More stories

  • in

    Pollinator biological traits and ecological interactions mediate the impacts of mosquito-targeting malathion application

    Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14(10), 1062–1072 (2011).PubMed 
    Article 

    Google Scholar 
    Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol. Lett. 10(4), 299–314 (2007).PubMed 
    Article 

    Google Scholar 
    Kluser, S. & Peduzzi, P. Global pollinator decline: A literature review. Preprint at http://archive-ouverte.unige.ch/unige 32258 (2007).Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25(6), 345–353 (2010).PubMed 
    Article 

    Google Scholar 
    Rhodes, C. J. Pollinator decline—an ecological calamity in the making?. Sci. Prog. 101(2), 121–160 (2018).PubMed 
    Article 

    Google Scholar 
    Huang, H. & D’Odorico, P. Critical transitions in plant-pollinator systems induced by positive inbreeding-reward-pollinator feedbacks. Iscience 23(2), 100819 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krishnan, N. et al. Assessing field-scale risks of foliar insecticide applications to monarch butterfly (Danaus plexippus) larvae. Environ. Toxicol. Chem. 39(4), 923–941 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bargar, T. A., Hladik, M. L. & Daniels, J. C. Uptake and toxicity of clothianidin to monarch butterflies from milkweed consumption. PeerJ 8, e8669 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Emmel, T. C. & Tucker, J. C. In Mosquito Control Pesticides: Ecological Impacts and Management Alternatives (eds Emmel, T. C. & Tucker, J. C.) 105 (Scientific Publishers, 1991).Johnson, R. M., Ellis, M. D., Mullin, C. A. & Frazier, M. Pesticides and honey bee toxicity–USA. Apidologie 41(3), 312–331 (2010).CAS 
    Article 

    Google Scholar 
    Olaya-Arenas, P., Scharf, M. E. & Kaplan, I. Do pollinators prefer pesticide-free plants? An experimental test with monarchs and milkweeds. J. Appl. Ecol. 57(10), 2019–2030 (2020).CAS 
    Article 

    Google Scholar 
    Berryman, A. A. What causes population cycles of forest Lepidoptera?. Trends Ecol. Evol. 11(1), 28–32 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elkinton, J. & Boettner, G. Benefits and harm caused by the introduced generalist tachinid, Compsilura concinnata North America. Biol. Control 57(2), 277–288 (2012).
    Google Scholar 
    Beschta, R. L. & Ripple, W. J. Riparian vegetation recovery in Yellowstone: The first two decades after wolf reintroduction. Biol. Conserv. 198, 93–103 (2016).Article 

    Google Scholar 
    Oberhauser, K. et al. Lacewings wasps and fliesoh my insect enemies take a bite out of monarchs. In Monarchs in a Changing World: Biology and Conservation of an iconic insect (eds Oberhauser, K. S. et al.) 71–82 (Cornell University Press, 2015).Chapter 

    Google Scholar 
    Zalucki, M. P., Clarke, A. R. & Malcolm, S. B. Ecology and behavior of first instar larval Lepidoptera. Annu. Rev. Entomol. 47(1), 361–393 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hermann, S. L., Blackledge, C., Haan, N. L., Myers, A. T. & Landis, D. A. Predators of monarch butterfly eggs and neonate larvae are more diverse than previously recognised. Sci. Rep. 9(1), 1–9 (2019).CAS 
    Article 

    Google Scholar 
    McCoshum, S. M., Andreoli, S. L., Stenoien, C. M., Oberhauser, K. S. & Baum, K. A. Species distribution models for natural enemies of monarch butterfly (Danaus plexippus) larvae and pupae: Distribution patterns and implications for conservation. J. Insect Conserv. 20(2), 223–237 (2016).Article 

    Google Scholar 
    Geest, E. A., Wolfenbarger, L. L. & McCarty, J. P. Recruitment, survival and parasitism of monarch butterflies (Danaus plexippus) in milkweed gardens and conservation areas. J. Insect Conserv. 23(2), 211–224 (2019).Article 

    Google Scholar 
    Stenoien, C. et al. Monarchs in decline: A collateral landscape-level effect of modern agriculture. Insect Sci. 25(4), 528–541 (2018).PubMed 
    Article 

    Google Scholar 
    Crone, E. E., Pelton, E. M., Brown, L. M., Thomas, C. C. & Schultz, C. B. Why are monarch butterflies declining in the west? Understanding the importance of multiple correlated drivers. Ecol. Appl. 29(7), e01975 (2019).PubMed 
    Article 

    Google Scholar 
    Brower, L. P. et al. Effect of the 2010–2011 drought on the lipid content of monarchs migrating through Texas to overwintering sites in Mexico. In The Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds Oberhauser, K. S. et al.) 117–129 (Cornell University Press, 2015).
    Google Scholar 
    Thogmartin, W. E. et al. Monarch butterfly population decline in North America: Identifying the threatening processes. R. Soc. Open Sci. 4(9), 170760 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olaya-Arenas, P. & Kaplan, I. Quantifying pesticide exposure risk for monarch caterpillars on milkweeds bordering agricultural land. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00223 (2019).
    Article 

    Google Scholar 
    Olaya-Arenas, P., Hauri, K., Scharf, M. E. & Kaplan, I. Larval pesticide exposure impacts monarch butterfly performance. Sci. Rep. 10(1), 1–12 (2020).Article 

    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. PNAS 108(2), 662–667 (2011).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Epstein, L. Fifty years since silent spring. Annu. Rev. Phytopathol. 52, 377–402 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rayor, L. S. Effects of monarch larval host plant chemistry and body size on Polistes wasp predation. In The Monarch Butterfly Biology and Conservation (eds Oberhauser, K. S. & Solensky, M. J.) 39–46 (Cornell University Press, 2004).
    Google Scholar 
    Baker, A. M. & Potter, D. A. Invasive paper wasp turns urban pollinator gardens into ecological traps for monarch butterfly larvae. Sci. Rep. 10(1), 1–7 (2020).Article 

    Google Scholar 
    Castellanos, I. & Barbosa, P. Dropping from host plants in response to predators by a polyphagous caterpillar. J. Lepid. Soc. 65(4), 270–272 (2011).
    Google Scholar 
    Kessler, S. C. et al. Bees prefer foods containing neonicotinoid pesticides. Nature 521(7550), 74–76 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liao, L.-H., Wu, W.-Y. & Berenbaum, M. R. Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food. Sci. Rep. 7(1), 1–8 (2017).Article 

    Google Scholar 
    Musser, R. O. et al. Caterpillar saliva beats plant defences. Nature 416(6881), 599–600 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schmidt, J. & Smith, J. Host examination walk and oviposition site selection of Trichogramma minutum: Studies on spherical hosts. J. Insect Behav. 2(2), 143–171 (1989).Article 

    Google Scholar 
    Ramos, R. S. et al. Investigation of the lethal and behavioral effects of commercial insecticides on the parasitoid wasp Copidosoma truncatellum. Chemosphere 191, 770–778 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chareonviriyaphap, T. et al. Pesticide avoidance behavior in Anopheles albimanus, a malaria vector in the Americas. J. Am. Mosq. Control Assoc. 13(2), 171–183 (1997).CAS 
    PubMed 

    Google Scholar 
    Nansen, C., Baissac, O., Nansen, M., Powis, K. & Baker, G. Behavioral avoidance-will physiological insecticide resistance level of insect strains affect their oviposition and movement responses?. PLoS ONE 11(3), e0149994 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martini, X., Kincy, N. & Nansen, C. Quantitative impact assessment of spray coverage and pest behavior on contact pesticide performance. Pest Manag. Sci. 68(11), 1471–1477 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bull, D. & Coleman, R. Effects of pesticides on Trichogramma spp. Southwest. Entomol. Suppl. 8, 156–168 (1985).CAS 

    Google Scholar 
    Thubru, D., Firake, D. & Behere, G. Assessing risks of pesticides targeting lepidopteran pests in cruciferous ecosystems to eggs parasitoid, Trichogramma brassicae (Bezdenko). Saudi J. Biol. Sci. 25(4), 680–688 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Selwood, K. & Zimmer, H. Refuges for biodiversity conservation: A review of the evidence. Biol. Conserv. 245, 108502 (2020).Article 

    Google Scholar 
    Chmiel, J. A., Daisley, B. A., Pitek, A. P., Thompson, G. J. & Reid, G. Understanding the effects of sublethal pesticide exposure on honey bees: A role for probiotics as mediators of environmental stress. Front. Ecol. Evol. 8, 22 (2020).Article 

    Google Scholar 
    Chittka, L., Williams, N., Rasmussen, H. & Thomson, J. Navigation without vision: Bumblebee orientation in complete darkness. Proc. R. Soc. B 266(1414), 45–50 (1999).PubMed Central 
    Article 

    Google Scholar 
    Young, M. W. & Kay, S. A. Time zones: A comparative genetics of circadian clocks. Nat. Rev. Genet. 2(9), 702–715 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mallet, J. Gregarious roosting and home range in Heliconius butterflies. Natl. Geogr. Res. 2(2), 198–215 (1986).
    Google Scholar 
    Chang, Y.-M. et al. Roosting site usage, gregarious roosting and behavioral interactions during roost-assembly of two Lycaenidae butterflies. Zool. Stud. 59, e10 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Vulinec, K. Collective security aggregation by insects as a defence. In Insect Defences. Adaptive Mechanisms of Prey and Predators (eds Evans, D. L. & Schmidt, J. O.) 251–288 (State University of New York, 1990).
    Google Scholar 
    Salcedo, C. Environmental elements involved in communal roosting in Heliconius butterflies (Lepidoptera: Nymphalidae). Environ. Entomol. 39(3), 907–911 (2010).PubMed 
    Article 

    Google Scholar 
    Giordano, B. V., McGregor, B. L., Runkel, A. E. IV. & Burkett-Cadena, N. D. Distance diminishes the effect of deltamethrin exposure on the monarch butterfly, Danaus plexippus. J. Am. Mosq. Control Assoc. 36(3), 181–188 (2020).PubMed 
    Article 

    Google Scholar 
    Matzrafi, M. Climate change exacerbates pest damage through reduced pesticide efficacy. Pest Manag. Sci. 75(1), 9–13 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hewitt, A. Spray drift: Impact of requirements to protect the environment. Crop Prot. 19(8–10), 623–627 (2000).Article 

    Google Scholar 
    Nail, K. R., Stenoien, C. & Oberhauser, K. S. Immature monarch survival: Effects of site characteristics, density and time. Ann. Entomol. Soc. 108(5), 680–690 (2015).Article 

    Google Scholar 
    Payne, C. C. & Mertens, P. P. Cytoplasmic polyhedrosis viruses. In The Reoviridae (ed. Joklik, K.) 425–504 (Springer, 1983).Chapter 

    Google Scholar 
    Zalucki, M. P. et al. It’s the first bites that count: Survival of first-instar monarchs on milkweeds. Austral. Ecol. 26(5), 547–555 (2001).Article 

    Google Scholar 
    Salvato, M. Influence of mosquito control chemicals on butterflies (Nymphalidae, Lycaenidae, Hesperiidae) of the lower Florida keys. J. Lepid. Soc. 55(1), 8–14 (2001).
    Google Scholar 
    Frey, D. F. & Leong, K. L. Can microhabitat selection or differences in ‘catchability’ explain male-biased sex ratios in overwintering populations of monarch butterflies?. Anim. Behav. 45(5), 1025 (1993).Article 

    Google Scholar 
    Macgregor, C. J. & Scott-Brown, A. S. Nocturnal pollination: An overlooked ecosystem service vulnerable to environmental change. Emerg. Top. Life Sci. 4(1), 19–32 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Fitness costs associated with a GABA receptor mutation conferring dieldrin resistance in Aedes albopictus

    Agnew P, Berticat C, Bedhomme S, Sidobre C, Michalakis Y (2004) Parasitism increases and decreases the costs of insecticide resistance in mosquitoes. Evolution 58:579–586CAS 
    PubMed 
    Article 

    Google Scholar 
    Ahmad NA, Endersby-Harshman NM, Mohd Mazni NR, Mohd Zabari NZA, Amran SNS, Ridhuan Ghazali MK et al. (2020) Characterization of sodium channel mutations in the Dengue vector mosquitoes Aedes aegypti and Aedes albopictus within the context of ongoing Wolbachia releases in Kuala Lumpur, Malaysia. Insects 11:529PubMed Central 
    Article 

    Google Scholar 
    Alout H, Ndam NT, Sandeu MM, Djégbe I, Chandre F, Dabiré RK et al. (2013) Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates. PLoS ONE 8:e63849CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andreasen MH, ffrench-Constant RH (2002) In situ hybridization to the Rdl locus on polytene chromosome 3L of Anopheles stephensi. Med Vet Entomol 16:452–455CAS 
    PubMed 
    Article 

    Google Scholar 
    Assogba BS, Djogbénou LS, Milesi P, Berthomieu A, Perez J, Ayala D et al. (2015) An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito. Sci Rep. 5:14529CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Assogba BS, Milesi P, Djogbénou LS, Berthomieu A, Makoundou P, Baba-Moussa LS et al. (2016) The ace-1 locus is amplified in all resistant Anopheles gambiae mosquitoes: fitness consequences of homogeneous and heterogeneous duplications. PloS Biol 14:e2000618PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Atyame CM, Alout H, Mousson L, Vazeille M, Diallo M, Weill M et al. (2019) Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus. Proc Biol Sci 286:20182273CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Auteri M, La Russa F, Blanda V, Torina A (2018) Insecticide resistance associated with kdr mutations in Aedes albopictus: an update on worldwide evidences. Biomed Res Int 2018:e3098575Article 

    Google Scholar 
    Berticat C, Boquien G, Raymond M, Chevillon C (2002) Insecticide resistance genes induce a mating competition cost in Culex pipiens mosquitoes. Genet Res 79:41–47Berticat C, Duron O, Heyse D, Raymond M (2004) Insecticide resistance genes confer a predation cost on mosquitoes, Culex pipiens. Genet Res 83:189–196CAS 
    PubMed 
    Article 

    Google Scholar 
    Bhatia SC, Deobhankar RB (1963) Reversion of dieldrin-resistance in the field population of A. culicifacies in Maharashtra State (erstwhile Bombay State), India. Indian J Malariol 17:339–351CAS 
    PubMed 

    Google Scholar 
    Bonizzoni M, Gasperi G, Chen X, James AA (2013) The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29:460–468PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bourguet D, Guillemaud T, Chevillon C, Raymond M (2004) Fitness costs of insecticide resistance in natural breeding sites of the mosquito Culex pipiens. Evolution 58:128–135PubMed 
    Article 

    Google Scholar 
    Brooke BD, Hunt RH, Coetzee M (2000) Resistance to dieldrin + fipronil assorts with chromosome inversion 2La in the malaria vector Anopheles gambiae. Med Vet Entomol 14:190–194CAS 
    PubMed 
    Article 

    Google Scholar 
    Buckingham SD, Biggin PC, Sattelle BM, Brown LA, Sattelle DB (2005) Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol Pharm 68:942–951CAS 
    Article 

    Google Scholar 
    Chen H, Li K, Wang X, Yang X, Lin Y, Cai F et al. (2016) First identification of kdr allele F1534S in VGSC gene and its association with resistance to pyrethroid insecticides in Aedes albopictus populations from Haikou City, Hainan Island, China. Infect Dis Poverty 5:31PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davari B, Vatandoost H, Oshaghi MA, Ladonni H, Enayati AA, Shaeghi M et al. (2007) Selection of Anopheles stephensi with DDT and dieldrin and cross-resistance spectrum to pyrethroids and fipronil. Pestic Biochem Physiol 89:97–103CAS 
    Article 

    Google Scholar 
    Delatte H, Paupy C, Dehecq JS, Thiria J, Failloux AB, Fontenille D (2008) Aedes albopictus, vector of Chikungunya and Dengue viruses in Reunion Island: biology and control. Parasite 15:3–13CAS 
    PubMed 
    Article 

    Google Scholar 
    Deng J, Guo Y, Su X, Liu S, Yang W, Wu Y et al. (2021) Impact of deltamethrin-resistance in Aedes albopictus on its fitness cost and vector competence. PLoS Negl Trop Dis 15:e0009391CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Djogbénou L, Weill M, Hougard J-M, Raymond M, Akogbéto M, Chandre F (2007) Characterization of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae (Diptera: Culicidae): resistance levels and dominance. J Med Entomol 44:805–810PubMed 

    Google Scholar 
    Du W, Awolola TS, Howell P, Koekemoer LL, Brooke BD, Benedict MQ et al. (2005) Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Mol Biol 14:179–183CAS 
    PubMed 
    Article 

    Google Scholar 
    Duron O, Labbé P, Berticat C, Rousset F, Guillot S, Raymond M et al. (2006) High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes. Evolution 60:303–314CAS 
    PubMed 
    Article 

    Google Scholar 
    ffrench-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE (1993) A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363:449–451CAS 
    PubMed 
    Article 

    Google Scholar 
    ffrench-Constant RH, Anthony N, Aronstein K, Rocheleau T, Stilwell G (2000) Cyclodiene insecticide resistance: from molecular to population genetics. Annu Rev Entomol 45:449–466CAS 
    PubMed 
    Article 

    Google Scholar 
    Fox J, Weisberg S (2019) An R companion to applied regression, 3rd edn. SAGE, Thousand Oaks California, https://socialsciences.mcmaster.ca/jfox/Books/Companion/
    Google Scholar 
    Freeman JC, Smith LB, Silva JJ, Fan Y, Sun H, Scott JG (2021) Fitness studies of insecticide resistant strains: lessons learned and future directions. Pest Manag Sci 77:3847–3856CAS 
    PubMed 
    Article 

    Google Scholar 
    Gratz NG (2004) Critical review of the vector status of Aedes albopictus. Med Vet Entomol 18:215–227CAS 
    PubMed 
    Article 

    Google Scholar 
    Grau-Bové X, Tomlinson S, O’Reilly AO, Harding NJ, Miles A, Kwiatkowski D et al. (2020) Evolution of the insecticide target Rdl in African Anopheles is driven by interspecific and interkaryotypic introgression. Mol Biol Evol 37:2900–2917PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grigoraki L, Lagnel J, Kioulos I, Kampouraki A, Morou E, Labbé P et al. (2015) Transcriptome profiling and genetic study reveal amplified carboxylesterase genes implicated in temephos resistance, in the Asian tiger mosquito Aedes albopictus. PLoS Negl Trop Dis 9:e0003771PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamon J, Garret-Jones C (1962) Insecticide-resistance in major vectors of malaria, and its operational importance. Bull World Health Organ, Geneva
    Google Scholar 
    Hartley CJ, Newcomb RD, Russell RJ, Yong CG, Stevens JR, Yeates DK et al. (2006) Amplification of DNA from preserved specimens shows blowflies were preadapted for the rapid evolution of insecticide resistance. Proc Natl Acad Sci USA 103:8757–8762CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391CAS 
    PubMed 
    Article 

    Google Scholar 
    Hemingway J, Hawkes NJ, McCarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34:653–665CAS 
    PubMed 
    Article 

    Google Scholar 
    Hosie AM, Baylis HA, Buckingham SD, Sattelle DB (1995) Actions of the insecticide fipronil, on dieldrin-sensitive and -resistant GABA receptors of Drosophila melanogaster. Br J Pharm 115:909–912CAS 
    Article 

    Google Scholar 
    Ishak IH, Riveron JM, Ibrahim SS, Stott R, Longbottom J, Irving H et al. (2016) The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the Dengue vector Aedes albopictus. Sci Rep. 6:24707CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kasai S, Ng LC, Lam-Phua SG, Tang CS, Itokawa K, Komagata O et al. (2011) First detection of a putative knockdown resistance gene in major mosquito vector, Aedes albopictus. Jpn J Infect Dis 64:217–221CAS 
    PubMed 
    Article 

    Google Scholar 
    Kliot A, Ghanim M (2012) Fitness costs associated with insecticide resistance. Pest Manag Sci 68:1431–1437CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolaczinski J, Curtis C (2001) Laboratory evaluation of fipronil, a phenylpyrazole insecticide, against adult Anopheles (Diptera: Culicidae) and investigation of its possible cross-resistance with dieldrin in Anopheles stephensi. Pest Manag Sci 57:41–45CAS 
    PubMed 
    Article 

    Google Scholar 
    Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM et al. (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4:e08347PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Labbé P, David J-P, Alout H, Milesi P, Djogbénou L, Pasteur N et al. (2017) 14 – Evolution of resistance to insecticide in disease vectors. In: Tibayrenc M (ed) Genetics and Evolution of Infectious Diseases, Second Edition. Elsevier, London, p 313–339Chapter 

    Google Scholar 
    Latreille AC, Milesi P, Magalon H, Mavingui P, Atyame CM (2019) High genetic diversity but no geographical structure of Aedes albopictus populations in Réunion Island. Parasit Vectors 12:597PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lebon C, Alout H, Zafihita S, Dehecq JS, Weill M, Tortosa P et al. (2022) Spatio-temporal dynamics of a dieldrin resistance gene in Aedes albopictus and Culex quinquefasciatus populations from Reunion Island. J Insect Sci 22:4PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lebon C, Soupapoule K, Wilkinson DA, Goff GL, Damiens D, Gouagna LC (2018) Laboratory evaluation of the effects of sterilizing doses of γ-rays from Caesium-137 source on the daily flight activity and flight performance of Aedes albopictus males. PLoS ONE 13:e0202236PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li Y, Xu J, Zhong D, Zhang H, Yang W, Zhou G et al. (2018) Evidence for multiple-insecticide resistance in urban Aedes albopictus populations in southern China. Parasit Vectors 11:4PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Low VL, Vinnie-Siow WY, Lim YAL, Tan TK, Leong CS, Chen CD et al. (2015) First molecular genotyping of A302S mutation in the gamma aminobutyric acid (GABA) receptor in Aedes albopictus from Malaysia. Trop Biomed 32:554–556CAS 
    PubMed 

    Google Scholar 
    McKenzie BA, Wilson AE, Zohdy S (2019) Aedes albopictus is a competent vector of Zika virus: a meta-analysis. PLoS ONE 14:e0216794CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milesi P, Pocquet N, Labbé P (2013) BioRssay: A R script for bioassay analyses. http://www.isem.univ-montp2.fr/recherche/equipes/genomique-de-ladaptation/personnel/labbepierrick/Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I et al. (2017) Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis 11:e0005625PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ozoe Y, Kita T, Ozoe F, Nakao T, Sato K, Hirase K (2013) Insecticidal 3-benzamido-N-phenylbenzamides specifically bind with high affinity to a novel allosteric site in housefly GABA receptors. Pestic Biochem Physiol 107:285–292CAS 
    PubMed 
    Article 

    Google Scholar 
    Paupy C, Ollomo B, Kamgang B, Moutailler S, Rousset D, Demanou M et al. (2009) Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa. Vector Borne Zoonotic Dis 10:259–266Article 

    Google Scholar 
    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Platt N, Kwiatkowska RM, Irving H, Diabaté A, Dabire R, Wondji CS (2015) Target-site resistance mutations (kdr and RDL), but not metabolic resistance, negatively impact male mating competiveness in the malaria vector Anopheles gambiae. Heredity 115:243–252CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/
    Google Scholar 
    Ranson H, Burhani J, Lumjuan N, Black WCI (2010) Insecticide resistance in Dengue vectors. TropIKA.net [online] 1. http://journal.tropika.net/scielo.php?script=sci_arttext&pid=S2078-86062010000100003&lng=en&nrm=iso. Accessed 03 March 2022Raymond M, Berticat C, Weill M, Pasteur N, Chevillon C (2001) Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation? Genetica 112–113:287–296PubMed 
    Article 

    Google Scholar 
    Renault P, Solet J-L, Sissoko D, Balleydier E, Larrieu S, Filleul L et al. (2007) A major epidemic of Chikungunya virus infection on Réunion Island, France, 2005–2006. Am J Trop Med Hy 77:727–731Article 

    Google Scholar 
    Rowland M (1991a) Behaviour and fitness of γHCH/dieldrin resistant and susceptible female Anopheles gambiae and An. stephensi mosquitoes in the absence of insecticide. Med Vet Entomol 5:193–206CAS 
    PubMed 
    Article 

    Google Scholar 
    Rowland M (1991b) Activity and mating competitiveness of γHCH/dieldrin resistant and susceptible male and virgin female Anopheles gambiae and An. stephensi mosquitoes, with assessment of an insecticide-rotation strategy. Med Vet Entomol 5:207–222CAS 
    PubMed 
    Article 

    Google Scholar 
    Russell VL (2021) Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.5.1. https://CRAN.R-project.org/package=emmeansSu X, Guo Y, Deng J, Xu J, Zhou G, Zhou T et al. (2019) Fast emerging insecticide resistance in Aedes albopictus in Guangzhou, China: alarm to the Dengue epidemic. PLoS Negl Trop Dis 13:e0007665CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tantely ML, Tortosa P, Alout H, Berticat C, Berthomieu A, Rutee A et al. (2010) Insecticide resistance in Culex pipiens quinquefasciatus and Aedes albopictus mosquitoes from La Réunion Island. Insect Biochem Mol Biol 40:317–324CAS 
    PubMed 
    Article 

    Google Scholar 
    Taskin BG, Dogaroglu T, Kilic S, Dogac E, Taskin V (2016) Seasonal dynamics of insecticide resistance, multiple resistance, and morphometric variation in field populations of Culex pipiens. Pestic Biochem Physiol 129:14–27CAS 
    PubMed 
    Article 

    Google Scholar 
    Taylor‐Wells J, Brooke BD, Bermudez I, Jones AK (2015) The neonicotinoid imidacloprid, and the pyrethroid deltamethrin, are antagonists of the insect Rdl GABA receptor. J Neurochem 135:705–713PubMed 
    Article 

    Google Scholar 
    Therneau T (2015) A Package for Survival Analysis in S. R package version 2.38. https://CRAN.R-project.org/package=survivalThompson M, Shotkoski F, ffrench-Constant R (1993) Cloning and sequencing of the cylodienne insecticide resistance from the yellow fewer Aedes aegypti. FEBS Lett 325:187–190CAS 
    PubMed 
    Article 

    Google Scholar 
    Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S (2007) A single mutation in Chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3:e201PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vontas J, Kioulos E, Pavlidi N, Morou E, della Torre A, Ranson H (2012) Insecticide resistance in the major Dengue vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Physiol 104:126–131CAS 
    Article 

    Google Scholar 
    Wondji CS, Dabire RK, Tukur Z, Irving H, Djouaka R, Morgan JC (2011) Identification and distribution of a GABA receptor mutation conferring dieldrin resistance in the malaria vector Anopheles funestus in Africa. Insect Biochem Mol Biol 41:484–491CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu J, Bonizzoni M, Zhong D, Zhou G, Cai S, Li Y et al. (2016) Multi-country survey revealed prevalent and novel F1534S mutation in voltage-gated sodium channel (VGSC) gene in Aedes albopictus. PLoS Negl Trop Dis 10:e0004696PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang C, Huang Z, Li M, Feng X, Qiu X (2017) RDL mutations predict multiple insecticide resistance in Anopheles sinensis in Guangxi, China. Malar J 16:482PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou X, Yang C, Liu N, Li M, Tong Y, Zeng X et al. (2019) Knockdown resistance (kdr) mutations within seventeen field populations of Aedes albopictus from Beijing China: first report of a novel V1016G mutation and evolutionary origins of kdr haplotypes. Parasit Vectors 12:180PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Condition- and context-dependent variation of sexual dimorphism across lizard populations at different spatial scales

    Andersson, M. Sexual Selection. (Princeton University Press, 1994).Darwin, C. The Descent of Man and Selection in Relation to Sex. (1871).Bonduriansky, R. The evolution of condition-dependent sexual dimorphism. Am. Nat. 169, 9–19 (2007).PubMed 

    Google Scholar 
    Bonduriansky, R. & Rowe, L. Sexual selection, genetic architecture, and the condition dependence of body shape in the sexually dimorphic fly Prochyliza xanthostoma (Piophilidae). Evolution (NY). 59, 138 (2005).
    Google Scholar 
    Godin, J. G. J. & McDonough, H. E. Predator preference for brightly colored males in the guppy: A viability cost for a sexually selected trait. Behav. Ecol. 14, 194–200 (2003).
    Google Scholar 
    Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 80(337), 860–864 (2012).ADS 

    Google Scholar 
    Cothran, R. D. & Jeyasingh, P. D. Condition dependence of a sexually selected trait in a crustacean species complex: Importance of the ecological context. Evolution (NY). 64, 2535–2546 (2010).
    Google Scholar 
    Jakob, E. M., Marshall, S. D. & Uetz, G. W. Estimating fitness: A comparison of body condition indices. Oikos 77, 61 (1996).
    Google Scholar 
    Galeotti, P., Sacchi, R., Pellitteri-Rosa, D. & Fasola, M. The yellow cheek-patches of the Hermann’s tortoise (Reptilia, Chelonia): Sexual dimorphism and relationship with body condition. Ital. J. Zool. 78, 464–470 (2011).
    Google Scholar 
    Sacchi, R. et al. Context-dependent expression of sexual dimorphism in island populations of the common wall lizard (Podarcis muralis). Biol. J. Linn. Soc. 114, 552–565 (2015).
    Google Scholar 
    Greenberg, R. & Olsen, B. Bill size and dimorphism in tidal-marsh sparrows: Island-like processes in a continental habitat. Ecology 91, 2428–2436 (2010).PubMed 

    Google Scholar 
    Clarke, A. Costs and consequences of evolutionary temperature adaptation. Trends Ecol. Evol. 18, 573–581 (2003).
    Google Scholar 
    Stillwell, R. C. & Fox, C. W. Geographic variation in body size, sexual size dimorphism and fitness components of a seed beetle: Local adaptation versus phenotypic plasticity. Oikos 118, 703–712 (2009).
    Google Scholar 
    García-Roa, R., Garcia-Gonzalez, F., Noble, D. W. A. & Carazo, P. Temperature as a modulator of sexual selection. Biol. Rev. 95, 1607–1629 (2020).PubMed 

    Google Scholar 
    Ficetola, G. F. et al. Ecogeographical variation of body size in the newt Triturus carnifex : Comparing the hypotheses using an information-theoretic approach. Glob. Ecol. Biogeogr. 19, 485–495 (2010).
    Google Scholar 
    Avramo, V. et al. Evaluating the island effect on phenotypic evolution in the Italian wall lizard, Podarcis siculus (Reptilia: Lacertidae). Biol. J. Linn. Soc. 132, 655–665 (2021).
    Google Scholar 
    Simmons, L. W., Lüpold, S. & Fitzpatrick, J. L. Evolutionary trade-off between secondary sexual traits and ejaculates. Trends Ecol. Evol. 32, 964–976 (2017).PubMed 

    Google Scholar 
    Cox, R. M., Skelly, S. L. & John-Alder, H. B. A comparative test of adaptive hypotheses for sexual size dimorphism in lizards. Evolution (NY). 57, 1653–1669 (2003).
    Google Scholar 
    Kaliontzopoulou, A., Carretero, M. A. & Llorente, G. A. Multivariate and geometric morphometrics in the analysis of sexual dimorphism variation in Podarcis Lizards. J. Morphol. 268, 152–165 (2007).PubMed 

    Google Scholar 
    Olsson, M., Shine, R., Wapstra, E., Ujvari, B. & Madsen, T. Sexual dimorphism in lizard body shape: The roles of sexual selection and fecundity selection. Evolution (NY). 56, 1538–1542 (2002).
    Google Scholar 
    Zuffi, M. A. L., Casu, V. & Marino, S. The Italian wall lizard, Podarcis siculus, along the Tuscanian coast of central Italy: Biometrical features and phenotypic patterns. Herpetol. J. 22, 207–212 (2012).
    Google Scholar 
    Corti, C., Biaggini, M. & Capula, M. Podarcis siculus (Rafinesque-Schmaltz, 1810). In: Corti, C., Capula, M., Luiselli, L., Razzetti, E., Sindaco, R. Fauna d’Italia: Reptilia (ed. Calderini) 407–417 (2011).Silva-Rocha, I. R., Salvi, D., Carretero, M. A. & Ficetola, G. F. Alien reptiles on Mediterranean Islands: A model for invasion biogeography. Divers. Distrib. 25, 995–1005 (2019).
    Google Scholar 
    Butler, M. A. & Losos, J. B. Multivariate sexual dimorphism, sexual selection, and adaptation in greater antillean Anolis lizards. Ecol. Monogr. 72, 541–559 (2002).
    Google Scholar 
    Kaliontzopoulou, A., Carretero, M. A. & Llorente, G. A. Head shape allometry and proximate causes of head sexual dimorphism in Podarcis lizards: Joining linear and geometric morphometrics. Biol. J. Linn. Soc. 93, 111–124 (2008).
    Google Scholar 
    Herrel, A., Damme, R. V., Vanhooydonck, B. & Vree, F. D. The implications of bite performance for diet in two species of lacertid lizards. Can. J. Zool. 79, 662–670 (2001).
    Google Scholar 
    Lomolino, M. V. Body size evolution in insular vertebrates: generality of the island rule. J. Biogeogr. 32, 1683–1699 (2005).
    Google Scholar 
    Millien, V. Morphological evolution is accelerated among island mammals. PLoS Biol. 4, 1863–1868 (2006).
    Google Scholar 
    de Amorim, M. E. et al. Lizards on newly created islands independently and rapidly adapt in morphology and diet. Proc. Natl. Acad. Sci. U. S. A. 114, 8812–8816 (2017).ADS 

    Google Scholar 
    Madsen, T. & Shine, R. Phenotypic plasticity in body sizes and sexual size dimorphism in European grass snakes. Evolution (NY). 47, 321–325 (1993).
    Google Scholar 
    Levis, N. A., Isdaner, A. J. & Pfennig, D. W. Morphological novelty emerges from pre-existing phenotypic plasticity. Nat. Ecol. Evol. 2, 1289–1297 (2018).PubMed 

    Google Scholar 
    Cox, R. M., Barrett, M. M. & John-Alder, H. B. Effects of food restriction on growth, energy allocation, and sexual size dimorphism in Yarrow’s Spiny Lizard Sceloporus jarrovii. Can. J. Zool. 86, 268–276 (2008).
    Google Scholar 
    Cox, R. M. & Calsbeek, R. Sex-specific selection and intraspecific variation in sexual size dimorphism. Evolution (NY). 64, 798–809 (2010).
    Google Scholar 
    Cox, R. M., Zilberman, V. & John-Alder, H. B. Environmental sensitivity of sexual size dimorphism: Laboratory common garden removes effects of sex and castration on lizard growth. Funct. Ecol. 20, 880–888 (2006).
    Google Scholar 
    Wiens, J. J. & Tuschhoff, E. Songs versus colours versus horns: what explains the diversity of sexually selected traits?. Biol. Rev. 95, 847–864 (2020).PubMed 

    Google Scholar 
    Sivan, J. et al. Relative tail length correlates with body condition in male but not in female crowned leafnose snakes (Lytorhynchus diadema). Sci. Rep. 10, 4130 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, K. L., Greenwood, J. J. D. & Gaston, K. J. Dissecting the species-energy relationship. Proc. R. Soc. B Biol. Sci. 272, 2155–2163 (2005).
    Google Scholar 
    Weier, J. & Herring, D. Measuring vegetation (NDVI & EVI). NASA. https://earthobservatory.nasa.gov/Features/MeasuringVegetation/. (2000).Peñalver-Alcázar, M., Galán, P. & Aragón, P. Assessing Rensch’s rule in a newt: Roles of primary productivity and conspecific density in interpopulation variation of sexual size dimorphism. J. Biogeogr. 46, 2558–2569 (2019).
    Google Scholar 
    Thorpe, R. S. & Baez, M. Geographic variation within an island: univariate and multivariate contouring of scalation, size, and shape of the lizard Gallotia galloti. Evolution (NY). 41, 256–268 (1987).
    Google Scholar 
    Lazić, M. M., Carretero, M. A., Crnobrnja-Isailović, J. & Kaliontzopoulou, A. Effects of environmental disturbance on phenotypic variation: An integrated assessment of canalization, developmental stability, modularity, and allometry in lizard head shape. Am. Nat. 185, 44–58 (2015).PubMed 

    Google Scholar 
    Sagonas, K. et al. Insularity affects head morphology, bite force and diet in a Mediterranean lizard. Biol. J. Linn. Soc. 112, 469–484 (2014).
    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. The theory of island biogeography. (Princeton University Press, 1967).Alzate, A., Etienne, R. S. & Bonte, D. Experimental island biogeography demonstrates the importance of island size and dispersal for the adaptation to novel habitats. Glob. Ecol. Biogeogr. 28, 238–247 (2019).
    Google Scholar 
    Wieser, W. Effects of temperature on ectothermic organisms (Springer, 1973).
    Google Scholar 
    Lucchi, F., Peccerillo, A., Keller, J., Tranne, C. A. & Rossi, P. L. The Aeolian Islands Volcanoes. (Geological Society, 2013).Meiri, S. Evolution and ecology of lizard body sizes. Glob. Ecol. Biogeogr. 17, 724–734 (2008).
    Google Scholar 
    Rohlf, F. J. TpsUtil version 1.87. (2021).Rohlf, F. J. TpsDig2 version 2.31. (2018).Sheets, H. D. CoordGen8. Integrated Morphometrics Package Suite (IMP) 8. (2014).Sheets, H. D. PCAGen8. Integrated Morphometrics Package Suite (IMP) 8. (2014).Lovich, J. E. & Gibbons, J. W. Review of techniques for quantifying sexual size dimorphism. Growth, Dev. Aging 56, 269–281 (1992).Bittinger, K. usedist: Distance Matrix Utilities. (2020).Schulte-Hostedde, A. I., Zinner, B., Millar, J. S. & Hickling, G. J. Restitution of mass-size residuals: Validating body condition indices. Ecology 86, 155–163 (2005).
    Google Scholar 
    Corti, C., Capula, M., Luiselli, L., Razzetti, E. & Sindaco, R. Fauna d’Italia, vol. XLV, Reptilia. (Calderini, 2011).Ermida, S. L., Soares, P., Mantas, V., Göttsche, F. M. & Trigo, I. F. Google earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sens. 12, 1–21 (2020).
    Google Scholar 
    Porter, W. P. Temperature, activity, and lizard life histories. Am. Nat. 142, 273–295 (1993).PubMed 

    Google Scholar 
    Angilletta, M. J., Hill, T. & Robson, M. A. Is physiological performance optimized by thermoregulatory behavior? A case study of the eastern fence lizard Sceloporus undulatus. J. Therm. Biol. 27, 199–204 (2002).
    Google Scholar 
    Aybar, C., Wu, Q., Bautista, L., Yali, R. & Barja, A. rgee: An R package for interacting with Google Earth Engine. J. Open Source Softw. 5, 2272 (2020).ADS 

    Google Scholar 
    Bonardi, A. et al. ReptIslands: Mediterranean islands and the distribution of their reptile fauna. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13490 (2022).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference, A Practical Information-Theoretic Approach, Second Edition. (Springer, 2002).Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: The utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89 (2011).
    Google Scholar 
    Lukacs, P. M. et al. Concerns regarding a call for pluralism of information theory and hypothesis testing. J. Appl. Ecol. 44, 456–460 (2007).
    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar 
    Breheny, P. & Burchett, W. Visualization of regression models using visreg. R J. 9, 56–71 (2017).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2021).QGIS Development Team. QGIS Geographic Information System, version 3.20.1. Open Source Geospatial Foundation Project. http://qgis.osgeo.org. (2022). More

  • in

    Early Mars habitability and global cooling by H2-based methanogens

    Cockell, C. S. et al. Habitability: a review. Astrobiology 16, 89–117 (2016).ADS 
    Article 

    Google Scholar 
    Michalski, J. R. et al. The Martian subsurface as a potential window into the origin of life. Nat. Geosci. 11, 21–26 (2018).ADS 
    Article 

    Google Scholar 
    Fairén, A. G. et al. Stability against freezing of aqueous solutions on early Mars. Nature 459, 401–404 (2009).ADS 
    Article 

    Google Scholar 
    Clifford, S. M. et al. Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. J. Geophys. Res. 115, E07001 (2010).ADS 
    Article 

    Google Scholar 
    Rivera-Valentín, E. G., Chevrier, V. F., Soto, A. & Martínez, G. Distribution and habitability of (meta)stable brines on present-day Mars. Nat. Astron. 4, 756–761 (2020).ADS 
    Article 

    Google Scholar 
    Stevens, A. H., Patel, M. R. & Lewis, S. R. Numerical modelling of the transport of trace gases including methane in the subsurface of Mars. Icarus 250, 587–594 (2015).ADS 
    Article 

    Google Scholar 
    Sholes, S. F., Krissansen-Totton, J. & Catling, D. C. A maximum subsurface biomass on mars from untapped free energy: CO and H2 as potential antibiosignatures. Astrobiology 19, 655–668 (2019).ADS 
    Article 

    Google Scholar 
    Wordsworth, R. D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).ADS 
    Article 

    Google Scholar 
    Liu, J. et al. Anoxic chemical weathering under a reducing greenhouse on early Mars. Nat. Astron. 5, 503–509 (2021).ADS 
    Article 

    Google Scholar 
    Battistuzzi, F. U., Feijao, A. & Hedges, S. B. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4, 44 (2004).Article 

    Google Scholar 
    Martin, W. F. & Sousa, F. L. Early microbial evolution: the age of anaerobes. Cold Spring Harbor Perspect. Biol 8, a018127 (2016).Article 

    Google Scholar 
    Sauterey, B. et al. Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate. Nat. Commun. 11, 2705 (2020).ADS 
    Article 

    Google Scholar 
    Affholder, A. et al. Bayesian analysis of Enceladus’s plume data to assess methanogenesis. Nat. Astron. 5, 805–814 (2021).ADS 
    Article 

    Google Scholar 
    Wordsworth, R. et al. Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017).ADS 
    Article 

    Google Scholar 
    Turbet, M., Boulet, C. & Karman, T. Measurements and semi-empirical calculations of CO2 + CH4 and CO2 + H2 collision-induced absorption across a wide range of wavelengths and temperatures. Application for the prediction of early Mars surface temperature. Icarus 346, 113762 (2020).Article 

    Google Scholar 
    Price, P. B. & Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Nat. Acad. Sci. USA 101, 4631–4636 (2004).ADS 
    Article 

    Google Scholar 
    Taubner, R.-S. et al. Biological methane production under putative Enceladus-like conditions. Nat. Commun. 9, 748 (2018).ADS 
    Article 

    Google Scholar 
    Ramirez, R. M. A warmer and wetter solution for early Mars and the challenges with transient warming. Icarus 297, 71–82 (2017).ADS 
    Article 

    Google Scholar 
    Kharecha, P., Kasting, J. & Siefert, J. A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005).Article 

    Google Scholar 
    Tarnas, J. D. et al. Radiolytic H2 production on Noachian Mars: implications for habitability and atmospheric warming. Earth Planet. Sci. Lett. 502, 133–145 (2018).ADS 
    Article 

    Google Scholar 
    Yung, Y. L. et al. Methane on Mars and habitability: challenges and responses. Astrobiology 18, 1221–1242 (2018).ADS 
    Article 

    Google Scholar 
    Knutsen, E. W. et al. Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus 357, 114266 (2021).Article 

    Google Scholar 
    Cockell, C. S. Trajectories of martian habitability. Astrobiology 14, 182–203 (2014).ADS 
    Article 

    Google Scholar 
    Westall, F. et al. Biosignatures on Mars: What, where, and how? Implications for the search for Martian life. Astrobiology 15, 998–1029 (2015).ADS 
    Article 

    Google Scholar 
    Lepot, K. Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth Sci. Rev. 209, 103296 (2020).Article 

    Google Scholar 
    Fastook, J. L. & Head, J. W. Glaciation in the late noachian icy highlands: Ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns. Planet. Space Sci. 106, 82–98 (2015).ADS 
    Article 

    Google Scholar 
    Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008).ADS 
    Article 

    Google Scholar 
    Tanaka, K. L. et al. Geologic Map of Mars: U.S. Geological Survey Scientific Investigations Map 3292, Scale 1000,000 (US Geological Survey, 2014); https://doi.org/10.3133/sim3292Sun, V. Z. & Stack, K. M. Geologic Map of Jezero Crater and the Nili Planum Region, Mars: U.S. Geological Survey Scientific Investigations Map 3464, Scale 1000 (US Geological Survey, 2020); https://doi.org/10.3133/sim3464Ward, P. The Medea Hypothesis (Princeton Univ. Press, 2009).Chopra, A. & Lineweaver, C. H. The Case for a Gaian bottleneck: the biology of habitability. Astrobiology 16, 7–22 (2016).ADS 
    Article 

    Google Scholar 
    Arney, G. et al. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth. Astrobiology 16, 873–899 (2016).Batalha, N. et al. Testing the early Mars H2-CO2 greenhouse hypothesis with a 1-D photochemical model. Icarus 258, 337–349 (2015).ADS 
    Article 

    Google Scholar 
    Stüeken, E. E. et al. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520, 666–669 (2015).ADS 
    Article 

    Google Scholar 
    Cockell, C. S. et al. Minimum units of habitability and their abundance in the universe. Astrobiology 21, 481–489 (2021).ADS 
    Article 

    Google Scholar 
    Adams, D. et al. Nitrogen fixation at early Mars. Astrobiology 21, 968–980 (2021).ADS 
    Article 

    Google Scholar 
    Fergason, R. L., Hare, T. M. and Laura, J. HRSC and MOLA Blended Digital Elevation Model at 200m v2. Astrogeology PDS Annex (US Geological Survey, 2018); http://bit.ly/HRSC_MOLA_Blend_v0Sauterey, B. MarsEcosys v.1.0. Zenodo https://doi.org/10.5281/zenodo.6963348 (2022). More

  • in

    Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age

    Brett, C. E. Sequence stratigraphy, paleoecology, and evolution: biotic clues and responses to sea-level fluctuations. Palaios 13, 241–262 (1998).Article 

    Google Scholar 
    Brett, C. E., Hendy, A. J. W., Bartholomew, A. J., Bonelli, J. R. & McLaughlin, P. I. Response of shallow marine biotas to sea-level fluctuations: a review of faunal replacement and the process of habitat tracking. Palaios 22, 228–244 (2007).Article 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).PubMed 
    Article 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 

    Google Scholar 
    Rillo, M. C., Woolley, S. & Hillebrand, H. Drivers of global pre‐industrial patterns of species turnover in planktonic foraminifera. Ecography 2022, e05892 (2021).Article 

    Google Scholar 
    Van der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Phil. Trans. R. Soc. B 365, 2025–2034 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Antão, L. H. et al. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat. Ecol. Evol. 4, 927–933 (2020).PubMed 
    Article 

    Google Scholar 
    Chen, I. C. et al. Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Glob. Ecol. Biogeogr. 20, 34–45 (2011).Article 

    Google Scholar 
    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2015).Article 

    Google Scholar 
    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).Article 

    Google Scholar 
    Benedetti, F. et al. Major restructuring of marine plankton assemblages under global warming. Nat. Commun. 12, 5226 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Occhipinti-Ambrogi, A. Global change and marine communities: alien species and climate change. Mar. Pollut. Bull. 55, 342–352 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).Article 

    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jonkers, L. et al. Integrating palaeoclimate time series with rich metadata for uncertainty modelling: strategy and documentation of the PalMod 130k marine palaeoclimate data synthesis. Earth Syst. Sci. Data 12, 1053–1081 (2020).Article 

    Google Scholar 
    Buitenhuis, E. T. et al. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).Article 

    Google Scholar 
    Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol. Rev. 92, 199–215 (2017).PubMed 
    Article 

    Google Scholar 
    Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).PubMed 
    Article 

    Google Scholar 
    Takagi, H. et al. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences 16, 3377–3396 (2019).CAS 
    Article 

    Google Scholar 
    Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean (Springer, 2017).Morey, A. E., Mix, A. C. & Pisias, N. G. Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environment variables. Quat. Sci. Rev. 24, 925–950 (2005).Article 

    Google Scholar 
    Fenton, I. S., Pearson, P. N., Dunkley Jones, T. & Purvis, A. Environmental predictors of diversity in recent planktonic foraminifera as recorded in marine sediments. PLoS ONE 11, e0165522 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rutherford, S., D’Hondt, S. & Prell, W. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400, 749–753 (1999).CAS 
    Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).PubMed 
    Article 

    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hinder, S. L. et al. Changes in marine dinoflagellate and diatom abundance under climate change. Nat. Clim. Change 2, 271–275 (2012).Article 

    Google Scholar 
    Southward, A. J., Hawkins, S. J. & Burrows, M. T. Seventy years’ observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. J. Therm. Biol. 20, 127–155 (1995).Article 

    Google Scholar 
    Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C. & Weinelt, M. Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quat. Sci. Rev. 24, 813–819 (2005).Kucera, M. et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat. Sci. Rev. 24, 951–998 (2005).Article 

    Google Scholar 
    Siccha, M. & Kucera, M. ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Sci. Data 4, 170109 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Phil. Trans. R. Soc. B 371, 20150224 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lowery, C. M. & Fraass, A. J. Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction. Nat. Ecol. Evol. 3, 900–904 (2019).PubMed 
    Article 

    Google Scholar 
    Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142 (2011).Article 

    Google Scholar 
    Antell, G. S., Fenton, I. S., Valdes, P. J. & Saupe, E. E. Thermal niches of planktonic foraminifera are static throughout glacial-interglacial climate change. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2017105118 (2021).Fauth, J. E. et al. Simplifying the jargon of community ecology: a conceptual approach. Am. Nat. 147, 282–286 (1996).Article 

    Google Scholar 
    Jackson, S. T. & Overpeck, J. T. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26, 194–220 (2000).Article 

    Google Scholar 
    Bard, E., Rostek, F., Turon, J.-L. & Gendreau, S. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289, 1321–1324 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Broecker, W. S. Massive iceberg discharges as triggers for global climate change. Nature 372, 421–424 (1994).CAS 
    Article 

    Google Scholar 
    Ruddiman, W. F. Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65°N). Geol. Soc. Am. Bull. 88, 1813–1827 (1977).Article 

    Google Scholar 
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).Liow, L. H., Van Valen, L. & Stenseth, N. C. Red Queen: from populations to taxa and communities. Trends Ecol. Evol. 26, 349–358 (2011).PubMed 
    Article 

    Google Scholar 
    Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article 

    Google Scholar 
    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).PubMed 
    Article 

    Google Scholar 
    Williams, J. W., Ordonez, A. & Svenning, J. C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).PubMed 
    Article 

    Google Scholar 
    Van Meerbeeck, C. J., Renssen, H. & Roche, D. M. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? Perspectives from equilibrium simulations. Clim. Past 5, 33–51 (2009).Article 

    Google Scholar 
    Jonkers, L. & Kučera, M. Global analysis of seasonality in the shell flux of extant planktonic Foraminifera. Biogeosciences 12, 2207–2226 (2015).Article 

    Google Scholar 
    Ofstad, S. et al. Development, productivity, and seasonality of living planktonic foraminiferal faunas and Limacina helicina in an area of intense methane seepage in the Barents Sea. J. Geophys. Res. Biogeosci. 125, e2019JG005387 (2020).CAS 
    Article 

    Google Scholar 
    Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P. & Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548–553 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rillo, M. C. et al. On the mismatch in the strength of competition among fossil and modern species of planktonic Foraminifera. Glob. Ecol. Biogeogr. 28, 1866–1878 (2019).Article 

    Google Scholar 
    Lisiecki, L. E. & Stern, J. V. Regional and global benthic δ18O stacks for the last glacial cycle. Paleoceanography 31, 1368–1394 (2016).Article 

    Google Scholar 
    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).CAS 
    Article 

    Google Scholar 
    Butzin, M., Köhler, P. & Lohmann, G. Marine radiocarbon reservoir age simulations for the past 50,000 years. Geophys. Res. Lett. 44, 8473–8480 (2017).CAS 
    Article 

    Google Scholar 
    Langner, M. & Mulitza, S. Technical Note: PaleoDataView—A software toolbox for the collection, homogenization and visualization of marine proxy data. Clim 15, 2067–2072 (2019).
    Google Scholar 
    Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657 (2001).Article 

    Google Scholar 
    Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Horn, H. S. Measurement of ‘overlap’ in comparative ecological studies. Am. Nat. 100, 419–424 (1966).Article 

    Google Scholar 
    Jost, L., Chao, A. & Chazdon, R. L. in Biological diversity: frontiers in measurement and assessment (eds Anne E. Magurran & Brian J. McGill) 66–84 (Oxford University Press, 2011).Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).Article 

    Google Scholar 
    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 

    Google Scholar 
    Firke, S. janitor: Simple tools for examining and cleaning dirty data. R package version 2.1.0 https://CRAN.R-project.org/package=janitor (2021).Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-7 https://CRAN.R-project.org/package=vegan (2020).Hallett, L. M. et al. codyn: an R package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).Article 

    Google Scholar 
    Juggins, S. rioja: Analysis of quaternary science data. R package version 0.9-26 https://cran.r-project.org/package=rioja (2020).Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 3.4-13 https://CRAN.R-project.org/package=raster (2021).Garnier, S. viridis: Default color maps from ‘matplotlib’. R package version 0.6.1 https://CRAN.R-project.org/package=viridis (2021.)Locarnini, R. A. et al. World Ocean Atlas 2018, Vol. 1: Temperature. NOAA Atlas NESDIS 81 (NOAA, 2019). More

  • in

    High-resolution phylogenetic and population genetic analysis of microbial communities with RoC-ITS

    Srivastava AK, Schlessinger D. Mechanism and regulation of bacterial ribosomal RNA processing. Annu Rev Microbiol. 1990;44:105–29.PubMed 

    Google Scholar 
    Brewer TE, Albertsen M, Edwards A, Kirkegaard RH, Rocha EPC, Fierer N. Unlinked rRNA genes are widespread among bacteria and archaea. ISME J. 2020;14:597–608.PubMed 

    Google Scholar 
    Apirion D, Miczak A. RNA processing in prokaryotic cells. Bioessays. 1993;15:113–20.PubMed 

    Google Scholar 
    Espejo RT, Plaza N. Multiple ribosomal RNA operons in bacteria; their concerted evolution and potential consequences on the rate of evolution of their 16S rRNA. Front Microbiol. 2018;9:1232.PubMed 
    PubMed Central 

    Google Scholar 
    Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 2016;1:16160.PubMed 
    PubMed Central 

    Google Scholar 
    Lim K, Furuta Y, Kobayashi I. Large variations in bacterial ribosomal RNA Genes. Mol Biol Evol. 2012;29:2937–48.PubMed 
    PubMed Central 

    Google Scholar 
    Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis. 1998;19:554–68.PubMed 

    Google Scholar 
    Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci. 1977;74:5088 LP–5090.
    Google Scholar 
    Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci. 1985;82:6955 LP–6959.
    Google Scholar 
    Park YH, Hori H, Suzuki K, Osawa S, Komagata K. Phylogenetic analysis of the coryneform bacteria by 5S rRNA sequences. J Bacteriol. 1987;169:1801–6.PubMed 
    PubMed Central 

    Google Scholar 
    Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J. 5S Ribosomal RNA Database. Nucleic Acids Res. 2002;30:176–8.PubMed 
    PubMed Central 

    Google Scholar 
    Pace NR. The small things can matter. PLoS Biol. 2018;16:e3000009.PubMed 
    PubMed Central 

    Google Scholar 
    Gürtler V. The role of recombination and mutation in 16S–23S rDNA spacer rearrangements. Gene. 1999;238:241–52.PubMed 

    Google Scholar 
    Snyder AK, Adkins KZ, Rio RVM. Use of the internal transcribed spacer (ITS) regions to examine symbiont divergence and as a diagnostic tool for sodalis-related bacteria. Insects. 2011;2:515–31.PubMed 
    PubMed Central 

    Google Scholar 
    Man SM, Kaakoush NO, Octavia S, Mitchell H. The internal transcribed spacer region, a new tool for use in species differentiation and delineation of systematic relationships within the Campylobacter genus. Appl Environ Microbiol. 2010;76:3071–81.PubMed 
    PubMed Central 

    Google Scholar 
    Liguori AP, Warrington SD, Ginther JL, Pearson T, Bowers J, Glass MB, et al. Diversity of 16S-23S rDNA Internal Transcribed Spacer (ITS) reveals phylogenetic relationships in Burkholderia pseudomallei and its near-neighbors. PLoS One. 2011;6:e29323.PubMed 
    PubMed Central 

    Google Scholar 
    Boyer SL, Flechtner VR, Johansen JR. Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol. 2001;18:1057–69.PubMed 

    Google Scholar 
    Fisher MM, Triplett EW. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol. 1999;65:4630–6.PubMed 
    PubMed Central 

    Google Scholar 
    Brown BL, Watson M, Minot SS, Rivera MC, Franklin RB. MinIONTM nanopore sequencing of environmental metagenomes: a synthetic approach. Gigascience. 2017;6:1–10.PubMed 
    PubMed Central 

    Google Scholar 
    Hernando-Morales V, Varela MM, Needham DM, Cram J, Fuhrman JA, Teira E. Vertical and seasonal patterns control bacterioplankton communities at two horizontally coherent coastal upwelling sites off Galicia (NW Spain). Microb Ecol. 2018;76:866–84.PubMed 

    Google Scholar 
    Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10:5029.PubMed 
    PubMed Central 

    Google Scholar 
    Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci USA. 2006;103:12115–20.PubMed 
    PubMed Central 

    Google Scholar 
    Nossa CW, Oberdorf WE, Yang L, Aas JA, Paster BJ, Desantis TZ, et al. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol. 2010;16:4135–44.PubMed 
    PubMed Central 

    Google Scholar 
    Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9.PubMed 
    PubMed Central 

    Google Scholar 
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.PubMed 
    PubMed Central 

    Google Scholar 
    Kapustina Ž, Medžiūnė J, Alzbutas G, Rokaitis I, Matjošaitis K, Mackevičius G, et al. High-resolution microbiome analysis enabled by linking of 16S rRNA gene sequences with adjacent genomic contexts. Microb Genom. 2021;7:1–16.
    Google Scholar 
    Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature. 2004;428:37–43.PubMed 

    Google Scholar 
    Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004;304:66–74.PubMed 

    Google Scholar 
    Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 2007;5:e77.PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.PubMed 
    PubMed Central 

    Google Scholar 
    Karst SM, Ziels RM, Kirkegaard RH, Sørensen EA, McDonald D, Zhu Q, et al. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nat Methods. 2021;18:165–9.PubMed 

    Google Scholar 
    Jamy M, Foster R, Barbera P, Czech L, Kozlov A, Stamatakis A, et al. Long-read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity. Mol Ecol Resour. 2020;20:429–43.PubMed 

    Google Scholar 
    Leggett RM, Clark MD. A world of opportunities with nanopore sequencing. J Exp Bot. 2017;68:5419–29.PubMed 

    Google Scholar 
    Jain M, Olsen HE, Paten B, Akeson M. The Oxford nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016;17:239.PubMed 
    PubMed Central 

    Google Scholar 
    Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8.PubMed 

    Google Scholar 
    Graf J, Ledala N, Caimano MJ, Jackson E, Gratalo D, Fasulo D, et al. High-resolution differentiation of enteric bacteria in premature infant fecal microbiomes using a novel rRNA amplicon. mBio. 2021;12:e03656–20.PubMed 
    PubMed Central 

    Google Scholar 
    Martijn J, Lind AE, Schön ME, Spiertz I, Juzokaite L, Bunikis I, et al. Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S-ITS-23S rRNA operon. Environ Microbiol. 2019;21:2485–98.PubMed 
    PubMed Central 

    Google Scholar 
    Okazaki Y, Fujinaga S, Salcher MM, Callieri C, Tanaka A, Kohzu A, et al. Microdiversity and phylogeographic diversification of bacterioplankton in pelagic freshwater systems revealed through long-read amplicon sequencing. Microbiome. 2021;9:24.PubMed 
    PubMed Central 

    Google Scholar 
    Miga KH, Koren S, Rhie A, Vollger MR, Gershman A, Bzikadze A, et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature. 2020;585:79–84.PubMed 
    PubMed Central 

    Google Scholar 
    Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37:1155–62.PubMed 
    PubMed Central 

    Google Scholar 
    Matsuo Y, Komiya S, Yasumizu Y, Yasuoka Y, Mizushima K, Takagi T, et al. Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinIONTM nanopore sequencing confers species-level resolution. BMC Microbiol. 2021;21:35.PubMed 
    PubMed Central 

    Google Scholar 
    Calus ST, Ijaz UZ, Pinto AJ. NanoAmpli-Seq: a workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform. Gigascience. 2018;7:1–16.
    Google Scholar 
    Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM, Gulati AS, et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 2019;47:e103–e103.PubMed 
    PubMed Central 

    Google Scholar 
    Benítez-Páez A, Portune KJ, Sanz Y. Species-level resolution of 16S rRNA gene amplicons sequenced through the MinIONTM portable nanopore sequencer. Gigascience. 2016;5:4.PubMed 
    PubMed Central 

    Google Scholar 
    Kumar V, Vollbrecht T, Chernyshev M, Mohan S, Hanst B, Bavafa N, et al. Long-read amplicon denoising. Nucleic Acids Res. 2019;47:e104–e104.PubMed 
    PubMed Central 

    Google Scholar 
    Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 2019;20:129.PubMed 
    PubMed Central 

    Google Scholar 
    Lane D. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds). Nucleic acid techniques in bacterial systematics. 1991. Wiley, New York, pp 115–75.Miller CS, Handley KM, Wrighton KC, Frischkorn KR, Thomas BC, Banfield JF. Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS One. 2013;8:e56018–e56018.PubMed 
    PubMed Central 

    Google Scholar 
    Hunt DE, Klepac-Ceraj V, Acinas SG, Gautier C, Bertilsson S, Polz MF. Evaluation of 23S rRNA PCR primers for use in phylogenetic studies of bacterial diversity. Appl Environ Microbiol. 2006;72:2221–5.PubMed 
    PubMed Central 

    Google Scholar 
    Volden R, Palmer T, Byrne A, Cole C, Schmitz RJ, Green RE, et al. Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA. Proc Natl Acad Sci. 2018;115:9726 LP–9731.
    Google Scholar 
    Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343–5.PubMed 

    Google Scholar 
    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.PubMed 
    PubMed Central 

    Google Scholar 
    Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Inform. 2009;23:205–11.PubMed 

    Google Scholar 
    Morisse P, Marchet C, Limasset A, Lecroq T, Lefebvre A. Scalable long read self-correction and assembly polishing with multiple sequence alignment. Sci Rep. 2021;11:761.PubMed 
    PubMed Central 

    Google Scholar 
    Do CB, Mahabhashyam MSP, Brudno M, Batzoglou S. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res. 2005;15:330–40.PubMed 
    PubMed Central 

    Google Scholar 
    dos Santos HRM, Argolo CS, Argôlo-Filho RC, Loguercio LL. A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiol. 2019;19:74.PubMed 
    PubMed Central 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.PubMed 

    Google Scholar 
    Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.PubMed 
    PubMed Central 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–W259.PubMed 
    PubMed Central 

    Google Scholar 
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112 LP–5120.
    Google Scholar 
    Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–42.PubMed 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.PubMed 

    Google Scholar 
    de Oliveira Martins L, Page AJ, Mather AE, Charles IG. Taxonomic resolution of the ribosomal RNA operon in bacteria: implications for its use with long-read sequencing. NAR Genom Bioinform. 2019;2:lqz016–lqz016.PubMed 
    PubMed Central 

    Google Scholar 
    Olesen SW, Duvallet C, Alm EJ. dbOTU3: a new implementation of distribution-based OTU calling. PLoS One. 2017;12:e0176335–e0176335.PubMed 
    PubMed Central 

    Google Scholar 
    Fichot EB, Norman RS. Microbial phylogenetic profiling with the Pacific Biosciences sequencing platform. Microbiome. 2013;1:10.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Isotopic evidence that aestivation allows malaria mosquitoes to persist through the dry season in the Sahel

    Adamou, A. et al. The contribution of aestivating mosquitoes to the persistence of Anopheles gambiae in the Sahel. Malar. J. 10, 151 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Huestis, D. L. et al. Seasonal variation in metabolic rate, flight activity and body size of Anopheles gambiae in the Sahel. J. Exp. Biol. 215, 2013–2021 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Huestis, D. L. et al. Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village. J. Exp. Biol. 214, 2345–2353 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Lehmann, T. et al. Aestivation of the African malaria mosquito, Anopheles gambiae in the Sahel. Am. J. Trop. Med. Hyg. 83, 601–606 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Yaro, A. S. et al. Dry season reproductive depression of Anopheles gambiae in the Sahel. J. Insect Physiol. 58, 1050–1059 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Omer, S. M. & Cloudsley-Thompson, J. L. Survival of female Anopheles gambiae Giles through a 9-month dry season in Sudan. Bull. World Health Organ. 42, 319 (1970).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Omer, S. M. & Cloudsley-Thompson, J. L. Dry season biology of Anopheles gambiae Giles in the Sudan. Nature 217, 879–880 (1968).
    Google Scholar 
    Holstein, M. H. Biology of Anopheles gambiae (1954). World Health Organization.Andrade, C. M. et al. Increased circulation time of Plasmodium falciparum underlies persistent asymptomatic infection in the dry season. Nat. Med. 26, 1929–1940 (2020).CAS 
    PubMed 

    Google Scholar 
    Coulibaly, D. et al. Spatio-temporal dynamics of asymptomatic malaria: bridging the gap between annual malaria resurgences in a Sahelian environment. Am. J. Trop. Med. Hyg. 27, 1761–1769 (2017).
    Google Scholar 
    Gillies, M. & Wilkes, T. A study of the age-composition of populations of Anopheles gambiae Giles and A. funestus Giles in north-eastern Tanzania. Bull. Entomol. Res. 56, 237–262 (1965).CAS 
    PubMed 

    Google Scholar 
    Gillies, M. T. & De Meillon, B. The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region) (Johannesburg: South African Institute for Medical Research, 1968).Dao, A. et al. Signatures of aestivation and migration in Sahelian malaria mosquito populations. Nature 516, 387–390 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomson, J. G. Malaria in Nyasaland. Proc. R. Soc. Med. 28, 391–404 (1934).
    Google Scholar 
    Huestis, D. L. et al. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature 574, 404–408 (2019).CAS 
    PubMed 

    Google Scholar 
    Lambert, B., North, A., Burt, A. & Godfray, H. C. J. The use of driving endonuclease genes to suppress mosquito vectors of malaria in temporally variable environments. Malar. J. 17, 154 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Verhulst, N. O., Loonen, J. A. C. M. & Takken, W. Advances in methods for colour marking of mosquitoes. Parasit. Vectors 6, 200 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Hagler, J. R. & Jackson, C. G. Methods for marking insects: current techniques and future prospects. Annu. Rev. Entomol. 46, 511–543 (2001).CAS 
    PubMed 

    Google Scholar 
    Hamer, G. L. et al. Dispersal of adult culex mosquitoes in an urban West Nile virus hotspot: a mark–capture study incorporating stable isotope enrichment of natural larval habitats. PLoS Negl. Trop. Dis. 8, e2768 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Hamer, G. L. et al. Evaluation of a stable isotope method to mark naturally-breeding larval mosquitoes for adult dispersal studies. J. Med. Entomol. 49, 61–70 (2012).CAS 
    PubMed 

    Google Scholar 
    Opiyo, M. A. et al. Using stable isotopes of carbon and nitrogen to mark wild populations of Anopheles and Aedes mosquitoes in south-eastern Tanzania. PLoS ONE 11, e0159067 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Hood-Nowotny, R., Mayr, L. & Knols, B. Use of carbon-13 as a population marker for Anopheles arabiensis in a sterile insect technique (SIT) context. Malar. J. 5, 6 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Hood-Nowotny, R. & Knols, B. G. J. Stable isotope methods in biological and ecological studies of arthropods. Entomol. Exp. Appl. 124, 3–16 (2007).CAS 

    Google Scholar 
    Hood-Nowotny, R. et al. Intrinsic and synthetic stable isotope marking of tsetse flies. J. Insect Sci. 11, 79 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. Deuterium- and tritium-labelled compounds: applications in the life sciences. Angew. Chem. Int. Ed. 57, 1758–1784 (2018).CAS 

    Google Scholar 
    Copia, L., Wassenaar, L. I., Terzer-Wassmuth, S., Belachew, D. L. & Araguas-Araguas, L. J. Comparative evaluation of 2H- versus 3H-based enrichment factor determination on the uncertainty and accuracy of low-level tritium analyses of environmental waters. Appl. Radiat. Isot. 176, 109850 (2021).CAS 
    PubMed 

    Google Scholar 
    Begon, M., Harper, J. & Townsend, C. Ecology: Individuals, Populations and Communities (Blackwell Science, 1996).Faiman, R. et al. Marking mosquitoes in their natural larval sites using 2H-enriched water: a promising approach for tracking over extended temporal and spatial scales. Methods Ecol. Evol. 10, 1274–1285 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Florkin, M. Chemical Zoology: Arthropoda Part B (Academic Press, 2014).Hackman, R. H. & Goldberg, M. Studies on chitin VI. The nature of alpha-and beta-chitins. Aust. J. Biol. Sci. 18, 935–946 (1965).CAS 
    PubMed 

    Google Scholar 
    Faiman, R. et al. Quantifying flight aptitude variation in wild Anopheles gambiae in order to identify long-distance migrants. Malar. J. 19, 263 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Huestis, D. L. & Lehmann, T. Ecophysiology of Anopheles gambiae s.l.: persistence in the Sahel. Infect. Genet. Evol. 28, 648–661 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lehmann, T. et al. Seasonal variation in spatial distributions of Anopheles gambiae in a Sahelian village: evidence for aestivation. J. Med. Entomol. 51, 27–38 (2014).PubMed 

    Google Scholar 
    Costantini, C. et al. Density, survival and dispersal of Anopheles gambiae complex mosquitoes in a West African Sudan savanna village. Med. Vet. Entomol. 10, 203–219 (1996).CAS 
    PubMed 

    Google Scholar 
    Toure, Y. T. et al. Mark–release–recapture experiments with Anopheles gambiae s.l. in Banambani Village, Mali, to determine population size and structure. Med. Vet. Entomol. 12, 74–83 (1998).CAS 
    PubMed 

    Google Scholar 
    Faiman, R. et al. A novel fluorescence and DNA combination for versatile, long-term marking of mosquitoes. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13592 (2021).Brattström, O., Bensch, S., Wassenaar, L. I., Hobson, K. A. & Åkesson, S. Understanding the migration ecology of European red admirals Vanessa atalanta using stable hydrogen isotopes. Ecography 33, 720–729 (2010).
    Google Scholar 
    Hobson, K. A., Jinguji, H., Ichikawa, Y., Kusack, J. W. & Anderson, R. C. Long-distance migration of the globe skimmer dragonfly to Japan revealed using stable hydrogen (δ 2H) isotopes. Environ. Entomol. 50, 247–255 (2020).
    Google Scholar 
    Schilling, E. G. et al. Phenological and isotopic evidence for migration as a life history strategy in Aeshna canadensis (family: Aeshnidae) dragonflies. Ecol. Entomol. 46, 209–219 (2021).
    Google Scholar 
    Girard, P., Hillaire-Marcel, C. & Oga, M. S. Determining the recharge mode of Sahelian aquifers using water isotopes. J. Hydrol. 197, 189–202 (1997).CAS 

    Google Scholar 
    Gutiérrez-Expósito, C., Ramírez, F., Afán, I., Forero, M. & Hobson, K. A. Toward a deuterium feather isoscape for sub-Saharan Africa: progress, challenges and the path ahead. PLoS ONE https://doi.org/10.1371/journal.pone.0135938 (2015).Lutz, A., Thomas, J. M. & Panorska, A. Environmental controls on stable isotope precipitation values over Mali and Niger, West Africa. Environ. Earth Sci. 62, 1749–1759 (2011).CAS 

    Google Scholar 
    Risi, C. et al. Understanding the Sahelian water budget through the isotopic composition of water vapor and precipitation. J. Geophys. Res. Atmos. 115, 1–23 (2010).
    Google Scholar 
    Tremoy, G. et al. A 1-year long δ18O record of water vapor in Niamey (Niger) reveals insightful atmospheric processes at different timescales. Geophys. Res. Lett. 39, 1–5 (2012).
    Google Scholar 
    Terzer‐Wassmuth, S., Wassenaar, L. I., Welker, J. M., Araguás-Araguás, L. J. Improved high‐resolution global and regionalized isoscapes of δ18O, δ2H and d‐excess in precipitation. Hydrol. Process. 35 (2021).Hobson, K. A. et al. A multi-isotope (δ13C, δ15N, δ2H) feather isoscape to assign Afrotropical migrant birds to origins. Ecosphere 3, art44 (2012).
    Google Scholar 
    Diuk-Wasser, M. A. et al. Effect of rice cultivation patterns on malaria vector abundance in rice-growing villages in Mali. Am. J. Trop. Med. Hyg. 76, 869–874 (2007).PubMed 

    Google Scholar 
    Sogoba, N. et al. Malaria transmission dynamics in Niono, Mali: the effect of the irrigation systems. Acta Trop. 101, 232–240 (2007).PubMed 

    Google Scholar 
    Florio, J. et al. Diversity, dynamics, direction, and magnitude of high-altitude migrating insects in the Sahel. Sci. Rep. 10, 20523 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilkins, E. E., Howell, P. I. & Benedict, M. Q. IMP PCR primers detect single nucleotide polymorphisms for Anopheles gambiae species identification, Mopti and Savanna rDNA types, and resistance to dieldrin in Anopheles arabiensis. Malar. J. 5, 125 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Wassenaar, L. I. & Hobson, K. A. Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ. Health Stud. 39, 211–217 (2003).CAS 
    PubMed 

    Google Scholar 
    Chesson, L. A., Podlesak, D. W., Cerling, T. E. & Ehleringer, J. R. Evaluating uncertainty in the calculation of non-exchangeable hydrogen fractions within organic materials. Rapid Commun. Mass Spectrom. 23, 1275–1280 (2009).CAS 
    PubMed 

    Google Scholar 
    Schimmelmann, A. Determination of the concentration and stable isotopic composition of nonexchangeable hydrogen in organic matter. Anal. Chem. 63, 2456–2459 (1991).CAS 

    Google Scholar 
    Speakman, J. Doubly Labelled Water: Theory and Practice (Chapman & Hall, 1997).Base SAS 9.4 Procedures Guide (SAS Institute, 2015).Cade, B. S. & N, B. R. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 1, 412–420 (2003).
    Google Scholar 
    SAS/STAT® 15.1 User’s Guide (SAS Institute, 2018).Mcclintock, B. T. et al. Uncovering ecological state dynamics with hidden Markov models. Ecol. Lett. 23, 1878–1903 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Issam, M., Naulet, N., Martin, M. L. & Martin, G. J. A site-specific and multielement approach to the determination of liquid–vapor isotope fractionation parameters: the case of alcohols. J. Phys. Chem. 94, 8303–8309 (1990).
    Google Scholar 
    Linderstrøm-Lang, C. U. & Vaslow, F. Isotope effect on the vapor pressures of water–ethanol and deuterium oxide–ethanol-d mixtures. J. Phys. Chem. 72, 2645–2650 (1968).
    Google Scholar 
    Ventura, M. & Jeppesen, E. Effects of fixation on freshwater invertebrate carbon and nitrogen isotope composition and its arithmetic correction. Hydrobiologia 632, 297–308 (2009).CAS 

    Google Scholar  More

  • in

    Protecting the Amazon forest and reducing global warming via agricultural intensification

    Study regions and recent trends in land use changeOur analysis focuses on four biomes (referred to as regions in the rest of the text), accounting for nearly all soybean area in Brazil: the Pampa, the Atlantic Forest, the Cerrado and the Amazon (Supplementary Section 1). Soybean production is negligible in the Pantanal and the Caatinga, so these two regions were excluded from our analysis. We focused on soybean-based systems in Brazil, either those that include one crop per year (single soybean) or those including a second-crop maize. In the latter system, soybean is sown in September–October, and maize is sown right after the soybean harvest in late January–February. Single soybean is common in the Pampa, where the drier climate does not allow double cropping. In contrast, higher precipitation allows double cropping in the Amazon, the Cerrado and most of the Atlantic Forest (Supplementary Section 2).Recent trends in yield, area and production for soybean and second-crop maize were derived from official statistics for the 2007–2019 period16. We fitted linear models to derive the annual rate of yield improvement and harvested area for soybean and second-crop maize, separately for each region (Fig. 1 and Extended Data Fig. 1). Land use change arising from soybean expansion was estimated using data from the MapBiomas project (v.5.0)10 (Supplementary Table 1). Our estimation of land use change accounted for the time lag between land conversion and the beginning of soybean production, which can include transitional stages such as the cultivation of upland rice or short-term pasture-based livestock systems42. To account for this, we looked at the new land brought into soybean production during the 2008–2019 period, and we analysed how much of this land was under a different land use type (forest, savannah, grassland, pasture or other crops) in 2000 (Extended Data Fig. 2).Estimation of yield potential and yield gapsWe used results on yield potential for Brazil that we generated through the Global Yield Gap Atlas project43 using well-validated process-based crop models and the best available sources of weather, soil and management data. Briefly, we selected 32 sites to portray the distribution of the soybean harvested area within the country, following protocols that ensure representativeness and a reasonable coverage of the national crop area44. The 32 sites collectively accounted for half of the soybean harvested area in Brazil. These sites were located within agro-climatic zones accounting for 86% of the national soybean production and accounted for 72–92% of the soybean area in each region. Following protocols that gave preference to measured data at a high level of spatial and temporal resolution45, we collected databases on weather, soil, management and crop yields for soybean for each site, and also for second-crop maize at those sites where double-cropping is practised (Supplementary Tables 2 and 3 and Supplementary Section 3).Yield potential was simulated for widespread cultivars in each region using the CROPGRO soybean model embedded in DSSAT v.4.546 and the Hybrid-Maize model47. Both models simulate crop growth and development on a daily time step. Growth rates are determined by simulating both CO2 assimilation and respiration, with partitioning coefficients to different organs dependent on developmental stage. The model phenological coefficients were calibrated to portray the crop cycle of the most dominant cultivars in each region in Brazil. We used generic default coefficients for growth-related model internal parameters such as photosynthesis, respiration, leaf area expansion, light interception, biomass partitioning and grain filling. In all cases, simulations of yield potential assumed the absence of insect pests, weeds and diseases and no nutrient limitations. In simulating yield potential, both models account for solar radiation, photoperiod, temperature, and the timing and amount of rainfall as well as soil properties influencing crop water balance.We first evaluated the CROPGRO and Hybrid-Maize models on the ability to reproduce measured phenology and yields across 40 well-managed experiments located across the four regions. The models showed satisfactory performance at reproducing the measured values (Extended Data Fig. 3). We then simulated soybean yield potential for the dominant agricultural soils at each site (usually two or three), as determined from the soil maps generated by the Radambrasil project48. The simulations were based on long-term (1999–2018) measured daily weather data retrieved from the Brazilian Institute of Meteorology49. Soybean yield potential was simulated for each year of the time series. We also simulated yield potential for second-crop maize for those sites where double-cropping is practised. To do so, we used sowing dates and cultivar maturities that maximize the overall productivity of the soybean–maize system; these sowing dates and cultivar maturities are within the current ranges in each region21,28. To estimate the average yield potential for each site, we weighted the simulated values for each soil type by soil area fraction at each site. In all cases, the simulations assumed no limitations to crop growth due to nutrient deficiencies or incidence of biotic stresses such as weeds, insect pests and pathogens. The results were upscaled from site to region and then to country following van Bussel et al.44. Briefly, the average yield potential for each region was estimated by averaging the simulated yields across the sites located within each region, weighing sites according to their share of the soybean area within each region. A similar approach was followed to upscale yield potential from region to the national level. Details on crop modelling, data sources and upscaling are provided in Supplementary Section 3.The average farmer yield was calculated separately for soybean and second-crop maize on the basis of the average yield reported over the 2012–2017 period for the municipalities that overlap with each site, weighing municipalities on the basis of their share of the soybean or maize area within each site16. Including more years before 2012 would have led to a biased estimate of average actual yield due to the technological yield trend in Brazil. Average farmer yields were estimated at the region and country levels following the same upscaling approach as for yield potential. Finally, the exploitable yield gap was calculated as the difference between attainable yield and average farmer yield. The attainable yield was calculated as 80% of the simulated yield potential, which is considered a reasonable yield for farmers with adequate access to inputs, markets and technical information (Supplementary Section 2).Assessing scenarios of intensification and land use changeWe explored three scenarios with different soybean and maize yields and areas by 2035 and assessed their outcomes in terms of production, land use change and GWP (Supplementary Table 4). A 15-year future timespan is long enough to facilitate the implementation of long-term policies, investments and technologies devoted to closing the exploitable yield gap and to implement land-use policies, but it is short enough to minimize long-term effects from climate change on crop yields and cropping systems. In the BAU scenario, historical (2007–2019) trends of soybean and second-crop maize area and yield (Extended Data Fig. 1) remain unchanged in all regions between the baseline year (2019) and the final year (2035). Likewise, soybean area expands following the same pattern of land use change observed during 2008–2019 (Extended Data Fig. 2).To explore the available opportunity for increasing production on the existing production area, we considered an NCE scenario in which there is no physical expansion of cropland while full closure of the exploitable yield gap occurs in the regions where the current yield gaps are small (the Pampa and the Atlantic Forest), and 50% closure of the exploitable yield gap takes place in regions where the current yield gaps are large (the Amazon and the Cerrado) (Supplementary Table 4). These rates are comparable to historical yield gains in the Pampa and the Atlantic Forest. A scenario of full yield closure in the Amazon and the Cerrado would have been unrealistic, as it would have required rates of yield improvement that are three to four times higher than historical rates, much higher than those in the Pampa and the Atlantic Forest, and well beyond those reported for main soybean-producing countries. In the case of second-crop maize, we assumed full closure of the exploitable yield gap by 2035 because historical rates of yield improvement are adequate to reach that yield level. Regarding second-crop maize area, we projected the proportion of double-cropping to increase from the current 47% (Amazon), 39% (Cerrado) and 31% (Atlantic Forest) to 100%, 70% and 50%, respectively, as determined on the basis of the degree of water limitation in each region (Supplementary Section 4).Finally, we explored a third scenario of intensification plus target area expansion (INT), in which identical yield gain rates and the adoption of double-cropping equivalent to those in the NCE scenario were assumed, but with physical expansion of the soybean–maize system allowed in low-C ecosystems (that is, pastures and grasslands). In this scenario, soybean expansion is limited to 5% of existing pastures and grasslands in the Pampa, the Atlantic Forest and the Cerrado (total of 5.7 Mha) as a result of a parallel intensification in the pasture-based livestock sector that frees up land for soybean production. The latter would require an increase of current stocking rates, not only for freeing up 5% of the area for soybean cultivation but also to meet the projected 7% beef production increase during the study period (2020–2035)17. Hence, an overall 12% increase in stocking rates would be required within our 15-year timeframe, which is a reasonable target as reported in previous studies and based on current trends in stocking rates16,29,32,33.Another assumption is that the yield potential of pasture and grasslands converted for soybean production is similar to that in existing soybean areas in each region. Cropland expansion into grassland and pastures was allowed in all regions except for the Amazon to prevent ‘leaking’ effects and the impact of road development on land clearing50,51. Similarly, the conversion of area cultivated with food crops for soybean production was not allowed to avoid the negative impact of indirect land use change52.Estimation of GWP and gross incomeWe estimated GHG emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxides (N2O), associated with land conversion (GHGLUC) and crop production (GHGPROD) for the baseline year (2019) and for the three scenarios by year 2035 (BAU, NCE and INT). GHGLUC includes emissions associated with changes in C stocks from aboveground and belowground biomass when land is converted for soybean production (GHGBIO), as well as GHG emissions derived from changes in soil organic C (GHGSOC). For each land use type, annual GHGBIO was estimated on the basis of the difference between C stocks of the land use type that was converted for production (Supplementary Table 5) and, depending on the scenario and region, the average C stocks of the new cropping system53,54,55:$${mathrm{GHG}}_{{mathrm{BIO}}} = {sum} {left( {{mathrm{TDM}}_i-{mathrm{TDM}}_{{mathrm{crop}}}} right) times A_i}$$
    (1)
    where i is the land cover type, TDM is the total dry matter (tC ha−1) in land cover type i and in cropland (crop), and Ai is the annual area converted from land use type i for soybean cultivation (Supplementary Table 4). C stocks for single soybean and soybean–second-crop maize systems were assumed at 2 and 5 tC ha−1, respectively53,54,55. Changes in SOC stocks were estimated following the Intergovernmental Panel on Climate Change 2019 guidelines54, available country-specific emission factors56 and the SOC values estimated for each region57,58:$${mathrm{GHG}}_{{mathrm{SOC}}} = {sum} {left( {{mathrm{SOC}}_{{mathrm{REF}},i} times F_{{mathrm{LU}}}} right) times A_i}$$
    (2)
    where SOCREF is the SOC stock for mineral soils in the upper 30 cm for the reference condition (tC ha−1)57 in land cover type i (Supplementary Table 5), and FLU is the stock change factor for SOC land-use systems for a particular land use (Supplementary Table 4). Because no-till is the predominant soil management strategy in Brazil59, we used FLU = 0.96 for natural vegetation converted to no-till annual crop production, and FLU = 1.16 for pasture and grassland converted to no-till annual crop production56. Because we wanted to assess the full impact of the three scenarios (BAU, NCE and INT) on GWP, we assigned all GHGBIO and GHGSOC derived from land conversion to the first year after land conversion and expressed them as CO2 equivalents by multiplying changes in C stocks by 3.67.Annual GHG emissions derived from soybean and second-crop maize production (GHGPROD) were calculated for each scenario and included those derived from manufacturing, packaging and transportation of agricultural inputs, fossil fuel use for field operations, soil N2O emissions derived from the application of nitrogen (N) fertilizer, and domestic grain transportation. For the baseline year (2019), annual GHG emissions from N, phosphorous (P) and potassium (K) fertilizers and other inputs (lime, pesticides and fuel) were calculated on the basis of current average input rates for soybean and second-crop maize in each region as derived from the crop management data collected for each region (Supplementary Table 6 and Supplementary Section 3.4). To calculate GHG emissions associated with manufacturing, packaging and transportation of N, P and K fertilizers and lime, we used specific updated emissions factors for South America60, selecting those fertilizer sources that are most commonly used for soybean and second-crop maize production: urea (N), monoammonium phosphate (P) and potassium chloride (K). Our calculations also included the extra lime application that is needed to correct soil acidity in converted areas. Emission factors associated with seed production, pesticides and diesel were derived from ref. 61. Soil N2O emissions derived from N fertilizer application were calculated assuming an N2O emission factor of 1% of the applied N fertilizer on the basis of the country-specific emission factor62. Emissions derived from domestic grain transportation for each region were estimated using the GHGs per ton of grain as reported by previous studies for each region63. We assumed that inputs other than nutrient fertilizer will not change relative to the baseline in the BAU scenario. In the INT scenario, applied inputs were calculated on the basis of those reported for current high-yield fields where the yield gap is small. We estimated fertilizer nutrient rates for the three scenarios following a nutrient-balance approach that depends on the projected yield for each scenario (Supplementary Table 6 and Supplementary Section 3.4).GHGPROD in the baseline year (2019) and for the three scenarios in 2035 (BAU, NCE and INT) was estimated for each region by multiplying the emissions per unit of area by the annual soybean harvested area, summing them to estimate GHG emissions at the national level. Overall 100-year GWP was estimated as the sum of GHGLUC and GHGPROD, both expressed as CO2e to account for the higher warming potential of CH4 and N2O, which are 25 and 298 times the intensity of CO2 on a per mass basis, respectively. The gross income was estimated for each scenario by multiplying the annual crop production by the average price for soybean and maize grain during the past ten years (US$453 and US$184 per t for soybean and maize, respectively1). Finally, to combine the environmental and economic impacts into one metric, we calculated the GWP intensity as the ratio between GWP and gross income.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More