which was a function of device type and individual effects:$${mathrm{I}}_{imn}sim Bernoullileft({theta }_{imn}right)$$
    (9)
    $$logitleft({theta }_{imn}right)={lambda }_{0}+ {lambda }_{1}{chewcard}_{m}+{lambda }_{2}{waxtag}_{m}+{lambda }_{3}{I}_{in}^{*}+{rho }_{i}$$
    (10)
    where θimn is the probability of rat i interacting with device m given that it has encountered it on night n, and λ1 and λ2 quantify the increase or decrease in the conditional probability of interaction for a chew card or a WaxTag relative to a bait station. The λ3 parameter is analogous to τ in Eq. (7) but for the process of interaction given encounter with a device. However, by incorporating λ3 directly into a linear equation, this parameter can take negative values and thus should be interpreted differently to τ: if λ3  0 indicates that individuals become ‘device-happy’ after an initial interaction. This parameter is multiplied by an indicator variable ({(I}_{in}^{*})) which takes a value of 0 when individual i has not interacted with a device (of any type) on nights prior to night n, or a value of 1 when it has interacted with one previously, regardless of the type of device it interacted with. If a rat had not interacted with a device for 20 days, ({I}_{in}^{*}) was reset to 0. Finally, the ρi parameters account for individual differences in θ. The priors on the λ coefficients and ρ were Normal(0, 10) and Normal(0, 1), respectively. Although we explicitly modelled spatial autocorrelation in the probability of encountering a device, we did not do so for the probability of interaction given an encounter. In this instance we assumed that whether an animal chose to interact with an encountered device would depend on its previous experience (as quantified by λ3) rather than the spatial location of nearby devices.We used Markov Chain Monte Carlo (MCMC) simulation to estimate model parameters using Python programming language. The variance parameter V was sampled from the full conditional posteriors, but all other parameters were estimated using the Metropolis algorithm69. Posterior summaries were taken from four chains containing 3000 samples each (with a burn-in of 2000 and a thinning rate of 30). Convergence on posteriors was assessed by visual inspection and a scale reduction factor  More

  • in

    Giant clam (Tridacna) distribution in the Gulf of Oman in relation to past and future climate

    Neo, M. L., Eckman, W., Vicentuan, K., Teo, S.L.-M. & Todd, P. A. The ecological significance of giant clams in coral reef ecosystems. Biol. Conserv. 181, 111–123 (2015).Article 

    Google Scholar 
    Wolfe, K. et al. Priority species to support the functional integrity of coral reefs. Oceanogr. Mar. Biol. Annu. Rev. 58, 179–318 (2020).Article 

    Google Scholar 
    Ip, Y. K. & Chew, S. F. Light-dependent phenomena and related molecular mechanisms in giant clam-dinoflagellate associations: A review. Front. Mar. Sci. 8, 627722 (2021).Article 

    Google Scholar 
    Rossbach, S. et al. Flexibility in Red Sea Tridacna maxima-symbiodiniaceae associations supports environmental niche adaption. Ecol. Evol. 11, 3393–3406 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neo, M. L. et al. Giant clams (Bivalvia: Cardiidae: Tridacninae): A comprehensive update of species and their distribution, current threats and conservation status. Oceanogr. Mar. Biol. Annu. Rev. 55, 87–388 (2017).Article 

    Google Scholar 
    Armstrong, E. J., Dubousquet, V., Mills, S. C. & Stillman, J. H. Elevated temperature, but not acidification, reduces fertilization success in the small giant clam, Tridacna maxima. Mar. Biol. 167, 8 (2020).CAS 
    Article 

    Google Scholar 
    Lokier, S., Al-Suwaidi, A. E. & Steuber, T. Stable isotope sclerochronology of Pleistocene shells of the ‘Giant Clam’ Tridacna from Abu Dhabi. Tribulus 20, 21–23 (2012).
    Google Scholar 
    Obura, D. The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7, e45013 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kulbicki, M. et al. Biogeography of butterflyfishes: A global model for reef fishes? In Biology of Butterflyfishes (eds Pratchett, M. S. et al.) 70–106 (CRC Press, 2013).Chapter 

    Google Scholar 
    DiBattista, J. D. et al. On the origin of endemic species in the Red Sea. J. Biogeogr. 43, 13–30 (2016).Article 

    Google Scholar 
    Kemp, J. M. Zoogeography of the coral reef fishes of the north-eastern Gulf of Aden, with eight new records of coral reef fishes from Arabia. Fauna Arabia 18, 293–321 (2000).
    Google Scholar 
    Sheppard, C. R. C. & Salm, R. V. Reef and coral communities of Oman, with a description of a new coral species (Order Scleractinia, genus Acanthastrea). J. Nat. Hist. 22, 263–279 (1988).Article 

    Google Scholar 
    Burt, J. A. et al. Biogeographic patterns of reef fish community structure in the northeastern Arabian Peninsula. ICES J. Mar. Sci. 68, 1875–1883 (2011).Article 

    Google Scholar 
    Torquato, F. & Møller, P. R. Physical-biological interactions underlying the connectivity patterns of coral-dependent fishes around the Arabian Peninsula. J. Biogeogr. 49, 483–496 (2022).Article 

    Google Scholar 
    Watanabe, T., Suzuki, A., Kawahata, H., Kan, H. & Ogawa, S. A 60-year isotopic record from a mid-Holocene fossil giant clam (Tridacna gigas) in the Ryukyu Islands: Physiological and paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 343–354 (2004).Article 

    Google Scholar 
    Elliot, M. et al. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimatic studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 123–142 (2009).Article 

    Google Scholar 
    Welsh, K., Elliot, M., Tudhope, A., Ayling, B. & Chappell, J. Giant bivalves (Tridacna gigas) as recorders of ENSO variability. Earth Planet. Sci. Lett. 307, 266–270 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Hori, M. et al. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell. Sci. Rep. 5, 8734 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Komagoe, T., Watanabe, T., Shirai, K., Yamazaki, A. & Uematu, M. Geochemical and microstructural signals in giant clam Tridacna maxima recorded typhoon events at Okinotori Island, Japan. J. Geophys. Res. Biogeosci. 123, 1460–1474 (2018).CAS 
    Article 

    Google Scholar 
    Yuan, Y., Kusky, T. M. & Rajendran, S. Tertiary and Quaternary marine terraces and planation surfaces of northern Oman: Interaction of flexural bulge migration associated with the Arabian-Eurasian collision and eustatic sea level changes. J. Earth Sci. 27, 955–970 (2016).CAS 
    Article 

    Google Scholar 
    Louis, V., Besseau, L. & Lartaud, F. Step in time: Biomineralisation of bivalve’s shell. Front. Mar. Sci. 9, 906085 (2022).Article 

    Google Scholar 
    Mossadegh, Z. K. et al. Palaeoecology of well-preserved coral communities in a siliciclastic environment from the Late Pleistocene (MIS 7), Kish Island, Persian Gulf (Iran): The development of low-relief reef frameworks (biostromes) in increasingly restricted environments. Int. J. Earth Sci. 102, 545–570 (2013).Article 

    Google Scholar 
    Pico, T., Creveling, J. R. & Mitrovica, J. X. Sea-level records from the U.S. mid-Atlantic constrain laurentide ice sheet extent during marine isotope stage 3. Nat. Commun. 8, 15612 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoffmann, G. et al. Quaternary uplift along a passive continental margin (Oman, Indian Ocean). Geomorphology 350, 106870 (2020).Article 

    Google Scholar 
    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. 111, 15296–15303 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kiessling, W., Simpson, C., Beck, B., Mewis, H. & Pandolfi, J. M. Equatorial decline of reef corals during the last Pleistocene interglacial. Proc. Natl. Acad. Sci. 109, 21378–21383 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burns, S. J., Matter, A., Frank, N. & Mangini, A. Speleothem-based paleoclimate record from northern Oman. Geology 26, 499–502 (1998).ADS 
    Article 

    Google Scholar 
    Hoffmann, G., Rupprechter, M., Rahn, M. & Preusser, F. Fluvio-lacustrine deposits reveal precipitation pattern in SE Arabia during early MIS 3. Quat. Int. 382, 145–153 (2015).Article 

    Google Scholar 
    Kobashi, T. & Grossman, E. J. The oxygen isotopic record of seasonality in Conus shells and its application to understanding late middle Eocene (38 Ma) climate. Paleontol. Res. 7, 343–355 (2003).Article 

    Google Scholar 
    Watanabe, T. K. et al. Past summer upwelling events in the Gulf of Oman derived from a coral geochemical record. Sci. Rep. 7, 4568 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jayaram, C. et al. Analysis of gap-free chlorophyll-α data from MODIS in Arabian Sea, reconstructed using DINEOF. Int. J. Remote Sens. 39, 7506–7522 (2018).Article 

    Google Scholar 
    Warter, V., Erez, J. & Müller, J. Environmental and physiological controls on daily trace element incorporation in Tridacna crocea from combined laboratory culturing and ultra-high resolution LA-ICP-MS analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496, 32–47 (2018).Article 

    Google Scholar 
    Ayouche, A. et al. Structure and dynamics of the Ras al Hadd oceanic dipole in the Arabian Sea. Oceans 2, 105–125 (2021).Article 

    Google Scholar 
    Sano, Y. et al. Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells. Nat. Commun. 3, 761 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Santos, G. M. et al. Δ14C and δ13C of seawater DIC as tracers of coastal upwelling: A 5-year time series from Southern California. Radiocarbon 53, 669–677 (2011).CAS 
    Article 

    Google Scholar 
    North Greenland Ice Core Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).Article 

    Google Scholar 
    Zhang, X. & Prange, M. Stability of the Atlantic overturning circulation under intermediate (MIS3) and full glacial (LGM) conditions and its relationship with Dansgaard-Oeschger climate variability. Quat. Sci. Rev. 242, 106443 (2020).Article 

    Google Scholar 
    Schulte, S. & Müller, P. J. Variations of sea surface temperature and primary productivity during Heinrich and Dansgaard-Oeschger events in the northeastern Arabian Sea. Geo-Mar. Lett. 21, 168–175 (2001).ADS 
    Article 

    Google Scholar 
    Deplazes, G. et al. Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations. Paleoceanography 29, 99–114 (2014).ADS 
    Article 

    Google Scholar 
    Duprey, N. et al. Calibration of seawater temperature and δ18Oseawater signals in Tridacna maxima’s δ18Oshell record based on in situ data. Coral Reefs 34, 437–450 (2015).ADS 
    Article 

    Google Scholar 
    Govil, P. & Naidu, P. D. Evaporation-precipitation changes in the eastern Arabian Sea for the last 68 ka: Implications on monsoon variability. Paleoceanography 25, 1210 (2010).ADS 
    Article 

    Google Scholar 
    Watanabe, T. K. et al. Corals reveal an unprecedented decrease of Arabian Sea upwelling during the current warming era. Geophys. Res. Lett. 48, e2021GL092432 (2021).ADS 
    Article 

    Google Scholar 
    Gaye, B. et al. Glacial−interglacial changes and Holocene variations in Arabian Sea denitrification. Biogeosciences 15, 507–527 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, 9658 (2018).ADS 
    Article 

    Google Scholar 
    Kleypas, J. A., McManus, J. W. & Menez, L. A. B. Environmental limits to coral reef development: Where do we draw the line? Am. Zool. 39, 146–159 (1999).Article 

    Google Scholar 
    Abram, N. J., Webster, J. M., Davies, P. J. & Dullo, W. C. Biological response of coral reefs to sea surface temperature variation: Evidence from the raised Holocene reefs of Kikai-jima (Ryukyu Islands, Japan). Coral Reefs 20, 221–234 (2001).Article 

    Google Scholar 
    Clemens, S. C. & Prell, W. L. A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Mar. Geol. 201, 35–51 (2003).ADS 
    Article 

    Google Scholar 
    Caley, T. et al. New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon. Earth Planet. Sci. Lett. 308, 433–444 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Banakar, V. K., Mahesh, B. S., Burr, G. & Chondankar, A. R. Climatology of the Eastern Arabian Sea during the last glacial cycle reconstructed from paired measurement of foraminiferal δ18O and Mg/Ca. Quat. Res. 73, 535–540 (2010).CAS 
    Article 

    Google Scholar 
    Mattern, F. et al. Coastal dynamics of uplifted and emerged late Pleistocene near-shore coral patch reefs at Fins (eastern coastal Oman, Gulf of Oman). J. Afr. Earth Sci. 138, 192–200 (2018).Article 

    Google Scholar 
    Hoffmann, J. S., Clark, P. U., Parnell, A. C. & He, F. Regional and global sea-surface temperatures during the last interglaciation. Science 355, 276–279 (2017).ADS 
    Article 

    Google Scholar 
    van de Berg, W. J., van den Broeke, M., Ettema, J., van Meijgaard, E. & Kaspar, F. Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nat. Geosci. 4, 1245 (2011).
    Google Scholar 
    Nicholl, J. A. L. et al. A Laurentide outburst flooding event during the last interglacial period. Nat. Geosci. 5, 901–904 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Tzedenakis, P. C. et al. Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial. Nat. Commun. 9, 4235 (2018).ADS 
    Article 

    Google Scholar 
    Sandeep, N. et al. South Asian monsoon response to weakening of Atlantic meridional overturning circulation in a warming climate. Clim. Dyn. 54, 3507–3524 (2020).Article 

    Google Scholar 
    Rao, S. A. et al. Why is Indian Ocean warming consistently? Clim. Change 110, 709–719 (2012).ADS 
    Article 

    Google Scholar 
    Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, M. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci. Rep. 6, 38402 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chollett, I., Mumby, P. J. & Cortés, J. Upwelling areas do not guarantee refuge for coral reefs in a warming ocean. Mar. Ecol. Prog. Ser. 416, 47–56 (2010).ADS 
    Article 

    Google Scholar 
    Praveen, V., Ajayamohan, R. S., Valsala, V. & Sandeep, S. Intensification of upwelling along Oman coast in a warming scenario. Geophys. Res. Lett. 43, 7581–7589 (2016).ADS 
    Article 

    Google Scholar 
    Schulz, K. G., Hartley, S. & Eyre, B. Upwelling amplifies ocean acidification on the East Australian Shelf: Implications for marine ecosystems. Front. Mar. Sci. 6, 636 (2019).Article 

    Google Scholar 
    Southon, J., Kashgarian, M., Fontugne, M., Metivier, B. & Yim, W.W.-S. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44, 167–180 (2002).Article 

    Google Scholar 
    Jochum, K. P., Stoll, B., Herwig, K. & Willbold, M. Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd:YAG laser and matrix-matched calibration. J. Anal. At. Spectrom. 22, 112–121 (2007).CAS 
    Article 

    Google Scholar 
    Mischel, S. A., Mertz-Kraus, R., Jochum, K. P. & Scholz, D. Termite: An R script for fast reduction laser ablation inductivity coupled plasma mass spectrometry data and its application to trace element measurements. Rapid Commun. Mass Spectrom. 31, 1079–1087 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jochum, K. P., Willbold, M., Raczek, I., Stoll, B. & Herwig, K. Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand. Geoanal. Res. 29, 285–302 (2005).CAS 
    Article 

    Google Scholar 
    Okai, T., Suzuki, A., Kawahata, H., Terashima, S. & Imai, N. Preparation of a new geological survey of Japan geochemical reference material: Coral JCp-1. Geostand. Newslett. 26, 95–99 (2002).CAS 
    Article 

    Google Scholar 
    Sekimoto, S. et al. Neutron activation analysis of carbonate reference materials: Coral (JCp-1) and giant clam (JCt-1). J. Radioanal. Nucl. Chem. 322, 1579–1583 (2019).CAS 
    Article 

    Google Scholar 
    Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos Trans. AGU 77, 379 (1996).ADS 
    Article 

    Google Scholar  More

  • in

    Defending Earth’s terrestrial microbiome

    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on earth and in the ocean? PLoS Biol. 9, e1001127 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Costello, M. J., May, R. M. & Stork, N. E. Can we name earth’s species before they go extinct? Science 339, 413–416 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Corlett, R. T. Plant diversity in a changing world: status, trends, and conservation needs. Plant Divers. 38, 10–16 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baldrian, P., Větrovský, T., Lepinay, C. & Kohout, P. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 114, 539–547 (2022).CAS 
    Article 

    Google Scholar 
    Taylor, D. L. et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 84, 3–20 (2014).Article 

    Google Scholar 
    Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schopf, J. W. Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proc. Natl Acad. Sci. USA 91, 6735–6742 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seager, S., Huang, J., Petkowski, J. J. & Pajusalu, M. Laboratory studies on the viability of life in H2-dominated exoplanet atmospheres. Nat. Astron. 4, 802–806 (2020).Article 

    Google Scholar 
    Halme, P., Holec, J. & Heilmann-Clausen, J. The history and future of fungi as biodiversity surrogates in forests. Fungal Ecol. 27, 193–201 (2017).Article 

    Google Scholar 
    Arnolds, E. Decline of ectomycorrhizal fungi in Europe. Agric. Ecosyst. Environ. 35, 209–244 (1991).Article 

    Google Scholar 
    Boddy, L. in The Fungi (eds Watkinson, S. C. et al.) 361–400 (Elsevier, 2016); https://doi.org/10.1016/B978-0-12-382034-1.00011-6Zimmerman, M. The mushroom message. Sun 11A (1992).Bader, P., Jansson, S. & Jonsson, B. G. Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biol. Conserv. 72, 355–362 (1995).Article 

    Google Scholar 
    Weinbauer, M. G. & Rassoulzadegan, F. Extinction of microbes: evidence and potential consequences. Endanger. Species Res. 3, 205–215 (2007).Article 

    Google Scholar 
    Chomicki, G., Kiers, E. T. & Renner, S. S. The evolution of mutualistic dependence. Annu. Rev. Ecol. Evol. Syst. 51, 409–432 (2020).Article 

    Google Scholar 
    Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carthey, A. J., Blumstein, D. T., Gallagher, R. V., Tetu, S. G. & Gillings, M. R. Conserving the holobiont. Funct. Ecol. 34, 764–776 (2020).Article 

    Google Scholar 
    Schapheer, C., Pellens, R. & Scherson, R. Arthropod-microbiota integration: its importance for ecosystem conservation. Front. Microbiol. 12, 2094 (2021).Article 

    Google Scholar 
    Zhou, Z., Wang, C. & Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 3072 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anthony, M. A., Stinson, K. A., Moore, J. A. M. & Frey, S. D. Plant invasion impacts on fungal community structure and function depend on soil warming and nitrogen enrichment. Oecologia 194, 659–672 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lilleskov, E., Hobbie, E. A. & Horton, T. Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol. 4, 174–183 (2011).Article 

    Google Scholar 
    Gibbons, S. M. et al. Invasive plants rapidly reshape soil properties in a grassland ecosystem. mSystems 2, e00178-16 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Certini, G., Moya, D., Lucas-Borja, M. E. & Mastrolonardo, G. The impact of fire on soil-dwelling biota: a review. For. Ecol. Manage. 488, 118989 (2021).Article 

    Google Scholar 
    Caruso, T., Hempel, S., Powell, J. R., Barto, E. K. & Rillig, M. C. Compositional divergence and convergence in arbuscular mycorrhizal fungal communities. Ecology 93, 1115–1124 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Anthony, M., Frey, S. & Stinson, K. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere 8, e01951 (2017).Article 

    Google Scholar 
    Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 30, 987–999 (2021).PubMed 
    Article 

    Google Scholar 
    Enright, D. J., Frangioso, K. M., Isobe, K., Rizzo, D. M. & Glassman, S. I. Mega‐fire in redwood tanoak forest reduces bacterial and fungal richness and selects for pyrophilous taxa that are phylogenetically conserved. Mol. Ecol. 31, 2475–2493 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Anthony, M. A. et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. 16, 1327–1336 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Novacek, M. J. & Cleland, E. E. The current biodiversity extinction event: scenarios for mitigation and recovery. Proc. Natl Acad. Sci. USA 98, 5466–5470 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).PubMed 
    Article 

    Google Scholar 
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).PubMed 
    Article 

    Google Scholar 
    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Peixoto, R. S. et al. Harnessing the microbiome to prevent global biodiversity loss. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01173-1 (2022).Box, G. E. P. & Draper, N. R. Empirical Model-building and Response Surfaces (Wiley, 1987).Box, G. E. P., Hunter, W. G. & Hunter, J. S. Statistics for Experimenters: an Introduction to Design, Data Analysis, and Model Building (Wiley, 1978).Kothamasi, D., Spurlock, M. & Kiers, E. T. Agricultural microbial resources: private property or global commons? Nat. Biotechnol. 29, 1091–1093 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).PubMed 
    Article 

    Google Scholar 
    Davison, J. et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 231, 763–776 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramirez, K. S. et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat. Microbiol. 3, 189–196 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wild, S. Quest to map Africa’s soil microbiome begins. Nature 539, 152 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bissett, A. et al. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience 5, 21 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pan, K., Guo, Z. & Liu, J. Building and materializing of China Soil Microbiome Data Platform. Acta Pedol. Sin. 56, 1023–1033 (2019).
    Google Scholar 
    Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernández‐Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69, 140–153 (2018).Article 

    Google Scholar 
    Hinckley, E. S. et al. The soil and plant biogeochemistry sampling design for The National Ecological Observatory Network. Ecosphere 7, e01234 (2016).Article 

    Google Scholar 
    Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 228 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jackson, F. Sustainable agriculture and a low carbon future: are we missing out on mycelium? Forbes https://www.forbes.com/sites/feliciajackson/2021/12/02/sustainable-agriculture-and-a-low-carbon-future-are-we-missing-out-on-mycelium/?sh=3dc1a6d076ed (2021).Gilbert, J. A., Jansson, J. K. & Knight, R. The Earth Microbiome project: successes and aspirations. BMC Biol. 12, 69 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fedrowitz, K. et al. Can retention forestry help conserve biodiversity? A meta‐analysis. J. Appl. Ecol. 51, 1669–1679 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schmidt, R., Mitchell, J. & Scow, K. Cover cropping and no-till increase diversity and symbiotroph:saprotroph ratios of soil fungal communities. Soil Biol. Biochem. 129, 99–109 (2019).CAS 
    Article 

    Google Scholar 
    Status of the World’s Soil Resources: Main Report (FAO, 2015).Aronson, J., Goodwin, N., Orlando, L., Eisenberg, C. & Cross, A. T. A world of possibilities: six restoration strategies to support the United Nation’s Decade on Ecosystem Restoration. Restor. Ecol. 28, 730–736 (2020).Article 

    Google Scholar 
    Seymour, F. Seeing the forests as well as the (trillion) trees in corporate climate strategies. One Earth 2, 390–393 (2020).Article 

    Google Scholar 
    Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Philipson, C. D. et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science 369, 838–841 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Coleman, E. A. et al. Limited effects of tree planting on forest canopy cover and rural livelihoods in Northern India. Nat. Sustain. 4, 997–1004 (2021).Article 

    Google Scholar 
    Neuenkamp, L., Prober, S. M., Price, J. N., Zobel, M. & Standish, R. J. Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecol. 40, 140–149 (2019).Article 

    Google Scholar 
    Koziol, L. et al. Manipulating plant microbiomes in the field: native mycorrhizae advance plant succession and improve native plant restoration. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.14036 (2021).Wubs, E. R. J., van der Putten, W. H., Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 16107 (2016).PubMed 
    Article 

    Google Scholar 
    Bever, J. & Schultz, P. Prairie mycorrhizal fungi inoculant may increase native plant diversity on restored sites (Illinois). Ecol. Restor. 21, 311–312 (2003).
    Google Scholar 
    Vahter, T. et al. Co-introduction of native mycorrhizal fungi and plant seeds accelerates restoration of post-mining landscapes. J. Appl. Ecol. 57, 1741–1751 (2020).CAS 
    Article 

    Google Scholar 
    Egan, C. P. et al. Restoration of the mycobiome of the endangered Hawaiian mint Phyllostegia kaalaensis increases its resistance to a common powdery mildew. Fungal Ecol. 52, 101070 (2021).Article 

    Google Scholar 
    Wubs, E. R. J. et al. Single introductions of soil biota and plants generate long‐term legacies in soil and plant community assembly. Ecol. Lett. 22, 1145–1151 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abrego, N. et al. Reintroduction of threatened fungal species via inoculation. Biol. Conserv. 203, 120–124 (2016).Article 

    Google Scholar 
    Salomon, M. J. et al. Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Appl. Soil Ecol. 169, 104225 (2022).Article 

    Google Scholar 
    Maltz, M. R. & Treseder, K. K. Sources of inocula influence mycorrhizal colonization of plants in restoration projects: a meta-analysis: mycorrhizal inoculation in restoration. Restor. Ecol. 23, 625–634 (2015).Article 

    Google Scholar 
    Busby, P. E., Newcombe, G., Neat, A. S. & Averill, C. Facilitating reforestation through the plant microbiome: perspectives from the phyllosphere. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev-phyto-021320-010717 (2022).van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).PubMed 
    Article 

    Google Scholar 
    Crowther, T. W. et al. Predicting the responsiveness of soil biodiversity to deforestation: a cross-biome study. Glob. Change Biol. 20, 2983–2994 (2014).Article 

    Google Scholar 
    Lilleskov, E. A., Kuyper, T. W., Bidartondo, M. I. & Hobbie, E. A. Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review. Environ. Pollut. 246, 148–162 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, G. R., Steidinger, B. S., Bruns, T. D. & Peay, K. G. Competition–colonization tradeoffs structure fungal diversity. ISME J. 12, 1758–1767 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ceballos, I. et al. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS ONE 8, e70633 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buysens, C., César, V., Ferrais, F., de Boulois, H. D. & Declerck, S. Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Appl. Soil Ecol. 105, 137–143 (2016).Article 

    Google Scholar 
    Antunes, P. M. et al. Influence of commercial inoculation with Glomus intraradices on the structure and functioning of an AM fungal community from an agricultural site. Plant Soil 317, 257–266 (2009).CAS 
    Article 

    Google Scholar 
    Emam, T. Local soil, but not commercial AMF inoculum, increases native and non‐native grass growth at a mine restoration site. Restor. Ecol. 24, 35–44 (2016).Article 

    Google Scholar 
    Hoeksema, J. D. et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407 (2010).PubMed 
    Article 

    Google Scholar 
    Policelli, N., Horton, T. R., Hudon, A. T., Patterson, T. R. & Bhatnagar, J. M. Back to roots: the role of ectomycorrhizal fungi in boreal and temperate forest restoration. Front. For. Glob. Change 3, 97 (2020).Article 

    Google Scholar 
    Hoeksema, J. D. et al. Ectomycorrhizal plant-fungal co-invasions as natural experiments for connecting plant and fungal traits to their ecosystem consequences. Front. Glob. Change 3, 84 (2020).Article 

    Google Scholar 
    Land Use Statistics and Indicators. Global, Regional and Country Trends 1990– 2019 FAOSTAT Analytical Brief Series No. 28 (FAO, 2021).Stewart, W. M., Dibb, D. W., Johnston, A. E. & Smyth, T. J. The contribution of commercial fertilizer nutrients to food production. Agron. J. 97, 1–6 (2005).Article 

    Google Scholar 
    Harlander, S. K. The evolution of modern agriculture and its future with biotechnology. J. Am. Coll. Nutr. 21, 161S–165S (2002).PubMed 
    Article 

    Google Scholar 
    Cooper, J. & Dobson, H. The benefits of pesticides to mankind and the environment. Crop Prot. 26, 1337–1348 (2007).CAS 
    Article 

    Google Scholar 
    Zsögön, A., Peres, L. E. P., Xiao, Y., Yan, J. & Fernie, A. R. Enhancing crop diversity for food security in the face of climate uncertainty. Plant J. https://doi.org/10.1111/tpj.15626 (2021).IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).McDonald, B. A. & Stukenbrock, E. H. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Phil. Trans. R. Soc. Lond. B 371, 20160026 (2016).Article 

    Google Scholar 
    Avelino, J. et al. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Sec. 7, 303–321 (2015).Article 

    Google Scholar 
    Goss, E. M. et al. The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes. Proc. Natl Acad. Sci. USA 111, 8791–8796 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ploetz, R. C. Panama disease: a classic and destructive disease of banana. Plant Health Prog. https://doi.org/10.1094/PHP-2000-1204-01-HM (2000).Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).PubMed 
    Article 

    Google Scholar 
    Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013).PubMed 
    Article 

    Google Scholar 
    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prieto, I. et al. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 15033 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).PubMed 
    Article 

    Google Scholar 
    Cornell, C. et al. Do bioinoculants affect resident microbial communities? A meta-analysis. Front. Agron. 3, 753474 (2021).Article 

    Google Scholar 
    Manning, L. Groundwork BioAg raises $11m to expand mycorrhizal inputs business. AgFunder Network https://agfundernews.com/groundwork-bioag-raises-11m-to-expand-mycorrhizal-inputs-business (2021).Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olle, M. & Williams, I. H. Effective microorganisms and their influence on vegetable production—a review. J. Hortic. Sci. Biotechnol. 88, 380–386 (2013).Article 

    Google Scholar 
    Mayer, J., Scheid, S., Widmer, F., Fließbach, A. & Oberholzer, H.-R. How effective are ‘Effective microorganisms® (EM)’? Results from a field study in temperate climate. Appl. Soil Ecol. 46, 230–239 (2010).Article 

    Google Scholar 
    Kodippili, K. P. A. N. & Nimalan, J. Effect of homemade effective microorganisms on the growth and yield of chilli (Capsicum annuum) MI-2. AGRIEAST J. Agric. Sci. https://doi.org/10.4038/agrieast.v12i2.57 (2018).de Araujo Avila, G. M., Gabardo, G., Clock, D. C. & de Lima Junior, O. S. Use of efficient microorganisms in agriculture. Res. Soc. Dev. https://doi.org/10.33448/rsd-v10i8.17515 (2021).Saleem, M., Hu, J. & Jousset, A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol. Evol. Syst. 50, 145–168 (2019).Article 

    Google Scholar 
    Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).PubMed 
    Article 

    Google Scholar 
    Romero-Olivares, A. L., Allison, S. D. & Treseder, K. K. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol. Biochem. 107, 32–40 (2017).CAS 
    Article 

    Google Scholar 
    Klironomos, J. N. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84, 2292–2301 (2003).Article 

    Google Scholar 
    Veen, C. G. F., Snoek, B. L., Bakx-Schotman, T., Wardle, D. A. & van der Putten, W. H. Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects. Funct. Ecol. 33, 1524–1535 (2019).Article 

    Google Scholar 
    Wang, Q., Zhong, M. & He, T. Home-field advantage of litter decomposition and nitrogen release in forest ecosystems. Biol. Fertil. Soils 49, 427–434 (2013).CAS 
    Article 

    Google Scholar 
    Hawkes, C. V., Waring, B. G., Rocca, J. D. & Kivlin, S. N. Historical climate controls soil respiration responses to current soil moisture. Proc. Natl Acad. Sci. USA 114, 6322–6327 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wittebolle, L. et al. Initial community evenness favours functionality under selective stress. Nature 458, 623–626 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    de Graaff, M.-A., Adkins, J., Kardol, P. & Throop, H. A meta-analysis of soil biodiversity impacts on the carbon cycle. Soil 1, 257–271 (2015).Article 

    Google Scholar 
    Gao, J. et al. Assessing the effect of leaf litter diversity on the decomposition and associated diversity of fungal assemblages. Forests 6, 2371–2386 (2015).Article 

    Google Scholar 
    Selosse, M.-A., Bouchard, D., Martin, F. & Tacon, F. L. Effect of Laccaria bicolor strains inoculated on Douglas-fir (Pseudotsuga menziesii) several years after nursery inoculation. Can. J. Res. 30, 360–371 (2000).Article 

    Google Scholar 
    Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Latitudinal and temporal variation in injury and its impacts in the invasive Asian shore crab Hemigrapsus sanguineus

    Bryant, S. V., Endo, T. & Gardiner, D. M. Vertebrate limb regeneration and the origin of limb stem cells. Int. J. Dev. Biol. 46, 887–896 (2004).
    Google Scholar 
    Fleming, P. A., Muller, D. & Bateman, P. W. Leave it all behind: A taxonomic perspective of autotomy in invertebrates. Biol. Rev. 82, 481–510 (2007).PubMed 
    Article 

    Google Scholar 
    Bely, A. E. & Nyberg, K. G. Evolution of animal regeneration: Re-emergence of a field. Trends Ecol. Evol. 25, 161–170 (2010).PubMed 
    Article 

    Google Scholar 
    Lindsay, S. M. Frequency of injury and the ecology of regeneration in marine benthic invertebrates. Integr. Comp. Biol. 50, 479–493 (2010).PubMed 
    Article 

    Google Scholar 
    Wilson, B. S. Tail injuries increase the risk of mortality in free-living lizards (Uta stansburiana). Oecologia 92, 145–152 (1992).ADS 
    PubMed 
    Article 

    Google Scholar 
    Chapple, D. G. & Swain, R. Inter-populational variation in the cost of autotomy in the metallic skink (Niveoscincus metallicus). J. Zool. 264, 411–418 (2004).Article 

    Google Scholar 
    Tyler, R. K., Winchell, K. M. & Revell, L. J. Tails of the city: Caudal autotomy in the tropical lizard, Anolis cristatellus, in urban and natural areas of Puerto Rico. J. Herpetol. 50, 435–441 (2016).Article 

    Google Scholar 
    Griffen, B. D., Cannizzo, Z. J., Carver, J. & Meidell, M. Reproductive and energetic costs of injury in the mangrove tree crab. Mar. Ecol. Prog. Ser. 640, 127–137 (2020).ADS 
    Article 

    Google Scholar 
    Smith, L. D. & Hines, A. H. Autotomy in blue crab (Callinectes sapidus Rathbun) populations: Geographic, temporal, and ontogenetic variation. Biol. Bull. 180, 416–431 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maginnis, T. L. The costs of autotomy and regeneration in animals: A review and framework for future research. Behav. Ecol. 17, 857–872 (2006).Article 

    Google Scholar 
    Suma Gupta, N. V., Kurup, K. N. P., Adiyodi, R. G. & Adiyodi, K. G. The antagonism between somatic growth and testicular activity during different phases in intermoult (stage C4) in sexually mature freshwater crab, Paratelphusa hydrodromous. Invertebr. Reprod. Dev. 16, 195–203 (1989).Article 

    Google Scholar 
    Devi, S. & Adiyodi, R. G. Effect of multiple limb autotomy on oogenesis and somatic growth in Paratelphusa hydromous. Trop. Freshw. Biol. 9, 43–56 (2000).
    Google Scholar 
    Juanes, F. & Smith, L. D. The ecological consequences of limb damage and loss in decapod crustaceans: A review and prospectus. J. Exp. Mar. Biol. Ecol. 193, 197–223 (1995).Article 

    Google Scholar 
    Cheng, J. H. & Chang, E. S. Determinants of postmolt size in the American lobster (Homarus americanus). I. D13 is the critical stage. Can. J. Fish. Aquat. Sci. 50, 2106–2111 (1993).Article 

    Google Scholar 
    Kuris, A. M. & Mager, M. Effect of limb regeneration on size increase at molt of the shore crabs Hemigrapsus oregonensis and Pachygrapsus crassipes. J. Exp. Zool. 193, 353–359 (1975).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ballinger, R. E. & Tinkle, D. W. On the cost of tail regeneration to body growth in lizards. J. Herpetol. 13, 374–375 (1979).Article 

    Google Scholar 
    Hopkins, P. M. & Das, S. Regeneration in crustaceans. Nat. Hist. Crustacea 4, 168–198 (2015).
    Google Scholar 
    Lai, A. G. & Aboobaker, A. A. EvoRegen in animals: Time to uncover deep conservation or convergence of adult stem cell evolution and regenerative processes. Dev. Biol. 433, 118–131 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boudreau, S. A. & Worm, B. Ecological role of large benthic decapods in marine ecosystems: A review. Mar. Ecol. Prog. Ser. 469, 195–213 (2012).ADS 
    Article 

    Google Scholar 
    Turner, J. T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43, 255–266 (2004).
    Google Scholar 
    Bondad-Reantaso, M. G., Subasinghe, R. P., Josupeit, H., Cai, J. & Zhou, X. The role of crustacean fisheries and aquaculture in global food security: Past, present and future. J. Invertebr. Pathol. 110, 158–165 (2012).PubMed 
    Article 

    Google Scholar 
    Galil, B. S., Clark, P. F. & Carleton, J. T. In the Wrong Place—Alien Marine Crustaceans: Distribution, Biology, and Impacts (Springer, 2011).Book 

    Google Scholar 
    Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I. & Thuiller, W. Predicting potential distributions of invasive species: Where to go from here?. Divers. Distrib. 16, 331–342 (2010).Article 

    Google Scholar 
    Barbet-Massin, M., Rome, Q., Villemant, C. & Courchamp, F. Can species distribution models really predict the expansion of invasive species?. PLoS One 13, e0193085 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Griffen, B. D., van den Akker, D., DiNuzzo, E. R., Anderson, L. & Vernier, A. Comparing methods for predicting the impacts of invasive species. Biol. Invasions 23, 491–505 (2021).Article 

    Google Scholar 
    Williams, A. B. & McDermott, J. J. An eastern United States record for the western Indo-Pacific crab, Hemigrapsus sanguineus (Crustacea: Decapoda: Grapsidae). Proc. Biol. Soc. Wash. 103, 108–109 (1990).
    Google Scholar 
    Blakeslee, A. M. et al. Reconstructing the invasion history of the Asian shorecrab, Hemigrapsus sanguineus (De Haan 1835) in the Western Atlantic. Mar. Biol. 164, 1–19 (2017).
    Google Scholar 
    Griffen, B. D. & Delaney, D. G. Species invasion shifts the importance of predator dependence. Ecology 88, 3012–3021 (2007).PubMed 
    Article 

    Google Scholar 
    Epifanio, C. E. Invasion biology of the Asian shore crab Hemigrapsus sanguineus: A review. J. Exp. Mar. Biol. Ecol. 441, 33–49 (2013).Article 

    Google Scholar 
    Gerard, V. A., Cerrato, R. M. & Larson, A. A. Potential impacts of a western Pacific grapsid crab on intertidal communities of the northwestern Atlantic Ocean. Biol. Invasions 1, 353–361 (1999).Article 

    Google Scholar 
    Kraemer, G. P., Sellberg, M., Gordon, A. & Main, J. Eight-year record of Hemigrapsus sanguineus (Asian shore crab) invasion in western Long Island Sound estuary. Northeast. Nat. 14, 207–224 (2007).Article 

    Google Scholar 
    Davis, J. L. et al. Autotomy in the Asian shore crab (Hemigrapsus sanguineus) in a non-native area of its range. J. Crust. Biol. 25, 655–660 (2005).Article 

    Google Scholar 
    Delaney, D. G., Griffen, B. D. & Leung, B. Does consumer injury modify invasion impact?. Biol. Invasions 13, 2935–2945 (2011).Article 

    Google Scholar 
    Jensen, G. C., McDonald, P. S. & Armstrong, D. A. East meets west: Competitive interactions between green crab Carcinus maenas, and native and introduced shore crab Hemigrapsus spp. Mar. Ecol. Prog. Ser. 225, 251–262 (2002).ADS 
    Article 

    Google Scholar 
    Lohrer, A. M. & Whitlatch, R. B. Interactions among aliens: Apparent replacement of one exotic species by another. Ecology 83, 719–732 (2002).Article 

    Google Scholar 
    Griffen, B. D. & Williamson, T. Influence of predator density on nonindependent effects of multiple predator species. Oecologia 155, 151–159 (2008).ADS 
    PubMed 
    Article 

    Google Scholar 
    Vernier, A. & Griffen, B. D. Physiological effects of limb loss on the Asian shore crab Hemigrapsus sanguineus. Northeast. Nat. 26, 761–771 (2019).Article 

    Google Scholar 
    Lohrer, A. M. & Whitlatch, R. B. Relative impacts of two exotic brachyuran species on blue mussel populations in Long Island Sound. Mar. Ecol. Prog. Ser. 227, 135–144 (2002).ADS 
    Article 

    Google Scholar 
    Goldstein, J. S. & Carloni, J. T. Assessing the implications of live claw removal on Jonah crab (Cancer borealis), an emerging fishery in the Northwest Atlantic. Fish. Res. 243, 106046 (2021).Article 

    Google Scholar 
    Hines, A. H. Allometric constraints and variables of reproductive effort in brachyuran crabs. Mar. Biol. 69, 309–320 (1982).Article 

    Google Scholar 
    Pörtner, H. O. Oxygen-and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).PubMed 
    Article 

    Google Scholar 
    Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608 (2013).PubMed 
    Article 

    Google Scholar 
    Prestholdt, T. et al. Tradeoffs associated with autotomy and regeneration and their potential role in the evolution of regenerative abilities. Behav. Ecol. 33, 518–525 (2022).Article 

    Google Scholar 
    McDermott, J. J. The western Pacific brachyuran Hemigrapsus sanguineus (Grapsidae) in its new habitat along the Atlantic coast of the United States: Reproduction. J. Crustac. Biol. 18, 308–316 (1998).Article 

    Google Scholar 
    Depledge, M. H. Hemigrapsus sanguineus (De Haan). Asian Mar. Biol. 1, 115–123 (1984).
    Google Scholar 
    Saigusa, M. & Kawagoye, O. Circatidal rhythm of an intertidal crab, Hemigrapsus sanguineus: Synchrony with unequal tide height and involvement of a light-response mechanism. Mar. Biol. 129, 87–96 (1997).Article 

    Google Scholar 
    Choy, S. C. A rapid method for removing and counting eggs from fresh and preserved decapod crustaceans. Aquaculture 48, 369–372 (1985).Article 

    Google Scholar 
    Rosa, R., Calado, R., Narciso, L. & Nunes, M. L. Embryogenesis of decapod crustaceans with different life history traits, feeding ecologies and habitats: A fatty acid approach. Mar. Biol. 151, 935–947 (2007).Article 

    Google Scholar 
    Griffen, B. D. & Mosblack, H. Predicting diet and consumption rate differences between and within species using gut ecomorphology. J. Anim. Ecol. 80, 854–863 (2011).PubMed 
    Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Zero-truncated and zero-inflated models for count data. In Mixed Effects Models and Extensions in Ecology with R 261–293 (Springer, 2009).MATH 
    Chapter 

    Google Scholar 
    Griffen, B. D. Linking individual diet variation and fecundity in an omnivorous marine consumer. Oecologia 174, 121–130 (2014).ADS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Author Correction: Protect European green agricultural policies for future food security

    Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, SpainManuel B. Morales & Juan TrabaCentro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, Madrid, SpainManuel B. Morales, Juan Traba & Elena D. ConcepciónMuseo Nacional de Ciencias Naturales, CSIC, Madrid, SpainMario Díaz & Elena D. ConcepciónConservation Biology Group, Landscape Dynamics and Biodiversity Program, Conservation Biology Group (GBiC), Forest Science and Technology Centre of Catalonia (CTFC), Solsona, SpainDavid Giralt, Francesc Sardà-Palomera & Gerard BotaInstituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ciudad Real, SpainFrançois Mougeot & Beatriz ArroyoEstación Biológica de Doñana, CSIC, Sevilla, SpainDavid SerranoDepartament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, SpainSanti MañosaInstitut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, SpainSanti MañosaUSC 1339 Centre d’Etudes Biologiques de Chizé, INRAE, CNRS & Université de La Rochelle, F-79360, Villiers-en-Bois, FranceSabrina GabaUMR 7372 Centre d’Etudes Biologiques de Chizé, CNRS & Université de La Rochelle, F-79360, Villiers-en-Bois, FranceSabrina GabaCIBIO/InBio–University of Porto and Institute of Agronomy–University of Lisbon, Lisbon, PortugalFrancisco MoreiraSwedish University of Agricultural Sciences, Uppsala, SwedenTomas PärtSustainable Forest Management Research Institute (iuFOR), Universidad de Valladolid & INIA, Valladolid, SpainRocío Tarjuelo More