More stories

  • in

    Predicting performance of naïve migratory animals, from many wrongs to self-correction

    Calculation of flight-step headings and movementTerms defining flight-step movement, precision and geophysical orientation cues are listed in Table 1. Since seasonal migration nearly ubiquitously proceeds from higher to lower latitudes, it is convenient to define headings clockwise from geographic South (counter-clockwise from geographic North for migration commencing in the Southern Hemisphere). Assuming a spherical Earth, a sequence of N migratory flight-steps with corresponding headings, αi, i = 0,…, N−1, the latitudes, ∅i+1, and longitudes, λi+1, on completion of each flight-step can be calculated using the Haversine Equation76, which we approximated by stepwise planar movement using Eqs. (1) and (2). For improved computational accuracy and to accommodate within flight-step effects, we updated simulated headings and corresponding locations hourly. A migrant’s flight-step distance ({R}_{{{mathrm {step}}}}=3.6{V}_{{mathrm {a}}}{cdot n}_{{mathrm {H}}}/{R}_{{{mathrm {Earth}}}}) (in radians), depends on its flight speed, Va (m/s) relative to the mean Earth radius REarth (km), and flight-step hours, nH. With a geomagnetic in-flight compass, expected hourly geographic headings are modulated by changes in magnetic declination, i.e., the clockwise difference between geographic and geomagnetic South10,32.Formulation of compass coursesFor simplicity, we consider the case of a single inherited or imprinted heading. This can be extended to include sequences of preferred headings. Expected geographic loxodrome headings remain unchanged en route, i.e.,$${bar{{{{{{rm{alpha }}}}}}}}_{i}={bar{{{{{{rm{alpha }}}}}}}}_{0}$$
    (5)
    Relative to geographic axes, expected geomagnetic loxodrome headings remain unchanged relative to proximate geomagnetic South, i.e., are offset by geomagnetic declination on departure (updated hourly in simulations)$${bar{{{{{{rm{alpha }}}}}}}}_{i}={bar{{{{{{rm{alpha }}}}}}}}_{0}+{delta }_{{mathrm {m}},i}$$
    (6)
    As described and illustrated in detail by Kiepenheuer13, the magnetoclinic compass was hypothesized to explain the prevalence of “curved” migratory bird routes, i.e., for which local geographic headings shift gradually but substantially en route. A migrant with a magnetoclinic compass adjusts its heading at each flight-step to maintain a constant transverse component, γ′, of the experienced inclination angle, γ, so that error-free headings are (see Fig. S5 in ref. 34)$${{bar{{{{{{rm{alpha }}}}}}}}_{i}={{sin }}}^{-1}left(frac{{{tan }}{gamma }_{i}}{{{tan }}{gamma }^{{prime} }}right){={{sin }}}^{-1}left(frac{{{tan }}{gamma }_{i}{{sin }}{bar{{{{{{rm{alpha }}}}}}}}_{0}}{{{tan }}{gamma }_{0}}right).$$
    (7)
    In a geomagnetic dipole field, the horizontal (Bh) and vertical (Bz) field, and therefore also inclination, each depends solely on geomagnetic latitude, ∅m:(gamma ={{{tan }}}^{-1}left({B}_{{mathrm {z}}}/{B}_{{mathrm {h}}}right)={{{tan }}}^{-1}left(2{{sin }}{phi }_{{mathrm {m}}}/{{cos }}{phi }_{{mathrm {m}}}right)={{{tan }}}^{-1}left(2{{tan }}{phi }_{{mathrm {m}}}right).) The projected transverse component, therefore, becomes$${gamma }^{{prime} }={{{tan }}}^{-1}left(frac{{{tan }}{gamma }_{0}}{{{sin }}{bar{{{alpha }}}}_{0}}right)={{{tan }}}^{-1}left(frac{2{{tan }}{{{phi }}}_{{mathrm {m}},0}}{{{sin }}{bar{{{{{{rm{alpha }}}}}}}}_{0}}right),$$which can be substituted into Eq. (7) to produce a closed formula for magnetoclinic headings in a dipole as a function of geomagnetic latitude$${bar{{{{{{rm{alpha }}}}}}}}_{i}left({{{phi }}}_{{mathrm {m}},i}right)={{{sin }}}^{-1}left(frac{{{sin }}{bar{{{{{{rm{alpha }}}}}}}}_{0}}{{{tan }}{{{phi }}}_{{mathrm {m}},0}}cdot {{tan }}{{{phi }}}_{{mathrm {m}},i}right),$$
    (8)
    with the expected initial heading, ({bar{{{{{{rm{alpha }}}}}}}}_{0}), and initial geomagnetic latitude, ∅m,0, being constants. Equations (7) and (8) have no solution when inclination increases en route, which could occur following substantial orientation error or in strongly non-dipolar fields. We followed previous studies in allowing magnetoclinic migrants to head towards magnetic East or West until inclination decreased sufficiently33,34,46, but also included orientation error based on the modelled compass precision.To assess sun-compass sensitivity algebraically, and also to improve computational efficiency, we used a closed-form equation for sunset azimuth, θs (derived in Supplementary Note 3 and see ref. 23),$${theta }_{{mathrm {s}}}={{{cos }}}^{-1}left(frac{-{{sin }}{delta }_{{mathrm {s}}}}{{{cos }}{{phi }}}right),$$
    (9)
    where δs is the solar declination, which varies between −23.4° and 23.4° with season and latitude23. Sunset azimuth is the positive and sunrise azimuth is the negative solution to Eq. (9) (relative to geographic N–S).Fixed sun-compass headings represent a uniform (clockwise) offset, ({bar{{{{{{rm{alpha }}}}}}}}_{{mathrm {s}}}) to sunrise or sunset azimuth, θs,i (calculated using Eq. (9))$${{bar{{{{{{rm{alpha }}}}}}}}_{i}={bar{{{{{{rm{alpha }}}}}}}}_{{mathrm {s}}}+theta }_{{mathrm {s}},i}$$
    (10)
    where the preferred heading on commencement of migration, ({bar{{{{{{rm{alpha }}}}}}}}_{{mathrm {s}}}={bar{{{{{{rm{alpha }}}}}}}}_{0}-{theta }_{{mathrm {s}},0}), is presumed to be imprinted using an inherited geographic or geomagnetic heading2,10,30.With a TCSC, preferred headings relative to sun azimuth are adjusted according to the time of day. In the context of sun-compass use during migration, Alerstam and Pettersson22 related the hourly “clock-shift” induced by crossing bands of longitude (∆h = 12 ∆λ/π), to a migrant’s time-compensated adjustment given the rate of change (i.e., angular speed) of sun azimuth close to sunset$$frac{partial {theta }_{{mathrm {s}}}}{partial h}cong frac{2pi {{sin }}{{phi }}}{24},$$
    (11)
    resulting in a “time-compensated” offset in heading on departure ((varDelta bar{{{{{{rm{alpha }}}}}}}cong varDelta {{{{{rm{lambda }}}}}},sin phi), which Eq.(4)). Equation (4) results in near-great-circle trajectories for small ranges in latitude, ∅, until inner clocks are reset. The feasibility of TCSC courses over longer distances (latitude ranges) relies on two critical but little-explored assumptions: (1) time-compensated orientation adjustments are presumed to follow the angular speed of sun azimuth (Eq. (11)) retained from the most recent clock-reset site, and (2) to negotiate unpredictable migratory schedules, migrants are presumed to retain their preferred geographic heading on arrival at extended stopovers22.Regarding the first assumption, time-compensated adjustments could also be influenced by proximate speeds of sun azimuth even when inner clocks are not fully reset. We, therefore, use distinct indices to keep track of “reference” flight-steps for clock-resets (cref,i) and time-compensated adjustments (sref,i). TCSC flight-step headings can then be written as$${bar{{{{{{rm{alpha }}}}}}}}_{i}=left{begin{array}{cc}{bar{{{{{{rm{alpha }}}}}}}}_{{c}_{{{mathrm {ref}}},i}}+left({theta }_{{mathrm {s}},i}-{theta }_{{mathrm {s}},{c}_{{{mathrm {ref}}},i}}right)+left({{{{{{rm{lambda }}}}}}}_{i}-{{{{{{rm{lambda }}}}}}}_{{c}_{{{mathrm {ref}}},i}}right){{sin }}{phi }_{{s}_{{{mathrm {ref}}},i}}, & {i,ne, c}_{{{mathrm {ref}}},i} ; (12a)\ {{{{{{rm{alpha }}}}}}}_{i-1}, & {i=c}_{{{mathrm {ref}}},i} ; (12b)end{array}right.,$$where θs,i represents the sunset azimuth on departures, cref,i specifies the most recent clock-reset site (during which geographic headings are also retained, i.e., ({bar{{{{{{rm{alpha }}}}}}}}_{i}={{{{{{rm{alpha }}}}}}}_{i-1})), and sref,i specifies the site defining the migrant’s temporal (hourly) rate of “time-compensated” adjustments (Eq. (11)). For TCSC courses as conceived by Alerstam and Pettersson22, reference rates of adjustment to sun azimuth are reset in tandem during stopovers, i.e., ({s}_{{{mathrm {ref}}},i}={c}_{{{mathrm {ref}}},i}), but we also considered a proximately gauged TCSC, where migrants gauge their adjustments to currently experienced speed of sun azimuth, i.e., ({s}_{{{mathrm {ref}}},i}=i).Regarding the second assumption, retaining geographic headings on arrival at stopovers is not consistent with ignoring geographic headings between consecutive nightly flight-steps, and may be difficult to achieve while landing. We, therefore, examined a more parsimonious alternative (Fig. 7d, Supplementary Fig. 3) where migrants retain their (usual) TCSC heading from the first night of stopovers, i.e., as if they would have departed on the first night. This alternative also simplifies Eq. (12) to$${bar{{{{{{rm{alpha }}}}}}}}_{i}={bar{{{{{{rm{alpha }}}}}}}}_{{c}_{{{mathrm {ref}}},i}}+left({theta }_{{mathrm {s}},({t}_{i-1}+1)}-{theta }_{{mathrm {s}},{t}_{i-1}}right)+left({{{{{{rm{lambda }}}}}}}_{i}-{{{{{{rm{lambda }}}}}}}_{{c}_{{{mathrm {ref}}},i}}right){{sin }}{{{phi }}}_{{s}_{{{mathrm {ref}}},i}}$$
    (12c)
    where the index ti−1 here represents the departure date from the previous flight.Sensitivity of compass-course headingsSensitivity was assessed by the marginal change in expected heading from previous (imprecise) headings, (partial {bar{alpha }}_{i}/partial {alpha }_{i-1}). When this is positive, small errors in headings will perpetuate, and therefore expected errors in migratory trajectories will grow iteratively. Conversely, negative sensitivity implies self-correction between successive flight-steps. Geographic and geomagnetic loxodromes are per definition constant relative to their respective axes so have “zero” sensitivity, as long as cue-detection errors are stochastically independent.For magnetoclinic compass courses in a dipole field, sensitivity can be calculated by differentiating Eq. (8) with respect to previous headings:$$frac{{mathrm {d}}{bar{{{{{{rm{alpha }}}}}}}}_{i}}{{mathrm {d}}{{{{{{rm{alpha }}}}}}}_{i-1}}=frac{{sin bar{{{{{{rm{alpha }}}}}}}}_{0}}{tan {phi }_{{mathrm {m}},0}}cdot frac{1}{cos {bar{alpha }}_{i}{cos }^{2}{phi }_{{mathrm {m}},i}}frac{partial {phi }_{{mathrm {m}},i}}{partial {alpha }_{i-1}}=frac{{R}_{{mathrm {step}}},sin {alpha }_{i-1}{sin bar{{{{{{rm{alpha }}}}}}}}_{0}}{cos {bar{alpha }}_{i}{cos }^{2}{phi }_{{mathrm {m}},i},tan {phi }_{{mathrm {m}},0}}$$
    (13)
    All three terms in the denominator indicate, as illustrated in Fig. 3b, that magnetoclinic courses become unstably sensitive at both high and low latitudes, and any heading with a significantly East–West component.Sensitivity of fixed sun compass headings is non-zero due to sun azimuth dependence on location (Eq. (9)):$$frac{{mathrm {d}}{bar{{{{{{rm{alpha }}}}}}}}_{i}}{{mathrm {d}}{{{{{{rm{alpha }}}}}}}_{i-1}} = , frac{sin {delta }_{{mathrm {s}},i}}{sin {theta }_{{mathrm {s}},i}}cdot frac{sin {phi }_{i}}{{cos }^{2}{phi }_{i}}frac{partial {phi }_{i}}{partial {alpha }_{i-1}}=frac{sin {delta }_{{mathrm {s}},i}}{sin {theta }_{{mathrm {s}},i}}cdot frac{{R}_{{mathrm {step}}},sin {phi }_{i},sin {alpha }_{i-1}}{{cos }^{2}{phi }_{i}}\ = , {R}_{{mathrm {step}}}cdot ,sin {alpha }_{i-1}frac{tan {phi }_{i}}{tan {theta }_{{mathrm {s}},i}}$$
    (14)
    The sine factor on the right-hand side in Eq. (14) causes the sign of (partial {bar{alpha }}_{i}/partial {alpha }_{i-1}) to be opposite for East to West or West to East headings, and tan θs also change sign at the fall equinox (due to solar declination changing sign). The azimuth term in the denominator indicates heightened sensitivity closer to the summer or winter equinox and at high latitudes, and, conversely, heightened robustness to errors closer to the spring or autumnal equinox (since ({{tan }}{theta }_{{mathrm {s}},0}to pm infty)). This seasonal and directional asymmetry is illustrated in Fig. 3c, e.TCSC courses (Eq. (12)) involve up to three sensitivity terms, due to dependencies on sun azimuth, longitude and latitude:$$ frac{{mathrm {d}}{bar{{{{{{rm{alpha }}}}}}}}_{i}}{{mathrm {d}}{{{{{{rm{alpha }}}}}}}_{i-1}} = , {R}_{{{mathrm {step}}}}cdot {{sin }}{alpha }_{i-1}frac{{{tan }}{phi }_{i}}{{{tan }}{theta }_{{mathrm {s}},i}}+frac{{mathrm {d}}{lambda }_{i}}{{mathrm {d}}{{{{{{rm{alpha }}}}}}}_{i-1}}{{sin }}{{{phi }}}_{{c}_{{{mathrm {ref}}}},i}+left({{{{{{rm{lambda }}}}}}}_{i}-{{{{{{rm{lambda }}}}}}}_{{c}_{{{mathrm {ref}}}},i}right)frac{{mathrm {d}}{{sin }}{phi }_{{s}_{{{mathrm {ref}}}},i}}{{mathrm {d}}{{{{{{rm{alpha }}}}}}}_{i-1}}\ =, left{begin{array}{cc}{R}_{{{mathrm {step}}}}cdot left[{{sin }}{alpha }_{i-1}frac{{{tan }}{phi }_{i}}{{{tan }}{theta }_{{mathrm {s}},i}}-frac{{{cos }}{{{{{{rm{alpha }}}}}}}_{i-1}{{sin }}{phi }_{{s}_{{{mathrm {ref}}}},i}}{{{cos }}{phi }_{i-1}}right],hfill & {{{{{rm{classic}}}}}} ; (15{{{{{rm{a}}}}}})\ {R}_{{{mathrm {step}}}}left[{{sin }}{alpha }_{i-1}frac{{{tan }}{phi }_{i}}{{{tan }}{theta }_{{mathrm {s}},i}}-frac{{{cos }}{{{{{{rm{alpha }}}}}}}_{i-1}{{sin }}{phi }_{{s}_{{{mathrm {ref}}}},i}}{{{cos }}{phi }_{i-1}}+left({{{{{{rm{lambda }}}}}}}_{i}-{{{{{{rm{lambda }}}}}}}_{{c}_{{{mathrm {ref}}}},i}right){{sin }}{alpha }_{i-1}{{cos }}{phi }_{i}right], & {{{{{rm{proximate}}}}}} ; left(15{{{{{rm{b}}}}}}right).end{array}right.$$The first square-bracketed terms in Eqs. (15a, b) are identical to the fixed sun compass (Eq. (14)), reflecting seasonal and latitudinal dependence in sun-azimuth. For headings with a Southward component (α0  1) and nonexistent for North–South headings (G = 1, reflecting no longitude bands being crossed). We expected this factor to affect compass courses differentially according to their error-accumulating or self-correcting nature.We further modified the effective goal-area breadth to account for a (geographically) circular goal area on the sphere, i.e., effectively modulating the longitudinal component of the goal-area breadth at the arrival latitude, ∅A:$${beta }_{{mathrm {A}}}=beta sqrt{{{{{sin }}}^{2}bar{alpha }+left({{cos }}bar{alpha }/{{cos }}{{{phi }}}_{{mathrm {A}}}right)}^{2}}.$$
    (19)
    To account for differential sensitivity among compass-courses, we generalized the normal many-wrongs relation between performance and number of steps, (1/{hat{N}}^{eta }), from η = 0.5 (Eqs. (3) and (16)) to$$eta left({sigma }_{{step}}|s,bright)=left(0.5+bright){e}^{-s{{sigma }_{{step}}}^{2}},$$
    (20)
    where b  0 self-correction, and s represents a modulating exponential damping factor, consistent with the limiting circular-uniform case (as κ → 0, i.e., ({sigma }_{{{mathrm {step}}}}to infty)), where no (timely) convergence of heading is expected with an increasing number of steps.In assessing performance, we also accounted for seasonal migration constraints via a population-specific maximum number of steps, Nmax (Table 2; this became significant for the longest-distance simulations with large expected errors, i.e., small ({{{{{{rm{kappa }}}}}}}_{{{mathrm {step}}}}=1/{sigma }_{{{mathrm {step}}}}^{2})). The probability of having arrived at the goal latitude can be estimated using the Central Limit Theorem:$${p}_{{{phi }},{N}_{{max }}}cong frac{1}{2}left[1-{erf}left(left(frac{{N}_{0}}{{N}_{{max }}}-frac{{I}_{1}left({{{{{{rm{kappa }}}}}}}_{{{mathrm {step}}}}right)}{{I}_{0}left({{{{{{rm{kappa }}}}}}}_{{{mathrm {step}}}}right)}right)cdot frac{{{cos }}bar{alpha }}{{sigma }_{{mathrm {C}}}sqrt{2}}right)right],$$
    (21)
    where Ij is the modified Bessel function of the first kind and order j53, and σC (the standard deviation in the latitudinal component of flight-step distance) can be calculated using Bessel functions together with known properties of sums of cosines53,77 (Supplementary Note 2).Regression-estimated performanceWe fit the parameters in the spherical-geometry factor (Eq. (18)) and many-wrongs effect (Eq. (20)) according to expected performance, estimated as the product of sufficiently timely migration (Eq. (21)) and sufficiently precise migration, now generalized from Eq. (16), i.e.$${p}_{beta ,hat{N}}cong {erf}left(frac{{beta }_{{mathrm {A}}}}{{G}^{{g}}sqrt{2left({{sigma }_{{{mathrm {ind}}}}}^{2}+{sigma }_{{{mathrm {step}}}}/{hat{N}}^{n}right)}}right),$$
    (22)
    This resulted in up to four fitted parameters for each compass course

    i.

    an exponent, g, to the spherical-geometry factor (Eq. (19)), i.e., Gg, reflecting how growth or self-correction in errors between steps further augments or reduces this factor,

    ii.

    a baseline offset, b0, to the “normal” exponent η = 0.5, which mediates the relation between the number of steps and performance (Eq. (20)),

    iii.

    an exponent s reflecting how decreasing precision among flight-steps dampens the many-wrongs convergence (Eq. (20)),

    iv.

    for TCSC courses, a modulation, ρ, to the offset, b0, quantifying the extent to which self-correction increases with increased flight-step distance Rstep, i.e., ({{b={b}_{0}R}_{{{mathrm {step}}}}^{{prime} }}^{rho }) in Eq. (20), where ({R}_{{{mathrm {step}}}}^{{prime} })is the flight-step distance scaled by its median value among species.

    Parameters were fit using MATLAB routine fitnlm based on compass course performance among species and seven error scenarios (5°, 10°, 20°, 30°, 40°, 50°, and 60° directional precision among flight-steps), for all combinations (including or excluding the four parameters). The most parsimonious combination of parameters was selected using MATLAB routine aicbic, based on the AICc, the Akaike information criterion corrected for small sample size57. Null values for the spherical-geometry parameter were set to g = 1, and for the parameters governing convergence of route-mean headings b0 = 0, s = 0, and, for TCSC courses, ρ = 0 (for loxodrome courses, ρ = 0 by default, i.e., was not fitted).Statistics and reproducibilityOur simulation results, regression fitting and AICc-model selection are reproducible using the MATLAB scripts (see the section “Code availability”).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Tropicalization of demersal megafauna in the western South Atlantic since 2013

    Catches throughout the study period reached maximum levels in 2006–2012, decreasing sharply thereafter reaching low levels in 2019 (Supplementary Fig. 1). The whitemouth croaker (Micropogonias furnieri) and the argentine croaker (Umbrina canosai) were the dominant species in the catches. Jointly, they represented, on average, over 50% of the total landed biomass in the period. This biomass included other 78 species: 62 teleosts, 3 elasmobranchs, 8 crustaceans and 5 molluscs. Overall, catch composition maintained a 1.5:1 ratio of species with warm- and cold-water affinities from the beginning of the time series until 2012. After that, warm-water species abundance increased in the catches changing the resulting ratio to 4.1:1 in 2019 (Fig. 2).Fig. 2: Annual variation of the proportion of species with cold- and warm-water affinities in the catches of the demersal fisheries in Brazilian Meridional Margin (BMM).Catches were monitored between 2000 and 2019 in the harbours of Santa Catarina State, southern Brazil. Colours represent “warm-” (thermal preferences  > 21.1 °C) and “cold-” (thermal preferences < 21.1 °C) water affinities.Full size imageMean temperature of the catchesAnnual MTC oscillated around 21 °C (SD = 0.63 °C) between 2000 and 2019. Until 2013, the MTC time-series exhibited peaks (2005, 2010) and troughs (2008, 2013), but no particular trend was evidenced. After 2013, MTC increased continuously reaching maximum values in 2019 (Fig. 3). The segmented regression model defined one significant discontinuity in 2012 (95% CI: 2010–2015), which delimited an early period (2000–2012) when MTC oscillated with no significant trend (p-value = 0.789), from a late period (2013–2019) when MTC increased sharply at a 0.41 °C yr−1 (p-value  More

  • in

    Spatial coalescent connectivity through multi-generation dispersal modelling predicts gene flow across marine phyla

    Hellberg, M. E. Gene flow and isolation among populations of marine animals. Annu. Rev. Ecol. Evol. Syst. 40, 291–310 (2009).
    Google Scholar 
    Lenormand, T. Gene flow and the limits to natural selection. Trends Ecol. Evol. 17, 183–189 (2002).
    Google Scholar 
    Lowe, W. H., Kovach, R. P. & Allendorf, F. W. Population genetics and demography unite ecology and evolution. Trends Ecol. Evol. 32, 141–152 (2017).PubMed 

    Google Scholar 
    Slatkin, M. Gene flow and the geographic structure of natural populations. Science 236, 787–792 (1987).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Slatkin, M. Gene flow in natural populations. Annu. Rev. Ecol. Syst. 1, 393–430 (1985).
    Google Scholar 
    Duputié, A. & Massol, F. An empiricist’s guide to theoretical predictions on the evolution of dispersal. Interface Focus 3, 20130028 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Lowe, W. H. & Allendorf, F. W. What can genetics tell us about population connectivity? Mol. Ecol. 19, 3038–3051 (2010).PubMed 

    Google Scholar 
    Selkoe, K. A. et al. A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar. Ecol. Prog. Ser. 554, 1–19 (2016).ADS 

    Google Scholar 
    Weersing, K. & Toonen, R. J. Population genetics, larval dispersal, and connectivity in marine systems. Mar. Ecol. Prog. Ser. 393, 1–12 (2009).ADS 

    Google Scholar 
    Whitlock, M. C. & Mccauley, D. E. Indirect measures of gene flow and migration: FST≠1/(4Nm+1). Heredity 82, 117–125 (1999).PubMed 

    Google Scholar 
    Benestan, L. et al. Restricted dispersal in a sea of gene flow. Proc. R. Soc. B Biol. Sci. 288, 20210458 (2021).CAS 

    Google Scholar 
    Bode, M. et al. Successful validation of a larval dispersal model using genetic parentage data. PLoS Biol. 17, e3000380 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gagnaire, P.-A. Comparative genomics approach to evolutionary process connectivity. Evol. Appl. 13, 1320–1334 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Pinsky, M. L. et al. Marine dispersal scales are congruent over evolutionary and ecological time. Curr. Biol. 27, 149–154 (2017).CAS 
    PubMed 

    Google Scholar 
    Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M. & Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 88, 310–326 (2013).PubMed 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1, 443–466 (2009).ADS 

    Google Scholar 
    Tomback, D. F., Anderies, A. J., Carsey, K. S., Powell, M. L. & Mellmann-Brown, S. Delayed seed germination in whitebark pine and regeneration patterns following the yellowstone fires. Ecology 82, 2587–2600 (2001).
    Google Scholar 
    Viana, D. S., Santamaría, L. & Figuerola, J. Migratory birds as global dispersal vectors. Trends Ecol. Evol. 31, 763–775 (2016).PubMed 

    Google Scholar 
    Nathan, R. et al. Mechanisms of long-distance dispersal of seeds by wind. Nature 418, 409–413 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cowen, R. K., Paris, C. B. & Srinivasan, A. Scaling of connectivity in marine populations. Science 311, 522–527 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).PubMed 

    Google Scholar 
    Hidalgo, M. et al. Accounting for ocean connectivity and hydroclimate in fish recruitment fluctuations within transboundary metapopulations. Ecol. Appl. 29, e01913 (2019).Legrand, T., Di Franco, A., Ser-Giacomi, E., Caló, A. & Rossi, V. A multidisciplinary analytical framework to delineate spawning areas and quantify larval dispersal in coastal fish. Mar. Environ. Res. 151, 104761 (2019).CAS 
    PubMed 

    Google Scholar 
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).CAS 
    PubMed 

    Google Scholar 
    Crandall, E. D., Treml, E. A. & Barber, P. H. Coalescent and biophysical models of stepping-stone gene flow in neritid snails. Mol. Ecol. 21, 5579–5598 (2012).PubMed 

    Google Scholar 
    Smith, T. M. et al. Rare long-distance dispersal of a marine angiosperm across the Pacific Ocean. Glob. Ecol. Biogeogr. 27, 487–496 (2018).
    Google Scholar 
    Saura, S., Bodin, Ö. & Fortin, M.-J. EDITOR’S CHOICE: Stepping stones are crucial for species’ long‐distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).
    Google Scholar 
    Lett, C., Barrier, N. & Bahlali, M. Converging approaches for modeling the dispersal of propagules in air and sea. Ecol. Model. 415, 108858 (2020).
    Google Scholar 
    D’Aloia, C. C. et al. Patterns, causes, and consequences of marine larval dispersal. Proc. Natl Acad. Sci. USA 112, 13940–13945 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kool, J. T., Moilanen, A. & Treml, E. A. Population connectivity: recent advances and new perspectives. Landsc. Ecol. 28, 165–185 (2013).
    Google Scholar 
    Mari, L., Melià, P., Fraschetti, S., Gatto, M. & Casagrandi, R. Spatial patterns and temporal variability of seagrass connectivity in the Mediterranean Sea. Divers. Distrib. 26, 169–182 (2020).
    Google Scholar 
    Nathan, R., Klein, E. K., Robledo-Arnuncio, J. J. & Revilla, E. Dispersal Kernels. vol. 15 (Oxford University Press Oxford, UK, 2012).Boulanger, E., Dalongeville, A., Andrello, M., Mouillot, D. & Manel, S. Spatial graphs highlight how multi-generational dispersal shapes landscape genetic patterns. Ecography 43, 1167–1179 (2020).
    Google Scholar 
    Jahnke, M. et al. Seascape genetics and biophysical connectivity modelling support conservation of the seagrass Zostera marina in the Skagerrak–Kattegat region of the eastern North Sea. Evol. Appl. 11, 645–661 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Jahnke, M. & Jonsson, P. R. Biophysical models of dispersal contribute to seascape genetic analyses. Philos. Trans. R. Soc. B Biol. Sci. 377, 20210024 (2022).
    Google Scholar 
    Buonomo, R. et al. Habitat continuity and stepping-stone oceanographic distances explain population genetic connectivity of the brown alga Cystoseira amentacea. Mol. Ecol. 26, 766–780 (2017).PubMed 

    Google Scholar 
    Assis, J. et al. Ocean currents shape the genetic structure of a kelp in southwestern Africa. J. Biogeogr. 49, 822–835 (2022).
    Google Scholar 
    Ser-Giacomi, E., Vasile, R., Hernández-García, E. & López, C. Most probable paths in temporal weighted networks: An application to ocean transport. Phys. Rev. E 92, 012818 (2015).ADS 

    Google Scholar 
    McRae, B. H. & Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl Acad. Sci. USA 104, 19885–19890 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foster, N. L. et al. Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. Mol. Ecol. 21, 1143–1157 (2012).PubMed 

    Google Scholar 
    Kool, J. T., Paris, C. B., Andréfouët, S. & Cowen, R. K. Complex migration and the development of genetic structure in subdivided populations: an example from Caribbean coral reef ecosystems. Ecography 33, 597–606 (2010).
    Google Scholar 
    White, J. W., Botsford, L. W., Hastings, A. & Largier, J. L. Population persistence in marine reserve networks: incorporating spatial heterogeneities in larval dispersal. Mar. Ecol. Prog. Ser. 398, 49–67 (2010).ADS 

    Google Scholar 
    Ser-Giacomi, E., Legrand, T., Hernández-Carrasco, I. & Rossi, V. Explicit and implicit network connectivity: Analytical formulation and application to transport processes. Phys. Rev. E 103, 042309 (2021).ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 
    Battiston, F. et al. Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mayfield, M. M. & Stouffer, D. B. Higher-order interactions capture unexplained complexity in diverse communities. Nat. Ecol. Evol. 1, 1–7 (2017).
    Google Scholar 
    Rousset, F. Inferences from spatial population genetics. Handb. Stat. Genet. 4, 23 (2001).
    Google Scholar 
    Dubois, M. et al. Linking basin-scale connectivity, oceanography and population dynamics for the conservation and management of marine ecosystems. Glob. Ecol. Biogeogr. 25, 503–515 (2016).
    Google Scholar 
    Monroy, P., Rossi, V., Ser-Giacomi, E., López, C. & Hernández-García, E. Sensitivity and robustness of larval connectivity diagnostics obtained from Lagrangian Flow Networks. ICES J. Mar. Sci. 74, 1763–1779 (2017).
    Google Scholar 
    Rossi, V., Ser-Giacomi, E., López, C. & Hernández-García, E. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. Geophys. Res. Lett. 41, 2883–2891 (2014).ADS 

    Google Scholar 
    Ser-Giacomi, E., Rossi, V., Lopez, C. & Hernandez-Garcia, E. Flow networks: A characterization of geophysical fluid transport. Chaos Interdiscip. J. Nonlinear Sci. 25, 036404 (2015).
    Google Scholar 
    Oddo, P. et al. A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting. Ocean Sci. 5, 461–473 (2009).Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reem, E., Douek, J., Paz, G., Katzir, G. & Rinkevich, B. Phylogenetics, biogeography and population genetics of the ascidian Botryllus schlosseri in the Mediterranean Sea and beyond. Mol. Phylogenet. Evol. 107, 221–231 (2017).PubMed 

    Google Scholar 
    Villamor, A., Costantini, F. & Abbiati, M. Genetic structuring across marine biogeographic boundaries in rocky shore invertebrates. PLoS ONE 9, e101135 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Borrero-Pérez, G. H., González-Wangüemert, M., Marcos, C. & Pérez-Ruzafa, A. Phylogeography of the Atlanto-Mediterranean sea cucumber Holothuria (Holothuria) mammata: the combined effects of historical processes and current oceanographical pattern: PHYLOGEOGRAPHY OF HOLOTHURIA MAMMATA. Mol. Ecol. 20, 1964–1975 (2011).PubMed 

    Google Scholar 
    Carreras, C. et al. East is East and West is West: Population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). Divers. Distrib. 26, 382–398 (2020).
    Google Scholar 
    Aurelle, D. et al. Phylogeography of the red coral (Corallium rubrum): inferences on the evolutionary history of a temperate gorgonian. Genetica 139, 855–869 (2011).CAS 
    PubMed 

    Google Scholar 
    Costantini, F., Carlesi, L. & Abbiati, M. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum. PLoS ONE 8, e61546 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durand, J., Blel, H., Shen, K., Koutrakis, E. & Guinand, B. Population genetic structure of Mugil cephalus in the Mediterranean and Black Seas: a single mitochondrial clade and many nuclear barriers. Mar. Ecol. Prog. Ser. 474, 243–261 (2013).ADS 

    Google Scholar 
    Alberto, F. et al. Genetic differentiation and secondary contact zone in the seagrass Cymodocea nodosa across the Mediterranean–Atlantic transition region. J. Biogeogr. 35, 1279–1294 (2008).
    Google Scholar 
    McRae, B. H. Isolation by resistance. Evolution 60, 1551–1561 (2006).PubMed 

    Google Scholar 
    Dalongeville, A. et al. Geographic isolation and larval dispersal shape seascape genetic patterns differently according to spatial scale. Evol. Appl. 11, 1437–1447 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jenkins, D. G. et al. A meta‐analysis of isolation by distance: relic or reference standard for landscape genetics? Ecography 33, 315–320 (2010).
    Google Scholar 
    Selkoe, K. A. & Toonen, R. J. Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar. Ecol. Prog. Ser. 436, 291–305 (2011).ADS 

    Google Scholar 
    Alberto, F. et al. Isolation by oceanographic distance explains genetic structure for Macrocystis pyrifera in the Santa Barbara Channel. Mol. Ecol. 20, 2543–2554 (2011).PubMed 

    Google Scholar 
    Selkoe, K. A. et al. Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol. Ecol. 19, 3708–3726 (2010).PubMed 

    Google Scholar 
    Xuereb, A. et al. Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate (Parastichopus californicus). Mol. Ecol. 27, 2347–2364 (2018).PubMed 

    Google Scholar 
    Pascual, M., Rives, B., Schunter, C. & Macpherson, E. Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 12, e0176419 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, I. J., Glor, R. E. & Losos, J. B. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol. Lett. 16, 175–182 (2013).PubMed 

    Google Scholar 
    Bierne, N., Welch, J., Loire, E., Bonhomme, F. & David, P. The coupling hypothesis: why genome scans may fail to map local adaptation genes. Mol. Ecol. 20, 2044–2072 (2011).PubMed 

    Google Scholar 
    Sen Gupta, A. et al. Future changes to the upper ocean Western Boundary Currents across two generations of climate models. Sci. Rep. 11, 9538 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ser-Giacomi, E. et al. Impact of climate change on surface stirring and transport in the Mediterranean Sea. Geophys. Res. Lett. 47, e2020GL089941 (2020).ADS 
    CAS 

    Google Scholar 
    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).PubMed 

    Google Scholar 
    Wright, S. Evolution in mendelian populations. Genetics 16, 97–159 (1931).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eldon, B., Riquet, F., Yearsley, J., Jollivet, D. & Broquet, T. Current hypotheses to explain genetic chaos under the sea. Curr. Zool. 62, 551–566 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Schunter, C. et al. A novel integrative approach elucidates fine-scale dispersal patchiness in marine populations. Sci. Rep. 9, 1–10 (2019).ADS 
    CAS 

    Google Scholar 
    Jackson, T. M., Roegner, G. C. & O’Malley, K. G. Evidence for interannual variation in genetic structure of Dungeness crab (Cancer magister) along the California Current System. Mol. Ecol. 27, 352–368 (2018).CAS 
    PubMed 

    Google Scholar 
    Pascual, M. et al. Temporal and spatial genetic differentiation in the crab Liocarcinus depurator across the Atlantic-Mediterranean transition. Sci. Rep. 6, 29892 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Portela, R. et al. Spatio-temporal patterns of genetic variation in Arbacia lixula, a thermophilous sea urchin in expansion in the Mediterranean. Heredity 122, 244–259 (2019).PubMed 

    Google Scholar 
    Carroll, S. P., Hendry, A. P., Reznick, D. N. & Fox, C. W. Evolution on ecological time-scales. Funct. Ecol. 21, 387–393 (2007).
    Google Scholar 
    Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish. Fish. 9, 333–362 (2008).
    Google Scholar 
    Weber, A. A.-T., Mérigot, B., Valière, S. & Chenuil, A. Influence of the larval phase on connectivity: strong differences in the genetic structure of brooders and broadcasters in the Ophioderma longicauda species complex. Mol. Ecol. 24, 6080–6094 (2015).CAS 
    PubMed 

    Google Scholar 
    Marzouk, Z., Aurelle, D., Said, K. & Chenuil, A. Cryptic lineages and high population genetic structure in the exploited marine snail Hexaplex trunculus (Gastropoda: Muricidae). Biol. J. Linn. Soc. 122, 411–428 (2017).
    Google Scholar 
    Cowen, R. K., Lwiza, K. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed? Science 287, 857–859 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pante, E. & Simon-Bouhet, B. marmap: a package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8, e73051 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Susini, M.-L., Thibaut, T., Meinesz, A. & Forcioli, D. A preliminary study of genetic diversity in Cystoseira amentacea (C. Agardh) Bory var. stricta Montagne (Fucales, Phaeophyceae) using random amplified polymorphic DNA. Phycologia 46, 605–611 (2007).
    Google Scholar  More

  • in

    Detection parameters for managing invasive rats in urban environments

    Study areaWe conducted our study in two suburbs in Wellington, New Zealand (Fig. 1). The 4.7-hectare site in the suburb of Kelburn (-41.285°S, 174.770°E) was situated on the grounds of student accommodation for Victoria University of Wellington. The site comprised bungalow houses, two accommodation halls, and access roads and paths. About half of the vegetation at the Kelburn site was a mix of tended grass lawns and gardens containing a variety of native New Zealand plant species, e.g., flax (Phormium spp.), longwood tussock (Carex comans), and cabbage tree (Cordyline australis). The other half was a mix of dense ground cover dominated by invasive weed species and native and exotic trees and shrubs, e.g., pōhutukawa (Metrosideros excelsa), common oak (Quercus robur), kawakawa (Piper excelsum), and taupata (Coprosma repens). The second suburb was Roseneath (−41.292°S, 174.801°E) on a small peninsula on the north-eastern side of Mount Victoria. The site was 8.5 hectares comprising 76 residential properties, public thoroughfares, and footpaths. We conducted fieldwork in the gardens of 25 of these properties. The vegetation varied considerably between gardens, comprising native and introduced garden plants and invasive weeds, especially blackberry (Rubus fruticosus).Figure 1(A) The study was conducted in the suburbs of Kelburn (left yellow dot) and Roseneath (right yellow dot) in the city of Wellington, New Zealand. The black polygon represents the 1475 ha area that will be targeted for ship rat (Rattus rattus) eradication in Wellington city, New Zealand. In each suburb, we radio-collared ship rats and deployed three types of devices (bait stations, chew cards, and WaxTags) to estimate home range and detection parameters. (B) In Kelburn, we radio-collared 14 rats and deployed eight devices. (C) In Roseneath, we radio-collared 16 rats and deployed 30 devices. The yellow circles indicate home range centers of individual rats, the red triangles indicate the location of bait stations and detection devices, and the small black dots indicate the telemetry locations of rats.Full size imageRat capture, radio-collaring, and field methodologyWe set 100 live-capture cage traps (custom-made, spring-loaded traps) in Kelburn from 12 July to 15 August 2020, and another 100 in Roseneath from 20 August to 20 October 2020. We baited cage traps with apple coated in chocolate spread and checked them at least once every 24 h. We set cage traps in areas with complex vegetative groundcover and understorey to maximize capture rates of ship rats (see35), and to provide shelter from inclement weather. We provided additional shelter by inserting bedding inside a tin can placed in the cage traps, along with a plastic cover over the traps to limit exposure to wind and rain. Cage traps were active for 5 days per week on average. We released all non-target species (house mice Mus musculus, European hedgehogs Erinaceus europaeus, and Eurasian blackbirds Turdus merula).We transferred any trap containing a captured rat into a sealed plastic container. Depending on the estimated size of the captured rat, we placed between one and three cotton balls soaked in isoflurane (99.9%, Attane, Piramal Critical Care Inc., Bethlehem, Pennsylvania, USA) inside the plastic container. A rat was anesthetized when it lost balance and was unable to regain balance when we gently rotated the container. We then removed the rat from the cage trap and placed it next to a heat pad with its head close to the cotton balls soaked in isoflurane to maintain anaesthesia while handling them. We fitted all rats weighing  > 110 g with a V1C 118B VHF radio-collar (Lotek, Havelock North, New Zealand). We marked each collared rat with a unique pelage code using a permanent blonde hair dye60. We also recorded biometrics, including sex, weight, and length. When processing was finished, we placed the rat into another container to recover. This container had a heating pad for warmth and an apple for food to avoid a drop in body temperature and hypoglycemia, which are common problems with anaesthesia62. When the rat appeared mobile, energetic, and behaving normally, we released it at the point of capture.We monitored radio-collared rats using a Yagi antenna (Lotek, Havelock North, New Zealand) and a Telonics R-1000 receiver (Telonics Inc., Mesa, Arizona, USA). We conducted radio-telemetry work during August–November 2020, with fixes taken during the day and night. We recorded a total of three fixes per rat per night, taken at two-hour intervals between the hours of sunset (2200 h) and sunrise (0500 h). We mostly attempted one day-time fix (1200 h); however, if a tracked rat was active (determined by a VHF signal that was moving or changing amplitude), we attempted a second fix in the afternoon. To minimize location error, we used the close approach radio-tracking method described by63. Once a successful fix was made, we used a handheld GPS unit to record the location, date, and time. Telemetry fixes were collected for each radio-collared rat for 18–97 days.After approximately one week of radiotracking an animal, we obtained an initial crude estimate of the center of each rat’s home range as the mean of all eastings and northings (based on a minimum of 15 telemetry points per rat). A bait station baited with non-toxic pellets (Protecta Sidekick bait stations, Bell Laboratories Inc., Windsor, Wisconsin, USA), a WaxTag with a peanut butter odor incorporated into the wax (PCR WaxTags, Traps.co.nz, Rolleston, New Zealand), and a chew card (a corflute card baited with peanut butter) were deployed at varying distances (max. 50 m) and cardinal directions from the estimated home range center of each individual rat. This layout maximized the likelihood of encounters with devices, compared with a regular grid-type deployment where some of the devices could fall outside a collared rat’s home range and thus never be encountered. Note that the crude estimate of the location of the home range center for each rat was only used to guide device placement, i.e., it was not used in any statistical analyses, or to describe rat home range sizes. Further, to avoid a choice-type experiment (i.e., all three devices set immediately next to each other), we randomly assigned a distance and cardinal direction to each device type within each rat’s home range but ensured all devices were deployed  > 15 m apart. The three device types were chosen because they are used by Predator Free Wellington to conduct their eradication operations.Every deployed device had a trail camera (Browning Strike Force HD Pro Micro Series, Morgan, Utah, USA) taking video of rats encountering and interacting with the device. We set cameras to take 20 s of video footage when triggered, followed by a 1 s re-trigger interval. We fixed trail cameras to trees at a height of 50 cm above ground level and placed the devices 1.5 m in front of the camera (after64). This strategy allowed accurate identification of pelage codes on marked rats. We cleared vegetation in front of and immediately behind the trail cameras to avoid accidental triggers. We used pegs to mark a 30-cm-radius circle around each device and considered a rat–device encounter when a rat entered that circle. We serviced trail camera–device pairs at least once every three days. This included adding more non-lethal bait to bait stations and peanut butter to monitoring devices, installing new WaxTags or chew cards if they had been destroyed, and replacing batteries and SD cards in trail cameras. We set up 54 trail camera–device pairs. However, due to trail camera malfunctions, we were able to retrieve footage from only 38 cameras, 8 in Kelburn and 30 in Roseneath. Trail camera–device pairs were active for 20–70 days, but we retained data from only the first 20 days for the analyses.Video processingAll video footage was viewed and interpreted by the same individual (HRM) for consistency. We extracted the following information: date and time of rat sightings, rat ID (according to the pelage code, or designated as ‘R’ for unmarked rats), the duration of the visit to a device, whether or not an encounter occurred (as defined above), and whether or not an interaction occurred. We defined an interaction as a rat either gnawing on a chew card or WaxTag or entering a bait station.Data analysisWe combined all ship rat telemetry data with the device encounter and interaction data, and developed a hierarchical Bayesian model to infer factors influencing the key parameters σ, ε0, and θ. The analytical approach builds on that described in65. For the purpose of estimating ε0 and θ, multiple encounters or interactions by the same individual with the same device on the same night were counted as a single encounter or interaction.The VHF telemetry data Zij were composed of xij (eastings) and yij (northings) locations for each individual rat i at site j (either Kelburn or Roseneath). To simplify the notation, we drop the j subscript from all subsequent equations. We modelled the probability of observing Zi as a symmetric bivariate normal variable$$P({Z}_{i})= prod_{i=1}^{{L}_{i}}Normal(Delta {x}_{i}|0,{sigma }_{i}^{2})Normal(Delta {y}_{i}|0,{sigma }_{i}^{2})$$
    (1)
    where σi is the standard deviation of a normal distribution with zero mean, Li is the number of location fixes for individual i, and Δxi and Δyi are the straight-line distances from the home range center of individual i to xi and yi, respectively.Home range centers can be estimated using various methods, all of which have underlying assumptions (e.g.,66,67). We calculated the home range center for each individual as the mean of all xi and yi, i.e., the centroid of all locations that we recorded for each individual ( > 30 VHF fixes in all instances). Under this formulation, the home range center is assumed to be perfectly observed, an assumption that is supported by the sample size of telemetry locations that we obtained for each individual (see Supplementary Table 266).We modelled σi as a log-normal variable with mean ln(μi), which was a function of the sex of the individual:$$lnleft({sigma }_{i}right)sim Normal(mathit{ln}left({mu }_{i}right), V)$$
    (2)
    $$lnleft({mu }_{i}right)= {beta }_{0}+ {beta }_{1}{sex}_{i}$$
    (3)
    where V is the variance of ln(σi), and ln(μi) is a linear function of a categorical variable indicating whether rat i is a male (0) or a female (1). The priors on the β coefficients and V were Normal(0, 10) and InverseGamma(0.01, 0.01), respectively.The encounter data (Eimt) across all devices m and nights t was modelled as a Bernoulli process:$${E}_{imt}sim Bernoulli({gamma }_{imt})$$
    (4)
    $$logitleft({gamma }_{imt}right)sim MultivariateNormal(logitleft({P}_{imt}right), varSigma )$$
    (5)
    where γimt is a latent variable representing the degree to which the nightly probability of rat i encountering a given device is not independent of the encounter outcomes of nearby devices, i.e., we assumed there is spatial autocorrelation in the nightly probability of encountering a device. To account for the spatial autocorrelation not explained by the covariates explicitly modelled (i.e., σ and device type, see below), we included an exponential spatial covariance error structure (Σ) as follows:$$varSigma = {nu }^{2}{e}^{-varphi r}$$
    (6)
    where ν2 is the variance, φ is a correlation distance parameter, and r is the distance (in m) between pairs of devices68,69. Further, because not all devices were available on all nights, Σ was calculated iteratively for each night considering only those devices that were available. We used moderately informative log-normal priors for the covariance parameters to obtain proper posteriors69: ν2 ~ logN(3,1) and φ ~ logN(1,1).The nightly probability of encounter of device m by individual i on night t (Pimt) was calculated using a half-normal detection function70:$${P}_{imt}= {{left({varepsilon }_{0, im}{e}^{left(-frac{{d}_{im}^{2}}{2{sigma }_{i}^{2}}right)}right)}^{{tau E}_{it}^{*}}}times {{left({varepsilon }_{0,im}{e}^{left(-frac{{d}_{im}^{2}}{2{sigma }_{i}^{2}}right)}right)}^{1-{E}_{it}^{*}}}$$
    (7)
    where ε0,im is the maximum nightly probability of encounter for device m, or the probability if device m was placed at the center of the home range of rat i. The variable σi is the standard deviation from Eq. (1) (i.e., σi is estimated jointly from the telemetry and encounter data) and dim is the distance (in m) between the home range center of rat i and device m; only devices within a distance of 3.72σi from the home range center were considered in the calculation in Eq. (7)70. Finally, τ is a strictly positive parameter (i.e., τ  > 0), measuring the degree of device-shyness, which is multiplied by an indicator variable (left({E}_{it}^{*}right)) which takes a value of 0 when individual i has not encountered a device (of any type) on nights prior to night t, or a value of 1 if it had previously encountered one, regardless of the type of device it encountered. If τ  1 then rats are ‘device-shy’ and thus more likely to avoid devices on nights following an initial encounter. ({E}_{it}^{*}) was reset to 0 after 20 days of no encounters with a device. Following65 we set the prior on τ as Gamma(0.933, 8.33) (shape and rate parameters, respectively).Values of ε0,im were predicted as a function of σi, device type, and individual effects using the following equation:$$logitleft({varepsilon }_{0, im}right)={alpha }_{0}+ {alpha }_{1}mathrm{ln}left({sigma }_{i}right)+ {alpha }_{2}{chewcard}_{m}+{alpha }_{3}{waxtag}_{m}+{delta }_{i}$$
    (8)
    where α2 and α3 quantify the increase or decrease in the maximal probability of encountering a chew card or a WaxTag relative to a bait station (which is the reference category). The δi parameters account for individual differences in ε0. Finally, we allowed ε0 to be a function of ln(σi) because we assumed encounter probability at home range center will decrease with increasing home range size (as suggested by71 and shown by65). The priors on the α coefficients and δ were Normal(0, 10) and Normal(0, 1), respectively.The interaction data (Iimn) across all devices m and nights n when encounters occurred was modelled as a Bernoulli process with probability θ, which was a function of device type and individual effects:$${mathrm{I}}_{imn}sim Bernoullileft({theta }_{imn}right)$$
    (9)
    $$logitleft({theta }_{imn}right)={lambda }_{0}+ {lambda }_{1}{chewcard}_{m}+{lambda }_{2}{waxtag}_{m}+{lambda }_{3}{I}_{in}^{*}+{rho }_{i}$$
    (10)
    where θimn is the probability of rat i interacting with device m given that it has encountered it on night n, and λ1 and λ2 quantify the increase or decrease in the conditional probability of interaction for a chew card or a WaxTag relative to a bait station. The λ3 parameter is analogous to τ in Eq. (7) but for the process of interaction given encounter with a device. However, by incorporating λ3 directly into a linear equation, this parameter can take negative values and thus should be interpreted differently to τ: if λ3  0 indicates that individuals become ‘device-happy’ after an initial interaction. This parameter is multiplied by an indicator variable ({(I}_{in}^{*})) which takes a value of 0 when individual i has not interacted with a device (of any type) on nights prior to night n, or a value of 1 when it has interacted with one previously, regardless of the type of device it interacted with. If a rat had not interacted with a device for 20 days, ({I}_{in}^{*}) was reset to 0. Finally, the ρi parameters account for individual differences in θ. The priors on the λ coefficients and ρ were Normal(0, 10) and Normal(0, 1), respectively. Although we explicitly modelled spatial autocorrelation in the probability of encountering a device, we did not do so for the probability of interaction given an encounter. In this instance we assumed that whether an animal chose to interact with an encountered device would depend on its previous experience (as quantified by λ3) rather than the spatial location of nearby devices.We used Markov Chain Monte Carlo (MCMC) simulation to estimate model parameters using Python programming language. The variance parameter V was sampled from the full conditional posteriors, but all other parameters were estimated using the Metropolis algorithm69. Posterior summaries were taken from four chains containing 3000 samples each (with a burn-in of 2000 and a thinning rate of 30). Convergence on posteriors was assessed by visual inspection and a scale reduction factor  More

  • in

    Unravelling the interplay of ecological processes structuring the bacterial rare biosphere

    Pedros-Alio C. The rare bacterial biosphere. Ann Rev Mar Sci. 2012;4:449–66. https://doi.org/10.1146/annurev-marine-120710-100948.Article 
    PubMed 

    Google Scholar 
    Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci. 2006;103:12115–20. https://doi.org/10.1073/pnas.0605127103.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hausmann B, Pelikan C, Rattei T, Loy A, Pester M. Long-term transcriptional activity at zero growth of a cosmopolitan rare biosphere member. mBio. 2019;10:e02189–18. https://doi.org/10.1128/mBio.02189-18.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pester M, Bittner N, Deevong P, Wagner M, Loy AA. ‘Rare biosphere’microorganism contributes to sulfate reduction in a peatland. ISME J. 2010;4:1591–602.Article 

    Google Scholar 
    Rivett DW, Bell T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat Microbiol. 2018;3:767–72. https://doi.org/10.1038/s41564-018-0180-0.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Kristufek V, Salles JF. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA. 2012;109:1159–64. https://doi.org/10.1073/pnas.1109326109.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Magurran AE, Henderson PA. Explaining the excess of rare species in natural species abundance distributions. Nature. 2003;422:714–6.Article 

    Google Scholar 
    Rabinowitz D, Rapp JK, Dixon PM. Competitive abilities of sparse grass species: means of persistence or cause of abundance. Ecology. 1984;65:1144–54. https://doi.org/10.2307/1938322.Article 

    Google Scholar 
    Reinhardt K, Köhler G, Maas S, Detzel P. Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: the Orthoptera of Germany. Ecography. 2005;28:593–602. https://doi.org/10.1111/j.2005.0906-7590.04285.x.Article 

    Google Scholar 
    Yenni G, Adler PB, Ernest S. Strong self-limitation promotes the persistence of rare species. Ecology. 2012;93:456–61.Article 

    Google Scholar 
    Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. The ISME J. 2017;11:853–62. https://doi.org/10.1038/ismej.2016.174.Article 
    PubMed 

    Google Scholar 
    Thingstad TF. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr. 2000;45:1320–8. https://doi.org/10.4319/lo.2000.45.6.1320.Article 

    Google Scholar 
    Szekely AJ, Langenheder S. The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiol Ecol. 2014;87:102–12. https://doi.org/10.1111/1574-6941.12195.Article 
    PubMed 

    Google Scholar 
    Mo Y, Zhang W, Yang J, Lin Y, Yu Z, Lin S. Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J. 2018;12:2198–210. https://doi.org/10.1038/s41396-018-0153-6.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biology Rev. 2013;77:342–56. https://doi.org/10.1128/MMBR.00051-12.Article 

    Google Scholar 
    Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206. https://doi.org/10.1086/652373.Article 
    PubMed 

    Google Scholar 
    Vellend M The Theory of Ecological Communities. Princeton University Pres. 2016:61-7.Jia X, Dini-Andreote F, Falcao Salles J. Community assembly processes of the microbial rare biosphere. Trends Microbiol. 2018;26:738–47. https://doi.org/10.1016/j.tim.2018.02.011.Article 
    PubMed 

    Google Scholar 
    Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7:2069–79. https://doi.org/10.1038/ismej.2013.93.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stegen JC, Lin X, Fredrickson JK, Konopka AE. Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol. 2015;6:https://doi.org/10.3389/fmicb.2015.00370.Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and community ecology. Ann Rev Ecol Syst. 2002;33:475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448.Article 

    Google Scholar 
    Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nat Rev Micro. 2015;13:217–29. https://doi.org/10.1038/nrmicro3400.Article 

    Google Scholar 
    Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci USA. 2015;112:E1326–E32. https://doi.org/10.1073/pnas.1414261112.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chase JM, Kraft NJB, Smith KG, Vellend M, Inouye BD. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere. 2011;2:art24 https://doi.org/10.1890/es10-00117.1.Article 

    Google Scholar 
    Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio. 2014;5:e01371–14. https://doi.org/10.1128/mBio.01371-14.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Strous M, Heijnen JJ, Kuenen JG, Jetten MSM. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol. 1998;50:589–96. https://doi.org/10.1007/s002530051340.Article 

    Google Scholar 
    Goldfarb KC, Karaoz U, Hanson CA, Santee CA, Bradford MA, Treseder KK, et al. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol. 2011;2:94. https://doi.org/10.3389/fmicb.2011.00094.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jia X, Dini-Andreote F, Falcao Salles J. Comparing the influence of assembly processes governing bacterial community succession based on DNA and RNA Data. Microorganisms. 2020;8. https://doi.org/10.3390/microorganisms8060798.Olff H, De Leeuw J, Bakker JP, Platerink RJ, van Wijnen HJ. Vegetation succession and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevational gradient. J Ecol. 1997;85:799–814. https://doi.org/10.2307/2960603.Article 

    Google Scholar 
    Dini-Andreote F, Silva M, Triado-Margarit X, Casamayor EO, van Elsas JD, Salles JF. Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning. ISME J. 2014;8:1989–2001. https://doi.org/10.1038/ismej.2014.54.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dini-Andreote F, Pylro VS, Baldrian P, van Elsas JD, Salles JF. Ecological succession reveals potential signatures of marine–terrestrial transition in salt marsh fungal communities. ISME J. 2016;10:1984–97.Article 

    Google Scholar 
    Schrama M, Berg MP, Olff H. Ecosystem assembly rules: the interplay of green and brown webs during salt marsh succession. Ecology. 2012;93:2353–64.Article 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108:4516–22. https://doi.org/10.1073/pnas.1000080107.Article 
    PubMed 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.Article 

    Google Scholar 
    Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242. https://doi.org/10.1038/nmicrobiol.2016.242.Article 
    PubMed 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints. 2018;6:e27295v2. https://doi.org/10.7287/peerj.preprints.27295v2.Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43. https://doi.org/10.1038/ismej.2017.119.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8. https://doi.org/10.1093/nar/gkt1209.Article 
    PubMed 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50.Article 

    Google Scholar 
    R Core Team: R: A language and environment for statistical computing. In. Vienna, Austria: R Foundation for Statistical Computing; 2017.RStudio Team: RStudio: integrated development for R. In., vol. 42. Boston, MA: RStudio, Inc.; 2015.Wickham H. ggplot2: elegant graphics for data analysis. J Stat Softw. 2010;35:65–88.
    Google Scholar 
    Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinf. 2011;12:35.Article 

    Google Scholar 
    Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x.Article 

    Google Scholar 
    Yamamoto K, Hackley KC, Kelly WR, Panno SV, Sekiguchi Y, Sanford RA, et al. Diversity and geochemical community assembly processes of the living rare biosphere in a sand-and-gravel aquifer ecosystem in the Midwestern United States. Sci Rep. 2019;9. https://doi.org/10.1038/s41598-019-49996-z.Galand PE, Casamayor EO, Kirchman DL, Lovejoy C. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci. 2009;106:22427–32. https://doi.org/10.1073/pnas.0908284106.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reveillaud J, Maignien L, Murat Eren A, Huber JA, Apprill A, Sogin ML, et al. Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J. 2014;8:1198–209. https://doi.org/10.1038/ismej.2013.227.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Logares R, Audic S, Bass D, Bittner L, Boutte C, Christen R, et al. Patterns of rare and abundant marine microbial eukaryotes. Curr Biol. 2014;24:813–21. https://doi.org/10.1016/j.cub.2014.02.050.Article 
    PubMed 

    Google Scholar 
    Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci. 2011;108:12776–81. https://doi.org/10.1073/pnas.1101405108.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hirsch JE. An index to quantify an individual’s scientific research output. Proc Natl Acad Sci USA. 2005;102:16569. https://doi.org/10.1073/pnas.0507655102.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, Weitz JS. Robust estimation of microbial diversity in theory and in practice. ISME J. 2013;7:1092–101. https://doi.org/10.1038/ismej.2013.10.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics (Oxford, England). 2004;20:289–90.Article 

    Google Scholar 
    Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.Article 

    Google Scholar 
    Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64. https://doi.org/10.1038/ismej.2012.22.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiao S, Lu Y. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems. Environ Microbiol. 2020;22:1052–65. https://doi.org/10.1111/1462-2920.14815.Article 
    PubMed 

    Google Scholar 
    Logares R, Lindström ES, Langenheder S, Logue JB, Paterson H, Laybourn-Parry J, et al. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J. 2012;7:937–48. https://doi.org/10.1038/ismej.2012.168.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kurm V, van der Putten WH, Weidner S, Geisen S, Snoek BL, Bakx T, et al. Competition and predation as possible causes of bacterial rarity. Environ Microbiol. 2019;21:1356–68. https://doi.org/10.1111/1462-2920.14569.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aanderud ZT, Saurey S, Ball BA, Wall DH, Barrett JE, Muscarella ME, et al. Stoichiometric shifts in Soil C:N:P promote bacterial taxa dominance, maintain biodiversity, and deconstruct community assemblages. Front Microbiol. 2018;9:1401 https://doi.org/10.3389/fmicb.2018.01401.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sloan WT, Woodcock S, Lunn M, Head IM, Curtis TP. Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microb Ecol. 2007;53:443–55. https://doi.org/10.1007/s00248-006-9141-x.Article 
    PubMed 

    Google Scholar 
    Magurran AE, McGill BJ. Biological diversity: frontiers in measurement and assessment. Oxford University Press; 2011.Richter-Heitmann T, Hofner B, Krah FS, Sikorski J, Wust PK, Bunk B, et al. Stochastic dispersal rather than deterministic selection explains the spatio-temporal distribution of soil bacteria in a temperate grassland. Front Microbiol. 2020;11:1391. https://doi.org/10.3389/fmicb.2020.01391.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ivanov II, Honda K. Intestinal commensal microbes as immune modulators. Cell Host Microbe. 2012;12:496–508. https://doi.org/10.1016/j.chom.2012.09.009.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Veelen HPJ, Falcao Salles J, Tieleman BI. Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks. Microbiome. 2017;5:156. https://doi.org/10.1186/s40168-017-0371-6.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Warmink JA, Nazir R, Corten B, van Elsas JD. Hitchhikers on the fungal highway: The helper effect for bacterial migration via fungal hyphae. Soil Biology Biochem. 2011;43:760–5. https://doi.org/10.1016/j.soilbio.2010.12.009.Article 

    Google Scholar 
    Snell Taylor SJ, Evans BS, White EP, Hurlbert AH. The prevalence and impact of transient species in ecological communities. Ecology. 2018;99:1825–35. https://doi.org/10.1002/ecy.2398.Article 
    PubMed 

    Google Scholar 
    Kurm V, Geisen S, Gera Hol WH. A low proportion of rare bacterial taxa responds to abiotic changes compared with dominant taxa. Environ Microbiol. 2019;21:750–8. https://doi.org/10.1111/1462-2920.14492.Article 
    PubMed 

    Google Scholar 
    Wang Y, Hatt JK, Tsementzi D, Rodriguez RL, Ruiz-Perez CA, Weigand MR, et al. Quantifying the Importance of the Rare Biosphere for Microbial Community Response to Organic Pollutants in a Freshwater Ecosystem. Appl Environ Microbiol. 2017;83:e03321–16. https://doi.org/10.1128/AEM.03321-16.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cao J, Jia X, Pang S, Hu Y, Li Y, Wang Q. Functional structure, taxonomic composition and the dominant assembly processes of soil prokaryotic community along an altitudinal gradient. Appl Soil Ecol. 2020;155. https://doi.org/10.1016/j.apsoil.2020.103647.Meyer KM, Memiaghe H, Korte L, Kenfack D, Alonso A, Bohannan BJM. Why do microbes exhibit weak biogeographic patterns. ISME J. 2018;12:1404–13. https://doi.org/10.1038/s41396-018-0103-3.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson RE, Sogin ML, Baross JA. Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents. FEMS Microbiol Ecol. 2015;91:1–11. https://doi.org/10.1093/femsec/fiu016.Article 
    PubMed 

    Google Scholar 
    Mallon CA, Le Roux X, van Doorn GS, Dini-Andreote F, Poly F, Salles JF. The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche. ISME J. 2018;12:728–41. https://doi.org/10.1038/s41396-017-0003-y.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langenheder S, Bulling MT, Solan M, Prosser JI. Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. PLoS One. 2010;5:e10834. https://doi.org/10.1371/journal.pone.0010834.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bardgett RD, Van Der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505.Article 

    Google Scholar 
    Griffiths B, Ritz K, Wheatley R, Kuan H, Boag B, Christensen S, et al. An examination of the biodiversity–ecosystem function relationship in arable soil microbial communities. Soil Biol Biochem. 2001;33:1713–22.Article 

    Google Scholar 
    Hooper DU, Chapin F, Ewel J, Hector A, Inchausti P, Lavorel S, et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr. 2005;75:3–35.Article 

    Google Scholar 
    Logares R, Tesson SVM, Canback B, Pontarp M, Hedlund K, Rengefors K. Contrasting prevalence of selection and drift in the community structuring of bacteria and microbial eukaryotes. Environ Microbiol. 2018;20:2231–40. https://doi.org/10.1111/1462-2920.14265.Article 
    PubMed 

    Google Scholar 
    Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:e00002–17.Article 

    Google Scholar 
    Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberod AK, Schmidt TSB, et al. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome. 2020;8:55. https://doi.org/10.1186/s40168-020-00827-8.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dini-Andreote F, Brossi MJ, van Elsas JD, Salles JF. Reconstructing the genetic potential of the microbially-mediated nitrogen cycle in a salt marsh ecosystem. Front Microbiol. 2016;7:902. https://doi.org/10.3389/fmicb.2016.00902.Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    A tripartite model system for Southern Ocean diatom-bacterial interactions reveals the coexistence of competing symbiotic strategies

    Saba GK, Fraser WR, Saba VS, Iannuzzi RA, Coleman KE, Doney SC, et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat Commun. 2014;5:4318.CAS 
    PubMed 
    Article 

    Google Scholar 
    Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ, et al. Biospheric primary production during an ENSO transition. Science. 2001;291:2594–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev. 2012;76:667–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cho BC, Azam F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature. 1988;332:441–3.CAS 
    Article 

    Google Scholar 
    Amin S, Hmelo L, Van Tol H, Durham B, Carlson L, Heal K, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101.CAS 
    PubMed 
    Article 

    Google Scholar 
    Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci. 2015;112:453–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mühlenbruch M, Grossart HP, Eigemann F, Voss M. Mini‐review: Phytoplankton‐derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ Microbiol. 2018;20:2671–85.PubMed 
    Article 

    Google Scholar 
    Seymour JR, Amin SA, Raina J-B, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat Microbiol. 2017;2:1–12.Article 

    Google Scholar 
    Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil L-A, Thingstad F. The ecological role of water-column microbes in the sea. Marine ecology progress series. 1983;10:257–63.Ratnarajah L, Blain S, Boyd PW, Fourquez M, Obernosterer I, Tagliabue A. Resource colimitation drives competition between phytoplankton and bacteria in the Southern Ocean. Geophys Res Lett. 2021;48:e2020GL088369.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oulhen N, Schulz BJ, Carrier TJ. English translation of Heinrich Anton de Bary’s 1878 speech, ‘Die Erscheinung der Symbiose’ (‘De la symbiose’). Symbiosis. 2016;69:131–9.Article 

    Google Scholar 
    Cooper MB, Smith AG. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr Opin Plant Biol. 2015;26:147–53.PubMed 
    Article 

    Google Scholar 
    Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005;438:90–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cole JJ. Interactions between bacteria and algae in aquatic ecosystems. Ann Rev Ecol Syst. 1982;13:291–314.Article 

    Google Scholar 
    Durham B. Deciphering metabolic currencies that support marine microbial networks. mSystems. 2021;6:e00763-21.Bell W, Mitchell R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull. 1972;143:265–77.Article 

    Google Scholar 
    Baker LJ, Kemp PF. Exploring bacteria–diatom associations using single-cell whole genome amplification. Aquat Microb Ecol. 2014;72:73–88.Article 

    Google Scholar 
    Graff JR, Rines JE, Donaghay PL. Bacterial attachment to phytoplankton in the pelagic marine environment. Mar Ecol Prog Ser. 2011;441:15–24.Article 

    Google Scholar 
    Baker LJ, Alegado RA, Kemp PF. Response of diatom-associated bacteria to host growth state, nutrient concentrations, and viral host infection in a model system. Environ Microbiol Rep. 2016;8:917–27.PubMed 
    Article 

    Google Scholar 
    Shibl AA, Isaac A, Ochsenkühn MA, Cárdenas A, Fei C, Behringer G, et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci. 2020;117:27445–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leinweber K, Kroth PG. Capsules of the diatom Achnanthidium minutissimum arise from fibrillar precursors and foster attachment of bacteria. PeerJ. 2015;3:e858.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guo S, Stevens CA, Vance TDR, Olijve LLC, Graham LA, Campbell RL, et al. Structure of a 1.5-MDa adhesin that binds its Antarctic bacterium to diatoms and ice. Sci Adv. 2017;3:e1701440.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rao D, Webb JS, Kjelleberg S. Microbial colonization and competition on the Marine Alga Ulva australis. Appl Environ Microbiol. 2006;72:5547–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou J, Chen G-F, Ying K-Z, Jin H, Song J-T, Cai Z-H, et al. Phycosphere microbial succession patterns and assembly mechanisms in a marine Dinoflagellate bloom. Appl Environ Microbiol. 2019;85:e00349–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem. 2011;3:331–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J Clim. 2015;28:862–86.Article 

    Google Scholar 
    Strzepek RF, Hunter KA, Frew RD, Harrison PJ, Boyd PW. Iron‐light interactions differ in Southern Ocean phytoplankton. Limnol Oceanogr. 2012;57:1182–200.CAS 
    Article 

    Google Scholar 
    Andrew SM, Strzepek RF, M Whitney S, Chow WS, Ellwood MJ. Divergent physiological and molecular responses of light‐and iron‐limited Southern Ocean phytoplankton. Limnol Oceanogr Lett. 2022;7:150–8.CAS 
    Article 

    Google Scholar 
    Bertrand EM, Saito MA, Rose JM, Riesselman CR, Lohan MC, Noble AE, et al. Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnol Oceanogr. 2007;52:1079–93.CAS 
    Article 

    Google Scholar 
    Bertrand EM, McCrow JP, Moustafa A, Zheng H, McQuaid JB, Delmont TO, et al. Phytoplankton–bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge. Proc Natl Acad Sci. 2015;112:9938–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bates SSB, Hubbard KA, Lundholm N, Montresor M, Leaw CP. Pseudo-nitzschia, Nitzschia, and domoic acid: new research since 2011. Harmful Algae. 2018;79:3–43.PubMed 
    Article 

    Google Scholar 
    Almandoz GO, Ferreyra GA, Schloss IR, Dogliotti AI, Rupolo V, Paparazzo FE, et al. Distribution and ecology of Pseudo-nitzschia species (Bacillariophyceae) in surface waters of the Weddell Sea (Antarctica). Polar Biol. 2008;31:429–42.Article 

    Google Scholar 
    Jabre LJ, Allen AE, McCain JSP, McCrow JP, Tenenbaum N, Spackeen JL, et al. Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean. Proc Natl Acad Sci. 2021;118:e2107238118.Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain J, et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc Natl Acad Sci. 2016;113:E1516–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moreno CM, Lin Y, Davies S, Monbureau E, Cassar N, Marchetti A. Examination of gene repertoires and physiological responses to iron and light limitation in Southern Ocean diatoms. Polar Biol. 2018;41:679–96.Article 

    Google Scholar 
    Ellis KA, Cohen NR, Moreno C, Marchetti A. Cobalamin-independent methionine synthase distribution and influence on vitamin B12 growth requirements in marine diatoms. Protist. 2017;168:32–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    Price NM, Harrison GI, Hering JG, Hudson RJ, Nirel PM, Palenik B, et al. Preparation and chemistry of the artificial algal culture medium Aquil. Biol Oceanogr. 1989;6:443–61.Article 

    Google Scholar 
    Hubbard KA, Rocap G, Armbrust EV. Inter- and intraspecific community structure within the diatom genus Pseudo-nitzschia (Bacillariophyceae). J Phycol. 2008;44:637–49.CAS 
    Article 

    Google Scholar 
    Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:W636–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Brand LE, Guillard RR, Murphy LS. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J Plankton Res. 1981;3:193–201.Article 

    Google Scholar 
    Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucl Acids Res. 2018;46:W282–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:1–8.Article 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Noble RT, Fuhrman JA. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol. 1998;14:113–8.Article 

    Google Scholar 
    Alcamán-Arias ME, Fuentes-Alburquenque S, Vergara-Barros P, Cifuentes-Anticevic J, Verdugo J, Polz M, et al. Coastal bacterial community response to glacier melting in the Western Antarctic Peninsula. Microorganisms. 2021;9:88.PubMed Central 
    Article 

    Google Scholar 
    Bowman JP, Gosink JJ, McCAMMON SA, Lewis TE, Nichols DS, Nichols PD, et al. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22: ω63). Int J Syst Evol Microbiol. 1998;48:1171–80.CAS 

    Google Scholar 
    Reisch CR, Moran MA, Whitman WB. Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Front Microbiol. 2011;2:172.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Diaz J, Ingall E, Benitez-Nelson C, Paterson D, de Jonge MD, McNulty I, et al. Marine polyphosphate: a key player in geologic phosphorus sequestration. Science. 2008;320:652–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nichols CM, Bowman JP, Guezennec J. Olleya marilimosa gen. nov., sp. nov., an exopolysaccharide-producing marine bacterium from the family Flavobacteriaceae, isolated from the Southern Ocean. Int J Syst Evol Microbiol. 2005;55:1557–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    von Scheibner M, Sommer U, Jürgens K. Tight coupling of Glaciecola spp. and diatoms during cold-water Phytoplankton spring blooms. Front Microbiol. 2017;8:27.Holmstrom C, Kjelleberg S. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol. 1999;30:285–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, et al. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci. 2005;102:10913–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kirchman DL. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol. 2002;39:91–100.CAS 
    PubMed 

    Google Scholar 
    Hong Z, Lai Q, Luo Q, Jiang S, Zhu R, Liang J, et al. Sulfitobacter pseudonitzschiae sp. nov., isolated from the toxic marine diatom Pseudo-nitzschia multiseries. Int J Syst Evol Microbiol. 2015;65:95–100.CAS 
    PubMed 
    Article 

    Google Scholar 
    Brussaard CPD, Riegman R. Influence of bacteria on phytoplankton cell mortality with phosphorus or nitrogen as the algal-growth-limiting nutrient. Aqua Microb Ecol. 1998;14:271–80.Article 

    Google Scholar 
    Cohen NR, A. Ellis K, Burns WG, Lampe RH, Schuback N, Johnson Z, et al. Iron and vitamin interactions in marine diatom isolates and natural assemblages of the Northeast Pacific Ocean. Limnol Oceanogr. 2017;62:2076–96.CAS 
    Article 

    Google Scholar 
    Hunken M, Harder J, Kirst G. Epiphytic bacteria on the Antarctic ice diatom Amphiprora kufferathii Manguin cleave hydrogen peroxide produced during algal photosynthesis. Plant Biol. 2008;10:519–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gourinchas G, Etzl S, Winkler A. Bacteriophytochromes–from informative model systems of phytochrome function to powerful tools in cell biology. Curr Opin Struct Biol. 2019;57:72–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gourion B, Rossignol M, Vorholt JA. A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci. 2006;103:13186–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019;17:371–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dong YH, Zhang LH. Quorum sensing and quorum-quenching enzymes. J Microbiol. 2005;43:101–9.CAS 
    PubMed 

    Google Scholar 
    Núñez-Montero K, Barrientos L. Advances in Antarctic research for antimicrobial discovery: a comprehensive narrative review of bacteria from Antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics. 2018;7:90.Kieft B, Li Z, Bryson S, Hettich RL, Pan C, Mayali X, et al. Phytoplankton exudates and lysates support distinct microbial consortia with specialized metabolic and ecophysiological traits. Proc Natl Acad Sci. 2021;118:e2101178118.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maranger R, Bird DF. Viral abundance in aquatic systems: a comparison between marine and fresh waters. Mar Ecol Prog Ser. 1995;121:217–26.Article 

    Google Scholar 
    Sharpe GC, Gifford SM, Septer AN. A model roseobacter, Ruegeria pomeroyi DSS-3, employs a diffusible killing mechanism to eliminate competitors. Msystems. 2020;5:e00443–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cude WN, Mooney J, Tavanaei AA, Hadden MK, Frank AM, Gulvik CA, et al. Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine roseobacter Phaeobacter sp. strain Y4I. Appl Environ Microbiol. 2012;78:4771–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Long RA, Rowley DC, Zamora E, Liu J, Bartlett DH, Azam F. Antagonistic interactions among marine bacteria impede the proliferation of Vibrio cholerae. Appl Environ Microbiol. 2005;71:8531–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bruhn JB, Gram L, Belas R. Production of antibacterial compounds and biofilm formation by Roseobacter species are influenced by culture conditions. Appl Environ Microbiol. 2007;73:442–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gromek SM, Suria AM, Fullmer MS, Garcia JL, Gogarten JP, Nyholm SV, et al. Leisingera sp. JC1, a bacterial isolate from Hawaiian bobtail squid eggs, produces indigoidine and differentially inhibits vibrios. Front Microbiol. 2016;7:1342.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sharifah EN, Eguchi M. The phytoplankton Nannochloropsis oculata enhances the ability of Roseobacter clade bacteria to inhibit the growth of fish pathogen Vibrio anguillarum. PLoS One. 2011;6:e26756.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kerwin AH, Gromek SM, Suria AM, Samples RM, Deoss DJ, O’Donnell K, et al. Shielding the next generation: symbiotic bacteria from a reproductive organ protect bobtail squid eggs from fungal fouling. MBio. 2019;10:e02376–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tonelli M, Signori CN, Bendia A, Neiva J, Ferrero B, Pellizari V, et al. Climate projections for the southern ocean reveal impacts in the marine microbial communities following increases in sea surface temperature. Front Mar Sci. 2021;8:636226.Andrew SM, Morell HT, Strzepek RF, Boyd PW, Ellwood MJ. Iron availability influences the tolerance of southern ocean phytoplankton to warming and elevated irradiance. Front Mar Sci. 2019;6:681.Andrew SM, Strzepek RF, Branson O, Ellwood MJ. Ocean acidification reduces the growth of two Southern Ocean phytoplankton. Mar Ecol Prog Ser. 2022;682:51–64.CAS 
    Article 

    Google Scholar 
    Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Weezel GP, Medema MH, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucl Acids Res. 2021;49:W29–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ferrer-González FX, Widner B, Holderman NR, Glushka J, Edison AS, Kujawinski EB, et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 2021;15:762–73.PubMed 
    Article 

    Google Scholar  More

  • in

    Giant clam (Tridacna) distribution in the Gulf of Oman in relation to past and future climate

    Neo, M. L., Eckman, W., Vicentuan, K., Teo, S.L.-M. & Todd, P. A. The ecological significance of giant clams in coral reef ecosystems. Biol. Conserv. 181, 111–123 (2015).Article 

    Google Scholar 
    Wolfe, K. et al. Priority species to support the functional integrity of coral reefs. Oceanogr. Mar. Biol. Annu. Rev. 58, 179–318 (2020).Article 

    Google Scholar 
    Ip, Y. K. & Chew, S. F. Light-dependent phenomena and related molecular mechanisms in giant clam-dinoflagellate associations: A review. Front. Mar. Sci. 8, 627722 (2021).Article 

    Google Scholar 
    Rossbach, S. et al. Flexibility in Red Sea Tridacna maxima-symbiodiniaceae associations supports environmental niche adaption. Ecol. Evol. 11, 3393–3406 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neo, M. L. et al. Giant clams (Bivalvia: Cardiidae: Tridacninae): A comprehensive update of species and their distribution, current threats and conservation status. Oceanogr. Mar. Biol. Annu. Rev. 55, 87–388 (2017).Article 

    Google Scholar 
    Armstrong, E. J., Dubousquet, V., Mills, S. C. & Stillman, J. H. Elevated temperature, but not acidification, reduces fertilization success in the small giant clam, Tridacna maxima. Mar. Biol. 167, 8 (2020).CAS 
    Article 

    Google Scholar 
    Lokier, S., Al-Suwaidi, A. E. & Steuber, T. Stable isotope sclerochronology of Pleistocene shells of the ‘Giant Clam’ Tridacna from Abu Dhabi. Tribulus 20, 21–23 (2012).
    Google Scholar 
    Obura, D. The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7, e45013 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kulbicki, M. et al. Biogeography of butterflyfishes: A global model for reef fishes? In Biology of Butterflyfishes (eds Pratchett, M. S. et al.) 70–106 (CRC Press, 2013).Chapter 

    Google Scholar 
    DiBattista, J. D. et al. On the origin of endemic species in the Red Sea. J. Biogeogr. 43, 13–30 (2016).Article 

    Google Scholar 
    Kemp, J. M. Zoogeography of the coral reef fishes of the north-eastern Gulf of Aden, with eight new records of coral reef fishes from Arabia. Fauna Arabia 18, 293–321 (2000).
    Google Scholar 
    Sheppard, C. R. C. & Salm, R. V. Reef and coral communities of Oman, with a description of a new coral species (Order Scleractinia, genus Acanthastrea). J. Nat. Hist. 22, 263–279 (1988).Article 

    Google Scholar 
    Burt, J. A. et al. Biogeographic patterns of reef fish community structure in the northeastern Arabian Peninsula. ICES J. Mar. Sci. 68, 1875–1883 (2011).Article 

    Google Scholar 
    Torquato, F. & Møller, P. R. Physical-biological interactions underlying the connectivity patterns of coral-dependent fishes around the Arabian Peninsula. J. Biogeogr. 49, 483–496 (2022).Article 

    Google Scholar 
    Watanabe, T., Suzuki, A., Kawahata, H., Kan, H. & Ogawa, S. A 60-year isotopic record from a mid-Holocene fossil giant clam (Tridacna gigas) in the Ryukyu Islands: Physiological and paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 343–354 (2004).Article 

    Google Scholar 
    Elliot, M. et al. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimatic studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 123–142 (2009).Article 

    Google Scholar 
    Welsh, K., Elliot, M., Tudhope, A., Ayling, B. & Chappell, J. Giant bivalves (Tridacna gigas) as recorders of ENSO variability. Earth Planet. Sci. Lett. 307, 266–270 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Hori, M. et al. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell. Sci. Rep. 5, 8734 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Komagoe, T., Watanabe, T., Shirai, K., Yamazaki, A. & Uematu, M. Geochemical and microstructural signals in giant clam Tridacna maxima recorded typhoon events at Okinotori Island, Japan. J. Geophys. Res. Biogeosci. 123, 1460–1474 (2018).CAS 
    Article 

    Google Scholar 
    Yuan, Y., Kusky, T. M. & Rajendran, S. Tertiary and Quaternary marine terraces and planation surfaces of northern Oman: Interaction of flexural bulge migration associated with the Arabian-Eurasian collision and eustatic sea level changes. J. Earth Sci. 27, 955–970 (2016).CAS 
    Article 

    Google Scholar 
    Louis, V., Besseau, L. & Lartaud, F. Step in time: Biomineralisation of bivalve’s shell. Front. Mar. Sci. 9, 906085 (2022).Article 

    Google Scholar 
    Mossadegh, Z. K. et al. Palaeoecology of well-preserved coral communities in a siliciclastic environment from the Late Pleistocene (MIS 7), Kish Island, Persian Gulf (Iran): The development of low-relief reef frameworks (biostromes) in increasingly restricted environments. Int. J. Earth Sci. 102, 545–570 (2013).Article 

    Google Scholar 
    Pico, T., Creveling, J. R. & Mitrovica, J. X. Sea-level records from the U.S. mid-Atlantic constrain laurentide ice sheet extent during marine isotope stage 3. Nat. Commun. 8, 15612 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoffmann, G. et al. Quaternary uplift along a passive continental margin (Oman, Indian Ocean). Geomorphology 350, 106870 (2020).Article 

    Google Scholar 
    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. 111, 15296–15303 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kiessling, W., Simpson, C., Beck, B., Mewis, H. & Pandolfi, J. M. Equatorial decline of reef corals during the last Pleistocene interglacial. Proc. Natl. Acad. Sci. 109, 21378–21383 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burns, S. J., Matter, A., Frank, N. & Mangini, A. Speleothem-based paleoclimate record from northern Oman. Geology 26, 499–502 (1998).ADS 
    Article 

    Google Scholar 
    Hoffmann, G., Rupprechter, M., Rahn, M. & Preusser, F. Fluvio-lacustrine deposits reveal precipitation pattern in SE Arabia during early MIS 3. Quat. Int. 382, 145–153 (2015).Article 

    Google Scholar 
    Kobashi, T. & Grossman, E. J. The oxygen isotopic record of seasonality in Conus shells and its application to understanding late middle Eocene (38 Ma) climate. Paleontol. Res. 7, 343–355 (2003).Article 

    Google Scholar 
    Watanabe, T. K. et al. Past summer upwelling events in the Gulf of Oman derived from a coral geochemical record. Sci. Rep. 7, 4568 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jayaram, C. et al. Analysis of gap-free chlorophyll-α data from MODIS in Arabian Sea, reconstructed using DINEOF. Int. J. Remote Sens. 39, 7506–7522 (2018).Article 

    Google Scholar 
    Warter, V., Erez, J. & Müller, J. Environmental and physiological controls on daily trace element incorporation in Tridacna crocea from combined laboratory culturing and ultra-high resolution LA-ICP-MS analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496, 32–47 (2018).Article 

    Google Scholar 
    Ayouche, A. et al. Structure and dynamics of the Ras al Hadd oceanic dipole in the Arabian Sea. Oceans 2, 105–125 (2021).Article 

    Google Scholar 
    Sano, Y. et al. Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells. Nat. Commun. 3, 761 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Santos, G. M. et al. Δ14C and δ13C of seawater DIC as tracers of coastal upwelling: A 5-year time series from Southern California. Radiocarbon 53, 669–677 (2011).CAS 
    Article 

    Google Scholar 
    North Greenland Ice Core Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).Article 

    Google Scholar 
    Zhang, X. & Prange, M. Stability of the Atlantic overturning circulation under intermediate (MIS3) and full glacial (LGM) conditions and its relationship with Dansgaard-Oeschger climate variability. Quat. Sci. Rev. 242, 106443 (2020).Article 

    Google Scholar 
    Schulte, S. & Müller, P. J. Variations of sea surface temperature and primary productivity during Heinrich and Dansgaard-Oeschger events in the northeastern Arabian Sea. Geo-Mar. Lett. 21, 168–175 (2001).ADS 
    Article 

    Google Scholar 
    Deplazes, G. et al. Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations. Paleoceanography 29, 99–114 (2014).ADS 
    Article 

    Google Scholar 
    Duprey, N. et al. Calibration of seawater temperature and δ18Oseawater signals in Tridacna maxima’s δ18Oshell record based on in situ data. Coral Reefs 34, 437–450 (2015).ADS 
    Article 

    Google Scholar 
    Govil, P. & Naidu, P. D. Evaporation-precipitation changes in the eastern Arabian Sea for the last 68 ka: Implications on monsoon variability. Paleoceanography 25, 1210 (2010).ADS 
    Article 

    Google Scholar 
    Watanabe, T. K. et al. Corals reveal an unprecedented decrease of Arabian Sea upwelling during the current warming era. Geophys. Res. Lett. 48, e2021GL092432 (2021).ADS 
    Article 

    Google Scholar 
    Gaye, B. et al. Glacial−interglacial changes and Holocene variations in Arabian Sea denitrification. Biogeosciences 15, 507–527 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, 9658 (2018).ADS 
    Article 

    Google Scholar 
    Kleypas, J. A., McManus, J. W. & Menez, L. A. B. Environmental limits to coral reef development: Where do we draw the line? Am. Zool. 39, 146–159 (1999).Article 

    Google Scholar 
    Abram, N. J., Webster, J. M., Davies, P. J. & Dullo, W. C. Biological response of coral reefs to sea surface temperature variation: Evidence from the raised Holocene reefs of Kikai-jima (Ryukyu Islands, Japan). Coral Reefs 20, 221–234 (2001).Article 

    Google Scholar 
    Clemens, S. C. & Prell, W. L. A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Mar. Geol. 201, 35–51 (2003).ADS 
    Article 

    Google Scholar 
    Caley, T. et al. New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon. Earth Planet. Sci. Lett. 308, 433–444 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Banakar, V. K., Mahesh, B. S., Burr, G. & Chondankar, A. R. Climatology of the Eastern Arabian Sea during the last glacial cycle reconstructed from paired measurement of foraminiferal δ18O and Mg/Ca. Quat. Res. 73, 535–540 (2010).CAS 
    Article 

    Google Scholar 
    Mattern, F. et al. Coastal dynamics of uplifted and emerged late Pleistocene near-shore coral patch reefs at Fins (eastern coastal Oman, Gulf of Oman). J. Afr. Earth Sci. 138, 192–200 (2018).Article 

    Google Scholar 
    Hoffmann, J. S., Clark, P. U., Parnell, A. C. & He, F. Regional and global sea-surface temperatures during the last interglaciation. Science 355, 276–279 (2017).ADS 
    Article 

    Google Scholar 
    van de Berg, W. J., van den Broeke, M., Ettema, J., van Meijgaard, E. & Kaspar, F. Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nat. Geosci. 4, 1245 (2011).
    Google Scholar 
    Nicholl, J. A. L. et al. A Laurentide outburst flooding event during the last interglacial period. Nat. Geosci. 5, 901–904 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Tzedenakis, P. C. et al. Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial. Nat. Commun. 9, 4235 (2018).ADS 
    Article 

    Google Scholar 
    Sandeep, N. et al. South Asian monsoon response to weakening of Atlantic meridional overturning circulation in a warming climate. Clim. Dyn. 54, 3507–3524 (2020).Article 

    Google Scholar 
    Rao, S. A. et al. Why is Indian Ocean warming consistently? Clim. Change 110, 709–719 (2012).ADS 
    Article 

    Google Scholar 
    Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, M. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci. Rep. 6, 38402 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chollett, I., Mumby, P. J. & Cortés, J. Upwelling areas do not guarantee refuge for coral reefs in a warming ocean. Mar. Ecol. Prog. Ser. 416, 47–56 (2010).ADS 
    Article 

    Google Scholar 
    Praveen, V., Ajayamohan, R. S., Valsala, V. & Sandeep, S. Intensification of upwelling along Oman coast in a warming scenario. Geophys. Res. Lett. 43, 7581–7589 (2016).ADS 
    Article 

    Google Scholar 
    Schulz, K. G., Hartley, S. & Eyre, B. Upwelling amplifies ocean acidification on the East Australian Shelf: Implications for marine ecosystems. Front. Mar. Sci. 6, 636 (2019).Article 

    Google Scholar 
    Southon, J., Kashgarian, M., Fontugne, M., Metivier, B. & Yim, W.W.-S. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44, 167–180 (2002).Article 

    Google Scholar 
    Jochum, K. P., Stoll, B., Herwig, K. & Willbold, M. Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd:YAG laser and matrix-matched calibration. J. Anal. At. Spectrom. 22, 112–121 (2007).CAS 
    Article 

    Google Scholar 
    Mischel, S. A., Mertz-Kraus, R., Jochum, K. P. & Scholz, D. Termite: An R script for fast reduction laser ablation inductivity coupled plasma mass spectrometry data and its application to trace element measurements. Rapid Commun. Mass Spectrom. 31, 1079–1087 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jochum, K. P., Willbold, M., Raczek, I., Stoll, B. & Herwig, K. Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand. Geoanal. Res. 29, 285–302 (2005).CAS 
    Article 

    Google Scholar 
    Okai, T., Suzuki, A., Kawahata, H., Terashima, S. & Imai, N. Preparation of a new geological survey of Japan geochemical reference material: Coral JCp-1. Geostand. Newslett. 26, 95–99 (2002).CAS 
    Article 

    Google Scholar 
    Sekimoto, S. et al. Neutron activation analysis of carbonate reference materials: Coral (JCp-1) and giant clam (JCt-1). J. Radioanal. Nucl. Chem. 322, 1579–1583 (2019).CAS 
    Article 

    Google Scholar 
    Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos Trans. AGU 77, 379 (1996).ADS 
    Article 

    Google Scholar  More

  • in

    Temperature and salinity preferences of endangered Delta Smelt (Hypomesus transpacificus, Actinopterygii, Osmeridae)

    Moyle, P. B. Inland fishes of California (University of California Press, 2002).
    Google Scholar 
    Moyle, P. B., Brown, L. R., Durand, J. R. & Hobbs, J. A. Delta smelt: Life history and decline of a once-abundant species in the San Francisco Estuary. San Franc. Estuary Watershed Sci. 14, 1–28 (2016).
    Google Scholar 
    U. S. Fish and Wildlife Service. Endangered and threatened wildlife and plants: Determination of threatened status of the Delta Smelt. Federal Regist. 58, 12854–12864 (1993).
    Google Scholar 
    California Department of Fish and Wildlife. State and federally listed endangered and threatened animals of California. California Department of Fish and Wildlife, (The Natural Resources Agency, North Highlands, 2017).Moyle, P. B. & Bennett, W. A. The future of the Delta ecosystem and its fish, Technical Appendix D. Comparing Futures for the Sacramento-San Joaquin Delta. San Francisco (CA): Public Policy Institute of California (2008).Lund, J. R. et al. Comparing futures for the Sacramento-San Joaquin Delta (Public Policy Institute of California, 2010).Book 

    Google Scholar 
    Moyle, P. B., Bennett, W. A., Fleenor, W. E. & Lund, J. R. Habitat variability and complexity in the upper San Francisco Estuary. San Franc. Estuary Watershed Sci. 8, 1–24 (2010).
    Google Scholar 
    Feyrer, F., Newman, K., Nobriga, M. & Sommer, T. Modeling the effects of future outflow on the abiotic habitat of an imperiled estuarine fish. Estuaries Coast. 34, 120–128 (2011).Article 

    Google Scholar 
    Cloern, J. E. & Jassby, A. D. Drivers of change in estuarine-coastal ecosystems: Discoveries from four decades of study in San Francisco bay. Rev. Geophys. 50, RG4001 (2012).ADS 
    Article 

    Google Scholar 
    Moyle, P. B., Hobbs, J. A. & Durand, J. R. Delta Smelt and water politics in California. Fisheries 43, 42–60 (2018).Article 

    Google Scholar 
    Mahardja, B. et al. Resistance and resilience of pelagic and littoral fishes to drought in the San Francisco estuary. Ecol. Appl. 31, e02243 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Börk, K., Moyle, P., Durand, J., Hung, T.-C. & Rypel, A. L. Small populations in jeopardy: Delta smelt case study. Environ. Law Reporter 50, 10714–10722 (2020).
    Google Scholar 
    Moyle, P. B. 2021. Experimental habitats for hatchery Delta Smelt. California WaterBlog https://californiawaterblog.com/2021/07/25/experimental-habitats-for-hatchery-delta-smelt/ (2021).Jeffries, K. M. et al. Effects of high temperatures on threatened estuarine fishes during periods of extreme drought. J. Exp. Biol. 219, 1705–1716 (2016).PubMed 
    Article 

    Google Scholar 
    Bashevkin, S. M. & Mahardja, B. Seasonally variable relationships between surface water temperature and inflow in the upper San Francisco Estuary. Limnol. Oceanogr. 67, 684–702 (2022).ADS 
    Article 

    Google Scholar 
    Brown, L. R. et al. Coupled downscaled climate models and ecophysiological metrics forecast habitat compression for an endangered estuarine fish. PLoS ONE 11, e0146724 (2015).Article 

    Google Scholar 
    Kurobe, T. et al. Reproductive strategy of Delta Smelt Hypomesus transpacificus and impacts of drought on reproductive performance. PLoS ONE 17, e0264731 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lewis, L. S. et al. Otolith-based approaches indicate strong effects of environmental variation on growth of a critically endangered estuarine fish. Mar. Ecol. Prog. 676, 37–56 (2021).Article 

    Google Scholar 
    Hammock, B. G. et al. Patterns and predictors of condition indices in a critically endangered fish. Hydrobiologia 849, 675–695 (2021).Article 

    Google Scholar 
    Bennett, W. A. Critical assessment of the delta smelt population in the San Francisco Estuary, California. San Franc. Estuary Watershed Sci. 3(1), (2005).Komoroske, L. M. et al. Ontogeny influences sensitivity to climate change stressors in an endangered fish. Conserv. Physiol. 2, cou008 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moyle, P. B., Herbold, B., Stevens, D. E. & Miller, L. W. Life history of delta smelt in the Sacramento-San Joaquin Estuary California. Trans. Am. Fish. Soc. 121, 67–77 (1992).Article 

    Google Scholar 
    Kimmerer, W. J., MacWilliams, M. L. & Gross, E. S. Variation of fish habitat and extent of the low-salinity zone with freshwater flow in the San Francisco Estuary. San Franc. Estuary Watershed Sci. 11 (2013).Sommer, T. & Meija, F. A place to call home: A synthesis of delta smelt habitats in the upper San Francisco Estuary. San Franc. Estuary Watershed Sci. 9 (2013).Hammock, B. G. et al. Foraging and metabolic consequences of semi-anadromy for an endangered estuarine fish. PLoS ONE 12, e0173497 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cox, D. Effects of three heating rates on the critical thermal maximum of Bluegill. In W Gibbons, R Sharitz, eds, Thermal Ecology. National Technical Information Service, 158–163 (Springfield, IL, 1974).Beitinger, T. L., Bennett, W. A. & McCauley, R. W. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ. Biol. Fishes 58, 237–275 (2000).Article 

    Google Scholar 
    Davis, B. E. et al. Sensitivities of an endemic, endangered California smelt and two non-native fishes to serial increases in temperature and salinity: Implications for shifting community structure with climate change. Conserv. Physiol. 7, coy076 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Swanson, C., Reid, T., Young, P. S. & Cech, J. J. Jr. Comparative environmental tolerances of threatened delta smelt (Hypomesus transpacificus) and introduced wakasagi (H. nipponensis) in an altered California estuary. Oecologia 123, 384–390 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hammock, B. G., Hobbs, J. A., Slater, S. B., Acuña, S. & Teh, S. J. Contaminant and food limitation stress in an endangered estuarine fish. Sci. Total Environ. 532, 316–326 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamilton, S. A. & Murphy, D. D. Analysis of limiting factors across the life cycle of delta smelt (Hypomesus transpacificus). Environ. Manage. 62, 365–382 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Feyrer, F., Nobriga, M. L. & Sommer, T. R. Multidecadal trends for three declining fish species: Habitat patterns and mechanisms in the San Francisco Estuary, California USA. Can. J. Fish. Aquat. Sci. 64, 723–734 (2007).Article 

    Google Scholar 
    Nobriga, M. L., Sommer, T. R., Feyrer, F. & Fleming, K. Long-term trends in summertime habitat suitability for delta smelt (Hypomesus transpacificus). San Franc. Estuary Watershed Sci. 6(1), (2008).Brown, L. R. et al. Implications for future survival of delta smelt from four climate change scenarios for the Sacramento-San Joaquin Delta California. Estuaries Coast. 36, 754–774 (2013).CAS 
    Article 

    Google Scholar 
    Moyle, P., Kiernan, J. D., Crain, P. K. & Quiñones, R. M. Climate change vulnerability of native and alien freshwater fishes of California: A systematic assessment approach. PLoS ONE 8, e63883 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hobbs, J. A., Lewis, L. S., Willmes, M., Denney, C. & Bush, E. Complex life histories discovered in a critically endangered fish. Sci. Rep. 9, 16772 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bennett, W. A. & Burau, J. R. Riders on the storm: Selective tidal movements facilitate the spawning migration of threatened Delta Smelt in the San Francisco Estuary. Estuaries Coast. 38, 826–835 (2015).Article 

    Google Scholar 
    Hirvonen, H., Ranta, E., Piironen, J., Laurila, A. & Peuhkuri, N. Behavioral responses of naive Arctic charr to chemical cues from salmonid and non-salmonid fish. Oikos 88, 191–199 (2000).Article 

    Google Scholar 
    Correia, A. M., Bandeira, N. & Anastacio, P. M. Influence of chemical and visual stimuli in food-search behaviour of Procambarus clarkii under clear conditions. Mar. Freshw. Behav. Physiol. 40, 189–194 (2007).CAS 
    Article 

    Google Scholar 
    Nay, T. J. et al. Habitat complexity influences selection of thermal environment in a common coral reef fish. Conserv. Physiol. 8, coaa070 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Horning, W. B. & Weber, C. I. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. EPA/600/4-85/014, 58–75 (1985).Lindberg, J. et al. Aquaculture methods for a genetically managed population of endangered delta smelt. N. Am. J. Aquac. 75, 186–196 (2013).Article 

    Google Scholar 
    Ferrari, M. C. O. et al. Effects of turbidity and an invasive waterweed on predation by introduced largemouth bass. Environ. Biol. Fishes 97, 79–90 (2014).Article 

    Google Scholar 
    Petersen, M. F. & Steffensen, T. F. Preferred temperature of juvenile Atlantic cod Gadus morhua with different haemoglobin genotypes at normoxia and moderate hypoxia. J. Exp. Biol. 206, 359–364 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meager, J. J. & Utne-Palm, A. C. Effect of turbidity on habitat preference of juvenile Atlantic cod Gadus morhua. Environ. Biol. Fishes 81, 149–155 (2008).Article 

    Google Scholar 
    Serrano, X., Grosell, M. & Serafy, J. E. Salinity selection and preference of the grey snapper Lutjanus griseus: Field and laboratory observations. J. Fish Biol. 76, 1592–1608 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stol, J. A., Svendsen, J. C. & Enders, E. C. Determining the thermal preferences of Carmine Shiner (Notropis percobromus) and Lake Sturgeon (Acipenser fulvescens) using an automated shuttlebox. Can. Tech. Rep. Fish. Aquat. Sci. 3038 (2013).Hammock, B. G. et al. The health and condition responses of delta smelt to fasting: A time series experiment. PLoS ONE 15, e0239358 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McElreath, R. Statistical rethinking: A Bayesian course with examples in R and Stan. (CRC Press, 2016.R Core Team. R: A language and environment for statistical computing (2021).Bates, D., Maechler, M. & Bolker, B. lme4: Linear mixed-effects models using S4 classes (2012).Korner-Nievergelt, F. et al. Bayesian data analysis in ecology using linear models with R (Elsevier, 2015).
    Google Scholar 
    Gilliam, J. F. & Fraser, D. F. Habitat selection under predation hazard: Test of a model with foraging minnows. Ecology 68, 1856–1862 (1987).PubMed 
    Article 

    Google Scholar 
    Metcalfe, N. B., Fraser, N. H. & Burns, M. D. Food availability and the nocturnal vs. diurnal foraging trade-off in juvenile salmon. J. Anim. Ecol. 68, 371–381 (1999).Article 

    Google Scholar 
    Walters, C. J. & Juanes, F. Recruitment limitation as a consequence of natural selection for use of restricted feeding habitats and predation risk taking by juvenile fishes. Can. J. Fish. Aquat. Sci. 50, 2058–2070 (1993).Article 

    Google Scholar 
    Bull, H. O. Studies on conditioned responses in fishes. Part VII. Temperature perception in teleosts. J. Mar. Biol. Assoc. U. K. 21, 1–27 (1936).Article 

    Google Scholar 
    Steffel, S., Magnuson, J. J., Dizon, A. E. & Neill, W. H. Temperature discrimination by captive free-swimming tuna Euthynnus affinis. Trans. Am. Fish. Soc. 105, 588–591 (1976).Article 

    Google Scholar 
    Dülger, N. et al. Thermal tolerance of European Sea bass (Dicentrarchus labrax) juveniles acclimated to three temperature levels. J. Therm. Biol. 37, 79–82 (2012).Article 

    Google Scholar 
    Hung, T.-C. et al. A pilot study of the performance of captive-reared delta smelt Hypomesus transpacificus in a semi-natural environment. J. Fish Biol. 95, 1517–1522 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Navarro, I. & Gutiérrez, J. Fasting and starvation. Biochemistry and molecular biology of fishes. 4: Elsevier. p. 393–434 (1995).Finger, A. J. et al. A conservation hatchery population of Delta Smelt shows evidence of genetic adaptation to captivity after 9 generations. J. Hered. 109, 689–699 (2018).PubMed 
    Article 

    Google Scholar 
    Middaugh, D. P., Davis, W. R. & Yokum, R. L. The response of larval fish, Leiostomus xanthurus, to environmental stress following sublethal cadmium exposure. Contrib. Mar. Sci. 19, 13–19 (1975).CAS 

    Google Scholar 
    Stevens, E. D. & Sutterlin, A. M. Heat transfer between fish and ambient water. J. Exp. Biol. 65, 131–145 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beitinger, T. L., Thommes, M. M. & Spigarelli, S. A. Relative roles of conduction and convection in the body temperature change of gizzard shad Dorosoma cepedianum. Comp. Biochem. Physiol. 57A, 275–279 (1977).Article 

    Google Scholar 
    Neill, W. H. & Magnuson, J. J. Distributional ecology and behavioral thermoregulation of fishes in relation to heated effluents from a power plant at Lake Monona Wisconsin. Trans. Am. Fish. Soc. 103, 663–710 (1974).Article 

    Google Scholar 
    Coutant, C. C. Temperature selection by fish–a factor in power plant impact assessments. pp. 575–597. In: Environmental Effects of Cooling Systems at Nuclear Power Plants, Internat. Atomic Energy Agency, Vienna (1975).Richards, F. P., Reynolds, W. W. & McCauley, R. W. Temperature preference studies in environmental impact assessment: An overview with procedural recommendations. J. Fish. Res. Board Can. 34, 728–761 (1977).Article 

    Google Scholar 
    Swanson, C., Mager, R. C., Doroshov, S. I. & Cech, J. J. Jr. Use of salts, anesthetics, and polymers to minimize handling and transport mortality in delta smelt. Trans. Am. Fish. Soc. 125, 326–329 (1996).CAS 
    Article 

    Google Scholar 
    Komoroske, L. M. et al. Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish. Evol. Appl. 9, 963–981 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Feyrer, F., Sommer, T. & Harrell, W. Importance of flood dynamics versus intrinsic physical habitat in structuring fish communities: Evidence from two adjacent engineered floodplains on the Sacramento river California. N. Am. J. Aquac. 26, 408–417 (2006).
    Google Scholar  More