More stories

  • in

    Asteroid smash and poaching decline

    As the Italian probe LICIACube whizzed past asteroids Didymos (bottom) and Dimorphos (top), it captured a debris plume spraying out from the DART spacecraft as it smashed into Dimorphos.Credit: ASI/NASA

    Astronomers see fireworks as spacecraft ploughs into asteroidTelescopes in space and across Earth captured the spectacular aftermath of NASA’s Double Asteroid Redirection Test (DART) spacecraft crashing into the asteroid Dimorphos on 26 September.The goal was to knock the harmless space rock into a slightly different orbit to test whether humanity could do such a thing if a dangerous asteroid were ever detected heading for Earth. The smash-up was “the first human experiment to deflect a celestial body”, says Thomas Zurbuchen, NASA’s associate administrator for science, and “an enormous success”.A ringside view came from LICIACube, a tiny Italian spacecraft that flew along with DART and photographed the impact, which took place 11 million kilometres from Earth. LICIACube’s first images, released by the Italian Space Agency on 27 September, show a large fireworks-like plume of rocks and other debris coming off Dimorphos (pictured, top) after DART had ploughed into it.It will take days to weeks before mission scientists can confirm whether the test worked, and did in fact cut the time it takes Dimorphos to orbit its partner asteroid, Didymos (pictured, bottom), by 10–15 minutes.

    The shell of the endangered hawksbill sea turtle (pictured) is prized for trinkets and jewellery.Credit: Reinhard Dirscherl/SPL

    Sea turtles swim more freely as poaching declinesPoaching is less of a threat to the survival of sea turtles than it once was, an analysis suggests (J. F. Senko et al. Glob. Change Biol. https://doi.org/gqrzzn; 2022). Illegal sea-turtle catch has dropped sharply since 2000, and most current exploitation occurs in areas with relatively healthy turtle populations.The analysis is the first worldwide estimate of the number of adult sea turtles that are moved on the black market. The authors surveyed sea-turtle specialists and sifted through documents to derive an estimate that around 1.1 million sea turtles were illegally harvested between 1990 and 2020. Nearly 90% of them were funnelled into China and Japan. Of the species that could be identified, the critically endangered hawksbill turtle (Eretmochelys imbricata; pictured), prized for its beautiful shell, was among the most frequently exploited.But the team also found that the illegal catch from 2010 to 2020 was nearly 30% lower than in the previous decade. “The silver lining is that, despite the seemingly large illegal take, exploitation is not having a negative impact on sea-turtle populations on a global scale,” says co-author Jesse Senko, a marine-conservation scientist at Arizona State University in Tempe. More

  • in

    Tracing the oomycete pathogen Saprolegnia parasitica in aquaculture and the environment

    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Phillips, A. J., Anderson, V. L., Robertson, E. J., Secombes, C. J. & van West, P. New insights into animal pathogenic oomycetes. Trends Microbiol. 16, 13–19 (2008).CAS 
    PubMed 

    Google Scholar 
    van den Berg, A. H., McLaggan, D., Diéguez-Uribeondo, J. & van West, P. The impact of the water moulds Saprolegnia diclina and Saprolegnia parasitica on natural ecosystems and the aquaculture industry. Fungal Biol. Rev. 27, 33–42 (2013).
    Google Scholar 
    van West, P. Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: New challenges for an old problem. Mycologist 20, 99–104 (2006).
    Google Scholar 
    Hussein, M. M. A., Hatai, K. & Nomura, T. Saprolegniosis in salmonids and their eggs in Japan. J. Wildl. Dis. 37, 204–207 (2001).CAS 
    PubMed 

    Google Scholar 
    Pavić, D. et al. Identification and molecular characterization of oomycete isolates from trout farms in Croatia, and their upstream and downstream water environments. Aquaculture 540, 736652 (2021).
    Google Scholar 
    Tedesco, P. et al. Evaluation of potential transfer of the pathogen Saprolegnia parasitica between farmed salmonids and wild fish. Pathogens 10, 926 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diéguez-Uribeondo, J., Cerenius, L. & Söderhäll, K. Physiological characterization of Saprolegnia parasitica isolates from brown trout. Aquaculture 140, 247–257 (1996).
    Google Scholar 
    Ravasi, D., De Respinis, S. & Wahli, T. Multilocus sequence typing reveals clonality in Saprolegnia parasitica outbreaks. J. Fish Dis. 41, 1653–1665 (2018).CAS 
    PubMed 

    Google Scholar 
    Bly, J. E., Lawson, L. A., Szalai, A. J. & Clem, L. W. Environmental factors affecting outbreaks of winter saprolegniosis in channel catfish, Ictalurus punctatus (Rafinesque). J. Fish Dis. 16, 541–549 (1993).
    Google Scholar 
    Rezinciuc, S., Sandoval-Sierra, J. V., Ruiz-León, Y., Van West, P. & Diéguez-Uribeondo, J. Specialized attachment structure of the fish pathogenic oomycete Saprolegnia parasitica. PLoS ONE 13, 1–17 (2018).
    Google Scholar 
    Tandel, R. S. et al. Morphological and molecular characterization of Saprolegnia spp. from Himalayan snow trout, Schizothorax richardsonii: A case study report. Aquaculture 531, 735824 (2021).CAS 

    Google Scholar 
    Howe, G. E. & Stehly, G. R. Experimental infection of rainbow trout with Saprolegnia parasitica experimental infection of rainbow trout. J. Aquat. Anim. Health 10, 397–404 (1998).
    Google Scholar 
    Dieguez-Uribeondo, J. Adaptation to parasitism of some animal pathogenic Saprolegniaceae. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 122. Acta Universitatis Upsalienis (1995).Kitancharoen, N., Yuasa, K. & Hatai, K. Effects of pH and temperature on growth of Saprolegnia diclina and S. parasitica isolated from various sources. Mycoscience 37, 385–390 (1996).
    Google Scholar 
    Meinelt, T. et al. Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substance of different qualities. Aquat. Toxicol. 83, 93–103 (2007).CAS 
    PubMed 

    Google Scholar 
    Burr, A. W. & Beakes, G. W. Characterization of zoospore and cyst surface structure in saprophytic and fish pathogenic Saprolegnia species (oomycete fungal protists). Protoplasma 181, 142–163 (1994).
    Google Scholar 
    Elameen, A. et al. Genetic analyses of saprolegnia strains isolated from salmonid fish of different geographic origin document the connection between pathogenicity and molecular diversity. J. Fungi 7, 1–13 (2021).
    Google Scholar 
    Masigol, H. et al. Taxonomical and functional diversity of Saprolegniales in Anzali lagoon, Iran. Aquat. Ecol. 51, 323–336 (2020).
    Google Scholar 
    Singer, D. et al. High-throughput sequencing reveals diverse oomycete communities in oligotrophic peat bog micro-habitat. Fungal Ecol. 23, 42–47 (2016).
    Google Scholar 
    Hatai, K. & Hoshiai, G. Mass mortality in cultured coho salmon (Oncorhynchus kisutch) due to Saprolegnia parasitica Coker. J. Wildl. Dis. 28, 532–536 (1992).CAS 
    PubMed 

    Google Scholar 
    Sarowar, M. N., Cusack, R. & Duston, J. Saprolegnia molecular phylogeny among farmed teleosts in Nova Scotia, Canada. J. Fish Dis. 42, 1745–1760 (2019).CAS 
    PubMed 

    Google Scholar 
    Sakaguchi, S. O. et al. Molecular identification of water molds (oomycetes) associated with chum salmon eggs from hatcheries in Japan and possible sources of their infection. Aquac. Int. 27, 1739–1749 (2019).
    Google Scholar 
    Sandoval-Sierra, J. V., Latif-Eugenin, F., Martín, M. P., Zaror, L. & Diéguez-Uribeondo, J. Saprolegnia species affecting the salmonid aquaculture in Chile and their associations with fish developmental stage. Aquaculture 434, 462–469 (2014).
    Google Scholar 
    Amarasiri, M., Furukawa, T., Nakajima, F. & Sei, K. Pathogens and disease vectors/hosts monitoring in aquatic environments: Potential of using eDNA/eRNA based approach. Sci. Total Environ. 796, 148810 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pavić, D. et al. Non-destructive method for detecting Aphanomyces astaci, the causative agent of crayfish plague, on the individual level. J. Invertebr. Pathol. 169, 107274 (2020).PubMed 

    Google Scholar 
    Sapkota, R. & Nicolaisen, M. An improved high throughput sequencing method for studying oomycete communities. J. Microbiol. Methods 110, 33–39 (2015).CAS 
    PubMed 

    Google Scholar 
    Strand, D. A. et al. Monitoring a Norwegian freshwater crayfish tragedy: eDNA snapshots of invasion, infection and extinction. J. Appl. Ecol. 56, 1661–1673 (2019).CAS 

    Google Scholar 
    Ghosh, S., Straus, D. L., Good, C. & Phuntumart, V. Development and comparison of loop-mediated isothermal amplification with quantitative PCR for the specific detection of Saprolegnia spp. PLoS ONE 16, 1–17 (2021).
    Google Scholar 
    Blaya, J., Lloret, E., Santísima-Trinidad, A. B., Ros, M. & Pascual, J. A. Molecular methods (digital PCR and real-time PCR) for the quantification of low copy DNA of Phytophthora nicotianae in environmental samples. Pest Manag. Sci. 72, 747–753 (2016).CAS 
    PubMed 

    Google Scholar 
    Davison, P. I., Copp, G. H., Créach, V., Vilizzi, L. & Britton, J. R. Application of environmental DNA analysis to inform invasive fish eradication operations. Sci. Nat. 104, 1–7 (2017).CAS 

    Google Scholar 
    Tuffs, S. & Oidtmann, B. A comparative study of molecular diagnostic methods designed to detect the crayfish plague pathogen, Aphanomyces astaci. Vet. Microbiol. 153, 343–353 (2011).CAS 
    PubMed 

    Google Scholar 
    Rusch, J. C. et al. Simultaneous detection of native and invasive crayfish and Aphanomyces astaci from environmental DNA samples in a wide range of habitats in Central Europe. NeoBiota 58, 1–32 (2020).
    Google Scholar 
    Hindson, C. M. et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 10, 1003–1005 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoshino, T. & Inagaki, F. Molecular quantification of environmental DNA using microfluidics and digital PCR. Syst. Appl. Microbiol. 35, 390–395 (2012).CAS 
    PubMed 

    Google Scholar 
    Pinheiro, L. B. et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84, 1003–1011 (2012).CAS 
    PubMed 

    Google Scholar 
    Rocchi, S. et al. Quantification of Saprolegnia parasitica in river water using real-time quantitative PCR: From massive fish mortality to tap drinking water. Int. J. Environ. Health Res. 27, 1–10 (2017).CAS 
    PubMed 

    Google Scholar 
    Gibert, S. et al. Risk assessment of Aphanomyces euteiches root rot disease: Quantification of low inoculum densities in field soils using droplet digital PCR. Eur. J. Plant Pathol. 161, 503–528 (2021).CAS 

    Google Scholar 
    Ristaino, J. B., Saville, A. C., Paul, R., Cooper, D. C. & Wei, Q. Detection of Phytophthora infestans by loop-mediated isothermal amplification, real-time LAMP, and droplet digital PCR. Plant Dis. 104, 708–716 (2020).CAS 
    PubMed 

    Google Scholar 
    Lévesque, C. A. & De Cock, A. W. Molecular phylogeny and taxonomy of the genus Pythium. Mycol. Res. 108, 1363–1383 (2004).PubMed 

    Google Scholar 
    Oidtmann, B., Geiger, S., Steinbauer, P., Culas, A. & Hoffmann, R. W. Detection of Aphanomyces astaci in North American crayfish by polymerase chain reaction. Dis. Aquat. Organ. 72, 53–64 (2006).CAS 
    PubMed 

    Google Scholar 
    Sandoval-Sierra, J. V., Martín, M. P. & Diéguez-Uribeondo, J. Species identification in the genus Saprolegnia (Oomycetes): Defining DNA-based molecular operational taxonomic units. Fungal Biol. 118, 559–578 (2013).PubMed 

    Google Scholar 
    Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 1–11 (2012).
    Google Scholar 
    Jain, P. et al. A multivariate approach to investigate the combined biological effects of multiple exposures. J. Epidemiol. Community Health 72, 564–571 (2018).PubMed 

    Google Scholar 
    Lew, S., Glińska-Lewczuk, K. & Lew, M. The effects of environmental parameters on the microbial activity in peat-bog lakes. PLoS ONE 14, e0224441 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montalva, C. et al. First report of Leptolegnia chapmanii (Peronosporomycetes: Saprolegniales) affecting mosquitoes in central Brazil. J. Invertebr. Pathol. 136, 109–116 (2016).PubMed 

    Google Scholar 
    Robideau, G. P. et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol. Ecol. Resour. 11, 1002–1011 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Catal, M., Erler, F., Fulbright, D. W. & Adams, G. C. Real-time quantitative PCR assays for evaluation of soybean varieties for resistance to the stem and root rot pathogen Phytophthora sojae. Eur. J. Plant Pathol. 137, 859–869 (2013).CAS 

    Google Scholar 
    Jiang, R. H. Y. et al. Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica. PLoS Genet. 9, e1003272 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dieguez-Uribeondo, J., Cerenius, L. & Soderhall, K. Saprolegnia parasitica and its virulence on three different species of freshwater crayfish. Aquaculture 120, 219–228 (1994).
    Google Scholar 
    Söderhäll, K., Dick, M. W., Clark, G., Fürst, M. & Constantinescu, O. Isolation of Saprolegnia parasitica from the crayfish Astacus leptodactylus. Aquaculture 92, 121–125 (1991).
    Google Scholar 
    Bly, J. E. et al. Winter saprolegniosis in channel catfish. Dis. Aquat. Organ. 13, 155–164 (1992).
    Google Scholar 
    Gozlan, R. E. et al. Current ecological understanding of fungal-like pathogens of fish: What lies beneath?. Front. Microbiol. 5, 1–16 (2014).
    Google Scholar 
    Weyhenmeyer, G. A. et al. Widespread diminishing anthropogenic effects on calcium in freshwaters. Sci. Rep. 9, 1–10 (2019).ADS 
    CAS 

    Google Scholar 
    Deacon, J. W. & Donaldson, S. P. Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycol. Res. 97, 1153–1171 (1993).CAS 

    Google Scholar 
    Ford, D. C. & Williams, P. W. Karst Hydrogeology and Geomorphology (Wiley, 2007).
    Google Scholar 
    Baldisserotto, B., Chowdhury, M. J. & Wood, C. M. Effects of dietary calcium and cadmium on cadmium accumulation, calcium and cadmium uptake from the water, and their interactions in juvenile rainbow trout. Aquat. Toxicol. 72, 99–117 (2005).CAS 
    PubMed 

    Google Scholar 
    Barszcz, A. A., Siemianowska, E., Sidoruk, M. & Skibniewska, K. A. Influence of farming technology on bioaccumulation of calcium, magnesium and sodium in muscle tissue of rainbow trout (Oncorhynchus mykiss Walbaum). Environ. Prot. Nat. Resour. 25, 15–19 (2014).
    Google Scholar 
    Ali, E. H. Morphological and biochemical alterations of oomycete fish pathogen Saprolegnia parasitica as affected by salinity, ascorbic acid and their synergistic action. Mycopathologia 159, 231–243 (2005).CAS 
    PubMed 

    Google Scholar 
    Schuler, M. S. et al. Regulations are needed to protect freshwater ecosystems from salinization. Philos. Trans. R. Soc. B 374, 20180019 (2019).CAS 

    Google Scholar 
    Boisen, A. M. Z., Amstrup, J., Novak, I. & Grosell, M. Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio). Biochim. Biophys. Acta 1618, 207–218 (2003).CAS 
    PubMed 

    Google Scholar 
    Marquis, R. E., Clock, S. A. & Mota-Meira, M. Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol. Rev. 26, 493–510 (2003).CAS 
    PubMed 

    Google Scholar 
    Mendes, G. et al. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity. Appl. Environ. Microbiol. 80, 3081–3085 (2014).ADS 
    PubMed Central 

    Google Scholar 
    Camargo, J. A. Fluoride toxicity to aquatic organisms: A review. Chemosphere 50, 251–264 (2003).ADS 
    PubMed 

    Google Scholar 
    Min, H., Hatai, K. & Bai, S. Some inhibitory effects of chitosan on fish-pathogenic oomycete, Saprolegnia parasitica. Fish Pathol. 29, 73–77 (1998).
    Google Scholar 
    Liu, Y. et al. Deciphering microbial landscapes of fish eggs to mitigate emerging diseases. ISME J. 8, 2002–2014 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    ‘Directive 2010/63/EU of the European Parliament and of the Council on the protection of animals used for scientific purposes’. Off. J. Eur. Union L276, 33 (2010).Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gouy, M., Guindon, S. & Gascuel, O. Sea view version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).CAS 
    PubMed 

    Google Scholar 
    Hall, T., Biosciences, I. & Carlsbad, C. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2, 60–61 (2011).
    Google Scholar  More

  • in

    Endangered animals and plants are positively or neutrally related to wild boar (Sus scrofa) soil disturbance in urban grasslands

    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    Planchuelo, G., von Der Lippe, M. & Kowarik, I. Untangling the role of urban ecosystems as habitats for endangered plant species. Landsc. Urban Plan. 189, 320–334 (2019).Article 

    Google Scholar 
    Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Environ. 17, 225–231 (2019).Article 

    Google Scholar 
    Ducatez, S., Sayol, F., Sol, D. & Lefebvre, L. Are urban vertebrates city specialists, artificial habitat exploiters, or environmental generalists? Integr. Comp. Biol. 58, 929–938 (2018).PubMed 
    Article 

    Google Scholar 
    Hegglin, D. et al. Baiting red foxes in an urban area: A camera trap study. J. Wildl. Manag. 68, 1010–1017 (2004).Article 

    Google Scholar 
    Møller, A. P. Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia 159, 849–858 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Castillo-Contreras, R. et al. Wild boar in the city: Phenotypic responses to urbanisation. Sci. Total Environ. 773, 145593 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barrios-Garcia, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    Cahill, S., Llimona, F., Cabaneros, L. & Calomardo, F. Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim. Biodivers. Conserv. 35, 221–233 (2012).Article 

    Google Scholar 
    Csokas, A. et al. Space use of wild boar (Sus Scrofa) in Budapest: Are they resident or transient city dwellers? Biol. Futura 71, 39–51 (2020).CAS 
    Article 

    Google Scholar 
    Stillfried, M. et al. Do cities represent sources, sinks or isolated islands for urban wild boar population structure? J. Appl. Ecol. 54, 272–281 (2017).Article 

    Google Scholar 
    Stillfried, M. et al. Secrets of success in a landscape of fear: Urban wild boar adjust risk perception and tolerate disturbance. Front. Ecol. Evol. 5, 440 (2017).Article 

    Google Scholar 
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).Article 

    Google Scholar 
    Herrero, J., Garcia-Serrano, A., Couto, S., Ortuno, V. M. & Garcia-Gonzalez, R. Diet of wild boar Sus scrofa L. and crop damage in an intensive agroecosystem. Eur. J. Wildl. Res. 52, 245–250 (2006).Article 

    Google Scholar 
    Schley, L. & Roper, T. J. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mamm. Rev. 33, 43–56 (2003).Article 

    Google Scholar 
    Horčičková, E., Brůna, J. & Vojta, J. Wild boar (Sus scrofa) increases species diversity of semidry grassland: Field experiment with simulated soil disturbances. Ecol. Evol. 9, 2765–2774 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Massei, G. & Genov, P. V. The environmental impact of wild boar. Galemys Bol. Inf. Soc. Esp. Para Conserv. Estud. Los Mamíferos 16, 135–145 (2004).
    Google Scholar 
    Sandom, C. J., Hughes, J. & Macdonald, D. W. Rewilding the scottish highlands: Do wild boar, Sus scrofa, use a suitable foraging strategy to be effective ecosystem engineers? Restor. Ecol. 21, 336–343 (2013).Article 

    Google Scholar 
    Wirthner, S. et al. Do changes in soil properties after rooting by wild boars (Sus scrofa) affect understory vegetation in Swiss hardwood forests? Can. J. For. Res.-Rev. Can. Rech. For. 42, 585–592 (2012).CAS 
    Article 

    Google Scholar 
    Bankovich, B., Boughton, E., Boughton, R., Avery, M. L. & Wisely, S. M. Plant community shifts caused by feral swine rooting devalue Florida rangeland. Agric. Ecosyst. Environ. 220, 45–54 (2016).Article 

    Google Scholar 
    Felix, R. K., Orzell, S. L., Tillman, E. A., Engeman, R. M. & Avery, M. L. Fine-scale, spatial and temporal assessment methods for feral swine disturbances to sensitive plant communities in south-central Florida. Environ. Sci. Pollut. Res. 21, 10399–10406 (2014).Article 

    Google Scholar 
    Boonman-Berson, S., Driessen, C. & Turnhout, E. Managing wild minds: From control by numbers to a multinatural approach in wild boar management in the Veluwe, the Netherlands. Trans. Inst. Br. Geogr. 44, 2–15 (2019).Article 

    Google Scholar 
    Keuling, O., Strauß, E. & Siebert, U. Regulating wild boar populations is ‘somebody else’s problem’!-Human dimension in wild boar management. Sci. Total Environ. 554–555, 311–319 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    Brunet, J., Hedwall, P. O., Holmstrom, E. & Wahlgren, E. Disturbance of the herbaceous layer after invasion of an eutrophic temperate forest by wild boar. Nord. J. Bot. 34, 120–128 (2016).Article 

    Google Scholar 
    Burrascano, S. et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecol. 16, 244–253 (2015).Article 

    Google Scholar 
    Fagiani, S. et al. Monitoring protocols for the evaluation of the impact of wild boar (Sus scrofa) rooting on plants and animals in forest ecosystems. Hystrix Ital. J. Mamm. 25, 31–38 (2014).
    Google Scholar 
    Bruinderink, G. W. T. A. G. & Hazebroek, E. Wild boar (Sus scrofa scrofa L.) rooting and forest regeneration on podzolic soils in the Netherlands. For. Ecol. Manag. 88, 71–80 (1996).Article 

    Google Scholar 
    Pankova, N. L., Markov, N. I. & Vasina, A. L. Effect of the rooting activity of wild boar Sus scrofa on plant communities in the middle Taiga of Western Siberia. Russ. J. Biol. Invasions 11, 363–371 (2020).Article 

    Google Scholar 
    Carpio, A. J. et al. Effect of wild ungulate density on invertebrates in a Mediterranean ecosystem. Anim. Biodivers. Conserv. 37, 115–125 (2014).Article 

    Google Scholar 
    Cuevas, M. F., Novillo, A., Campos, C., Dacar, M. A. & Ojeda, R. A. Food habits and impact of rooting behaviour of the invasive wild boar, Sus scrofa, in a protected area of the Monte Desert, Argentina. J. Arid Environ. 74, 1582–1585 (2010).ADS 
    Article 

    Google Scholar 
    Kenyeres, Z., Szabo, S. & Bauer, N. Conservation possibilities of the rare grasshopper Stenobothrus eurasius Zubovski, 1898 are hampered by wild game in its fragmented western outposts. J. Insect Conserv. 24, 115–124 (2020).Article 

    Google Scholar 
    Reading, C. J. & Jofre, G. M. Habitat use by grass snakes and three sympatric lizard species on lowland heath managed using ‘conservation grazing’. Herpetol. J. 26, 131–138 (2016).
    Google Scholar 
    de Schaetzen, F., van Langevelde, F. & WallisDeVries, M. F. The influence of wild boar (Sus scrofa) on microhabitat quality for the endangered butterfly Pyrgus malvae in the Netherlands. J. Insect Conserv. 22, 51–59 (2018).Article 

    Google Scholar 
    Albrecht, H. & Haider, S. Species diversity and life history traits in calcareous grasslands vary along an urbanization gradient. Biodivers. Conserv. 22, 2243–2267 (2013).Article 

    Google Scholar 
    Cilliers, S. S., Müller, N. & Drewes, E. Overview on urban nature conservation: Situation in the western-grassland biome of South Africa. Urban For. Urban Green. 3, 49–62 (2004).Article 

    Google Scholar 
    Becker, M. & Buchholz, S. The sand lizard moves downtown-habitat analogues for an endangered species in a metropolitan area. Urban Ecosyst. 19, 361–372 (2016).Article 

    Google Scholar 
    Senate Department for Urban Development and Housing. Impervious Soil Coverage (Sealing of Soil Surface). (2016).Fischer, L. K., von der Lippe, M., Rillig, M. C. & Kowarik, I. Creating novel urban grasslands by reintroducing native species in wasteland vegetation. Biol. Conserv. 159, 119–126 (2013).Article 

    Google Scholar 
    von der Lippe, M., Buchholz, S., Hiller, A., Seitz, B. & Kowarik, I. CityScapeLab Berlin: A research platform for untangling urbanization effects on biodiversity. Sustainability 12, 30 (2020).
    Google Scholar 
    LUA. Brandenburg State Environmental Office. Brandenburg State Environmental Office. Catalogue of Natural Habitats and Species of Appendices I and II of the Habitats Directive in Brandenburg: German Institute for Standardization. (2002).Leuschner, C. & Ellenberg, H. Ecology of central European non-forest vegetation: Coastal to alpine, natural to man-made habitats: vegetation ecology of Central Europe. Volume II. (Springer, 2017).Kotanen, P. M. Responses of vegetation to a changing regime of disturbance-effects of feral pigs in a Californian Coastal Prairie. Ecography 18, 190–199 (1995).Article 

    Google Scholar 
    Dovrat, G., Perevolotsky, A. & Ne’eman, G. The response of mediterranean herbaceous community to soil disturbance by native wild boars. Plant Ecol. 215, 531–541 (2014).Article 

    Google Scholar 
    Haaverstad, O., Hjeljord, O. & Wam, H. K. Wild boar rooting in a northern coniferous forest-minor silviculture impact. Scand. J. For. Res. 29, 90–95 (2014).Article 

    Google Scholar 
    van der Maarel, E. & Franklin, J. (Eds. ). Vegetation Ecology. (2nd edition. Wiley, 2012).Hennekens, S. M. & Schaminee, J. H. J. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12, 589–591 (2001).Article 

    Google Scholar 
    Seitz, B., Ristow, M., Meißner, J., Machatzi, B. & Sukopp, H. Rote Liste und Gesamtartenliste der etablierten Farn- und Blütenpflanzen von Berlin. in Der Landesbeauftragte für Naturschutzt und Landschaftspflege, Senatsverwaltung für Umwelt, Klima und Verkehr (Hrsg): Rote Listen der gefährdeten Pflanzen, Pilze und Tiere von 118 (2018). doi:https://doi.org/10.14279/depositonce-6689.Jäger, E. J. Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband (W. Rothmaler, founder). (Spektrum, 2011).Landeck, I. Kartieranleitung Heuschrecken für das Naturschutzfachliche Monitoring im Naturparadies Grünhaus und im “Revier 55”. (Forschungsinstitut für Bergbaufolgelandschaften, Finsterwalde, 2007).Fischer, J. et al. Die Heuschrecken Deutschlands und Nordtirols-Bestimmen-Beobachten-Schützen. (Quelle & Meyer, 2020).Machatzi, B., Ratsch, A., Prasse, R. & Ristow, M. Rote Liste und Gesamtartenliste der Heuschrecken und Grillen (Saltatoria: Ensifera et Caelifera) von Berlin. (2005).Doerpinghaus, A. et al. Methoden zur Erfassung von Arten der Anhänge IV und V der FFH-Richtlinie. Naturschutz Biol. Vielfalt 20, 454 (2005).
    Google Scholar 
    Beery, S., Morris, D. & Yang, S. Efficient Pipeline for Camera Trap Image Review. ArXiv Prepr. arXiv:190706772 (2019).Greco, I. et al. Guest or pest? Spatio-temporal occurrence and effects on soil and vegetation of the wild boar on Elba island. Mamm. Biol. https://doi.org/10.1007/s42991-020-00083-1 (2020).Article 

    Google Scholar 
    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    De Caceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2020).Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Zhang, D. Coefficients of Determination for Mixed-Effects Models. arXiv:200708675 (2021).Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5-6. Retrieved from https://CRAN.R-project.org/package=vegan (2019).Massei, G., Roy, S. & Bunting, R. Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Human-Wildlife Interact. 5, 5008 (2011).
    Google Scholar 
    Bueno, C. G., Alados, C. L., Gomez-Garcia, D., Barrio, I. C. & Garcia-Gonzalez, R. Understanding the main factors in the extent and distribution of wild boar rooting on alpine grasslands. J. Zool. 279, 195–202 (2009).Article 

    Google Scholar 
    Cuevas, M. F., Mastrantonio, L., Ojeda, R. A. & Jaksic, F. M. Effects of wild boar disturbance on vegetation and soil properties in the Monte Desert. Argentina. Mamm. Biol. 77, 299–306 (2012).Article 

    Google Scholar 
    Cushman, J. H., Tierney, T. A. & Hinds, J. M. Variable effects of feral pig disturbances on native and exotic plants in a California grassland. Ecol. Appl. 14, 1746–1756 (2004).Article 

    Google Scholar 
    Cuevas, M. F., Campos, C. M., Ojeda, R. A. & Jaksic, F. M. Vegetation recovery after 11 years of wild boar exclusion in the Monte Desert, Argentina. Biol. Invasions 22, 1607–1621 (2020).Article 

    Google Scholar 
    Oldfield, C. A. & Evans, J. P. Twelve years of repeated wild hog activity promotes population maintenance of an invasive clonal plant in a coastal dune ecosystem. Ecol. Evol. 6, 2569–2578 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tierney, T. A. & Cushman, J. H. Temporal changes in native and exotic vegetation and soil characteristics following disturbances by feral pigs in a California grassland. Biol. Invasions 8, 1073–1089 (2006).Article 

    Google Scholar 
    Buchholz, S., Seitz, B., Hiller, A., von der Lippe, M. & Kowarik, I. Impacts of dogs on urban grassland ecosystems. Landsc. Urban Plan. 215, 104201 (2021).Article 

    Google Scholar 
    Heinken, T., Schmidt, M., von Oheimb, G., Kriebitzsch, W. U. & Ellenberg, H. Soil seed banks near rubbing trees indicate dispersal of plant species into forests by wild boar. Basic Appl. Ecol. 7, 31–44 (2006).Article 

    Google Scholar 
    Heinken, T. Dispersal of plants by a dog in a deciduous forest. Bot. Jahrb Syst. 122, 449–467 (2000).
    Google Scholar 
    Planchuelo, G., Kowarik, I. & von der Lippe, M. Plant traits, biotopes and urbanization dynamics explain the survival of endangered urban plant populations. J. Appl. Ecol. 57, 1581–1592 (2020).Article 

    Google Scholar 
    Gardiner, T. & Hassall, M. Does microclimate affect grasshopper populations after cutting of hay in improved grassland? J. Insect Conserv. 13, 97–102 (2009).Article 

    Google Scholar 
    Willott, S. J. Thermoregulation in four species of British grasshoppers (Orthoptera: Acrididae). Funct. Ecol. 11, 705–713 (1997).Article 

    Google Scholar 
    Wouters, B. et al. The effects of shifting vegetation mosaics on habitat suitability for coastal dune fauna-a case study on sand lizards (Lacerta agilis). J. Coast. Conserv. 16, 89–99 (2012).Article 

    Google Scholar 
    De Bruyn, GJ. Animal communities in Dutch dunes. in Van der Maarel E (ed) Dry coastal ecosystems: General aspects. (ed. Elsevier, A.) 361–386 (1997).Seidling, W. Recent changes in forest vegetation in an area on the outskirts of Berlin. in H. Sukopp, S. Hejny, & I. Kowarik (Eds.), Plants and plant communities in the urban environment 223 (1990). More

  • in

    Intraspecies characterization of bacteria via evolutionary modeling of protein domains

    Protein domains show a Gompertzian growthThe protein domain RSA distributions of 3368 bacterial genomes were obtained as detailed in the “Materials and methods” section. Briefly, for each bacterial genome we retrieved all the identifiable protein domains. Then, we computed the RSA by counting the number of protein domains belonging to each protein domain family.Three evolutionary hypotheses were tested by fitting the empirical RSAs with the Log-Series [Eq. (7)], the Negative Binomial (Eq. (6)) and the Poisson Log-Normal (Eq. (4)) distribution (Fig. 1a). According to the Akaike Information Criterion (AIC)30, in (99.97%) of bacteria the selected model was the Poisson Log-Normal (Fig. 1b). This model performed better than both the Log-Series and the Negative Binomial and described the data well, with an average (R^2) of 0.97 (minimum (R^2)=0.86). The selection of the Poisson Log-Normal model instead of the Negative Binomial or the Log-Series, implies that the protein domains evolution process is characterized by a Gompertzian density regulation function ((g(x)=gamma ln (x+epsilon ))) rather than a linear one ((g(x)=eta x)). This suggests an asymmetric process in which the proliferation rate for low abundant protein domains is faster than for the high abundant ones.Figure 1Fit of protein domains RSA. (a) Example of protein domains Preston plot fitted with three different distributions: the Poisson Log-Normal, the Negative Binomial and the Log-Series. Results refer to the bacterial genome (text {GCA}_000717515). The Negative Binomial and the Log-Series fit overlap. This implies that the dispersion parameter (alpha) of the Negative Binomial distribution (see Eq. (6)) is close to zero. The mean and the median of the dispersion parameter obtained for the 3368 bacterial genomes are ({2.67times 10^{-4}}) and ({2.62times 10^{-7}}), in agreement with the observed overlap. (b) Distribution of the difference between the AIC obtained with the Poisson Log-Normal model (PL) and the Log-Series (LS) or the Negative Binomial (NB) model, considering all the 3368 bacterial genomes.Full size imageProtein domains deactivation is faster than duplicationThe examination of the Poisson Log-Normal scale ((mu)) and location ((sigma ^2)) parameters (see Eq. (4) and Supplementary Material) estimated by the fitting procedure for each bacterial genome, allows us to reveal further features of the evolutionary process of protein domains.First of all, Fig. 2 shows that (mu) has negative values in all bacterial genomes. Recalling that (mu =r/gamma), where r is the growth rate and (gamma) is the multiplicative constant of the Gompertzian function, which must be positive, this implies that the growth rate of protein domains, r, is also negative. Notice that the growth rate can be expressed as the difference between the birth and the death rate, (r=b-d). Hence, a negative r means that the death rate is greater than the birth rate ((d > b)). In the evolutionary model of protein domains, the birth rate b has the meaning of duplication rate, while the death rate d is the rate at which protein domains are deactivated. A negative r hence implies that protein domain deactivation, which is related to the accumulation of events which disrupt the coding sequence of protein domains, happens at a faster rate than the duplication of the whole protein domain sequence within the genome.Figure 2Distribution of species according to the model parameters. Scatter plot of Poisson Log-Normal parameters (mu) versus (sigma ^2) obtained fitting the protein domains RSAs. Only species represented by at least 10 different strains were included in the plot, for a total of 1173 bacterial genomes which belong to 48 different species. Different colors represent different species as indicated in the legend.Full size imageFurthermore, the plot of (mu) as a function of (sigma ^2) (Fig. 2) highlights the negative linear relationship between (mu) and (sigma ^2). Such relationship can also be deduced mathematically.Starting from the expressions (mu =r/gamma) and (sigma ^2=sigma _e^2 / 2gamma), and after simple algebraic manipulation, we can in fact obtain that (mu = 2rsigma ^2 / sigma _e^2), which explains the negative linear relationship between the two parameters.Besides the negative relationship, the plot of (mu) versus (sigma ^2) also highlights the presence of clusters of bacterial genomes with similar ecological features, which are pictured in the plot as roughly parallel stripes (Fig. 2). When we depict bacterial strains belonging to the same species using the same color, it emerges that the stripes are related to the bacterial taxonomy. This result motivates us to introduce a new approach to bacterial phylogeny based on the ecological modeling of protein domains and the consequent estimation of the parameters (mu) and (sigma ^2).Protein domain RSA and evolutionary distanceWe propose to calculate the pairwise evolutionary distances between bacteria based on three parameters: the Poisson Log-Normal scale and location parameters discussed above ((mu) and (sigma)), and the density of protein domains in the bacterial genome. Such density describes to which extend the whole bacterial genome is populated with protein domains and it hence constitutes an additional feature of the protein domain ecological dynamics. As detailed in the Materials and Methods, the distance between bacteria is specifically computed as the 3D euclidean distance in the scaled space of (mu), (sigma), and protein domain density. In the following, we refer to such distance as ‘RSA distance’.To evaluate the bacterial interrelationships derived from the RSA distances, we compared our results with both the bacterial taxonomic classification and the 16S rRNA gene-based phylogeny. Specifically, starting from the RSA distance matrix we computed a hierarchical clustering of bacteria and we compared the resulting clusters with those obtained from the 16S rRNA gene-based distance matrix. Both clustering results were then compared with the bacterial taxonomic classification.Notice that the usage of both 16S rRNA phylogeny and bacterial taxonomic classification allows us to exploit the complementary information that these two approaches provide, despite their intrinsic connection. Namely, modern microbial taxonomy is mostly based on 16S rRNA gene6 and, on the other hand, the cutoffs commonly used in 16S rRNA phylogeny originated from phenotype-based taxonomy31. However, while taxonomy allows us to assign human interpretable names to bacteria, to associate such names with phenotypic properties, and to classify bacteria into a predefined hierarchy, 16S rRNA phylogeny provides a quantitative measurement of the evolutionary distance between bacteria that can be compared with the RSA distance without setting any pre-defined threshold. Moreover, the usage of 16S rRNA phylogeny allows us to investigate the bacterial relationships at the intraspecies level, for which the taxonomic classification is not available.As detailed in the Materials and Methods, 16S rRNA distances were calculated based on the bacterial 16S rRNA gene reference sequences, following the standard procedure32. Taxonomic classification, instead, was retrieved from NCBI and included the following levels: phylum, class, order, family, genus and species. In order to obtain a comparable number of clusters from all three methods, we considered separately each taxonomic level and we cut the 16S rRNA and the RSA -based hierarchical trees so as to get a number of clusters equivalent to the number of taxa available at the selected taxonomic level.At each taxonomic level, the Normalized Mutual Information (NMI) was used as a measurement of agreement between different clustering solutions33. Notice that, while the theoretical range of the NMI score is the interval (left[ 0,1right]), NMI is biased towards clustering solutions with more clusters and fewer data points34. Consequently, the baseline of NMI score in practise is not zero and relatively high NMI scores can be an artifact caused by the low ratio between number of bacteria and number of taxonomic groups. To make the comparison fair, we used simulations to calculate the baseline NMI for each taxonomic level (box plots of Fig. 3).As expected by their intrinsic relationship, taxonomy and 16S rRNA phylogeny show high agreement (red dots in Fig. 3). RSA-based clusters, instead, show a certain deviation from both taxonomy (blue dots in Fig. 3) and phylogeny (green dots in Fig. 3). For both comparisons, however, the NMI scores are still evidently higher than the baseline, signifying that the RSA model captures phylogenetic signals to a certain degree. Comparing the obtained NMI scores with the baseline, we notice that the agreement between RSA-based clusters and both taxonomy and phylogeny increases at lower taxonomic levels, reaching the maximum at species level. Taking as ground truth the taxonomic classification, the total purity of the RSA-based clusters at species level is 0.65, signifying that 65% of bacteria are correctly classified.Figure 3Comparison between the three clustering results at different taxonomic levels. NMI scores (y-axis) are calculated as a measurement of agreement between clusters based on: RSA method and taxonomy (blue), 16S rRNA gene and taxonomy (red), RSA method and 16S rRNA gene (green). Different taxonomic levels are considered for the comparison: phylum, class, order, family, genus and species (x-axis). The box plots represent the baselines of NMI score and are based on simulations.Full size imageTo assess the robustness and stability of the RSA-based phylogeny, with regard to the choice of protein domains, we randomly selected subsamples of protein domains in different proportions (from (10%) to 90% of all protein domains). The reconstructed phylogenetic trees were then compared with the phylogenetic tree obtained using all protein domains (see Materials and Methods for details), and the correlation between the trees was calculated (see Supplementary Fig. S6). As expected, with larger proportions of protein domains taken into account, the correlation between subsample-based phylogeny and base phylogeny increases. For larger subsampling proportions, the compared phylogenetic trees are in good agreement: for a subsample with 90% of protein domains, the mean cophenetic correlation is equal to 0.74, and the mean common-nodes-correlation is equal to 0.68. We notice that the common-nodes-correlation is more stable compared to the cophenetic correlation, as expected since cophenetic correlation is affected by the height of the phylogenetic trees. The results suggest that the overall structure of the phylogenies is stable even for smaller subsampling proportions, while subsampling height of the branches correlates with the full-data height only at larger subsampling proportions.To evaluate the intraspecies composition obtained from the RSA-based clustering, we selected the subset of species for which at least 10 different strains were present in our data (48 species). Among them, we selected the species where hierarchical clustering showed a clear separation of clusters (including outliers) and for which published literature characterizing at least some of the strains was available (6 out of 48 species). For these 6 species, we again assessed the robustness and stability of RSA phylogenies, as detailed in the “Materials and methods” section. Our results suggest (see Supplementary Fig. S7) that the subsample-based phylogenies are in good agreement with the full-data phylogenies, especially for larger subsampling proportions. We notice the correlations is larger than in the case of phylogenetic trees for randomly selected 100 bacteria (Supplementary Fig. S6), especially for certain species (i.e., Xanthomonas citri). This could be attributed to the smaller size of the phylogenetic tree. However, the species with similar phylogenetic tree size still show differences in correlation (i.e., Xanthomonas citri and Francisella tularensis), suggesting that the RSA-based distance matrix between the strains of Xanthomonas citri carries stronger phylogenetic signal. Comparing 6 observed species with the randomly sampled subsets of 100 bacteria, we can analogously conclude that the RSA-captured phylogenetic signal is stronger within the species. In the following, we discuss the results obtained for the 6 selected bacterial species in more details.Figure 4(Previous page.) Hierarchical clustering of bacteria at the intraspecies level, comparing solutions obtained by RSA and 16S rRNA method. Each subplot shows a tanglegram with RSA-based dendrogram on the left and 16S rRNA-based dendrogram on the right. Lines connect the same bacteria from two dendrograms. The color/type of the line represents the feature of the bacterium it connects. (a) 22 strains of Xanthomonas citri belong to two different pathovars: A (orange) and (hbox {A}^{mathrm{W}}) (purple). (b) 10 strains of Chlamydia pneumoniae are isolated from different tissues: conjuctival (yellow), respiratory (magenta) and vascular (violet). 9 strains represented with solid line are human (Homo sapiens) pathogens while the one strain represented by dashed line is koala (Phascolarctos cinereus) pathogen. (c) 14 strains of Vibrio cholerae are colored based on their karyotype. 11 strains have two circular chromosomes Chr1 ((sim 3) Mb) and Chr2 ((sim 1) Mb) (magenta). 2 strains have one (sim)4 Mb long circular chromosome (yellow). One strain has three chromosomes Chr1 ((sim)3 Mb), Chr2 ((sim)1 Mb) and Chr3 ((sim)1 Mb) (violet).Full size imageRSA-based method distinguishes subspecies infecting different hostsXanthomonas citri subsp. citri (XCC) and Chlamydia pneumoniae (Cpn) are two species whose subspecies can infect different hosts. Here we show that the RSA-based method correctly discriminates such subspecies even when their divergence is not detected comparing the 16S rRNA gene sequences.Xanthomonas citri subsp. citri (XCC) is a causal agent of citrus canker type A, a bacterial disease affecting different plants from the genus Citrus. While citrus canker A infects most citrus species, two of its variants, A* and (hbox {A}^{mathrm{W}}), have a much more limited host range with XCC pathotype (hbox {A}^{mathrm{W}}) infecting only Key lime (C. aurantifolia) and alemow (C. macrophylla)2. Our data set includes 17 strains of XCC pathotype A and 5 strains of XCC pathotype (hbox {A}^{mathrm{W}})2. RSA-based clustering of the 22 XCC strains identifies two separated clusters (Fig. 4a, left) which coincide with the two XCC pathotypes. Concurrently, clustering based on 16S rRNA gene fails to identify the two pathotypes of XCC (Fig. 4a, right). This suggests that even though pathotypes A and (hbox {A}^{mathrm{W}}) have different hosts, their diversification is not reflected in the variability of the 16S rRNA gene. On the other hand, modeling the protein domain RSA of the two pathotypes succesfully captures the different functions of their proteomes.Another important aspect of the citrus canker is the geographical spread of the disease. The 22 strains of XCC included in our data set have diverse geographical origin. While all (hbox {A}^{mathrm{W}}) strains were sampled from USA, strains of pathotype A originate from USA, Brazil and China. RSA clustering of 17 A-type strains colored by their sampling location shows a geographical pattern (Supplementary Fig. S2) similar to the one obtained by Patané et al.2 using a maximum likelihood tree based on 1785 concatenated unicopy genes, with the only exception of strain jx-6 ((text {GCA}_001028285)) coming from China.For what concerns Chlamydia pneumoniae (Cpn), this is an obligate intercellular parasite which is widespread in human population and causes acute respiratory disease. Besides humans, different animal species can be infected with Chlamydia pneumoniae. Our data set includes 9 strains which infect humans (Homo sapiens) and 1 strain isolated from koala (Phascolarctos cinereus). RSA-based clustering clearly separates such isolate from the group of highly similar human isolates (Fig. 4b, left). This result is confirmed by 16S rRNA-based clustering (Fig. 4b, right) and is in agreeement with previous results in which the comparison of four human-derived isolates and the koala strain LPCoLN ((text {GCA}_000024145)) through whole-genome sequencing showed a much higher variation between human and koala-derived strains than within the human-derived strains35.Another peculiarity of Chlamydia pneumoniae is tissue tropism. The human-derived strains of Chlamydia pneumoniae can in fact be divided into conjuctival, raspiratory and vascular based on their tissue of origin. Cpn tissue tropism was the focus of the study conducted by Weinmaier et al., where whole-genome sequences of multiple Cpn strains isolated from different human anatomical sites were compared and animal isolates were used as outgroup3. Weinmaier et al. found a good agreement between the anatomical origin of strains and the maximum likelihood phylogenetic tree based on all SNPs. However, they could not obtain a clear separation between anatomical subgroups of Cpn. Our results show that the RSA-based method partially succeeds in separating subspecies related to different tissues (Fig. 4b, left). The RSA-based dendrogram, in fact, shows a cluster of four respiratory bacteria. However, it does not separate the other subspecies by infection site, suggesting that tissue tropism is not entirely captured by our method.RSA-based method discriminates subspecies with different genome compositionIn some cases, subspecies of the same species are characterized by global differences in the genome composition. This is, for example, the case of Vibrio cholerae and Buchnera aphidicola. Here, we show that the RSA-based model is able to capture such differences and to discriminate subspecies with known different genomic peculiarities.Vibrio cholerae is the causative agent of cholera disease. Its genome is normally composed of two chromosomes: Chr1 ((sim 3) Mb) and Chr2 ((sim 1) Mb). However, some strains show a different karyotype. The two strains (1154text {-}74) ((text {GCA}_000969235)) and (10432text {-}62) ((text {GCA}_000969265)), for instance, underwent the process of chromosomal fusion and possess only one (sim 4) Mb long circular chromosome, which shows a high degree of synteny with the two chromosomes of the more common strains36. The strain (text {TSY}216) ((text {GCA}001045415)), on the other hand, besides having the original two chromosomes, also contains an additional (sim 1) Mb long replicon, which does not share any conserved region with Chr1 and Chr237. For these reasons, we expect the single- and two-chromosome strains to be phylogenetically closer to each other than to the three-chromosome strain, which contains the extra replicon. The 16S rRNA gene-based clustering, however, does not identify any clear separation between the three types of strains (Fig. 4c, right). As a matter of fact, all the 16S rRNA gene copies of all the Vibrio cholerae strains included in our data set are located on (sim 3) Mb long chromosome, which shows high synteny across all strains. It is therefore not surprising that the comparison of the 16S rRNA genes does not capture the global genomic differences that exist between the considered strains. On the other hand, the results obtained with the RSA-based clustering show a clear distinction of the strains with different genomic structure (Fig. 4c, left). The reason for the success of the RSA-based method lies in the theoretical definition of RSA-based distance. In fact, the RSA-based distance depends on the Poisson Log-Normal location parameter (sigma ^2), which increases with the genome length (Supplementary Fig. S1): by definition, (sigma ^2 = sigma _e^2 / 2gamma), and, while the environmental noise (sigma _e^2) can be reasonably considered independent of the genome length, the density regulation (gamma) is expected to be stronger for smaller genomes, which repesent a scarcer environment with less resources.Buchnera aphidicola is a bacterial species in mutualistic endosymbiotic relationship with different aphids (members of superfamily Aphidoidea). As many endosymbionts, Buchnera aphidicola underwent the process of genome reduction as an adaptation to the host-associated lifestyle and has a genome with length ( More

  • in

    Spatial coalescent connectivity through multi-generation dispersal modelling predicts gene flow across marine phyla

    Hellberg, M. E. Gene flow and isolation among populations of marine animals. Annu. Rev. Ecol. Evol. Syst. 40, 291–310 (2009).
    Google Scholar 
    Lenormand, T. Gene flow and the limits to natural selection. Trends Ecol. Evol. 17, 183–189 (2002).
    Google Scholar 
    Lowe, W. H., Kovach, R. P. & Allendorf, F. W. Population genetics and demography unite ecology and evolution. Trends Ecol. Evol. 32, 141–152 (2017).PubMed 

    Google Scholar 
    Slatkin, M. Gene flow and the geographic structure of natural populations. Science 236, 787–792 (1987).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Slatkin, M. Gene flow in natural populations. Annu. Rev. Ecol. Syst. 1, 393–430 (1985).
    Google Scholar 
    Duputié, A. & Massol, F. An empiricist’s guide to theoretical predictions on the evolution of dispersal. Interface Focus 3, 20130028 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Lowe, W. H. & Allendorf, F. W. What can genetics tell us about population connectivity? Mol. Ecol. 19, 3038–3051 (2010).PubMed 

    Google Scholar 
    Selkoe, K. A. et al. A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar. Ecol. Prog. Ser. 554, 1–19 (2016).ADS 

    Google Scholar 
    Weersing, K. & Toonen, R. J. Population genetics, larval dispersal, and connectivity in marine systems. Mar. Ecol. Prog. Ser. 393, 1–12 (2009).ADS 

    Google Scholar 
    Whitlock, M. C. & Mccauley, D. E. Indirect measures of gene flow and migration: FST≠1/(4Nm+1). Heredity 82, 117–125 (1999).PubMed 

    Google Scholar 
    Benestan, L. et al. Restricted dispersal in a sea of gene flow. Proc. R. Soc. B Biol. Sci. 288, 20210458 (2021).CAS 

    Google Scholar 
    Bode, M. et al. Successful validation of a larval dispersal model using genetic parentage data. PLoS Biol. 17, e3000380 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gagnaire, P.-A. Comparative genomics approach to evolutionary process connectivity. Evol. Appl. 13, 1320–1334 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Pinsky, M. L. et al. Marine dispersal scales are congruent over evolutionary and ecological time. Curr. Biol. 27, 149–154 (2017).CAS 
    PubMed 

    Google Scholar 
    Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M. & Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 88, 310–326 (2013).PubMed 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1, 443–466 (2009).ADS 

    Google Scholar 
    Tomback, D. F., Anderies, A. J., Carsey, K. S., Powell, M. L. & Mellmann-Brown, S. Delayed seed germination in whitebark pine and regeneration patterns following the yellowstone fires. Ecology 82, 2587–2600 (2001).
    Google Scholar 
    Viana, D. S., Santamaría, L. & Figuerola, J. Migratory birds as global dispersal vectors. Trends Ecol. Evol. 31, 763–775 (2016).PubMed 

    Google Scholar 
    Nathan, R. et al. Mechanisms of long-distance dispersal of seeds by wind. Nature 418, 409–413 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cowen, R. K., Paris, C. B. & Srinivasan, A. Scaling of connectivity in marine populations. Science 311, 522–527 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).PubMed 

    Google Scholar 
    Hidalgo, M. et al. Accounting for ocean connectivity and hydroclimate in fish recruitment fluctuations within transboundary metapopulations. Ecol. Appl. 29, e01913 (2019).Legrand, T., Di Franco, A., Ser-Giacomi, E., Caló, A. & Rossi, V. A multidisciplinary analytical framework to delineate spawning areas and quantify larval dispersal in coastal fish. Mar. Environ. Res. 151, 104761 (2019).CAS 
    PubMed 

    Google Scholar 
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).CAS 
    PubMed 

    Google Scholar 
    Crandall, E. D., Treml, E. A. & Barber, P. H. Coalescent and biophysical models of stepping-stone gene flow in neritid snails. Mol. Ecol. 21, 5579–5598 (2012).PubMed 

    Google Scholar 
    Smith, T. M. et al. Rare long-distance dispersal of a marine angiosperm across the Pacific Ocean. Glob. Ecol. Biogeogr. 27, 487–496 (2018).
    Google Scholar 
    Saura, S., Bodin, Ö. & Fortin, M.-J. EDITOR’S CHOICE: Stepping stones are crucial for species’ long‐distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).
    Google Scholar 
    Lett, C., Barrier, N. & Bahlali, M. Converging approaches for modeling the dispersal of propagules in air and sea. Ecol. Model. 415, 108858 (2020).
    Google Scholar 
    D’Aloia, C. C. et al. Patterns, causes, and consequences of marine larval dispersal. Proc. Natl Acad. Sci. USA 112, 13940–13945 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kool, J. T., Moilanen, A. & Treml, E. A. Population connectivity: recent advances and new perspectives. Landsc. Ecol. 28, 165–185 (2013).
    Google Scholar 
    Mari, L., Melià, P., Fraschetti, S., Gatto, M. & Casagrandi, R. Spatial patterns and temporal variability of seagrass connectivity in the Mediterranean Sea. Divers. Distrib. 26, 169–182 (2020).
    Google Scholar 
    Nathan, R., Klein, E. K., Robledo-Arnuncio, J. J. & Revilla, E. Dispersal Kernels. vol. 15 (Oxford University Press Oxford, UK, 2012).Boulanger, E., Dalongeville, A., Andrello, M., Mouillot, D. & Manel, S. Spatial graphs highlight how multi-generational dispersal shapes landscape genetic patterns. Ecography 43, 1167–1179 (2020).
    Google Scholar 
    Jahnke, M. et al. Seascape genetics and biophysical connectivity modelling support conservation of the seagrass Zostera marina in the Skagerrak–Kattegat region of the eastern North Sea. Evol. Appl. 11, 645–661 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Jahnke, M. & Jonsson, P. R. Biophysical models of dispersal contribute to seascape genetic analyses. Philos. Trans. R. Soc. B Biol. Sci. 377, 20210024 (2022).
    Google Scholar 
    Buonomo, R. et al. Habitat continuity and stepping-stone oceanographic distances explain population genetic connectivity of the brown alga Cystoseira amentacea. Mol. Ecol. 26, 766–780 (2017).PubMed 

    Google Scholar 
    Assis, J. et al. Ocean currents shape the genetic structure of a kelp in southwestern Africa. J. Biogeogr. 49, 822–835 (2022).
    Google Scholar 
    Ser-Giacomi, E., Vasile, R., Hernández-García, E. & López, C. Most probable paths in temporal weighted networks: An application to ocean transport. Phys. Rev. E 92, 012818 (2015).ADS 

    Google Scholar 
    McRae, B. H. & Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl Acad. Sci. USA 104, 19885–19890 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foster, N. L. et al. Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. Mol. Ecol. 21, 1143–1157 (2012).PubMed 

    Google Scholar 
    Kool, J. T., Paris, C. B., Andréfouët, S. & Cowen, R. K. Complex migration and the development of genetic structure in subdivided populations: an example from Caribbean coral reef ecosystems. Ecography 33, 597–606 (2010).
    Google Scholar 
    White, J. W., Botsford, L. W., Hastings, A. & Largier, J. L. Population persistence in marine reserve networks: incorporating spatial heterogeneities in larval dispersal. Mar. Ecol. Prog. Ser. 398, 49–67 (2010).ADS 

    Google Scholar 
    Ser-Giacomi, E., Legrand, T., Hernández-Carrasco, I. & Rossi, V. Explicit and implicit network connectivity: Analytical formulation and application to transport processes. Phys. Rev. E 103, 042309 (2021).ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 
    Battiston, F. et al. Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mayfield, M. M. & Stouffer, D. B. Higher-order interactions capture unexplained complexity in diverse communities. Nat. Ecol. Evol. 1, 1–7 (2017).
    Google Scholar 
    Rousset, F. Inferences from spatial population genetics. Handb. Stat. Genet. 4, 23 (2001).
    Google Scholar 
    Dubois, M. et al. Linking basin-scale connectivity, oceanography and population dynamics for the conservation and management of marine ecosystems. Glob. Ecol. Biogeogr. 25, 503–515 (2016).
    Google Scholar 
    Monroy, P., Rossi, V., Ser-Giacomi, E., López, C. & Hernández-García, E. Sensitivity and robustness of larval connectivity diagnostics obtained from Lagrangian Flow Networks. ICES J. Mar. Sci. 74, 1763–1779 (2017).
    Google Scholar 
    Rossi, V., Ser-Giacomi, E., López, C. & Hernández-García, E. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. Geophys. Res. Lett. 41, 2883–2891 (2014).ADS 

    Google Scholar 
    Ser-Giacomi, E., Rossi, V., Lopez, C. & Hernandez-Garcia, E. Flow networks: A characterization of geophysical fluid transport. Chaos Interdiscip. J. Nonlinear Sci. 25, 036404 (2015).
    Google Scholar 
    Oddo, P. et al. A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting. Ocean Sci. 5, 461–473 (2009).Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reem, E., Douek, J., Paz, G., Katzir, G. & Rinkevich, B. Phylogenetics, biogeography and population genetics of the ascidian Botryllus schlosseri in the Mediterranean Sea and beyond. Mol. Phylogenet. Evol. 107, 221–231 (2017).PubMed 

    Google Scholar 
    Villamor, A., Costantini, F. & Abbiati, M. Genetic structuring across marine biogeographic boundaries in rocky shore invertebrates. PLoS ONE 9, e101135 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Borrero-Pérez, G. H., González-Wangüemert, M., Marcos, C. & Pérez-Ruzafa, A. Phylogeography of the Atlanto-Mediterranean sea cucumber Holothuria (Holothuria) mammata: the combined effects of historical processes and current oceanographical pattern: PHYLOGEOGRAPHY OF HOLOTHURIA MAMMATA. Mol. Ecol. 20, 1964–1975 (2011).PubMed 

    Google Scholar 
    Carreras, C. et al. East is East and West is West: Population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). Divers. Distrib. 26, 382–398 (2020).
    Google Scholar 
    Aurelle, D. et al. Phylogeography of the red coral (Corallium rubrum): inferences on the evolutionary history of a temperate gorgonian. Genetica 139, 855–869 (2011).CAS 
    PubMed 

    Google Scholar 
    Costantini, F., Carlesi, L. & Abbiati, M. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum. PLoS ONE 8, e61546 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durand, J., Blel, H., Shen, K., Koutrakis, E. & Guinand, B. Population genetic structure of Mugil cephalus in the Mediterranean and Black Seas: a single mitochondrial clade and many nuclear barriers. Mar. Ecol. Prog. Ser. 474, 243–261 (2013).ADS 

    Google Scholar 
    Alberto, F. et al. Genetic differentiation and secondary contact zone in the seagrass Cymodocea nodosa across the Mediterranean–Atlantic transition region. J. Biogeogr. 35, 1279–1294 (2008).
    Google Scholar 
    McRae, B. H. Isolation by resistance. Evolution 60, 1551–1561 (2006).PubMed 

    Google Scholar 
    Dalongeville, A. et al. Geographic isolation and larval dispersal shape seascape genetic patterns differently according to spatial scale. Evol. Appl. 11, 1437–1447 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jenkins, D. G. et al. A meta‐analysis of isolation by distance: relic or reference standard for landscape genetics? Ecography 33, 315–320 (2010).
    Google Scholar 
    Selkoe, K. A. & Toonen, R. J. Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar. Ecol. Prog. Ser. 436, 291–305 (2011).ADS 

    Google Scholar 
    Alberto, F. et al. Isolation by oceanographic distance explains genetic structure for Macrocystis pyrifera in the Santa Barbara Channel. Mol. Ecol. 20, 2543–2554 (2011).PubMed 

    Google Scholar 
    Selkoe, K. A. et al. Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol. Ecol. 19, 3708–3726 (2010).PubMed 

    Google Scholar 
    Xuereb, A. et al. Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate (Parastichopus californicus). Mol. Ecol. 27, 2347–2364 (2018).PubMed 

    Google Scholar 
    Pascual, M., Rives, B., Schunter, C. & Macpherson, E. Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 12, e0176419 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, I. J., Glor, R. E. & Losos, J. B. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol. Lett. 16, 175–182 (2013).PubMed 

    Google Scholar 
    Bierne, N., Welch, J., Loire, E., Bonhomme, F. & David, P. The coupling hypothesis: why genome scans may fail to map local adaptation genes. Mol. Ecol. 20, 2044–2072 (2011).PubMed 

    Google Scholar 
    Sen Gupta, A. et al. Future changes to the upper ocean Western Boundary Currents across two generations of climate models. Sci. Rep. 11, 9538 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ser-Giacomi, E. et al. Impact of climate change on surface stirring and transport in the Mediterranean Sea. Geophys. Res. Lett. 47, e2020GL089941 (2020).ADS 
    CAS 

    Google Scholar 
    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).PubMed 

    Google Scholar 
    Wright, S. Evolution in mendelian populations. Genetics 16, 97–159 (1931).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eldon, B., Riquet, F., Yearsley, J., Jollivet, D. & Broquet, T. Current hypotheses to explain genetic chaos under the sea. Curr. Zool. 62, 551–566 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Schunter, C. et al. A novel integrative approach elucidates fine-scale dispersal patchiness in marine populations. Sci. Rep. 9, 1–10 (2019).ADS 
    CAS 

    Google Scholar 
    Jackson, T. M., Roegner, G. C. & O’Malley, K. G. Evidence for interannual variation in genetic structure of Dungeness crab (Cancer magister) along the California Current System. Mol. Ecol. 27, 352–368 (2018).CAS 
    PubMed 

    Google Scholar 
    Pascual, M. et al. Temporal and spatial genetic differentiation in the crab Liocarcinus depurator across the Atlantic-Mediterranean transition. Sci. Rep. 6, 29892 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Portela, R. et al. Spatio-temporal patterns of genetic variation in Arbacia lixula, a thermophilous sea urchin in expansion in the Mediterranean. Heredity 122, 244–259 (2019).PubMed 

    Google Scholar 
    Carroll, S. P., Hendry, A. P., Reznick, D. N. & Fox, C. W. Evolution on ecological time-scales. Funct. Ecol. 21, 387–393 (2007).
    Google Scholar 
    Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish. Fish. 9, 333–362 (2008).
    Google Scholar 
    Weber, A. A.-T., Mérigot, B., Valière, S. & Chenuil, A. Influence of the larval phase on connectivity: strong differences in the genetic structure of brooders and broadcasters in the Ophioderma longicauda species complex. Mol. Ecol. 24, 6080–6094 (2015).CAS 
    PubMed 

    Google Scholar 
    Marzouk, Z., Aurelle, D., Said, K. & Chenuil, A. Cryptic lineages and high population genetic structure in the exploited marine snail Hexaplex trunculus (Gastropoda: Muricidae). Biol. J. Linn. Soc. 122, 411–428 (2017).
    Google Scholar 
    Cowen, R. K., Lwiza, K. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed? Science 287, 857–859 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pante, E. & Simon-Bouhet, B. marmap: a package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8, e73051 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Susini, M.-L., Thibaut, T., Meinesz, A. & Forcioli, D. A preliminary study of genetic diversity in Cystoseira amentacea (C. Agardh) Bory var. stricta Montagne (Fucales, Phaeophyceae) using random amplified polymorphic DNA. Phycologia 46, 605–611 (2007).
    Google Scholar  More

  • in

    Tropicalization of demersal megafauna in the western South Atlantic since 2013

    Catches throughout the study period reached maximum levels in 2006–2012, decreasing sharply thereafter reaching low levels in 2019 (Supplementary Fig. 1). The whitemouth croaker (Micropogonias furnieri) and the argentine croaker (Umbrina canosai) were the dominant species in the catches. Jointly, they represented, on average, over 50% of the total landed biomass in the period. This biomass included other 78 species: 62 teleosts, 3 elasmobranchs, 8 crustaceans and 5 molluscs. Overall, catch composition maintained a 1.5:1 ratio of species with warm- and cold-water affinities from the beginning of the time series until 2012. After that, warm-water species abundance increased in the catches changing the resulting ratio to 4.1:1 in 2019 (Fig. 2).Fig. 2: Annual variation of the proportion of species with cold- and warm-water affinities in the catches of the demersal fisheries in Brazilian Meridional Margin (BMM).Catches were monitored between 2000 and 2019 in the harbours of Santa Catarina State, southern Brazil. Colours represent “warm-” (thermal preferences  > 21.1 °C) and “cold-” (thermal preferences < 21.1 °C) water affinities.Full size imageMean temperature of the catchesAnnual MTC oscillated around 21 °C (SD = 0.63 °C) between 2000 and 2019. Until 2013, the MTC time-series exhibited peaks (2005, 2010) and troughs (2008, 2013), but no particular trend was evidenced. After 2013, MTC increased continuously reaching maximum values in 2019 (Fig. 3). The segmented regression model defined one significant discontinuity in 2012 (95% CI: 2010–2015), which delimited an early period (2000–2012) when MTC oscillated with no significant trend (p-value = 0.789), from a late period (2013–2019) when MTC increased sharply at a 0.41 °C yr−1 (p-value  More

  • in

    Saltwater intrusion indirectly intensifies Phragmites australis invasion via alteration of soil microbes

    Dookes, J. S. & Mooney, H. A. Does global change increase the success of biological invaders?. Trends Ecol. Evol. 14, 135–139 (1999).Article 

    Google Scholar 
    Gallien, L. & Carboni, M. The community ecology of invasive species: Where are we and what’s next?. Ecography 40, 335–352 (2017).Article 

    Google Scholar 
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed 
    Article 

    Google Scholar 
    Adler, P. B., Dalgleish, H. J. & Ellner, S. P. Forecasting plant community impacts of climate variability and change: When do competitive interactions matter?. J. Ecol. 100, 478–487 (2012).Article 

    Google Scholar 
    Cahill, A. E., Aiello-Lammens, M. E., Fisher-Reid, M. C. & Hua, X. How does climate change cause extinction?. Proc. Biol. Sci. 280, 20121890 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: Altered species interactions are more important than direct effects. Glob. Chang. Biol. 20, 2221–2229 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Chu, C. et al. Direct effects dominate responses to climate perturbations in grassland plant communities. Nat. Commun. 7, 11766 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gunderson, A. R., Tsukimura, B. & Stillman, J. H. Indirect effects of global change: From physiological and behavioral mechanisms to ecological consequences. Integr. Comp. Biol. 57, 48–54 (2017).PubMed 
    Article 

    Google Scholar 
    Suttle, K. B., Thomsen, M. A. & Power, M. E. Species interactions reverse grassland responses to changing climate. Science 315, 640–642 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Farrer, E. C. et al. Indirect effects of global change accumulate to alter plant diversity but not ecosystem function in alpine tundra. J. Ecol. 103, 351–360 (2015).CAS 
    Article 

    Google Scholar 
    Sentis, A., Montoya, J. M. & Lurgi, M. Warming indirectly increases invasion success in food webs. Proc. R. Soc. B. 288, 1947 (2021).Article 

    Google Scholar 
    Ohgushi, T. Indirect interaction webs: Herbivore-induced effects through trait change in plants. Annu. Rev. Ecol. Evol. Syst. 36, 81–105 (2005).Article 

    Google Scholar 
    Classen, A. et al. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?. Ecosphere 6, 1–21 (2015).Article 

    Google Scholar 
    Van-der-Putten, W. H., Macel, M. & Visser, M. E. Predicting species distributions and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philos. Trans. R. Soc. B. 365, 2025–2034 (2010).Article 

    Google Scholar 
    Rudgers, J. A. et al. Climate disruption of plant-microbe interactions. Annu. Rev. Ecol. Evol. Syst. 51, 561–586 (2020).Article 

    Google Scholar 
    Deltedesco, E. et al. Soil microbial community structure and function mainly respond to indirect effects in a multifactorial climate manipulation experiment. Soil Biol. Biochem. 142, 1–12 (2020).Article 

    Google Scholar 
    Fahey, C., Koyama, A., Antunes, P. M., Dunfield, K. & Flory, S. L. Plant communities mediate the interactive effects of invasion and drought on soil microbial communities. ISME 14, 1396–1409 (2020).Article 

    Google Scholar 
    Nuccio, E. E. et al. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ. Microbiol. 15, 1870–1881 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bennett, J. A. & Cahill, J. F. Fungal effects on plant–plant interactions contribute to grassland plant abundances: Evidence from the field. J. Ecol. 104, 755–764 (2016).Article 

    Google Scholar 
    Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. New Phytol. 170, 445–457 (2006).PubMed 
    Article 

    Google Scholar 
    Inderjit, C. J. F. Linkages of plant–soil feedbacks and underlying invasion mechanisms. AoB Plants 7, 1–8 (2015).CAS 
    Article 

    Google Scholar 
    Lekberg, Y. et al. Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecol. Lett. 21, 1268–1281 (2018).PubMed 
    Article 

    Google Scholar 
    Teh, S. Y. & Koh, H. L. Climate change and soil salinization: Impact on agriculture, water, and food security. IJAFP 2, 1–9 (2016).
    Google Scholar 
    White, E. Restore or retreat? Saltwater intrusion and coastal management in coastal wetlands. Ecosyst. Health Sustain. https://doi.org/10.1002/ehs2.1258 (2016).Article 

    Google Scholar 
    Donnolly, J. P. & Bertness, M. D. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. PNAS 98, 14218–14223 (2001).ADS 
    Article 

    Google Scholar 
    Sharpe, P. J. & Baldwin, A. H. Tidal marsh plant community response to sea-level rise: A mesocosm study. Aquat. Bot. 101, 34–40 (2012).Article 

    Google Scholar 
    Birnbaum, C., Waryszak, P. & Farrer, E. C. Direct and indirect effects of climate change in coastal wetlands: Will climate change influence wetlands by affecting plant invasion?. Wetlands 59, 1–11 (2021).
    Google Scholar 
    Noto, A. E. & Shurin, J. B. Early stages of sea-level rise lead to decreased salt marsh plant diversity through stronger competition in Mediterranean climate marshes. PLoS ONE 12, 1–11 (2017).Article 

    Google Scholar 
    Stagg, C. L., Baustian, M. M., Perry, C. L., Carruthers, T. J. B. & Hall, C. T. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient. J. Ecol. 106, 655–670 (2017).Article 

    Google Scholar 
    Neubauer, S. C., Piehler, M. F., Smyth, A. R. & Franklin, R. B. Saltwater intrusion modifies microbial community structure and decreases denitrification in tidal freshwater marshes. Ecosystems 22, 912–928 (2019).CAS 
    Article 

    Google Scholar 
    Rath, K. M., Fierer, N., Murphy, D. V. & Rousk, J. Linking bacterial community composition to soil salinity along environmental gradients. ISME. 13, 836–846 (2019).CAS 
    Article 

    Google Scholar 
    Meyerson, L. A., Cronin, J. T. & Pysek, P. Phragmites australis as a model organism for studying plant invasions. Biol. Invasions 18, 2421–2431 (2016).Article 

    Google Scholar 
    Soares, M. A. et al. Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biol. Invasions 18, 2689–2702 (2016).Article 

    Google Scholar 
    Gonzalez, M., Baldwin, A. H., Maul, J. E. & Yarwood, S. A. Dark septate endophyte improves salt tolerance of native and invasive lineages of Phragmites australis. ISME 14, 1943–1954 (2020).Article 

    Google Scholar 
    Farrer, E. C. et al. Plant and microbial impacts of an invasive species vary across an environmental gradient. J. Ecol. 109, 2163–2176 (2021).Article 

    Google Scholar 
    Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, L. M. & Reynolds, H. L. Plant–soil feedbacks shift from negative to positive with decreasing light in forest understory species. Ecology 96, 2523–2532 (2015).PubMed 
    Article 

    Google Scholar 
    Parepa, M., Schaffner, U. & Bossdorf, O. Help from underground: Soil biota facilitate knotweed invasion. Ecosphere 4, 1–11 (2013).Article 

    Google Scholar 
    Larios, L. & Suding, K. N. Competition and soil resource environment alter plant-soil feedbacks for native and exotic grasses. AoB Plants 7, 1–9 (2014).
    Google Scholar 
    Hoeksema, J. D. Ongoing coevolution in mycorrhizal interactions. New Phytol. 187, 286–300 (2010).PubMed 
    Article 

    Google Scholar 
    Van der Heijden, M. G. A., Martin, F. M., Selosse, M. & Sanders, I. R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 205, 1406–1423 (2015).PubMed 
    Article 

    Google Scholar 
    Hoeksema, J. D. et al. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun. Biol. 1(116), 2018. https://doi.org/10.1038/s42003-018-0120-9 (2018).Article 

    Google Scholar 
    Remke, M. J., Johnson, N. C., Wright, J., Williamson, M. & Bowker, M. A. Sympatric pairings of dryland grass populations, mycorrhizal fungi and associated soil biota enhance mutualism and ameliorate drought stress. J. Ecol. 109, 1210–1223 (2020).Article 

    Google Scholar 
    Farrer, E. C. & Suding, K. N. Teasing apart plant community responses to N enrichment: The roles of resource limitation, competition and soil microbes. Ecol. Lett. 19, 1287–1296 (2016).PubMed 
    Article 

    Google Scholar 
    Hawkins, A. P. & Crawford, K. M. Interactions between plants and soil microbes may alter the relative importance of intraspecific and interspecific plant competition in a changing climate. AoB Plants. 10, 39. https://doi.org/10.1093/aobpla/ply039 (2018).Article 

    Google Scholar 
    Wu, Y. et al. Long-term nitrogen and sulfur deposition increased root-associated pathogen diversity and changed mutualistic fungal diversity in a boreal forest. Soil Biol. Biogeochem. 115, 108163. https://doi.org/10.1016/j.soilbio.2021.108163 (2021).CAS 
    Article 

    Google Scholar 
    Allen, W. J., Meyerson, L. A., Flick, A. J. & Cronin, J. T. Intraspecific variation in indirect plant–soil feedbacks influences a wetland plant invasion. Ecology 99, 1430–1440 (2018).PubMed 
    Article 

    Google Scholar 
    Crawford, K. M. & Knight, T. M. Competition overwhelms the positive plant-soil feedback generated by an invasive plant. Oecologia 183, 211–220 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Bertness, M. D. & Shumway, S. W. Competition and facilitation in marsh plants. Am. Nat. 142, 718–724 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Uddin, M. N., Robinson, R. W., Buultjens, A., Al-Harun, M. A. Y. & Shampa, S. H. Role of allelopathy of Phragmites australis in its invasion processes. J. Exp. Mar. Biol. Ecol. 486, 237–244 (2017).Article 

    Google Scholar 
    Howard, R. J. & Rafferty, P. S. Clonal variation in response to salinity and flooding stress in four marsh macrophytes of the northern gulf of Mexico, USA. Environ. Exp. Bot. 56, 301–313 (2006).Article 

    Google Scholar 
    Visser, J. M., Sasser, C. E., Chabreck, R. H. & Linscombe, R. G. Marsh vegetation types of the Mississippi River Deltaic plain. Estuaries 21, 818–828 (1998).Article 

    Google Scholar 
    De Wit, C. T. & van den Bergh, J. P. Competition between herbage plants. NJAS 13, 212–221 (1965).Article 

    Google Scholar 
    R Core Team. In r: A Language and Environment for Statistical Computing; r foundation for statistical computing: Vienna, Austria (2017).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar  More

  • in

    Ecogenomics reveals viral communities across the Challenger Deep oceanic trench

    Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Angly, F. E. et al. The marine viromes of four oceanic regions. PLOS Biol. 4, 2121–2131 (2006).CAS 
    Article 

    Google Scholar 
    Labonté, J. M. & Suttle, C. A. Previously unknown and highly divergent ssDNA viruses populate the oceans. ISME J. 7, 2169–2177 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).PubMed 
    Article 

    Google Scholar 
    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen, L. Z. et al. The Baltic sea virome: diversity and transcriptional activity of DNA and RNA viruses. mSystems 2, e00125–00116 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hurwitz, B. L., Hallam, S. J. & Sullivan, M. B. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 14, R123 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, J.-G. et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc. Natl Acad. Sci. USA 116, 15645–15650 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Danovaro, R. et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454, 1084–1087 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Danovaro, R. et al. Viriobenthos in freshwater and marine sediments: a review. Freshw. Biol. 53, 1186–1213 (2008).Article 

    Google Scholar 
    Engelhardt, T., Kallmeyer, J., Cypionka, H. & Engelen, B. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments. ISME J. 8, 1503–1509 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Middelboe, M., Glud, R. N. & Filippini, M. Viral abundance and activity in the deep sub-seafloor biosphere. Aquat. Micro. Ecol. 63, 1–8 (2011).Article 

    Google Scholar 
    Li, Z. et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 15, 2366–2378 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zheng, X. et al. Extraordinary diversity of viruses in deep-sea sediments as revealed by metagenomics without prior virion separation. Environ. Microbiol 23, 728–743 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Helton, R. R., Liu, L. & Wommack, K. E. Assessment of factors influencing direct enumeration of viruses within estuarine sediments. Appl Environ. Microbiol 72, 4767–4774 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pan, D., Morono, Y., Inagaki, F. & Takai, K. An improved method for extracting viruses from sediment: detection of far more viruses in the subseafloor than previously reported. Front Microbiol 10, 878 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Armanious, A. et al. Viruses at solid–water interfaces: a systematic assessment of interactions driving adsorption. Environ. Sci. Technol. 50, 732–743 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trubl, G. et al. Optimization of viral resuspension methods for carbon-rich soils along a permafrost thaw gradient. PeerJ 4, e1999 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maat, D. S., Prins, M. A. & Brussaard, C. P. D. Sediments from arctic tide-water glaciers remove coastal marine viruses and delay host infection. Viruses 11, 123 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Loveland, J. P., Ryan, J. N., Amy, G. L. & Harvey, R. W. The reversibility of virus attachment to mineral surfaces. Colloids Surf. A Physicochem. Eng. Asp. 107, 205–221 (1996).CAS 
    Article 

    Google Scholar 
    Fuhs, G. W., Chen, M., Sturman, L. S. & Moore, R. S. Virus adsorption to mineral surfaces is reduced by microbial overgrowth and organic coatings. Microb. Ecol. 11, 25–39 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cai, L. et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J. 13, 1857–1864 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Manea, E. et al. Viral infections boost prokaryotic biomass production and organic C cycling in hadal trench sediments. Front Microbiol 10, 1952 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Danovaro, R. et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci. Adv. 2, e1600492 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoshida, M., Takaki, Y., Eitoku, M., Nunoura, T. & Takai, K. Metagenomic analysis of viral communities in (hado)pelagic sediments. PLoS One 8, e57271 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bäckström, D. et al. Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. mBio 10, e02497–02418 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jian, H. et al. Diversity and distribution of viruses inhabiting the deepest ocean on Earth. ISME J. 15, 3094–3110 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anantharaman, K. et al. Sulfur oxidation genes in diverse deep-sea viruses. Science 344, 757–760 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou, H. et al. Revealing the viral community in the hadal sediment of the New Britain Trench. Genes 12, 990 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dell’Anno, A., Corinaldesi, C. & Danovaro, R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc. Natl Acad. Sci. USA 112, E2014–E2019 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M. & Priede, I. G. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol. Evol. 25, 190–197 (2010).PubMed 
    Article 

    Google Scholar 
    Glud, R. N. et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6, 284–288 (2013).CAS 
    Article 

    Google Scholar 
    Luo, M. et al. Benthic carbon mineralization in hadal trenches: insights from in situ determination of benthic oxygen consumption. Geophys. Res. Lett. 45, 2752–2760 (2018).CAS 
    Article 

    Google Scholar 
    Hiraoka, S. et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 14, 740–756 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cui, G., Li, J., Gao, Z. & Wang, Y. Spatial variations of microbial communities in abyssal and hadal sediments across the Challenger Deep. PeerJ 7, e6961 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, Y.-L., Mara, P., Cui, G.-J., Edgcomb, V. P. & Wang, Y. Microbiomes in the Challenger Deep slope and bottom-axis sediments. Nat. Commun. 13, 1515 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marquet M., et al. What the Phage: a scalable workflow for the identification and analysis of phage sequences. bioRxiv https://www.biorxiv.org/content/10.1101/2020.07.24.219899v1 (2020).Roux, S. et al. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gregory, A. C. et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genomics 17, 930 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bobay, L.-M. & Ochman, H. Biological species are universal across life’s domains. Genome Biol. Evol. 9, 491–501 (2017).PubMed Central 
    Article 

    Google Scholar 
    Nayfach S., et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2020).Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).Article 

    Google Scholar 
    Dalcin Martins, P. et al. Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems. Microbiome 6, 138 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhao, J. et al. Novel viral communities potentially assisting in carbon, nitrogen, and sulfur metabolism in the upper slope sediments of Mariana Trench. mSystems 7, e01358–01321 (2022).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Walker, P. J. et al. Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Arch. Virol. 166, 2633–2648 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740 e728 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nishimura, Y. et al. Environmental viral genomes shed new light on virus-host interactions in the ocean. mSphere 2, e00359–00316 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vik, D. R. et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ 5, e3428 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pachiadaki, M. G. et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358, 1046–1051 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Daly, R. A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. BioScience 49, 781–788 (1999).Article 

    Google Scholar 
    Peoples, L. M. et al. Microbial community diversity within sediments from two geographically separated hadal trenches. Front. Microbiol. 10, 347 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mara, P. et al. Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME J. 14, 3079–3092 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breitbart, M., Thompson, L. R., Suttle, C. A. & Sullivan, M. B. Exploring the vast diversity of marine viruses. Oceanography 20, 135–139 (2007).Article 

    Google Scholar 
    Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rubino, F. M. Toxicity of glutathione-binding metals: a review of targets and mechanisms. Toxics 3, 20–62 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jozefczak, M., Remans, T., Vangronsveld, J. & Cuypers, A. Glutathione is a key player in metal-induced oxidative stress defenses. Int J. Mol. Sci. 13, 3145–3175 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, M. et al. Methylmercury bioaccumulation in deepest ocean fauna: implications for ocean mercury biotransport through food webs. Environ. Sci. Technol. Lett. 7, 469–476 (2020).CAS 
    Article 

    Google Scholar 
    Welty, C. J., Sousa, M. L., Dunnivant, F. M. & Yancey, P. H. High-density element concentrations in fish from subtidal to hadal zones of the Pacific Ocean. Heliyon 4, e00840 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, P. et al. Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep. Genome Biol. 22, 207 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, A. H. & Raetz, C. R. H. Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. Proc. Natl Acad. Sci. USA 104, 13543–13550 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ahmad, S., Raza, S., Abro, A., Liedl, K. R. & Azam, S. S. Toward novel inhibitors against KdsB: a highly specific and selective broad-spectrum bacterial enzyme. J. Biomol. Struct. Dyn. 37, 1326–1345 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gronow, S., Brabetz, W. & Brade, H. Comparative functional characterization in vitro of heptosyltransferase I (WaaC) and II (WaaF) from Escherichia coli. Eur. J. Biochem. 267, 6602–6611 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abeyrathne, P. D., Daniels, C., Poon, K. K. H., Matewish, M. J. & Lam, J. S. Functional characterization of WaaL, a ligase associated with linking O-antigen polysaccharide to the core of Pseudomonas aeruginosa Lipopolysaccharide. J. Bacteriol. 187, 3002–3012 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kneidinger, B. et al. Biosynthesis pathway of ADP-l-glycero-β-manno-heptose in Escherichia coli. J. Bacteriol. 184, 363–369 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sullivan, M. B., Coleman, M. L., Weigele, P., Rohwer, F. & Chisholm, S. W. Three Prochlorococcus cyanophage genomes: Signature features and ecological interpretations. Plos Biol. 3, 790–806 (2005).CAS 
    Article 

    Google Scholar 
    Sullivan, M. B. et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 12, 3035–3056 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Auer, G. K. & Weibel, D. B. Bacterial cell mechanics. Biochemistry 56, 3710–3724 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Castelán-Sánchez, H. G. et al. Extremophile deep-sea viral communities from hydrothermal vents: structural and functional analysis. Mar. Genomics 46, 16–28 (2019).PubMed 
    Article 

    Google Scholar 
    Chothi, M. P. et al. Identification of an L-rhamnose synthetic pathway in two nucleocytoplasmic large DNA viruses. J. Virol. 84, 8829–8838 (2010).CAS 
    Article 

    Google Scholar 
    Bachy C., et al. Viruses infecting a warm water picoeukaryote shed light on spatial co-occurrence dynamics of marine viruses and their hosts. ISME J. 15, 3129–3147 (2021).Zhang, W. et al. Four novel algal virus genomes discovered from Yellowstone Lake metagenomes. Sci. Rep. 5, 15131 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clerissi, C. et al. Prasinovirus distribution in the Northwest Mediterranean Sea is affected by the environment and particularly by phosphate availability. Virology 466–467, 146–157 (2014).PubMed 
    Article 

    Google Scholar 
    Mistou, M. Y., Sutcliffe, I. C. & van Sorge, N. M. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria. FEMS Microbiol. Rev. 40, 464–479 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wendlinger, G., Loessner, M. J. & Scherer, S. Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology 142, 985–992 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Michael, V. et al. Biofilm plasmids with a rhamnose operon are widely distributed determinants of the ‘swim-or-stick’ lifestyle in roseobacters. ISME J. 10, 2498–2513 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, X., Weinbauer, M. G., Jiao, N. & Zhang, R. Revisiting marine lytic and lysogenic virus-host interactions: Kill-the-Winner and Piggyback-the-Winner. Sci. Bull. 66, 871–874 (2021).CAS 
    Article 

    Google Scholar 
    Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao, Z.-M. et al. In situ meta-omic insights into the community compositions and ecological roles of hadal microbes in the Mariana Trench. Environ. Microbiol. 21, 4092–4108 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pratama A. A., et al. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene. PeerJ 9, e11447 (2021).Amgarten, D., Braga, L. P. P., da Silva, A. M. & Setubal, J. C. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front Genet. 9, 304 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5, 69 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fang Z., et al. PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. GigaScience 8, giz066 (2019).Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jurtz, V. I., Villarroel, J., Lund, O., Voldby Larsen, M. & Nielsen, M. MetaPhinder—identifying bacteriophage sequences in metagenomic data sets. PLoS One 11, e0163111 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ren, J. et al. Identifying viruses from metagenomic data using deep learning. Quant. Biol. 8, 64–77 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abdelkareem A. O., Khalil M. I., Elaraby M., Abbas H. & Elbehery A. H. A. VirNet: deep attention model for viral reads identification. In: 2018 13th International Conference on Computer Engineering and Systems (ICCES) (2018).Starikova, E. V. et al. Phigaro: high-throughput prophage sequence annotation. Bioinformatics 36, 3882–3884 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Auslander, N., Gussow, A. B., Benler, S., Wolf, Y. I. & Koonin, E. V. Seeker: alignment-free identification of bacteriophage genomes by deep learning. Nucleic Acids Res. 48, e121–e121 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2018).PubMed Central 
    Article 

    Google Scholar 
    Paez-Espino, D., Pavlopoulos, G. A., Ivanova, N. N. & Kyrpides, N. C. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat. Protoc. 12, 1673–1682 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, S.-M. et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. Microbiome 8, 89 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dudek, N. K., Sun, C., Burstein, D., Kantor, R. & Relman, D. Novel microbial diversity and functional potential in the marine mammal oral microbiome. Curr. Biol. 27, 3752–3762.e3756 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541.e525 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).Article 

    Google Scholar 
    Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Letunic, I., Khedkar, S. & Bork, P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 49, D458–D460 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Skennerton, C. T., Imelfort, M. & Tyson, G. W. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res. 41, e105 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bland, C. et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinform. 8, 209 (2007).Article 

    Google Scholar 
    Lowe, T. M. & Eddy, S. R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Galiez, C., Siebert, M., Enault, F., Vincent, J. & Söding, J. WIsH: who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics 33, 3113–3114 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://ui.adsabs.harvard.edu/abs/2013arXiv1303.3997L (2013).Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wessel, P. et al. The Generic Mapping Tools version 6. Geochem. Geophys. Geosystems 20, 5556–5564 (2019).Article 

    Google Scholar 
    Tozer, B. et al. Global bathymetry and topography at 15 Arc Sec: SRTM15+. Earth Space Sci. 6, 1847–1864 (2019).Article 

    Google Scholar  More